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1 Introduction to Two-Port Parameters
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Figure 1: A generic amplifier represented as a two-port.
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Figure 2: If we reverse the current direction on the second port, we can cascade two-ports
using the ABCD parameters.

Consider the generic two-port amplifier shown in Fig. 1. Note that any two-port linear
and time-invariant circuit can be described in this way. We can use any two-port parameter
set, including admittance parameters Y , impedance parameters Z, hybrid H or inverse-
hybrid parameters G. These parameters represent a linear relation between the input/output
voltages and currents. If we take linear combinations of current and voltage, we can derive
other parameter sets, the most important of which is the scattering or S parameters. We
may also choose to represent input versus output, which simplifies analysis of cascade of
two-ports, such as the ABCD parameter set

(
v1

i1

)

=

(
A B
C D

)(
v2

−i2

)

As shown in Fig. 2, the cascade of two blocks is obtained through simple matrix multi-
plication if we redefine the direction of i2 so that it flows out of the first block and into the
second block.

In this Chapter we review two-port parameters and derive equations for the gain, in-
put/output impedance, and optimal source/load to realize the optimal gain. Next we in-
troduce the important concept of scattering (S) parameters, which are used extensively in
high frequency design of amplifiers, filters, and other building blocks. In the laboratory, we
measure the properties of a circuit using a network analyzer, which measures the S param-
eters directly. While it is easy to convert from S parameters to other parameters, in many
situations it will be convenient to “think” using s-parameters.
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Figure 3: A generic feedback amplifier represented as an interconnection of two-ports. Note
a series connection is made at the output (current sense) and shunted with the input (current
feedback).

1.1 Choosing Two-Port Parameters

All two-port parameters are equivalent in their description of a linear system. The best choice
of the parameter set is determined by finding the parameters that simplify calculations. For
instance, if shunt feedback is applied, Y parameters are most convenient, whereas series
feedback favors Z parameters. Other combinations of shunt/series can be easily described
by H or G. In Fig. 3 the feedback is connected in series with the output and in shunt with
the input so we see that we are sensing the output current and feeding back a current to the
input. As such the most appropriate parameter set should involve currents/voltages which
are the same for both blocks. In this case the input voltage and the output current are the
same for each block whereas the total input current and output voltage are a summation of
the amplifier and feedback blocks
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As mentioned already, the ABCD parameters are useful for cascading two-ports. Many
of the results that we derive in terms of say Y -parameters can be applied to other two-port
parameters (input impedance, output impedance, gain, etc) by simple substitution. In the
laboratory we always use S parameters, since this is actually the way in which we measure
two-port parameters at high frequencies.

1.2 Y Parameters

First let’s use the Y or admittance parameters since they are familiar and easy to use
(

i1
i2

)

=

(
y11 y12

y21 y22

)(
v1

v2

)

Notice that y11 is the short circuit input admittance

y11 =
i1
v1

∣
∣
∣
∣
v2=0
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Figure 4: A hybrid-pi circuit as a two-port.
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Figure 5: Setup to calculate (a) input admittance and (b) output admittance parameters.

The same can be said of y22. The forward transconductance is described by y21

y21 =
i2
v1

∣
∣
∣
∣
v2=0

whereas the reverse transconductance is described by y12. If a two-port amplifier is unilateral,
then y12 = 0

1.3 Hybrid-Π Admittance Parameters

Let’s compute the Y parameters for the common hybrid-Π model shown in Fig. 4. With the
aid of Fig. 5a,

y11 = yπ + yµ

y21 = gm − yµ

And with the aid of Fig. 5b
y22 = yo + yµ

y12 = −yµ

Note that the hybrid-Π model is unilateral if yµ = sCµ = 0. Therefore it’s unilateral at
DC. A good amplifier has a high ratio y21/y12 because we expect the forward transconduc-
tance to dominate the behavior of the device.

Why Use Two-Port Parameters?

Given that you can analyze amplifiers in detail using KVL/KCL, why use two-port parame-
ters, which are more abstract than the equivalent circuit? The answer is that the parameters
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are generic and independent of the details of the amplifier. What resides inside the two-port
can be a single transistor or a multi-stage amplifier. In addition, high frequency transistors
are more easily described by two-port parameters (due to distributed input gate resistance
and induced channel resistance). Also, feedback amplifiers can often be decomposed into an
equivalent two-port unilateral amplifier and a two-port feedback section. Most importantly,
two-port analysis will be used to make some very general conclusions about the stability and
“optimal” power gain of a two-port. This in turn will allow us to define some useful metrics
for transistors and amplifiers.

1.4 Voltage Gain and Input Admittance

Let’s begin with some easy calculations for a loaded two-port shown in Fig. 1. Since i2 =
−v2YL, we can write

(y22 + YL)v2 = −y21v1

Which leads to the “internal” two-port gain

Av =
v2

v1
=

−y21

y22 + YL

The input admittance is easily calculated from the voltage gain

Yin =
i1
v1

= y11 + y12
v2

v1

Yin = y11 −
y12y21

y22 + YL

By symmetry we can write down the output admittance by inspection

Yout = y22 −
y12y21

y11 + YS

For a unilateral amplifier y12 = 0 implies that

Yin = y11

Yout = y22

and so the input and output impedance are decoupled. This is a very important property of
a unilateral amplifier which simplifies the analysis of optimal gain and stability considerably.

The external voltage gain, or the gain from the voltage source to the output can be
derived by a simple voltage divider equation

A′
v =

v2

vs

=
v2

v1

v1

vs

= Av

YS

Yin + YS

=
−YSy21

(y22 + YL)(YS + Yin)

If we substitute and simplify the above equation we have

A′
v =

−YSy21

(YS + y11)(YL + y22) − y12y21
(1)
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1.5 Feedback Amplifiers and Y -Params

Note that in an ideal feedback system, the amplifier is unilateral and the closed loop gain is
given by

y

x
=

A

1 + Af

If we unilaterize the two-port by arbitrarily setting y12 = 0, from Eq. 1, we have an “open”
loop forward gain of

Avu = A′
v|y12=0 =

−YSy21

(YS + y11)(YL + y22)

Rewriting the gain A′
v by dividing numerator and denominator by the factor (YS +y11)(YL +

y22) we have

A′
v =

−YSy21

(YS+y11)(YL+y22)

1 − y12y21

(YS+y11)(YL+y22)

We can now see that the “closed” loop gain with y12 6= 0 is given by

A′
v =

Avu

1 + T

where T is identified as the loop gain

T = Avuf =
−y12y21

(YS + y11)(YL + y22)

Using the last equation also allows us to identify the feedback factor

f =
y12

YS

If we include the loading by the source YS, the input admittance of the amplifier is given by

Yin = YS + y11 −
y12y21

YL + y22

Note that this can be re-written as

Yin = (YS + y11)

(

1 − y12y21

(YS + y11)(YL + y22)

)

The last equation can be re-written as

Yin = (YS + y11)(1 + T )

Since YS + y11 is the input admittance of a unilateral amplifier, we can interpret the action
of the feedback as raising the input admittance by a factor of 1 + T . Likewise, the same
analysis yields

Yout = (YL + y22)(1 + T )

It’s interesting to note that the same equations are valid for series feedback using Z
parameters, in which case the action of the feedback is to boost the input and output
impedance. For the hybrid H parameters, the action of the series feedback at the input also
raises the input impedance but the action of the shunt output connection lowers the output
impedance. The inverse applies for the inverse-hybrid G parameters.
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Figure 6: Various definitions of power in a two-port.

2 Power Gain

We can define power gain in many different ways. You may think that the power gain Gp is
defined as follows

Gp =
PL

Pin

= f(YL, Yij) 6= f(YS)

is the best way, but notice that this gain is a function of the load admittance YL and the
two-port parameters Yij, but not the source admittance. In other words, Gp is the load
power normalized by the input power. If the input power is very small, such as in a source
mismatch condition, then the output power will also be small. This is hidden from Gp.

The transducer gain defined by

GT =
PL

Pav,S

= f(YL, YS, Yij)

measures the power deliverd to the load normalized by the available power from the source
(Pav,S). This is a measure of the efficacy of the two-port as it compares the power at the
load to a simple conjugate match. As such it is a function of the source and the load.

The available power gain is defined as follows

Ga =
Pav,L

Pav,S

= f(YS, Yij) 6= f(YL)

where the available power from the two-port is denoted Pav,L. This quantity is only a function
of the load admittance and measures the efficiency of the output matching network.

The power gain is readily calculated from the input admittance and voltage gain

Pin =
|V1|2

2
<(Yin)

PL =
|V2|2

2
<(YL)

Gp =

∣
∣
∣
∣

V2

V1

∣
∣
∣
∣

2 <(YL)

<(Yin)
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Figure 7: The Norton equivalent of a two-port from the output port.

Gp =
|Y21|2

|YL + Y22|2
<(YL)

<(Yin)

To derive the available power gain, consider a Norton equivalent for the two-port where
(short port two) shown in Fig. 7

Ieq = I2 = Y21V1 =
Y21

Y11 + YS

IS

The Norton equivalent admittance is simply the output admittance of the two-port

Yeq = Y22 −
Y21Y12

Y11 + YS

The available power at the source and load are given by

Pav,S =
|IS|2

8<(YS)

Pav,L =
|Ieq|2

8<(Yeq)

Ga =

∣
∣
∣
∣

Ieq

IS

∣
∣
∣
∣

2 <(YS)

<(Yeq)

Ga =

∣
∣
∣
∣

Y21

Y11 + YS

∣
∣
∣
∣

2 <(YS)

<(Yeq)

The transducer gain is given by

GT =
PL

Pav,S

=
1
2
<(YL)|V2|2

|IS |2

8<(YS)

= 4<(YL)<(YS)

∣
∣
∣
∣

V2

IS

∣
∣
∣
∣

2

We need to find the output voltage in terms of the source current. Using the voltage gain
we have and input admittance we have

∣
∣
∣
∣

V2

V1

∣
∣
∣
∣
=

∣
∣
∣
∣

Y21

YL + Y22

∣
∣
∣
∣

IS = V1(YS + Yin)
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Figure 8: (a) A two-port matched at the input port. (b) A two-port matched at the output
port.

∣
∣
∣
∣

V2

IS

∣
∣
∣
∣
=

∣
∣
∣
∣

Y21

YL + Y22

∣
∣
∣
∣

1

|YS + Yin|

|YS + Yin| =

∣
∣
∣
∣
YS + Y11 −

Y12Y21

YL + Y22

∣
∣
∣
∣

We can now express the output voltage as a function of source current as

∣
∣
∣
∣

V2

IS

∣
∣
∣
∣

2

=
|Y21|2

|(YS + Y11)(YL + Y22) − Y12Y21|2

And thus the transducer gain

GT =
4<(YL)<(YS)|Y21|2

|(YS + Y11)(YL + Y22) − Y12Y21|2

There is no need to redefine the power gains for the other parameter sets since all of the
gain expression we have derived are in the exact same form for the impedance, hybrid, and
inverse hybrid matrices. Simply change y to z, h or g.

2.1 Comparison of Power Gains

Since Pin ≤ Pav,s, we see that GT ≤ Gp. Under what condition is GT = Gp? Simply when the
input impedance is conjugately matches to the source impedance (Fig. 8a). Since PL ≤ Pav,l,
we see that GT ≤ Ga. Again, equality is obtained when the load is conjugately matched to
the two-port output impedance (Fig. 8b). In summary

GT,max,L =
PL(YL = Y ∗

out)

Pav,S

= Ga

GT,max,S = GT (Yin = Y ∗
S ) = Gp
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Figure 9: The bi-conjugate match, or simultaneous input and output match.

Input and Output Conjugate Match

It should be clear now that if we simultaneously conjugate match both the input and output
of a two-port, we’ll obtain the maximum possible power gain (Fig. 9). Under this condition
all three gains are equal

Gp,max = GT,max = Ga,max

This is thus the recipe for calculating the optimal source and load impedance in to maximize
gain

Yin = Y11 −
Y12Y21

YL + Y22

= Y ∗
S

Yout = Y22 −
Y12Y21

YS + Y11

= Y ∗
L

Solution of the above four equations (real/imag) results in the optimal YS,opt and YL,opt, or
the solution to a pair of quadratic equations.

Calculation of Optimal Source/Load

Another approach to the problem of calculating the optimal source/load is to simply equate
the partial derivatives of GT with respect to the source/load admittance to zero to

∂GT

∂GS

=
∂GT

∂BS

=
∂GT

∂GL

=
∂GT

∂BL

= 0

Again we have four equations. But we should be smarter about this and recall that the
maximum gains are all equal. Since Ga and Gp are only a function of the source or load, we
can get away with only solving two equations. For instance

∂Ga

∂GS

=
∂Ga

∂BS

= 0

This yields YS,opt and by setting YL = Y ∗
out we can find the YL,opt. Likewise we can also solve

∂Gp

∂GL

=
∂Gp

∂BL

= 0
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And now use YS,opt = Y ∗
in. Let’s outline the procedure for the optimal power gain. We’ll use

the power gain Gp and take partials with respect to the load. Let

Yjk = mjk + jnjk

YL = GL + jXL

Y12Y21 = P + jQ = Lejφ

Gp =
|Y21|2

D
GL

<
(

Y11 −
Y12Y21

YL + Y22

)

= m11 −
<(Y12Y21(YL + Y22)

∗)

|YL + Y22|2

D = m11|YL + Y22|2 − P (GL + m22) − Q(BL + n22)

∂Gp

∂BL

= 0 = −|Y21|2GL

D2

∂D

∂BL

Solving the above equation we arrive at the following solution

BL,opt =
Q

2m11

− n22

In a similar fashion, solving for the optimal load conductance

GL,opt =
1

2m11

√

(2m11m22 − P )2 − L2

If we substitute these values into the equation for Gp (lot’s of algebra ...), we arrive at

Gp,max =
|Y21|2

2m11m22 − P +
√

(2m11m22 − P )2 − L2

Notice that for the solution to exists, GL must be a real number. In other words

(2m11m22 − P )2 > L2

(2m11m22 − P ) > L

K =
2m11m22 − P

L
> 1

The condition on the factor K is important as we will later show that it also corresponds to
an unconditionally stable two-port. We can recast all of the work up to here in terms of K

YS,opt =
Y12Y21 + |Y12Y21|(K +

√
K2 − 1)

2<(Y22)

YL,opt =
Y12Y21 + |Y12Y21|(K +

√
K2 − 1)

2<(Y11)

Gp,max = GT,max = Ga,max =
Y21

Y12

1

K +
√

K2 − 1
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2.2 Maximum Gain

The maximum gain is usually written in the following insightful form

Gmax =
Y21

Y12
(K −

√
K2 − 1)

For a reciprocal network, such as a passive element, Y12 = Y21 and thus the maximum gain
is given by the second factor

Gr,max = K −
√

K2 − 1

Since K > 1, |Gr,max| < 1. The reciprocal gain factor is known as the efficiency of the
reciprocal network. The first factor, on the other hand, is a measure of the non-reciprocity.

The case of a unilateral amplifier is of particular interest

GTU =
4|y21|2<(YL)<(YS)

|(y22 + YL)(YS + Yin)|2

The transducer gain is maximum under a conjugate input/output match

YS = Y ∗
in = Y ∗

11

YL = Y ∗
out = Y ∗

22

Resulting in a maximum unilateral gain

GTU,max =
|y21|2

4<(YL)<(YS)

Take for instance the hybrid-π model discussed earlier (Fig. 24). If we assume the model
is unilateral, e.g. Cµ ≈ 0, then

y11 = Yπ + Yµ ≈ Yπ

y22 = Yo + Yµ ≈ Yo

y21 = gm − Yµ ≈ gm

y11 = Yµ ≈ 0

Using the formula derived for GTU,max we have

GTU,max =
4g2

m

<(y11)<(y22)

For an ideal FET, the input admittance is imaginary, e.g. <(y11) = 0, which implies infinite
power gain. This is a non-physical result and so we can see that a real FET must have
physical resistance on the input side. In practice the gate resistance comes from the poly-
gate structure, the interconnect, and the induced channel resistance.
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2.3 Two-Port Stability and Negative Resistance

A two-port network is unstable if it supports non-zero currents/voltages with passive termi-
nations (

i1
i2

)

=

(
y11 y12

y21 y22

)(
v1

v2

)

Since i1 = −v1YS and i2 = −v2YL

(
y11 + YS y12

y21 y22 + YL

)(
v1

v2

)

= 0

The only way to have a non-trial solution is for the determinant of the matrix to be zero at
a particular frequency. Taking the determinant of the matrix we have

(YS + y11)(YL + y22) − y12y21 = 0

Let’s re-write the above in the following form

YS + y11 −
y12y21

y22 + YL

= 0

or
YS + Yin = 0

equivalently
YL + Yout = 0

A network is unstable at a particular frequency if YS + Yin = 0, which means the condition
is satisfied for both the real and imaginary part. In particular

<(YS + Yin) = <(YS) + <(Yin) = 0

Since the terminations are passive, <(YS) > 0 which implies that

<(Yin) < 0

The same equations also show that
<(Yout) < 0

So if these conditions are satisfied, the two-port is unstable.
The conditions for stability are a function of the source and load termination

<(Yin) = <
(

y11 −
y12y21

YL + y22

)

> 0

<(Yout) = <
(

y22 −
y12y21

YS + y11

)

> 0

For a unilateral amplifier, the conditions are simple and only depend on the two-port

<(y11) > 0

<(y22) > 0

13



Stability Factor

In general, it can be shown that a two-port is absolutely stable if

<(y11) > 0

<(y22) > 0

and
K > 1

Where the stability factor K is given by

K =
2<(y11)<(y22) − <(y12y21)

|y12y21|
The stability of a unilateral amplifier with y12 = 0 is infinite (K = ∞) which implies absolute
stability (as long as <(y11) > 0 and <(y22) > 0). An amplifier with absolute stability means
that the two-port is stable for all passive terminations at either the load or the source. This
is a conservative situation in applications where the source and load impedances are well
specified and well controlled. But in certain situations the load or source impedance may vary
greatly. For instance the input impedance of an antenna can vary if the antenna is moved in
proximity to conductors, bent, shorted, or broken. An unstable two-port can be stabilized
by adding sufficient loss at the input or output to overcome the negative conductance.

3 Scattering Parameters

Voltages and currents are difficult to measure directly at microwave frequencies. The Z
matrix requires “opens”, and it’s hard to create an ideal open circuit due to parasitic capac-
itance and radiation. Likewise, a Y matrix requires “shorts”, again ideal short circuits are
impossible at high frequency due to the finite inductance. Furthermore, many active devices
could oscillate under the open or short termination. In practice, we measure scattering or S-
parameters at high frequency. The measurement is direct and only involves measurement of
relative quantities (such as the standing wave ratio). It’s important to realize that although
we associate S parameters with high frequency and wave propagation, the concept is valid
for any frequency.

3.1 Power Flow in an One-Port

The concept of scattering parameters is very closely related to the concept of power flow.
For this reason, we begin with the simple observation that the power flow into a one-port
circuit can be written in the following form

Pin = Pavs − Pr

where Pavs is the available power from the source. Unless otherwise stated, let us assume
sinusoidal steady-state. If the source has a real resistance of Z0, this is simply given by

Pavs =
V 2

s

8Z0

14



Of course if the one-port is conjugately matched to the source, then it will draw the maximal
available power from the source. Otherwise, the power Pin is always less than Pavs, which
is reflected in our equation. In general, Pr represents the wasted or untapped power that
one-port circuit is “reflecting” back to the source due to a mismatch. For passive circuits
it’s clear that each term in the equation is positive and Pin ≥ 0.

The complex power absorbed by the one-port is given by

Pin =
1

2
(V1 · I∗

1 + V ∗
1 · I1)

which allows us to write

Pr = Pavs − Pin =
V 2

s

4Z0

− 1

2
(V1I

∗
1 + V ∗

1 I1)

the factor of 4 instead of 8 is used since we are now dealing with complex power. The average
power can be obtained by taking one half of the real component of the complex power. If
the one-port has an input impedance of Zin, then the power Pin is expanded to

Pin =
1

2

(
Zin

Zin + Z0
Vs ·

V ∗
s

(Zin + Z0)∗
+

Z∗
in

(Zin + Z0)∗
V ∗

s · Vs

(Zin + Z0)

)

which is easily simplified to

Pin =
|Vs|2
2Z0

(
Z0Zin + Z∗

inZ0

|Zin + Z0|2
)

where we have assumed Z0 is real. With the exception of a factor of 2, the premultiplier is
simply the source available power, which means that our overall expression for the reflected
power is given by

Pr =
V 2

s

4Z0

(

1 − 2
Z0Zin + Z∗

inZ0

|Zin + Z0|2
)

which can be simplified

Pr = Pavs

∣
∣
∣
∣

Zin − Z0

Zin + Z0

∣
∣
∣
∣

2

= Pavs|Γ|2

where we have defined Γ, or the reflection coefficient, as

Γ =
Zin − Z0

Zin + Z0

From the definition it is clear that |Γ| ≤ 1, which is just a re-statement of the conservation
of energy implied by our assumption of a passive load. This constant Γ, also called the
scattering parameter of a one-port, plays a very important role. On one hand we see that
it is has a one-to-one relationship with Zin. Given Γ we can solve for Zin by inverting the
above equation

Zin = Z0
1 + Γ

1 − Γ
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which means that all of the information in Zin is also in Γ. Moreover, since |Γ| < 1,
we see that the space of the semi-infinite space of all impedance values with real positive
components (the right-half plane) maps into the unit circle. This is a great compression
of information which allows us to visualize the entire space of realizable impedance values
by simply observing the unit circle. We shall find wide application for this concept when
finding the appropriate load/source impedance for an amplifier to meet a given noise or gain
specification.

More importantly, Γ expresses very direct and obviously the power flow in the circuit.
If Γ = 0, then the one-port is absorbing all the possible power available from the source. If
|Γ| = 1 then the one-port is not absorbing any power, but rather “reflecting” the power back
to the source. Clearly an open circuit, short circuit, or a reactive load cannot absorb net
power. For an open and short load, this is obvious from the definition of Γ. For a reactive
load, this is pretty clear if we substitute Zin = jX

|ΓX | =

∣
∣
∣
∣

jX − Z0

jX + Z0

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

√

X2 + Z2
0

√

X2 + Z2
0

∣
∣
∣
∣
∣
= 1

The transformation between impedance and Γ is a well known mathematical transform (see
Bilinear Transform). It is a conformal mapping (meaning that it preserves angles) which
maps vertical and horizontal lines in the impedance plane into circles. We have already seen
that the jX axis is mapped onto the unit circle.

Since |Γ|2 represents power flow, we may imagine that Γ should represent the flow of
voltage, current, or some linear combination thereof. Consider taking the square root of the
basic equation we have derived √

Pr = Γ
√

Pavs

where we have retained the positive root. We may write the above equation as

b1 = Γa1

where a and b have the units of square root of power and represent signal flow in the network.
How are a and b related to currents and voltage? Let

a1 =
V1 + Z0I1

2
√

Z0

and

b1 =
V1 − Z0I1

2
√

Z0

It is now easy to show that for the one-port circuit, these relations indeed represent the
available and reflected power:

|a1|2 =
|V1|2
4Z0

+
Z0|I1|2

4
+

V ∗
1 · I1 + V1 · I∗

1

4

Now substitute V1 = ZinVs/(Zin + Z0) and I1 = Vs/(Zin + Z0) we have

|a1|2 =
|Vs|2
4Z0

|Zin|2
|Zin + Z0|2

+
Z0|Vs|2

4|Zin + Z0|2
+

|Vs|2
4Z0

Z∗
inZ0 + ZinZ0

|Zin + Z0|2

16



a1

a2b1

b2

[S]

Figure 10: A two-port black box with normalized waves a and b.

or

|a1|2 =
|Vs|2
4Z0

( |Zin|2 + Z2
0 + Z∗

inZ0 + ZinZ0

|Zin + Z0|2
)

=
|Vs|2
4Z0

( |Zin + Z0|2
|Zin + Z0|2

)

= Pavs

In a like manner, the square of b is given by many similar terms

|b1|2 =
|Vs|2
4Z0

( |Zin|2 + Z2
0 − Z∗

inZ0 − ZinZ0

|Zin + Z0|2
)

= Pavs

∣
∣
∣
∣

|Zin − Z0

Zin + Z0

∣
∣
∣
∣

2

= Pavs|Γ|2

as expected. We can now see that the expression b = Γ · a is analogous to the expression
V = Z · I or I = Y · V and so it can be generalized to an N -port circuit. In fact, since a
and b are linear combinations of v and i, there is a one-to-one relationship between the two.
Taking the sum and difference of a and b we arrive at

a1 + b1 =
2V1

2
√

Z0

=
V1√
Z0

which is related to the port voltage and

a1 − b1 =
2Z0I1

2
√

Z0

=
√

Z0I1

which is related to the port current.

3.2 Scattering Parameters for a Two-Port

Let us now generalize the concept of scattering parameters to a two-port and write

b1 = S11a1 + S12a2

b2 = S21a1 + S22a2

with reference to Fig. 10, we can interpret the above equation as follows. If we drive a two-
port with a source, then a1 represents the available power from the source, and some fraction
of that power will be reflected due to S11 (mismatch at the input) and some fraction of that
power will “transmitted” to the the second port. In other words, the signal b2 represents
the transmitted signal flowing into the load connected on port two. But if port two is not
matched, then this power cannot be fully absorbed and some of that power must flow back
into the system, represented by a2. Let us make this intuitive picture more rigorous by
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finding the meaning of each parameter. First consider S11, which is easy to to understand if
we can set a2 = 0. From the definition of a2, we have

a2 =
V2 + Z0I2

2
√

Z0

= 0

or
V2

−I2
= Z0

which is tantamount to loading the second port with a resistance of Z0. Under this condition,
then, we can readily identify S11

S11 =
b1

a1

∣
∣
∣
∣
a2=0

as simply the same as Γ for a one-port circuit. In other words, this is the ratio of the signal
“reflected” back to the source and 1−|S11|2 therefore represents the amount of the available
source power flowing into the two-port circuit. Note that this is true as long as the second
port is terminated in Z0. Using the second equation, we have

S21 =
b2

a1

∣
∣
∣
∣
a2=0

which represents the signal flowing out of the two-port and towards the load normalized by
the available source power flowing into port 1. In other words, this represents the gain of
the two-port under the matched condition. Note that under matched conditions the signals
a1 and b2 take on particular simply forms

a1 =
V1 + I1Z0

2
√

Z0

= V
1 + I1

V1
Z0

2
√

Z0

=
2V1√
Z0

and

b2 =
V2 − I2Z0

2
√

Z0

= V2

1 − I1
V1

Z0

2
√

Z0

=
2V2√
Z0

which means

S21 =
V2

V1
= 2

V2

Vs

which is simply twice the voltage gain of the circuit from the load to the source. This follows
since the signal V1 is exactly half of the source voltage under matched conditions. |S21|2 is
the power gain of the two-port when both ports are terminated by Z0 since in this case all
the available source power flows into the two port and the amount appearing at the load is
given by |b2|2. If |S21| > 1, that means there is more power at the load than power flowing
into the two-port, which can only be true if the two-port is active. If we interchange the
order of the ports, we immediately see that S22 is likewise the output reflection coefficient
under matched conditions and S12 is the reverse gain of the two-port.
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Figure 11: An arbitrary N port circuit with incident and reflected waves at each port.
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Figure 12: A voltage source with source impedance ZS.
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3.3 Representation of Source

How do we represent the voltage source in Fig. 12 with a source impedance Zs 6= Z0 directly
with S parameters? Start with the I-V relation

Vi = Vs − IsZs

The voltage source can be represented directly for s-parameter analysis as follows. First note
that

(a + b)
√

Z0 = Vs −
(

a − b√
Z0

)

Zs

or
b(Z0 − Zs) =

√

Z0Vs − a(Zs + Z0)

Solve these equations for a, the power flowing into a two-port

a =

√
Z0Vs

Zs + Z0
+ b

Z0 − Zs

Z0 + Zs

Define Γs as the source reflection coefficient and bs as the source signal

Γs =
Z0 − Zs

Z0 + Zs

bs =

√
Z0Vs

Zs + Z0

With these definitions in place, the power flow away from the source has a simple form

a = bs + bΓs

If the source is matched to Z0, then Γs = 0 and the total power flowing out of the source
is the same as the source power. Otherwise the source signal power should include any
reflections occurring at the source itself.

Available Power from Source

A useful quantity is the available power from a source under conjugate matched conditions.
Let’s begin by noting that the power flowing into a load ΓL is given by

PL = |a|2 − |b|2 = |a|2(1 − |ΓL|2)

Using the fact that b = ΓLa, the input power signal is given by

a = bs + bΓs = bs + ΓLΓsa

or

a =
bs

1 − ΓLΓs
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Therefore the power flowing into the load is given by

PL =
|bs|2(1 − |ΓL|2)
|1 − ΓLΓs|2

To draw the available power from the source, we should conjugately match the load ΓL = Γ∗
s

Pavs = PL|ΓL=Γ∗

s
=

|bs|2(1 − |Γs|2)
|1 − |Γs|2|2

=
|bs|2

1 − |Γs|2

3.4 Incident and Scattering Waves

If you’re familiar with transmission line theory, then you clearly understand the origin of
the term “reflected” signal and “transmitted” signal. In transmission line theory, signal a
is often called the “forward” wave and represetned by v+ and b is called the reflected or
scattered wave and denoted by v−. In a transmission line the power is actually reflected
since the source does not know the port impedance until information travels from the source
to the two-port and then back to the source again (limited by the speed of light) and so there
is a physical origin to the terminology. In lumped circuit theory, there is no time delay, but
we use the same terminology. For an N port circuit, consider N transmission line connected
to each port (Fig. 11) and define the reference plane as the point where the transmission
line terminates onto the port. In transmission line parlance, these signals are voltages (and
currents), so we define them as follows

v+ = V + IZ0

v− = V − IZ0

Notice the similarity to the definition of a and b, where the normalization and power factors
are missing. The vectors v− and v+ are the incident and “scattered” waveforms

v+ =








V +
1

V +
2

V +
3
...








v− =








V −
1

V −
2

V −
3
...








Because the N port is linear, we expect that scattered field to be a linear function of the
incident field

v− = Sv+

S is the scattering matrix

S =






S11 S12 · · ·
S21

. . .
...





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Figure 13: An N port circuit with all ports terminated so that V +
j = 0 for j 6= 1.

The fact that the S matrix exists can be easily proved using transmission line theory.
The voltage and current on each transmission line termination can be written as

Vi = V +
i + V −

i

Ii = Y0(I
+
i − I−

i )

Inverting these equations

Vi + Z0Ii = V +
i + V −

i + V +
i − V −

i = 2V +
i

Vi − Z0Ii = V +
i + V −

i − V +
i + V −

i = 2V −
i

Thus v+,v− are simply linear combinations of the port voltages and currents. By the unique-
ness theorem, then, v− = Sv+.

Measurement of Sij

The term Sij can be computed directly by the following formula

Sij =
V −

i

V +
j

∣
∣
∣
∣
∣
V +

k
=0 ∀k 6=j

Solve for V +
k = 0

V +
k = Vk + IkZ0 = 0

or
Vk

−Ik

= Z0

which means we terminate port k with an impedance Z0 and measure the scattered waves.
From a transmission line perspective, to measure Sij, drive port j with a wave amplitude
of V +

j and terminate all other ports with the characteristic impedance of the lines (so that
V +

k = 0 for k 6= j), as shown in Fig. 13. Then observe the wave amplitude coming out of the
port i.
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Example 1:

Z0 C

Let’s calculate the S parameter for a capacitor

S11 =
V −

1

V +
1

We can also do the calculation directly from the definition of S parameters.
Substituting for the current in a capacitor

V −
1 = V − IZ0 = V − jωCV = V (1 − jωCZ0)

V +
1 = V + IZ0 = V + jωCV = V (1 + jωCZ0)

Alternatively, this is just the reflection coefficient for a capacitor

S11 = ρL =
ZC − Z0

ZC + Z0
=

1
jωC

− Z0

1
jωC

+ Z0

=
1 − jωCZ0

1 + jωCZ0

and the ratio yields the same result as expected.

Example 2:

Z0 Z0ZL

Consider a shunt impedance connected at the junction of two transmission lines.
If we terminate port 2 in an impedance Z0, then the current I1 = V1/R||Z0,
which allows us to write

V −
1 = V1 − I1Z0 = V1

(

1 − Z0

R||Z0

)
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In a like manner, the incident wave is given by

V +
1 = V1 + I1Z0 = V1

(

1 +
Z0

R||Z0

)

The ratio gives us the scattering coefficient

S11 =
1 − Z0

R||Z0

1 + Z0

R||Z0

=
R||Z0 − Z0

R||Z0 + Z0

From transmission line theory, we recognize this to be the reflection coefficient
seen at port one when port two is terminated in Z0. We can also calculate S21

by noting that

V −
2 = V2 − Z0I2 = V1 − Z0

(−V1

Z0

)

= 2V1

Taking the ratio with the incident wave V +
1

S21 =
V −

2

V +
1

∣
∣
∣
∣
V −

2
=0

=
2

1 + Z0

R||Z0

=
2R||Z0

R||Z0 + Z0

By symmetry, we have the complete two-port scattering parameters. Another
approach is to use transmission line theory. Start by observing that the voltage
at the junction is continuous. The currents, though, differ

V1 = V2

I1 + I2 = YLV2

To compute S11, enforce V +
2 = 0 by terminating the line. Thus we can be re-write

the above equations
V +

1 + V −
1 = V −

2

Y0(V
+
1 − V −

1 ) = Y0V
−
2 + YLV −

2 = (YL + Y0)V
−
2

We can now solve the above equation for the reflected and transmitted wave

V −
1 = V −

2 − V +
1 =

Y0

YL + Y0
(V +

1 − V −
1 ) − V +

1

V −
1 (YL + Y0 + Y0) = (Y0 − (Y0 + YL))V +

1

S11 =
V −

1

V +
1

=
Y0 − (Y0 + YL)

Y0 + (YL + Y0)
=

Z0||ZL − Z0

Z0||ZL + Z0

The above equation can be written by inspection since Z0||ZL is the effective load
seen at the junction of port 1. Thus for port 2 we can write

S22 =
Z0||ZL − Z0

Z0||ZL + Z0
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Likewise, we can solve for the transmitted wave, or the wave scattered into port
2

S21 =
V −

2

V +
1

Since V −
2 = V +

1 + V −
1 , we have

S21 = 1 + S11 =
2Z0||ZL

Z0||ZL + Z0

By symmetry, we can deduce S12 as

S12 =
2Z0||ZL

Z0||ZL + Z0

Conversion Formula

Since V + and V − are related to V and I, it’s easy to find a formula to convert for Z or Y
to S

Vi = V +
i + V −

i → v = v+ + v−

Zi0Ii = V +
i − V −

i → Z0i = v+ − v−

Now starting with v = Zi, we have

v+ + v− = ZZ−1
0 (v+ − v−)

Note that Z0 is the scalar port impedance

v−(I + ZZ−1
0 ) = (ZZ−1

0 − I)v+

v− = (I + ZZ−1
0 )−1(ZZ−1

0 − I)v+ = Sv+

We now have a formula relating the Z matrix to the S matrix

S = (ZZ−1
0 + I)−1(ZZ−1

0 − I) = (Z + Z0I)−1(Z − Z0I)

Recall that the reflection coefficient for a load is given by the same equation!

ρ =
Z/Z0 − 1

Z/Z0 + 1

To solve for Z in terms of S, simply invert the relation

Z−1
0 ZS + IS = Z−1

0 Z − I

Z−1
0 Z(I − S) = S + I

Z = Z0(I + S)(I − S)−1

As expected, these equations degenerate into the correct form for a 1 × 1 system

Z11 = Z0
1 + S11

1 − S11
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Reciprocal Networks

We have found that the Z and Y matrix are symmetric. Now let’s see what we can infer
about the S matrix.

v+ =
1

2
(v + Z0i)

v− =
1

2
(v − Z0i)

Substitute v = Zi in the above equations

v+ =
1

2
(Zi + Z0i) =

1

2
(Z + Z0)i

v− =
1

2
(Zi − Z0i) =

1

2
(Z − Z0)i

Since i = i, the above equation must result in consistent values of i

2(Z + Z0)
−1v+ = 2(Z − Z0)

−1v−

Thus
S = (Z − Z0)(Z + Z0)

−1

Consider the transpose of the S matrix

St =
(
(Z + Z0)

−1
)t

(Z − Z0)
t

Recall that Z0 is a diagonal matrix

St = (Zt + Z0)
−1(Zt − Z0)

If Zt = Z (reciprocal network), then we have

St = (Z + Z0)
−1(Z − Z0)

Previously we found that
S = (Z + Z0)

−1(Z − Z0)

So that we see that the S matrix is also symmetric (under reciprocity)

St = S

To see this another way, note that in effect we have shown that

(Z + I)−1(Z − I) = (Z − I)(Z + I)−1

This is easy to demonstrate if we note that

Z2 − I = Z2 − I2 = (Z + I)(Z − I) = (Z − I)(Z + I)

In general matrix multiplication does not commute, but here it does

(Z − I) = (Z + I)(Z − I)(Z + I)−1

(Z + I)−1(Z − I) = (Z − I)(Z + I)−1

Thus we see that St = S.
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Scattering Parameters of a Lossless Network

Consider the total power dissipated by a lossless network (must sum to zero)

Pav =
1

2
<
(
vti∗
)

= 0

Expanding in terms of the wave amplitudes

=
1

2
<
(
(v+ + v−)tZ−1

0 (v+ − v−)∗
)

where we assume that Z0 are real numbers and equal. The notation is about to get ugly in
the expansion

=
1

2Z0

<
(

v+t
v+∗ − v+t

v−∗
+ v−t

v+∗ − v−t
v−∗
)

The middle terms sum to a purely imaginary number. Let x = v+ and y = v−

ytx∗ − xty∗ = y1x
∗
1 + y2x

∗
2 + · · · − x1y

∗
1 + x2y

∗
2 + · · · = a − a∗

We have shown that

Pav =
1

2Z0



 v+t
v+

︸ ︷︷ ︸

total incident power

− v−t
v−∗

︸ ︷︷ ︸

total reflected power



 = 0

This is a rather obvious result. It simply says that the incident power is equal to the reflected
power (because the N port is lossless). Since v− = Sv+

v+t
v+ = (Sv+)t(Sv+)∗ = v+t

StS∗v+∗

This can only be true if S is a unitary matrix

StS∗ = I

S∗ = (St)−1

Orthogonal Properties of S

Expanding out the matrix product

δij =
∑

k

(ST )ikS
∗
kj =

∑

k

SkiS
∗
kj

For i = j we have
∑

k

SkiS
∗
ki = 1

For i 6= j we have
∑

k

SkiS
∗
kj = 0

The dot product of any column of S with the conjugate of that column is unity while the
dot product of any column with the conjugate of a different column is zero. If the network
is reciprocal, then St = S and the same applies to the rows of S. Note also that |Sij| ≤ 1.
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Figure 14: The cascade of two two-ports. The incident and reflected power at the connection
point.

Shift in Reference Planes

A convenient feature of the scattering parameters is that we can easily move the reference
plane. In other words, if we connect transmission lines of arbitrary length to any port, we
can easily de-embed their effect. We’ll derive a new matrix S ′ related to S. Let’s call the
waves at the new reference ν

v− = Sv+

ν− = S ′ν+

Since the waves on the lossless transmission lines only experience a phase shift, we have a
phase shift of θi = βi`i

ν−
i = v−e−jθi

ν+
i = v+ejθi

Or we have 






ejθ1 0 · · ·
0 ejθ2 · · ·
0 0 ejθ3 · · ·
...








ν− = S








e−jθ1 0 · · ·
0 e−jθ2 · · ·
0 0 e−jθ3 · · ·
...








ν+

So we see that the new S matrix is simply

S ′ =








e−jθ1 0 · · ·
0 e−jθ2 · · ·
0 0 e−jθ3 · · ·
...








S








e−jθ1 0 · · ·
0 e−jθ2 · · ·
0 0 e−jθ3 · · ·
...








3.5 Scattering Transfer Parameters

Up to now we found it convenient to represent the scattered waves in terms of the incident
waves. But what if we wish to cascade two ports as shown in Fig. 14? Since b2 flows into
a′

1, and likewise b′1 flows into a2, would it not be convenient if we defined the a relationship
between a1,b1 and b2,a2? In other words we have

[
a1

b1

]

=

[
T11 T12

T21 T22

] [
b2

a2

]
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a1

a2b1

b2

S11 S22

S12

S21

Figure 15: The signal-flow graph of a two-port.

Notice carefully the order of waves (a,b) in reference to the figure above. This allows us to
cascade matrices [

a1

b1

]

= T1

[
b2

a2

]

= T1

[
a3

b3

]

= T1T2

[
b4

a4

]

4 Signal-Flow Analysis

Signal-flow analysis is a technique for graphically calculating the transfer function directly
using scattering parameters. Each signal a and b in the system is represented by a node.
Branches connect nodes with “strength” given by the scattering parameter. For example, a
general two-port is represented in Fig. 15. Using three simple rules, we can simplify signal
flow graphs to the point that detailed calculations are done by inspection. Of course we can
always “do the math” using algebra, so pick the technique that you like best.

a1 a2

SBSA

a3 a1

SBSA

a3

Figure 16: The series connection rule.

• Rule 1: (series rule) By inspection of Fig. 16, we have the cascade.

a1 a2

SB

SA

a1 a2

SA + SB

Figure 17: The parallel connection rule.

• Rule 2: (parallel rule) Clear by inspection of Fig. 17.
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a1 a2

SCSA

a3

SB

a1 a2

SC

a3

SA

1 − SB

Figure 18: The self-loop elimination rule.

• Rule 3: (self-loop rule) We can remove a “self-loop” in Fig. 18 by multiplying branches
feeding the node by 1/(1 − SB) since

a2 = SAa1 + SBa2

a2(1 − SB) = SAa1

a2 =
SA

1 − SB

a1

• Rule 4: (splitting rule) We can duplicate node a2 in Fig. 19 by splitting the signals at
an earlier phase

a1

a2

SB

SA

a3

a4

SC

a1 a2

SB

SA

a3

a4
SC

SA

a
′

2

Figure 19: The splitting rule.

Using the above rules, we can calculate the input reflection coefficient of a two-port
terminated by ΓL = b1/a1 shown in Fig. 20a using a couple of steps. First we notice that
there is a self-loop around b2 (Fig. 20b). Next we remove the self loop and from here it’s
clear that the (Fig. 20c)

Γin =
b1

a1

= S11 +
S21S12ΓL

1 − S22ΓL

4.1 Mason’s Rule

Using Mason’s Rule, you can calculate the transfer function for a signal flow graph by
“inspection”

T =
P1

(
1 −

∑
L(1)(1) +

∑
L(2)(1) − · · ·

)
+ P2

(
1 −

∑
L(1)(2) + · · ·

)
+ · · ·

1 −
∑

L(1) +
∑

L(2) −
∑

L(3) + · · ·
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a2b1
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S11
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ΓL

S21

1 − S22ΓL

(a) (b) (c)

Figure 20: (a) A two-port terminated in a load ΓL. (b) Identification of the self-loop. (c)
Elimination of the self-loop.
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
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 a1

b
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(a) (b)

Figure 21: (a) Identification of the paths in a signal-flow graph. (b) Identification of the
loops in a signal-flow graph.

Each Pi defines a path, a directed route from the input to the output not containing each
node more than once. The value of Pi is the product of the branch coefficients along the
path. For instance, in Fig. 21a, the path from bs to b1 (T = b1/bs) has two paths, P1 = S11

and P2 = S21ΓLS12

Loop of Order Summation Notation

The notation
∑

L(1) is the sum over all first order loops. A “first order loop” is defined as
product of the branch values in a loop in the graph. For the example shown in Fig. 21b,
we have ΓsS11, S22ΓL, and ΓsS21ΓLS12. A “second order loop” L(2) is the product of two
non-touching first-order loops. For instance, since loops S11Γs and S22ΓL do not touch, their
product is a second order loop. A “third order loop” L(3) is likewise the product of three
non-touching first order loops. The notation

∑
L(1)(p) is the sum of all first-order loops that

do not touch the path p. For path P1, we have
∑L(1)(1) = ΓLS22 but for path P2 we have

∑
L(1)(2) = 0.

Example 3:

Input Reflection of Two-Port
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Let’s redo the calculation of Γin = b1/a1 for the signal-flow graph shown in
Fig. 20. Using Mason’s rule, you can quickly identify the relevant paths. There
are two paths P1 = S11 and P2 = S21ΓLS12. There is only one first-order loop:
∑

L(1) = S22ΓL and so naturally there are no higher order loops. Note that the
loop does not touch path P1, so

∑
L(1)(1) = S22ΓL. Now let’s apply Mason’s

general formula

Γin =
S11(1 − S22ΓL) + S21ΓLS12

1 − S22ΓL

= S11 +
S21ΓLS12

1 − S22ΓL

Example 4:

a1

a2b1

b2

S11
S22

S12

S21

ΓL
ΓS

bS



Figure 22: A two-port driven by a source with reflection coefficient ΓS and loaded by ΓL.

Transducer Power Gain

By definition, the transducer power gain for the two-port shown in Fig. 22 is
given by

GT =
PL

PAV S

=
|b2|2(1 − |ΓL|2)

|bs|2

1−|ΓS |2

=

∣
∣
∣
∣

b2

bS

∣
∣
∣
∣

2

(1 − |ΓL|2)(1 − |ΓS|2)

By Mason’s Rule, there is only one path P1 = S21 from bS to b2 so we have

∑

L(1) = ΓSS11 + S22ΓL + ΓSS21ΓLS12

∑

L(2) = ΓSS11ΓLS22

∑

L(1)(1) = 0
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The gain expression is thus given by

b2

bS

=
S21(1 − 0)

1 − ΓSS11 − S22ΓL − ΓSS21ΓLS12 + ΓSS11ΓLS22

The denominator is in the form of 1 − x − y + xy which allows us to write

GT =
|S21|2(1 − |ΓS|2)(1 − |ΓL|2)

|(1 − S11ΓS)(1 − S22ΓL) − S21S12ΓLΓS|2

Recall that Γin = S11 + S21S12ΓL/(1− S22ΓL). Factoring out 1− S22ΓL from the
denominator we have

den =

(

1 − S11ΓS − S21S12ΓL

1 − S22ΓL

ΓS

)

(1 − S22ΓL)

den =

(

1 − ΓS

(

S11 +
S21S12ΓL

1 − S22ΓL

))

(1 − S22ΓL)

= (1 − ΓSΓin)(1 − S22ΓL)

This simplifications allows us to write the transducer gain in the following con-
venient form

GT =
1 − |ΓS|2

|1 − ΓinΓS|2
|S21|2

1 − |ΓL|2
|1 − S22ΓL|2

which can be viewed as a product of the action of the input match “gain”, the
intrinsic two-port gain |S21|2, and the output match “gain”. Since the general
two-port is not unilateral, the input match is a function of the load. Likewise,
by symmetry we can also factor the expression to obtain

GT =
1 − |ΓS|2

|1 − S11ΓS|2
|S21|2

1 − |ΓL|2
|1 − ΓoutΓL|2

5 Stability of a Two-Port

A two-port is unstable if the admittance of either port has a negative conductance for a
passive termination on the second port. Under such a condition, the two-port can oscillate.
Consider the input admittance

Yin = Gin + jBin = Y11 −
Y12Y21

Y22 + YL

(2)

Using the following definitions
Y11 = g11 + jb11 (3)
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Y22 = g22 + jb22 (4)

Y12Y21 = P + jQ = L 6 φ (5)

YL = GL + jBL (6)

Now substitute real/imaginary parts of the above quantities into Yin

Yin = g11 + jb11 −
P + jQ

g22 + jb22 + GL + jBL

(7)

= g11 + jb11 −
(P + jQ)(g22 + GL − j(b22 + BL))

(g22 + GL)2 + (b22 + BL)2
(8)

Taking the real part, we have the input conductance

<(Yin) = Gin = g11 −
P (g22 + GL) + Q(b22 + BL)

(g22 + GL)2 + (b22 + BL)2
(9)

=
(g22 + GL)2 + (b22 + BL)2 − P

g11
(g22 + GL) − Q

g11
(b22 + BL)

D
(10)

Since D > 0 if g11 > 0, we can focus on the numerator. Note that g11 > 0 is a requirement
since otherwise oscillations would occur for a short circuit at port 2. The numerator can be
factored into several positive terms

N = (g22 + GL)2 + (b22 + BL)2 − P

g11
(g22 + GL) − Q

g11
(b22 + BL) (11)

=

(

GL +

(

g22 −
P

2g11

))2

+

(

BL +

(

b22 −
Q

2g11

))2

− P 2 + Q2

4g2
11

(12)

Now note that the numerator can go negative only if the first two terms are smaller than

the last term. To minimize the first two terms, choose GL = 0 and BL = −
(

b22 − Q

2g11

)

(reactive load)

Nmin =

(

g22 −
P

2g11

)2

− P 2 + Q2

4g2
11

(13)

And thus the above must remain positive, Nmin > 0, so

(

g22 −
P

2g11

)2

− P 2 + Q2

4g2
11

> 0 (14)

g11g22 >
P + L

2
=

L

2
(1 + cos φ) (15)
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5.0.1 Linvill/Llewellyn Stability Factors

Using the above equation, we define the Linvill stability factor

L < 2g11g22 − P (16)

C =
L

2g11g22 − P
< 1 (17)

The two-port is stable if 0 < C < 1. It’s more common to use the inverse of C as the stability
measure

2g11g22 − P

L
> 1 (18)

The above definition of stability is perhaps the most common

K =
2<(Y11)<(Y22) − <(Y12Y21)

|Y12Y21|
> 1 (19)

The above expression is identical if we interchange ports 1/2. Thus it’s the general condition
for stability. Note that K > 1 is the same condition for the maximum stable gain derived
last section. The connection is now more obvious. If K < 1, then the maximum gain is
infinity!

5.1 Stability from Scattering Parameters

We can also derive stability in terms of the input reflection coefficient. For a general two-port
with load ΓL we have

v−
2 = Γ−1

L v+
2 = S21v

+
1 + S22v

+
2 (20)

v+
2 =

S21

Γ−1
L − S22

v−
1 (21)

v−
1 =

(

S11 +
S12S21ΓL

1 − ΓLS22

)

v+
1 (22)

Γ = S11 +
S12S21ΓL

1 − ΓLS22
(23)

If |Γ| < 1 for all ΓL, then the two-port is stable

Γ =
S11(1 − S22ΓL) + S12S21ΓL

1 − S22ΓL

=
S11 + ΓL(S21S12 − S11S22)

1 − S22ΓL

(24)

=
S11 − ∆ΓL

1 − S22ΓL

(25)

To find the boundary between stability/instability, let’s set |Γ| = 1
∣
∣
∣
∣

S11 − ∆ΓL

1 − S22ΓL

∣
∣
∣
∣
= 1 (26)

|S11 − ∆ΓL| = |1 − S22ΓL| (27)
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After some algebraic manipulations, we arrive at the following equation
∣
∣
∣
∣
Γ − S∗

22 − ∆∗S11

|S22|2 − |∆|2
∣
∣
∣
∣
=

|S12S21|
|S22|2 − |∆|2 (28)

This is of course the equation of a circle, |Γ − C| = R, in the complex plane with center
at C and radius R. Thus a circle on the Smith Chart divides the region of instability from
stability.

Consider the stability circle for a unilateral two-port

CS =
S∗

11 − (S∗
11S

∗
22)S22

|S11|2 − |S11S22|2
=

S∗
11

|S11|2
(29)

RS = 0 (30)

|CS| =
1

|S11|
(31)

The center of the circle lies outside of the unit circle if |S11| < 1. The same is true of the
load stability circle. Since the radius is zero, stability is only determined by the location of
the center. If S12 = 0, then the two-port is unconditionally stable if S11 < 1 and S22 < 1.
This result is trivial since

ΓS |S12=0 = S11 (32)

The stability of the source depends only on the device and not on the load.

5.2 µ Stability Test

If we want to determine if a two-port is unconditionally stable, then we should use the µ-test

µ =
1 − |S11|2

|S22 − ∆S∗
11| + |S12S21|

> 1 (33)

The µ-test not only is a test for unconditional stability, but the magnitude of µ is a measure
of the stability. In other words, if one two-port has a larger µ, it is more stable.

The advantage of the µ-test is that only a single parameter needs to be evaluated. There
are no auxiliary conditions like the K-test derivation earlier. The derivation of the µ-test
can proceed as follows. First let ΓS = |ρs|ejφ and evaluate Γout

Γout =
S22 − ∆|ρs|ejφ

1 − S11|ρs|ejφ
(34)

Next we can manipulate this equation into the equation for a circle |Γout − C| = R

∣
∣
∣
∣
Γout +

|ρs|S∗
11∆ − S22

1 − |ρs||S11|2
∣
∣
∣
∣
=

√

|ρs||S12S21|
(1 − |ρs||S11|2)

(35)

For a two-port to be unconditionally stable, we’d like Γout to fall within the unit circle

||C| + R| < 1 (36)
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||ρs|S∗
11∆ − S22| +

√

|ρs||S21S12| < 1 − |ρs||S11|2 (37)

||ρs|S∗
11∆ − S22| +

√

|ρs||S21S12| + |ρs||S11|2 < 1 (38)

The worst case stability occurs when |ρs| = 1 since it maximizes the left-hand side of the
equation. Therefore we have

µ =
1 − |S11|2

|S∗
11∆ − S22| + |S12S21|

> 1 (39)

5.2.1 K-∆ Test

The K stability test has already been derived using Y parameters. We can also do a deriva-
tion based on S parameters. This form of the equation has been attributed to Rollett and
Kurokawa. The idea is very simple and similar to the µ test. We simply require that all
points in the instability region fall outside of the unit circle. The stability circle will intersect
with the unit circle if

|CL| − RL > 1 (40)

or
|S∗

22 − ∆∗S11| − |S12S21|
|S22|2 − |∆|2 > 1 (41)

This can be recast into the following form (assuming |∆| < 1)

K =
1 − |S11|2 − |S22|2 + |∆|2

2|S12||S21|
> 1 (42)

5.3 N-Port Passivity

We would like to find if an N -port is active or passive. Passivity is different from stability,
and plays an important role in determining the maximum frequency of operation for an
“active” device. For instance, above a certain frequency every transistor will transition from
an active device to a passive device, setting an upper limit for amplification or oscillation
with a given device. By definition, an N -port is passive if it can only absorb net power. The
total net complex power flowing into or out of a N port is given by

P = (V ∗
1 I1 + V ∗

2 I2 + · · · ) = (I∗
1V1 + I∗

2V2 + · · · ) (43)

If we sum the above two terms we have

P =
1

2
(v∗)T i +

1

2
(i∗)T v (44)

for vectors of current and voltage i and v. Using the admittance matrix i = Y v, this can be
recast as

P =
1

2
(v∗)T Y v +

1

2
(Y ∗v∗)T v =

1

2
(v∗)T Y v +

1

2
(v∗)T (Y ∗)T v (45)

P = (v∗)T 1

2
(Y + (Y ∗)T )v = (v∗)T YHv (46)
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Thus for a network to be passive, the Hermitian part of the matrix YH should be positive
semi-definite.

For a two-port, the condition for passivity can be simplified as follows. Let the general
hybrid admittance matrix for the two-port be given by

H(s) =

(
k11 k12

k21 k22

)

=

(
m11 m12

m21 m22

)

+ j

(
n11 n12

n21 n22

)

(47)

HH(s) =
1

2
(H(s) + H∗(s)) (48)

=

(
m11

1
2
((m12 + m21) + j(n12 − n21))

((m12 + m21) + j(n21 − n12)) m22

)

(49)

This matrix is positive semi-definite if

m11 > 0 (50)

m22 > 0 (51)

det Hn(s) ≥ 0 (52)

or
4m11m22 − |k12|2 − |k21|2 − 2<(k12k21) ≥ 0 (53)

4m11m22 ≥ |k12 + k∗
21|2 (54)

Example 5:

Cgs gmvgs ro

Cgd

+

vgs

−

Figure 23: A simplified hybrid-π equivalent circuit.

A simple equivalent circuit for a FET without any feedback, shown in Fig. 23,
is of course absolutely stable if the resistors of the model are positive. The Z
matrix for the circuit is given by

Z =

[
1

jωCgs
0

−gmro

jωCgs
ro

]

(55)

Since Z12 = 0, the stability factor K = ∞

K =
2<(Z11)<(Z22) − <(Z12Z21)

|Z12Z21|
(56)
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Example 6:

roCπ

Cµ

gmvin

+

vin

−

Rπ Co

Figure 24: The simple hybrid-pi model for a transistor.

The hybrid-pi model for a transistor is shown in Fig. 24. Under what conditions
is this two-port active? The hybrid matrix is given by

H(s) =
1

Gπ + s(Cπ + Cµ)

(
1 sCµ

gm − sCµ q(s)

)

(57)

q(s) = (Gπ + sCπ)(G0 + sCµ) + sCµ(Gπ + gm) (58)

Applying the condition for passivity we arrive at

4GπG0 ≥ g2
m (59)

The above equation is either satisfied for the two-port or not, regardless of fre-
quency. Thus our analysis shows that the hybrid-pi model is not physical. We
know from experience that real two-ports are active up to some frequency fmax.

5.4 Mason’s Invariant U Function

In 1954, Samuel Mason discovered the function U given by [6]

U =
|k21 − k12|2

4(<(k11)<(k22) −<(k12)<(k21))
(60)

For the hybrid matrix formulation (H or G), the U function is given by

U =
|k21 + k12|2

4(<(k11)<(k22) + <(k12)<(k21))
(61)
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Figure 25: A general two-port described by Y is embedded into a lossless, reciprocal four-port
device described by the matrix Y 0.

where kij are the two-port Y , Z, H, or G parameters.
This function is invariant under lossless reciprocal embeddings. Stated differently, any

two-port can be embedded into a lossless and reciprocal circuit and the resulting two-port
will have the same U function. This is a very important property, because this invariant
property does not depend on any lossless matching circuitry that we employ before or after
the two-port, or any lossless feedback.

5.4.1 Properties of U

The invariant property is shown in Fig. 25. The U of the original two-port is the same as
Ua of the overall two-port when a four port lossless reciprocal four-port is added.

The U function has several important properties:

1. If U > 1, the two-port is active. Otherwise, if U ≤ 1, the two-port is passive.

2. U is the maximum unilateral power gain of a device under a lossless reciprocal embed-
ding.

3. U is the maximum gain of a three-terminal device regardless of the common terminal.

With regards to the previous diagram, any lossless reciprocal embedding can be seen as an
interconnection of the original two-port to a four-port, with the following block admittance
matrix [7]

(
Ia

−I

)

=

(
Y 0

11 Y 0
12

Y 0
21 Y 0

22

)(
Va

V

)

(62)

Note that Yij is a 2 × 2 imaginary symmetric sub-matrix

Y 0
jk = jBjk (63)

Bjk = BT
kj (64)

Since I = Y V , we can solve for V from the second equation

−I = Y 0
21Va + Y 0

22V = −Y V (65)
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V = −(Y + Y 0
22)

−1Y 0
21Va (66)

From the first equation we have the composite two-port matrix

Ia = (Y 0
11 − Y 0

12(Y + Y 0
22)

−1Y 0
21)Va = YaVa (67)

By definition, the U function is given by

U =
det(Ya − Y T

a )

det(Ya + Y ∗
a )

(68)

Note that Ya can be written as

Ya = jB11 − jB12(Y + jB22)
−1jBT

12 (69)

Ya = jB11 + B12(Y + jB22)
−1BT

12 (70)

Focus on the denominator of U

Ya + Y ∗
a = B12(W

−1 + (W ∗)−1)BT
12 (71)

where W = Y + Y 0
22 = Y + jB22. Factoring W−1 from the left and (W ∗)−1 from the right,

we have
= B12W

−1(W ∗ + W )(W ∗)−1BT
12 (72)

But W + W ∗ = Y + Y ∗ resulting in

Ya + Y ∗
a = B12W

−1(Y + Y ∗)(W ∗)−1BT
12 (73)

In a like manner, one can show that

Ya − Y T
a = B12W

−1(Y T − Y )(W ∗)−1BT
12 (74)

Taking the determinants and ratios

det(Ya + Y ∗
a ) =

(det B12)
2 det(Y + Y ∗)

(det W )2
(75)

det(Ya − Y T
a ) =

(det B12)
2 det(Y T − Y )

(det W )2
(76)

U =
det(Ya − Y T

a )

det(Ya + Y ∗
a )

=
det(Y − Y T )

det(Y + Y ∗)
(77)
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Y11 Y12
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+

V1
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Figure 26: (a) A general two-port can be unilaterized by adding lossless feedback elements
yf and yα. (b) The equivalent circuit for the unilaterized two-port.

5.4.2 Maximum Unilateral Gain

Consider Fig. 26a, a feedback structure where yf and yα are lossless reactances. We can derive
the overall two-port equations by a cascade connection followed by a shunt connection of
two-ports

Ya =
yα

yα + y22

[
y11 + ∆y/yα y12

y21 y22

]

+

[
yf −yf

−yf yf

]

(78)

To unilaterize the device, we select

yf =
y12yα

y22 + yα

(79)

We can solve for bα and bf

bf = =(y12) −
<(y12)

<(y22)
=(y22) (80)

bα = bf

<(y22)

<(y12)
(81)

It can be shown that the overall Ya matrix is given by

Ya =
j=(y∗

22y12)

y12<(y22)

[

y11 + y12 − j ∆y<(y12)
=(y∗

22
y12)

0

y21 − y12 y22 + y12

]

(82)

5.4.3 Unilaterized Two-Port

The two-port equivalent circuit under unilaterization is shown in Fig. 26b. Notice now that
the maximum power gain of this circuit is given by

GU,max =
|Ya21

|2
4<(Ya11

)<(Ya22
)

= Ua (83)

We can now attribute physical significance to Ua as the maximum unilateral gain. Further-
more, due to the invariance of U , Ua = U for the original two-port network. It’s important
to note that any unilaterization scheme will yield the same maximum power! Thus U is a
good metric for the device.
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Ls

Figure 27: A FET with inductive degeneration.

Single Stage Feedback Revisited

With new tools at hand, let’s revisit the problem of inductive and shunt feedback amplifiers.

5.4.4 Inductive Degeneration

Although Z12 ≈ 0 for a FET at low frequency, the input impedance is purely capacitive. To
introduce a real component, we found that inductive degeneration can be employed, shown
schematically in Fig. 27. The Z matrix for the inductor is simply

ZL = jωLs

[
1 1
1 1

]

(84)

Adding the Z matrix (due to series connection) to the Z matrix of the FET

Z =

[

jωLs + 1
jωCgs

jωLs

jωLs − gmro

jωCgs
ro + jωLs

]

(85)

This feedback introduces a Z12 and thus the stability must be carefully examined

K =
2 · 0 · ro −

(

−ω2L2
s − gmLsro

Cgs

)

ω2L2
s + gmroLs

Cgs

= 1 (86)

We see that this circuit is unconditionally stable. More importantly, the stability factor is
frequency independent. In reality parasitics can destabilize the transistor.

The maximum gain is thus given by

Gmax =

∣
∣
∣
∣

Z21

Z12

∣
∣
∣
∣

(

K −
√

K2 − 1
)

=

∣
∣
∣
∣

Z21

Z12

∣
∣
∣
∣

(87)

=
ωLs + gmro

ωCgs

ωLs

= 1 +
gmro

ω2LsCgs

(88)

= 1 +

(
ωT

ω0

)2(
ro

ωT Ls

)

(89)

The synthesized real input resistance is given by ωT Ls, and so the last term is the ratio of
ro/RS under matched conditions.
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5.4.5 Capacitive Degeneration

A capacitively degenerated transistor is an important building block for Colpitts oscilla-
tors, where instability is desired. Using the same approach, the Z matrix for capacitive
degeneration is given by

Z =

[
1

jωCs
+ 1

jωCgs

1
jωCs

1
jωCs

− gmro

jωCgs
ro + 1

jωCs

]

(90)

The stability factor is given by

K =
2 · 0 · ro −

(
gmro

ω2CsCgs
− 1

ω2C2
s

)

∣
∣
∣

gmro

ω2CsCgs
− 1

ω2C2
s

∣
∣
∣

(91)

Note this is simply

K =
−a + b

|a − b| =

{
b−a
a−b

< 0 a > b
b−a
b−a

= 1 b < a
(92)

The condition for stability is therefore

gmro

Cgs

>
1

Cs

(93)

So far we have dealt with K > 0. Suppose that |∆| > 1. We know that for 0 < K < 1
the two-port is conditionally stable. In other words, the stability circle intersects with the
unit circle with the overlap (usually) corresponding to the unstable region. Instability can
also occur if K > 1 and |∆| > 1, but this is less common (occurs with feedback).

On the other hand, if −1 < K < 0, one can show graphically that the entire unit circle
on the Smith Chart is unstable. In other words, the stability circle does not intersect with
the unit circle or the instability circle contains the entire circle.

Unintentional capacitive degeneration is very common. For instance a common drain
(source follower) driving a capacitive load may have stability problems. Likewise, a cas-
code amplifier may become unstable at high frequencies since the gm input stage presents
capacitive degeneration to the cascode device at high frequency.

5.4.6 Resistive Degeneration

Resistive degeneration is commonly employed to stabilize the bias point of a transistor. The
overall Z matrix is given by

Z =

[

Rs + 1
jωCgs

Rs

Rs − gmro

jωCgs
ro + Rs

]

(94)

The K factor is computed as before

K =
2Rs(ro + Rs) − R2

s

Rs

√

R2
s + g2

mr2
o

ω2C2
gs

(95)
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Figure 28: Common source amplifier with (a) capacitive degeneration, (b) resistive degener-
ation, (c) shunt feedback.

At low frequencies, we have

K =
2ro + Rs

gmro

ωCgs

≈ 2ωCgs

gm

=
2ω

ωT

< 1 (96)

5.4.7 Shunt Feedback

We have seen that shunt feedback is a common broadband matching approach. Now working
with the Y matrix of the transistor (simplified as before)

Yfet =

[
jωCgs 0

gm Go + jωCds

]

(97)

The feedback element has a Y matrix

Yf = Gf

[
+1 −1
−1 +1

]

(98)

And thus the overall amplifier Y matrix is given by

Y =

[
Gf + jωCgs −Gf

gm − Gf Gf + Go + jωCds

]

(99)

The stability factor for the shunt feedback amplifier is given by

K =
2Gf(Go + Gf) − Gf(Gf − gm)

Gf |gm − Gf |
(100)

Suppose that gmRf > 1

=
gm + Gf

gm − Gf

=
gmRf + 1

gmRf − 1
> 1 (101)

The choice of Rf and gm is governed by the current consumption, power gain, and impedance
matching. For a bi-conjugate match

Gmax =

∣
∣
∣
∣

Y21

Y12

∣
∣
∣
∣

(

K −
√

K2 − 1
)

(102)
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=
gm − Gf

Gf





(
gmRf + 1

gmRf − 1

)

−

√
(

gmRf + 1

gmRf − 1

)2

− 1



 =
(

1 −
√

gmRF

)2

(103)

The input admittance is calculated as follows

Yin = Y11 −
Y12Y21

Y22 + YL

(104)

= jωCgs + Gf − −Gf (gm − Gf)

Go + Gf + GL + jωCds

(105)

= jωCgs + Gf +
Gf(gm − Gf)(Go + Gf + GL − jωCds)

(Go + Gf + GL)2 + ω2C2
ds

(106)

At lower frequencies, ω < 1
CdsRf ||RL

we have (neglecting Go)

<(Yin) = Gf +
Gf(gm − Gf)

Gf + GL

(107)

=
1 + gmRL

RF + RL

(108)

=(Yin) = ω

(

Cgs −
Cds

1 +
Rf

RL

)

(109)

6 Transistor Figures of Merit

A common figure of merit to characterize transistors is the device unity gain frequency, fT ,
which are connected to the fundamental device physics. But RF device characterization is
based upon fmax, or the maximum frequency where we can extract power gain from the
device. Essentially, beyond the fmax frequency, the device is passive and it cannot be used
to build an amplifier with power gain. Likewise, beyond fmax one cannot build an oscillator
from an amplifier since oscillators need nearly infinite power gain, usually realized through
feedback.1 If a device does not have power gain, it certainly cannot have infinite power gain
with feedback, and so the fmax frequency also corresponds to the maximum frequency of
oscillation.

By definition, therefore, the frequency point where Gmax crosses unity is the fmax of a
two-port. Recall that Gmax is only defined when the transistor is unconditionally stable, or
K > 1. If K < 1, Gmax is undefined and we usually speak of the maximum stable gain
GMSG, which corresponds to the maximum gain when the transistor is stabilized by adding
positive conductance at the input and/or output ports so that K = 1.

In practice, the device fmax is usually estimated by plotting the device maximum uni-
lateral power gain, or Mason’s Gain U , and either observing or extrapolating the unity gain
frequency point. This procedure should be performed with care and extrapolations should

1Nearly infinite because in any real circuit there is noise and thus the oscillator power gain is extremely

large, but not infinite.

46



 1

 10

 100

 1e+11

"fetsparam.gain" using 1:2
"fetsparam.gain" using 1:4

U

fmax

GMSG

Gmax

K > 1K < 1

Figure 29: The various gain curves for a two-port device. The device is unstable at low
frequency, K < 1, and thus we plot the GMSG in this region. At the breakpoint, the device
is stable. At high frequency the device is stable and we plot the Gmax curve. The maximum
unilateral gain U is also shown.

be avoided for maximal accuracy. If data is not available (e.g. above 100 GHz), it’s better
to model the device with an equivalent circuit up to the limits of measurements and then to
use the fmax from directly evaluating the model up to the point when the power gain crosses
unity.

In Fig. 29, the device GMSG is plotted for low frequencies where K < 1. At the breakpoint,
K = 1 and the device is unconditionally stable and thus Gmax is plotted. Note that the U
curve is always larger than Gmax but both curves cross 0 dB together. At this point, the fmax

of the device, the two-port becomes passive. fmax is a good metric for characterizing a three
terminal device with a common-terminal, such as a transistor. Since U is invariant to the
common terminal, a common-gate amplifier has the same U as a common-source amplifier.

Using the unilateral gain U , the fmax of a BJT transistor can be estimated by

fmax ≈
√

fT

8πrbCµ

(110)

where the base resistance rb and feedback capacitance Cµ are seen to set the ultimate fre-
quency of operation for a device. It’s interesting to observe that in most low frequency
design, both of these effects are ignored with negligible error. But design close to the limits
of a device fmax requires careful modeling of all parasitic feedback and loss mechanisms. In
particular, the distributed nature of the feedback Cµ into rb requires a sectional model.

The cross section of a MOSFET device is shown in Fig. 30. The fmax of a modern FET
transistor can be estimated by [8]

fmax ≈ fT

2
√

Rg (gmCgd/Cgg) + (Rg + rch + RS) gds

(111)
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Figure 30: The cross section of a FET device showing the important high frequency para-
sitics. Courtesy of Chinh Doan.

Figure 31: A high frequency multi-finger FET layout minimizes the poly gate resistance.
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In contrast to the device fT , the fmax is a strong function of the losses in the device. As
MOS technology scaling continues, fT improves almost proportional to channel length due
to velocity saturation. But shorter channel devices may have higher gate, source and drain
losses. It is interesting to note that the effect of gate resistance on fmax can be reduced by
scaling the width of the transistor W through a multi-finger layout, as shown in Fig. 31. The
drain and source resistances, though, do not scale and pose a challenge for next-generation
technologies. This is in stark contrast to MESFET devices where a low resistance metal gate
is employed. In deeply scaled MOS technology, metal gate work-function engineering may
replace doping as a means to set the threshold voltage of a device, leading to enhanced RF
performance.
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