fool123
Newbie level 2
- Joined
- May 9, 2013
- Messages
- 2
- Helped
- 0
- Reputation
- 0
- Reaction score
- 0
- Trophy points
- 1,281
- Activity points
- 1,381
i have problem regrading adc in spartan 3e digilent board. i have made all fsm ,the simulation works well but when i board it didnt work. i have shown the MISO on led 7 and 7 msb adc values in other leds. initiall all leds blinks later all go high irrespective of the input.
Code VHDL - [expand] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 ---------------------------------adc.vhd------------------------------------------------- -- Company: -- Engineer: -- -- Create Date: 23:48:25 05/05/2013 -- Design Name: -- Module Name: adc - Behavioral -- Project Name: -- Target Devices: -- Tool versions: -- Description: -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; entity adc is Port ( clock : in STD_LOGIC; -- 50 MHz clock from FPGA rstadc : in STD_LOGIC; -- reset used to restart the whole ADC process ce_amp : in STD_LOGIC := '0'; -- AMP configuration start, when low amplifier is off goconv : in STD_LOGIC := '0'; -- ADC starts conversion, when low, adc is off ready : out STD_LOGIC := '0'; -- when conversion is complete ready is set to high SPI_MISO : in std_logic; --serial bus used by adc to send data to fpga ACONV : out STD_LOGIC :='0'; -- to adc, active high shutdown ADC0 : out std_logic_vector(13 downto 0) := (others => '0'); -- output port of ADC to send 14 bit data from VINA ADC1 : out std_logic_vector(13 downto 0) := (others => '0'); --output port of ADC to send 14 bit data from VINB -- AMP in/out signal AMP_CS : out STD_LOGIC; -- AMP chip select MOSI : out STD_LOGIC; -- SPI bus used to send data to programmable amplifier SCK : out STD_LOGIC -- Clock to amp and adc ); end adc; architecture Behavioral of adc is constant gain : std_logic_vector(7 downto 0) := "00010001"; -- constant gain of -1 is set for pre amp type state_type is (IDLE, START,START2,HI,HI_DUMMY,LO,LO_DUMMY,FINE,IDLE_AD, START_AD,HI_AD,LO_AD,FINE_AD); --different states used for the finite state machine to control ADC and AMP data transfer, the states are based on the codes of Alessandro Giulianelli signal next_state, state : state_type; signal counter : integer range 0 to 35 :=0; --constant defined to monitor the data transfer --clock used by ADC and AMP signal amp_bit_count : integer range 0 to 15 := 0; -- constant used to monitor 8 bit data transfer to AMP signal count :integer range 0 to 500; --Constant used to divide the 50 MHz clock signal temp :std_logic:='0'; --constant used to hold clk value for divided clock signal cl: std_logic; --signal core_c:std_logic; begin process(clock,temp) --process is driven by clk and temp begin if(clock'event and clock ='1') then -- clk'event makes sure that clk value has changed and clk='1' makes sure that is high if(count >=25 ) then --count should be<250 for ADC to work i.e.minimum frequency can be reduced temp<=not temp; count<=0; else count<= count+1; end if; end if; cl <= temp; end process; process(ce_amp,goconv,state,counter,amp_bit_count) is --this process is used to change the state to next state, it helps to reduce the time required to change the states in the main process begin case state is when IDLE => if ce_amp = '1' then -- when ce_amp is 0 amp is set to idle state next_state <= START; else next_state <= IDLE; end if; when START => next_state <= START2; when START2 => next_state <= HI; when HI => -- high is set to stay for 2cycle that is 2*clk speed, as for amp 50 ns is the minimum clock high time if counter = 2 then next_state <= HI_DUMMY; else next_state <= HI; end if; when HI_DUMMY => next_state <= LO; when LO => -- low is also required to stay for 50 ns if counter = 2 then next_state <= LO_DUMMY; else next_state <= LO; end if; when LO_DUMMY => if amp_bit_count=8 then -- 8 bit data from fpga sets the gain of the amplifier next_state <= FINE; else next_state <= HI; end if; when FINE => next_state <= IDLE_AD; --sampling starts from here when IDLE_AD => if goconv ='1' then --sampling is controlled by goconv signal next_state <= START_AD; else next_state <= IDLE_AD; end if; when START_AD => --unlike amp, adc can work at the speed of 50 MHz so doesn't require extra high time next_state <= HI_AD; when HI_AD => next_state <= LO_AD; when LO_AD => if counter = 34 then next_state <= FINE_AD; else next_state <= HI_AD; end if; when FINE_AD => next_state <= IDLE_AD; when others => next_state <= IDLE_AD; end case; end process; process (cl,rstadc) is --this is the main process where the digital data is taken from ADC variable index1 : integer range 0 to 15; --index1 is used to take data from VINA variable index2 : integer range 0 to 15; --index2 is used to take data from VINB begin if rstadc = '1' then --rstadc is used to reset ADC state <= IDLE; elsif cl'event and cl ='1' then -- global assign state <= next_state; ready <= '0'; -- busy, setup AMP, acquiring by ADC case state is when IDLE => SCK <= '0'; AMP_CS <= '1'; MOSI <='0'; counter <=0; when START => AMP_CS <= '0'; amp_bit_count <= 0; index1 := 7; -- 8 bit value when START2 => MOSI <= gain(index1); -- first assign, and data is sent on LO_DUMMY when HI => SCK <= '1'; counter <= counter +1; when HI_DUMMY => amp_bit_count <= amp_bit_count + 1; counter <=0; when LO => SCK <= '0'; counter <= counter + 1; if counter = 1 then if index1 > 0 then index1 := index1-1; end if; end if; when LO_DUMMY => MOSI <= gain(index1); counter <=0; when FINE => AMP_CS <='1'; SCK <= '0'; MOSI <= '0'; when IDLE_AD => ready <= '0'; -- setup AMP complete, waiting goconv enable SCK <= '0'; ACONV <= '0'; when START_AD => SCK <= '0'; ACONV <= '1'; counter <= 0; index1 := 13; -- 14 bit value index2 := 13; -- 14 bit value when HI_AD => SCK <= '1'; ACONV <= '0'; counter <= counter +1; when LO_AD => SCK <= '0'; ACONV <= '0'; if(counter >2 and counter < 17) then if index1 = 13 then ADC0(index1) <= not SPI_MISO; --here the simple inversion of the 14th bit makes the 2's complement form of the ADC to 14 bit unsigne form, it's just a beautiful conversion step else ADC0(index1) <= SPI_MISO; --ADC0 is used to send the unsigne data of channgel VINA end if; if index1 > 0 then index1 := index1 -1; end if; elsif(counter > 18 and counter < 33) then if index2 = 13 then ADC1(index2) <= not SPI_MISO; else ADC1(index2) <= SPI_MISO; end if; if index2 > 0 then index2 := index2 -1; end if; else null; end if; when FINE_AD => counter <= 0; SCK <= '0'; ACONV <= '0'; ready<='1'; when others => SCK <= '0'; ACONV <= '0'; AMP_CS <= '1'; MOSI <='0'; amp_bit_count <= 0; end case; end if; end process; end Behavioral; ---------------------------------------------main.vhd------------------------------------- -- Company: -- Engineer: DEEPESH LEKHAK -- -- Create Date: 23:55:39 05/05/2013 -- Design Name: -- Module Name: main - Behavioral -- Project Name: -- Target Devices: -- Tool versions: -- Description: -- -- Dependencies: -- -- Revision: -- Revision 0.01 - File Created -- Additional Comments: -- ---------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; use ieee.numeric_std.all; use IEEE.STD_LOGIC_UNSIGNED.ALL; -- Uncomment the following library declaration if using -- arithmetic functions with Signed or Unsigned values --use IEEE.NUMERIC_STD.ALL; -- Uncomment the following library declaration if instantiating -- any Xilinx primitives in this code. --library UNISIM; --use UNISIM.VComponents.all; entity main is PORT( CLK : in STD_LOGIC; --50 Mhz clock reset1 :in std_logic; LED : out std_logic_vector(7 downto 0); --output port for the led SPI_SS_B : out STD_LOGIC; -- Serial Flash AMP_CS : out STD_LOGIC; -- Amplifier for ADC AD_CONV : out STD_LOGIC; -- ADC Conversion start SPI_MISO : in std_logic; -- master in slave out used to receive data from ADC SPI_MOSI : out STD_LOGIC; --master out slave in used to send date to AMP and DAC SPI_SCK : out STD_LOGIC; --clock for amp, ADC and DAC FPGA_INIT_B : out STD_LOGIC); -- Platform Flash end main; architecture Behavioral of main is type state_type is (IDLE, READ_ADC, FUNC ); signal state : state_type:=IDLE; --initial state is idle signal ADC0 : std_logic_vector(13 downto 0) := (others => '0'); --ADC0 take 14 bit unsigned digital data of VINA signal ADC1 : std_logic_vector(13 downto 0) := (others => '0'); -- ADC1 take 14 bit unsigned digital data of VINB signal ready,goconv,ce_amp ,SCK,MOSI: std_logic; --these signals are used to control the adc,dac components signal pattern : std_logic_vector(11 downto 0):=(others=>'0'); --this is the signal used to send 12 bit unsigned data to DAC component -- this is used to give the address from where DAC will give its analog output signal reset : STD_LOGIC; --reset high will take the system to idle state signal RST : STD_LOGIC; --Reset for DAC signal rstadc : STD_LOGIC; --reser for adc signal temp : std_logic_vector(13 downto 0) :=(others=>'0'); --this signal is used to hold the temporary data signal clk0: std_logic; signal clock: std_logic; component adc --adc component declaration Port ( clock : in STD_LOGIC; rstadc : in STD_LOGIC; ce_amp : in STD_LOGIC; goconv : in STD_LOGIC; ready : out STD_LOGIC := '0'; SPI_MISO : in std_logic; ACONV : out STD_LOGIC :='0'; ADC0 : out std_logic_vector(13 downto 0) := (others => '0'); ADC1 : out std_logic_vector(13 downto 0) := (others => '0'); AMP_CS : out STD_LOGIC; MOSI : out STD_LOGIC; SCK : out STD_LOGIC ); end component; COMPONENT core_c PORT( CLKIN_IN : IN std_logic; RST_IN : IN std_logic; CLKFX_OUT : OUT std_logic; CLKIN_IBUFG_OUT : OUT std_logic; CLK0_OUT : OUT std_logic; LOCKED_OUT : OUT std_logic ); END COMPONENT; begin SPI_SS_B <='1'; --this is used to disable the unrequired devices so that the bus conflict doesn't arise --SF_CE0 <='1'; FPGA_INIT_B <='1'; reset<='0'; rstadc<='0'; A1: adc Port map ( clock =>Clock, rstadc => rstadc, ce_amp => ce_amp, goconv =>goconv, ready =>ready, SPI_MISO =>SPI_MISO, ACONV =>AD_CONV, ADC0 =>ADC0, ADC1 =>ADC1, AMP_CS =>AMP_CS, MOSI =>MOSI, SCK =>SCK ); Inst_core_c: core_c PORT MAP( CLKIN_IN => CLK, RST_IN => rstadc, CLKFX_OUT =>clock , CLKIN_IBUFG_OUT =>open , CLK0_OUT =>clk0, LOCKED_OUT => open ); process(clk0,reset1) is begin if reset1 = '1' then state <= IDLE; elsif CLK0'event and CLK0 ='1' then case state is when IDLE => ce_amp <= '1'; goconv<='1'; led(7 downto 0)<=(others=>'0'); state <= READ_ADC; when READ_ADC => if ready='1' then ce_amp<='0'; goconv<='0'; state<=FUNC ; else state<=READ_ADC; end if; when FUNC => temp<=ADC1; pattern<=temp(13 downto 2); led(6 downto 0)<=pattern(11 downto 5); led(7)<=SPI_MISO; goconv<='1'; state<=READ_ADC; when others => state<=IDLE; end case; end if; end process; process( SCK,MOSI,state) is -- this process acts as a resolution function as the ADC, AMP and DAC use the same MOSI and MISO so conflict arises when resolution function is not made begin if (state=READ_ADC) then SPI_MOSI<=MOSI; SPI_SCK<=SCK; else SPI_MOSI<='0'; SPI_SCK<='0'; end if; end process; end Behavioral;