icevilla
Newbie level 1
- Joined
- Apr 9, 2008
- Messages
- 1
- Helped
- 0
- Reputation
- 0
- Reaction score
- 0
- Trophy points
- 1,281
- Location
- Seoul, Korea, South Korea
- Activity points
- 1,291
i am trying to find Target Range and Correlation Gain using Sinusoidal FM signal mixed with Random Noise.
fm=1e3;
B=180kHz
fs=360kHz;
Brn=2*fm;
Ntap=1000;
xsfm=exp(j*beta*sin(2*pi*fm));
xxrn=randn(1,Nfft+2*Ntap)+j*randn(1,Nfft+2*Ntap);
ht=fir1(Ntap,Brn/fs);
nxrn1=filter(ht,1,xxrn);
xrn=nxrn1(Ntap+1+(1:Nfft));
xrn=xrn/std(xrn);
xfmrn=xsfm.*xrn;
nd=round(taur/Ts)
xrfmrn=circshift(xfmrn, [0 nd]);
xft=fft(xfmrn);
xrft=fft(xrfmrn);
xref=conj(xft);
xb=xref.*xrft;
Rx(ii,=ifft(xb);
from Wiener Kintchin Theorem
Rx(tau)=ifft(|X(f)|^2)
I want to know Why there is a difference when i take
i) Correlation mean value then power
ii)Correlation Power then mean value
Why there is ambiguity after 63km from actual target.
How can i match theoretical and simulation results???
Is this correct approach to use circshift(xfmrn, [0 nd]) to use my received signal???
fm=1e3;
B=180kHz
fs=360kHz;
Brn=2*fm;
Ntap=1000;
xsfm=exp(j*beta*sin(2*pi*fm));
xxrn=randn(1,Nfft+2*Ntap)+j*randn(1,Nfft+2*Ntap);
ht=fir1(Ntap,Brn/fs);
nxrn1=filter(ht,1,xxrn);
xrn=nxrn1(Ntap+1+(1:Nfft));
xrn=xrn/std(xrn);
xfmrn=xsfm.*xrn;
nd=round(taur/Ts)
xrfmrn=circshift(xfmrn, [0 nd]);
xft=fft(xfmrn);
xrft=fft(xrfmrn);
xref=conj(xft);
xb=xref.*xrft;
Rx(ii,=ifft(xb);
from Wiener Kintchin Theorem
Rx(tau)=ifft(|X(f)|^2)
I want to know Why there is a difference when i take
i) Correlation mean value then power
ii)Correlation Power then mean value
Why there is ambiguity after 63km from actual target.
How can i match theoretical and simulation results???
Is this correct approach to use circshift(xfmrn, [0 nd]) to use my received signal???