Gio88
Newbie level 1
- Joined
- Jul 11, 2013
- Messages
- 1
- Helped
- 0
- Reputation
- 0
- Reaction score
- 0
- Trophy points
- 1
- Activity points
- 8
Hi everybody.
I had to simulate the i v characteristic of a SJ diode in siliconcarbide for the company where i work.
I want to see the characteristic iv when my device is in breakdown.
I will never used software Sentaurus and i would want to know if my file command is right to simulate the Breakdown of my device.
In the solve voice i did a sweep of voltage of anodo from 0 to -3000. I saved the graph to 0V and the graph to -3000V.
Then i load the solution with 0V and i swept the voltage of anodo from 0 to 20 to draw the characterstic in forward polarization.
Is this correct?!
Sorry for my bad english.
Bye Giovanni
I had to simulate the i v characteristic of a SJ diode in siliconcarbide for the company where i work.
I want to see the characteristic iv when my device is in breakdown.
I will never used software Sentaurus and i would want to know if my file command is right to simulate the Breakdown of my device.
In the solve voice i did a sweep of voltage of anodo from 0 to -3000. I saved the graph to 0V and the graph to -3000V.
Then i load the solution with 0V and i swept the voltage of anodo from 0 to 20 to draw the characterstic in forward polarization.
Is this correct?!
Sorry for my bad english.
Bye Giovanni
Code:
-------------------------------------------
#--------------FILE COMANDI DI SIMULAZIONE DI UN DIODO A SUPERGIUNZIONE REALIZZATO IN SILICONCARBIDE---------------
#------------------------------------------------------------------------------------------------------------------
File
{
* File di ingresso
Grid = "./tdr/diodosupergiunzione_msh.tdr"
* File di uscita
Plot = "./GraficiSvisual/Plot_des.tdr"
Parameter = "./Parametri/models.par"
Current = "Current_des.plt"
Output = "Output_des.log"
}
Electrode
{
{ Name="catodo" Voltage=0.0 }
{ Name="anodo" Voltage=0.0 }
}
Physics
{
Fermi
EffectiveIntrinsicDensity(NoBandGapNarrowing)
Mobility(
HighFieldSaturation
Enormal ( Lombardi( AutoOrientation ) )
)
Recombination(Avalanche(vanOverstraetendeMan))
}
Plot
{
eCurrent hCurrent
Potential
SpaceCharge
ElectricField
eMobility hMobility
eVelocity hVelocity
eDensity hDensity
eCurrent/Vector hCurrent/Vector
Doping
DonorConcentration AcceptorConcentration
ConductionCurrent
hTrappedCharge eTrappedCharge
xMoleFraction
ConductionBand ValenceBand
BandGapNarrowing
Affinity
BandGap
eGradQuasiFermi hGradQuasiFermi
eQuasiFermi hQuasiFermi
}
Math
{
Extrapolate
RelErrControl
Digits= 15
RHSmin= 1e-10
Notdamped= 50
Iterations= 20
ExitOnFailure
eDrForceRefDens= 1e12
hDrForceRefDens= 1e12
}
Solve
{
Poisson
Coupled { Poisson Hole Electron }
# Faccio uno sweep della tensione di catodo per vedere come risponde la mia struttura al breakdown
Quasistationary (initialstep=1e-4 Minstep=1e-8 MaxStep=0.025 Increment=1.35 Goal{Name="anodo" Voltage=-3000})
{ Coupled {Poisson Electron}
Plot (Fileprefix="DiodoSuperGiunzione_SweepAnodo_0V" time=(0.0) Compressed )
Plot (Fileprefix="DiodoSuperGiunzione_SweepAnodo_-3000V" time=(1.0) Compressed )
}
NewCurrent= "DiodoSuperGiunzione_Forward_Anodo_20V"
load(fileprefix = "DiodoSuperGiunzione_SweepAnodo_0V")
Quasistationary (initialstep=1e-4 Minstep=1e-8 MaxStep=0.025 Increment=1.35 Goal{Name="anodo" Voltage=20})
{ Coupled {Poisson Electron}
Plot (Fileprefix="DiodoSuperGiunzione_SweepAnodo_20V" time=(1.0) Compressed )
}
}