Continue to Site

Welcome to EDAboard.com

Welcome to our site! EDAboard.com is an international Electronics Discussion Forum focused on EDA software, circuits, schematics, books, theory, papers, asic, pld, 8051, DSP, Network, RF, Analog Design, PCB, Service Manuals... and a whole lot more! To participate you need to register. Registration is free. Click here to register now.

Temperature monitoring and control system for the refrigerator

Status
Not open for further replies.

akulet

Newbie level 2
Joined
Mar 6, 2012
Messages
2
Helped
0
Reputation
0
Reaction score
0
Trophy points
1,281
Activity points
1,383
in this project am using the folowing components.
a. hardware
-micro controller AT89C51
-temperature sensor Ds18B20
-LCD display LM016L
-AN-DC motor
COMPIM serial connector

b.software components
-Proteus simulator
-Keil compiler
C-language

CONNECTION
compim serial connector to the micro controller in port p3.0 and p3.1
temperature to the micro controller through port p17
FAN-DC motor to the micro controller through port p16
LCD display to the micro controller through port p0


THE OPERATION
the user enters temperature value from the computer having an interface developed in V.B. then signal from the computer is sent into the micro controller by compim serial connector as the constant value.
then this constant value should be displayed on LCD and maintained constant.
now when a motor is rotating, temperature sensor should sense the effect caused by the rotation of the motor on the refrigerator. then the sensed temperature value by the sensor should be measured and these two values that is constant and measured one should be compared and if they are equal, the motor should be switched off and the buzzer is sounded.
this is tried code please friends help me edit code to fit my project

Code C - [expand]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
//
#include <avr/io.h>
#define  F_CPU      1000000
#include <util/delay.h>
#include <avr/interrupt.h>
#include <avr/sleep.h>
//
#define     data                15
#define     MAX_DIGITS          4
#define     DISPLAYBUFFERSIZE   4
#define     TEMP_BUFFERSIZE     128
//unsigned int data_buffer[data] = {0X3F,0X06,0X5B,0X4F,0X66,0X6D,0X7D,0X07,0X7F,0X6F,0X80,0X39,0X71,0x00};
//active low data
unsigned int data_buffer[data] = {0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0xff};
 
unsigned int displaybuffer[DISPLAYBUFFERSIZE];
unsigned int tempbuffer[TEMP_BUFFERSIZE];
unsigned int ones = 0; 
unsigned int tens = 0; 
unsigned int hundreds = 0; 
unsigned int thousands = 0;
unsigned int digit_count = 0;
unsigned int displaybuffer_cnt = 0;
unsigned int blank_digit = 10;
unsigned int temperature; 
unsigned int temp_buffer_counter = 0; 
void chip_init(void);
void configure_timer2_ctc(void);
void display_temperature(unsigned int temp);
void temp_compare(unsigned int temp);
int main(void)
{
        cli();        // disable interrupts first
        chip_init(); // initialize ATmega168
        sei(); // Enable interrupts now
    while(1)
    {
        temp_compare(temperature);
        // relax
        sleep_enable();
 
    }
    return 0;
}
void conf_adc(void)
{
    ADMUX = 0;                // use ADC0
    ADMUX |= (1 << REFS0);    // use AVcc as the reference
    ADMUX |= (1 << ADLAR);    // Right adjust for 8 bit resolution
 
    ADCSRA |= (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0); // 128 prescale 
    ADCSRA |= (1 << ADATE);   // Set ADC Auto Trigger Enable
    
    ADCSRB = 0;               // 0 for free running mode
 
    ADCSRA |= (1 << ADEN);    // Enable the ADC
    ADCSRA |= (1 << ADIE);    // Enable Interrupts 
 
    ADCSRA |= (1 << ADSC);    // Start the ADC conversion
}
// Timer2 configuration in CTC mode
void configure_timer2_ctc(void)
{       
 
    // reset all
    TCNT2       = 0;  
    TCCR2B      = 0;
    TIMSK2      = 0;
 
    // when the processor is running at 1MHz, prescaled by 32
    //OCR2A     = 0xf9;
    OCR2A       = 0x80;
    
    // prescale by 32, resulting input freq. to the timer is 31250Hz
    //TCCR2B        |= (1<<CS21)|(1<<CS20);
    // prescale by 8, resulting input freq. to the timer is 1250Hz
    TCCR2B      |= (1<<CS21);
    
    // enable CTC mode of timer0
    TCCR2A      |= (1<<WGM21);
 
    // enable compare match interrupt
    TIMSK2      |= (1<<OCIE2A);
}
void chip_init(void)
{
    DDRD  = 0xff;
    //DDRC  = 0X78;
    DDRB  = 0xff;
    PORTD = 0x00;
    PORTB = 0x00;
    
    conf_adc();
    configure_timer2_ctc();
 
}
void display_temperature(unsigned int temp)   
{
    //  _delay_us(500);
    
 
    if((temp >= 0) && (temp < 10))
    {
        thousands   = blank_digit;
        hundreds    = blank_digit;
        tens        = blank_digit;
        ones        = temp;
        // fill the display buffer
        displaybuffer[0] = data_buffer[ones];
        displaybuffer[1] = data_buffer[tens];
        displaybuffer[2] = data_buffer[hundreds];
        displaybuffer[3] = data_buffer[thousands];
    }
    else if((temp > 9) && (temp < 100))
    {
        thousands   = blank_digit;
        hundreds    = blank_digit;
        tens        = temp / 10;
        ones        = temp % 10;
        
        displaybuffer[0] = data_buffer[ones];
        displaybuffer[1] = data_buffer[tens];
        displaybuffer[2] = data_buffer[hundreds];
        displaybuffer[3] = data_buffer[thousands];
    }
    else if((temp > 99) && (temp < 1000))
    {
        thousands   = blank_digit;
        hundreds    = temp / 100;
        tens        = (temp % 100) / 10;
        ones        = (temp % 100) % 10;
        
        displaybuffer[0] = data_buffer[ones];
        displaybuffer[1] = data_buffer[tens];
        displaybuffer[2] = data_buffer[hundreds];
        displaybuffer[3] = data_buffer[thousands];
    }
    else if((temp > 999) && (temp < 10000))
    {
        thousands   = temp / 1000;
        hundreds    = (temp % 1000) / 100;
        tens        = ((temp % 1000) % 100) / 10;
        ones        = ((temp % 1000) % 100) % 10;
        
        displaybuffer[0] = data_buffer[ones];
        displaybuffer[1] = data_buffer[tens];
        displaybuffer[2] = data_buffer[hundreds];
        displaybuffer[3] = data_buffer[thousands];      
    }
 
    //
 
        //  _delay_us(500);
 
    if((temp >= 0) && (temp < 10))
    {
        thousands   = blank_digit;
        hundreds    = blank_digit;
        tens        = blank_digit;
        ones        = temp;
        // fill the display buffer
        displaybuffer[0] = data_buffer[thousands];
        displaybuffer[1] = data_buffer[hundreds];
        displaybuffer[2] = data_buffer[tens];
        displaybuffer[3] = data_buffer[ones];
    }
    else if((temp > 9) && (temp < 100))
    {
        thousands   = blank_digit;
        hundreds    = blank_digit;
        tens        = temp / 10;
        ones        = temp % 10;
        
        displaybuffer[0] = data_buffer[thousands];
        displaybuffer[1] = data_buffer[hundreds];
        displaybuffer[2] = data_buffer[tens];
        displaybuffer[3] = data_buffer[ones];
    }
    else if((temp > 99) && (temp < 1000))
    {
        thousands   = blank_digit;
        hundreds    = temp / 100;
        tens        = (temp % 100) / 10;
        ones        = (temp % 100) % 10;
        
        displaybuffer[0] = data_buffer[thousands];
        displaybuffer[1] = data_buffer[hundreds];
        displaybuffer[2] = data_buffer[tens];
        displaybuffer[3] = data_buffer[ones];
    }
    else if((temp > 999) && (temp < 10000))
    {
        thousands   = temp / 1000;
        hundreds    = (temp % 1000) / 100;
        tens        = ((temp % 1000) % 100) / 10;
        ones        = ((temp % 1000) % 100) % 10;
        
        displaybuffer[0] = data_buffer[thousands];
        displaybuffer[1] = data_buffer[hundreds];
        displaybuffer[2] = data_buffer[tens];
        displaybuffer[3] = data_buffer[ones];
        }
}
ISR(TIMER2_COMPA_vect)
{
    display_temperature(temperature);
    //display_temperature(17);
 
    // select digit position
    PORTB = 1<<digit_count;
    digit_count++;
    digit_count &= (MAX_DIGITS - 1);
    // send data to the display
    PORTD = displaybuffer[displaybuffer_cnt];
    //
    displaybuffer_cnt++;
    displaybuffer_cnt &= (DISPLAYBUFFERSIZE - 1);
}
 
    ISR(ADC_vect)
{
    unsigned char status_reg;
    
    // Save global interrupt flags
    status_reg = SREG;
    // disable interrupts first
    asm("cli");
    // Calculate temperature value and store it in tempbuffer
    tempbuffer[temp_buffer_counter++] = ((ADCH * 5/255.0) - 0.5)/ 0.01;    
 
    //_delay_us(3500);
 
    if(temp_buffer_counter == TEMP_BUFFERSIZE)
    {
        // reset temp_buffer_counter
        temp_buffer_counter = 0;
        for(unsigned cnt = 0; cnt < TEMP_BUFFERSIZE; cnt++)
        {
            temperature += tempbuffer[cnt];
        }
        // Compute average temperature
        temperature = temperature / TEMP_BUFFERSIZE;
    }
    // Restore interrupts globally
    SREG = status_reg;
 
}
 
void temp_compare(unsigned int temp)
{
    if ((temperature >= 0) && (temperature <= 29))
    {
        //switch green led on
        PORTB = 0x80;
        
    }
    else if ((temperature >= 30) && (temperature <= 35))
    {
        //switch motor and yellow led on
        PORTB = 0X20;
    }
    
    else if(temperature >= 36)
    {
        //switch buzzer and red led on keeping the motor on
        PORTB = 0X30;
    }
}


for the circuit design please click the like
 
Last edited by a moderator:

#include <avr/io.h>
#define F_CPU 1000000
#include <util/delay.h>
#include <avr/interrupt.h>
#include <avr/sleep.h>

Does keil supports AVR??

The code you might had copied is for AVR. The micro you are using is 89c51.

Read the tutorials of Keil and try to convert the code to 89c51
 

Status
Not open for further replies.

Part and Inventory Search

Welcome to EDABoard.com

Sponsor

Back
Top