freemanantony
Member level 4
- Joined
- May 19, 2010
- Messages
- 70
- Helped
- 0
- Reputation
- 0
- Reaction score
- 0
- Trophy points
- 1,286
- Location
- Chennai, India
- Activity points
- 2,005
hi everybody,
i am trying to interface C8051F340 with AD7795 using SPI interface ,but when i am writing to SPI0DAT it is not getting written can anybody help me on this i am adding my code with this
i am trying to interface C8051F340 with AD7795 using SPI interface ,but when i am writing to SPI0DAT it is not getting written can anybody help me on this i am adding my code with this
Code C - [expand] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 #include <C8051F340.h> // SFR declarations //----------------------------------------------------------------------------- // Global Constants //----------------------------------------------------------------------------- #define SYSCLK 12000000 // Internal oscillator frequency in Hz #define SPI_CLOCK 250000 // Maximum SPI clock // The SPI clock is a maximum of 250 kHz // when this example is used with // the SPI0_Slave code example. #define MAX_BUFFER_SIZE 8 // Maximum buffer Master will send // Instruction Set #define SLAVE_LED_ON 0x80 // Turn the Slave LED on #define SLAVE_LED_OFF 0x02 // Turn the Slave LED off #define SPI_WRITE 0x60 // Send a byte from the Master to the // Slave #define SPI_READ 0x40 // Send a byte from the Slave to the // Master #define SPI_WRITE_BUFFER 0x10 // Send a series of bytes from the // Master to the Slave #define SPI_READ_BUFFER 0x20 // Send a series of bytes from the Slave // to the Master #define ERROR_OCCURRED 0x40 // Indicator for the Slave to tell the // Master an error occurred sbit LED = P2^2; // LED='1' means ON //----------------------------------------------------------------------------- // Global Variables //----------------------------------------------------------------------------- unsigned char SPI_Data = 0xA5; unsigned char SPI_Data_Array[MAX_BUFFER_SIZE] = {0}; bit Error_Flag = 0; unsigned char Command = 0x00; unsigned char tst_rcv = 0x03; //----------------------------------------------------------------------------- // Function Prototypes //----------------------------------------------------------------------------- void PCA0_Init (void); void Oscillator_Init (void); void Port_Init (void); void SPI0_Init (void); void Init_Device (void); //void SPI_LED_On (void); //void SPI_LED_Off (void); void SPI_Byte_Write (void); void SPI_Byte_Read (void); //void SPI_Array_Write (void); //void SPI_Array_Read (void); void Delay(void); //----------------------------------------------------------------------------- // main() Routine //----------------------------------------------------------------------------- void main (void) { unsigned char test_value = 0x55; unsigned char test_array[MAX_BUFFER_SIZE] = {1,2,3,4,5,6,7,8}; // unsigned char i; Init_Device (); // Initializes hardware peripherals EA = 1; // Enable global interrupts LED = 0; // TEST BEGIN -------------------------------------------------------------- //SPI_Data = test_value; // Write a value SPI_Byte_Write (); /* while (!NSSMD0); // Wait until the Write transfer has // finished // Read the same value back SPI_Data = 0x00; SPI_Byte_Read (); while (!NSSMD0); // Wait until the Read transfer has // finished // Check if the sent value and returned value match if (SPI_Data != test_value) { Error_Flag = 1; } // Copy test_array into SPI_Data_Array for (i = 0; i < MAX_BUFFER_SIZE; i++) { SPI_Data_Array[i] = test_array[i]; } // Send the array to the slave SPI_Array_Write (); while (!NSSMD0); // Wait until the Write transfer has // finished // Clear SPI_Data_Array for the SPI_Buffer_Read function for (i = 0; i < MAX_BUFFER_SIZE; i++) { SPI_Data_Array[i] = 0; } // Read the array back from the slave SPI_Array_Read (); while (!NSSMD0); // Wait until the Read transfer has // finished // Check if the received array matches the sent array for (i = 0; i < MAX_BUFFER_SIZE; i++) { if (SPI_Data_Array[i] != test_array[i]) { Error_Flag = 1; } }*/ // END OF TEST ------------------------------------------------------------- while (1) { // If no error has occurred, blink the LEDs on the Master and Slave // boards if (Error_Flag == 0) { // LED = 1; SPI_Byte_Read (); //while (!NSSMD0); Delay (); SPI_Byte_Read (); //LED = 0; //while (!NSSMD0); Delay (); } }; } //----------------------------------------------------------------------------- // Initialization Subroutines //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- // PCA0_Init //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // This function disables the watchdog timer. // //----------------------------------------------------------------------------- void PCA0_Init (void) { PCA0MD &= ~0x40; // Disable the Watchdog Timer PCA0MD = 0x00; } //----------------------------------------------------------------------------- // Oscillator_Init //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // This function initializes the system clock to use the internal oscillator // at 12 MHz. // //----------------------------------------------------------------------------- void Oscillator_Init (void) { OSCICN = 0x83; // Set the internal oscillator to // 12 MHz } //----------------------------------------------------------------------------- // Port_Init //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // This function configures the crossbar and GPIO ports. // // P0.0 - SCK (SPI0), Push-Pull, Digital // P0.1 - MISO (SPI0), Open-Drain, Digital // P0.2 - MOSI (SPI0), Push-Pull, Digital // P0.3 - NSS (SPI0), Push-Pull, Digital // // P2.2 - Skipped, Push-Pull, Digital (LED D4 on Target Board) // //----------------------------------------------------------------------------- void PORT_Init (void) { P0MDOUT = 0x0D; // Make SCK, MOSI, and NSS push-pull P2MDOUT = 0x04; // Make the LED push-pull P2SKIP = 0x04; // Skip the LED (P2.2) XBR0 = 0x02; // Enable the SPI on the XBAR XBR1 = 0x40; // Enable the XBAR and weak pull-ups } //----------------------------------------------------------------------------- // SPI0_Init //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // Configures SPI0 to use 4-wire Single Master mode. The SPI timing is // configured for Mode 0,0 (data centered on first edge of clock phase and // SCK line low in idle state). // //----------------------------------------------------------------------------- void SPI0_Init() { SPI0CFG = 0x40; // Enable the SPI as a Master // CKPHA = '0', CKPOL = '0' SPI0CN = 0x0D; // 4-wire Single Master, SPI enabled // SPI clock frequency equation from the datasheet SPI0CKR = (SYSCLK/(2*SPI_CLOCK))-1; ESPI0 = 1; // Enable SPI interrupts } //----------------------------------------------------------------------------- // Init_Device //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // Calls all device initialization functions. // //----------------------------------------------------------------------------- void Init_Device (void) { PCA0_Init (); // Disable the Watchdog Timer first Oscillator_Init (); Port_Init (); SPI0_Init (); } //----------------------------------------------------------------------------- // Interrupt Service Routines //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- // SPI_ISR //----------------------------------------------------------------------------- // // Handles all error checks and single-byte writes. // // Note: SPI_WRITE_ARRAY is not handled by this ISR in order to take // advantage of double-buffering (checking the TXBMT flag) using polling. // // // Typical Write: // // | 1st sent | 2nd sent | 3rd sent | ... | last sent | // --------------------------------------------------------- // Master NSSv | Command | Data1 | Data2 | ... | DataN | NSS^ // Slave | N/A | N/A | N/A | ... | N/A | // // Typical Read: // // | 1st sent | 2nd sent | 3rd sent | ... | last sent | // --------------------------------------------------------- // Master NSSv | Command | dummy | dummy | ... | dummy | NSS^ // Slave | N/A | Data1 | Data2 | ... | DataN | //----------------------------------------------------------------------------- void SPI_ISR (void) interrupt 6 { static unsigned char array_index = 0; static char state = 0; if (WCOL == 1) { // Write collision occurred WCOL = 0; // Clear the write collision flag Error_Flag = 1; } else { if (SPI0DAT == ERROR_OCCURRED) { // This example recognizes when an error occurs, but does not include // any error handling. The transfer can be aborted or rescheduled, // if desired. Error_Flag = 1; } // When the Master enters the ISR, the SPIF flag should be set from // sending the Command byte. This ISR handles the remaining steps of the // SPI transfer process. // <state> == 0: writing or reading 1 byte of data // <state> == 1: for READ commands (first time, only a dummy byte is // sent but the second time, the data must be read from // SPI0DAT) // <state> == 2: NSS = 1 to end the transfer, final byte read // // Note: SPI_WRITE_BUFFER is not handled here because it's done in // polled mode if (state == 0) { switch (Command) { case SLAVE_LED_ON: case SLAVE_LED_OFF: NSSMD0 = 1; // Release the slave (not expecting // data back) break; case SPI_WRITE: SPI0DAT = SPI_Data; state = 2; // Advance to the final state (only // writing one byte) break; case SPI_READ: SPI_Data = SPI0DAT; // Send a dummy byte so the Slave can // send the data state = 2; // Advance to the final state (only // reading one byte) break; case SPI_READ_BUFFER: array_index = 0; // Clear the data counter SPI0DAT = 0xFF; // Send a dummy byte so the Slave can // start sending the data state = 1; // Advance to the next state where the // data can be received // The data from the slave is not // available until after the second // transfer is completed. // The dummy byte allows the slave to // send data, since the Master controls // SCK. break; default: state = 2; // Any errors in the Command parsing // should go to state 2 where NSSMD0 // is de-asserted } } else if (state == 1) // This state is for READ_ARRAY { // commands where the data must be read // after the first dummy byte is sent switch (Command) { case SPI_READ_BUFFER: SPI_Data_Array[array_index] = SPI0DAT; SPI0DAT = 0xFF; array_index++; if (array_index == (MAX_BUFFER_SIZE-1)) { state = 2; } break; default: state = 2; // Any errors in the Command parsing // should go to state 2 where NSSMD0 // is de-asserted } } else if (state == 2) { switch (Command) { case SPI_READ: SPI_Data = SPI0DAT; // Read the data from the slave break; case SPI_READ_BUFFER: SPI_Data_Array[array_index] = SPI0DAT; // Read the last data // without sending a // dummy byte break; } NSSMD0 = 1; // De-select the Slave state = 0; // Reset the state } SPIF = 0; // Clear the SPIF flag } } //----------------------------------------------------------------------------- // Support Routines //----------------------------------------------------------------------------- //----------------------------------------------------------------------------- // SPI_LED_On //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // Turns the LED on the SPI Slave on. The slave does not respond to this // command, so the command consists of: // // Command = SLAVE_LED_ON // Length = 1 byte (the command itself) // //----------------------------------------------------------------------------- /*void SPI_LED_On (void) { while (!NSSMD0); // Wait until the SPI is free, in case // it's already busy NSSMD0 = 0; Command = SLAVE_LED_ON; SPI0DAT = Command; // The rest of this command will be handled by the SPI ISR, which will // trigger when SPIF is set from sending the Command }*/ //----------------------------------------------------------------------------- // SPI_LED_Off //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // Turns the LED on the SPI Slave off. The slave does not respond to this // command, so the command consists of: // // Command = SLAVE_LED_OFF // Length = 1 byte (the command itself) // //----------------------------------------------------------------------------- /*void SPI_LED_Off (void) { while (!NSSMD0); // Wait until the SPI is free, in case // it's already busy NSSMD0 = 0; Command = SLAVE_LED_OFF; SPI0DAT = Command; // The rest of this command will be handled by the SPI ISR, which will // trigger when SPIF is set from sending the Command }*/ //----------------------------------------------------------------------------- // SPI_Byte_Write //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // Note: SPI_Data must contain the data to be sent before calling this // function. // // Writes a single byte to the SPI Slave. The slave does not respond to this // command, so the command consists of: // // Command = SPI_WRITE // Length = 1 byte of command, 1 byte of data // //----------------------------------------------------------------------------- void SPI_Byte_Write (void) { while (!NSSMD0); // Wait until the SPI is free, in case // it's already busy NSSMD0 = 0; tst_rcv = SPI0DAT; Command = SPI_WRITE; SPI0DAT = Command; while(!TXBMT); // The rest of this command will be handled by the SPI ISR, which will // trigger when SPIF is set from sending the Command } //----------------------------------------------------------------------------- // SPI_Byte_Read //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // Note: SPI_Data will contain the data received after calling this function. // // Reads a single byte from the SPI Slave. The command consists of: // // Command = SPI_READ // Length = 1 byte of command, 1 byte of data // //----------------------------------------------------------------------------- void SPI_Byte_Read (void) { while (!NSSMD0); // Wait until the SPI is free, in case // it's already busy NSSMD0 = 0; Command = SPI_READ; SPI0DAT = Command; while(!TXBMT); // The rest of this command will be handled by the SPI ISR, which will // trigger when SPIF is set from sending the Command } //----------------------------------------------------------------------------- // SPI_Array_Write //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // Note: SPI_Data_Array must contain the data to be sent before calling this // function. // // Writes an array of values of size MAX_BUFFER_SIZE to the SPI Slave. The // command consists of: // // Command = SPI_WRITE_BUFFER // Length = 1 byte of command, MAX_BUFFER_SIZE bytes of data // // Note: Polled mode is used for this function in order to buffer the data // being sent using the TXBMT flag. // //----------------------------------------------------------------------------- /*void SPI_Array_Write (void) { unsigned char array_index; while (!NSSMD0); // Wait until the SPI is free, in case // it's already busy ESPI0 = 0; // Disable SPI interrupts NSSMD0 = 0; SPI0DAT = SPI_WRITE_BUFFER; // Load the XMIT register while (TXBMT != 1) // Wait until the command is moved into { // the XMIT buffer } for (array_index = 0; array_index < MAX_BUFFER_SIZE; array_index++) { SPI0DAT = SPI_Data_Array[array_index]; // Load the data into the buffer while (TXBMT != 1) // Wait until the data is moved into { // the XMIT buffer } } SPIF = 0; while (SPIF != 1) // Wait until the last byte of the { // data reaches the Slave } SPIF = 0; NSSMD0 = 1; // Diable the Slave ESPI0 = 1; // Re-enable SPI interrupts }*/ //----------------------------------------------------------------------------- // SPI_Array_Read //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // Note: SPI_Data_Array will contain the data received after calling this // function. // // Reads a single byte from the SPI Slave. The command consists of: // // Command = SPI_READ_BUFFER // Length = 1 byte of command, MAX_BUFFER_SIZE bytes of data // //----------------------------------------------------------------------------- /*void SPI_Array_Read (void) { while (!NSSMD0); // Wait until the SPI is free, in case // it's already busy NSSMD0 = 0; Command = SPI_READ_BUFFER; SPI0DAT = Command; // The rest of this command will be handled by the SPI ISR, which will // trigger when SPIF is set from sending the Command }*/ //----------------------------------------------------------------------------- // Delay //----------------------------------------------------------------------------- // // Return Value : None // Parameters : None // // Delay for little while (used for blinking the LEDs) // //----------------------------------------------------------------------------- void Delay (void) { unsigned long count; for (count = 100000; count > 0; count--); } //-----------------------------------------------------------------------------
Last edited by a moderator: