

Ve r ilo g C o d in g fo r S u c c e s s fu l
S y n th e s is

B y

P.R a d h a k r is h n a n ,
Ha rd w a re E n g in e e r,
C is c o S y s te m s , In c .,
1 7 0 , T a s m a n D riv e ,
S a n J o s e , C A 9 5 1 3 4 (U S A)

J a n 2 0 0 3 (Is s u e -4)

Verilog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 2

Contents

Introduction ..3

Prerequisite ...3

Hardware Description Language..3

Synthesis ..4

Think in Hardware..5

Synthesizable Logic ...6

Digital Logic Building Blocks.. 7
Defining Combinational Logic ... 7

assign statement.. 8
always statement... 8
Multiplexer construct.. 9
if-else statement .. 10
case statement ... 11
Function statement.. 12

Defining Sequential Logic .. 12
Counter ... 14
State Machines.. 14

Some suggestions..16

No # for delay... 16
One module – one file... 17
Latch inference ... 17
Blocking, non-blocking statements... 18
parallel_case and full_case notion .. 18
Wired OR inference.. 20
Comments... 20
Some more points ... 21

Disclaimer & Conclusion..21

Verlog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 3

 In tro d u c tio n

It has been nearly three years I had the least time to write anything of this sort, despite my
sincere efforts to rob some time from my daily schedule. With a rugrat at home and with
extended targets at work, it became almost impossible to have some peaceful time to think
about such topics. However I realized that life will be like this always, and I need to fetch
some time for these kinds of activities. Thus, re-born this effort. I hope to continue this for
some more years as long as it is helpful to the students. My sincere thanks to
Mrs.S.Thamaraiselvi, HOD, CS Department of our college for giving enough boost that made
me jump into this activity again.

In this paper I have tried to address some of the important aspects of Verilog coding that
would let us build successful logic that functions in an intended manner. Verilog by itself is a
vast language that helps designers to build logic, libraries, test suites, complex algorithms and
many other functional blocks. Those who are ASIC designers should follow some guidelines
during their coding, to make their design error- free and reliable.

P re re q u is ite

Since this paper deals with the Verilog coding style that would help designers to achieve the
intended function in the chips that they build, I assume that the reader has a moderate
familiarity with this Hardware Description Language (HDL). Verilog has become very
popular in the ASIC design industry these days, and there are many design wins, may be
about 95%, in Verilog domain. VHDL is also a famous HDL, but I have serious doubts in the
wide usage of this language in the ASIC design in today’s industry. This does not mean that
there is no one designing using VHDL. This paper itself is about the Verilog coding style and
hence I take the liberty of using only Verilog in the illustrattions I have used in this paper.

I want to give an emphasis that this paper does not attempt to teach you the Verilog language,
but trying to give the idea behind achieving synthesizable logic from the Verilog codes that
you will be writing in the future.

H a rd w a re D e s c rip tio n L a n g u a g e

With every day’s increasing design complexities and advancing technologies, the olden days’
techniques of custom design by layout has become impossible to cope up with the changes
required in the industry. Every time the next generation of devices are done, the performance
demand increases by a factor of at least two and the design complexities by a factor of four or
more. How do we build a sequential state machine in the digital lab? We try to deduce the
state diagram that would meet the functional requirement and then determine the current state
and the next state of that state machine, with the inputs which take the state machine from one
state to the other. Once we did this, we try to find that combinational logic in the sum of
product (SOP) form using the good old K-map. This will be the logic that feeds the D input of
a flip-flop which will switch according to the output generated by the combinational equation.
Imagine if we were to design a whole chip like this by deducing the equations with our
traditional K-map technique, it would take decades to design current generation complex
silicon chips!!

It was the US Department of Defense (DOD) lab that tried to do the initial work on the idea of
HDL with the help of some universities. Just like a C compiler generating the machine code
for the higher level source code that we write, they made VHDL as the higher level
abstraction language that would describe the logical function in the form of boolean equations
or behavioral code. This source code was cranked by a compiler to yield the logical
representation of that code using logic gates and flip-flops, just as the C compiler yielding the

Verilog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 4

machine code. This VHDL development happened in the 1980’s. In the same time period
another set of people were thinking in the same line in the commercial industry and their
efforts led to Verilog. We are not going to debate Verilog vs VHDL in this paper. The above
section gives just a pointer to how the VHDL or Verilog was thought of. What was once a
documenting practice for remembering and reusing the logic, later bloomed into a new
methodology called the hardware description language.

We may try to define the HDL in the following manner.

The Hardware Description Language is a software program that describes the
functional behavior of a hardware piece that one wants to build. It gives a
higher level of abstraction to the function so that it is easier for implementation
and interpretation, whose lower level details are realized using automated tools.

A higher level of abstraction can be achieved by using any constructs of the language that we
have chosen. All these constructs need not necessarily be leading to a realizable
implementation by the tools, though they depict the functionality of the intended hardware.
Such pieces of HDLs are said to be functional models of the hardware piece that we were
trying to implement. In this paper, we are going to give more emphasis to the Verilog HDL
that would let us build actual realizable hardware logic using any synthesis tools. Wherever
possible, I have tried to give some examples to illustrate the problem and the advantage of
such coding styles. The HDL coding is also known as RTL (Register Transfer Level) coding,
the reason of which will be explained later.

S y n th e s is

There was a section spent on synthesis in my paper named “ASIC Design Flow” the issue-3
which you should read first. The synthesis step in the ASIC design flow converts the HDL
behavioral code one wrote, into a netlist. The netlist is the database that has the logical
components that builds the entire hardware/chip and the connectivity information. It will also
contain the IO cells and the signals connected to them in the required manner. There are
synthesis tool vendors who build tools that take the HDL code, input timing constraints and
target to a particular library of cells and generate the netlist, having the same functionality.
This process is not just a “push button” process. We need to understand the capabilities of the
synthesis tool and use them accordingly to achieve the results that we wish to get. Synthesis
tools will also give the timing reports for various paths in the design, which we have to review
and see if it meets the timing requirement that our design demands. If the timings are not met,
then we have to use different techniques to achieve the timing.

HDL Code

Constraints Timing
Reports

ASIC
Synthesis Libraries

Output
Netlist

Synthesis
Tool

Verlog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 5

The above diagram shows very briefly about the inputs and the outputs during the synthesis
phase. These are just the minimal inputs during synthesis, but there are other additional inputs
that refine the synthesis process to get better results. We are not going to elaborate on those
points. Example synthesis tools are Design Compiler from Synopsys, Inc., Build Gates from
Cadence Inc., Leonardo Spectrum from Mentor Graphics, etc.

 T h in k in H a rd w a re

When we write a piece of a C code (say that takes in five quadratic equations and finds the
solution for them), we write the portion of the code that will have the equation to find the
solution and make it loop through the five inputs that we will be providing. What is done
underneath at the machine level is pretty much not seen or even thought of while coding this
program. This kind of approach will not work in the HDL coding. The first step that one
needs to think is to imagine a hardware that will do this function. Once we get an idea of what
logic would do the function, we have to build the logic using the HDL. HDL is also not so
dumb to expect every part of the logic. There are smart operations (arithmetic, logic, etc.) that
the HDLs support, that are recognized by synthesis tools to arrive at a suitable logic. But it is
important to think in terms of the hardware elements that will make the required function in
reality.

Any design concept that we want to use in an application needs to be implemented in the right
way in the right place to reach the end user. A concept can evolve from a research or form a
totally new thinking of a requirement and so on. Once we think that an idea is worth
implementing for an application and, if we think that we should do an ASIC for that, there
starts the ASIC design process. The concept has to be thoroughly analyzed for its correctness
and get proven by some method. To start an ASIC to build those functions, the initial stepping
stones are laid by looking at the feasibility of implementing the idea in the ASIC. A detailed
ASIC architecture is done with the system designers and architects to refine the top level
requirements into various building blocks. The problem has to be broken into many logical
blocks and the feasibility of the individual blocks together providing the complete solution
has to be worked out. After this phase, the specification of the chip will be frozen stating all
the requirements that this chip has to do and then to make it further specific, a micro-
architecture will also be done. Then these conceptual ideas will be transformed into
behavioral coding (HDL) that will precisely represent the hardware behavior. Here is where
we need to think all the time in terms of the hardware that we need to realize to achieve the
functional goal. Funtional testing will be done on the completed code. This process is shown
in the pyramidal structure shown above, where the next step is to convert the HDL behavioral

Concept

Architecture

RTL

Gates

Transistors

Verilog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 6

descriptions into the equivalent gates. This is done by synthesis tool. The bottom most layer
in the diagram is indicated as “Transistors” which represents the fusing of the transistors that
builds the gates and interconnects in the silicon die. This whole layer in the pyramid is a
complex one by itself, and some of the details are discussed in the “backend” phase of the
technical paper “ASIC design flow”, the issue-3.

S y n th e s iz a b le L o g ic

You may wonder why the question of “Is this code synthesizable?” arises. This is because of
the vast capabilities of Verilog which help describe any behavioral function of a design. Only
a subset of the various constructs available in Verilog is synthesizable. Most of the people
who start writing code for ASICs or FPGAs will realize the problem of suitability of the code
for synthesis after completing the coding and verification if they are not careful enough to
consider these factors. Before we take a look into the realizable logic, let us take look at an
example of a code that can not be successfully synthesized.

Example:1 (Verilog Code)

module delay (in, out);

input in;

output out;

initial

 begin

 wait (in)

 out = 1’b1;

 end

endmodule

This code shown in example-1 is a very simple, legal construct in Verilog. All this code does
is, after starting the simulation, waits for the signal in to go high, and once this in=1, the
value of the output out changes to a 1 and stays 1 until the end of simulation. If you have a
software perspective of this module, the constructs initial and wait have meaning with respect
to the execution of the line

out = 1’b1;

i.e. the simulator waits for the input signal in to go high, once the simulation time starts. After
executing the above statement, the module does nothing until the end of simulation. This is
what it is intended to do.

Now let us take this code through a synthesis tool to convert it into an equivalent logic with
gates. The synthesis tool will give out an error right away indicating that the initial and wait
constructs are not supported by the tool. The problem is that there is nothing in the real world
in hardware that would have the effect on an initial loop. Also the wait construct can not be
thought of “as- is”, in the hardware. There are ways to implement this logic by thinking in
terms of a zero to one transition detecting logic that would sense the singal in becoming
active and then use the output of this edge detecting logic to trigger the output “out” to get the
equivalent function. (This can be implemented by a level sensing logic also). This is what we
mean by thinking in hardware.

If we start discussing the unsupported synthesis constructs and indicate them one after another
with some examples, the list would be too big. Instead let us concentrate on the constructs that

Verlog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 7

are commonly used by ASIC designers to realize logic circuits. The above example was just
for counter argument and just to show that such constructs are not possible to synthesize.

D ig ita l L o g ic B u ild in g B lo c k s
The building units (like the bricks) of any complex or simple digital circuit are the various
gates which in turn are designed using switching transistors. There are two types of circuits,
the combinational logic and sequential logic. There are elaborate explanations about these two
different types of logic in the issue-1of my paper. (The reader is advised to read the previous
three issues to get continuity and to get the best out of these papers). A combinational circuit
changes its outputs based on the changes in its inputs, right away. These are built using logic
gates. On the contrary, the sequential logic needs a basic clock (this is true for the
synchronous sequential circuits) and the output will change at the clock transition event. The
output of such circuits depends on the inputs and also the current outputs. These are built
using flip-flops (memory cell to store the current state of the circuit) and logic gates. A simple
picturing of a sequential logic is to imagine some combinational clusters feeding at the input
of the flops. The picture shown below is a simplistic representaion of a sequential logic
circuit.

A

C

D

Clk

During the design of an ASIC, we are actually building millions of these kinds of clusters that
would collectively generate the functionality that we are aiming for. Any ASIC would consist
of such combinational, sequential logics, memories, statemachines (which are again nothing
but the sequential logics), PLLs, clock distribution networks, IO pads, test logic (DFT) and
many other necessary logic.

D e fin in g C o m b in a tio n a l L o g ic
In this section we will look at how to define a combinational logic in verilog that can be
synthesized into the intended gate to give the expected functionality. A combinational cluster
generating an output can be easily represented by a Boolean equation. Verilog supports a
series of logical operators that can be used to write these equations. Readers are advised to
refer to a text book in Verilog or the IEEE Verilog manual that gives the complete set of
operators and their precedence in an equation.

Outputs

B
Combi

Combi

Combi
FF3

FF1

FF2

Q1

Q2

Q3

Verilog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 8

a s s ig n s ta te m e n t

Let us take the following example.

Example:2

module aoi (a, b, c, z); // This is an AND OR INVertor logic

input a,b,c;

output z;

wire z;

assign z = ~((a && b) || c);

endmodule

The above example uses too many parenthesis just to show the grouping clearly and not to
confuse the reader with precedence issues. The usage of assign statement is one way of
realizing a combinational logic. The above module written in Verilog will yield the logic
shown below, after synthesis. The logic shwon below is not the output of any synthesis tool. I
am giving this just for referentce and to idicate the logical equivalence. The synthesis tool will
do optimization also to realize the logic with minmal functional gates so that the delay and
area of implementaion is optimal. Any time a or b or c changes, the effect will be seen on the
output z.

a lw a y s s ta te m e n t

The same logic that is given above can be realized using the code given in example-3 also.
The coding style is a little different and the motivation for coding like this also is slightly
different. It may be hard to appreciate why one would want to code the logic like this, but
some prior experience in the ASIC design would let people realize the advantages of thinking
in these lines.

Example:3

module aoiModified (a, b, c, z);

input a,b,c;

output z;

reg z;

always (a or b or c)

 begin

 z = ~((a && b) || c);

 end

endmodule

a

c

b

z

Verlog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 9

The code given in the example-3 yields exactly the same logic shown in the above diagram,
after synthesis. Let us spend a little time in reviewing this code. The main difference you see
between e.g-3 and e.g-2 is that the output z is declared as a register and there is, this always
construct that is significantly different. Even though the node z is declared as a register, it is
not synthesized as a flip-flop. (Registers are realized using flip-flops so that they can store the
information sampled by them). It is declared as a register only to obey the syntax
requirements of Verilog. The node z is still a combinational output just as shown in the
diagram above. The variables shown inside the parenthesis next to the always statement are
called the sensitivity list. The output z is sensitive to the three variables a, b and c. If there are
any changes in one of the three variables, that will get reflected in the output. Hence they are
called sensitivity list. The key point here is that if we fail to specify any one of those variables
in the sensitivity list, the effect of that missing variable will not be seen at the output node.
This will lead to functional mismatches when we try to verify the logic using a test suite.

M u ltip le x e r c o n s tru c t

Multiplexers, mux in short, are very common logic that will be seen in the logic design. Based
on a selected signal mux will select one of the two inputs and provide it in its output. This is
the function of a simple 2 to 1 mux. The code shown in example-4 does this mux function.

Example:4

module mux (a, b, s, out);

input a, b, s; // inputs a,b and the select signal s

output out;

wire out;

assign out = s ? a : b;

endmodule

The code shown in e.g-4 is a commonly used mux implementation. When the select signal s
has a value of 1, input a is selected and sent to the output. When the select signal is a 0 the
input b is multiplexed to the output. A symbolic diagram and a logical diagram of the mux are
shown below.

The same logic can be implemented using the code in e.g-5 also. Here I have used the always
statement and sensitivity list to do the job. The synthesized results of both codes will be the
same as shown in the figure above.

Example:5

module mux_modified (a, b, s, out);

input a, b, s; // inputs a,b and the select signal s

output out;

a

b

s
out

1

0

a

out

s

b

Verilog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 10

reg out;

always (a or b or s)

 begin

 out = s ? a : b;

 end

endmodule

if-e ls e s ta te m e n t

The if-else construct is one of the most common ways of implementing logic with the
behavioral descriptions. The mux implementation that we discussed in the previous section
can be done using this construct also as seen in the e.g-6.

Example:6

module mux (a, b, s, out);

input a, b, s; // inputs a,b and the select signal s

output out;

reg out;

always (a or b or s)

 begin

 if (s) out = a;

 else out = b;

 end

endmodule

This construct is used for designing priority encoders that look at one set of input condition
first and then if that condition is not satisfied, looks at another condition and so on. The usage
of if-else statements results in priority encoders. The priority encoders can be viewed as a
series of muxes that are connected one after the other to create an ordered priority. A priority
encoder can be visualized as in the figure below.

The always construct for this priority encoder using the if-else is given below in the e.g-7 in
the next page.

a

d

1

0

c out

S1

b

S2

S3

1

1

0

0

Verlog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 11

Example:7

always (a or b or c or d or s1 or s2 or s3)

 begin

 if (s3) out = d;

 else if (s2) out = c;

 else if (s1) out = b;

 else out = a;

 end

The same logic can be implemented using the assign statement’s mux construct also and this
will still be synthesized as a priority encoder. Take some time to understand the idea of
priority being implemented in an order. The top most priority is given to the select signal s3.
If this signal is set to 1, none of the other signals have any effect on the output. Only when s3
is a 0, the other input signals get a chance to play a role in changing the output of the logic.

assign out = s3 ? d :(s2 ? c :(s1 ? b : a));

c a s e s ta te m e n t

The case statement is another way to build multiplexers or in general any combinational logic.
The case statement by default generates priority encoder, traversing from the first case item to
the bottom case items. The following two examples show the usage of case statements for
implementing the same priority encoded mux we saw in e.g-7.

Example:8

always (a or b or c or d or s1 or s2 or s3)

 begin

 case (1’b1)

 s3 : out = d;

 s2 : out = c;

 s1 : out = b;

 default : out = a;

 endcase

 end

or

Example:9

always (a or b or c or d or s1 or s2 or s3)

 begin

 case ({s3, s2,s1})

 3’b100 : out = d;

 3’b010 : out = c;

 3’b001 : out = b;

 default : out = a;

 endcase

Verilog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 12

end

Generating priority encoder will end up in huge logic that will have input to the output
propagation delays large. This is because the muxes are connected in a serial manner, and
each of the combinational logic constituting the individual mux will take definite amount of
time to generate its output. As a result of this, a combinational logic that has huge priority
encoder structure will take more time to generate its output. If we try to use this kind of long
paths in the sequential designs, we will have limitations in the frequency at which the logic
can be operated. To realize fast operating logics, we need to have smaller propagation delays.
There are some techniques the synthesis tools provide to take care of these kinds of problems.
We will learn some of them in the later part of this paper.

F u n c tio n s ta te m e n t

The function statement is used to synthesize combinational blocks that will return a value to
either a vector or a scalar variable. It will take some inputs and generate an output which can
be used in the other portions of the code by passing the output of the function. An example of
the function is given below. This function generates the result of the addition of two 4-bit
values and the carry input. This is a full adder implementation.

Example:10

function [4:0] fullAdder;

 input [3:0] a; // inputs a and b are four bit values.

 input [3:0] b;

 input cin; // this is the input carry to the FA.

 begin

 fullAdder = a + b + cin;

 end

endfunction

D e fin in g S e q u e n tia l L o g ic
A sequential logic generally is constructed using a combinational logic that generates a set of
outputs and a set of registers that remember the outputs of the combinational logic. As we
discussed before we should imagine a sequential circuit as a combinational cluster feeding
flip-flops. Sequential logics need a basic clock to sample the inputs at the D input of the flops.
In Verilog sequential circuits are realized using the always statement with a special triggering
condition defined based on the clock that it uses. Any sequential logic should have this
switching condition in the construct as shown below.

always @(posedge clk) or always @(negedge clk)

The key words posedge or negedge indicates that the sequential circuit uses the rising or the
falling edge of the signal named as clk for it to make the transition form one state to the
other. Since we agree that the input of the flop should be driven by a combinational logic, if
we place any one of the code that we developed in the previous sections under this always
loop, we can simply generate a sequential circuit that will sample the output of that
combinational circuit every time the triggering condition arises. The triggering condition is
either the positive transition or the negative transition of the clock. All the constructs that we
used for the combinational logic can be used when realizing the sequential logic also. Another
requirement for most of the sequential logic is that it should start in a known state when the
logic starts functioning. Otherwise the outputs form it may not be predictable due to the very
fact that the state may be unknown in the beginning. We will have a reset signal to the
sequential circuit that will bring the flops in the design to known state (usually the reset will

Verlog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 13

make all the flops to zero at reset) before any inputs are driven to it. Let us take a simple
example below to see how to code a sequential logic in Verilog.

Example:11

module priorityEncodedMux (a, b, c, d, clk,

 s1, s2, s3,

 out);

input [3:0] a, b, c, d;

input s1, s2, s3;

output [3:0] out;

reg [3:0] out;

always @(posedge clk)

 begin

 case ({s3, s2,s1})

 3’b100 : out <= d;

 3’b010 : out <= c;

 3’b001 : out <= b;

 default : out <= a;

 endcase

 end

endmodule

This e.g-10 is almost same as the e.g-7 and 8, except that the inputs and output are a 4 bit bus
instead of a single bit. The output of the priority encoder is captured in four flops to make the
logic a complete. Note that there are no reset signals in this code since the reset signal will not
have any impact on the output. No matter what state the flops out are, the only controlling
factors that will affect the output are the inputs and the select signals. Since out is not going as
an input to this logic, as opposed to the definition of a sequential logic, there no impact from
the initial state if the flops named out. The following picture shows the representation of the
function that will be inferred by a synthesis tool from the above code.

a

d

1

0

c Out[3:0]

S1

b

S2

S3

1

1

0

0

D

clk

D-FF

Verilog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 14

C o u n te r

Counters are very common logics that everyone will be building in their ASICs. They keep
tract of counts and let the other logics to look at it and take appropriate decisions. Counters
are true sequential logics that have the feedback from the output to the input. The current state
of the counter should be known to move the counter to the next state, which is one larger than
the previous state. Take a look at the counter implementation in Verilog given in e.g.-11. In
this e.g. there is an enable signal that enables the counter to move from its current state. When
the enable signal is not present, the counter will not make any state transitions. Also the
counter will roll over once it reaches its maximum count. And then start counting from the
beginning as long as the enable signal is present. We have provided a reset signal also so that
the counter will start from a known state instead of starting from any random number. This is
a 8-bit counter. Please pay special attention to the usage of a non-blocking assignment in this
example. The non-blocking assignment is specified by the operator “<=” in the equation. We
discuss briefly about the blocking and non-blocking assignment in one of the following
topics. Since this kind of Verilog coding describes the behavior of hardware at a register level,
this is known as Register Transfer Level (RTL) coding method.

Example:12

module counter8Bit (clk, reset, enable,

 count);

input clk, reset, enable;

output [7:0] count;

reg [7:0] count;

always @(posedge clk)

 begin

 if (reset)

 count <= 8’b0; // non-blocking assignment is used

 else if (enable)

 count <= count + 1’b1; // non-blocking assignment is used

 end

endmodule

S ta te M a c h in e s

When building huge ASICs the state machine techniques of implementing the logic will be
used extensively. State machines are nothing but sequencing engines that take a set of inputs,
a particular clock and move their states from one to other in a deterministic manner. As the
state machine (SM) moves through its states, the designer can generate the intended outputs
using various states of the SM. By partitioning the design into smaller blocks, one could
achieve better control over the logic and implement the intended function in a clean manner.
SMs are commonly used practice in logic design. To show how we can build a state machine
in Verilog, that can be synthesized with no problems, we shall consider a small state machine
problem and deduce the Verilog code for it.

The figure shown below is called, the bubble diagram representation of the SM that we need
to implement. The SM initially stays in the St0 when the reset signal is active and moves from
St0 to other states based on the changes in the input signals. The function that we want to
build here is an edge detecting logic that works synchronously with the clock that is provided
to it. Whenever the input signal in makes a transition from zero to one, the logic should
generate a pulse with a duration of one clock. This is the requirement. This state machine is

Verlog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 15

shown in the figure given below. This problem is not a complicated one that would need a SM
to implement. But to demonstrate how to write a SM, I have used this example.

The above SM is coded in the example-13. There is an additional register viz. edgeSensed
which is not actually needed. One of the state, bits (the bit[0]) of the SM itself will act as the
one pulse signal indicating the rising edge of the input signal. I chose to register this bit into
another flop and bring it as the output. This just shows how to code that output and also
indicates that there can be multiple always @(posedge clk) sections in the code. Each of such
sections indicates that there are that many sequential sections or groups of flops in the design.

Example:13
module edgeDetect(
 clk,
 reset,
 in,
 edgeSensed);

input clk, reset, in;
output edgeSensed;

reg edgeSensed;
reg [1:0] state;

parameter St0 = 2'b00,
 St1 = 2'b01,
 St2 = 2'b10;

always @(posedge clk)
 begin
 if (reset)
 state <= s0;
 else
 case (state)
 2'b00: if (in)
 state <= St1;
 2'b01: if (~in)
 state <= St0;
 else
 state <= St2;
 2'b10: if (~in)
 state <= St0;
 endcase
 end

St1 St2

St0

reset = 1

in = 1

in = 0

in = 1

in = 0

in = 1

Verilog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 16

always @(posedge clk)
 edgeSensed <= (state == St1);
endmodule

The code uses three registers, two for the SM and one for registering the SM bit[0] and
sending it as the output. The output waveforms from this design are shown below. Every time
there is a rising edge in the input signal in, there is one pulse generated from the logic, thus
functioning as an edge detecting circuit. Sine this logic is assumed to be synchronous, the
input signal will be active at least for one cycle of the clk.

As I mentioned before this is not a complicated problem to be done in a SM and let a
synthesis tool generate the logic. We can deduce the logic by ourselves. The logic shown in
figure below does the same function. The synthesis of the above code in e.g-13 will also give
the following logic, without the effect of the reset signal.

S o m e s u g g e s tio n s

In this section, we will discuss some of the common problem that people would end up when
they start coding in Verilog for synthesis. Though these are all valid Verilog constructs that
would give outputs, they may not be helpful when one synthesizes the code.

N o # fo r d e la y
Verilog can generate delays during simulation using the #delay construct. Depending on the
scale that we define in the `timescale, we could get N units of delay before the right hand side
is assigned to the left hand side. But in the synthesis world there is no notion like this delay.

State[1:0] 00 01 02 00 01 02 01 00 00

clk

in

edgeSensed

D Q D Q

D Q
clk

in

edgeSensed

Verlog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 17

The synthesis tools just disregard this construct. Look at the following Verilog assign
statement.

assign #3 z = a && b;

In the above blocking assignment, the any change in the logical value of a or b will affect the
z as seen by the equation. But the #3 will make this effect delayed by 3 time units. This can be
thought analogous to the propagation delay of the AND gate. But in the gates or netlist world,
there no such delay. The synthesis tool will connect the output of the AND gate directly to the
output node named z.

In the early ages of the HDL compilers, people used to use the #delay in the sequential logic
assignments also as sown below.

always @(posedge clk)

 edgeSensed <= #1 (state == St1);

 Here the one unit delay is used in a non-blocking assignment. This delay also achieves the
same effect as seen before. The right hand side is evaluated and assigned to the left hand side
variable one unit delay after the rising edge of the clock, which is the triggering signal. This
delay can be seen as the clock-to-Q delay of a flop.

I recommend strongly not to use #delay in any portion of the synthesizable code. The
improper accumulation of #delays in the assign statements will lead to wrong simulation
results if not handled properly. In the sequential logic, though this #delay is not causing any
adverse effects, it is truly unnecessary. The current days’ compilers have advance schedulers
that take care of any execution conflicts. So do not use #delays in your code, if you are
designing a block that is to be synthesized. There may be places in test benches where this
#delay constructs may found useful. I would even suggest that if we are designing
synchronous logic and we are developing test bench for testing such designs, there are only
very least requirements for using the #delays even in the test code.

O n e m o d u le – o n e file
When thinking about a function to implemented in an ASIC or an FPGA, try to imagine lots
of smaller functions that would collectively build the top level requirement. With all these
smaller modules, build the upper level blocks in a hierarchy. Hierarchical designs are very
helpful to design, debug and implement in an ASIC. My advice is that use one module in one
file, so that each file will have a relevant name indicating the module and concise and
complete within itself. Whenever needed you may instantiate other children modules into the
parent modules. Too many levels of hierarchy is also not good as it makes tracing across
hierarchy difficult.

Try to split the control path design and the data path design into at least two different
modules, that will help at a later stage when doing floorplanning of the design. By doing this,
data path intense logic can be placed and routed with more care to meet the timing
requirements.

L a tc h in fe r e n c e
If the recommendations for good style of coding are not followed we may end up in
unintentional logic being inferred by the synthesis tools. Combinational latches are one such
very dangerous logic that may get inferred by many synthesis tools. This mostly ends up
because of improper clause definitions in the if-else, case or some other constructs. It is
always a good practice to define a default clause in such situations, so that the tool can define

Verilog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 18

a known state for the flops, thus avoiding any latch inference. Usually all the synthesis tools
give out warning messages indicating such latch inferences.

B lo c k in g , n o n -b lo c k in g s ta te m e n ts
Readers are encouraged to look at the Verilog manual or other text books to understand the
differences between a blocking and a non-blocking statement. My recommendation on this is
to use blocking statements in the places when we are targeting a combinational logic, no
matter it is done in an assign statement or in always loop. In places we want to infer a
sequential logic using always @(posedge/negedge clk), use a non-blocking statement always.
A non-blocking statement is the one that has the symbol <=.

p a r a lle l_ c a s e a n d fu ll_ c a s e n o tio n
This notion was initially started by Synopsys and now it is being followed in all the synthesis
tools. As we have already mentioned, the case statement in the Verilog is treated as a priority
encoder. Most of the time the case statement will have a default clause where there will be
some assignments to the variables. This value is given to the respective variables if none of
the case clauses are true. The order of priority in the case statement starts from the first case
item in the case section of the code. To prevent priority encoders being inferred, the synthesis
tools use a compiler directive called parallel_case that will let the tool build parallel logic
instead of priority encoders. This will avoid the logic serial muxes and try to implement the
combinational logic without the priority encoded structure. Though there may be more logic
cells in this way of implementing, the propagation delay of the combinational logic will be
smaller that the priority encoder implementation. The same effect can be achieved by using
the if statement without the else clause. One thing that we have to remember in such
implementation is that we are instructing the synthesis tool that all the input combinations are
parallel. This means that the input signals that appear in the case statement exist in such a
manner that no two case clauses are true at the same time. If we know that this is true, we can
instruct the tool to treat the case as a parallel case. Otherwise there will be functional
problems in the logic. If we take the e.g.-11 and change it to be a parallel case, we need to be
sure that the select signals s1, s2 and s3are mutually exclusive. Any comment starting with
the key word synopsys will be take as a compiler directive. Here in this case we place the
comment //synopsys parallel_case in the case statement so that the compiler will understand
that this case statement has to be treated as a parallel case. (The result from this synthesis is
left to analysis by the reader. Synthesis this code and the code from e.g-11 and study the
differences in the resulting netlist)

Example:14

module parallelCaseMux (a, b, c, d, clk,

 s1, s2, s3,

 out);

input [3:0] a, b, c, d;

input s1, s2, s3;

output [3:0] out;

reg [3:0] out;

always @(posedge clk)

 begin

 case ({s3, s2,s1}) // synopsys parallel_case

 3’b100 : out <= d;

 3’b010 : out <= c;

Verlog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 19

 3’b001 : out <= b;

 default : out <= a;

 endcase

 end

endmodule

Now we will take the full_case. This a little bit advanced and tells the compiler that the
combinations given by the designers are the only possible combinations in the design. If we
take the previous e.g., the case statement has a three bit variable in it. It can have eight
possible values ranging from 3’b000 to 3’b111. We are defining the behavior for the
combinations 3’b100, 3’b010 and 3’b001 and for the other five possible values, the output is
defined by the default clause. Let us assume that our circuit is in such a way that either one of
the three select signal is always a 1. In such a case, the default clause will never get exercised
as any one of the select signals will be active, not allowing the output to go to the value of a.
In such a case, we can instruct the synthesis tool that there are only three possible
combinations and other combinations of the case variable do not exist in the design. By
knowing this, the tool decides to optimize the logic only for the valid combinations and does
not worry about other possible combinations. We need to be absolutely sure that the
undefined combinations do not arise in the design. Otherwise it will lead to mismatch in the
functional behavior. In this case, the default clause has no meaning. Take a look at the e.g.-15
to see the full_case.

Example:15

module fullCaseMux (a, b, c, d, clk,

 s1, s2, s3,

 out);

input [3:0] a, b, c, d;

input s1, s2, s3;

output [3:0] out;

reg [3:0] out;

always @(posedge clk)

 begin

 case ({s3, s2,s1}) // synopsys full_case

 3’b100 : out <= d;

 3’b010 : out <= c;

 3’b001 : out <= b;

 // no default definition. input a is never used

 endcase

 end

endmodule

Both parallel and full case can be used at the same time like

// synopsys parallel_case full_case

But the user has to be extremely careful in using this compiler directive. The above pair is
said to be “evil twins”. Only if the designer is sure of what he needs or what he knows about

Verilog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 20

the design, he should use these compiler directives together. Think a little bit more about
these compiler directives and plan to do some experiments with the usage of parallel and full
case to see how the tool differentiates them. It will be interesting to see what the synthesis
tool infers for such usages.

W ir e d O R in fe r e n c e
This is another dangerous inference that will lead to chip failures. When we define sequential
logic, each of the flop assignments should be within one and only always loop. If we define
the flops in two different always loops, that will lead to inference of two flops with the same
name, thus shorting the outputs of the two flops. This will function like a wired OR flops that
will switch for both the conditions defined in the two always loops. This will lead to faulty
behavior of the logic. This is one of the common mistakes many would do. The following e.g.
code and the figure explains this.

Example:16

reg z;

always @(posedge clk)

 z <= a && b;

always @(posedge clk)

 z <= a || b;

In the above section of the code, the register z is defined in two always loops. Hence there
will be two inferences of the register z during synthesis. The inferred logic will look like this.
Obviously, the output z will not behave properly because two out of the four combinations of
the inputs will have conflicting outputs at the Q pin of the flops.

C o m m e n ts
Place plenty of comments in the code that will make anyone easily understand the idea behind
your approach. You yourself will be a stranger to your own code after few months of break
form that design. Your comments will help yourself at that time understand the flow. Verilog
has one line and blocked comments.

// This is a comment

/* This is a block of comment that

 can span through many lines */

D Q

clk

a

D Q

z
b

a

b

z

z

wired OR
node

Verlog Coding for Successful Synthesis

Copyright © 2003 by P.Radhakrishnan. All rights reserved 21

S o m e m o r e p o in ts
- While using casex or casez statement be cautious to see if they are really parallel or full

- The logical equivalence check syntax in Verilog (===) is not possible to get synthesized
as there are no way in the hardware to check the don’t care value of the bits, indicated by
1’bx. However the equality check (==) is synthesizable.

- Avoid the usage of `include in the Verilog files that describe the design. By doing this,
each of the modules can be synthesized by itself. In case of any instantiated modules, you
need to provide those modules to the synthesis tool separately.

- Use a separate file where all the `define macros that are common to all the design files
are defined. For the local macros, plan to use the parameter construct.

- It is advised to have flip flops at the outputs from large modules (here, by saying “large
modules”, we mean large floorplannable blocks in the design). When you have flops at
the outputs, the modules that receive these outputs can use them in their combinational
logic and still have the entire cycle of the clock to resolve them. This will help during
synthesis to get better timing results. Otherwise, if you send a combinational output to
another module, which again passes that signal into its portion of another combinational
logic, you will have to do time budgeting to get the timing work cleaner.

- As much as possible design the top level with two or three hierarchies. Current
generation synthesis tools handle larger designs very easily and hence we can have larger
partitions of the design.

D is c la im e r & C o n c lu s io n

In this paper, I have not considered all the possible constructs of Verilog to explain various
issues and also I have not covered all the synthesis issues that one would face during the chip
design. The examples given here should be taken as guidelines and a lead, for those who are
in the initial stages of learning Verilog to design ASICs or FPGAs. Some of the synthesis
related comments may be difficult to digest in the beginning. But once if you get some
familiarity with the synthesis flow and the tools, those points will make sense. You are
welcome to get in touch with me to get more clarifications.

Share what you have learnt through this, to others by conducting a group discussion or a
seminar so that others also can benefit through this effort. Send your feedback and questions
to my email ID, which you can get from the HOD, CS Dept. Your feedback is very important
to continue and improve this effort.

Trademarks note:

Synopsys and “Desgin Compiler” are registered trademarks of Synopsys Inc., Mountain View, CA, USA
Build Gates is a registered trademarks of Cadence Inc.
Leonardo Spectrum is a registered trademarks of Mentor Graphics.

