Continue to Site

Welcome to EDAboard.com

Welcome to our site! EDAboard.com is an international Electronics Discussion Forum focused on EDA software, circuits, schematics, books, theory, papers, asic, pld, 8051, DSP, Network, RF, Analog Design, PCB, Service Manuals... and a whole lot more! To participate you need to register. Registration is free. Click here to register now.

Real time plot ecg in Matlab (Pan-Tompkins algorithm)

Status
Not open for further replies.

peppenaso

Newbie level 1
Newbie level 1
Joined
Nov 13, 2013
Messages
1
Helped
0
Reputation
0
Reaction score
0
Trophy points
1
Visit site
Activity points
41
hello to everyone!
I would like to know how to implement the plotting of an ECG in real time.
the matlab code is below:

clear all
close all
x1 = load ( ' . txt ');
fs = 200; % Sampling rate
N = length ( x1) ; % Signal length)
t = [ 0 : N- 1] / fs ; % time index
t1 = input ( ' enter the time of detection of the ECG in seconds :');
Figures ( 1 )
subplot ( 2,1,1 )
plot ( t , x1 )
xlabel ( 'second' ), ylabel ( ' Volts ' ) title (' ECG Signal Input ' )
subplot ( 2,1,2 )
plot ( t ( 200:600 ) , x1 ( 200:600 ) )
xlabel ( 'second' ), ylabel ( ' Volts ' ) title (' Input ECG Signal 1-3 second' )
XLIM ( [1 3] )
CANCELLATION % DC DRIFT AND NORMALIZATION
x1 = x1 - mean ( x1) ;
x1 = x1 / max ( abs ( x1) ) ;
Figures ( 2 )
subplot ( 2,1,1 )
plot ( t , x1 )
xlabel ( 'second' ), ylabel ( ' Volts ' ) title (' ECG Signal after cancellation DC drift and normalization ' )
subplot ( 2,1,2 )
plot ( t ( 200:600 ) , x1 ( 200:600 ) )
xlabel ( 'second' ), ylabel ( ' Volts ' ) title (' ECG Signal 1-3 second' )
XLIM ( [1 3] )
% LOW PASS FILTERING
% LPF ( 1 - z ^ -6 ) ^ 2 / ( 1 - z ^ -1) ^ 2
[b a] = cheby2 ( 8,0.001,0.08 ) ;
h_LP = filter (b, a , [1 zeros ( 1,12 ) ] ) ;
x2 = conv ( x1, h_LP ) ;
x2 = x2 (6 + [1: N] ) ;
x2 = x2 / max ( abs ( x2) ) ;
subplot ( 2,1,1 )
plot ( [0 : length ( x2) -1] / fs , x2)
xlabel ( 'second' ), ylabel ( ' Volts ' ) title (' ECG Signal after LPF ' )
XLIM ( [ 0 max (t) ] )
subplot ( 2,1,2 )
plot ( t ( 200:600 ) , x2 ( 200:600 ) )
xlabel ( 'second' ), ylabel ( ' Volts ' ) title (' ECG Signal 1-3 second' )
XLIM ( [1 3] )
% HIGH PASS FILTERING
% HPF = Allpass - ( Lowpass ) = z ^ -16 - [ ( 1 - z ^ -32 ) / ( 1 - z ^ -1) ]
[b a] = cheby1 (4.10 E- 10 0.03 ' high ');
h_HP = filter (b, a , [1 zeros (1,32 ) ] ) ;
x3 = conv ( x2, h_HP ) ;
x3 = x3 (16 + [1 : N] ) ;
x3 = x3 / max ( abs ( x3) ) ;
Figures ( 4 )
subplot ( 2,1,1 )
plot ( [0 : length ( x3) -1] / fs , x3 )
xlabel ( 'second' ), ylabel ( ' Volts ' ) title (' ECG Signal after HPF ' )
XLIM ( [ 0 max (t) ] )
subplot ( 2,1,2 )
plot ( t ( 200:600 ) , x3 ( 200:600 ) )
xlabel ( 'second' ), ylabel ( ' Volts ' ) title (' ECG Signal 1-3 second' )
XLIM ( [1 3] )
% DERIVATIVE FILTER
% Make impulse response
h = [-1 -2 0 2 1] / 8;
x4 = conv ( x3, h ) ;
x4 = x4 (2 + [1: N] ) ;
x4 = x4 / max ( abs ( x4 ) ) ;
Figures ( 5 )
subplot ( 2,1,1 )
plot ( [0 : length ( x4 ) -1 ] / fs , x4 )
xlabel ( 'second' ), ylabel ( ' Volts ' ) title (' ECG Signal after Derivative ' )
subplot ( 2,1,2 )
plot ( t ( 200:600 ) , x4 ( 200:600 ) )
xlabel ( 'second' ), ylabel ( ' Volts ' ) title (' ECG Signal 1-3 second' )
XLIM ( [1 3] )
SQUARING %
x5 = x4 . ^ 2 ;
x5 = x5 / max ( abs (x5) ) ;
figures ( 6 )
subplot ( 2,1,1 )
plot ( [0 : length ( x5 ) -1 ] / fs , x5 )
xlabel ( 'second' ), ylabel ( ' Volts ' ) title (' ECG Signal Squarting ' )
subplot ( 2,1,2 )
plot ( t ( 200:600 ) , x5 ( 200:600 ) )
xlabel ( 'second' ), ylabel ( ' Volts ' ) title (' ECG Signal 1-3 second' )
XLIM ( [1 3] )
% MOVING WINDOW INTEGRATION
% Make impulse response
h = ones ( 1 , 31 ) / 31 ;
Delay = 15; % Delay in samples
x6 = conv ( x5, h ) ;
x6 = x6 (15 + [1: N] ) ;
x6 = x6 / max ( abs (x6) ) ;
Figures ( 7 )
subplot ( 2,1,1 )
plot ( [0 : length ( x6 ) -1 ] / fs , x6 )
xlabel ( 'second' ), ylabel ( ' Volts ' ) title (' ECG Signal after Averaging ' )
subplot ( 2,1,2 )
plot ( t ( 200:600 ) , x6 ( 200:600 ) )
xlabel ( 'second' ), ylabel ( ' Volts ' ) title (' ECG Signal 1-3 second' )
XLIM ( [1 3] )
FIND POINTS % QRS
max_h = max (x6) ;
thresh = mean ( x6 ) ;
poss_reg = (x6 > thresh * max_h ) ' ;
figures (8 )
subplot ( 2,1,1 )
hold on
plot ( t ( 200:600 ) , x1 ( 200:600 ) / max ( x1) )
box on
xlabel ( 'second' ), ylabel ( ' Integrated ' )
XLIM ( [1 3] )
subplot ( 2,1,2 )
plot ( t ( 200:600 ) , x6 ( 200:600 ) / max (x6) )
xlabel ( 'second' ), ylabel ( ' Integrated ' )
XLIM ( [1 3] )
left = find ( diff ( [0 poss_reg ] ) == 1) ;
right = find ( diff ( [ poss_reg 0]) == -1) ;
beat_count = 0;
for i = [ 1: length (left ) ]
[ R_value ( i) R_loc ( i) ] = max ( x1 (left ( i) : right ( i) ) ) ;
R_loc (i) = R_loc ( i) -1 + left ( i) ; % add offset

[ Q_value ( i) Q_loc ( i) ] = min ( x1 (left ( i) : R_loc ( i) ) ) ;
Q_loc (i) = Q_loc ( i) -1 + left ( i) ; % add offset

[ S_Value (s) S_loc (s)] = min ( x1 (left (s) : right (i ))) ;
S_loc (i) = S_loc ( i) -1 + left ( i) ; % add offset
beat_count beat_count = +1;
end
% There is no selective wave
Q_loc = Q_loc ( find ( Q_loc ~ = 0) ) ;
R_loc = R_loc ( find ( R_loc ~ = 0) ) ;
S_loc = S_loc ( find ( S_loc ~ = 0) ) ;
Figures (9 )
subplot ( 2,1,1 )
title (' ECG Signal with R- points ');
plot ( t , x1 , t ( R_loc ) , R_value , ' r ^ ' , t ( S_loc ) , s_Value , ' * ' , t ( Q_loc ) , Q_value , ' o') ;
legend ( ' ECG ' , ' R ' , ' S ' , ' Q ');
subplot ( 2,1,2 )
plot ( t ( R_loc ) , R_value , ' r ^ ' , t ( S_loc ) , s_Value , ' * ' , t ( Q_loc ) , Q_value , ' o') ;
XLIM ( [1 3] )
% Calculate distance peaks RR in ms
figures ( 10 )
peakInterval = diff ( R_loc ) ;
plot ( peakInterval ) ;
xlabel ( ' beats ' ), ylabel ( ' distance in time in sec * 10 ^ -3 ' ) grid on ;
title (' distance curve peaks R ' )
% Calculate number of beats per minute
beats_per_minutes =

What I should do is plot the ECG in a time window of 2 sec ( an indication of the points representing the QRS complex ), then go to the next window of 2 sec and so on ...
thanks
 

Status
Not open for further replies.

Part and Inventory Search

Welcome to EDABoard.com

Sponsor

Back
Top