cyw1984
Member level 2
Given F[f(t)*g(t)] = F(ω)G(ω) , where * = convolution
F(f(t)) = F(ω) ; F(g(t)) =G(ω)
How to prove F[f(t)g(t)] = 1/2pi [ F(w)*G(w)]
I have to do -
F^-1(F(ω)) = 1/2pi ∫F(ω)e^iωt dω = f(t)
F^-1(G(ω)) = 1/2pi ∫G(ω)e^iωt dω = g(t)
F[f(t)g(t)] = F[F^-1(F(ω))F^-1(G(ω))]
= ∫[1/2pi ∫F(ω)e^iωt dω 1/2pi ∫G(ω)e^iωt dω ] e^-iωt dt
......
.....
.....
F(f(t)) = F(ω) ; F(g(t)) =G(ω)
How to prove F[f(t)g(t)] = 1/2pi [ F(w)*G(w)]
I have to do -
F^-1(F(ω)) = 1/2pi ∫F(ω)e^iωt dω = f(t)
F^-1(G(ω)) = 1/2pi ∫G(ω)e^iωt dω = g(t)
F[f(t)g(t)] = F[F^-1(F(ω))F^-1(G(ω))]
= ∫[1/2pi ∫F(ω)e^iωt dω 1/2pi ∫G(ω)e^iωt dω ] e^-iωt dt
......
.....
.....