Subgridding in FDTD

V. Nefedov

Introduction

Finite-Difference Time-Domain (FDTD) method, originally proposed by Kane
Yee in [18], proved to be a simple and efficient tool in solving Maxwell equations.
There are however two major drawbacks to a classical FDTD method.

The first one is related to a situation when we have a two-scale problem. This
two-scale situation can be caused by a presence of e.g. scatterer which is much
smaller than the size of the problem. To resolve such a problem within a classical
FDTD approach we would need to refine the computational domain globally,
which would lead to a considerable increase in memory requirements. Since the
FDTD is explicit, the stability conditions bounds the time step, thus adding the
slower convergence to the memory problems.

The second drawback of classical FDTD is its inefficiency with respect to curved
boundaries. Indeed, FDTD was formulated on tensor-product grids only and
the only way to interpolated a curved object is by staircase approximation.

In this survey we consider a possible remedy for these drawbacks of FDTD
algorithms. The idea is to treat a source of inhomogeneity, whether it is a small
in size detail or a curved object, separately, that is to solve the problem in the
whole domain on a coarse grid first, then solve the subproblem on a finer grid
(or a grid formulated in curvilinear coordinates) and combine the results. This
technique is called subgridding and is extensively used for various problems.

The first paper on subgridding for FDTD was published in 1981. Through the
last 20 years only about 20 papers followed the original publication. Below we
list most of them in chronological order

1981

1. R. Holland and L. Simpson. Finite difference analysis of emp coupling to
thin struts and wires.
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2. K. S. Kunz and L. Simpson. A technique for increasing the resolution of
finite-difference solution of the Maxwell equation.

1990

3. Thn S. Kim and Wolfgang J. R. Hoefer. A local mesh refinement algorithm
for the time domain—finite difference method using maxwell’s curl equations.

1991

4. Svetlana S. Zivanovic, Kane S. Yee, and Kenneth K. Mei. A subgridding
method for the time-domain finite-difference method to solve maxwell’s equa-
tions.

1992 5. Deane T. Prescott and N. V. Shuley. A method for incorporating
different sized cells int the finite-difference time-domain analysis technique.

6. Kane S. Yee, Jei Shuan Chen, and Albert H. Chang. Conformal finite-
difference time-domain (FDTD) with overlapping grids.

1996

7. P. Thoma and T. Weiland. A consistent subgridding scheme for the finite
difference time domain method.

1997

8. Michael W. Chevalier, Raymond J. Luebbers, and Vaughn P. Cable. FDTD
local grid with material traverse.

9. Michal Okoniewski, Ewa Okoniewska, and Maria A. Stuchly. Three-dimensional
subgridding algorithm for FDTD.

10. Mikel J. White, Magdy F. Iskander, and Zhenlong Huang. Development of
a multigrid FDTD code for three-dimensional applications.

1998 11. T. O. Korner and W. Fichtner. Grid interpolation at material bound-
aries in finite-difference time-domain methods.

1999

12. S. Chaillou, J. Wiart, and W. Tabbara. A subgridding scheme based on
mesh nesting for the FDTD method.

2001



13. Stavros V. Georgakopoulos, Rosemary A. Renaut, Constantine A. Balanis,
and Craig R. Birtcher. A hybrid fourth-order FDTD utilizing a second-order
FDTD subgrid.

14. Bing-Zhong Wang, Yingjun Wang, Wenhua Yu, and Raj Mittra. A hybrid
2-D ADI-FDTD subgridding scheme for modeling on-chip interconnects.

15. Mikel J. White, Zhengging Yun, and Magdy F. Iskander. A new 3-D FDTD
multigrid technique with dielectric traverse capabilities.

16. Baixin Zhou and Sicong Wang. A hybrid coordinate scheme for enchancing
the finite-difference time-domain method.

2002

17. Shumin Wang, Fernando L. Teixeira, Robert Lee, and Jin-Fa Lee. Opti-
mization of subgridding schemes for FDTD.

To keep the story as transparent as possible we decided to restrict our attention
to three major topics. First, subgridding when both grids are in cartesian
coordinates and the local grid is finer than the global. Second, same as the first
but with dielectric boundary possibly traversing the coarse-fine grid interface,
and last a combination of global cartesian and local curvilinear grids.

1 VSSM, MRA and MGDM

Throughout this paper we consider a set of simplified Maxwell equations

OH 1

E - —;V X E, (1)
OE 1

E - EV X H, (2)

where H and E are the magnetic and the electric fields respectively, u is a
magnetic permeability and e is electrical permettivity.

The computational domain is split into a number of cubes. Each of the cubes
holds an arrangement of nodes for electric and magnetic fields, see figure 1.
Such an arrangement makes discretisation of the maxwell equations (1) and (2)
a trivial matter. Note, that beside staggering in space FDTD also exploits stag-
gering in time, that is the magnetic and electric fields is computed at different
time levels. Let us illustrate the discretisation scheme using the z—component
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Due to explicitness of FDTD algorithm, there exists a restriction on a time
step. It relates the time step At used in FDTD to a Yee-cell size Az and the
propagation speed of electromagnetic waves ¢ = 1/+/(p€)

At < & (4)

c

Stability condition (4) imposes a rather severe restriction on a size of the time
step At. Moreover, if our problem is such that the space refinement is needed,
then this refinement would inevitably lead to an increase in a number of time
steps. To avoid increase in memory and time we can use of of the subgridding
algorithms.

In this section we consider several subgridding algorithms exploiting the idea of
using the wave equation at the interface between the coarse and the fine grids.

The first algorithm of this group is called Variable Step Size Method (VSSM)
and was suggested by Zivanovic, Yee and Mei in [21].

VSSM solves discrete Maxwell equations on a combination of two grids: coarse
grid covering the whole computational domain and fine grid covering inhomo-
geneities.
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Figure 2: Regions used to calculate fields at the coarse/fine grid interface (from

[12])

Boundary conditions for the fine grid problem are obtained via an extra equa-
tion. To ensure a smooth transition from the coarse to the fine grid a wave
equation is solved on the interface

1 8°E
“eae 5)

Discretising (5) we obtain an update equation for the electric fields at the in-
terface

V2E

EM = 2B — Bl 4 AP

ik
(Ei"+1,j,k — 2B+ Bl N
A2z
Ejoin = 2B + Bl 1k N (6)
A2y
Eijri — 2B + Effj,k—l)
A2z )

Some of the terms in (6) involve fields evaluated at points external to the fine
grid. The use of quadratic approximation was suggested in [21]

The fields in the fine grid are found using FDTD. The tangential electric field
is found from the discrete wave equation (6) using the values from both coarse
and fine grids. The magnetic field on the interface is calculated using FDTD.

Assume that the fine-grid size is n times smaller than the the coarse-grid size.
Then for iteration of FDTD on a coarse grid we need n iterations of FDTD on
a fine grid.

A modification to the VSSM algorithm was suggested by Prescott and Shuley in
[12]. For simplicity, we illustrate their algorithm — Mesh Refinement Algorithm
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(MRA) — for TM,-mode. A mesh reduction factor of 4 will be used as shown
in Fig. 2.

We consider the calculation of FE,-components at the interface only, since all
other fields are updated via normal FDTD iterations. Assume now ¢ = t, and
all field components corresponding to this time level to be known. We begin by
calculating spacial differences D;, for example at the node 3 we have

D3 =FEs + Ey+ Ey + Eg —4E3,

where we assume Ax = Ay. Next, the spacial differences are computed for the
fine nodes by using quadratic interpolation, e.g.
Ds = D3 + Do —Di | De+ D1 —2D5  \/an de la tim cac
8 32 sai phan khong gian ntn ?7??
These values can now be used to calculate the field values for the next coarse-grid
time step and all of the intermediate fine grid time steps.

At t =t,, + Aty (f - stands for fine), electric field at the boundary is calculated
according to 6)

A3
Am?c Ds.

EJYA —9pn _ Erl 4

The difference between the MRA and the VSSM can be seen in the way the
second order differences are calculated. In VSSM they are computed from the
interpolated values of the electric field on the coarse grid. In MRA coarse grid
differences are computed first and than interpolated onto the fine grid. Revers-
ing the order has an advantage of requiring less memory and computational
time.

Another modification to the VSSM algorithm was proposed by White, Iskander
and Huang, [16]. They mentioned that the procedure of updating the coarse
grid fields from the fine grid in VSSM and MRA is not quite clear. Thus, in
[16] an original approach was developed. On each common time step the fields
are updated in a following fashion

1. the coarse-grid electric fields of the first cell inside the overlapping region
are left unchanged;

2. the coarse-grid electric fields of the second cell inside the overlapping re-
gion are calculated based on averaging the calculated coarse-grid values
calculated from the fine grid;

3. the coarse-grid electric fields of all other cells inside the overlapping region
are replaced with the values calculated from the grid.
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Figure 3: Comparison between magnitude errors (omac) of the electric field as
calculated by MGDM and VSSM. The size of the regions were 4 x 4 x 4 fine
grid cells (left) and 8 x 8 x 8 fine grid cells (right). Courant number of 0.57 was

used in MGDM (from [16]).

8
p—— — 12 o
en-035 MGDM y
s 10— VM ‘e .35
"§s 8 P
o~ n=040 .-
i : Cn=040" < Gn=080 2
=04 " e
,| Gn=050 o i )
% ,,,, N . -«
p—— ! +
1 2
0 T T T T ] *
2 3 4 5 7 8 0 T T T T T
nfact 2 3 4 -3 6 7

Figure 4: Comparison between phase errors (gpuasg) of the electric field as
calculated by MGDM and VSSM. The size of the regions were 4 x 4 x 4 fine
grid cells (left) and 8 x 8 x 8 fine grid cells (right). Courant number of 0.57 was

used in MGDM (from [16]).




To compare VSSM and their own algorithm, called Multigrid Displacement
Method (MGDM), White et al. considered a model problem. A waveguide
operating at 9.26 GHz is excited by a TE{0 mode. For the simulations, a cell
size of 2.16 mm was chosen. This corresponds to a cell size of 15 per cells
per wavelength. Model dimensions (in coarse grid cells) were 42 x 22 x 60.
Two different fine-grid grid regions were considered. Dimensions of the first
one are 4 x 4 x 4 fine grid cells; dimensions of the second one are 8 x 8 x
8 fine grid cells. These two areas were simulated for the refinement factor
nfact = 2,3,4,5,7,8. Errors are estimated according to the following relations:
amplitude errors estimate

Euniform -FE

Euniform

x 100%,

OMAG = ‘

where Eyniform 18 an amplitude of the fields computed on a uniform fine mesh,
and phase errors estimate

At o
OPHASE = ‘T x 180°,
where At is a difference in zero crossings of the multigrid and the fine grid fields,
and T is the period of the sinusoidal excitation.

Comparisons between the amplitude errors are shown in Fig. 3, while the phase
errors are shown in Fig. 4. From both figures we can see that the results of
the computations for VSSM and MGDM methods are comparable. However,
VSSM appears to be less stable, since to maintain stability of VSSM the Courant
number (C),) needs to be decreased as the refinement factor increases. The
higher Courant number for MGDM significantly reduces the computational time
compared to that of VSSM.

2 Traversing dielectric boundaries

Works of Zivanovic et al. [21], Prescott et al. [12] and White et al. [16] layed
a solid foundation for the development of subgridding methods. However, an
important issue unresolved in these papers is a dielectric boundary crossing the
fine-coarse grid interface. The only way to model two different material areas
by the methods described is to make the fine-grid area big enough to contain a
single material. However, this is not feasible is the size of either of dielectrics
is large, since including the whole dielectric into the fine grid would lead to a
significant increase of the computational effort.

In this section we consider two different methods that allow the dielectric bound-
ary to cross the fine-coarse grids interface. The first paper on this subject was
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Figure 5: Two-dimensional slice of coarse (main) and fine (local) grids (from

[2])

written by Chevalier, Luebbers and Cable in 1997, [2]. The method presented
there requires the refinement factor to be an odd number. For simplicity, we
consider the refinement factor 3. The approach used in the method is to couple
grids by using the tangential magnetic fields on the interface, see fig. 5. The
magnetic fields, both tangential and normal are continuous over the interface.
Thus a discretisation scheme is simplified for this situation.

First, we consider the collocated magnetic fields on the interface. Assume that
fields H” and E"~'/? to be known. After one step of the FDTD algorithm we
know H"t! and E"*'/2. Now, using quadratic interpolation we can find the
values of h fields for all coarse boundary nodes

2

Bl
H'™ = H" + Al + =, (7)

where [ is local-grid time increment (1/3, 2/3 or 1) and

n+l _ Pn—1
A= %’ B = HnJrl +Hn71 — 9H".

For the rest of the local-grid boundary values, we use linear interpolation. As
it turns out from numerical experiments, there exists an instability apparently
caused by the difference between the method of obtaining the boundary values
and the method (FDTD) of obtaining internal values. Consider a small piece
of the composite grid shown in Fig. 6. The field H; belongs to the coarse grid
and can be computed via FDTD algorithm for the coarse grid. At the same
time the neighbouring field hy is computed by FDTD on the fine grid. There
exists a discontinuity between H1 and hy. This discontinuity can be decreased
by weighing h, linearly with the neighbouring fields

Hy + hs

ha :=0.95hs + 0.05 >

(8)

The weights (0.95 and 0.05) were determined by numerical experiments.
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Figure 6: Magnetic field near the interface (from [2])

Another difficulty lays in oscillations due to low frequency field components
being reflected by the interface. This can be suppressed by using a similar
weighing approach. Field Es, see Fig. 5 is a coarse grid field, computed by
FDTD on a coarse grid. At the same time the same field happens to be a fine-
grid field, and can be computed from FDTD on the fine grid. The new values
for E5 and e; are computed as:

FEs :=0.8E5 + 0.2e5, es:=0.2F> + 0.8es. (9)
We can thus summarise the algorithm from [2] in the following way:

1. Apply FDTD equations to all main-grid field location (including those
inside the local grid) to obtain E"+/2 and H"t!,

2. Apply FDTD equations to all local filed locations for two local-grid time-
steps to obtain €"73/6 and h"t*/6. Use (7) to obtain h fields at the
interface and (8) to obtain h fields one grid cell into the local grid.

3. Apply (9) to weight E**1/2 for the collocated main-grid electric fields
closest to the interface and to adjust the collocated e”13/6 field values
just, obtained.

4. Apply FDTD equations to all local-grid locations for one local time step
to obtain €"t%/6 and h™t'. Use (7) to obtain interface h fields at the
interface and (8) to obtain h fields one cell into the local grid.

5. Transfer all fine-grid h fields which are also coarse-grid fields to the coarse
grid.

6. Increase n; return to step 1.

An alternative method to the one of Chevalier, Luebbers and Cable was formu-
lated by White, Yun and Iskander, [17]. The method, called Multigrid Current

10
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Figure 7: Coarse-fine grid interface, refinement factor (ng,et) is three (from [17]).

Method (MGCM) is an update of the Multigrid Displacement Method (MGDM),
[16]. The difference between MGCM and MGDM lays in the way of comput-
ing the tangential boundary values for the local grid. As we recall, MGDM
employed a discrete wave equation at the boundary. MGCM, in turn uses the
integral formulation of the Ampere’s law

ch-dF:/O'E'dS-Fi/eE'dS. (10)
s dt Js

In Fig. 7 we sketch a coarse-fine grid boundary. Arrows denote the magnetic
field locations, while dots denote the electric field locations. Various values of €
indicate potentially different media.

Let us now briefly review how (10) is used to obtain the boundary values of the
electric field. The left-hand side of (10), can be discretised as

It, = ]{H dl' = [Hyij—1 + Hyij — Hyij — Hy i1 j]Azc. (11)

The right-hand side of (10) can be calculated the contribution of each media

11



type to the integral

d
E- L[ eE.
/sa dS+dt/se ds

d

= E, —e
/S(O'Q + dtég )dSQ

d
+/(0’3E2 + —63Ez)d53 (12)
s dt

d

+/(U4Ez =+ —€4Ez)d54
; at
d

+/(O’5Ez + —65E2)d55.
; di

The total current can thus be split into parts according to different dielectrics

It, =L + I3+ Iy + I, (13)
where e.g.
Az,)?? oo At
L = [(1+53) B — (1 — g g r280)77 0 0ol gy
2 =[(1+02)E; (1-52)EY] N, T Seens (14)
Subscript ¢ - means ’coarse’.
The electric field update can now be calculated from
1—05 Cono Ir. .  TAt cAt,
Ertl = E? =, Oc = = , Cn = ’ 15
z 1+03 Z+a(1+a—c)mcc 7 2¢,€0 Az, (15)

where It, can be found from (11). Similar update equation can be found for
the fine grid points at the interface. The problem, however, is that the current
passing through the fine cell T} are unknown. We can treat this current as a
sum of currents passing through the quarters of the local cell.

I, = It + Iyp + Ippr + Iy (16)

We assume now that each of the currents is a fixed part of the current passing
through the quarter of the global-grid cell

Aac?c Ir
ITf:II+III+IIII+IIV:(IQ+IS+I4+IS)A2: = (17)
T Nfact

3 Combining different coordinate systems

In the previous sections we considered subgridding algorithm where both global
domain and local subdomain are of rectangular shape. There are, however prob-
lems, where it is more natural to take a ring, or cylinder as a local subdomain.

12
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Figure 8: Combination of the cartesian and the curvilinear grid (top), inner
boundary of the rectangular grid (bottom) (from [19]).

Such problems occur e.g when modelling a scatterer, which has a cylindrical
shape. One of the first algorithms designed to resolve problems involving dif-
ferent coordinate systems was suggested by Yee, Chen and Chang in [19]. The
method can be summarised in the following scheme:

1. Choose an appropriate Az

2. Let S be the scattering surface.
Denote by
S; - the surface consisting of all points at a distance [Az away from S
along the exterior pointing normal.
In the volume enclosed by S and S3 introduce a conformal grid, see Fig.
8.

3. Introduce a rectangular grid of size Az. Let V be a union of all FDTD
cubes whose centers are at least 1.25Ax from S. In this case, none of
the cubes will intersect S. The inner boundary of V' will be the inner
boundary of our rectangular grid.

13



4. Interpolate for the tangential electric field at the inner boundary of the

rectangular grid from the values at the inner curvilinear boundary.

. Calculate the magnetic filed on the rectangular grid with the FDTD al-

gorithm.

. For the curvilinear magnetic field components use an average between

the fields calculated on the curvilinear grid and interpolated from the
rectangular grid.

7. Interpolate for the outer boundary curvilinear tangential electric field.

Note, that this algorithm is designed to resolve a curvilinear subgrids only, that
is the algorithm is not used for refinement.

Another hybrid coordinate system algorithm was suggested by Zhou and Wang
in [20].

4

. Choose a suitable cylindrical region inside the computational domain, A¢,

Ar (for example Ar = Az). When choosing A¢, let the rectangular and
the cylindrical region have as many common point as possible.

. Choose a suitable inner boundary of the rectangular grid, and let the

rectangular grid have at least two-layer overlap with the cylindrical region.

. The tangential electric field in the outer boundary of the cylindrical grid is

obtained through linear interpolation from the values on the rectangular
grid. The tangential electric field values in the inner boundary on the
rectangular grid are obtained by interpolation from the curvilinear grid.

. The electric fields at the common points in the overlapping region are

obtained by taking an average of the two values.

Concluding remarks

In this review we consider a number of subgridding algorithms for FDTD. De-
spite various differences between the methods described, there is a similar pat-
tern in each of them. So, every author mentioned the fact that certain instabil-
ities occur in subgridding algorithm, most likely due to the discontinuity of the
solution across the coarse-fine grid interface. Surprisingly, the same remedy for
this instability was proposed in every algorithm: namely to smoothen the solu-
tion near the interface by weighing the coarse- and the fine-grid fields. There
is, however, no analytical background for such measures.

14



Among all the algorithms, the algorithm by Chevalier et al. [2] and White et
al. [17] seem to the most suitable for the subgridding purposes. They both
allow for the dielectric boundaries to cross the coarse-fine grid interface. The
algorithm by Chevalier et al. is somewhat simpler, but can work with an odd
refinement factor only, while the algorithm by White et al. is more complicated,
but allows for an arbitrary refinement. An unfortunate issue is that there is no
objective comparison between these two methods.
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