
VPC 3+ 

Software Manual

Revision 5.0

The  Cl ever   Al t ern at i ve



ii Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Liability Exclusion 
We have tested the contents of this document regarding agreement with the hardware and 
software described. Nevertheless, there may be deviations and we do not guarantee com-
plete agreement. The data in the document is tested periodically, however. Required correc-
tions are included in subsequent versions. We gratefully accept suggestions for improve-
ment. 
 

Copyright 
Copyright © profichip GmbH 2001. All Rights Reserved. 
Unless permission has been expressly granted, passing on this document or copying it, or 
using and sharing its content are not allowed. Offenders will be held liable. All rights re-
served, in the event a patent is granted or a utility model or design is registered. 
 
This document is subject to technical changes. 
 

 
 



Table of Contents
 

VPC 3+ Software Description Revision 5.0 iii
Copyright © profichip GmbH 2004. 

1 Table of Contents 

1 Table of Contents...................................................... iii 

2 Introduction ................................................................1 
2.1 PROFIBUS DP........................................................................... 5 
2.2 PROFIBUS DPV1 ...................................................................... 5 
2.3 PROFIBUS DPV2 ...................................................................... 6 
2.4 How a PROFIBUS DP Slave Works ........................................... 6 

3 Initialization ..............................................................11 
3.1 Compilersettings .......................................................................11 
3.2 Define Profibus Components.....................................................11 

3.2.1 Profibus Services...........................................................11 
3.2.2 General Slave Parameter ..............................................12 
3.2.3 Buffer Initialization .........................................................12 
3.2.4 Settings for MSAC_C1...................................................13 
3.2.5 Settings for MSAC_C1 Alarm.........................................13 
3.2.6 Settings for MSAC_C2 Service ......................................13 
3.2.7 Settings for Isochron Mode ............................................13 
3.2.8 Settings for DXB Publisher Mode...................................14 
3.2.9 Settings for DXB Subscriber Mode.................................14 
3.2.10 Set Hardware Mode.......................................................14 

3.3 Initializing the firmware..............................................................20 
3.4 Starting VPC3 ...........................................................................21 
3.5 Startup Telegram Sequence......................................................22 

3.5.1 Bus monitoring (Startup sequence)................................23 

4 General VPC3-DP Functions ...................................27 
4.1 Interrupt Indication Function ......................................................27 

4.1.1 Reading the Indication ...................................................27 
4.1.2 Acknowledging the Indication.........................................29 
4.1.3 Ending the Indication .....................................................29 
4.1.4 Polling the Indication......................................................30 

4.2 Parameter Data.........................................................................31 
4.2.1 Checking the Parameter Data........................................31 
4.2.2 Parameter Data Structure ..............................................33 

4.3 Configuration Data ....................................................................38 
4.3.1 Checking Configuration Data .........................................38 
4.3.2 Configuration Data Formats...........................................40 

4.4 Transfer of Output Data.............................................................42 
4.5 Transfer of Input Data ...............................................................43 
4.6 Diagnostic .................................................................................44 

4.6.1 Transferring Diagnostic Data .........................................44 
4.6.2 Structure of diagnostic block ..........................................47 
4.6.3 User specific diagnostic .................................................49 

4.7 Changing the Slave Address .....................................................52 
4.8 Global Control Commands ........................................................53 
4.9 Watchdog Timeout in DP-Control..............................................54 

4.9.1 Leaving the Data Exchange State..................................55 



Table of Contents 
 

iv Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

4.10 VPC3_Reset (Go_Offline) .........................................................55 
4.11 Leave Master ............................................................................55 
4.12 FATAL_ERROR (DP+MSAC_C1+MSAC_C2) ..........................56 

5 DPV1 Extensions......................................................57 
5.1 Functional Description of the DPV1 Services ............................57 

5.1.1 Initiate (MSAC_C2) ........................................................57 
5.1.2 Abort (MSAC_C2)..........................................................57 
5.1.3 Read (MSAC_C1 and MSAC_C2) .................................57 
5.1.4 Write (MASC_C1 and MSAC_C2)..................................58 
5.1.5 Data Transport (MSAC_C2)...........................................58 
5.1.6 Diagnosis, Alarms, and Status Messages in the case of 
DPV1 58 
5.1.7 Error Handling................................................................58 

5.2 Initialization ...............................................................................61 
5.2.1 Settings for DPV1 in the dp_cfg.h ..................................61 

5.3 User Callback Functions ...........................................................65 
5.3.1 USER_C2_INITIATE_REQ (MSAC_C2) ........................65 
5.3.2 MSAC_C2_INITIATE_REQ_TO_RES (MSAC_C2) .......68 
5.3.3 USER_C2_ABORT_IND................................................69 
5.3.4 USER_READ_REQ (MSAC_C1+MSAC_C2) ................70 
5.3.5 USER_WRITE_REQ (MSAC_C1+MSAC_C2)...............71 
5.3.6 USER_C2_DATA_TRANSPORT_REQ (MSAC_C2) .....72 

5.4 DPV1 Alarm-Handling ...............................................................72 
5.4.1 Coding of the Alarm PDU...............................................73 
5.4.2 Coding of the Status PDU..............................................74 
5.4.3 Example for Ext_Diag_Data (Alarm and Status PDU) ....76 
5.4.4 Coding of the Alarm_Ack-PDU.......................................77 
5.4.5 Alarm User Callback Functions......................................78 

6 DPV2 Services ..........................................................81 
6.1 Isochron Mode (IsoM) ...............................................................81 

6.1.1 General..........................................................................81 
6.1.2 Isochron Mode...............................................................82 
6.1.3 Poor Sync Mode ............................................................84 
6.1.4 Structured Prm-Data for Isochron Mode.........................86 

6.2 Data-eXchange-Broadcast (DXB)..............................................87 
6.2.1 Publisher........................................................................87 
6.2.2 Subscriber .....................................................................88 
6.2.3 Structured PRM-Data: DXB Linktable ............................88 
6.2.4 Structured PRM-Data: DXB Subscribertable..................89 
6.2.5 Structure of VPC3+ DXB-Link Table ..............................89 
6.2.6 Structure of VPC3+ DXB Link Status .............................90 
6.2.7 Functional Description of the DXB Services...................90 

 
 



Introduction  2
 

VPC 3+ Software Description Revision 5.0 1
Copyright © profichip GmbH 2004. 

2 Introduction 
 
Profichip’s VPC3+ is a communication chip with processor interface for 
intelligent slave applications. VPC3+ handles the complete PROFIBUS-
DP/DPV1 slave protocol independently and relieves the application 
processor of all time critical communication tasks. When VPC3+ carries out 
a DP communication it automatically sets up all DP-SAPs. All necessary 
timers and monitoring functions are integrated in the chip. Therefore almost 
the entire performance of the external controller is available for the 
application. 
 
 
The UART converts the asynchronous serial PROFIBUS data stream into 
internal parallel data or vice-versa. Data is synchronized to system clock 
and processed by the microsequencer. The VPC3+ is capable of 
automatically identifying and controlling transmission rates up to 12 Mbit/s. 
The baudrate-generator derives the transmission clock from the system 
clock. The IDLE- and SYNI- (synchronization interval) timer observes the 
correct timing of the DP-telegrams according to the PROFIBUS-DP 
standards and especially controls the idle time before the next request 
telegram may occur. In case of timing violations the microsequencer will get 
a notification. The watchdog-timer observes the entire communication. If 
the watchdog is not re-triggered within the parameterized time (e.g. if the 
master application fails), the outputs are switched off automatically. 
 
 
The 2/4 KByte on-chip communication RAM serves as an interface 
between the VPC3+ and the software/ application. Various telegram 
information is made available to the user in separate data buffers. Three 
input buffers and three outputs are provided for data communication. One 
buffer is always available for communication. Therefore, no resource 
problems can occur. For optimal diagnosis support, VPC3+ has two 
diagnosis buffers, that is, one diagnosis buffer is always assigned to 
VPC3+. 
 
 
The microsequencer controls the entire process of PROFIBUS-DP/DPV1 
protocol handling. Incoming data handed over by the UART is analyzed 
according to PROFIBUS-DP. If a service is recognized to be valid, user 
data is stored in the communication RAM and the interrupt controller 
generates an indication interrupt. Telegrams having frame errors (e.g. 
parity- or checksum errors) will be rejected. If the service of the telegram is 
recognized but its request does not make sense, a corresponding response 
telegram will be generated automatically. As a result user data will then be 
rejected to avoid unnecessary resource allocation within the 
microcontroller. The behavior of the microsequencer can be parameterized 
via mode- and parameter registers. 
 
 
The Bus Interface Unit is a configurable synchronous/ asynchronous 8-bit 
interface for various microcontrollers / processors. The user can directly 



2  Introduction   
 

2 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

access the internal RAM or the Parameter Registers via the 11-bit address 
bus. The following processor series are supported: 
 
 
♦  INTEL: 80C32, 80X86 series  
♦  Siemens: 80C16x series  
♦  Motorola: HC11-, HC16-, HC916-series  
 
 
The VPC3+ program package relieves the user of hardware register 
manipulations and memory calculations. It also provides a convenient „C“-
interface to the DP and handles the completely statemachine for DPV1. 

The entire project package consists of: 
 
 
 
Directory/ 
              Sub-Directory

File Name Explanation 

VPC3+/  Master directory 

                /BAT_DIR/  Directory with bat-files 

see below 

                /DOC_DIR/  Directory with documents: 

 VPC3+SoftwareManual_V1xx •  Documentation of the 
VPC3+ software 

                /FIRMWARE/  Directory with hex-files 

                /LST_DIR/  Directory with list-files 

                /OBJ_DIR/  Directory with object-files 

                /SRC_DIR/  Directory with source files: 

see below 

                /TOOL_DIR/  Directory with tools 

Figure 2-1: Content of the main directory 

 



Introduction
 

VPC 3+ Software Description Revision 5.0 3
Copyright © profichip GmbH 2004. 

Content of the Source Directory: 
 
Directory/ 
           Sub-Directory 

File Name Explanation 

PLATFORM/  Directory different hardware platforms: 

                 AT89C51/  Profichip Evaluationboard PA006300 

 startup.asm •  start routine 

 regsnd1.h This file defines the T8xC51SND1 components. 

 extsnd1.h •  This file is an extension to the regsnd1.h file. 
It defines mask for registers. 

 main •  startup, settings and interrupts 

 lcd.c •  Special function for LCD-display. 

 lcd.h •  Defines for LCD-display. 

 rtc.h •  Functions for Real-Time-Clock 

 rtc.c •  Defines for Real-Time-Clock 

 serio.c •  Functions UART 

 serio.h •  Defines for UART 

DPV0_DRV/  Directory of the VPC3+ DPV0 functions: 

 dpl_list.h •  Macros for double pointered list 

 dp_if.h •  Defines, structures for VPC3+ 

 dp_if.c •  Basic function of VPC3+ 

 dp_isr.c •  Interrupt service routines for VPC3+ 

DPV1_DRV/  Directory of the VPC3+ DPV1 functions: 

 dp_fdl.c •  Basic driver 

 dp_masc1.c •  Driver for acyclic class1 messages 

 dp_msac2.c •  Driver for acyclic class2 messages 

DP_INC/  Directory for include files 

 dp_cfg.h •  This file is copied from the directory 
../USR_DEMO/xxxxxx/. 

 dp_inc.h •  Header include hierarchy for system 
environment. 

 platform.h •  This file is copied from the directory 
../BAT_DIR/. 

USR_DEMO/  Directory of application example. 

              DPV1AFFE/  Application demo for PROFIBUS DPV1 

 dp_cfg.h •  Configuration file for VPC3+ and application 
example( copy this file to the directory 



2  Introduction   
 

4 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

../DP_INC/).  

 dp_debug.h •  Defines for debug functions 

 dp_debug.c •  Special Debug functions 

 dp_user.c •  Application example 

              DPV0AFFE/  Application demo for PROFIBUS DPV0 

 dp_cfg.h •  Configuration file for VPC3+ and application 
example( copy this file to the directory 
../DP_INC/).  

 dp_debug.h •  Defines for debug functions 

 dp_debug.c •  Special Debug functions 

 dp_user.c •  Application example 

              EASY4711/  Application demo for PROFIBUS DPV0 

 dp_cfg.h •  Configuration file for VPC3+ and application 
example( copy this file to the directory 
../DP_INC/).  

 dp_debug.h •  Defines for debug functions 

 dp_debug.c •  Special Debug functions 

 dp_user.c •  Application example 

              EASYADAC/  Application demo for PROFIBUS DPV0 

 dp_cfg.h •  Configuration file for VPC3+ and application 
example( copy this file to the directory 
../DP_INC/).  

 dp_debug.h •  Defines for debug functions 

 dp_debug.c •  Special Debug functions 

 dp_user.c •  Application example 

Figure 2-2: Content of the source directory 

 
Content of the bat directory: 
 
Directory/ 
              Sub-Directory

Explanation 

/BAT_DIR/ Master directory 

               /DPV1AFFE/ Bat-files for generating the DPV1-Demo DPV1AFFE 

               /DPV0AFFE/ Bat-files for generating the DPV0-Demo DPV0AFFE 

               /EASY4711/ Bat-files for generating the DPV0-Demo EASY4711 

               /EASYADAC/ Bat-files for generating the DPV0-Demo EASYADAC 

Figure 2-3: Content of the bat directory 

 



Introduction
 

VPC 3+ Software Description Revision 5.0 5
Copyright © profichip GmbH 2004. 

2.1 PROFIBUS DP 
 
PROFIBUS DP was developed for fast, cyclical input and output traffic, with 
the application emphasis being on the field level. The data traffic in the 
master-slave method is standardized in the EN 50 170; simple as well as 
intelligent field devices can be interconnected. 
 

2.2 PROFIBUS DPV1 
 
In many cases, cyclical data exchange according to EN 50 170 is no longer 
sufficient today for more complex devices. For that reason, it became 
necessary to define acyclical services as PROFIBUS extensions. These 
extensions have been defined in the technical guideline of the Profibus 
Trade Organization (PNO). Field devices can use these services optionally. 
 
Some intelligent field devices need the following: 
 
♦  Gapless reparameterizaton of the application process 
♦  Free access to any parameters in a field device 
♦  Transmission of data of variable length 
 
For the sake of simplicity, these services may be transferred to the field 
devices acyclically, and run parallel to the cyclical data traffic. Standard 
field devices and devices that need these optional extensions can be 
operated jointly on the same bus with the functionality that is supported 
respectively. 
 
The following services are specified as optional services between Class 1 
masters and a slave as MSAC_C1 (Master-Slave acyclic communication 
Class 1): 
 
♦  Read the data set of a slave (DS_Read) 
♦  Write the data set of a slave (DS_Write) 
♦  Alarm acknowledgement (Alarm_Ack) 
 
The following services are specified as optional services between Class 2 
masters and a slave as MSAC_C2 (Master-Slave acyclic communication 
Class 2): 
 
♦  Initiate 
♦  Read the data set of a slave (DS_Read) 
♦  Write the data set of a slave (DS_Write) 
♦  Transport (Data_Transport) 
♦  Abort 



2  Introduction   
 

6 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

2.3 PROFIBUS DPV2 
 
PROFIBUS DPV2 adds a number of new features to the existing protocol 
stack to provide for slave-to-slave communications, time synchronization 
and an isochronal bus cycle. PROFIBUS now has the capability to provide 
for both acyclic communications via DPV1 and also slave-to-slave 
communications via DPV2, creating new application areas particularly in 
motion control (PROFIdrive) and safety (PROFIsafe). 
 
The new functions of DPV2 include the establishment of an isochronous 
bus cycle (occurring in equal intervals of time) which allows closed-loop 
control between master and slave devices. With clock deviations of less 
than 1 microsecond, high-precision positioning can be realized. Slave-to-
slave communication decreases the cycle time between master and slave 
and reduces the response time by 60 – 90 %. 
 
Time synchronization provides a time stamp function so that events can be 
followed or tracked precisely, easing the registration/detection of timed 
events and facilitating the diagnosis of malfunctions and the correct 
chronological planning of actions. With the new upload and download 
functionality, any size data packet can be loaded into a field device with 
one command. Program updates or exchange of devices can be carried out 
without the troublesome and complicated loading processes, which are 
different for every manufacturer. The transfer into non-volatile storage or 
the start/stop command for the field device are also supported. 
  

2.4 How a PROFIBUS DP Slave Works 
 
For clarification, the state machine of a DP slave is briefly described below. 
The state machine regulates the defined, standard-conforming response of 
a DP slave in the possible situations. A detailed description is provided in 
the corresponding documents. 
 
The sequence, in principle, of this state machine is helpful to understanding 
the firmware sequence. The details are provided in the standard EN 50 
170, and the Technical Guidelines. The MSAC_C2 connection is not 
interfaced with the cyclical state machine. For that reason, the Class 2 
connection is established and cancelled via Initiate and Abort; it is 
monitored by an idle mechanism. 
 

Power_On 
A Set_Slave_Address message is only accepted in the mode Power_On. 
 



Introduction
 

VPC 3+ Software Description Revision 5.0 7
Copyright © profichip GmbH 2004. 

Wait_Prm 
After power-up, the slave expects a parameter assignment message. All 
other types of messages are rejected or are not edited. Data exchange is 
not yet possible. In the parameter message, at least the information 
specified by the standard -such as the PNO Ident number, sync/freeze 
capability, etc.- is stored. In addition, user-specific parameter data is 
possible. Only the application specifies the meaning of this data. In the 
configuration of the master interface, certain bits are set, for example, in 
order to indicate a desired measuring range. The firmware makes this user-
specific data available to the application program; the application program 
evaluates the data; it can accept it or reject it (for example, the desired 
measuring range can’t be set, and therefore meaningful operation is not 
possible). 

Figure 2-4 :  State Machine 

Power-ON

WPRM

WCFG

DXCHG

Slave_DIAG
Get_Cfg

Slave_DIAG
Set_Prm,OK
Get_Cfg

vpc3_init()

Chk_Cfg,OK

Set_Slave_Add

Chk_Cfg,NOT_OK
Set_Prm,NOT_OK

DataExchange
Rd_Input
Rd_Output
Commands(Sync,Freeze,..)
Slave_DIAG
Set_Prm,OK
Chk_Cfg,OK
Get_Cfg
MSAC_C1_Read
MSAC_C1_Write
MSAC_C1_Alarm



2  Introduction   
 

8 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

Wait_Cfg 
The configuration message specifies the number of input and output bytes. 
The master informs the slave of how many bytes I/O are being transmitted. 
The application is informed of the requested configuration for checking. 
This check results either in a right, a wrong, or an adaptable configuration. 
If the slave wants to adapt to the desired configuration, a new user data 
length has to be calculated from the configuration bytes (for example, 4 
bytes inputs predefined; only 3 bytes utilized). The application has to 
decide whether this adaptability is useful. In addition, is possible for each 
master to poll the configuration of any slave. 
 

Data_Exchange 
If the firmware as well as the application have accepted the parameter 
assignment and the configuration as correct, the slave transitions to the 
mode Data_Exchange; that is, it exchanges user data with the master. 
 

Diagnosis 
Via the diagnosis, the slave informs the master of its current mode. It 
consists at least of the information, specified in the standard, in the first six 
octets, such as the status of the state machine. The user can supplement 
this information (user diagnosis) with process-specific information (for 
example, wire break). On the slave’s initiative, the diagnosis can be 
transmitted as error message and as status message. In addition to three 
defined bits, the user also influences the application-specific diagnostic 
data. However, any Master (not only the assigned master) can poll the 
current diagnostic information. 
 

Read_Inputs, Read_Outputs 
Every master can poll the current states of the inputs and outputs of any 
slave (in the Data_Exchange mode). The ASIC and the firmware process 
this function autonomously. 
 

Watchdog 
Along with the parameter message, the slave also receives a watchdog 
value. If this watchdog is not retriggered through the bus traffic, the state 
machine transitions to the “safe” state Wait_Prm. 
 

MSAC_C1 (Master Slave Acyclic Communication of Class 1) 
The MSAC_C1 services are used for communicating with a Class 1 master 
(typically, PLC). These services are available after the master has 
parameterized and configured the slave; that is, if the slave is in the DataEx 
mode. 
 
 



Introduction
 

VPC 3+ Software Description Revision 5.0 9
Copyright © profichip GmbH 2004. 

The following services are available: 
 
♦  DS_READ read data set 
♦  DS_WRITE write data set 
♦  ALARM_ACK acknowledge alarm 
 
Since these services are permanently coupled to the configuring master C1 
and since they run via permanently defined SAPs (50/51), the 
INITIATE/ABORT/IDLE mechanism is not required. If there is a fault in 
acyclically data transfer, cyclical communication is influenced also, and vice 
versa. 
 

MSAC_C2 (Master Slave Acyclical Communication of Class 2) 
The MSAC_C2 services are used for communicating with a Class 2 master 
(typically PC/PG as parameter assignment tool). These services are 
available immediately after initialization. Since these services are used 
dynamically, the master has to initiate the establishment of the connection 
with INITIATE so that the slave can adapt itself to it, and reject the services 
if necessary (insufficient memory, or no free SAP, …). While the connection 
is established, both sides monitor the connection with IDLE messages. If 
the connection is no longer needed, the master or the slave can de-
establish the connection by transmitting an ABORT PDU. The IDLE 
messages are processed within the firmware. 
 
The following services are available: 
 
♦  INITIATE establishment of connection 
♦  READ read data set 
♦  WRITE write data set 
♦  DATA_TRANSPORT general transport service 
♦  ABORT Cancellation of connection 
 
 
 
 
 
 
 



2  Introduction   
 

10 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

 

Notes: 
 
 



Initialization  3
 

VPC 3+ Software Description Revision 5.0 11
Copyright © profichip GmbH 2004. 

3 Initialization 

3.1 Compilersettings 
 
In order to support the different storage models with some processors, the 
memory accesses are to be provided with attributes. These attributes 
depends on the Compiler Settings. The source code is compiled with 
following compilers (to be defined platform.h): 
 
Compiler Directive Processor 
Keil C51 Version V3.56 / V6.02 _KEIL_C51 C51 Family 
Tasking C166 V5.1 _TASK_C166 C166 Family 
Fujitsu _FUJITSU Fujitsu Family 

Figure 3-1 :  Compiler Settings 

 

3.2 Define Profibus Components 
 
The different PROFIBUS services and their parameter defines the user in 
the file “dp_cfg.h”.  
 
 

3.2.1 Profibus Services 
 
The user connects the different services via #define in “dp_cfg.h”, so that 
the program code is adapted to the required services respectively. 
 
 
Service  

#define DP_MSAC_C1 Activation of the functionality for the expansion 
services of the Class 1 master. 

#define DP_MSAC_C2 Activation of the functionality for the expansion 
services of the Class 2 master. 

#define DP_ALARM Activation of the functionality for the expansion 
services of the alarm mode. 

#define DP_SUBSCRIBER Activation of the functionality for the expansion 
services of the DXB subscriber mode. 

Figure 3-2 :  PROFIBUS Services 

 
 



3  Initialization   
 

12 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

3.2.2 General Slave Parameter 
 
 
General Slave Parameter   

#define DP_ADDR UBYTE PROFIBUS DP-Slave Address (1..125) 
#define IDENT_NR UWORD PROFIBUS Ident Number 
#define USER_WD UWORD User Watchdog 

Figure 3-3 :  General Slave Parameter 

 
 
The ident number is used for clearly identifying the slave and is included 
with each  diagnostic message from the slave to the master.  
 
The user watchdog provides that, if the connected microcontroller fails, 
the VPC3+ leaves the Data Exchange mode after a defined number of 
data-exchange messages. As long as the microcontroller doesn’t crash, it 
has to retrigger this watchdog. 
 

3.2.3 Buffer Initialization 
 
The user must enter the length of the exchange buffers for the different 
messages in the VPC3+ structure. These lengths determine the data 
buffers setup in the ASIC, and therefore are dependent in total sum on the 
ASIC memory.  
 
 
Buffer   

#define DIN_BUFSIZE UBYTE Length of the DIn Buffer  (0..244 Bytes) 
#define DOUT_BUFSIZE UBYTE Length of the DOut Buffer  (0..244 Bytes) 
#define PRM_BUFSIZE UBYTE Length of the Parameter Buffer  (7..244 Bytes) 
#define DIAG_BUFSIZE UBYTE Length of the Diagnosis Buffer  (6..244 Bytes) 
#define CFG_BUFSIZE UBYTE Length of the Configuration Buffer  (1..244 Bytes) 
#define SSA_BUFSIZE UBYTE Length of the Input Data in the Set_Slave_Address-

Buffer 0 and 4..244 Bytes 

Figure 3-4 :  Buffer Initialization 

 
Specifying length 0 for the Set-Slave-Address buffer disables this utility. 
 
 
 
 
 
 



Initialization
 

VPC 3+ Software Description Revision 5.0 13
Copyright © profichip GmbH 2004. 

3.2.4 Settings for MSAC_C1 
 
Settings for MSAC_C1 Service   

#define C1_LEN UBYTE Length of MSAC_C1 Data (4..244 Bytes) 

Figure 3-5 :  Settings for MSAC_C1 

3.2.5 Settings for MSAC_C1 Alarm 
 
Settings for MSAC_C1 Alarm  

#define 
DP_ALARM_OVER_SAP50 

The master handles the Alarm Acknowledge over SAP 
50 

Figure 3-6 :  Settings for MSAC_C1_Alarm 

3.2.6 Settings for MSAC_C2 Service 
 
Settings for MSAC_C2 Service   

#define 
DP_MSAC_C2_Time 

 Enables time control for C2 services 

#define 
C2_NUM_SAPS 

UBYTE Number of SAPs that the firmware makes 
available for MSAC_C2 Connections 

#define 
C2_LEN 

UBYTE MSAC_C2 PDU length of the C2-SAP 
(20...244) 

#define 
C2_FEATURES_SUPPORTED_
1 

UBYTE = 0x01 (MSAC_C2_READ and 
MSAC_C2_WRITE supported) 

#define 
C2_FEATURES_SUPPORTED_
2 

UBYTE = 0x00 

#define 
C2_PROFILE_FEATURES_1 

UBYTE Profile or vendor specific 

#define 
C2_PROFILE_FEATURES_2 

UBYTE Profile or vendor specific 

#define 
C2_PROFILE_NUMBER 

UWORD Profile or vendor specific 

Figure 3-7 :  Settings for MSAC_C2 Service 

3.2.7 Settings for Isochron Mode 
 
Settings for Isochron Mode   

#define SYNCH_PULSEWIDTH UBYTE Width of synch pulse in 1/12µs 

Figure 3-8 :  Settings for Isochron Mode 



3  Initialization   
 

14 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

3.2.8 Settings for DXB Publisher Mode 
 
Settings for DXB Publisher   

Nothing to do!   

Figure 3-9 :  General Slave Parameter 

3.2.9 Settings for DXB Subscriber Mode 
 
Settings for DXB Subscriber Mode   

#define MAX_LINK_SUPPORTED UBYTE Number of Links 
#define MAX_DATA_PER_LINK UBYTE maximal Number of Data per Link  

Figure 3-10 :  Settings for DXB Subscriber Mode 

 

3.2.10 Set Hardware Mode 
 
Next, the user has to configure the hardware function and telegram 
processing in the Mode Register 0 and 2 of the VPC3+: 
 
Changes in Mode Register 0 and 2 are only allowed during start-up, 
when the VPC3+ is ‘offline’. 
 
 

Settings for Hardware Mode   

#define INIT_VPC3_MODE_REG_L UBYTE Mode Register 0 (LowByte) 
#define INIT_VPC3_MODE_REG_H UBYTE Mode Register 0 (HighByte) 
#define INIT_VPC3_MODE_REG_2 UBYTE Mode Register 2  
#define INIT_VPC3_MODE_IND_L UBYTE Interrupt Indication (LowByte) 
#define INIT_VPC3_MODE_IND_H UBYTE Interrupt Indication (HighByte) 

Figure 3-11 :  Settings for Hardware Mode 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Initialization
 

VPC 3+ Software Description Revision 5.0 15
Copyright © profichip GmbH 2004. 

ModeRegister0 
 

Bit Position Address 7 6 5 4 3 2 1 0 Designation 

06H 

(Intel) 

Fr
ee

ze
_ 

S
up

po
rte

d 

S
yn

c_
 

S
up

po
rte

d 

E
ar

ly
_R

dy
 

In
t_

P
ol

 

M
in

TS
D

R
 

W
D

_B
as

e 

D
is

_S
to

p_
 

C
on

tro
l 

D
is

_S
ta

rt_
 

C
on

tro
l 

Mode Reg 0 
7 .. 0 
 
See below for coding

 
 Mode Register 0, Low-Byte, Address 06H (Intel): 

Bit 7 Freeze_Supported: Freeze_Mode support 
0 = Freeze_Mode is not supported. 
1 = Freeze_Mode is supported 

Bit 6 Sync_Supported: Sync_Mode support 
0 = Sync_Mode is not supported. 
1 = Sync_Mode is supported. 

Bit 5 Early_Rdy: Early Ready 
0 = Normal Ready: Ready is generated when data is valid (read) or when data 
      has been accepted (write). 
1 = Ready is generated one clock pulse earlier. 

Bit 4 INT_Pol: Interrupt Polarity 
0 = The interrupt output is low-active. 
1 = The interrupt output is high-active. 

Bit 3 MinTSDR: Default setting for the MinTSDR after reset for DP operation or 
combi operation. 
0 = Pure DP operation (default configuration!) 

Bit 2 WD_Base: Watchdog Time Base 

0 = Watchdog time base is 10 ms (default state) 
1 = Watchdog time base is   1 ms 

Bit 1 Dis_Stop_Control: Disable Stopbit Control 
0 = Stop bit monitoring is enabled. 
1 = Stop bit monitoring is switched off 

A Set-Param telegram overwrites this memory cell in the DP mode. 
(Refer to the user specific data.) 

Bit 0 Dis_Start_Control: Disable Startbit Control 
0 = Monitoring the following start bit is enabled. 
1 = Monitoring the following start bit is switched off 
A Set-Param telegram overwrites this memory cell in the DP mode. 
(Refer to the user specific data.) 

Figure 3-12 :  Coding of Mode Register 0, Low-Byte 

 



3  Initialization   
 

16 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

Bit Position Address 15 14 13 12 11 10 9 8 Designation 

07H 
(Intel) 

R
es

er
ve

d 

P
rm

C
m

d_
   

   
   

S
up

po
rte

d 

S
pe

c_
C

le
ar

_ 
M

od
e 

 

S
pe

c_
P

rm
_ 

B
uf

_M
od

e 

S
et

_E
xt

_P
rm

_S
up

po
rte

d 

U
se

r_
Ti

m
e_

 
B

as
e 

E
O

I_
Ti

m
e_

 
B

as
e 

D
P

_M
od

e 

Mode Reg 0 
15 .. 8 
 
See below for coding

 
 

 Mode Register 0, High-Byte, Address 07H (Intel): 

Bit 15 Reserved 

Bit 14 PrmCmd_Supported: PrmCmd support for redundancy 

0 = PrmCmd is not supported. 
1 = PrmCmd is supported 

Bit 13 Spec_Clear_Mode: Special Clear Mode (Fail Safe Mode) 
0 = No special clear mode. 
1 = Special clear mode. VPC3+ will accept data telegrams with data unit = 0 

Bit 12 Spec_Prm_Buf_Mode: Special Parameter Buffer Mode 
0 = No special parameter buffer. 
1 = Special parameter buffer mode. Parameterization data will be stored directly 
      in the special parameter buffer. 

Bit 11 Set_Ext_Prm_Supported: Set_Ext_Prm telegram support 
0 = SAP 53 is deactivated 
1 = SAP 53 is activated 

Bit 10 *)User_Time_Base: Timebase of the cyclical User_Time_Clock-Interrupt 
0 = The User_Time_Clock-Interrupt occurs every 1 ms. 
1 = The User_Time_Clock-Interrupt occurs every 10 ms. (mandatory DPV1) 

Bit 9 EOI_Time_Base: End-of-Interrupt Timebase 
0 = The interrupt inactive time is at least 1 µsec long. 
1 = The interrupt inactive time is at least 1 ms long 

Bit 8 DP_Mode: DP_Mode enable 
0 = DP_Mode is disabled. 
1 = DP_Mode is enabled. VPC3+ sets up all DP_SAPs (default configuration!) 

Figure 3-13 :  Coding of Mode Register 0, High-Byte 

 
*) The User_Time_Clock is a timer that is used for the timeouts of the 
MSAC_C2 connection. It generates a timer tick of 1ms or 10 ms that 
causes an interrupt if enabled. The timer has to be set to 10ms if 
DP_MSAC_C2 is defined! However, the user can attach himself to the 
timer interrupt routine for his own purposes. If the macro DP_MSAC_C2 is 
not defined, the timer is freely available. 
 



Initialization
 

VPC 3+ Software Description Revision 5.0 17
Copyright © profichip GmbH 2004. 

ModeRegister2 
 
 

Bit Position Address 7 6 5 4 3 2 1 0 Designation 

 0 0 0 0 0 0 0 1 Reset Value 

0CH 
4k

B
_M

od
e 

N
o_

C
he

ck
_ 

P
rm

_R
es

er
ve

d 

S
Y

N
C

_P
ol

 

S
Y

N
C

_E
na

 

D
X

_I
nt

_P
or

t 

D
X

_I
nt

_M
od

e 

N
o_

C
he

ck
_ 

G
C

_R
es

er
ve

d 

N
ew

_G
C

_ 
In

t_
M

od
e 

Mode Reg 2 
7 .. 0 
 
 

 
 
 Mode Register 2, Address 0CH: 

Bit 7 4kB_Mode: Size of internal RAM 
0 = 2kB RAM (default). 
1 = 4kB RAM 

bit 6 No_Check_Prm_Reserved: Disables checking of the reserved Prm bits 
0 = Reserved bits of Prm-telegram are checked (default). 
1 = Reserved bits of Prm-telegram are not checked. 

bit 5 SYNC_Pol: Polarity of SYNC pulse (for Isochron Mode only) 
0 = negative polarity of SYNC pulse (default) 
1 = positive polarity of SYNC pulse 

bit 4 SYNC_Ena: Enable generation of SYNC pulse (for Isochron Mode only) 
0 = SYNC pulse generation is disabled (default). 
1 = SYNC pulse generation is enabled. 

bit 3 DX_Int_Port: Port mode for Dataexchange Interrupt 
0 = DX Interrupt not assigned to port DATA_EXCH (default). 
1 = DX Interrupt (synchronized to GC-SYNC) assigned to port DATA_EXCH. 

bit 2 DX_Int_Mode: Mode of Dataexchange Interrupt 

0 = DX Interrupt only generated, if DOUT length not 0 (default). 
1 = DX Interrupt generated after every DX-telegram  

bit 1 No_Check_GC_Reserved: Disables checking of the reserved GC bits 
0 = Reserved bits of GC-telegram are checked (default). 
1 = Reserved bits of GC-telegram are not checked. 

bit 0 GC_Int_Mode: Controls generation of GC Interrupt 
0 = GC Interrupt is only generated, if changed GC telegram is received 
1 = GC Interrupt is generated after every GC telegram (default) 

Figure 3-14 :  General Slave Parameter 

 



3  Initialization   
 

18 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

Activating the Indication Function 
 
The user activates or deactivates interrupts by setting or clearing the 
corresponding bit in the Interrupt Mask Register. If a bit is set, the 
corresponding interrupt is disabled (interrupt masked). 
 
 
Masking of an already active interrupt is not possible, that is, an 
active interrupt remains active after masking, but further activation of 
this interrupt is rejected. 
 
For test purpose, the user can trigger any interrupt by writing to the Inter-
rupt Request Register. 
 

Bit Position Address 7 6 5 4 3 2 1 0 Designation 

04H 
(Intel) 

D
X

B
_O

ut
 

N
ew

_E
xt

_P
rm

 

D
X

B
_L

in
k_

E
rro

r 

U
se

r_
Ti

m
er

_ 
C

lo
ck

 

W
D

_D
P

_ 
M

od
e_

Ti
m

eo
ut

 

B
au

d_
R

at
e_

 
D

et
ec

t 

G
o/

Le
av

e 
D

at
a_

E
X

 

M
A

C
_R

es
et

 

Int-Mask-Reg 
7 .. 0 
 
See below for coding 

 
 Interrupt-Mask-Register, Low-Byte, Address 04H (Intel): 

Bit 7 DXB_Out: 

VPC 3+ has received a ‘DXB telegram’ and made the new output data available in the ‘N’ buffer.

Bit 6 New_Ext_Prm_Data: 

The VPC 3+ has received a ‘Set_Ext_Param telegram’ and made the data available in the Prm 
buffer. 

Bit 5 DXB_Link_Error: 
The Watchdog cycle is elapsed and at least one Publisher-Subscriber connection breaks down. 

Bit 4 User_Timer_Clock: 
The time base for the User_Timer_Clocks has run out ( 1 /10ms). 

Bit 3 WD_DP_Control_Timeout:  
The watchdog timer has run out in the ‘DP_Control’ WD state 

Bit 2 Baudrate_Detect: 
The VPC3+ has left the ‘Baud_Search state’ and found a baud rate. 

Bit 1 Go/Leave_DATA_EX: 
The DP_SM has entered or exited the ‘DATA_EX’ state 

Bit 0 MAC_Reset: 
After it processes the current request, the VPC3+ has arrived at the offline state (by setting the 
‘Go_Offline bit’) 

Figure 3-15 :  Interrupt Mask Register, Low-Byte 
 

 



Initialization
 

VPC 3+ Software Description Revision 5.0 19
Copyright © profichip GmbH 2004. 

 
 

Bit Position Address 15 14 13 12 11 10 9 8 Designation 

05H 
(Intel) 

FD
L_

in
d 

P
ol

l_
E

nd
_i

nd
 

D
X

_O
ut

 

D
ia

g_
B

uf
fe

r_
 

C
ha

ng
ed

 

N
ew

_P
rm

_ 
D

at
a 

N
ew

_C
fg

_ 
D

at
a 

N
ew

_S
SA

_ 
D

at
a 

N
ew

_G
C

 
C

om
m

an
d 

Int-Mask-Reg 
15 .. 8 
 
See below for 
coding 

 
 

 Interrupt Mask Register 0, High-Byte, Address 05H (Intel): 

Bit 15 FDL_Ind: 

The VPC 3+ has received an acyclic service request and made the data available 
in an indication buffer. 

Bit 14 Poll_End_Ind: 

The VPC 3+ have send the response to an acyclic service. 

Bit 13 DX_Out: 
0 = No special clear mode. 
1 = Special clear mode. VPC3+ will accept data telegrams with data unit = 0 

Bit 12 Diag_Buffer_Changed: 
Due to the request made by ‘New_Diag_Cmd,’ VPC3+ exchanged the diagnostics 
buffer and again made the old buffer available to the user. 

Bit 11 New_Prm_Data: 
The VPC3+ has received a ‘Set_Param telegram’ and made the data available in 
the Prm buffer. 

Bit 10 New_Cfg_Data: 
The VPC3+ has received a ‘Check_Cfg telegram’ and made the data available in 
the Cfg buffer. 

Bit 9 New_SSA_Date: 
The VPC3+ has received a ‘Set_Slave_Address telegram’ and made the data 
available in the SSA buffer. 

Bit 8 New_GC_Command: 
The VPC3+ has received a ‘Global_Control telegram’ and this byte is stored in 
the ‘R_GC_Command’ RAM cell. 

Figure 3-16 :  Interrupt Mask Register, High-Byte 

 
 
 



3  Initialization   
 

20 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

3.3 Initializing the firmware 
 
The function vpc3_initialization() handles the completely initializing of the 
VPC3+. 
 

♦  Check RAM 
♦  Initializing RAM to zero 
♦  Calculating buffer structures 
♦  Initializing the ASIC with DP and FDL if necessary 
♦  If necessary: setting up the MSAC_C2 SAPs according to transfer 

parameters. The MSAC_C1 SAPs mentioned above are set up, but are 
not yet opened. 

♦  Initializing the resource manager (RM) and setting up the RM SAP. 
The RM SAP will only be opened after the ASIC is started with 
DPSE_START. The MSAC_C2 services are available immediately 
after DPSE_START. 

♦  Enter the first free SAP as response data for RM SAP. 
 
 

DP_ERROR_CODE vpc3_initialization( UBYTE slave_address, CFG_STRUCT cfg ) 

Function Initialization of VPC3+ 

slave_address Address of the slave 
Parameter 

cfg Default configuration of the slave 

Return 
Value 

DP_OK 

*DP_NOT_OFFLINE_ERROR 

DP_ADDRESS_ERROR 

DP_CALCULATE_IO_ERROR

DP_DOUT_LEN_ERROR 

DP_DIN_LEN_ERROR 

DP_DIAG_LEN_ERROR 

DP_PRM_LEN_ERROR 

DP_SSA_LEN_ERROR 

DP_CFG_LEN_ERROR 

DP_LESS_MEM_ERROR 

DP_LESS_MEM_FDL_ERROR

Initialization OK 

*Error VPC3 is not in OFFLINE state 

Error, DP Slave address 

Error with configuration bytes 

Error with Dout length 

Error with Din length 

Error with diagnostics length 

Error with parameter assignment data length 

Error with address data length 

Error with configuration data length 

Error Overall, too much memory used 

Error Overall, too much memory used 

Figure 3-17 :  Function vpc3_init() 

 
*If the VPC3+ not in the “OFFLINE” state, reset the VPC3+ once more! 
 

 
 
 



Initialization
 

VPC 3+ Software Description Revision 5.0 21
Copyright © profichip GmbH 2004. 

Before call up the vpc3_initialization() function the user has to define the 
default configuration over the structure CFG_STRUCT. 
 
For example: 
typedef struct 
{ 
    UBYTE length; 
    UBYTE cfg_data[CFG_BUFSIZE]; 
} CFG_STRUCT;    // defined in dp_if.h 
 
CFG_STRUCT  real_cfg; 
 
 
real_cfg.cfg_data_len = 0x02;  // length of configuration data  
real_cfg.cfg_data[0]    = 0x25; // master to slave (6Byte) 
real_cfg.cfg_data[1]   = 0x17;  // slave to master (8Byte) 
 
error = vpc3_initialization( 0x05, real_cfg ); 

 

3.4 Starting VPC3 
 
If the ASIC could be correctly initialized with vpc3_initialization(), it still 
has to be started. Between initialization and start, the user can still initialize 
buffers in the ASIC. 
The VPC3+ goes online with the command: 
 

START_VPC3() 

Function Starts the VPC3+ 

Parameter None 

Return Value None  

Figure 3-18 :  Function START_VPC3() 

 
 
 
 
 
 
 
 
 
 



3  Initialization   
 

22 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

3.5 Startup Telegram Sequence 
 
 
 

 
 
Figure 3-19 :  Startup Telegram Sequence 

 

Parameterization-
       Master

DP-Slave

Slave_Diag (Request)

Slave_Diag (Request)

Slave_Diag (Request)

Slave_Diag (Request)

Slave_Diag (Request)

:

time

(PROFIBUS) (Firmware)

... ...

Set_Param

Check_Cfg

DataExchange (Outputs)

Slave_Diag (Response)

SC (short acknowledge)

DataExchange (Inputs)

SC (short acknowledge)

:

Slave_Diag (Request)

DataExchange (Outputs)

DataExchange (Inputs)

:

VPC3 initialization

START_VPC3()

Interrupt(PrmData)

Interrupt(CfgData)

Interrupt(DxOut)
           or
Polling(DxOut)

:

:

after SetPrmDataOK and
SetCfgDataOK the VPC3 goes
into the state DataExchange

Slave_Diag (Response)

Slave_Diag (Response)



Initialization
 

VPC 3+ Software Description Revision 5.0 23
Copyright © profichip GmbH 2004. 

3.5.1 Bus monitoring (Startup sequence) 
 

Frame Addr Service Msg type Req/Res SAPS Datalen Data 
SD2 2->7 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-7 DL Get Diagnostics Res 62<-60 6 02 05 00 FF AF FE  
SD2 2->8 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-8 DL Get Diagnostics Res 62<-60 6 02 05 00 FF AF FE  
SD2 2->10 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-10 DL Get Diagnostics Res 62<-60 6 02 05 00 FF AF FE  

SD2 2->7 SRD_HIGH Set Parameters Req 62->61 19 

B8 02 03 25 AF FE 00 E0 60 
00 09 05 00 00 01 FF FF 00 
00  

ACK   Short acknowledge Res    

SD2 2->8 SRD_HIGH Set Parameters Req 62->61 19 

B8 02 03 25 AF FE 00 E0 60 
00 09 05 00 00 01 FF FF 00 
00  

ACK   Short acknowledge Res    

SD2 2->10 SRD_HIGH Set Parameters Req 62->61 39 

B8 02 03 0B AF FE 00 C0 60 
08 11 07 00 00 01 07 08 01 
06 00 01 08 08 02 07 00 04 
0C 81 00 00 05 00 00 01 FF 
FF 00 00  

ACK   Short acknowledge Res    

SD2 2->7 SRD_HIGH Check Config Req 62->62 20 

42 00 00 01 42 00 00 02 82 
00 00 03 C1 03 03 04 C1 01 
01 05  

ACK   Short acknowledge Res    

SD2 2->8 SRD_HIGH Check Config Req 62->62 20 

42 00 00 01 42 00 00 02 82 
00 00 03 C1 03 03 04 C1 01 
01 05  

ACK   Short acknowledge Res    

SD2 2->10 SRD_HIGH Check Config Req 62->62 36 

42 00 00 01 42 00 00 02 82 
00 00 03 C1 03 03 04 C1 01 
01 05 42 00 FD 00 42 03 FD 
03 03 00 00 FF 03 00 00 FF  

ACK   Short acknowledge Res    
SD2 2->7 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-7 DL Get Diagnostics Res 62<-60 6 02 0C 00 02 AF FE  
SD2 2->8 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-8 DL Get Diagnostics Res 62<-60 6 02 0C 00 02 AF FE  
SD2 2->10 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-10 DL Get Diagnostics Res 62<-60 6 02 0C 00 02 AF FE  
SD2 2->7 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-7 DL Get Diagnostics Res 62<-60 6 02 0C 00 02 AF FE  
SD2 2->8 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-8 DL Get Diagnostics Res 62<-60 6 02 0E 00 02 AF FE  
SD2 2->10 SRD_HIGH Get Diagnostics Req 62->60 0  



3  Initialization   
 

24 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

SD2 2<-10 DL Get Diagnostics Res 62<-60 6 02 0C 00 02 AF FE  
SD2 2->7 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-7 DL Get Diagnostics Res 62<-60 6 02 0E 00 02 AF FE  
SD2 2->8 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-8 DL Get Diagnostics Res 62<-60 6 00 0E 00 02 AF FE  
SD2 2->10 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-10 DL Get Diagnostics Res 62<-60 6 02 0E 00 02 AF FE  
SD2 2->7 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-7 DL Get Diagnostics Res 62<-60 6 00 0E 00 02 AF FE  
SD2 2->8 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-8 DL Get Diagnostics Res 62<-60 6 00 0C 00 02 AF FE  
SD2 2->10 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-10 DL Get Diagnostics Res 62<-60 6 00 0E 00 02 AF FE  
SD1 2->8   Req    
SD2 127<-8 DL Data Exchange Res  8 08 00 00 00 00 00 00 00  
SD2 2->7 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-7 DL Get Diagnostics Res 62<-60 6 00 0C 00 02 AF FE  
SD2 2->10 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-10 DL Get Diagnostics Res 62<-60 6 00 0E 00 02 AF FE  
SD1 2->7   Req    
SD2 127<-7 DL Data Exchange Res  8 07 E0 00 00 00 00 00 00  
SD1 2->8   Req    
SD2 127<-8 DL Data Exchange Res  8 08 00 00 00 00 00 00 00  
SD2 2->10 SRD_HIGH Get Diagnostics Req 62->60 0  
SD2 2<-10 DL Get Diagnostics Res 62<-60 6 00 0C 00 02 AF FE  
SD1 2->7   Req    
SD2 127<-7 DL Data Exchange Res  8 07 E0 00 00 00 00 00 00  
SD1 2->8   Req    
SD2 127<-8 DL Data Exchange Res  8 08 00 00 00 00 00 00 00  
SD1 2->10 SRD_HIGH Data Exchange Req    

SD2 2<-10 DL Data Exchange Res  13 
0A 80 00 00 00 00 00 00 00 
00 00 00 00  

SD1 2->7   Req    
SD2 127<-7 DL Data Exchange Res  8 07 E0 00 00 00 00 00 00  
SD1 2->8   Req    
SD2 127<-8 DL Data Exchange Res  8 08 00 00 00 00 00 00 00  
SD1 2->10 SRD_HIGH Data Exchange Req    

SD2 2<-10 DL Data Exchange Res  13 
0A 80 00 00 00 00 00 00 00 
00 00 00 00  

SD1 2->7   Req    
SD2 127<-7 DL Data Exchange Res  8 07 E0 00 00 00 00 00 00  
SD1 2->8   Req    
SD2 127<-8 DL Data Exchange Res  8 08 00 00 00 00 00 00 00  
SD1 2->10 SRD_HIGH Data Exchange Req    



Initialization
 

VPC 3+ Software Description Revision 5.0 25
Copyright © profichip GmbH 2004. 

SD2 2<-10 DL Data Exchange Res  13 
0A 80 00 00 00 00 00 00 00 
00 00 00 00  

SD1 2->7   Req    
SD2 127<-7 DL Data Exchange Res  8 07 E0 00 00 00 00 00 00  
SD1 2->8   Req    
SD2 127<-8 DL Data Exchange Res  8 08 00 00 00 00 00 00 00  
SD1 2->10 SRD_HIGH Data Exchange Req    

SD2 2<-10 DL Data Exchange Res  13 
0A 80 00 00 00 00 00 00 00 
00 00 00 00  

SD1 2->7   Req    
SD2 127<-7 DL Data Exchange Res  8 07 E0 00 00 00 00 00 00  
SD1 2->8   Req    
SD2 127<-8 DL Data Exchange Res  8 08 00 00 00 00 00 00 00  
SD1 2->10 SRD_HIGH Data Exchange Req    

SD2 2<-10 DL Data Exchange Res  13 
0A 80 00 00 00 00 00 00 00 
00 00 00 00  

SD1 2->7   Req    
SD2 127<-7 DL Data Exchange Res  8 07 E0 00 00 00 00 00 00  
SD1 2->8   Req    
SD2 127<-8 DL Data Exchange Res  8 08 00 00 00 00 00 00 00  
SD1 2->10 SRD_HIGH Data Exchange Req    

SD2 2<-10 DL Data Exchange Res  13 
0A 80 00 00 00 00 00 00 00 
00 00 00 00  

SD1 2->7   Req    
SD2 127<-7 DL Data Exchange Res  8 07 E0 00 00 00 00 00 00  
SD1 2->8   Req    
SD2 127<-8 DL Data Exchange Res  8 08 00 00 00 00 00 00 00  

 
Figure 3-20 :  Bus monitoring 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3  Initialization   
 

26 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

Notes: 
 
 



General VPC3-DP Functions  4
 

VPC 3+ Software Description Revision 5.0 27
Copyright © profichip GmbH 2004. 

4 General VPC3-DP Functions 

4.1 Interrupt Indication Function 
The VPC3+ generates indications based on internals events. The 
indications can observed by means of polling or interrupt. 
 
The user can mask each interrupt by setting the corresponding bit in the 
Interrupt Mask Register (dp_cfg.h, ). If interrupt are masked, the application 
must poll the Interrupt Request Register for active indications. 
 
For interrupt handling refer to file “dp_isr.c”. 
 

4.1.1 Reading the Indication 
The user receives the event which has caused the interrupt by reading the 
Interrupt Register: 
 

Bit Position Address 7 6 5 4 3 2 1 0 Designation 

02H 
(Intel) 

D
X

B
_O

ut
 

N
ew

_E
xt

_P
rm

 

D
X

B
_L

in
k_

E
rr

or
 

U
se

r_
Ti

m
er

_ 
C

lo
ck

 

W
D

_D
P_

 
M

od
e_

Ti
m

eo
ut

 

B
au

d_
R

at
e_

 
D

et
ec

t 

G
o/

Le
av

e 
D

at
a_

EX
 

M
A

C
_R

es
et

 

Interrupt Register 
7 .. 0 
 

 
 

Bit Position Address 15 14 13 12 11 10 9 8 Designation 

03H 
(Intel) 

FD
L_

in
d 

P
ol

l_
E

nd
_i

nd
 

D
X

_O
ut

 

D
ia

g_
B

uf
fe

r_
 

C
ha

ng
ed

 

N
ew

_P
rm

_ 
D

at
a 

N
ew

_C
fg

_ 
D

at
a 

N
ew

_S
SA

_ 
D

at
a 

N
ew

_G
C

 
C

om
m

an
d 

Interrupt-Register 
15 .. 8 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



4  General VPC3-DP Functions   
 

28 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

Indication Description 

VPC3_GET_IND_MAC_RESET 
After processing the current request, the 
VPC3+ has entered the offline state (by 
setting the ‘Go_Offline’ bit). 

VPC3_ GET_IND _GO_LEAVE_DATA_EX The DP_SM has entered the ‘DATA_EX’ state 
or has exited it. 

VPC3_ GET_IND _BAUDRATE_DETECT The VPC3+ has left the ‘Baud_Search state’ 
and has found a baud rate. 

VPC3_ GET_IND _DP_WD_TIMEOUT In the ‘DP_Control’ WD state , the watchdog 
timer has expired. 

VPC3_ GET_IND _USER_TIMER_CLOCK The time base of the User_Timer_Clock has 
expired (1/10ms). 

VPC3_GET_IND_DXB_LINK_ERROR 
The VPC3+ has updated the DXB Link 
structure. The data is available in the 
DXB_Link_Table buffer. 

VPC3_GET_IND_NEW_EXT_PRM_DATA 
The VPC3+ has received ‘Set_Ext_Param 
Message’ and has made the data available in 
the Prm buffer. 

VPC3_GET_IND_DXB_OUT 
The VPC3+ has received new data from the 
DXB Publisher.  The data is available in the 
DXB_OUT buffer. 

VPC3_GET_IND_NEW_GC_COMMAND 

The VPC3+ has received a ‘Global_Control 
Message’ with a changed ‘GC_Command 
Byte’ and has stored this byte in the 
‘R_GC_Command’ RAM cell. 

VPC3_ GET_IND _NEW_SSA_DATA 
The VPC3+ has received ‘Set_Slave_Address 
Message’ and has made the data available in 
the SSA buffer. 

VPC3_ GET_IND _NEW_CFG_DATA 
The VPC3+ has received Check_Cfg 
Message’ and has made the data available in 
the Cfg buffer. 

VPC3_ GET_IND _NEW_PRM_DATA 
The VPC3+ has received ‘Set_Param 
Message’ and has made the data available in 
the Prm buffer. 

VPC3_GET_IND_DIAG_BUF_CHANGED 

Requested by ‘New_Diag_Cmd’ , the VPC3+ 
has Exchanged the diagnostics buffer and 
has made the old buffer available again to the 
user. 

VPC3_ GET_IND _DX_OUT 

The VPC3+ has received a ‘Write_Read_Data 
Message’ and has made the new output data 
available in the N buffer. For ‘Power_On’ and 
for ‘Leave_Master’, the VPC3+ clears the N 
buffer contents and also generates this 
interrupt. 

VPC3_GET_IND_POLL_END_IND The master has fetched the FDL response. 
VPC3_GET_IND_FDL_IND The VPC3+ has received a FDL indication. 

Figure 4-1 :  Interrupt indication 

 
 



General VPC3-DP Functions
 

VPC 3+ Software Description Revision 5.0 29
Copyright © profichip GmbH 2004. 

4.1.2 Acknowledging the Indication 
The user acknowledges the indication received through the interrupt routine 
by writing to the Interrupt Acknowledge Register: 
 
VPC3_CON_IND_MAC_RESET() 
VPC3_CON_IND_GO_LEAVE_DATA_EX() 
VPC3_CON_IND_BAUDRATE_DETECT() 
VPC3_CON_IND_DP_WD_TIMEOUT() 
VPC3_CON_IND_USER_TIMER_CLOCK() 
VPC3_CON_IND_DXB_LINK_ERROR() 
VPC3_CON_IND_NEW_EXT_PRM_DATA() 
VPC3_CON_IND_DXB_OUT() 
VPC3_CON_IND_NEW_GC_COMMAND() 
VPC3_CON_IND_NEW_SSA_DATA() 
VPC3_CON_IND_DIAG_BUF_CHANGED() 
VPC3_CON_IND_DX_OUT() 
VPC3_CON_IND_POLL_END_IND() 
VPC3_CON_IND_FDL_IND() 
 

 
Interrupt 10 (New_Cfg_Data) and interrupt 11 (New_Prm_Data) can not 
be acknowledged with the Interrupt Acknowledge Register. They are 
acknowledged by reading from 
 
 
VPC3_SET_PRM_DATA_OK() 
VPC3_SET_PRM_DATA_NOK() 
 
VPC3_SET_CFG_DATA_OK() 
VPC3_SET_CFG_DATA_NOK() 
 

 
 
 

4.1.3 Ending the Indication 
The EOI-bit (End Of Interrupt) in mode register 1, bit 1, ends the indication 
sequence / interrupt function: 
 

VPC3_SET_EOI() 

Function Ends indication of interrupt function 

Parameter None 

Return Value None  

Figure 4-2 :  Function VPC3_SET_EOI() 

 

 



4  General VPC3-DP Functions   
 

30 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

4.1.4 Polling the Indication 
The user can poll indications via the Interrupt Request Register: 
 
VPC3_POLL_IND_MAC_RESET() 
VPC3_POLL_IND_GO_LEAVE_DATA_EX() 
VPC3_POLL_IND_BAUDRATE_DETECT() 
VPC3_POLL_IND_DP_WD_TIMEOUT() 
VPC3_POLL_IND_USER_TIMER_CLOCK() 
VPC3_POLL_IND_DXB_LINK_ERROR() 
VPC3_POLL_IND_NEW_EXT_PRM_DATA() 
VPC3_POLL_IND_DXB_OUT() 
VPC3_POLL_IND_NEW_GC_COMMAND() 
VPC3_POLL_IND_NEW_SSA_DATA() 
VPC3_POLL_IND_DIAG_BUF_CHANGED() 
VPC3_POLL_IND_DX_OUT() 
VPC3_POLL_IND_POLL_END_IND() 
VPC3_POLL_IND_FDL_IND() 
 

 
Poll indications can be acknowledged via the Interrupt Acknowledge 
Register: 
 
VPC3_CON_IND_MAC_RESET() 
VPC3_CON_IND_GO_LEAVE_DATA_EX() 
VPC3_CON_IND_BAUDRATE_DETECT() 
VPC3_CON_IND_DP_WD_TIMEOUT() 
VPC3_CON_IND_USER_TIMER_CLOCK() 
VPC3_CON_IND_DXB_LINK_ERROR() 
VPC3_CON_IND_NEW_EXT_PRM_DATA() 
VPC3_CON_IND_DXB_OUT() 
VPC3_CON_IND_NEW_GC_COMMAND() 
VPC3_CON_IND_NEW_SSA_DATA() 
VPC3_CON_IND_DIAG_BUF_CHANGED() 
VPC3_CON_IND_DX_OUT() 
VPC3_CON_IND_POLL_END_IND() 
VPC3_CON_IND_FDL_IND() 
 

 
 
 
 
 
 
 
 



General VPC3-DP Functions
 

VPC 3+ Software Description Revision 5.0 31
Copyright © profichip GmbH 2004. 

4.2 Parameter Data 

4.2.1 Checking the Parameter Data 
Checking of parameter data is application dependent. Therefore the user is 
responsible for checking the received user specific parameter data. With 
the interrupt VPC3_GET_IND_NEW_PRM_DATA the function vpc3_isr is 
called and then, if necessary, the user specific parameter data checking 
sequence within the interrupt routine. 
 
Functions: 
 
UBYTE VPC3_GET_PRM_LEN() 

Function Get the length of the received parameter data 

Parameter None 

Return Value Length of prm data  

Figure 4-3 :  Function VPC3_GET_PRM_LEN 

 
VPC3_UNSIGNED8_PTR VPC3_GET_PRM_BUF_PTR () 

Function Fetch buffer pointer of the parameter buffer. 

Parameter None 

Return Value pointer to the parameter data buffer  

Figure 4-4 : Function VPC3_GET_PRM_BUF_PTR 

 
UBYTE VPC3_SET_PRM_DATA_OK() 

Function Positive acknowledge of the checked parameter data. 

Parameter None 

VPC3_PRM_FINISHED No further parameter assignment message 
is present => end of sequence. 

VPC3_PRM_CONFLICT Another parameter assignment message is 
present! => repeat check of requested 
parameter assignment. 

Return 
Value 

VPC3_PRM_NOT_ALLOWED Access in present bus mode is not 
permitted. For example, it is possible that 
the watchdog has expired during 
verification.  

Figure 4-5 : Function VPC3_SET_PRM_DATA_OK 



4  General VPC3-DP Functions   
 

32 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

UBYTE VPC3_SET_PRM_DATA_NOK() 

Function Negative acknowledge of the checked parameter data. 

Parameter None 

VPC3_PRM_FINISHED No further parameter assignment 
message is present => end of sequence. 

VPC3_PRM_CONFLICT Another parameter assignment message 
is present! => repeat check of requested 
parameter assignment. 

Return Value 

VPC3_PRM_NOT_ALLOWED Access in present bus mode is not 
permitted. For example, it is possible that 
the watchdog has expired during 
verification. Verifying the parameter data 
(and possibly series-connected functions 
in the application) are to be cancelled. 

Figure 4-6 : Function VPC3_SET_PRM_DATA_NOK() 

 
 
 
 
Acknowledging the New_Prm_Data interrupt by using one of these com-
mands means, that the corresponding interrupt request bit is cleared. The 
New_Prm_Data interrupt can not be acknowledged via the Interrupt 
Acknowledge Register 
 
 
 
Caution: 
When both, configuration settings and parameter settings, are received, it 
is mandatory to verify and acknowledge parameter data first. Then the 
configuration settings may be processed. 
 
 
 
 

 

 



General VPC3-DP Functions
 

VPC 3+ Software Description Revision 5.0 33
Copyright © profichip GmbH 2004. 

4.2.2 Parameter Data Structure 
VPC3+ evaluates the first seven data bytes (without user prm data), or the 
first eight data bytes (with user prm data). The first seven bytes are 
specified according to the standard. The next three bytes are used for the 
extended profibus services DPV1 and DPV2. The additional bytes are 
available to the application. 
 

Bit Position 
Byte 

7 6 5 4 3 2 1 0 
Designation 

0 

Lo
ck

_ 
R

eq
 

U
nl

oc
k_

 
R

eq
 

S
yn

c_
 

R
eq

 

Fr
ee

ze
_ 

R
eq

 

W
D

_O
n 

R
es

er
ve

d 

R
es

er
ve

d 

R
es

er
ve

d 

Station Status 

1         WD_Fact_1 

2         WD_Fact_2 

3         MinTSDR 

4         Ident_Number_High 

5         Ident_Number_Low 

6         Group_Ident 

7 
: 
9 

        DPV1_STATUS1..3 

10 
: 

243 
        User_Prm_Data 

Figure 4-7 :  Format of the Set_Param Telegram 

 
 
Don’t use DPV1_STATUS1..3 as User_Prm_Data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



4  General VPC3-DP Functions   
 

34 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

 DPV1_STATUS1: 

Bit 7 DPV1_Enable: 
0 = The slave is operated in the DP mode. (default state) 
1 = The slave is operated in the DPV1 mode. 

Bit 6 *Fail_Safe: 
0 = The slave is not operated in the Fail Safe mode (default state). 
1 = The slave is operated in the Fail Safe mode. 

Bit 5 Publisher_Enable:  
0 = The slave is not operated in the DXB Publisher mode (default state). 
1 = The slave is operated in the DXB Publisher mode. 

Bit 4-3 Reserved: To be parameterized with ‘0’ 

Bit 2 WD_Base: Watchdog Time Base 
0 = Watchdog time base is 10 ms (default state) 
1 = Watchdog time base is   1 ms 

Bit 1 Dis_Stop_Control: Disable Stop-Bit Control 
0 = Stop-bit monitoring in the receiver is enabled (default state) 
1 = Stop-bit monitoring in the receiver is disabled 

Bit 0 Dis_Start_Control: Disable Start-Bit Control 
0 = Start-bit monitoring in the receiver is enabled (default state) 
1 = Start-bit monitoring in the receiver is disabled 

Figure 4-8 :  DPV1_STATUS1 

 
*)If the DP-Slave requires the Fail Safe mode and the master does not set this bit, the slave 
has to reject the parameter assignment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



General VPC3-DP Functions
 

VPC 3+ Software Description Revision 5.0 35
Copyright © profichip GmbH 2004. 

 DPV1_STATUS2: 

Bit 7 Enable_Pull_Plug_Alarm: 

0 = Enable_Pull_Plug_Alarm disabled 
1 = Enable_Pull_Plug_Alarm enabled. 

Bit 6 Enable_Process_Alarm: 
0 = Enable_Process_Alarm disabled 
1 = Enable_Process_Alarm enabled. 

Bit 5 Enable_Diagnostic_Alarm:  

0 = Enable_Diagnostic_Alarm disabled 
1 = Enable_Diagnostic_Alarm enabled. 

Bit 4 Enable_Manufacturer_Specific_Alarm:  

0 = Enable_Manufacturer_Specific_Alarm disabled 
1 = Enable_Manufacturer_Specific_Alarm enabled. 

Bit 3 Enable_Status_Alarm:  

0 = Enable_Status_Alarm disabled 
1 = Enable_Status_Alarm enabled. 

Bit 2 Enable_Update_Alarm:  
0 = Enable_Update_Alarm disabled 
1 = Enable_Update_Alarm enabled. 

Bit 1 Reserved: To be parameterized with ‘0’ 
Bit 0 Chk_Cfg_Mode:  

0 = Chk_Cfg according to EN50170 (default state) 
1 = User-specific evaluation of Chk_Cfg 

Figure 4-9 :  DPV1_STATUS2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4  General VPC3-DP Functions   
 

36 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

 DPV1_STATUS3: 

bit 7-5 Reserved: To be parameterized with ‘0’ 

bit 4 IsoM_Req: Isochron Mode Request 
0 = Isochron Mode disabled 
1 = Isochron Mode enabled 

bit 3 Prm_Structure:  
0 = Prm telegram according to EN50170  
1 = Prm telegram in structured form (DPV2 extension) 

bit 0-2 Alarm_Mode: limits the number of active alarms 
0 =   1 alarm of each type 
1 =   2 alarms in total  
2 =   4 alarms in total 
3 =   8 alarms in total 
4 = 12 alarms in total 
5 = 16 alarms in total 
6 = 24 alarms in total 
7 = 32 alarms in total 

Figure 4-10 :  DPV1_STATUS3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



General VPC3-DP Functions
 

VPC 3+ Software Description Revision 5.0 37
Copyright © profichip GmbH 2004. 

If Prm_Structure set to 1, the prm-data are in the structured form: 
 

Bit Position 
Byte 

7 6 5 4 3 2 1 0 
Designation 

0 
: 
6 

        See above 

7         DPV1_STATUS1 

8         DPV1_STATUS2 

9     1    DPV1_STATUS3 

10         Structured_Length 

11         

Structure_Type 

0x02: PrmCmd 

0x03: DXB LinkTable 

0x04: ISOCHRON 

0x07: DXB Subscriber 

0x08: Time AR 

0x81: USER_PRM 

12         Slotnumber 

13         Reserved 

14 

: 

: 

        Data 

Figure 4-11 :  Structured Format of the Set_Param Telegram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4  General VPC3-DP Functions   
 

38 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

4.3 Configuration Data 

4.3.1 Checking Configuration Data 
Checking of configuration data is application dependent. Therefore the user  
is responsible for checking the received configuration data. With the 
interrupt VPC3_INT_NEW_CFG_DATA function vpc3_isr is called and 
then, if necessary, the user specific configuration data checking sequence 
within the interrupt routine. 
 
 
Functions: 
 
UBYTE VPC3_GET_READ_CFG_LEN() 

UBYTE VPC3_GET_CFG_LEN() 

Function Get the length of the configuration data. 

Parameter None 

Return Value Length of cfg data  

Figure 4-12 :  Function VPC3_GET_CFG_LEN 

 
 
VPC3_UNSIGNED8_PTR VPC3_GET_READ_CFG_BUF_PTR () 

VPC3_UNSIGNED8_PTR VPC3_GET_CFG_BUF_PTR () 

Function Fetch buffer pointer of the configuration buffer. 

Parameter None 

Return Value pointer to the configuration data buffer  

Figure 4-13 : Function VPC3_GET_CFG_BUF_PTR 

 
Within the verification function, the user compares the received Cfg_Data 
with the Real_Cfg_Data (Real_Cfg_Data was set during initialization). 
 
 
 
 
 
 
 
 
 
 



General VPC3-DP Functions
 

VPC 3+ Software Description Revision 5.0 39
Copyright © profichip GmbH 2004. 

UBYTE VPC3_SET_CFG_DATA_OK() 

Function Positive acknowledge of the checked configuration data. 

Parameter None 

VPC3_CFG_FINISHED No further configuration message is present 
=> end of sequence. 

VPC3_CFG_CONFLICT An additional configuration message is 
present! => Repeat verification of the 
requested configuration. 

Return Value 

VPC3_CFG_NOT_ALLOWED Access is not permitted in the present bus 
mode. For example, it is possible the 
watchdog has run out during verification. 
The verification of the configuration data 
(and possibly subsequent functions in the 
application) are to be cancelled. 

Figure 4-14 : Function VPC3_SET_CFG_DATA_OK 

 
 
 
UBYTE VPC3_SET_CFG_DATA_NOK() 

Function Negative acknowledge of the checked configuration data. 

Parameter None 

VPC3_CFG_FINISHED No further configuration message is present 
=> end of sequence. 

VPC3_CFG_CONFLICT An additional configuration message is 
present! => Repeat verification of the 
requested configuration. 

Return Value 

VPC3_CFG_NOT_ALLOWED Access is not permitted in the present bus 
mode. For example, it is possible the 
watchdog has run out during verification. 
The verification of the configuration data 
(and possibly subsequent functions in the 
application) are to be cancelled. 

Figure 4-15 : Function VPC3_SET_CFG_DATA_NOK 

 
 
 
 
Acknowledging the New_Cfg_Data interrupt by using one of these com-
mands means, that the corresponding interrupt request bit is cleared. The 
New_Cfg_Data interrupt can not be acknowledged via the Interrupt 
Acknowledge Register 
 
 

 



4  General VPC3-DP Functions   
 

40 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

 
  
Caution: 
When both, configuration settings and parameter settings, are received, it 
is mandatory to verify and acknowledge parameter data first. Then the 
configuration settings may be processed. 
 

4.3.2 Configuration Data Formats 
 
General format: 
 

 
 
For example, the identifiers correspond to 

14 hex = 5 bytes input  
27 hex = 8 bytes output 

 
Figure 4-16 :  General Configuration Data Format 

 
In order to cover complexer configurations, greater flexibility is attained in 
the case of PROFIBUS DP through a special expansion of the actual 
identification system. In addition, this special ID format makes it possible to 
determine the number of the input- and output bytes of this ID. 
Furthermore, user-specific data can be added. 
 
 
 
 
 
 
 
 
 
 
 
 

 

7 6 5 4 3 2 1 0

data length

in- / output 00 = special identifier format
01 = input
10 = output
11 = input-output

length structure 0 = byte
1 = word

consistency across 0 = byte or word
1 = total length

Bit-No



General VPC3-DP Functions
 

VPC 3+ Software Description Revision 5.0 41
Copyright © profichip GmbH 2004. 

Special format: 
 

Figure 4-17 :  Special Configuration Data Format 

 
 
 
The length indication for manufacturer-specific data is to be interpreted as 
follows: 
 

0 No manufacturer-specific data follows; it is not to be present in the 
Real_Cfg_Data. 

1 to 14 Manufacturer-specific data of the specified length follows; it has to agree with 
the data contained in Real_Cfg_Data 

15 No manufacturer-specific data follows; there is no check. 
 
 
 
 
The structure of the length bytes looks like this: 
 

 
Figure 4-18 :  Special Configuration Data Format 

 
 
For example: C0hex, 87hex,84hex (8 bytes output, 5 bytes input) 
 

7 6 5 4 3 2 1 0

length of manufacturer data

fixed to 00

in- / output 00 = free place
01 = it follows    1 length byte for inputs
10 = it follows    1 length byte for outputs
11 = it follows    1 length byte for outputs
                          1 length byte for inputs

Bit-No

7 6 5 4 3 2 1 0

length of inputs / outputs

length structure

consistency over

Bit-No

0 = byte
1 = word

0 = byte or word
1 = whole length



4  General VPC3-DP Functions   
 

42 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

4.4 Transfer of Output Data 
VPC3_INT_DX_OUT in the interrupt function vpc3_isr() indicates the 
receipt of output data from the DP-Master. The function vpc3_get_-
doutbufptr () returns the buffer pointer, and also the state of the Dout-buffer. 
The lengths of the outputs are not transferred with every update. The length 
agrees with the length transferred with vpc3_set_io_data_len(), otherwise 
VPC3+ would branch to the WAIT_PRM state. 
 
 
 
VPC3_UNSIGNED8_PTR vpc3_get_doutbufptr (UBYTE PTR_ATTR *state_ptr) 

Function Fetch buffer pointer and state of the output buffer. 

Parameter Pointer to variable into which the state of the output buffer is to be written 

pointer to the output data buffer 

NIL, if no diagnostics buffer in the ‘U’ state 

 Return Value 

state of the output buffer NEW_DOUT_BUF 

DOUT_BUF_CLEARED 

Figure 4-19 :  Function vpc3_get_doutbufptr() 

 
 
 
 
 
 
The input-/output data length can be reconfigured with the functions 
described in the Initialization section (vpc3_calculate_inp_outp_len(), 
vpc3_set_io_data_len(), ...). 
 
 
 
 
 
 

 



General VPC3-DP Functions
 

VPC 3+ Software Description Revision 5.0 43
Copyright © profichip GmbH 2004. 

4.5 Transfer of Input Data 
As described, the application has to fetch a buffer for the input data with the 
vpc3_get_dinbufptr() function before the first entry of its input data. With the 
command 
 
UBYTE VPC3_INPUT_UPDATE () 

Function Change the input buffer. 

Parameter None 

Return Value New U-buffer 1 = Din_Buf_Ptr1 

2 = Din_Buf_Ptr2 

3 = Din_Buf_Ptr3 

Figure 4-20 :  Function VPC3_INPUT_UPDATE 

 
 
the user can repeatedly transfer the current input data from the user to the 
VPC3+. The length of the inputs is not transferred with every update. The 
length must agree with the length transferred with function 
vpc3_set_io_data_len(). 
 
 
 
VPC3_UNSIGNED8_PTR vpc3_get_dinbufptr () 

Function Fetch buffer pointer of the input buffer. 

Parameter None 

Return Value pointer to the input data buffer 

NIL, if no diagnostics buffer in the ‘U’ state 

 

Figure 4-21 :  Function vpc3_get_dinbufptr 

 
 
 
 
The input-/output data length can be reconfigured with the functions 
described in the Initialization section (vpc3_calculate_inp_outp_len(), 
vpc3_set_io_data_len(), ...). 
 
 

 



4  General VPC3-DP Functions   
 

44 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

4.6 Diagnostic 

4.6.1 Transferring Diagnostic Data 
 
With this utility, the user can transfer diagnostic data to the VPC3+. Prior to 
the first entry of external diagnostic data, the user has to get a pointer to 
the free diagnosis buffer with the function vpc3_get_diagbufptr(). The user 
writes the diagnostic messages or status messages into this buffer, starting 
with byte 6. 
 
 
VPC3_UNSIGNED8_PTR vpc3_get_diagbufptr () 

Function Fetch buffer pointer of the diagnostic buffer. 

Parameter None 

Return Value Pointer to the diagnostics buffer 

NIL, if no diagnostics buffer in the ‘U’ state  

 

Figure 4-22 :  Function vpc3_get_diag_buf_ptr 

 
 
 
The user specifies the length of the diagnostic data by calling function 
vpc3_set_diag_len(). The length has to be set after a buffer was success-
fully received with vpc3_get_diagbufptr(). 
 
The length always has to be transferred for the entire buffer, including the 
bytes specified by the standard (+6). That is, if no user diagnostic is sup-
posed to be transferred, the length 6 is to be transferred. 
 
 
 
UBYTE8 vpc3_set_diaglen (UBYTE8 diag_len) 

Function Set length of diagnostic data. 

Parameter None 

Return Value length actually set 

0xFF, if no buffer is assigned to the user 

 

Figure 4-23 :  Function vpc3_set_diaglen 

 
 
 

 



General VPC3-DP Functions
 

VPC 3+ Software Description Revision 5.0 45
Copyright © profichip GmbH 2004. 

The transferred pointer of VPC3+ points to byte 0 of the transferred 
diagnostic buffer. The user may enter his diagnosis in this buffer starting 
with byte 6. VPC3+ enters the fixed diagnostic bytes (bytes 0 to 5). 
 
With the function vpc3_set_diag_state(), the user transfers the new 
diagnosis state to the VPC3+. The new diagnosis state has to be 
transferred before the diagnostic data is updated. 
 
 
Vpc3_set_diag_state (UBYTE8 diag_state) 

Function sets the state of diagnostic 

Parameter state of diagnostic 

Return 
Value 

None 

Figure 4-24 :  Function vpc3_set_diag_state 

 
 
 
States of diagnostic: 
 

Bit Designation Meaning 

0 EXT_DIAG If this bit is 1, the diagnostics bit Diag.Ext_Diag will be set; 
Otherwise, the bit will be reset. 

1 STAT_DIAG If this bit is 1, the diagnostics bit Diag.Stat_Diag will be set; 
Otherwise, the bit will be reset. 

2 EXT_DIAG_OVF If this bit is 1, the bit Diag.Ext_Diag_Overflow is set; 
Otherwise, Diag.Ext_Diag_Overflow is reset. 

Figure 4-25 :  States of diagnosis 

 
 
With the vpc3_diag_update() function, the user transfers the new, external 
diagnostics data to VPC3+. As a return value, the user receives a pointer to 
the new diagnostics data buffer. 
 
 



4  General VPC3-DP Functions   
 

46 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

Function vpc3_diag_update(): 
 

UBYTE8 far *vpc3_diag_update (void) 

Function transfers diagnosis data and fetches new pointer 

Parameter None 

Return 
Value 

Pointer to the diagnostics buffer 
NIL, if no diagnostics data buffer present 

Figure 4-26 :  Function vpc3_diag_update 

 
 
If no diagnosis data is to be transferred with the vpc3_diag_update() 
function, or if the diagnostic data transferred previously is to be deleted, the 
diagnostic length has to be set to 6 with the function vpc3_set_diag_len(). 
The VPC3+ responds to a diagnostic request from the PROFIBUS DP 
master with the 6 bytes of station diagnosis data. 
 
The second exchange buffer is not automatically available after the 
diagnostic data has been transferred. The user has two possibilities to find 
out if the diagnostic buffer has been transmitted: 
 
♦  VPC3+ signals via the vpc3_isr() indication function and indicates the event 

with VPC3_INT_DIAG_BUF_CHANGED. This indication function has to be 
enabled during initialization for this purpose. 

 
♦  With the vpc3_get_diag_flag() macro, the user polls the state of the diagnosis 

buffer. The macro indicates whether the buffer has already been transmitted. If, 
however, ‘static diagnostics’ has been set, the ‘buffer not transmitted’ state is 
always returned. 

 
 

UBYTE8 vpc3_get_diag_flag (void) 

Function fetches state of diagnostic buffer (only in the state DataExchange) 

Parameter None 

Return 
Value 

TRUE : The DP-Master has not yet fetched the diagnostic buffer. 
FALSE: The diagnostic buffer had been fetched by the DP-Master. 

Figure 4-27 :  Function vpc3_get_diag_flag 

 
 
 
 



General VPC3-DP Functions
 

VPC 3+ Software Description Revision 5.0 47
Copyright © profichip GmbH 2004. 

4.6.2 Structure of diagnostic block 
 
Structure of the data block to be transferred for expanded diagnostics: 
 
Byte Diagnosis Data Comment 

0 Station Status_1 

1 Station Status_2 

2 Station Status_3 

3 Diag.Master_Add 

4 Ident_Number_High 

5 Ident_Number_Low 

Byte 0 to 5 permanent diagnostic header 

6 
: 

243 
Ext_Diag_Data Start of user diagnostic in the DP Standard format 

Figure 4-28 :  Structure of diagnosticv block 

 
 
Station Status_1 
 

 
 
Figure 4-29 :  Structure of Station_Status_1 

 
 
 
 

7 6 5 4 3 2 1 0

Diagnostic station does not exist (set by master)
Diag.station_not_ready
Slave not ready for DataExchange

Diag.Ext_Diag
Slave has external diagnosis
Diag.Not_Supported
Slave does not support the requested function

bit

Diag.Cfg_Fault
Configuration Data do not match

Diag.Invalid_Slave_Response
(set Slave to 0 permanently)
Diag.Prm_Fault
bad parameters (Ident No. etc.)
Diag.Master_Lock (set by master)
Slave was configured by other master



4  General VPC3-DP Functions   
 

48 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

Station Status_2 
 
 
 
 

 
 
Figure 4-30 :  Structure of Station_Status_2 

 
 
 
Station Status_3 
 

 
 

 

Figure 4-31 :  Structure of Station_Status_3 

 
 
 
 
 

7 6 5 4 3 2 1 0
Diag.Prm_Req
Slave requires new configuration
Diag.Stat_Diag
statistic diagnosis

Diag.WD_ON
Watchdog active
Diag.Freeze_Mode
Freeze command was received

bit

permanently at 1

Sync_Mode
Sync command was received

reserved

Diag.Deactivated (set by master)

7 6 5 4 3 2 1 0

reserved

Diag.Ext_Overflow

bit



General VPC3-DP Functions
 

VPC 3+ Software Description Revision 5.0 49
Copyright © profichip GmbH 2004. 

4.6.3 User specific diagnostic 
 
The user-specific diagnostic can be filed in three different formats: 
 

Device related diagnostic 
The diagnostic information can be coded as required: 
 
 Bit7 Bit6 Bit5-0 
Header byte 0 0 Block length in bytes,including header 
Diagnostics field 
... 

Coding of diagnostic is device specific, 
can be specified as required 

Figure 4-32 :  Device related diagnostic 

 
 

Identifier related diagnostic 
For each used identifier byte at the configuration one bit is reserved. It is 
padded to byte limits. The bits which are not configured shall be set to zero. 
A set bit means that in this I/O area diagnostic is pending. 
 
 Bit7 Bit6 Bit5-0 
Header byte 0 1 Block length in bytes,including header 
Bit structure 
... 

1 0 1 1 0 0 0 0 

Figure 4-33 :  Device related diagnostic 

 
 

Channel related diagnostic 
In this block the diagnosed channels and the diagnostic reason are entered 
in turn. The length per entry is 3 octets. 
 
 Bit7 Bit6 Bit5 Bit4-0 

Header byte 1 0 Identification number 
Channel Number Coding 

Input/Output 
Channel number (0..63) 

Type of diagnosis Coding 
Channel type 

Coding 
Error type 

Figure 4-34 :  Channel related diagnostic 

 
 
 
 



4  General VPC3-DP Functions   
 

50 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

Coding Input/Output 
00 Reserved 
01 Input 
10 Output 
11 Input / Output 

Figure 4-35 : Coding Input/Output 

 
Coding Channel type 

000 Reserved 
001 Bit 
010 2 bit 
011 4 bit 
100 Byte 
101 Word 
110 2 words 
111 Reserved 

Figure 4-36 : Coding Channel type 

 
Coding Error type 

0 reserved 
1 short circuit 
2 undervoltage 
3 overvoltage 
4 overload 
5 overtemperature 
6 line break 
7 upper limit value exceeded 
8 lower limit value exceeded 
9 error 

10 reserved 
... ... 
15 reserved 
16 manufacturer specific 
... ... 
31 manufacturer specific 

Figure 4-37 : Coding Error type 

 
 
 
 
 
 



General VPC3-DP Functions
 

VPC 3+ Software Description Revision 5.0 51
Copyright © profichip GmbH 2004. 

Example: Structure of a diagnostic according to the pattern above: 
 
MSB                                                 LSB 
7 6 5 4 3 2 1 0 

 

0 0 0 0 0 1 0 0 Device related diagnostic 

Device specific Meaning of the bits 
diagnostics field of is specified  

length 3 manufacturer specific 
0 1 0 0 0 1 0 1 Identifier related diagnostic 

       1 Identification number 0 has diagnostic 
   1     Identification number 12 has diagnostic 
      1  Identification number 17 has diagnostic 
         

1 0 0 0 0 0 0 0 Channel related diagnostic, number 0 

0 0 0 0 0 0 1 0 Channel 2 
0 0 0 1 0 1 0 0 Overload, channel organized bit by bit 
1 0 0 0 1 1 0 0 Channel related diagnostic, number 12 

0 0 0 0 0 1 1 0 Channel 6 
1 0 1 0 0 1 1 1 Upper limit, word by word 

Figure 4-38 : Example 

 
 



4  General VPC3-DP Functions   
 

52 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

4.7 Changing the Slave Address 
 
A request for changing the slave address is indicated through 
NEW_SSA_DATA. With the macro VPC3_GET_SSA_BUF_PTR(), a 
pointer to the buffer with the new slave address can be read. With the 
macro VPC3_GET_SSA_LEN(), the user is informed of the length of the 
SSA buffer received.  
 
UBYTE VPC3_GET_SSA_LEN() 

Function Get the length of the received ssa data 

Parameter None 

Return Value Length of ssa data  

Figure 4-39 :  Function VPC3_GET_SSA_LEN 

 
 
VPC3_UNSIGNED8_PTR VPC3_GET_SSA_BUF_PTR () 

Function Fetch buffer pointer of the ssa buffer. 

Parameter None 

Return Value pointer to the ssa data buffer  

Figure 4-40 : Function VPC3_GET_SSA_BUF_PTR 

 
 
Structure of the Set_Slave_Address telegram: 
 

Bit Position 
Byte 

7 6 5 4 3 2 1 0 
Designation 

0         New_Slave_Address 

1         Ident_Number_High 

2         Ident_Number_Low 

3         No_Add_Chg 

4 
: 

243 
        

Rem_Save_Data 
additional application 
specific data 

Figure 4-41 :  Structure of the Set_Slave_Address telegram 

 



General VPC3-DP Functions
 

VPC 3+ Software Description Revision 5.0 53
Copyright © profichip GmbH 2004. 

4.8 Global Control Commands 
The interrupt New_GC_Command indicates the arrival of a Global_Control 
message. The command VPC3_GET_IND_NEW_GC_COMMAND 
supplies the Control_Command byte. This makes it possible for the user to 
react to these commands. The VPC3+ internally processes these 
commands regarding buffer management. That is, in the case of ‘Clear’, the 
output data is deleted and the cleared buffer is made available to the user. 
 
VPC3_UNSIGNED8_PTR VPC3_GET_GC_COMMAND () 

Function Fetch global control byte. 

Parameter None 

Return Value Global control byte  

Figure 4-42 : Function VPC3_GET_GC_COMMAND 

 
Bit Position 

Address 
7 6 5 4 3 2 1 0 

Designation 

3CH 

R
es

er
ve

d 

R
es

er
ve

d 

S
yn

c 

U
ns

yn
c 

Fr
ee

ze
 

U
nf

re
ez

e 

C
le

ar
_D

at
a 

R
es

er
ve

d 

R_GC_ 
Command 
 
See coding below 

 
 R_GC_Command, Address 3CH: 

Bit 7-6 Reserved 
Bit 5 Sync: 

The output data transferred with a WRITE_READ_DATA telegram is changed 
from ‘D’ to ‘N.’  The following transferred output data is kept in ‘D’ until the next 
‘Sync’ command is issued. 

Bit 4 Unsync: 
The ‘Unsync’ command cancels the ‘Sync’ command. 

Bit 3 Freeze: 
The input data is fetched from ‘N’ to ‘D’ and ‘frozen’. New input data is not fetched 
again until the master sends the next ‘Freeze’ command. 

Bit 2 Unfreeze: 
The ‘Unfreeze’ command cancels the ‘Freeze’ command. 

Bit 1 Clear_Data: 
With this command, the output data is deleted in ‘D’ and is changed to ‘N’. 

Bit 0 Reserved 

Figure 4-43 : Description GC_COMMAND 



4  General VPC3-DP Functions   
 

54 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

4.9 Watchdog Timeout in DP-Control 
The interrupt VPC3_INT_DP_WD_TIMEOUT indicates that the slave lost 
bus communication to the master. The following command returns the 
status of the watchdog state machine. 
 
 
UBYTE VPC3_GET_WD_STATE() 

Function Get the Wactdog State. 

Parameter None 

Return Value Watchdog State  

Figure 4-44 : Function VPC3_GET_WD_STATE() 

 
Watchdog State Description 

BAUD_SEARCH Baudrate search 

BAUD_CONTROL Monitoring the baudrate 

DP_MODE DP_Mode; that is, bus watchdog activated 

Figure 4-45 : Description Wachdog State 

 



General VPC3-DP Functions
 

VPC 3+ Software Description Revision 5.0 55
Copyright © profichip GmbH 2004. 

4.9.1 Leaving the Data Exchange State 
The VPC3_INT_GO_LEAVE_DATA_EX message indicates that the VPC3+ 
made a state change in the internal state machine. 
 
With the following command the application is informed whether the VPC3+ 
has entered the data exchange state or left it. The cause for this transition 
can be a faulty parameter assignment message in the data transfer phase, 
for example. 
 
UBYTE VPC3_GET_DP_STATE() 

Function Get the DP State. 

Parameter None 

Return Value DP State  

Figure 4-46 : Function VPC3_GET_DP_STATE() 

 
States of the DP-State Machine: 
 
DP- State Description 

WAIT_PRM Wait for parameter assignment 

WAIT_CFG Wait for configuration 

DATA_EX Data exchange 

DP_ERROR Error 

Figure 4-47 : DP States 

 
 

4.10 VPC3_Reset (Go_Offline) 
 
With the command GO_OFFLINE_VPC3() the VPC3+ enters the offline 
state, after the actual request is processed. The command 
VPC3_GET_OFF_PASS() determines whether the transition to offline was 
made. If the return value is ‘zero’, the VPC3+ is ‘Offline’. If the return value 
is 1, the VPC3+ is ‘Passiv Idle’. 

4.11 Leave Master 
The command VPC3_SET_USER_LEAVE_MASTER() causes the VPC3+ 
to change into the state ‘Wait_Prm’. 



4  General VPC3-DP Functions   
 

56 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

4.12 FATAL_ERROR (DP+MSAC_C1+MSAC_C2) 
 
The firmware calls this function if a grave error occurs that does not permit 
continuing useful processing. If the firmware calls this function, this 
indicates a software error in the user program. This function is not to return 
to the firmware! 
 
 
FATAL_ERROR Grave Error
Transfer File 

Line 
Errcb_ptr 

DP_ERROR_FILE 
UWORD 
VPC3_ERRCB_PTR 

Filename 
Source code line 
Specific Error 

Return   Function must not 
return! 
 

Figure 4-48 : Function Fatal_ERROR 

 
 
DP_ERROR_FILE  
DP_USER 0x10  
DP_IF 0x20  
DP_ISR 0x30  
DP_FDL 0x40  
DP_C1 0x50  
DP_C2 0x60  

Figure 4-49 : Description DP_ERROR_FILE 

 
 



DPV1 Extensions  5
 

VPC 3+ Software Description Revision 5.0 57
Copyright © profichip GmbH 2004. 

5 DPV1 Extensions 

5.1 Functional Description of the DPV1 Services 
When the firmware is initialized, the DPV1 services are initialized also. If 
the DPV1 indications are to be processed in the polling mode, the 
application program has to cyclically call the macros 
VPC3_POLL_IND_FDL_IND() and VPC3_POLL_IND_POLL_END_IND() in 
the main loop. If the DPV1 indications are to be processed in the interrupt 
mode, the application program has to call the macros 
VPC3_GET_IND_FDL_IND() and VPC3_GET_IND_POLL_END_IND() in 
the interrupt routine. 
 

5.1.1 Initiate (MSAC_C2) 
♦  In the answer to an Initiate REQ PDU (on SAP 49), the firmware sends a free 

SAP (0..48) in the immediate response. This SAP (Service Access Point) has 
been made available previously as response. 

♦  The RM (Resource Manager) searches for a new free SAP, and makes it 
available as next response for SAP 49. 

♦  The firmware calls the function msac_c2_initiate_req. The SAP that is to be 
used is transferred as parameter. In the function msac_c2_initiate_req, the 
application program can check the API and SCL, for example. 

♦  If msac_c2_initiate_req was acknowledged positive, the SAP is marked as 
assigned. 

♦  The SAP used is opened; via this SAP, the Initiate RES PDU is transmitted. 
 

5.1.2 Abort (MSAC_C2) 
The cancellation can be activated either by the local user via a function or 
via the response data, or by the master via a message. 
 
♦  The FW closes the communication SAP 
♦  The SAP is marked as free 
♦  The function msac_c2_abort_ind is called. This only happens if the user has 

not requested a cancellation. 
 

5.1.3 Read (MSAC_C1 and MSAC_C2) 
♦  The firmware package calls the function dpv1_read_req as soon as a Read.req 

was received. 
♦  If the data has been made available, or if an error was signalled, the reply is 

sent to the master. 
 



5  DPV1 Extensions   
 

58 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

5.1.4 Write (MASC_C1 and MSAC_C2) 
♦  The firmware package calls the function dpv1_write_req as soon as a Write.req 

was received 
♦  If the data has been processed, or if an error was signaled, the reply is sent to 

the master. 
 

5.1.5 Data Transport (MSAC_C2) 
♦  The firmware package calls the function msac_c2_data_transport_req as soon 

as a Data_Transport.req was received.  
♦  If the response data was made available, or if an error was signaled, the reply 

is sent to the master. 
 

5.1.6 Diagnosis, Alarms, and Status Messages in the case of DPV1 
In DPV1, an alarm- and status model is defined. The alarms and status 
messages are transmitted via a device-related diagnosis. For that reason, 
The DPV1 slave is to use the device-related diagnoses only in this sense.  
The alarm is acknowledged by the master and the user enter the alarm 
diagnostic to the alarm state machine. The status message isn’t 
acknowledge by the master. The user set the status message directly in the 
diagnostic buffer. The DPV1 slave can continue using the id-related and 
channel-related diagnoses, as described in the DP standard. The 
application program may write to the diagnostic data as is the case with the 
DP slave. In addition, the user can enter status messages in the diagnostic 
buffer. In DPV1, the static diagnosis has a special meaning: with static 
diagnosis, the slave signals that it is logically not ready to make useful data 
available. This is the case, for example, if a sensor was correctly 
parameterized and configured, but has not yet been set to its measuring 
range via the MSAC_C1 channel. If the slave can supply useful data, it 
removes the static diagnosis. 
 

5.1.7 Error Handling 
If the application detects an error while processing a user function, it writes 
the Error Code 1 and 2 according to the structure below to the response 
buffer that was transferred to it previously, and returns the value 
DPV1_NOK. The firmware fills in the function number and the decode field. 
 
DPV1_NEG_RES_PDU  Error Response Block 
Function_num UBYTE Is entered by the firmware 
Err_decode UBYTE Always DPV1_ERR_DEC_DPE 
Err_code1 UBYTE DPV1 Error Code 
Err_code2 UBYTE User-specific 

Figure 5-1 : Error Response Block 



DPV1 Extensions
 

VPC 3+ Software Description Revision 5.0 59
Copyright © profichip GmbH 2004. 

 

Figure 5-2 : Error Code / Error Class 

 
Error_Class Meaning Error_Code 
0 to 9 Reserved *)  
10 Application   0 =  read error 

  1 =  write error  
  2 =  module failure 
  3  to 7 = reserved *) 
  8 = version conflict 
  9 = feature not supported 
10  to 15 = user specific 

11 Access   0 = invalid index   
  1 = write length error  
  2 = invalid slot 
  3 = type conflict 
  4 = invalid area 
  5 = state conflict 
  6 = access denied 
  7 = invalid range 
  8 = invalid parameter  
  9 = invalid type 
10 to 15 = user specific  

12 Resource   0 = read constrain conflict 
  1 = write constrain conflict  
  2 = resource busy 
  3 = resource unavailable 
  4 to 7 = reserved *) 
  8 to 15 = user specific 

13 to 15 User specific  

Figure 5-3 : Error Code / Error Class 

 
*) Reserved Error_Codes are intended to be passed unchanged to the user. 

 
Defines for Error Code / Error Class in the firmware: 

 
Error Class   
Reserved 0 – 9 Reserved 
DPV1_ERRCL_APPLICATION 10 Error on application level 
DPV1_ERRCL_ACCESS 11 Access error 
DPV1_ERRCL_RESSOURCE 12 Resource error 
DPV1_ERRCL_USER 13 (-15) Free for application 

Figure 5-4 : Error Class 

 
 

7 6 5 4 3 2 1 0

Error Code

Error Class

Bit-No



5  DPV1 Extensions   
 

60 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

Error_Code for Error_Class 
DPV1_ERRCL_APPLICATION 

  

DPV1_ERRCL_APP_READ 0 Read error 

DPV1_ERRCL_APP_WRITE 1 Write error 
DPV1_ERRCL_APP_MODULE 2 Module error 

Reserved 3-7 reserved 

DPV1_ERRCL_APP_VERSION 8 Version conflict 

DPV1_ERRCL_APP_NOTSUPP 9 Not supported 
DPV1_ERRCL_APP_USER 10 (-15) Free for application 

Figure 5-5 : Error Code for Application Error Class 

 
 

Error_Code for Error_Class 
DPV1_ERRCL_ACCESS 

  

DPV1_ERRCL_ACC_INV_INDEX 0 Impermissible index 

DPV1_ERRCL_ACC_WRITE_LEN 1 Write length wrong 
DPV1_ERRCL_ACC_INV_SLOT 2 Impermissible slot 

DPV1_ERRCL_ACC_TYPE 3 Type conflict 

DPV1_ERRCL_ACC_INV_AEREA 4 Impermissible area 

DPV1_ERRCL_ACC_STATE 5 State conflict 
DPV1_ERRCL_ACC_ACCESS 6 Access not permitted 

DPV1_ERRCL_ACC_INV_RANGE 7 Impermissible range 

DPV1_ERRCL_ACC_INV_PARAM 8 Impermissible parameter 

DPV1_ERRCL_ACC_INV_TYPE 9 Impermissible type 
DPV1_ERRCL_ACC_USER 10 (-15) Free for application 

Figure 5-6 : Error Code for Access Error Class 

 
 

Error_Code for Error_Class 
DPV1_ERRCL_RESOURCE 

  

DPV1_ERRCL_RES_READ_CONSTRAIN 0 Read constrain conflict 

DPV1_ERRCL_RES_WRITE_CONSTRAIN 1 Write constrain conflict 
DPV1_ERRCL_RES_BUSY 2 Resource busy 

DPV1_ERRCL_RES_UNAVAIL 3 Resource unavailable 

Reserved 4 – 7 reserved 

DPV1_ERRCL_RES_USER 8 (- 15) Free for application 

Figure 5-7 : Error Code for Resource Error Class 

 
 
 
 
 



DPV1 Extensions
 

VPC 3+ Software Description Revision 5.0 61
Copyright © profichip GmbH 2004. 

5.2 Initialization 
 

5.2.1 Settings for DPV1 in the dp_cfg.h 
The user connects the different services via #define in “cfg.h”, so that the 
program code is adapted to the required services respectively. 
 
 
Service  

#define DP_MSAC_C1 Activation of the functionality for the expansion services 
of the Class 1 master. 

#define DP_MSAC_C2 Activation of the functionality for the expansion services 
of the Class 2 master. 

#define DP_ALARM Activation of the functionality for the expansion services 
of the alarm mode. 

Figure 5-8 :  PROFIBUS Services 

 
Settings for MSAC_C2 Service   

#define 
DP_MSAC_C2_Time 

 Enables timecontrol for C2 services 

#define 
C2_NUM_SAPS 

UBYTE Number of SAPs that the firmware makes 
available for MSAC_C2 Connections 

#define 
C2_LEN 

UBYTE MSAC_C2 PDU length of the C2-SAP 
(20...244) 

#define 
C2_FEATURES_SUPPORTED_1 

UBYTE = 0x01 (MSAC_C2_READ and 
MSAC_C2_WRITE supported) 

#define 
C2_FEATURES_SUPPORTED_2 

UBYTE = 0x00 

#define 
C2_PROFILE_FEATURES_1 

UBYTE Profile or vendor specific 

#define 
C2_PROFILE_FEATURES_2 

UBYTE Profile or vendor specific 

#define 
C2_PROFILE_NUMBER 

UWORD Profile or vendor specific 

Figure 5-9 :  Settings for MSAC_C2 Service 

 
Settings for MSAC_C1 Service   

#define C1_LEN UBYTE Length of MSAC_C1 Data (4..244 Bytes) 

Figure 5-10 :  Settings for MSAC_C1 

 
 
Settings for MSAC_C1 Alarm  

#define 
DP_ALARM_OVER_SAP50 

The master handles the Alarm Acknowledge over 
SAP 50 

Figure 5-11 :  Settings for MSAC_C1_Alarm 



5  DPV1 Extensions   
 

62 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

 
Mandatory settings in the VPC3+: 
 
 Mode Register 0, High-Byte, Address 07H (Intel): 

Bit 10 User_Time_Base: Timebase of the cyclical User_Time_Clock-Interrupt 
0 = The User_Time_Clock-Interrupt occurs every 1 ms. 
1 = The User_Time_Clock-Interrupt occurs every 10 ms. (mandatory DPV1)

Figure 5-12 :  Mode Register 

 
Enable following interrupts: 
 
 Interrupt-Mask-Register, Low-Byte, Address 04H (Intel): 

Bit 4 User_Timer_Clock: 
The time base for the User_Timer_Clocks has run out ( 1 /10ms). 

Bit 2 Baudrate_Detect: 

The VPC3+ has left the ‘Baud_Search state’ and found a baud rate. 

Figure 5-13 :  Interrupt Mask Register 

 
 

 Interrupt Mask Register 0, High-Byte, Address 05H (Intel): 

Bit 15 FDL_Ind: 

The VPC 3+ has received an acyclic service request and made the data 
available in an indication buffer. 

Bit 14 Poll_End_Ind: 

The VPC 3+ have send the response to an acyclic service. 

Figure 5-14 :  Interrupt Mask Register 

 
 
During the initialization the SAP-list will be generated (dp_fdl.c). Each entry 
in the SAP list consist of 7 bytes. The pointer at address 17H contains the 
segment base address of the first element of the SAP list. The last element 
in the list is always indicated with FFH. If the SAP list shall not be used, the 
first entry must be FFH, so the pointer at address 17H must point to a 
segment base address location which contains FFH.  
 
 
The MSAC_C2 service is enabled after VPC3_START() and the 
MSAC_C1 is enabled with DPV1_Enable in the Set_Param telegram. 
 
 
 
 



DPV1 Extensions
 

VPC 3+ Software Description Revision 5.0 63
Copyright © profichip GmbH 2004. 

Function Master SAP Slave SAP Service 
MSAC_C1 51 50 or 51 Alarm_Ack 
MSAC_C1 51 51 READ/WRITE 

MSAC_C2 50 49 Initiate.req 

MSAC_C2 50 48 .. 0 Abort, Read/Write, Data_Transfer 

Figure 5-15 :  SAPs for acyclic services 

 
 
Structure of SAP-List entry: 
 

Bit Position 
Byte 

7 6 5 4 3 2 1 0 
Designation 

0         SAP_Number 

1         Request_SA 

2         Request_SSAP 

3         Service_Supported 

4         Ind_Buf_Ptr[0] 

5         Ind_Buf_Ptr[1] 

6         Resp_Buf_Ptr 

 
 SAP-List entry: 

Byte 0 Response_Sent: Response-Buffer sent 
0 = no Response sent 
1 = Response sent 

SAP_Number: 0 – 63 
In DP-Mode the SAPs 53, 55-62 are used for cyclic communication. 

Byte 1 Request_SA: The source address of a request is compared with this value. At 
differences, the VPC 3+ response with No-Service-Activated (RS). The default 
value for this entry is 7FH. 

Byte 2 Request_SSAP: The source SAP of a request is compared with this value. At 
differences, the VPC 3+ response with No-Service-Activated (RS). The default 
value for this entry is 7FH. 

Byte 3 Service_Supported: Indicates the permitted FDL service. 
00 = all FDL services allowed 

Byte 4 Ind_Buf_Ptr[0]: pointer to indication buffer 0 

Byte 5 Ind_Buf_Ptr[1]: pointer to indication buffer 1 

Byte 6 Resp_Buf_Ptr: pointer to response buffer 

Figure 5-16 : SAP list entry 

 
 
 



5  DPV1 Extensions   
 

64 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

Example of SAP-list: 
 

SAP       Service 
31 7F 7F 0B 5C 5C 5B Initiate_Req (Resource Manager) 
30 07 7F 0B 5C 5C 5C MSAC_C2 channel 1 

2F 07 7F 0B 63 63 63 MSAC_C2 channel 2 

33 7F 7F 0B 6A 6A 6A MSAC_C1 channel 

FF 00 00 00     

Figure 5-17 : Example of SAP list (after START_VPC3()) 

 
In addition an indication and response buffers are needed. Each buffer 
consists of a 4 byte header for the buffer management and a data block of 
configurable length. 
 

Bit Position 
Byte 

7 6 5 4 3 2 1 0 
Designation 

0 

U
S

E
R

 

IN
D

 

R
E

S
P

 

IN
U

S
E

 

    

Control 

1         Max_Length 

2         Length 

3         Function Code 

 
 
 SAP-List entry: 

Byte 0 Control: bits for buffer management 
USER buffer assigned to user 
IND indication data included in buffer 
RESP response data included in buffer 
INUSE buffer assigned to VPC 3+ 

Byte 1 Max_Length: length of buffer 

Byte 2 Length: length of data included in buffer 

Byte 3 Function Code: function code of the telegram 

Figure 5-18 : Buffer Header 

 
 
 
 
 
 
 



DPV1 Extensions
 

VPC 3+ Software Description Revision 5.0 65
Copyright © profichip GmbH 2004. 

5.3 User Callback Functions 
Callback functions are functions that the DPV1 state machine has to make 
available for the user application. Via the return value, the user controls 
whether he has completed the function successful, or whether he has 
completed the function with error, or he wanted to cancel the connection. 
The callback functions are handled in the file dp_user.c. 
 
Return Values of the Callback Functions 
DPV1_OK The function was completed successfully 

DPV1_NOK An error occurred. The user entered more detailed information about 
the error in the error block for this channel (refer to chapter Error 
Handling). 

DPV1_ABORT The user wants to cancel the affected C2 connection. Previously, 
the user has preprocessed the abort PDU in the ASIC memory area.

Figure 5-19 : Return Value of Callback Function 

 
Which return values are permitted respectively is provided with the 
individual functions. 
 
 

5.3.1 USER_C2_INITIATE_REQ (MSAC_C2) 
The firmware calls this functon if a master wants to establish a MSAC_C2 
connection. 
 
 
MSAC_C2_INITIATE_REQ INITIATE Request Callback Function

Transfer SAP 
PDU 

UBYTE 
DPV1_PTR * 

SAP number 

Return DPV1_OK 
DPV1_NOK 
DPV1_ABORT 

 See above 

Figure 5-20 : Function USER_C2_INITIATE_REQ 

 
When this function is called, the parameter PDU points to the structure 
MSAC_C2_INITIATE_REQ_PDU. When leaving the function, the user 
program has to have preprocessed the buffer according to the structure 
MSAC_C2_INITIATE_RES_PDU. The user is supported with the function 
MSAC_C2_INITIATE_REQ_TO_RES; it generates the response structure 
from the request structure. This applies only if the slave is the endpoint of 
the connection. If the macro MSAC_C2_INITIATE_REQ_TO_RES returns 
the value DPV1_NOK, the PDU that was received remains unchanged. The 
user has to either make the evaluation himself, or reject the request for 
establishing a connection. 



5  DPV1 Extensions   
 

66 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

The firmware sends the response PDU when the application program 
leaves the function with DPV1_OK. If the application program can’t 
establish the connection (for example, profile is not supported), the 
application program has to fill in the response PDU according to the 
structure DPV1_ABORT_PDU, and exit the function with DPV1_ABORT. 
The firmware will then set the correct function number, and send the PDU 
as response. In this case, the firmware does not open the connection, and 
marks the corresponding SAP as free again. The request for establishing a 
connection may also be refused with negative response data 
(DPV1_ERROR_RES). 
 
Comment: The application is not to change the function number 
received. 
 
 
DPV1_INITIATE_REQ_PDU  Initiate Request Structure 

function_num UBYTE 0x57  
reserved1 UBYTE Reserved byte 

reserved2 UBYTE Reserved byte 
reserved3 UBYTE Reserved byte 

send_timeout UWORD Time control for MSAC_C2 

features_supported1 UBYTE 0x01 (Read/Write service) 

features_supported2 UBYTE Reserved 
profile_features_supported1 UBYTE Profile-,vendor specific 

profile_features_supported2 UBYTE Profile-,vendor specific 

profile_ident_number UWORD Vendor specific 

s_type UBYTE  
s_len UBYTE  

d_type UBYTE  

d_len UBYTE  

addr_data  
 

BYTE[s_len + 
d_len] 

Structure according to 
DPV1_INITIATE_SUB_PARAM 

Figure 5-21 : Structure DPV1_INITIATE_REQUEST 

 
S-Type: 
This subparameter indicates the presence (S-Type=1) of the optional 
Network/MAC address in the Add_Addr_Param of the source. 
 
S-Len: 
This subparameter indicates the length of the S_Addr subparameter. 
 
D-Type: 
This subparameter indicates the presence (D-Type=1) of the optional 
Network/MAC address in the Add_Addr_Param of the destination. 
 
 



DPV1 Extensions
 

VPC 3+ Software Description Revision 5.0 67
Copyright © profichip GmbH 2004. 

D-Len: 
This subparameter indicates the length of the D_Addr subparameter. 
 
addr_data: 
Contains the additional address information of the source and of the 
destination. 
 
 
DPV1_INITIATE_RES_PDU  Initiate Response Structure 

function_num UBYTE 0x57 
max_len_data_unit UBYTE Length data unit 

features_supported1 UBYTE 0x01 (Read/Write service) 
features_supported2 UBYTE Reserved 

profile_features_supported1 UBYTE Profile-,vendor specific 

profile_features_supported2 UBYTE Profile-,vendor specific 

profile_ident_number UWORD Vendor specific 
s_type UBYTE See above 

s_len UBYTE See above 

d_type UBYTE See above 

d_len UBYTE See above 
addr_data  
 

BYTE[s_len + 
d_len] 

Structure according to 
DPV1_INITIATE_SUB_PARAM 

Figure 5-22 : Structure DPV1_INITIATE_RESPONSE 

 
addr_data[]   
S_api UBYTE  

S_reserved UBYTE  

S_net_addr UBYTE[6]  
S_mac_addr UBYTE[]  

D_api UBYTE  

D_reserved UBYTE  
D_net_addr UBYTE[6]  

D_mac_addr UBYTE[]  

Figure 5-23 : Structure addr_data 

 
S_API: 
This subparameter identifies the application process instance of the source.  
 
S_Network_Address: (S-Type=1) 
This subparameter identifies the network address of the source according 
to ISO/OSI-Network addresses. 
 
S_MAC_Address: (S-Type=1) 
This subparameter identifies the MAC_Address of the source. 



5  DPV1 Extensions   
 

68 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

D_api: 
This subparameter identifies the application process instance of the 
destination. 
 
D_Network_Address: (D-Type=1) 
This subparameter identifies the network address of the destination 
according to ISO/OSI-Network addresses. 
 
D_MAC_Address: (D-Type=1) 
This subparameter identifies the MAC_Address of the destination. 
 

5.3.2 MSAC_C2_INITIATE_REQ_TO_RES (MSAC_C2) 
This function relieves the application program of copying the data that is 
located at different locations at the initiate request and the response PDU. 
In addition, standard settings are entered in the response PDU. 
 
MSAC_C2_INITIATE_REQ_TO_RES 

Transfer PDU MSAC_C2_INITIATE_REQ_PD
U * 

Request PDU 

Return DPV1_OK 
 
DPV1_NOK 
 

 Response PDU was generated
The user has to handle the 
Response PDU himself since 
the device is not the endpoint 
of the connection. The PDU 
that has been transferred is 
not changed. 

Figure 5-24 : Function MSAC_C2_INITIATE_REQ_TO_RES 

 
 
Function Description: 
♦  A check is made in the connection buffer whether the endpoint (D type = 0) of 

a connection has been reached. Only then will the response PDU be 
generated; that is, the buffer that was received is changed. 

♦  The following response PDU is generated: 
! As length for the PDU, the length entry for the MSAC_C2 PDU 

transferred with vpc3_init() is used. 
 
! Only READ and WRITE is specified for supported services 
 
! The profile attributes and the profile number are set to default values 

(defined in dp_cfg.h). 
 
! The data for destination- and source addressing is copied from the 

request PDU and entered in the response PDU; destination and 
source are exchanged. 

 

 



DPV1 Extensions
 

VPC 3+ Software Description Revision 5.0 69
Copyright © profichip GmbH 2004. 

5.3.3 USER_C2_ABORT_IND  
The firmware calls this function if a MSAC_C2 connection was aborted by 
the master, or the firmware detects a reason for canceling it (for example, 
timeout). A MSAC_C1 connection is coupled to the processing mode 
(cyclical state machine) of the slave. In the case of 
LEAVE_DATA_EXCHANGE, the MSAC_C1 connection is cancelled 
automatically.  
 
 
USER_C2_ ABORT_IND ABORT Indication Callback Function 

Transfer SAP 
PDU 

UBYTE 
DPV1_PTR * 

SAP number 

Return DPV1_OK  See above 

Figure 5-25 : Function USER_C2_ABORT_IND 

 
 
DPV1_ABORT_PDU  Abort Structure 

function_num UBYTE  

Subnet UBYTE  
instance_reason UBYTE  

Figure 5-26 : Function DPV1_ABORT_PDU 

 
 
Subnet   

MSAC_C2_SUBNET_NO 0  
MSAC_C2_SUBNET_LOCAL 1  

MSAC_C2_SUBNET_REMOTE 2  

Figure 5-27 : Description Subnet 

 
 
 
Instance   

MSAC_C2_INSTANCE_FDL 0x00  

MSAC_C2_INSTANCE_MSAC_C2 0x10  
MSAC_C2_INSTANCE_USER 0x20  

MSAC_C2_INSTANCE_RESERVED 0x30  

Figure 5-28 : Description Instance 

 
 
 



5  DPV1 Extensions   
 

70 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

reason   

MSAC_C2_ABT_SE 0x01 Sequence error 
MSAC_C2_ABT_FE 0x02 Invalid request PDU received 

MSAC_C2_ABT_TO 0x03 Timeout of the connection 
MSAC_C2_ABT_RE 0x04 Invalid response PDU received 

MSAC_C2_ABT_IV 0x05 Invalid service from USER 

MSAC_C2_ABT_STO 0x06 Send_Timeout requested was too small 

MSAC_C2_ABT_IA 0x07 Invalid additional address information 
MSAC_C2_ABT_OC 0x08 waiting for FDL_DATA_REPLY.con 

MSAC_C2_ABT_RES 0x0F Resource error 

Figure 5-29 : Description Reason 

 
 

5.3.4 USER_READ_REQ (MSAC_C1+MSAC_C2) 
 
The firmware calls this function when a read request is pending. 
 
DPV1_READ_REQ READ Request Callback Function 

Transfer SAP 
PDU 

UBYTE 
DPV1_PTR * 

SAP number 

Return DPV1_OK 
DPV1_NOK 
DPV1_ABORT 

 See above 

Figure 5-30 : Function USER_READ_REQ 

 
The firmware calls this function when a Read request has been received. 
The array pdu_data[] is undefined when the function is called. The 
application program has to fill in the array pdu_data[], and enter the 
corresponding length in the field ‘length’. The firmware handles the function 
number. If there is an error, the user normally provides a negative response 
PDU. This retains the connection. If the connection is to be cancelled also, 
an ABORT PDU is to be generated. 
 
 
DPV1_READ_PDU  Read Structure 

Function_num UBYTE 0x5E 
Slot_num UBYTE  

Index UBYTE  

Length UBYTE  
Pdu_data UBYTE[]  

Figure 5-31 : Description DPV1_READ_PDU 



DPV1 Extensions
 

VPC 3+ Software Description Revision 5.0 71
Copyright © profichip GmbH 2004. 

 
Example for Read Processing: 
♦  Read.req(length ≤ 40) for a data set with the length 40 octets => the length 

indicated in the request is read 
♦  Read.req(length > 40) for a data set with the length 40 octets => the genuine 

length of the data set (40 bytes) is read 
 
 

5.3.5 USER_WRITE_REQ (MSAC_C1+MSAC_C2) 
 
The firmware calls this function if a write request was received. The 
firmware manages the function number. If there is an error, the user 
normally sets up a negative response PDU. This retains the connection. If 
the connection is to be cancelled also, an ABORT PDU is to be generated. 
 
 
USER_WRITE_REQ WRITE Request Callback Function 

Transfer SAP 
PDU 

UBYTE 
DPV1_PTR * 

SAP number 

Return DPV1_OK 
DPV1_NOK 
DPV1_ABORT 

 See above 

Figure 5-32 : Function USER_WRITE_REQ 

 
Example for Write Processing: 
♦  Write.req(length ≤ 40) for a data set with the length 40 octets => the length of 

data indicated in the request is written, and the length is mirrored in the reply. 
♦  Write.req(length > 40) for a data set with the length 40 octets => there is to be 

no writing; an error message has to be transmitted. 
 
 
DPV1_WRITE_PDU  Write Structure 

Function_num UBYTE 0x5F 
Slot_num UBYTE  

Index UBYTE  

Length UBYTE  

Pdu_data UBYTE[]  

Figure 5-33 : Description DPV1_WRITE_PDU 

 
 
 
 



5  DPV1 Extensions   
 

72 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

5.3.6 USER_C2_DATA_TRANSPORT_REQ (MSAC_C2) 
 
The firmware calls this function if a data transport request was received. 
When the function is called, the array pdu_data[] contains the received 
data. The application program has to fill the array pdu_data[] with the data 
that is to be sent, and set the field ‘length’ correspondingly. The firmware 
handles the function number. If there is an error, the user normally sets up 
a negative response PDU. This retains the connection. If the connection is 
to be cancelled also, an ABORT PDU is 
generated. 
 
 
USER_C2_DATA_TRANSPORT_
REQ 

Data Transport Request Callback Function 

Transfer SAP 
PDU 

UBYTE 
DPV1_PTR * 

SAP number 

Return DPV1_OK 
DPV1_NOK 
DPV1_ABORT 

 See above 

Figure 5-34 : Function USER_C2_DATA_TRANSPORT 

 
DATA_TRANSPORT_PDU  Data Transport Structure 

Function_num UBYTE 0x51 
Slot_num UBYTE  

Index UBYTE  

Length UBYTE  
Pdu_data UBYTE[]  

Figure 5-35 : Description DATA_TRANSPORT_PDU 

5.4 DPV1 Alarm-Handling 
The alarm and status messages will be transferred within the 
Ext_Diag_Data and replaces the device related diagnosis of EN 50170. 
The Ext_Diag_Data can consist of one, multiple or all of the following 
components: 
 
♦  Alarm-PDU (only one) 
♦  Status-PDU 
♦  Identification-related diagnosis 
♦  Channel-related diagnosis 
♦  Revision-Number (only one) 
 
 
 



DPV1 Extensions
 

VPC 3+ Software Description Revision 5.0 73
Copyright © profichip GmbH 2004. 

The structure of the PDUs for alarm and status is as follows: 
 

Byte Description 
0 Headerbyte 
1 Alarm_Type / Status_Type 
2 Slot_Number 
3 Specifier 
4 
: 

Diagnostic User Data 

Figure 5-36 : Structure of the device-related diagnosis for alarm / status 

 

5.4.1 Coding of the Alarm PDU 
 

Byte Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 
0 0 0 Block length in byte (4 to 63) 
1 0 Alarm Type 
2 Slot Number 
3 Seq_Nr ACK SPEC 
4 
: 

62 

 
Diagnostic User Data 

Figure 5-37 :  Channel related diagnostic 

 
The Alarm_Type describes the alarm itself. The necessary reaction of the 
control application in the DPV1-Master (Class 1) is manufacturer- or 
application-specific. 
 

Alarm Type  
0 Reserved 

1 Diagnostic Alarm 
2 Process Alarm 

3 Pull Alarm 

4 Plug Alarm 

5 Status Alarm 
6 Update Alarm 

7-31 Reserved 

32-126 Manufacturer specific Alarm 

127 Reserved 

Figure 5-38 : Coding Alarm Type 

 
 
 
 
 



5  DPV1 Extensions   
 

74 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

Alarm_specifier: 
 

Coding Designation  
00 No further differentiation  
01 Error appears and Slot disturbed the slot generates an alarm due to an 

error 

10 Error disappears and Slot is okay the slot generates an alarm and 
indicates that the slot has no further 
errors 

11 Error disappears and Slot is still 
disturbed 

the slot generates an alarm and 
indicates that the slot has still further 
errors 

Figure 5-39 : Coding Alarm Specifier 

 
Add_Ack:  
When setting this bit the slave indicates to the DPV1-Master (Class 1) that 
this alarm requires in addition to the MSAC1_Alarm_Ack a separate user 
acknowledgement. This can be done for instance by means of a Write 
service. 
 
Seq_Nr:  
By means of the Seq_Nr an unique identification of an alarm message is 
accomplished. 
 
 

5.4.2 Coding of the Status PDU 
 

Byte Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 
0 0 0 Block length in byte (4 to 63) 
1 1 Status Type 
2 Slot Number 
3 reserved SPEC 
4 
: 

62 

 
Diagnostic User Data 

Figure 5-40 :  Channel related diagnostic 

Status Type  
0 Reserved 

1 Status Message 

2 Modul Status 

3-31 Reserved 
32-126 Manufacturer specific Status 

127 Reserved 

Figure 5-41 : Coding Status Type 

 



DPV1 Extensions
 

VPC 3+ Software Description Revision 5.0 75
Copyright © profichip GmbH 2004. 

Status_specifier: 
 

Coding Designation 
00 No further differentiation 
01 Status appears 

10 Status disappears 

11 Reserved 

Figure 5-42 : Coding Status Specifier 

 
 

Coding of Modul Status 
 
The Modul_Status contains information whether the modules/slots of a 
DPV1-Slave delivers valid data or not and the information whether there is 
a wrong module or no module in place. For each module/slot 2 bits are 
designated. The Modul_Status is padded to byte limits and not used bits 
are fixed to zero. The Modul_Status is typically generated by the device 
module (Slot_Number = 0). 
 
Structure of the Modul_Status: 
 

Byte Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 
0 Headerbyte 
1 Status_Type = Modul_Status 
2 Slot Number = 0 
3 Specifier 
4 Modul_Status 

4 
Modul_Status 

3 
Modul_Status 

2 
Modul_Status 

1 
: ..... 

m Modul_Status 
m 

Modul_Status 
m-1 

. . 

Figure 5-43 :  Structure Modul Status 

 
 
Modul Status: 
 

Coding Designation 
00 data valid 
01 data invalid: the data of the corresponding module are not valid due to an error 

(e.g. short circuit) 

10 data invalid/wrong module: the data of the corresponding module are not valid, 
due to a wrong module in place 

11 data invalid/no module: the data of the corresponding module are not valid, 
because there is no module in place 

Figure 5-44 : Coding Modul Status 



5  DPV1 Extensions   
 

76 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

5.4.3 Example for Ext_Diag_Data (Alarm and Status PDU) 
 
 
MSB                                     LSB
7 6 5 4 3 2 1 0 

 

0 0 0 0 0 1 1 1 Header: Device related diagnostic 
1 0 0 0 0 0 0 1 Statustype: Status Message 
0 0 0 0 0 0 1 0 Slotnumber: 2 (sensor A) 
0 0 0 0 0 0 0 0 Specifier: no further differentiation 
0 0 0 0 0 1 0 1 Diag. User Data: average temperature 
        Temperature value 
        Unsigned16 
0 0 0 0 1 0 0 1 Header: Device related diagnostic 
0 0 0 0 0 0 1 0 Alarmtype: Process Alarm 
0 0 0 0 0 0 1 1 Slotnumber: 3 (valve B) 
0 0 0 0 0 0 0 1 Specifier: alarm appears 
0 1 0 1 0 0 0 0 Diag. User Data: 0x50 (upper limit ex...)
        Time stamp 
        4 bytes 
         
         
0 1 0 0 0 0 1 0 Header: Identification related diagn. 
0 0 0 0 0 0 0 1 1st Identification number with diagn. 

Figure 5-45 : Example 

 
 
Correspondending GSD-part: 
 
;text assignments for sensor A and valve B 
 
Unit_Diag_Area = 24-27 

Value(1) = "Minimum temperature" 
Value(2) = "Maximum temperature" 
Value(5) = "Average temperature" 

Unit_Diag_Area_End 
 
Unit_Diag_Area = 28-31 

Value(1) = "lower limit exceeded pressure" 
Value(5) = "upper limit exceeded pressure" 

Unit_Diag_Area_End 
 
Unit_Diag_Area = 8-15 

Value(2) = "senor A" 
Value(3) = "valve B" 

Unit_Diag_Area_End 
 
Unit_Diag_Area = 16-17 

Value(1) = "alarm/status appearing" 
Value(2) = "alarm/status disappearing" 

Unit_Diag_Area_End 
 
 



DPV1 Extensions
 

VPC 3+ Software Description Revision 5.0 77
Copyright © profichip GmbH 2004. 

Since these definitions are used for both alarms and status 
messages their values should be different. That means different 
values for alarms and status messages should be used at the same 
position within the diagnostic field. 
 
 

5.4.4 Coding of the Alarm_Ack-PDU 
 
 
ALARM_ACK_PDU   

Function_num UBYTE 0x5C 
Slot_num UBYTE  

Alarmtype UBYTE  

Specifier UBYTE  

Seq_Nr UBYTE[]  

Figure 5-46 : Description ALARM_ACK_PDU 

 
 



5  DPV1 Extensions   
 

78 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

5.4.5 Alarm User Callback Functions 
 
 

Alarm State Info 
 
 
void user_alarm_state_info( UBYTE alarm_type_bit_field, UBYTE sequence_depth ) 

Function 
The slave indicates to the user the activation or deactivation of the alarm 
state machine, specifying the permissible alarm types and the supported 
alarm queue. 

Parameter 
alarm_type_bit_field:  
sequence_depth 

Return Value None  

Figure 5-47 : Function user_alarm_state_info () 

 
 
The alarm_type_bit_field indicates the permissible alarm types: 
 
 
ALARM_TYPE_BIT_FIELD  

ALARM_TYPE_NONE_VALUE The alarm state machine was disabled; set 
alarms is no longer allowed for the user. 

ALARM_TYPE_UPDATE_VALUE 

ALARM_TYPE_STATUS_VALUE 

ALARM_TYPE_MANUFACTURER_VALUE 

ALARM_TYPE_DIAGNOSTIC_VALUE 
ALARM_TYPE_PROCESS_VALUE 

ALARM_TYPE_PULLPLUG_VALUE 

Otherwise the alarm state machine was 
enabled. 

Figure 5-48 : ALARM_TYPE_BIT_FIELD 

 
 
 
 
 
 
 
 
 
 
 
 
 



DPV1 Extensions
 

VPC 3+ Software Description Revision 5.0 79
Copyright © profichip GmbH 2004. 

The sequence_depth informs the user over the alarm mode. 
 
SEQUENCE_DEPTH  

SEQC_MODE_TOTAL_00 Alarm state machine deactivated; no alarms are to be 
sent or set by the user 

SEQC_MODE_OFF Alarm state machine is not processing in the sequence 
mode but in the type mode; that is, one alarm each of 
each type is permitted to be active on the bus at one 
point in time 
Siemens PLCs support only this mode! 

SEQC_MODE_TOTAL_02 Sequence mode; 2 alarms of any type may be 
processed at one point in time with the 
parameterization master 

SEQC_MODE_TOTAL_04 Sequence mode; 4 alarms of any type may be 
processed at one point in time with the 
parameterization master 

SEQC_MODE_TOTAL_08 Sequence mode; 8 alarms of any type may be 
processed at one point in time with the 
parameterization master 

SEQC_MODE_TOTAL_12 Sequence mode; 12 alarms of any type may be 
processed at one point in time with the 
parameterization master 

SEQC_MODE_TOTAL_16 Sequence mode; 16 alarms of any type may be 
processed at one point in time with the 
parameterization master 

SEQC_MODE_TOTAL_24 Sequence mode; 24 alarms of any type may be 
processed at one point in time with the 
parameterization master 

SEQC_MODE_TOTAL_32 Sequence mode; 32 alarms of any type may be 
processed at one point in time with the 
parameterization master 

Figure 5-49 : SEQUENCE_DEPTH 

 



5  DPV1 Extensions   
 

80 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

Set Alarm 
 
UBYTE set_alarm( ALARM_STATUS_PDU_PTR user_alarm_ptr, UBYTE callback) 

Function By calling this function, the user can send alarms to the 
master 

Parameter user_alarm_ptr 
callback 

SET_ALARM_OK  

SET_ALARM_AL_STATE
_CLOSED 

Alarm state machine not started 

SET_ALARM_ALARMTY
PE_NOTSUPP 

Alarm type not supported 

SET_ALARM_SEQ_NR_
ERROR 

The values of the transfer parameters are 
not in the specified value range 

Return Value 

SET_ALARM_SPECIFIER
_ERROR 

The values of the transfer parameters are 
not in the specified value range 

Figure 5-50 : Function set_alarm () 

 
If the parameter callback is “FALSE” the alarm will be send directly. If the 
parameter callback is “TRUE” the alarm will be send over the function 
user_alarm (dp_user.c). In this function the user can add e.g. ModuleStatus 
or Channel related diagnostic. 
 

Acknowledge Alarm 
 
void user_alarm_ack_req( ALARM_STATUS_PDU_PTR alarm_ptr ) 

Function 
The slave acknowledges an alarm to the user that was set previously: 
The slave receives the acknowledgement in DPV1 operation from the 
parameterization master, and tranfers it to the user. 

Parameter ALARM_STATUS_PDU_PTR 

Return Value None  

Figure 5-51 : Function user_alarm_ack_req() 

 
 
 
 



DPV2 Services  6
 

VPC 3+ Software Description Revision 5.0 81
Copyright © profichip GmbH 2004. 

6 DPV2 Services 

6.1 Isochron Mode (IsoM) 
 

6.1.1 General 
The IsoM synchronize DP-Master, DP-Slave and DP-Cycle. The isochron 
cycle time starts with the transmission of the SYNCH telegram by the IsoM 
Master. If the VPC 3+ supports the IsoM, a synchronization signal at Pin 
13 is generated by reception of a SYNCH telegram. 
 

Bit Position 
Byte 

7 6 5 4 3 2 1 0 
Designation 

0 0 0 1 0 1 0 0 0 Control_Command 

1 1 0 0 0 0 0 0 0 Group_Select 

Figure 6-1 : SYNCH telegram 

 
There are two operation modes for cyclic synchronization available in 
VPC3+: 
 
♦  Isochron Mode: Each SYNCH telegram causes an impulse on the SYNC 

output and a New_GC_Command interrupt. 
 
♦  Poor Sync: A Data_Exchange telegram no longer causes an DX_Out interrupt 

immediately, rather the event is stored in a flag. By a following SYNCH 
message reception, the DX_Out interrupt and a synchronization signal are 
generated at the same time. Additionally a New_GC_Command interrupt is 
produced, as the SYNCH telegram behaves like a regular Global_Control 
telegram to the DP state machine. If no Data_Exchange telegram precedes the 
SYNCH telegram, only the New_GC_Command interrupt is generated. 

Figure 6-2 : SYNC-signal and interrupts for synchronization modes  

Data_Ex SYNCH SYNCH Data_Ex GC SYNCH
telegrams

SYNC

DX_Out*

New_GC_Command*

SYNC

DX_Out*

New_GC_Command*

IsoM

Poor Sync



6  DPV2 Services 
 

82 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

6.1.2 Isochron Mode 
 

Settings for Isochron mode in the dp_cfg.h 
The user connects the different services via #define in “cfg.h”, so that the 
program code is adapted to the required services respectively. SYNC_Ena 
in Mode Register 2 must be set. Furthermore the polarity (SYNC_Pol) can 
be adjusted. Sync_PW Register contains a multiplicator with base of 1/12 
µs to adapt the pulse width. Additionally the Spec_Clear_Mode in Mode 
Register 0 must be set.  
 
 
Service  

#define DP_ISOCHRON_MODE Activation of the functionality for the expansion 
services of the isochron mode. 

Figure 6-3 :  PROFIBUS Services 

 
 
Settings for Isochron Mode   

#define SYNCH_PULSEWIDTH UBYTE Width of Synchpulse in 1/12µs 

Figure 6-4 :  Settings for Isochron Mode 

 
 
 Mode Register 2, Address 0CH: 

bit 7 - 5   

bit 4 SYNC_Ena: Enable generation of SYNC pulse (for Isochron Mode only) 
0 = SYNC pulse generation is disabled (default). 
1 = SYNC pulse generation is enabled. 

bit 3 - 0  

Figure 6-5 :  General Slave Parameter 

 
 
 Mode Register 0, High-Byte, Address 07H (Intel): 

Bit 15 - 14  

Bit 13 Spec_Clear_Mode: Special Clear Mode (Fail Safe Mode) 
0 = No special clear mode. 
1 = Special clear mode. VPC3+ will accept data telegrams with data 
unit = 0 

Bit 12 - 8  

Figure 6-6 :  Coding of Mode Register 0, High-Byte 

 



DPV2 Services
 

VPC 3+ Software Description Revision 5.0 83
Copyright © profichip GmbH 2004. 

Settings in Set_Param telegram are shown below (Master configuration). 
 

Bit Position 
Byte 

7 6 5 4 3 2 1 0 
Designation 

0   

S
yn

c_
R

eq
  

= 
0 

Fr
ee

ze
_R

eq
 

= 
0     Station_Status 

1         WD_Fact_1 

2         WD_Fact_2 

3         minTSDR 

4         Ident_Number_High 

5         Ident_Number_Low 

6 

G
ro

up
_8

 
= 

0        Group_Ident 

7  

Fa
il_

Sa
fe

 
= 

1       DPV1_Status_1 

8         DPV1_Status_2 

9    

Is
oM

_R
eq

 
= 

1     DPV1_Status_3 

10 
: 

246 
        User_Prm_Data 

Figure 6-7 : Format of Set_Param for IsoM 

 



6  DPV2 Services 
 

84 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

6.1.3 Poor Sync Mode 

Settings for Poor Sync mode in the dp_cfg.h 
DX_Int_Port in Mode Register 2 must be set and SYNC_Ena need not to 
be set. The setting of polarity and pulse width are the same as by IsoM. 
Also the Fail Safe Mode must be supported. 
 
 
Service  

#define DP_ISOCHRON_MODE Activation of the functionality for the expansion 
services of the isochron mode. 

Figure 6-8 :  PROFIBUS Services 

 
 
Settings for Isochron Mode   

#define SYNCH_PULSEWIDTH UBYTE Width of synch pulse in 1/12µs 

Figure 6-9 :  Settings for Isochron Mode 

 
 
 Mode Register 2, Address 0CH: 

bit 7 - 5   
bit 4 SYNC_Ena: Enable generation of SYNC pulse (for Isochron Mode only) 

0 = SYNC pulse generation is disabled (default). 
1 = SYNC pulse generation is enabled. 

bit 3 DX_Int_Port: Port mode for Dataexchange Interrupt 
0 = DX Interrupt not assigned to port DATA_EXCH (default). 
1 = DX Interrupt (synchronized to GC-SYNC) assigned to port 
DATA_EXCH. 

bit 2 - 0  

Figure 6-10 :  General Slave Parameter 

 
 
 Mode Register 0, High-Byte, Address 07H (Intel): 

Bit 15 - 14  
Bit 13 Spec_Clear_Mode: Special Clear Mode (Fail Safe Mode) 

0 = No special clear mode. 
1 = Special clear mode. VPC3+ will accept data telegrams with data 
unit = 0 

Bit 12 - 8  

Figure 6-11 :  Coding of Mode Register 0, High-Byte 

 



DPV2 Services
 

VPC 3+ Software Description Revision 5.0 85
Copyright © profichip GmbH 2004. 

Settings in Set_Param telegram are shown below (Master configuration). 
 
 

Bit Position 
Byte 

7 6 5 4 3 2 1 0 
Designation 

0   

S
yn

c_
R

eq
  

= 
1 

Fr
ee

ze
_R

eq
 

= 
1     Station_Status 

1         WD_Fact_1 

2         WD_Fact_2 

3         minTSDR 

4         Ident_Number_High 

5         Ident_Number_Low 

6 

G
ro

up
_8

 
= 

1        Group_Ident 

7         DPV1_Status_1 

8         DPV1_Status_2 

9         DPV1_Status_3 

2 
: 

246 
        User_Prm_Data 

Figure 6-12 : Format of Set_Prm for DP-Slave using isochrones cycles 

 
In opposite to IsoM the DX_Out interrupt first generated by receiving of 
SYNCH telegram. If no Data_Exchange telegram received before a 
SYNCH occurred, no synchronization signal is generated. 
 
 



6  DPV2 Services 
 

86 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

6.1.4 Structured Prm-Data for Isochron Mode 
 

Byte  Value range Description 
0 Structured 

Length 
28  

1 Structure Type 4  

2 Slotnumber 0  

3 Reserved 0  
4 Version 1  

5 - 8 TBASE_DP 375, 750, 1500 (default), 
3000, 6000. All other values 
are reserved an shall not be 

used. 

 

9 - 10 TDP  154 to 216-1  
11 TMAPC  0 to255  

12 - 15 TBASE_IO  375, 750, 1500 (default), 
3000, 6000. All other values 
are reserved an shall not be 

used. 

 

16 - 17 TI  0 to 216-1  
18 - 19 TO  0 to 216-1  

20 - 23 TDX  0 to 232-1  

24 - 25 TPLL_W 1 to 216-1  
26 - 27 TPLL_D  0 to 216-1  

Figure 6-13 : Structured Isochron Mode Parameter 

 



DPV2 Services
 

VPC 3+ Software Description Revision 5.0 87
Copyright © profichip GmbH 2004. 

6.2 Data-eXchange-Broadcast (DXB) 

 
Figure 6-14 : Overview DXB 

 
The DXB mechanism enables a fast slave-to-slave communication. A slave 
which holds input data significant for other slaves, works as a Publisher. 
The Publisher can handle a special kind of Data Exchange request from the 
master and sends its answer as a broadcast telegram. Other slaves, that 
are parameterized as Subscribers, can monitor this telegram. A link is 
opened to the Publisher if the address of the Publisher is registered in the 
link table of the Subscriber. If the link were established correctly, the 
Subscriber can fetch the input data from the Publisher. The VPC 3+ can 
handle a maximum of 29 links.  
 

6.2.1 Publisher 
The VPC3+ handles the publisher mode automatically. In the firmware no 
adjustments need to be made. A Publisher is activated with 
'Publisher_Enable = 1' in DPV1_Status_1. The time minTSDR must be set to 
'TID1 = 37 tbit + 2 TSET + TQUI'.  
 
All Data_Exchange telegrams containing the function code 7 (Send and 
Request Data Brct) are responded with destination address 127. If 
Publisher mode is not enabled, these requests are ignored. 

Dout Din DXBout

DP-Slave (Subscriber)

Data Exchange with
DP-Master (Class 1)

filtered
Broadcast (Input) Data

from Publisher

Dout Din

DP-Slave (Publisher)

Data Exchange with
DP-Master (Class 1)

Dout Din

DP-Master (Class1)

Link

Response (DA=127)Request (FC=7)



6  DPV2 Services 
 

88 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

6.2.2 Subscriber 
A Subscriber requires information about the links to its Publishers. These 
settings are contained in a DXB Linktable or DXB Subscribertable and 
transferred via the Structured_Prm_Data in a Set_Param or Set_Ext_Prm 
telegram. Each Structured_Prm_Data is treated like the User_Prm_Data 
and therefore evaluated by the user. From the received data the user must 
generate DXB_Link_Buf and DXB_Status Buf entries. The watchdog must 
be enabled to make use of the monitoring mechanism. This must be 
checked by the user. 
 
 

6.2.3 Structured PRM-Data: DXB Linktable 
 

Bit Position 
Byte 

7 6 5 4 3 2 1 0 
Designation 

0         Structured_Length 

1 0 0 0 0 0 0 1 1 Structure_Type 

2 0 0 0 0 0 0 0 0 Slot_Number 

3 0 0 0 0 0 0 0 0 Reserved 

4 0 0 0 0 0 0 0 1 Version 

5         Publisher_Addr 

6         Publisher_Length 

7         Sample_Offset 

8         Sample_Length 

9 
: 

120 
        Further link entries 

Figure 6-15 : Format of the Structured_Prm_Data with DXB-Linktable 
(specific link is grey scaled) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



DPV2 Services
 

VPC 3+ Software Description Revision 5.0 89
Copyright © profichip GmbH 2004. 

6.2.4 Structured PRM-Data: DXB Subscribertable 
 

Bit Position 
Byte 

7 6 5 4 3 2 1 0 
Designation 

0         Structured_Length 

1 0 0 0 0 0 1 1 1 Structure_Type 

2 0 0 0 0 0 0 0 0 Slot_Number 

3 0 0 0 0 0 0 0 0 Reserved 

4 0 0 0 0 0 0 0 1 Version 

5         Publisher_Addr 

6         Publisher_Length 

7         Sample_Offset 

8         Dest_Slot_Number 

9         Offset_Data_Area 

10         Sample_Length 

11 
: 

120 
        further link entries 

Figure 6-16: Format of the Structured_Prm_Data with DXB-Subscribertable 
(specific link is grey scaled) 

 
The user must copy the link entries of DXB-Linktable or DXB-
Subscribertable, without Dest_Slot_Number and Offset_Data_Area,  in the 
DXB_Link_Buf and set R_Len_DXB_Link_Buf. Also the user must enter the 
default status message in DXB_Status_Buf from the DXB-Linktable and 
write the appropriate values to R_Len_DXB_Status_Buf. After that, the 
parameterization interrupt can be acknowledged. 
 

6.2.5 Structure of VPC3+ DXB-Link Table 
 

Byte Entry 
0 Publisher_Addr (= 0...125) 

1 Publisher_Length (= 1...244) 

2 Sample_Offset (= 0...243) 
3 Sample_Length (= 1..244) 

... ... 

m - 3 Publisher_Addr (= 0..125) 

m - 2 Publisher_Length (= 1..244) 
m - 1 Sample_Offset (= 0..243) 

m Sample_Length (= 1..244) 

Figure 6-17 : Structure of VPC3+ DXB_LINK_TABLE 



6  DPV2 Services 
 

90 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

6.2.6 Structure of VPC3+ DXB Link Status 
 

Bit Position 
Byte 

7 6 5 4 3 2 1 0 
Designation 

0 0 0 Block_Length Header_Byte 

1 1 0 0 0 0 0 1 1 Status_Type 

2 0 0 0 0 0 0 0 0 Slot_Number 

3 0 0 0 0 0 0 0 0 Status_Specifier 

4         Publisher_Addr 

5 Link_ 
Failure 

Link_
Error 0 0 0 0 0 Data_ 

Exist Link_Status 

6 
: 

61 
        Further link entries 

 
 Link_Status: 

Bit 7 Link_Status :  

1 = active, valid data receipt during last monitoring period 
0 = not active, no valid data receipt during last monitoring period (DEFAULT) 

Bit 6 Link_Error:  
0 = no faulty Broadcast data receipt (DEFAULT) 
1 = wrong length, error occurred by reception 

Bit 0 Data_Exist:  
0 = no correct Broadcast data receipt during current monitoring period 
(DEFAULT) 
1 = error free reception of Broadcast data during current monitoring period 

Figure 6-18 : DXB_Link_Status_Buf (specific link is grey scaled) 

 
 

6.2.7 Functional Description of the DXB Services 
 
 
VPC3_SET_DXB_LINK_TABLE_LEN (UBYTE link_len) 

Function Set the length of the DXB-Link Table buffer 

Parameter Length of DXB-Link Table buffer 

Return Value None  

Figure 6-19 :  Function VPC3_SET_DXB_LINK_TABLE_LEN 

 



DPV2 Services
 

VPC 3+ Software Description Revision 5.0 91
Copyright © profichip GmbH 2004. 

UBYTE VPC3_GET_DXB_LINK_TABLE_LEN () 

Function Get the length of the DXB-Link Table buffer 

Parameter None 

Return Value Length of DXB-Link Table buffer  

Figure 6-20 :  Function VPC3_GET_DXB_LINK_TABLE_LEN 

 
 
VPC3_UNSIGNED8_PTR VPC3_GET_DXB_LINK_TABLE_BUF_PTR () 

Function Fetch buffer pointer of the DXB-Link Table buffer. 

Parameter None 

Return Value pointer to the DXB-Link Table buffer  

Figure 6-21 : Function VPC3_GET_DXB_LINK_BUF_PTR 

 
 
VPC3_SET_DXB_LINK_STATUS_LEN (UBYTE status_len) 

Function Set the length of the DXB-Link Status buffer 

Parameter Length of DXB-Link Status buffer 

Return Value None  

Figure 6-22 :  Function VPC3_SET_DXB_LINK_STATUS_LEN 

 
 
UBYTE VPC3_GET_DXB_LINK_STATUS_LEN () 

Function Get the length of the DXB-Link Status buffer 

Parameter None 

Return Value Length of DXB-Link Status buffer  

Figure 6-23 :  Function VPC3_GET_DXB_LINK_STATUS_LEN 

 
 
 
 
 



6  DPV2 Services 
 

92 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

VPC3_UNSIGNED8_PTR VPC3_GET_DXB_LINK_STATUS_BUF_PTR() () 

Function Fetch buffer pointer of the DXB-Link Status buffer. 

Parameter None 

Return Value pointer to the DXB-Link Status data buffer  

Figure 6-24 : Function VPC3_GET_DXB_LINK_STATUS_BUF_PTR() 

 
 
void dxb_subscriber_table_to_dxb_link_table( PRM_SUBSCRIBER_TABLE_PTR 
dxb_ptr, UBYTE NrOfLinks ) 

Function Converts the dxb-subscriber table format to the dxb-link table format and 
initialize the VPC3+ with the dxb-link table. 

Parameter 
PRM_SUBSCRIBER_TABLE_PTR 
NrOfLinks 

Return Value None  

Figure 6-25 : Function dxb_subscriber_table_to_dxb_link_table() 

 
 
UBYTE check_dxb_link_table( void ) 

Function Checks the dxb-link table. 

Parameter None 

Return Value DP_OK 
DP_PRM_DXB_ERROR 

 

Figure 6-26 : Function check_dxb_link_table () 

 
 
void buil_dxb_link_status( void ) 

Function Generate from the dxb-link table the dxb link status table and initialize the 
VPC3+ with the dxb-link status table. 

Parameter Valid DXB-Link Table 

Return Value None  

Figure 6-27 : Function build_dxb_link_status () 

 
 
 



DPV2 Services
 

VPC 3+ Software Description Revision 5.0 93
Copyright © profichip GmbH 2004. 

 

Processing Sequence 
The VPC 3+ processes DXBout buffers like the Dout buffers. The only 
difference is, that the DXBout buffers are not cleared by the VPC 3+.  
 
The VPC 3+ writes the received and filtered broadcast data in the DXBout 
buffer. The buffer contains also the Publisher_Address and the 
Sample_Length.  
 

Bit Position 
Byte 

7 6 5 4 3 2 1 0 
Designation 

0         Publisher_Addr 

1         Sample_Length 

2 
: 

246 
        Sample_Data 

Figure 6-28 : Structure of DXBout Buffer 

 
 
VPC3_UNSIGNED8_PTR vpc3_get_dxboutbufptr () 

Function Fetch buffer pointer of the DXB output buffer. 

Parameter None 

Return Value Pointer to the DXB data buffer 

NIL, if no diagnostics buffer in the ‘U’ state 

 

Figure 6-29 :  Function vpc3_get_dxboutbufptr() 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



6  DPV2 Services 
 

94 Revision 5.0 VPC 3+ Software Description
Copyright © profichip GmbH 2004. 

Monitoring 
After receiving the DXB data the Link_Status in DXB_Status_Buf of the 
concerning Publisher is updated. In case of an error the bit Link_Error is 
set. If the processing is finished without errors, the bit Data_Exist is set. 
  
In state Data_Exchange the links are monitored in intervals defined by the 
parameterized watchdog time. After the monitoring time runs out, the 
VPC 3+ evaluates the Link_Status of each Publisher and updates the bit 
Link_Failure. The timer restarts again automatically. 
 

Event Link_Status Link_Error Data_Exist 

WD_Time elapsed AND Data_Exist = 1 0 0 0 

WD_Time elapsed AND 
(Data_Exist = 0 OR Link_Error = 1) 

1   

faulty DXB data receipt  1 0 

valid DXB data receipt   0 1 

Figure 6-30 : Link_Status handling 

 
To enable the monitoring of Publisher-Subscriber links the watchdog 
timer must be enabled in the Set_Param telegram. This must be 
checked by user. 
 
 

 



DPV2 Services
 

VPC 3+ Software Description Revision 5.0 95
Copyright © profichip GmbH 2004. 

 

Notes: 
 



 

  
 

 
 
 
 

profichip GmbH 
Einsteinstrasse 6a 
91074 Herzogenaurach 
Germany 
 
Phone : +49.9132.744-200 
Fax: +49.9132.744-204 
 
www.profichip.com Th e  Clever   Al t ern a t i ve


