Continue to Site

Welcome to EDAboard.com

Welcome to our site! EDAboard.com is an international Electronics Discussion Forum focused on EDA software, circuits, schematics, books, theory, papers, asic, pld, 8051, DSP, Network, RF, Analog Design, PCB, Service Manuals... and a whole lot more! To participate you need to register. Registration is free. Click here to register now.

[PIC] How to debug/Test SPI Communication PIC16F628A & NRF24L01+ (software SPI)

Status
Not open for further replies.

asking

Full Member level 5
Joined
Sep 21, 2010
Messages
279
Helped
6
Reputation
12
Reaction score
6
Trophy points
1,298
Activity points
3,377
Hi,

I have been trying from last many days regarding the communication between PIC16F628A (my mcu) and NRF24L01+ communication module. But i am unsuccessful.. i am not having any idea whether the data is written into the NRF24L01+ register or not ?

So is there any methods available for SPI Debug ? I have pickit3, MPLAB X IDE 1.90, MPLAB IDE v8.92 and Mikroc Pro v6.0.0 how can i simply check whether the sPI communication is perfect or not ?

Thanks.

Here's My NRF24L01+ Receiver side code :
Code:
#include <htc.h>

__CONFIG(FOSC_EXTRCIO & WDTE_OFF & PWRTE_OFF & MCLRE_OFF & BOREN_OFF & LVP_OFF & CPD_OFF & CP_OFF); //16F628A

#include "stdint.h"
/* Memory Map */
#define CONFIG      0x00
#define EN_AA       0x01
#define EN_RXADDR   0x02
#define SETUP_AW    0x03
#define SETUP_RETR  0x04
#define RF_CH       0x05
#define RF_SETUP    0x06
#define STATUS      0x07
#define OBSERVE_TX  0x08
#define CD          0x09
#define RX_ADDR_P0  0x0A
#define RX_ADDR_P1  0x0B
#define RX_ADDR_P2  0x0C
#define RX_ADDR_P3  0x0D
#define RX_ADDR_P4  0x0E
#define RX_ADDR_P5  0x0F
#define TX_ADDR     0x10
#define RX_PW_P0    0x11
#define RX_PW_P1    0x12
#define RX_PW_P2    0x13
#define RX_PW_P3    0x14
#define RX_PW_P4    0x15
#define RX_PW_P5    0x16
#define FIFO_STATUS 0x17
#define DYNPD       0x1C

/* Bit Mnemonics */

/* configuratio nregister */
#define MASK_RX_DR  6
#define MASK_TX_DS  5
#define MASK_MAX_RT 4
#define EN_CRC      3
#define CRCO        2
#define PWR_UP      1
#define PRIM_RX     0

/* enable auto acknowledgment */
#define ENAA_P5     5
#define ENAA_P4     4
#define ENAA_P3     3
#define ENAA_P2     2
#define ENAA_P1     1
#define ENAA_P0     0

/* enable rx addresses */
#define ERX_P5      5
#define ERX_P4      4
#define ERX_P3      3
#define ERX_P2      2
#define ERX_P1      1
#define ERX_P0      0

/* setup of address width */
#define AW          0 /* 2 bits */

/* setup of auto re-transmission */
#define ARD         4 /* 4 bits */
#define ARC         0 /* 4 bits */

/* RF setup register */
#define PLL_LOCK    4
#define RF_DR_HIGH  3
#define RF_PWR      1 /* 2 bits */

/* general status register */
#define RX_DR       6
#define TX_DS       5
#define MAX_RT      4
#define RX_P_NO     1 /* 3 bits */
#define TX_FULL     0

/* transmit observe register */
#define PLOS_CNT    4 /* 4 bits */
#define ARC_CNT     0 /* 4 bits */

/* fifo status */
#define TX_REUSE    6
#define FIFO_FULL   5
#define TX_EMPTY    4
#define RX_FULL     1
#define RX_EMPTY    0

/* dynamic length */
#define DPL_P0      0
#define DPL_P1      1
#define DPL_P2      2
#define DPL_P3      3
#define DPL_P4      4
#define DPL_P5      5

/* Instruction Mnemonics */
#define R_REGISTER    0x00 /* last 4 bits will indicate reg. address */
#define W_REGISTER    0x20 /* last 4 bits will indicate reg. address */
#define REGISTER_MASK 0x1F
#define R_RX_PAYLOAD  0x61
#define W_TX_PAYLOAD  0xA0
#define FLUSH_TX      0xE1
#define FLUSH_RX      0xE2
#define REUSE_TX_PL   0xE3
#define ACTIVATE      0x50
#define R_RX_PL_WID   0x60
//#define NOP           0xFF



/// hardware spi pin defined
#define LED_PIN      PORTBbits.RA1 // led test
#define CS_Pin       PORTBbits.RB0//          //set port as output
#define CE_Pin       PORTBbits.RB4         //set port as output
#define SCK_Pin      PORTBbits.RB1        //set port as output
#define Mosi_Pin     PORTBbits.RB2         //set port as output
#define Miso_Pin     PORTBbits.RB3        //set port as input
#define HIGH         1
#define LOW          0

//#ifndef NRF24
#define NRF24

//#include "nRF24L01.h"
//#include <stduint8_t.h>

#define LOW 0
#define HIGH 1

#define nrf24_ADDR_LEN 5
#define nrf24_CONFIG ((1<<EN_CRC)|(0<<CRCO))

#define NRF24_TRANSMISSON_OK 0
#define NRF24_MESSAGE_LOST   1



 //spi pins defined for PIC16F628A
 /*
sbit Chip_Select at RB0_bit;           //
sbit SoftSpi_CLK at RB1_bit;
sbit SoftSpi_SDI at RB2_bit;
sbit SoftSpi_SDO at RB3_bit;
sbit CE_Pin_select at RB4_bit;

sbit Chip_Select_Direction at TRISB0_bit;       //csn PIN
sbit SoftSpi_CLK_Direction at TRISB1_bit;       //SCK
sbit SoftSpi_SDI_Direction at TRISB2_bit;       //MISO
sbit SoftSpi_SDO_Direction at TRISB3_bit;       //MOSI
   */
// End DAC module connections




void nrf24_ce_digitalwrite(uint8_t state)
{
if (state)
{
CE_Pin = 1;
}
else
{
CE_Pin = 0;
}
}


void nrf24_csn_digitalwrite(uint8_t state)
{
if (state)
{
CS_Pin = 1;
}
else
{
CS_Pin = 0;
}
}


void nrf24_sck_digitalwrite(uint8_t state)
{
if (state)
{
SCK_Pin = 1;
}
else
{
SCK_Pin = 0;
}
}


void nrf24_mosi_digitalwrite( uint8_t state)
{
if (state)
{
Mosi_Pin = 1;
}
else
{
Mosi_Pin = 0;
}
}

uint8_t nrf24_miso_digitalread(uint8_t state)
{
return (state);
}


/* software spi routine */
uint8_t spi_transfer(uint8_t tx)
{
     uint8_t i = 0;
     uint8_t rs = 0;

    nrf24_sck_digitalWrite(LOW);

    for(i=0;i<8;i++)
    {

        if(tx & (1<<(7-i)))
        {
            nrf24_mosi_digitalWrite(HIGH);
        }
        else
        {
            nrf24_mosi_digitalWrite(LOW);
        }

        nrf24_sck_digitalWrite(HIGH);

        rs = rs << 1;
        if(nrf24_miso_digitalRead())
        {
            rs |= 0x01;
        }

        nrf24_sck_digitalWrite(LOW);

    }

    return rs;
}

/* send and receive multiple bytes over SPI */
void nrf24_transferSync(uint8_t* dataout,uint8_t* datain,uint8_t len)
{
    uint8_t i;

    for(i=0;i<len;i++)
    {
       datain[i] = spi_transfer(dataout[i]);
    }

}

//send multiple bytes over SPI
void nrf24_transmitSync(uint8_t* dataout,uint8_t len)
{
    uint8_t i;

    for(i=0;i<len;i++)
    {
      spi_transfer(dataout[i]);
    }

}
 //Clocks only one byte uint8_to the given nrf24 register */



void nrf24_configRegister(uint8_t reg, uint8_t value)
{
    nrf24_csn_digitalWrite(LOW);
    spi_transfer(W_REGISTER | (REGISTER_MASK & reg));
    spi_transfer(value);
    nrf24_csn_digitalWrite(HIGH);
}

/* Read single register from nrf24 */
void nrf24_readRegister(uint8_t reg,uint8_t* value,uint8_t len)
{
    nrf24_csn_digitalWrite(LOW);
    spi_transfer(R_REGISTER | (REGISTER_MASK & reg));
   nrf24_transferSync(value,value,len);
    nrf24_csn_digitalWrite(HIGH);
}

/* Write to a single register of nrf24 */
void nrf24_writeRegister(uint8_t reg,uint8_t* value,uint8_t len)
{
    nrf24_csn_digitalWrite(LOW);
    spi_transfer(W_REGISTER | (REGISTER_MASK & reg));
    nrf24_transmitSync(value,len);
    nrf24_csn_digitalWrite(HIGH);
}



uint8_t payload_len;

// init the hardware pins
void nrf24_init()
{
    //nrf24_setupPins();
    nrf24_ce_digitalWrite(LOW);
    nrf24_csn_digitalWrite(HIGH);
}

void nrf24_powerUpRx()
{
    nrf24_csn_digitalWrite(LOW);
    spi_transfer(FLUSH_RX);
    nrf24_csn_digitalWrite(HIGH);

    nrf24_configRegister(STATUS,(1<<RX_DR)|(1<<TX_DS)|(1<<MAX_RT));


    nrf24_configRegister(CONFIG,nrf24_CONFIG|((1<<PWR_UP)|(1<<PRIM_RX)));

}

void nrf24_config(uint8_t  channel,uint8_t pay_length)
{
    /* Use static payload length ... */
    payload_len = pay_length;

    // Set RF channel
    nrf24_configRegister(RF_CH,channel);

    // Set length of incoming payload
    nrf24_configRegister(RX_PW_P0, payload_len); // Auto-ACK pipe ...
    nrf24_configRegister(RX_PW_P1, 0x00); // Data payload pipe
    nrf24_configRegister(RX_PW_P2, 0x00); // Pipe not used
    nrf24_configRegister(RX_PW_P3, 0x00); // Pipe not used
    nrf24_configRegister(RX_PW_P4, 0x00); // Pipe not used
    nrf24_configRegister(RX_PW_P5, 0x00); // Pipe not used

    // 1 Mbps, TX gain: 0dbm
    nrf24_configRegister(RF_SETUP, (0<<RF_DR_HIGH)|((0x03)<<RF_PWR));

    // CRC enable, 1 byte CRC length
   nrf24_configRegister(CONFIG,nrf24_CONFIG);

    // Auto Acknowledgment
    nrf24_configRegister(EN_AA,(1<<ENAA_P0)|(1<<ENAA_P1)|(0<<ENAA_P2)|(0<<ENAA_P3)|(0<<ENAA_P4)|(0<<ENAA_P5));

    // Enable RX addresses
    nrf24_configRegister(EN_RXADDR,(1<<ERX_P0)|(1<<ERX_P1)|(0<<ERX_P2)|(0<<ERX_P3)|(0<<ERX_P4)|(0<<ERX_P5));

    // Auto retransmit delay: 1000 us and Up to 15 retransmit trials
    nrf24_configRegister(SETUP_RETR,(0x04<<ARD)|(0x0F<<ARC));

    // Dynamic length configurations: No dynamic length
    nrf24_configRegister(DYNPD,(0<<DPL_P0)|(0<<DPL_P1)|(0<<DPL_P2)|(0<<DPL_P3)|(0<<DPL_P4)|(0<<DPL_P5));

    // Start listening
    nrf24_powerUpRx();
}




void nrf24_powerUpTx()
{
    nrf24_configRegister(STATUS,(1<<RX_DR)|(1<<TX_DS)|(1<<MAX_RT));

    nrf24_configRegister(CONFIG,nrf24_CONFIG|((1<<PWR_UP)|(0<<PRIM_RX)));
}

void nrf24_powerDown()
{
    nrf24_ce_digitalWrite(LOW);
    nrf24_configRegister(CONFIG,nrf24_CONFIG);
}

/* Set the RX address */
void nrf24_rx_address(uint8_t* adr)
{
    nrf24_ce_digitalWrite(LOW);
    nrf24_writeRegister(RX_ADDR_P1,adr,nrf24_ADDR_LEN);
    nrf24_ce_digitalWrite(HIGH);
}


/* Set the RX address
void nrf24_rx_address(unsigned  * adr)
{
    nrf24_ce_digitalWrite(LOW);
    nrf24_writeRegister(RX_ADDR_P1,adr,nrf24_ADDR_LEN);
    nrf24_ce_digitalWrite(HIGH);
}
*/
/* Returns the payload length */
uint8_t nrf24_payload_length()
{
    return payload_len;
}

/* Set the TX address */
void nrf24_tx_address(uint8_t* adr)
{
    /* RX_ADDR_P0 must be set to the sending addr for auto ack to work. */
    nrf24_writeRegister(RX_ADDR_P0,adr,nrf24_ADDR_LEN);
    nrf24_writeRegister(TX_ADDR,adr,nrf24_ADDR_LEN);
}

/* Checks if receive FIFO is empty or not */
uint8_t nrf24_rxFifoEmpty()
{
    uint8_t fifoStatus;

    nrf24_readRegister(FIFO_STATUS,&fifoStatus,1);

    return (fifoStatus & (1 << RX_EMPTY));
}
/* Checks if data is available for reading */
/* Returns 1 if data is ready ... */
uint8_t nrf24_dataReady()
{
    // See note in getData() function - just checking RX_DR isn't good enough
   // unsigned  status = nrf24_getStatus();
uint8_t status;
    // We can  circuit on RX_DR, but if it's not set, we still need
    // to check the FIFO for any pending packets
    if ( status & (1 << RX_DR) )
    {
        return 1;
    }
     else
    return !nrf24_rxFifoEmpty();;
}



/* Returns the length of data waiting in the RX fifo */
uint8_t nrf24_payloadLength()
{
    uint8_t status;
    nrf24_csn_digitalWrite(LOW);
    spi_transfer(R_RX_PL_WID);
    status = spi_transfer(0x00);
    nrf24_csn_digitalWrite(HIGH);
    return status;
}

/* Reads payload bytes uint8_to data array */
void nrf24_getData(uint8_t* data1)
{
    /* Pull down chip select */
    nrf24_csn_digitalWrite(LOW);

    /* Send cmd to read rx payload */
    spi_transfer( R_RX_PAYLOAD );

    /* Read payload */
    nrf24_transferSync(data1,data1,payload_len);

    /* Pull up chip select */
    nrf24_csn_digitalWrite(HIGH);

    /* Reset status register */
    nrf24_configRegister(STATUS,(1<<RX_DR));
}

/* Returns the number of retransmissions occured for the last message */
uint8_t nrf24_retransmissionCount()
{
    uint8_t rv;
    nrf24_readRegister(OBSERVE_TX,&rv,1);
    rv = rv & 0x0F;
    return rv;
}

// Sends a data package to the default address. Be sure to send the correct
// amount of bytes as configured as payload on the receiver.
void nrf24_send(uint8_t* value)
{
    /* Go to Standby-I first */
    nrf24_ce_digitalWrite(LOW);

    /* Set to transmitter mode , Power up if needed */
    nrf24_powerUpTx();

    /* Do we really need to flush TX fifo each time ? */
  //  #if 1
        /* Pull down chip select */
        nrf24_csn_digitalWrite(LOW);

        /* Write cmd to flush transmit FIFO */
        spi_transfer(FLUSH_TX);

        /* Pull up chip select */
        nrf24_csn_digitalWrite(HIGH);
   // #endif

    /* Pull down chip select */
    nrf24_csn_digitalWrite(LOW);

    /* Write cmd to write payload */
    spi_transfer(W_TX_PAYLOAD);

    /* Write payload */
    nrf24_transmitSync(value,payload_len);

    /* Pull up chip select */
    nrf24_csn_digitalWrite(HIGH);

    /* Start the transmission */
    nrf24_ce_digitalWrite(HIGH);
}



uint8_t nrf24_getStatus()
{
    uint8_t rv;
    nrf24_csn_digitalWrite(LOW);
  //  rv = spi_transfer(NOP);
    nrf24_csn_digitalWrite(HIGH);
    return rv;
}

uint8_t nrf24_lastMessageStatus()
{
    uint8_t rv;

    rv = nrf24_getStatus();

    /* Transmission went OK */
    if((rv & ((1 << TX_DS))))
    {

        return NRF24_TRANSMISSON_OK;
    }
    /* Maximum retransmission count is reached */
    /* Last message probably went missing ... */
    else if((rv & ((1 << MAX_RT))))
    {
        return NRF24_MESSAGE_LOST;
    }
    /* Probably still sending ... */
    else
    {
        return 0xFF;
    }
}

uint8_t nrf24_isSending()
{
    uint8_t status;

    /* read the current status */
    status = nrf24_getStatus();

    /* if sending successful (TX_DS) or max retries exceded (MAX_RT). */
    if((status & ((1 << TX_DS)  | (1 << MAX_RT))))
    {
        return 0; /* false */
    }

    return 1; /* true */

}


void nrf24_SETUP_PINS()
{
 CMCON  |= 7;
 TRISB = 0b00001000;
 TRISA = 0b00000000;
//nothing required here as we have already defined the pins and set their direcitons.(input/output)
}


//before main initilization

uint8_t temp;
uint8_t q = 0;
uint8_t msg[4];
uint8_t tx_address[5] = {0xE8,0xE8,0xF0,0xF0,0xE1};
uint8_t rx_address[5] = {0xE8,0xE8,0xF0,0xF0,0xE1};

uint8_t temp1,temp2;

void main() {
 //LED_PIN = HIGH;
//CMCON = 0X07;
 CMCON  |= 7;
 TRISB = 0b00001000;
 TRISA = 0b00000000;
  // temp2 = 1;
  // temp2 = Soft_SPI_Write(PRIM_RX);

/* init hardware pins */
    nrf24_init();
    nrf24_powerUpRx();

    /* Channel #2 , payload length: 4 */
    nrf24_config(2,4);

    /* Set the device addresses */
    nrf24_tx_address(tx_address);
    nrf24_rx_address(rx_address);

    while(1)
    {
        if(nrf24_dataReady())
        {
         //   LED_PIN = HIGH;
            nrf24_getData(msg);
            if (msg[0] == 1);
            {
          //  LED_PIN = HIGH;
            }
}
}
}
 

yes you can try proteus to check SPI behavior bcoz it contains SPI debug facility.
 

how can you tell me how to do it using proteus ?
 

as you need to debug the SPI communication of PIC16F628a and NRF24L01 then proteus is good option bcoz you check the actual data is transmitting.
 

Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip’s In-Circuit Serial ProgrammingTM (ICSPTM) protocol, offers cost- effective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single step- ping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.
 

Status
Not open for further replies.

Similar threads

Part and Inventory Search

Welcome to EDABoard.com

Sponsor

Back
Top