Continue to Site

Welcome to EDAboard.com

Welcome to our site! EDAboard.com is an international Electronics Discussion Forum focused on EDA software, circuits, schematics, books, theory, papers, asic, pld, 8051, DSP, Network, RF, Analog Design, PCB, Service Manuals... and a whole lot more! To participate you need to register. Registration is free. Click here to register now.

static timing analysis

Status
Not open for further replies.

ee1

Full Member level 2
Joined
May 31, 2011
Messages
120
Helped
1
Reputation
2
Reaction score
1
Trophy points
1,298
Activity points
2,036
what is "static" stands for?
thanks!
 

In Static Timing Analysis (STA) static delays such as gate delay and net delays are considered in each path and these delays are compared against their required maximum and minimum values. Circuit to be analyzed is broken into different timing paths constituting of gates, flip flops and their interconnections. Each timing path has to process the data within a clock period which is determined by the maximum frequency of operation. Cell delays are available in the corresponding technology libraries. Cell delay values are tabulated based on input transition and fanout load which are characterized by SPICE simulation. Net delays are calculated based on the Wire Load Models(WLM) or extracted resistance R and capacitance C. Wire Load Models(WLM) are available in the Technology File.


Timing analysis is integral part of ASIC/VLSI design flow. Anything else can be compromised but not timing! Timing analysis can be static or dynamic. Dynamic timing analysis verifies functionality of the design by applying input vectors and checking for correct output vectors whereas Static Timing Analysis checks static delay requirements of the circuit without any input or output vectors.
Dynamic timing analysis has to be accomplished and functionality of the design must be cleared before the design is subjected to Static Timing Analysis (STA). Dynamic Timing Analysis (DTA) and Static Timing Analysis (STA) are not alternatives to each other. Quality of the Dynamic Timing Analysis (DTA) increases with the increase of input test vectors. Increased test vectors increase simulation time. Dynamic timing analysis can be used for synchronous as well as asynchronous designs. Static Timing Analysis (STA) can’t run on asynchronous deigns and hence Dynamic Timing Analysis (DTA) is the best way to analyze asynchronous designs. Dynamic Timing Analysis (DTA) is also best suitable for designs having clocks crossing multiple domains.
 

thanks! :)
 

Status
Not open for further replies.

Part and Inventory Search

Welcome to EDABoard.com

Sponsor

Back
Top