Continue to Site

Welcome to EDAboard.com

Welcome to our site! EDAboard.com is an international Electronics Discussion Forum focused on EDA software, circuits, schematics, books, theory, papers, asic, pld, 8051, DSP, Network, RF, Analog Design, PCB, Service Manuals... and a whole lot more! To participate you need to register. Registration is free. Click here to register now.

control 2008 - document

Status
Not open for further replies.

THUNDERRr

Full Member level 3
Full Member level 3
Joined
Nov 11, 2007
Messages
189
Helped
3
Reputation
6
Reaction score
3
Trophy points
1,298
Activity points
2,239
control 2008 - document [pdf]
 

Re: control 2008

What's this document about? Please provide a little bit gist:idea:
 

Re: control 2008

Modelling and Control
of Dynamical Systems:
Numerical Implementation
in a Behavioral Framework



Ricardo Zavala Yoe

TOC

Contents
1 Motivating the Behavioral Approach 1
1.1 Suitable Modelling and Control of Systems . . . . . . . . . . . . . . . . . . 1
1.2 Paradigms in Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Closed dynamical systems . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Open dynamical systems and the input/output approach . . . . . . 4
1.2.3 More about the input/output approach . . . . . . . . . . . . . . . . 9
1.2.4 The behavior of the systemis the key . . . . . . . . . . . . . . . . . 10
1.2.5 Some other frameworks for systems and control . . . . . . . . . . . 10
2 Behavioral framework 13
2.1 Modelling by Tearing and Zooming . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Constitutivemodels . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Linear Differential Systems . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Latent variables and elimination . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Equivalent representations of behaviors . . . . . . . . . . . . . . . . . . . . 23
2.5 Observability and detectability . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 Controllability and stabilizability . . . . . . . . . . . . . . . . . . . . . . . 24
2.7 Autonomous behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Defining inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Controllable part of a behavior . . . . . . . . . . . . . . . . . . . . . . . . 29
2.10 Interconnection of dynamical systems . . . . . . . . . . . . . . . . . . . . . 30
2.10.1 Control as interconnection . . . . . . . . . . . . . . . . . . . . . . . 30
3 Full Interconnection Issues 35
3.1 Implementability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.1 Minimal Annihilators of a Polynomial Matrix . . . . . . . . . . . . 37
3.2 Stabilization and pole placement by regular full interconnection . . . . . . 45
3.3 All regularly implementing controllers . . . . . . . . . . . . . . . . . . . . 49
3.4 All stabilizing controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
VII
VIII CONTENTS
4 Partial Interconnection Issues 59
4.1 Regular implementability by partial interconnection . . . . . . . . . . . . . 59
4.2 Pole placement and stabilization by regular partial interconnection . . . . . 60
4.2.1 Pole placement by regular partial interconnection . . . . . . . . . . 60
4.2.2 Stabilization by regular partial interconnection . . . . . . . . . . . . 67
4.3 All regularly implementing controllers: the observable case . . . . . . . . . 71
4.4 All regularly implementing controllers: the nonobservable case . . . . . . . 77
4.4.1 Reduction to the case that R2 has full column rank . . . . . . . . . 78
4.4.2 Reduction to the observable case . . . . . . . . . . . . . . . . . . . 79
4.5 All stabilizing controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6 Examples for the nonobservable case . . . . . . . . . . . . . . . . . . . . . 88
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5 Embedding Algorithms 95
5.1 Problemformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.1 Historical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3 Pencils andMatrix Pencils . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.1 Canonical forms of pencils . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.2 A little bit deeper intomatrix pencils . . . . . . . . . . . . . . . . . 101
5.4 The state space representation . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.5 Embedding for a pencil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6 Transforming the pencil . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.7 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.7.1 QR Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.7.2 Staircase form of ξE − A . . . . . . . . . . . . . . . . . . . . . . . . 109
5.7.3 Algorithm: Embedding P(ξ) . . . . . . . . . . . . . . . . . . . . . 111
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6 Numerical Implementation 115
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2 Analysis of an example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3 The geometry of the orbit of a pencil . . . . . . . . . . . . . . . . . . . . . 117
6.4 Matrix pencils asmathematical relations . . . . . . . . . . . . . . . . . . . 120
6.5 Conditioning of the pencil . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.6 Modelling polynomially and assessing numerically . . . . . . . . . . . . . . 128
6.7 Computing the determinant of a polynomial matrix . . . . . . . . . . . . . 131
6.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
CONTENTS IX
7 A new algorithm for embedding problems 135
7.1 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Inside the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.3 Numerical computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Conclusions and further research 141
Bibliography 143
Summary 151
Index 153
 

Status
Not open for further replies.

Part and Inventory Search

Welcome to EDABoard.com

Sponsor

Back
Top