Continue to Site

Welcome to EDAboard.com

Welcome to our site! EDAboard.com is an international Electronics Discussion Forum focused on EDA software, circuits, schematics, books, theory, papers, asic, pld, 8051, DSP, Network, RF, Analog Design, PCB, Service Manuals... and a whole lot more! To participate you need to register. Registration is free. Click here to register now.

Electromagnetism Uniqueness Theorem for an infinite volume

Status
Not open for further replies.

Sioux12

Newbie level 4
Newbie level 4
Joined
May 2, 2013
Messages
6
Helped
0
Reputation
0
Reaction score
0
Trophy points
1,281
Visit site
Activity points
1,383
Hello :)
As stated in this thread, the Uniqueness Theorem is very powerful for many applications. In Electromagnetism, the Theorem ensures that the solution of the Maxwell's equation (an electromagnetic field E, H) is unique, given certain conditions.

But I can't prove it when an infinite volume is to be considered.

In the frequency domain and in a finite volume V bounded by a surface S, given the sources (current densities and charge densities), the theorem is proved simply providing the boundary conditions: they are the exact values that the electric or the magnetic field tangential to S must have.

But if the volume V extends to infinite and so the surface S is infinite, the only conditions in this case are the radiation conditions, which don't provide a value for the electric or magnetic fields, but state only that they must be orthogonal on S and that the Poynting vector E x H must be outgoing from the surface. After the computations, in this file it is stated that "Infinite surfaces can be thought of as the limit of finite surfaces, so there is really no problem there if we specify the field vanishes (or is at least outward traveling) at ∞". But it is really a problem, because the difference fields (needed to prove the theorem) does not vanish!!

Do someone know this Theorem? Or know any book or any text which deals with it?
 

Status
Not open for further replies.

Part and Inventory Search

Welcome to EDABoard.com

Sponsor

Back
Top