Continue to Site

Welcome to EDAboard.com

Welcome to our site! EDAboard.com is an international Electronics Discussion Forum focused on EDA software, circuits, schematics, books, theory, papers, asic, pld, 8051, DSP, Network, RF, Analog Design, PCB, Service Manuals... and a whole lot more! To participate you need to register. Registration is free. Click here to register now.

Help deriving the expansion of Helmholtz equation in spherical coordinates.

Status
Not open for further replies.

Alan0354

Full Member level 4
Full Member level 4
Joined
Sep 6, 2011
Messages
214
Helped
30
Reputation
60
Reaction score
29
Trophy points
1,308
Visit site
Activity points
2,709
proof of orthogonality of spherical bessel fn in spherical coordinates.

The book gave
\[\int_{0}^{a}\int_{0}^{2\pi}\int_{0}^{\pi} j_{n} (\lambda_{n,j}r) j_{n'} (\lambda_{n',j'}r) Y_{n,m}(\theta,\phi)\overline{Y}_{n',m'}(\theta,\phi) \sin\theta \;dr d\theta\; d\phi=\frac{a^{3}}{2}j^2_{n+1}(\alpha_{n+\frac{1}{2},j})\]
For \[(n=n')\], \[(j=j')\] and \[(m= m')\]

I got only
\[\int_{0}^{a}\int_{0}^{2\pi}\int_{0}^{\pi} j_{n} (\lambda_{n,j}r) j_{n'} (\lambda_{n',j'}r) Y_{n,m}(\theta,\phi)\overline{Y}_{n',m'}(\theta,\phi) \sin\theta \;dr d\theta\;d\phi=\frac{a^{2}}{2}j^2_{n+1}(\alpha_{(n+\frac{1}{2},j)})\]



Helmholtz equation: \[\nabla^2 u(r,\theta,\phi)=-k u(r,\theta,\phi)\] Where \[u_{n,m}(r,\theta,\phi)=R_{n}(r)Y_{n,m}(\theta,\phi)\]

Where \[Y_{n,m}(\theta,\phi)=\sqrt{\frac{(2n+1)(n-m)!}{4\pi(n+m)!}} P_{n}^{m}(\cos\theta)e^{jm\phi}\] is the Spherical Harmonics.

And \[R_{n}(r)=j_{n}(\lambda_{n,j} r)=\sqrt{\frac{\pi}{2\lambda_{n,j} r}} J_{n+\frac{1}{2}}(\lambda_{n,j} r)\] (1) is the Spherical Bessel function.


Orthogonal properties stated that

For \[0\leq\; r \leq \;a \] where \[R(0)\] is finite and \[R(a)=0\]:

\[R(a)=0\Rightarrow\; \lambda{n,j}=\frac{\alpha_{n,j}}{a}\]

\[\int_{0}^{2\pi}\int_{0}^{\pi}Y_{n,m}(\theta,\phi)\overline{Y}_{n',m'}(\theta,\phi) \sin\theta \;d\theta \;d\phi=0\] For \[(n\neq \;n')\] and \[(m\neq \;m')\]

\[\int_{0}^{2\pi}\int_{0}^{\pi}Y_{n,m}(\theta,\phi)\overline{Y}_{n',m'}(\theta,\phi) \sin\theta \;d\theta\; d\phi=1 \] For \[(n=n')\] and \[(m= m')\](2)

And \[\int_{0}^{a} r J_n^2(\lambda_{n,j} r)dr=\frac {a^{2}}{2}J_{n+1}^2(\alpha_{n,j})\] (3) where \[\alpha_{n,j}\] is the j zero of the Bessel function.


Here is my work:
For \[(n=n')\], \[(j=j')\] and \[(m= m')\]

\[\int_{0}^{a}\int_{0}^{2\pi}\int_{0}^{\pi} j_{n} (\lambda_{n,j}r) j_{n'} (\lambda_{n',j'}r) Y_{n,m}(\theta,\phi)\overline{Y}_{n',m'}(\theta,\phi) \sin\theta \;dr d\theta\; d\phi=\int_{0}^{a} j_{n}^{2} (\lambda_{n,j}r)dr\;\int_{0}^{2\pi}\int_{0}^{\pi}|Y_{n,m}(\theta,\phi)|^{2}\sin\theta \;d\theta \;d\phi=\int_{0}^{a} j_{n}^{2} (\lambda_{n,j}r)dr\]

As the two have different independent variables and from (2), \[\int_{0}^{2\pi}\int_{0}^{\pi}|Y_{n,m}(\theta,\phi)|^{2}\sin\theta \;d\theta \;d\phi=1\]

Using (1), (3)
\[\int_{0}^{a}\int_{0}^{2\pi}\int_{0}^{\pi} j_{n} (\lambda_{(n,j)}r) j_{n'} (\lambda_{n',j'}r) Y_{n,m}(\theta,\phi)\overline{Y}_{n',m'}(\theta,\phi) \sin\theta \;dr d\theta \;d\phi = \int_{0}^{a} j_{n}^{2} (\lambda_{(n,j)}r)rdr= \frac{\pi}{2\lambda_{(n,j)}}\int_{0}^{a} J_{n+\frac{1}{2}}^{2}(\lambda_{(n,j)}r)rd r\]

\[R(a)=0\;\Rightarrow\;\lambda_{(n,j)}=\frac{\alpha_{(n+\frac{1}{2},j)}}{a}\] as \[\alpha_{(n+\frac{1}{2},j)}\] is the \[j^{th}\] zero of \[J_{n+\frac{1}{2}}(\lambda_{(n,j)})\]

\[ \frac{\pi}{2\lambda_{(n,j)}}\int_{0}^{a} J_{n+\frac{1}{2}}^{2}(\lambda_{(n,j)}r)rd r= \frac{\pi}{2\lambda_{(n,j)}} \frac{a^2}{2}J_{n+\frac{3}{2}}(\alpha_{(n+\frac{1}{2},j)})=\frac{a^{2}}{2}j^2_{n+1}(\alpha_{(n+\frac{1}{2},j)})\]

I am missing an \[a\]. Please help

Thanks
 
Last edited:

I already find proof that for \[0\leq \; r\leq \;a \] where \[R(0)\] is finite and \[R(a)=0\]:

\[\int_{0}^{a}\int_{0}^{2\pi}\int_{0}^{\pi} j_{n} (\lambda_{(n,j)}r) j_{n'} (\lambda_{n',j'}r) Y_{n,m}(\theta,\phi)\overline{Y}_{n',m'}(\theta,\phi) \sin\theta \;dr d\theta d\phi = \int_{0}^{a} j_{n}^{2} (\lambda_{(n,j)}r)rdr\]



So all I need to proof is

\[\int_{0}^{a} j_{n}^{2} (\lambda_{(n,j)}r)rdr=\frac{a^{3}}{2}j^2_{n+1}(\alpha_{(n+\frac{1}{2},j)})\]




But as in the last post:

\[\int_{0}^{a} j_{n}^{2} (\lambda_{(n,j)}r)rdr= \frac{\pi}{2\lambda_{(n,j)}}\int_{0}^{a} J_{n+\frac{1}{2}}^{2}(\lambda_{(n,j)}r)rd r\]

\[R(a)=0\;\Rightarrow\;\lambda_{(n,j)}=\frac{\alpha_{(n+\frac{1}{2},j)}}{a}\] as \[\alpha_{(n+\frac{1}{2},j)}\] is the \[j^{th}\] zero of \[J_{n+\frac{1}{2}}(\lambda_{(n,j)})\]

\[ \frac{\pi}{2\lambda_{(n,j)}}\int_{0}^{a} J_{n+\frac{1}{2}}^{2}(\lambda_{(n,j)}r)rd r= \frac{\pi}{2\lambda_{(n,j)}} \frac{a^2}{2}J_{n+\frac{3}{2}}(\alpha_{(n+\frac{1}{2},j)})=\frac{a^{2}}{2}j^2_{n+1}(\alpha_{(n+\frac{1}{2},j)})\]

I am missing the \[a\]. This time, it's a lot simpler and more focus, please help me on this.

Thanks
 

Status
Not open for further replies.

Part and Inventory Search

Welcome to EDABoard.com

Sponsor

Back
Top