Sentaurus. Simulation of superjunction diode in SiliconCarbide

Status
Not open for further replies.

Gio88

Newbie level 1
Joined
Jul 11, 2013
Messages
1
Helped
0
Reputation
0
Reaction score
0
Trophy points
1
Activity points
8
Hi everybody.
I had to simulate the i v characteristic of a SJ diode in siliconcarbide for the company where i work.
I want to see the characteristic iv when my device is in breakdown.
I will never used software Sentaurus and i would want to know if my file command is right to simulate the Breakdown of my device.
In the solve voice i did a sweep of voltage of anodo from 0 to -3000. I saved the graph to 0V and the graph to -3000V.
Then i load the solution with 0V and i swept the voltage of anodo from 0 to 20 to draw the characterstic in forward polarization.
Is this correct?!
Sorry for my bad english.
Bye Giovanni
Code:
-------------------------------------------


#--------------FILE COMANDI DI SIMULAZIONE DI UN DIODO A SUPERGIUNZIONE REALIZZATO IN SILICONCARBIDE---------------


#------------------------------------------------------------------------------------------------------------------
File
   
   {
   * File di ingresso
   Grid = "./tdr/diodosupergiunzione_msh.tdr"
   * File di uscita
   Plot = "./GraficiSvisual/Plot_des.tdr"
   Parameter = "./Parametri/models.par"
   Current = "Current_des.plt"
   Output = "Output_des.log"
   }

Electrode
   {
      { Name="catodo" Voltage=0.0 }
      { Name="anodo" Voltage=0.0 }
   }

Physics
   {
   Fermi
   EffectiveIntrinsicDensity(NoBandGapNarrowing)
   Mobility(
           HighFieldSaturation
           Enormal ( Lombardi( AutoOrientation ) )
          )
       Recombination(Avalanche(vanOverstraetendeMan))
   }

Plot
   {
   eCurrent hCurrent
   Potential 
   SpaceCharge 
   ElectricField
   eMobility hMobility 
   eVelocity hVelocity
   eDensity hDensity
   eCurrent/Vector hCurrent/Vector
   Doping 
   DonorConcentration AcceptorConcentration
   ConductionCurrent   
   hTrappedCharge eTrappedCharge
   xMoleFraction
   ConductionBand ValenceBand   
   BandGapNarrowing
   Affinity
   BandGap
   eGradQuasiFermi hGradQuasiFermi
   eQuasiFermi hQuasiFermi
   }

Math
   {
   Extrapolate
     RelErrControl
     Digits= 15
     RHSmin= 1e-10
     Notdamped= 50
     Iterations= 20
     ExitOnFailure
     eDrForceRefDens= 1e12
     hDrForceRefDens= 1e12
   }

Solve
   {
   Poisson
   Coupled { Poisson Hole Electron }
   
   # Faccio uno sweep della tensione di catodo per vedere come risponde la mia struttura al breakdown
   
   Quasistationary (initialstep=1e-4 Minstep=1e-8 MaxStep=0.025 Increment=1.35 Goal{Name="anodo" Voltage=-3000})
      { Coupled {Poisson Electron}
      Plot (Fileprefix="DiodoSuperGiunzione_SweepAnodo_0V" time=(0.0) Compressed )
      Plot (Fileprefix="DiodoSuperGiunzione_SweepAnodo_-3000V" time=(1.0) Compressed )
      }
      
   NewCurrent= "DiodoSuperGiunzione_Forward_Anodo_20V"
   load(fileprefix = "DiodoSuperGiunzione_SweepAnodo_0V")
   Quasistationary (initialstep=1e-4 Minstep=1e-8 MaxStep=0.025 Increment=1.35 Goal{Name="anodo" Voltage=20})
      { Coupled {Poisson Electron}
      Plot (Fileprefix="DiodoSuperGiunzione_SweepAnodo_20V" time=(1.0) Compressed )
      }
   }
 

Status
Not open for further replies.
Cookies are required to use this site. You must accept them to continue using the site. Learn more…