Continue to Site

Welcome to EDAboard.com

Welcome to our site! EDAboard.com is an international Electronics Discussion Forum focused on EDA software, circuits, schematics, books, theory, papers, asic, pld, 8051, DSP, Network, RF, Analog Design, PCB, Service Manuals... and a whole lot more! To participate you need to register. Registration is free. Click here to register now.

Question on interval of integration of Bessel Function

Status
Not open for further replies.

Alan0354

Full Member level 4
Joined
Sep 6, 2011
Messages
214
Helped
30
Reputation
60
Reaction score
29
Trophy points
1,308
Activity points
2,709
I have seen different books claimed \[J_0(x)=\frac{1}{2\pi}\int_0^{2\pi}e^{jx\sin\theta}d\theta=\frac{1}{\pi}\int_0^{\pi} e^{jx\sin\theta}d\theta=\frac{2}{\pi}\int_0^{\frac{\pi}{2}}e^{jx\sin\theta}d\theta\]. I have issue with this. Here is my reasoning:

\[\int \ sin^{m}(\theta) d\theta=-\frac{1}{m}sin^{m-1}(\theta)cos(\theta)+\frac{m-1}{m} \int\; sin^{m-2}(\theta) d\theta \].

I gone through integration over intevals \[[0,2\pi]\],\[[-\pi,\pi]\]\[[0,\pi]\].

\[\sin^{m-1}\theta\cos\theta=0\;\] in all the above intervals.

\[\Rightarrow\; \int \;sin ^m (x) dx=\frac{m-1}{m} \int\; sin^{m-2}(x) dx \;\] for the intervals above.(1)

\[e^{jx\sin\theta}=\sum_{m=0}^{\infty}\frac{(jx\sin\theta)^m}{m!}\]

For \[\int_0^{2\pi}e^{jx\sin\theta}d\theta\], only m=even result in non zero, so let \[m=2k\]. (2)

\[\Rightarrow\;\int_0^{2\pi}e^{jx\sin\theta}d\theta=\int_0^{2\pi}\left[1-\frac{x^2\sin^2\theta}{2!}+\frac{x^4\sin^4\theta}{4!}-\frac{x^6\sin^6\theta}{6!}\cdot\cdot\cdot\right]d\theta\](3)

\[For \;m=2k, \;\; \int_0^{2\pi} sin^{2k}(\theta) d\theta=\frac{2k-1}{2k} \int \;sin^{2k-2}(\theta) d\theta=\frac{3\cdot 5\cdot 7\cdot\cdot\cdot (2k-1)}{4\cdot 6\cdot 8 \cdot\cdot\cdot (2k)}\pi\]

\[As \;\; \int_0^{2\pi} sin^2(\theta) d\theta=\pi\]

Also if you use the result of this but instead integrate from \[[0,2\pi]\]. You'll get

\[For \;m=2k\;\; \int_0^{\pi} sin^{2k}(\theta) d\theta=\frac{2k-1}{2k} \int\; sin^{2k-2}(\theta) d\theta=\frac{3\cdot 5\cdot 7\cdot\cdot\cdot (2k-1)}{4\cdot 6\cdot 8 \cdot\cdot\cdot (2k)}\frac{\pi}{2}\]

\[As \;\; \int_0^{\pi} sin^2(\theta) d\theta=\frac{\pi}{2}\]

This make it looks like

\[J_0(x)=\frac{1}{2\pi}\int_0^{2\pi}e^{jx\sin\theta}d\theta=\frac{1}{\pi}\int_0^{\pi} e^{jx\sin\theta}d\theta=\frac{2}{\pi}\int_0^{\frac{\pi}{2}}e^{jx\sin\theta}d\theta\]

On the first pass, it looks reasonable. BUT the fraud is it is using the original assumption that only m=2k result in non zero. This is ABSOLUTELY NOT TRUE in the interval of integration is \[[0,\pi]\]. For this interval:.

\[e^{jx\sin\theta}=\sum_{m=0}^{\infty}\frac{(jx\sin\theta)^m}{m!}=\frac {1}{0!}+\frac{jx\sin\theta}{1!}-\frac{x^2\sin^\theta}{2!}-\frac{jx^3\sin^3\theta}{3!}+\frac{x^4\sin^4\theta}{4!}+\frac{jx^5\sin^5\theta}{5!}\cdot \cdot \cdot \cdot\]

\[\int_0^{\pi}\sin\theta \;d\theta=2\;\Rightarrow\;\int_0^{\pi}\sin^m\theta \;d\theta=\frac{2\cdot 3\cdot 4\cdot \cdot \cdot \cdot (m-1)}{3\cdot 4\cdot 5\cdot \cdot \cdot \cdot\; m}\int_0^{\pi}\sin\theta\; d\theta\;=\;\frac{2\cdot 3\cdot 4\cdot \cdot \cdot \cdot \;(m-1)}{3\cdot 4\cdot 5\cdot \cdot \cdot \cdot \;m}2\]

The odd terms are all imaginary.

To be even clearer:
\[e^{jx\sin \theta}=\cos(x\sin\theta)+j\sin(x\sin\theta)=\sum_0^{\infty}\frac{(-1)^m x^{2m}\sin^{2m}\theta}{(2m)!}+j\sum_0^{\infty}\frac{(-1)^m x^{2m+1}sin^{2m+1}\theta}{(2m+1)!}=\sum_0^{\infty}\frac{(-1)^m x^{2m} sin^{2m}\theta}{(2m)!}\left[1+j\frac{x\sin\theta}{(2m+1)}\right]\]

Thank
 

I believe you are correct ...

I did a series expansion for x using mathcad. The 1st integral is the correct one - the others do have imaginary odd terms, and are equal to one another. If you used the real component of the integration only, they would all be equal.

(consider not using textbooks containing 2 or 3)
 

Status
Not open for further replies.

Similar threads

Part and Inventory Search

Welcome to EDABoard.com

Sponsor

Back
Top