TY - JOUR
T1 - Density peaking in JET - determined by fuelling or transport?
JF - Nuclear Fusion
Y1 - 2019
A1 - Tala, T.
A1 - Nordman, H.
A1 - Salmi, A.
A1 - Bourdelle, C.
A1 - Citrin, J.
A1 - Czarnecka, A.
A1 - Eriksson, F.
A1 - Fransson, E.
A1 - Giroud, C.
A1 - Hillesheim, J.
A1 - Maggi, C.
A1 - Mantica, P.
A1 - Mariani, A.
A1 - Maslov, M.
A1 - Meneses, L.
A1 - Menmuir, S.
A1 - Mordijck, S.
A1 - Naulin, V.
A1 - Oberparleiter, M.
A1 - Sips, G.
A1 - Tegnered, D.
A1 - Tsalas, M.
A1 - Weisen, H.
A1 - JET Contributors
AB - Core density profile peaking and electron particle transport have been extensively studied by performing several dimensionless collisionality (υ *) scans with other matched dimensionless profiles in various plasma operation scenarios on the Joint European Torus (JET). This is the first time when electron particle transport coefficients in the H-mode have been measured on JET with high resolution diagnostics, and therefore we are in a position to distinguish between the neutral beam injection (NBI) source and inward electron particle pinch in contributing to core density peaking. The NBI particle source is found to contribute typically 50%–60% to the electron density peaking in JET H-mode plasmas where T e/T i ~ 1 or smaller and at υ * = 0.1–0.5 (averaged between r/a = 0.3–0.8), and being independent of υ * within that range. In these H-mode plasmas, the electron particle transport coefficients, D e and v e, are small, thus giving rise to the large influence of NBI fueling with respect to transport effect on peaking. In L-mode plasma conditions, the role of the NBI source is small, typically 10%–20%, and the electron particle transport coefficients are large. These dimensionless υ * scans give the best possible data for model validation. TGLF simulations are in good agreement with the experimental results with respect to the role of NBI particle source versus inward pinch in affecting density peaking, both for the H-mode and L-mode υ * scans. It predicts, similarly to experimental results, that typically about half of the peaking originates from the NBI fuelling in the H-mode and 10%–20% in the L-mode. GENE simulation results also support the key role of NBI fuelling in causing a peaked density profile in JET H-mode plasma (T e/T i ~ 1 and υ * = 0.1–0.5) and, in fact, give an even higher weight on NBI fuelling than that experimentally observed or predicted by TGLF. For the non-fuelled H-mode plasma at higher T e/T i = 1.5 and lower β N and υ *, both TGLF and GENE predict peaked density profiles, therefore agreeing well with experimental steady-state density peaking. Overall, the various modelling results give a fairly good confidence in using TGLF and GENE in predicting density peaking in quite a wide range of plasma conditions in JET.
VL - 59
IS - 12
U1 - FP
U2 - IMT
U5 - 082a12a8da2101f77aa3f00d71ab98a6
ER -
TY - JOUR
T1 - Progress at JET in integrating ITER-relevant core and edge plasmas within the constraints of an ITER-like wall
JF - Plasma Physics and Controlled Fusion
Y1 - 2015
A1 - Giroud, C.
A1 - Jachmich, S.
A1 - Jacquet, P.
A1 - Jarvinen, A.
A1 - Lerche, E.
A1 - Rimini, F.
A1 - Aho-Mantila, L.
A1 - Aiba, N.
A1 - Balboa, I.
A1 - da Silva Aresta Belo, P.
A1 - Angioni, C.
A1 - Beurskens, M.
A1 - Brezinsek, S.
A1 - Casson, F. J.
A1 - Coffey, I.
A1 - Cunningham, G.
A1 - Delabie, E.
A1 - Devaux, S.
A1 - Drewelow, P.
A1 - Frassinetti, L.
A1 - Figueiredo, A.
A1 - Huber, A.
A1 - Hillesheim, J.
A1 - Garzotti, L.
A1 - Goniche, M.
A1 - Groth, M.
A1 - Hyun-Tae Kim
A1 - Leyland, M.
A1 - Lomas, P.
A1 - Maddison, G.
A1 - Marsen, S.
A1 - Matthews, G.
A1 - Meigs, A.
A1 - Menmuir, S.
A1 - Putterich, T.
A1 - G. van Rooij
A1 - Saarelma, S.
A1 - Stamp, M.
A1 - Urano, H.
A1 - Webster, A.
A1 - JET-EFDA Contributors
AB - This paper reports the progress made at JET-ILW on integrating the requirements of the reference ITER baseline scenario with normalized confinement factor of 1, at a normalized pressure of 1.8 together with partially detached divertor whilst maintaining these conditions over many energy confinement times. The 2.5 MA high triangularity ELMy H-modes are studied with two different divertor configurations with D-gas injection and nitrogen seeding. The power load reduction with N seeding is reported. The relationship between an increase in energy confinement and pedestal pressure with triangularity is investigated. The operational space of both plasma configurations is studied together with the ELM energy losses and stability of the pedestal of unseeded and seeded plasmas. The achievement of stationary plasma conditions over many energy confinement times is also reported.
VL - 57
UR - http://www.iop.org/Jet/fulltext/EFDP14021.pdf
IS - 3
U1 - FP
U2 - PDG
U5 - 4b7265a10a94f029cf4f14cd047251e2
ER -
TY - JOUR
T1 - Overview of MAST results
JF - Nuclear Fusion
Y1 - 2015
A1 - Chapman, I.T.
A1 - Adamek, J.
A1 - Akers, R. J.
A1 - Allan, S.
A1 - Appel, L.
A1 - Asunta, O.
A1 - Barnes, M.
A1 - N. Ben Ayed
A1 - Hawke, J.
A1 - Bigelow, T.
A1 - Boeglin, W.
A1 - Bradley, J.
A1 - Brünner, J.
A1 - Cahyna, P.
A1 - Carr, M.
A1 - Caughman, J.
A1 - Cecconello, M.
A1 - Challis, C.
A1 - Chapman, S.
A1 - Chorley, J.
A1 - Colyer, G.
A1 - Conway, N.
A1 - Cooper, W. A.
A1 - Cox, M.
A1 - Crocker, N.
A1 - Crowley, B.
A1 - Cunningham, G.
A1 - Danilov, A.
A1 - Darrow, D.
A1 - Dendy, R.
A1 - Diallo, A.
A1 - Dickinson, D.
A1 - Diem, S.
A1 - Dorland, W.
A1 - Dudson, B.
A1 - Dunai, D.
A1 - Easy, L.
A1 - Elmore, S.
A1 - Field, A.
A1 - Fishpool, G.
A1 - Fox, M.
A1 - Fredrickson, E.
A1 - Freethy, S.
A1 - Garzotti, L.
A1 - Ghim, Y. C.
A1 - Gibson, K.
A1 - Graves, J.
A1 - Gurl, C.
A1 - Guttenfelder, W.
A1 - Ham, C.
A1 - Harrison, J.
A1 - Harting, D.
A1 - Havlickova, E.
A1 - Hawkes, N.
A1 - Hender, T.
A1 - Henderson, S.
A1 - Highcock, E.
A1 - Hillesheim, J.
A1 - Hnat, B.
A1 - Holgate, J.
A1 - Horacek, J.
A1 - Howard, J.
A1 - Huang, B.
A1 - Imada, K.
A1 - Jones, O.
A1 - S. Kaye
A1 - Keeling, D.
A1 - Kirk, A.
A1 - Klimek, I.
A1 - Kocan, M.
A1 - Leggate, H.
A1 - Lilley, M.
A1 - Lipschultz, B.
A1 - Lisgo, S.
A1 - Liu, Y. Q.
A1 - Lloyd, B.
A1 - Lomanowski, B.
A1 - Lupelli, I.
A1 - Maddison, G.
A1 - J. Mailloux
A1 - Martin, R.
A1 - McArdle, G.
A1 - McClements, K.
A1 - McMillan, B.
A1 - Meakins, A.
A1 - Meyer, H.
A1 - Michael, C.
A1 - Militello, F.
A1 - Milnes, J.
A1 - Morris, A. W.
A1 - Motojima, G.
A1 - Muir, D.
A1 - Nardon, E.
A1 - Naulin, V.
A1 - Naylor, G.
A1 - Nielsen, A.
A1 - O'Brien, M.
A1 - O'Gorman, T.
A1 - Ono, Y.
A1 - Oliver, H.
A1 - Pamela, S.
A1 - Pangioni, L.
A1 - Parra, F.
A1 - Patel, A.
A1 - Peebles, W.
A1 - Peng, M.
A1 - Perez, R.
A1 - Pinches, S.
A1 - Piron, L.
A1 - Podesta, M.
A1 - Price, M.
A1 - Reinke, M.
A1 - Ren, Y.
A1 - Roach, C.
A1 - Robinson, J.
A1 - Romanelli, M.
A1 - Rozhansky, V.
A1 - Saarelma, S.
A1 - Sangaroon, S.
A1 - Saveliev, A.
A1 - Scannell, R.
A1 - Schekochihin, A.
A1 - Sharapov, S.
A1 - Sharples, R.
A1 - Shevchenko, V.
A1 - Silburn, S.
A1 - J. Simpson
A1 - Storrs, J.
A1 - Takase, Y.
A1 - Tanabe, H.
A1 - Tanaka, H.
A1 - Taylor, D.
A1 - Taylor, G.
A1 - Thomas, D.
A1 - Thomas-Davies, N.
A1 - Thornton, A.
A1 - Turnyanskiy, M.
A1 - Valovic, M.
A1 - Vann, R.
A1 - Walkden, N.
A1 - Wilson, H.
A1 - Wyk, L. V.
A1 - Yamada, T.
A1 - Zoletnik, S.
A1 - MAST Team
A1 - MAST Upgrade Teams
VL - 55
IS - 10
U1 - FP
U2 - TP
U5 - 9d7b191e90422e8ed8bcf2078b75987f
ER -