sai685
Junior Member level 2
- Joined
- Sep 4, 2015
- Messages
- 23
- Helped
- 0
- Reputation
- 0
- Reaction score
- 0
- Trophy points
- 1
- Activity points
- 292
Code Verilog - [expand] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 module fifo_top #( parameter DEPTH = 32, WIDTH = 32, ADDR = 5 ) ( input wire write, wreset_b, wclk, read, rreset_b, rclk, input wire [WIDTH-1:0] wdata, output wire [WIDTH-1:0] rdata, output wire rempty, wfull ); // function to convert from gray to binary function [ADDR:0] G2B_Fn; input [ADDR:0] gray; reg [ADDR:0] binary; integer i; begin binary[ADDR] = gray [ADDR]; for (i=ADDR-1;i >= 0;i=i-1) binary[i+1] = (binary[i] ^ gray[i+1]); G2B_Fn = binary; end endfunction // declare connecting wires wire [ADDR:0] wptr_b,wptr_g, // binary and gray signals from write pointer rptr_b,rptr_g; // binary and gray signals from read pointer reg [ADDR:0] g2b_wd_op, // function G2B_Fn output in the write domain g2b_rd_op; // function G2B_Fn output in the read domain wire [ADDR:0] g2b_wd_ip, // function G2B_Fn input in the write domain g2b_rd_ip; // function G2B_Fn input in the read domain //assign intermediate wires always @(g2b_wd_ip or g2b_rd_ip) begin g2b_wd_op = G2B_Fn(g2b_wd_ip); g2b_rd_op = G2B_Fn(g2b_rd_ip); end // instantiate write pointer pointer wptr( .clk(wclk), .reset_b(wreset_b), .op(write), .fifo_status(wfull), .gray(wptr_g), .binary(wptr_b) ); //instantiate read pointer pointer rptr( .clk(rclk), .reset_b(rreset_b), .op(read), .fifo_status(rempty), .gray(rptr_g), .binary(rptr_b) ); //instantiate memory module memory m1( .clk(wclk), .reset_b(wreset_b), .write(write), .wfull(wfull), .waddr(wptr_b[ADDR-1:0]), .raddr(rptr_b[ADDR-1:0]), .wdata(wdata), .rdata(rdata) ); //instantiate read->write synchronizer sync_r2w syncr2w( .clk(wclk), .reset_b(wreset_b), .rptr(rptr_g), .rptr_wr(g2b_wd_ip) ); //instantiate write->read synchronizer sync_w2r syncw2r( .clk(rclk), .reset_b(rreset_b), .wptr(wptr_g), .wptr_rd(g2b_rd_ip) ); //instantiate write domain comparator compare_wr cmp_wr( .rptr(g2b_wd_op), .wptr(wptr_b), .full(wfull) ); //instantiate read domain comparator compare_rd cmp_rd( .rptr(rptr_b), .wptr(g2b_rd_op), .empty(rempty) ); endmodule module pointer #( parameter ADDR = 5 // parameterized size of pointers ) ( input wire clk,reset_b,op,fifo_status, // input-output declaration output reg [ADDR:0] gray,binary ); integer i; always@(posedge clk, negedge reset_b) begin if(~reset_b) begin binary = 'd0; gray = 'd0; end else if(op & ~fifo_status) binary <= binary + 1; end always @(binary) begin gray[ADDR] = binary[ADDR]; for (i=ADDR-1;i>=0;i=i-1) gray[i] = binary[i] ^ binary[i+1]; end endmodule module compare_wr #( parameter ADDR = 5 // declare parameter for memory address ) ( input wire [ADDR:0] rptr,wptr, // declare inputs and outputs output wire full ); //check for full condition: Write pointer has wrapped around but read pointer has not assign full = (wptr[ADDR] != rptr[ADDR]) & (wptr[ADDR-1:0] == rptr[ADDR-1:0]); endmodule module memory #( parameter DEPTH = 32, // parameter declaration WIDTH = 32, ADDR = 5 ) ( input wire clk, reset_b, write, wfull, // input - output declaration input wire [ADDR-1:0] waddr, raddr, input wire [WIDTH-1:0] wdata, output wire [WIDTH-1:0] rdata ); integer i; // creating memory reg [WIDTH-1:0] sram [DEPTH-1:0]; // writing in the memory always @(posedge clk, negedge reset_b) begin if(~reset_b) begin for(i=0;i<DEPTH;i = i+1) sram[i] <= 'h0; end else if(write & ~wfull) sram[waddr] <= wdata; end // reading a memory location assign rdata = sram[raddr]; endmodule // to synchronize from fast clock domain to slow clock domain (write -> read) module sync_w2r #( parameter ADDR = 5 ) ( input wire clk, reset_b, input wire [ADDR:0] wptr, output reg [ADDR:0] wptr_rd ); reg [ADDR:0] q; always @(posedge clk or negedge reset_b) begin if(~reset_b) begin q <= 'd0; wptr_rd <= 'd0; end else begin q <= wptr; wptr_rd <= q; end end endmodule // to synchronize from slow clock domain to fast clock domain (read -> write) module sync_r2w #( parameter ADDR = 5 ) ( input wire clk, reset_b, input wire [ADDR:0] rptr, output reg [ADDR:0] rptr_wr ); reg [ADDR:0] q; always @(posedge clk or negedge reset_b) begin if(~reset_b) begin q <= 'd0; rptr_wr <= 'd0; end else begin q <= rptr; rptr_wr <= q; end end endmodule module compare_wr #( parameter ADDR = 5 // declare parameter for memory address ) ( input wire [ADDR:0] rptr,wptr, // declare inputs and outputs output wire full ); //check for full condition: Write pointer has wrapped around but read pointer has not assign full = (wptr[ADDR] != rptr[ADDR]) & (wptr[ADDR-1:0] == rptr[ADDR-1:0]); endmodule module compare_rd #( parameter ADDR = 5 // declare parameter for memory address ) ( input wire [ADDR:0] rptr,wptr, // declare inputs and outputs output wire empty ); //check for full condition: WRITE and READ pointers have NOT wrapped around assign empty = wptr[ADDR:0] == rptr[ADDR:0]; endmodule //TEST BENCH IS `include "fifo_top.v" `include "pointer.v" `include "memory.v" `include "sync.v" `include "comparator.v" module fifo_top_tb reg write,wreset_b,wclk,read,rreset_b,rclk; reg[31:0] wdata; wire[31:0]rdata; wire rempty,wfull; fifo_top ff(.write(write),.wreset_b(wreset_b),.wclk(wclk),.read(read),.rreset_b(rreset_b),.rclk(rclk),.wdata(wdata),.rdata(rdata),.rempty(rempty),.wfull(wfull)); initial begin #5 @(posedge wclk or negedge wreset_b or negedge rreset_b) begin write=1; wdata=0000001; #2wdata=00000010; #2wdata=00000011; #1$display("rdata=%b,rempty=%b,wfull=%b",rdata,rempty,wfull); #2 read=1; #2wdata=00000100; #2wdata=00000101; #2 read=1; #1$display("rdata=%b,rempty=%b,wfull=%b",rdata,rempty,wfull); end end endmodule
ERRORS IS
Error-[SE] Syntax error
Following verilog source has syntax error :
"testbench.sv", 8: token is 'reg'
reg write,wreset_b,wclk,read,rreset_b,rclk;
^
Last edited by a moderator: