EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

CHAPTER 7 - TIMERS AND COUNTERS

INTRODUCTION

Most applications will require some type of timing.

This may be to determine the spacing of input signals or to properly sequence
outputs.

There are three methods that can be used. They are timing loops, internal timer
modules, and external timing devices.

There are three built in timer modules on the PIC16F876. They are Timer 0,
Timer 1, and Timer 2.

This chapter will discuss timing loops, Timer 2, and Timer 1. Timer 0 will be
discussed in a later chapter. External timing devices will also be discussed later.
A counter differs from a timer in that a counter is used to count pulses generated
by an external device while a timer runs off the PIC's oscillator.

This chapter will discuss the use of Timer 1 as a counter.

THE INSTRUCTION CYCLE

Calculations for timing loops and for internal timer modules are based on the
instruction cycle.

One instruction cycle is the amount of time required to execute a non-branching
instruction.

This time depends on the PIC's oscillator frequency and is as follows.
Ti=4Tose =4/ fosc

Example: With a 4MHz oscillator, T; = 4. Tosc =4/ 4MHz = 1us

© Copyright 2002 7-1
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

TIMING LOOPS

Instruction Execution Time

e Non-branching instructions require 1-T; to execute.

e Unconditional branches require 2.T; to execute. This is because the ALU pre-
fetches instructions. When a branch occurs, the pre-fetched instruction must be
discarded and a new instruction loaded. This takes an extra instruction cycle.

e Conditional branches require 1-T; if no branch and 2-T; if branch occurs.

e Example: How long does it take to execute the following code if a 10MHz

oscillator is used?

movf PORTB,W
movwf InputA
movwf InputB
swapf InputB
movlw H"OF*®
andwf InputA,F
andwf InputB,F
return

7 non-branching and 1 branching instruction — 9-T;
Ti=4-Tosc = 0.4pus
Therefore: Time = 3.6us
e Cannot always determine the exact execution time of a complete program because
of the uncertainty of conditional branches. But the execution time of a simple
piece of code can be determined.
Timing Loops
e Can use execution time to create intentional time delays.
e Not recommended when precision timing is required.

e For precision timing use the timer modules.

© Copyright 2002 7-2
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

e Example 1: Determine the time delay for the following loop using fosc = 4MHz.

moviw D'100' i1

Delay nop ; 1 x 100 =100
addlw -1 ; 1x 100 =100
btfss STATUS,Z ;(1x99)+2=101
goto Delay ;2x99=198

Total time delay = 500-T; = 500us.
e Example 2: Make a subroutine for a delay of 10ms using fosc = 4MHz.
Need 10,000-T;. Will make use the previous example code. Execute the above

loop 20 times.

Delay 10ms movlw D"20"
movwf DelayCount
DelayLoopl moviw D"100*"
DelaylLoop2 nop
addlw -1
btfss STAUTS,Z
goto DelaylLoop2
decfsz DelayCount,F
goto DelaylLoopl
return

Total delay =1+ 1 + (20 x 500) + [(19 x 1) + 2] + (19 x 2) + 2 = 10,063-T;
Including the call for the subroutine this would give a delay of 10.065ms.
o Example 3: Use the above subroutine to get a %2 second delay.

1/2 second = 50 x 10ms.

moviw D*50*

movwF TimeCount
call Delay 10ms
decfsz TimeCount,F
goto $-2

e The advantage of timing loops is that they are easy to write and simple to use.
e The disadvantages are that they are not precise and that you can not do anything

else until the time expires.

© Copyright 2002 7-3
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

TIMER 2

e Refer to the Timer 2 section of the data book for more details on Timer 2.

e The built-in timers, such as Timer 2, must be initialized for a specific time delay.
The timers may then be started and stopped as desired.

e When the time has expired, a timer flag will be set to indicate such.

e The timers continue to run until stopped. They will set the timer flag every time
the prescribed time has passed.

e You may execute other code while the timer is running. The timer does not need
attention.

Timer 2 Signal Flow

e The instruction cycle clock is the input signal for Timer 2.
e Timer 2 consist of three counters: the prescaler, the period counter, and the
postscaler. This is shown in Figure 7-1. A more complete diagram may be found

in the data book.

fosc/ 4 ———»| Prescaler

A\ 4

A\ 4

Postscaler

Timer 2 Register

T

=9

Timer 2
Flag

Period Register

Figure 7-1

e The prescaler counts instruction cycles. When it rolls over, the timer 2 register is

incremented.

© Copyright 2002 7-4
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

e When the timer 2 register is equal to the prescribed period, it is cleared and the
postscaler is incremented.

e When the postscaler rolls over, the timer 2 flag is set.

e The timer does not automatically stop. It will keep running until your program
issues a command to stop it.

Timer 2 Parameters

e The total time delay is calculated as the product of the prescale, period, and
postscale times the instruction cycle.
Taelay = Ti x Prescale x Period x Postscale
e The values for the prescaler, period, and postscaler must be set prior to starting
the timer.
¢ Allowable values for these parameters are as follows.
Prescaler: 1, 4, or 16
Period: 1to 256
Postscaler: 1to 16
e Example: Determine values for the timing parameters to give a 5ms delay for a
4MHz oscillator.
5ms = 5000us = 5000-T;
5000=5%x10%x10x10=5%x2x5%x2x5%x2x5
Let Prescale = 4, Period = 250, and Postscale = 5

Timer 2 Initialization

e The prescaler and postscaler are set with the register T2CON. The period is set

with the register PR2.

© Copyright 2002 7-5
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

Bits 6-3 of T2CON set the postscaler. (See the Timer 2 section of the data book.)
The postscaler is equal to the binary equivalent of this 4-bit value plus 1.

Bits 1 and 0 of T2CON set the prescaler. Refer to the data book for the correct
patterns.

The period will be the value of PR2 plus 1.

Example: Initialize Timer 2 to give a 5ms delay using the parameters from the

previous example.

InitTimer2
; Initialize Timer2 for 5ms delay at 4MHz
; Prescale = 4, Period = 250, Postscale = 5
moviw B*00100001*
movwf T2CON
bsf STATUS,RPO
moviw D*"250"-1
movwf PR2
bcf STATUS,RPO
bcf PIR1,TMR2IF
clrf TMR2
return

Timer 2 Flag

The flag is a bit in the register PIR1 (Peripheral Interrupt Register 1). The bit
name is TMR2IF (Timer 2 Interrupt Flag).

This bit will be set upon timeout.

The bit remains set until cleared by software.

The timer does not stop upon setting or clearing of the flag.

Starting and Stopping the Timer

The timer is started by setting bit 2 of register T2ZCON. The bit name is

TMR20N.
The timer is stopped by clearing the TMR20N bit.

The prescaler and postscaler counters are cleared by starting or stopping the timer.

© Copyright 2002 7-6
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

e The TMR2 register may be cleared with the clrf command. TMR2 should be
cleared before starting the timer to get an accurate time delay.

Example Delay Routine

e Assume that Timer2 has been initialized for a 5ms delay.

e Assume also that the timer has been started.

e Delayb5ms
; bms delay using Timer2
btfss PIR1,TMR2IF
goto $-1
bcf PIRL1, TMR2IF
return

Example Main Loop Timing

e Suppose you want your main loop to be executed every 5ms.
e Make use of the previous delay routine for this.

e Main
call DoThis
call DoThat
call DoSomethingElse
call Delay5ms
goto Main

e As long as the other subroutines do not take more than a total of 5ms to execute,
the main loop will be executed at precisely 5ms intervals.

Example Longer Delay

e Suppose you want a half-second delay.
e This is too long for one time-out of Timer2 .
e Make a loop to run the 5ms delay 100 times.

e HalfSecond
; 0.5s delay based on Timer2 set up for 5ms.
movlw D*"100*"
movwf TimeCount
call Delay5ms
decfsz TimeCount,F

© Copyright 2002 7-7
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

goto $-2
return

TIMER 1

e Timer 1is a 16-bit timer module.

e |t usesa prescaler and a 16-bit period.

e Upon timeout, a flag will be set.

e Timer 1 is used with the CCP1 (Capture-Compare-PWM) module. CCP1 has
many features that will be discussed in a later chapter. Only the Timer 1 reset
feature will be discussed here.

o Refer to the Timer 1 and CCP1 sections of the data book for more details.

Timer 1 Signal Flow

e The instruction clock is the input for the timer.
e The timer has a prescaler and a 16-bit period. This is shown in Figure 7-2. A

more detailed block diagram is shown in the data book.

TMR1H| TMRIL — TMRIIF
7}

\ 4

fosc/ 4 ——»| Prescaler

Reset

N
=? » CCP1IF
AN

CCPR1H| CCPR1L

Figure 7-2

e The prescaler counts instruction cycles. When it rolls over, the 16-bit counter
comprised of registers TMR1H and TMR1L is incremented.
e When the 16-bit value of TMR1H:TMR1L matches the 16-bit value of

CCPR1H:CCPRLL, the 16-bit counter is cleared and a flag is set.

© Copyright 2002 7-8
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

e The timer does not automatically stop. It will keep running until your program
issues a command to stop it.

e Timer 1 may be used without the period registers. In this case the 16-bit counter
will roll over and set a timer flag.

Timer 1 Parameters

e The time delay is the product of the prescale value and the period times T;.

e The prescale may be 1, 2, 4, or 8.

e The period may be 0 to 65,535.

e |f the CCP1 module is not used to set a period, then the timer will roll over before
setting a flag. In this case, the period is effectively 65,536.

e Example: Determine values for the Timer 1 prescale and period to give a 100ms
delay for a 4MHz oscillator.
100ms = 100,000-T;
100,000 = 4 x 25000
Use 4 for the prescaler and 25000 for the period.

Timer 1 Initialization

e Register TLCON is used to set the prescale value.

e Registers CCPR1H and CCPRL1L are used to set the period. The upper 8 bits
must be placed in CCPR1H and the lower 8 bits in CCPR1L.

e Register CCP1CON is used to configure the CCP module as the Timerl period.
Move a value of H'0OB' to CCP1CON for this purpose.

e Example: Configure Timer 1 to give a 100ms delay using the parameters of the

previous example.

© Copyright 2002 7-9
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

InitTMR1
; Initialize TMR1 for a 100ms delay with a 4MHz osc.
; Prescale = 4, Period = 25000
moviw B*00100000*
movwf T1CON
movlw H"OB*
movwF CCP1CON
movlw High D"25000"
movwf CCPR1H
movliw Low D"25000"
movwf CCPR1L
bcf PIR1,CCP1IF
return

e Notice the use of the directives High and Low. These tell the assembler to use the

upper or lower 8 bits of the value given.
Timer 1 Flags

e |f CCP1 is used to set the period for Timer 1, then the CCP1IF bit of the PIR1
register will be set upon timeout.

e |f CCP1 is not used to set the period, then the TMRL1IF bit of register PIR1 will be
set upon roll over.

e The flags remain set until cleared by software.

e Setting or clearing of the flags does not stop the timer.

Starting and Stopping the Timer

e The timer is started by setting bit 0 of register TLCON. The bit name is
TMR1ON.
e The timer is stopped by clearing the TMR1ON bit.

Example Delay Routine

e Assume that Timerl has been initialized for a 100ms delay.

e Assume also that the timer has been started.

© Copyright 2002 7- 10
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

e Delayl00ms
; 100ms delay using Timerl
btfss PIR1,CCP1IF
goto $-1
bct PIR1,CCP1IF
return

Example Main Loop Timing

e Suppose you want your main loop to be executed every 100ms.
e Make use of the previous delay routine for this.

e Main
call DoThis
call DoThat
call DoSomethingElse
call Delayl00ms
goto Main

e As long as the other subroutines do not take more than a total of 100ms to
execute, the main loop will be executed at precisely 100ms intervals.

TIMER 1 AS A COUNTER

e Rather than counting instruction cycles, Timer 1 may be configured to count
external pulses.
e For example, you may wish to count pulses on a tachometer pick-up.

Counter Initialization

e Set the TMR1CS bit of register TLCON to make timer 1 a counter.

e Using TRISC assign RCO as an input.

e Place the signal to be counted on RCO.

e The counter will then count rising edges of RCO.

e The prescaler may be used with the counter. If the prescaler is used, the 16-bit
counter value will be incremented upon roll over of the prescaler.

e You may use the counter with or without CCP1 as a period register.

© Copyright 2002 7-11
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

Reading the Count Value

e The counter could be used in a couple of ways.

e CCP1 can be used to provide a period. A flag will then be set to indicate that a
certain number of pulses have occurred.

e The counter can also be used without the period. In this case read the 16-bit value
of TMR1H:TMR1L at the beginning and again at the end. Take the difference to
determine how many pulses have occurred.

Using a Crystal with the Counter

e Timer 1 may be used as a timer/counter with an external crystal.

e Place a crystal between RC0O and RC1. Both these pin must be assigned as inputs.

e The maximum allowable frequency is 200kHz. It is intended for use with
32.768kHz crystals.

e Setthe TLOSCEN bit of TLCON to enable the oscillator.

e Set the prescaler and period for Timer 1 as described previously. (It may be used
without the period also.)

e A flag will then be set at regular intervals.

e This timing mode is primarily intended to wake the PIC from sleep mode at
regular intervals. Sleep mode is discussed in a later chapter.

EXTERNAL TIMER CHIPS

e External timer chips are available to provide such functions as date and time
keeping.

e These are usually connected to the PIC with a serial interface.

© Copyright 2002 7-12
Ellis C. Nuckolls, P.E

