Continue to Site

Welcome to

Welcome to our site! is an international Electronics Discussion Forum focused on EDA software, circuits, schematics, books, theory, papers, asic, pld, 8051, DSP, Network, RF, Analog Design, PCB, Service Manuals... and a whole lot more! To participate you need to register. Registration is free. Click here to register now.

LMS(Least Mean Square), anyone have infor on it?

Not open for further replies.


Junior Member level 3
Jul 29, 2002
Reaction score
Trophy points
Activity points
Does anybody have any information LMS (Least Mean Square)?

It's a method to fit data. It can be linear or any function you want, provided that you only have two parameters to fit (offset and slope)

Also there is a method for controlling Adaptive filters with this name!
as Humungus said, it is a conventional method for linear regression and curve fitting, an important topic in statistic/math.
with this and other method of curve fitting it is possible to model systems from exprimental(measured) values of them. thus this method is widely used in device modeling(MOS,BJT,Caps,Inductors,...) in physics and other Advanced technologies.
I think the merit of this method in respect to other methods is simplicity and availability of analytical solution for it; also several functions which are not linear(such as log, exp) can be converted to linear function by some transforms.


more details

To expand on the previous good points, in LMS the difference between the data points and a continuous math function that is going to be used to approximate the data points are squared. This is the squared error. Then the sum of the squared errors at all of the data points is made. The parameters of the math function are varied until this sum of errors is made the smallest.

Even though it is easy to compute and find it has some problems. One is that large errors count more than small ones and positive ones count the same as negative ones. This may not be what you need in your approximation.

Not open for further replies.

Part and Inventory Search

Welcome to