Alan0354
Full Member level 4
- Joined
- Sep 6, 2011
- Messages
- 214
- Helped
- 30
- Reputation
- 60
- Reaction score
- 29
- Trophy points
- 1,308
- Activity points
- 2,709
Attached is a page in Kraus Antenna book, I cannot verify the equation on the last line. Here is my work
\[E_y=E_2(\sin{\omega} t \cos \delta \;+\; \cos \omega {t} \sin \delta)\] , \[ \sin\omega {t} =\frac {E_x}{E_1}\;,\; \cos \omega {t} =\sqrt{1-(\frac{E_x}{E_1})^2}\]
\[\Rightarrow\; E_y=\frac {E_2 E_x\cos \delta}{E_1}\;+\;E_2\sqrt{1-(\frac {E_x}{E_1})^2} \;\sin\delta\]
\[\Rightarrow\; \sin \delta \;=\;\frac {E_y}{E_2\sqrt{1-(\frac{E_x}{E_1})^2}}\;-\; \frac{E_x\cos\delta}{E_1 \sqrt{1-(\frac{E_x}{E_1})^2}}\]
\[\Rightarrow\; \sin^2\delta\;=\;\frac{E^2_y}{E_2^2\;(1\;-\;(\frac{E_x}{E_1})^2)}\;-\;\frac{2E_y\;E_x\;\cos\delta}{E_1\;E_2\;(1\;-\;(\frac{E_x}{E_1})^2}\;+\;\frac {E_x^2\;\cos^2\;\delta}{E_1^2\;(1\;-\;(\frac{E_x}{E_1})^2)}\]
Compare to the last line in the book, I just cannot get the last equation of the book. Please take a look and see what I did wrong.
Thanks
Alan
\[E_y=E_2(\sin{\omega} t \cos \delta \;+\; \cos \omega {t} \sin \delta)\] , \[ \sin\omega {t} =\frac {E_x}{E_1}\;,\; \cos \omega {t} =\sqrt{1-(\frac{E_x}{E_1})^2}\]
\[\Rightarrow\; E_y=\frac {E_2 E_x\cos \delta}{E_1}\;+\;E_2\sqrt{1-(\frac {E_x}{E_1})^2} \;\sin\delta\]
\[\Rightarrow\; \sin \delta \;=\;\frac {E_y}{E_2\sqrt{1-(\frac{E_x}{E_1})^2}}\;-\; \frac{E_x\cos\delta}{E_1 \sqrt{1-(\frac{E_x}{E_1})^2}}\]
\[\Rightarrow\; \sin^2\delta\;=\;\frac{E^2_y}{E_2^2\;(1\;-\;(\frac{E_x}{E_1})^2)}\;-\;\frac{2E_y\;E_x\;\cos\delta}{E_1\;E_2\;(1\;-\;(\frac{E_x}{E_1})^2}\;+\;\frac {E_x^2\;\cos^2\;\delta}{E_1^2\;(1\;-\;(\frac{E_x}{E_1})^2)}\]
Compare to the last line in the book, I just cannot get the last equation of the book. Please take a look and see what I did wrong.
Thanks
Alan
Attachments
Last edited: