PIC18 MICROCONTROLLER
{ Timers}

Mohamad Fauzi Zakaria
http://fkee.uthm.edu.my/mfauzi

Timers in PIC18F4550 EEEAEETHECTS

El . 1 No  Yes
2 Yes No
3 No Yes

o Clock source can be internal or external
o Internal clock: Fosc/4 is feed for generating Timer

XTAL Ay o Timer
oscillator L generator

o External clock: used as Counter (Only Timer2 cannot
be used as counter).

o Basic registers of the timer
o PIC18 has 16 bits wide timer: TMRxL and TMRxH
o Each timer has the TCON (timer control)




REGISTER 11-1:

TOCON: TIMERO CONTROL REGISTER

= RAN-1 RAN-1 RN RAd-1 RAN-1 RAN-1 R 1 RN
TI m e ro TMROON TOBEIT TOCS TOSE PSA TOPS2 TOPS1 TOPS0
hit 7 kit 0
Legend:
F = Readatle it Wi = Writable bit U = Unimplemernted bit, read as '0’
-n=\alue at POR "1'=Bitis set ‘0" = Bitis cleared ¥ = Bit I5 unknown
hit 7 TWMROON: Timerd On/Of Contral hit
1 =Enatiles Timerd
0 = Stops Timer0
hit & TOSBIT: Timerd 8-Bit"1 6-Bit Cantrol bit
1 = TimerQis configured as an 8-bit timer/counter
o = TimerQis configured as a 16-hit timercounter
hit 5 TOCS: Timer0 Clock Source Select hit
If TOCS = 1, the 1 = Transition on TOCK] pin
clock source is _ 0= Internal instruction cycle clock (QLKD)
. hit 4 TOSE: TimerD Source Edge Select hit
external signal from 1 = Increment on high-to-low transition on TOCKI pin
RA4/TOCK1. 0 =Increment on low-to-high transition on TOCK] pin
bt 3 PSA: TimerD Prescaler Assignment bit
1 =Tlmerd prescaleris MOT assigned. TimerD clock input bypasses prescaler.
o = Timer0 prescaler is assigned. TimerD clock input comes from prescaler output.
bit 20 TOPSZ:TOPSO: Timerd Prescaler Select bits

111 = 1:236 Prescale value
110 = 1125 Prescale value
101 =164 Prescale value
1oo= 132 Prescale valle
011 =116 Prescale valug
olo=18 Prescale valug
ool =14 Prescale valug
ooo =12 Prescale value

TIMERO BLOCK DIAGRAM
(8-BIT MODE)

4]

m

"‘-\.\
Foscil—— 10 ‘

T

-

TOCK pin [_?i--“ﬁ
TOSE
T0CS

TOPZZTOR S0
PSA

=ynic with =&t
Irtermal ——m= TMWEOL —#= TMREOIF
Programmakle | g Clocks on Overfiow
Frescaler
12 Tov Delay)
¢ ? ™ Interrd Data B
* } > Intern a Buz

Hote: Upon Reset, TimerD iz enabled in S-4it mode with clock input fom TOCK] maxmum prescale.




TIMERO BLOCK DIAGRAM

’16-BIT MODE:

3 =ynic with THRD et
roan |7 D - . Ciocve MR | Hgneye ™ O tow
- ragramimanie
hin e acaler y L 4 B
TOSE (2 Tey Delay)
TOCS #3 ”‘\ L Read TMRIL
TOPS2TOPSD W M e THROL
PS4 - i
s sl
TMROH
3
S8
< Ff > Irternal Data Bus

Hote:  Upon Reset, TimerD iz enabled in S-bit mode with dock input from TOCK] maximum prescale.

Steps to program Timer0

516-bit modez
| 6

1. Configure the TOCON register indicating which mode (8-bit or 16- bit) to be
used and the selected prescaler option.

2. Load register TMROH followed by register TMROL with initial count values.
5. Start the timer with the instruction “TOCONbits. TMROON = 1"

+. Keep monitoring the timer flag (TOCONbits. TMROIF) to see if it is raised. Get
out of the loop when TMROIF becomes high.

5. Stop the timer with the instruction “TOCONDbits. TMROON = 0"

6. Clear the TMROIF flag for the next round (TOCONDbits. TMROIF = 0).

7. Go back to Step 2 to load TMROH and TMROL again.




Values for TMROH and TMROL

7

1.

Divide the desired time delay by 0.4 us.
Perform 65,536 — n, where n is the decimal value we got in Step 1.

Convert the result of Step 2 to hex, where yyxx is the initial hex value to be
loaded into the timer’s registers.

Set TMROH =yy and TMROL = xx.

Steps to program Timer0

SS-bit modez
| 8

1.

2.

3.

Load the TOCON value register indicating 8-bit mode is selected.
Load the TMROL registers with the initial count value.
Start the timer.

Keep monitoring the TMROIF to see if it is raised. Get out of the loop when
TMROIF becomes HIGH.

Clear the TMROIF flag for the next round.
Start the timer.

Go back to Step 2 to load TMROL again.

Notice that when we choose the 8-bit option, only the TMROL register is used and

the TMROH has a zero value during the count up.




Example 1

Write a C18 program to toggle
all the bits of PORTB

continuously with some delay.
Use Timer0, 16-bit mode, and

#include <p18f4550.h>

void TODelay(void);

void main(void)

{

TRISB=0; //PORTB output port

while (1) //repeat forever

{

PORTB=0x55; /ltoggle all bits of Port B
TODelay();  //delay size unknown
PORTB 0xAA, /ltoggle all bits of Port B

TODelay();
no prescaler options to }
enerate the delay. b
g y void TODelay()
{
TOCON=0x08; /Timer0, 16-bit mode, no prescaler
TMROH=0x35; //load THO
TMROL=0x00; //load TLO
TOCONDits.TMROON = 1; //turn on TO
while (INTCONbits. TMROIF == 0); //wait for TFO to roll over
TOCONbits TMROON = 0; //turn off TO
INTCONDits. TMROIF = 0; //clear TFO
}
Exam p I e 2 #include <p18f4550.h>
void TODelay(void);

Write a C18 program to toggle
only the PORTB.4 bit
continuously every 50 ms.
Use Timer0, 16-bit mode, the
1:4 prescaler to create the
delay. Assume XTAL = 10
MHz.

FFFFh - 85EEH = 7A11H
=31249 + 1 =31250

Timer delay =
31250 x4 x 0.4 ts = 50 ms

#define mybit PORTBbits.RB4

void main(void)

~=

TRISBbits.TRISB4 = 0;
while (1) //repeat forever

{
mybit~=1; /ltoggle using ex-or (")
TODelay();
}
}
void TODelay()
{
TOCON=0x01; //Timer0, 16-bit mode, 1:4 prescaler
TMROH=0x85;  //load THO
TMROL=0XEE; //load TLO

TOCONDits.TMROON = 1; //turnon TO

while (INTCONDbits. TMROIF == 0); //wait for TFO to roll over
TOCONbits TMROON =0; //turn off TO

INTCONDIts. TMROIF = 0; //clear TFO




Example 3

(Counter)
s

#include <p18f4550.h>

Assume that a 1-Hz external void main(void)

clock is being fed into pin TOCKI

=

(RA4). Write a C18 program for  TRISAbits. TRISA4 = 1; //imake TOCKI as input
CounterQ in 8-bit mode to count  TRISB = 0:

up and display the state of the TOCON = 0x68; //Counter 0, 8-bit mode, no prescaler
TMROL count on PORTB. Start ~ TMROL = 0; //set counter to 0

the count at OH, while (1) //repeat forever

{
do

{
TOCONDiIts.TMROON = 1; /[Turn on Timer0
PORTB = TMROL;
{
while (INTCONDbits. TMROIF == 0); //wait TFO overflow
TOCONDbits.TMROON = 0; //Turn off Timer0
INTCONDits. TMROIF = 0; //Clear TFO

Timerl

I
The Timerl timer/counter module incorporates these

features:

a

O

O

Software selectable operation as a 16-bit timer or counter
Readable and writable 8-bit registers (TMR1H and TMR1L)

Selectable clock source (internal or external) with device
clock or Timer1 oscillator internal options

Interrupt on overflow
Module Reset on CCP Special Event Trigger
Device clock status flag (TIRUN)




REGISTER 12-1: TI1CON: TIMER1 CONTROL REGISTER

Ran-0 R-0 RaAN-0 RAN-0 RAN-O RAN-O RAN-0O RAN-O
- RD1E TTRLRN TICKPS1 TICKPS0 | TIOSCENM TISYNC TMRICS TRMRE10MN
Illler hit 7 hit 0
Legend:
R = Readable hit Wy = Writable hit I = Unimplemented bit, read as ‘0"
-n="alue at FOR "1'"=Bitis set ‘0" = Bitis cleared ¥ = Bit is unknown
kit ¥ RD16: 15-Bit Readsvrite Maode Enable bit

1 = Enables register readiwrite of Timer1 in one 16-bit operation
o = Enables register readiwrite of Timer1 intwo 8-bit operations
hit 6 T1RUN: Timer1 System Clock Status hit
1 = Device clock is derfved from Timer! oscillator
o = Device clock is derived from another source
hit -4 T1ICKPS1:T1CKPSO0: Timer1 Input Clock Prescale Select bits
11 = 1.8 Prescale value
10 = 1.4 Prescale value
0l = 1.2 Prescale value
oo = 1.1 Prescale value
hit 3 T10SCEN: Timer! Oscillator Enable bit
1 = Timer1 oscillator is enabled
o = Timer1 oscillatoris shut off
The oscillator inverter and feedback resistor are tumed off to eliminate power drain.
hit 2 T1SYNC: Timer1 Extemal Clock Input Synchronization Select bit
when TMRICS = 1:
1 = Do not synchronize extemal clock input
o = Synchronize extemal clock input
When TMRICS = o!
This bit is ignored. Timer! uses the intemal clockwhen TMRICS = o.
fit 1 TMR1CS: Timer! Clock Source Select bit
1 = External clock from RCO/T105C/T13CK pin {(on the rising edge)
o = Intemal clock (Fosci)
hit 0 TMR10N: Timer! On bit

1 = Enables Timer1
o = Stops Timer1

Timer2

The Timer2 module timer incorporates the following features:
8-bit timer and period registers (TMR2 and PR2, respectively).
Readable and writable (both registers).

Software programmable prescaler (1:1, 1:4 and1:16).
Software programmable postscaler (1:1 through 1:16).
Interrupt on TMR2 to PR2 match.

Optional use as the shift clock for the MSSP module.

o o o o o O




Timer?2

e

REGISTER 13-1:

T2CON: TIMER2 CONTROL REGISTER

u-0 RAN-0 RAN-0 RAN-0 RAN-0 RAN-0 RAN-0 RAN-0
— | T20UTPS3 | T20UTPS2 | T2OUTPS1 | T20UTPSO | TMR20N | T2CKPS1 | T2CKPSO

bit 7 bit 0

Legend:

R = Readable bit YWy = Writable bit U = Unimplemented bit, read as '0°

-n="alue at POR "1"=Bitis set ‘0" = Bit is cleared ¥ = Bit is unknown

hit 7
hit &3

hit 2

hit 1-0

Unimplemented: Read as "o
T20UTPS3:T20UTPSO: Timer2 Output Postscale Select bits

oooo = 1.1 Postscale
oool = 1:2 Postscale

1111 = 1:16 Postacale

TMR2ON: Timer2 On bit

1=Timer2ison

o = Timerz is off

T2CKPS1:T2ZCKPS0: Timer? Clock Prescale Select hits

00 = Prescaler is
0l = Prescaleris 4
1x = Prescaler is 16

Timer3

I
The Timer3 module timer/counter incorporates these features:

0 Software selectable operation as a 16-bit timer or counter
0 Readable and writable 8-bit registers (TMR3H and TMR3L)

0 Selectable clock source (internal or external) with device
clock or Timerl oscillator internal options

o0 Interrupt on overflow

0 Module Reset on CCP Special Event Trigger




REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER

Timer3 =

Ray-0 RAN-0 RAv-0 RAN-0 A0 R0 Fi-0 R0
T3CCPZ T3CKP 51 T3CKPS0 T3CCP1 T35YNC TMRICS TMRSO0M
hit 0

17 Legend:
- R = Rearahle hit

-n="alue at POR

W= Wiritahle it
"'= Bitis set

LI = Hnimplementer bit, reard as 0"
‘0" = Bitiscleared ¥ = Bit is unknown

kit 7

it &, 3

fit 54

hit 2

fit 1

kit o

RD186: 16-Bit ReadArite Mode Enable bit

1 = Enables register readfwrite of Timerd in one 16-hit operation
o = Enahles register reackwrite of Timer3 in two 8-bit operations
TICCPZ:TICCP1: Timers and Timer! to CCPx Enabile bits
1x = Timer3 is the capturefcompare clock source for both CCP modules
o1 = Timerd is the caplure/compare clock source for CCRPZ,;

Timer1 is the capturefcompare clock source for CCRP1
oo = Timer! is the capturefcompare clock saurce for both CCP modules

TICKPS1:T3CKPSO: Timers Input Clock Prescale Select bits
11 = 1.8 Prescale value
10 = 1.4 Prescale value
01 = 1.2 Prescale value
o0 = 1.1 Prescale valug

T3SYMC: Tirmerd Fetemal Clnek Inpt Synchroniz atinn Control bit

(Motusahle if the device clock comes from Timer 4/ Timer3)

When TMRSCS = 1:

1 = Do not synchronize extemal clock input
o = Synchronize extemal clock input

When TMR3CS = o:

This bit is ignored. Timerd uses the intemal clockwhen TMR3CS = o.
TMR3CS: Timers Clock Source Select bit

1 = External clock inputfrom Timer oscillator or T13CK] (on the rising edge after the first falling edge)
o = Intemal clock Foscid)

TMR3ON: Timer3 On bit

1= Enables Timerd
o = Stops Timers

C18 Function Library for Timers

Function Description
ClozeTimerx Disable timer x.
OpenTimerx Configure and enable timer x.
ReadTimerx Read the value oftimer x
WriteTimerx Wite a value into timer x




OpenTimer0

- ___000_00_00__]
Arguments: confilg
Enable TimerQ Interrupt:

TIMER INT ON Interrupt enabled
TIMER INT OFF Interrupt disabled

Timer Width:
TO BEIT 8-bit mode
TO_16EIT 16-bit mode

Clock Source:
TO SOURCE EXT Extemal clock source (KO pin)
TO _SQURCE _INT Internal clock source (TOSC)
External Clock Trigger {for TO_SOURCE EXT):
To EDGE FALL  Extemal clock on falling edge
TO_EDGE_RISE Extemal clock on rising edge

Prescale Value:

ToO PS_1 1 11 prescale

TO PS 1 Z 1.2 prescale

TO PS 1 4 14 prescale . ,

To pe 1 & 1:8 prescale Code Example: CpenTimer0{ TIMER INT OQFF &
To:Ps:l:lG 116 prescale TO_8EIT &

TO PS_1 32 1:32 prescale TO_SOURCE_INT &
TO PS_ 1 64 184 prescale TO_PS_1_32 );
To PS_ 1 1:z43 1128 prescale

TO PS 1 25§ 1256 prescale

Exam P le 4 #include <p18f4550.h>
#include <timersh>
]

void main(void)

. . {
Write a C18 program using TRISB=0; /[PORTB output port
Timer Function Library to while (1) /lrepeat forever

- {
togg.le all the bl.ts of PORTB PORTB=0x55; //toggle all bits of Port B
continuously with some delay. TODelay();  //delay size unknown
Use Timer0, 16-hit mode, and PORTB 0xAA; //toggle all bits of Port B
no prescaler options to \ R
generate the delay. }
void TODelay()

{ Il configure timer0
OpenTimerO( TIMER_INT_OFF & TO_SOURCE_INT &
TO PS 1 32);
WriteTimer0( 0x3500);
while (INTCONDbits. TMROIF == 0); //wait for TFO to roll over
CloseTimer0();

}




