
EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

CHAPTER 7 - TIMERS AND COUNTERS

INTRODUCTION

• Most applications will require some type of timing.

• This may be to determine the spacing of input signals or to properly sequence

outputs.

• There are three methods that can be used. They are timing loops, internal timer

modules, and external timing devices.

• There are three built in timer modules on the PIC16F876. They are Timer 0,

Timer 1, and Timer 2.

• This chapter will discuss timing loops, Timer 2, and Timer 1. Timer 0 will be

discussed in a later chapter. External timing devices will also be discussed later.

• A counter differs from a timer in that a counter is used to count pulses generated

by an external device while a timer runs off the PIC's oscillator.

• This chapter will discuss the use of Timer 1 as a counter.

THE INSTRUCTION CYCLE

• Calculations for timing loops and for internal timer modules are based on the

instruction cycle.

• One instruction cycle is the amount of time required to execute a non-branching

instruction.

• This time depends on the PIC's oscillator frequency and is as follows.

Ti = 4·Tosc = 4 / fosc

• Example: With a 4MHz oscillator, Ti = 4·TOSC = 4 / 4MHz = 1µs

© Copyright 2002 7- 1
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

TIMING LOOPS

Instruction Execution Time

• Non-branching instructions require 1·Ti to execute.

• Unconditional branches require 2·Ti to execute. This is because the ALU pre-

fetches instructions. When a branch occurs, the pre-fetched instruction must be

discarded and a new instruction loaded. This takes an extra instruction cycle.

• Conditional branches require 1·Ti if no branch and 2·Ti if branch occurs.

• Example: How long does it take to execute the following code if a 10MHz

oscillator is used?

 movf PORTB,W
 movwf InputA
 movwf InputB
 swapf InputB
 movlw H'0F'
 andwf InputA,F
 andwf InputB,F
 return

 7 non-branching and 1 branching instruction → 9·Ti

 Ti = 4·TOSC = 0.4µs

 Therefore: Time = 3.6µs

• Cannot always determine the exact execution time of a complete program because

of the uncertainty of conditional branches. But the execution time of a simple

piece of code can be determined.

Timing Loops

• Can use execution time to create intentional time delays.

• Not recommended when precision timing is required.

• For precision timing use the timer modules.

© Copyright 2002 7- 2
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

• Example 1: Determine the time delay for the following loop using fOSC = 4MHz.

 movlw D'100' ; 1
 Delay nop ; 1 × 100 = 100
 addlw -1 ; 1 × 100 = 100
 btfss STATUS,Z ; (1 × 99) + 2 = 101
 goto Delay ; 2 × 99 = 198

Total time delay = 500·Ti = 500µs.

• Example 2: Make a subroutine for a delay of 10ms using fOSC = 4MHz.

Need 10,000·Ti. Will make use the previous example code. Execute the above

loop 20 times.

 Delay_10ms movlw D'20'
 movwf DelayCount
 DelayLoop1 movlw D'100'
 DelayLoop2 nop
 addlw -1
 btfss STAUTS,Z
 goto DelayLoop2
 decfsz DelayCount,F
 goto DelayLoop1
 return

Total delay = 1 + 1 + (20 × 500) + [(19 × 1) + 2] + (19 × 2) + 2 = 10,063·Ti

Including the call for the subroutine this would give a delay of 10.065ms.

• Example 3: Use the above subroutine to get a ½ second delay.

1/2 second = 50 × 10ms.

 movlw D'50'
 movwf TimeCount
 call Delay_10ms
 decfsz TimeCount,F
 goto $-2

• The advantage of timing loops is that they are easy to write and simple to use.

• The disadvantages are that they are not precise and that you can not do anything

else until the time expires.

© Copyright 2002 7- 3
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

TIMER 2

• Refer to the Timer 2 section of the data book for more details on Timer 2.

• The built-in timers, such as Timer 2, must be initialized for a specific time delay.

The timers may then be started and stopped as desired.

• When the time has expired, a timer flag will be set to indicate such.

• The timers continue to run until stopped. They will set the timer flag every time

the prescribed time has passed.

• You may execute other code while the timer is running. The timer does not need

attention.

Timer 2 Signal Flow

• The instruction cycle clock is the input signal for Timer 2.

• Timer 2 consist of three counters: the prescaler, the period counter, and the

postscaler. This is shown in Figure 7-1. A more complete diagram may be found

in the data book.

Timer 2 Register Postscaler

Timer 2
Flag

= ?
Reset

Period Register

Prescaler fOSC / 4

 Figure 7-1

• The prescaler counts instruction cycles. When it rolls over, the timer 2 register is

incremented.

© Copyright 2002 7- 4
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

• When the timer 2 register is equal to the prescribed period, it is cleared and the

postscaler is incremented.

• When the postscaler rolls over, the timer 2 flag is set.

• The timer does not automatically stop. It will keep running until your program

issues a command to stop it.

Timer 2 Parameters

• The total time delay is calculated as the product of the prescale, period, and

postscale times the instruction cycle.

Tdelay = Ti × Prescale × Period × Postscale

• The values for the prescaler, period, and postscaler must be set prior to starting

the timer.

• Allowable values for these parameters are as follows.

 Prescaler: 1, 4, or 16

 Period: 1 to 256

 Postscaler: 1 to 16

• Example: Determine values for the timing parameters to give a 5ms delay for a

4MHz oscillator.

5ms = 5000µs = 5000·Ti

5000 = 5 × 10 × 10 × 10 = 5 × 2 × 5 × 2 × 5 × 2 × 5

Let Prescale = 4, Period = 250, and Postscale = 5

Timer 2 Initialization

• The prescaler and postscaler are set with the register T2CON. The period is set

with the register PR2.

© Copyright 2002 7- 5
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

• Bits 6-3 of T2CON set the postscaler. (See the Timer 2 section of the data book.)

The postscaler is equal to the binary equivalent of this 4-bit value plus 1.

• Bits 1 and 0 of T2CON set the prescaler. Refer to the data book for the correct

patterns.

• The period will be the value of PR2 plus 1.

• Example: Initialize Timer 2 to give a 5ms delay using the parameters from the

previous example.

InitTimer2
; Initialize Timer2 for 5ms delay at 4MHz
; Prescale = 4, Period = 250, Postscale = 5
 movlw B'00100001'
 movwf T2CON
 bsf STATUS,RP0
 movlw D'250'-1
 movwf PR2
 bcf STATUS,RP0
 bcf PIR1,TMR2IF
 clrf TMR2
 return

Timer 2 Flag

• The flag is a bit in the register PIR1 (Peripheral Interrupt Register 1). The bit

name is TMR2IF (Timer 2 Interrupt Flag).

• This bit will be set upon timeout.

• The bit remains set until cleared by software.

• The timer does not stop upon setting or clearing of the flag.

Starting and Stopping the Timer

• The timer is started by setting bit 2 of register T2CON. The bit name is

TMR2ON.

• The timer is stopped by clearing the TMR2ON bit.

• The prescaler and postscaler counters are cleared by starting or stopping the timer.

© Copyright 2002 7- 6
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

• The TMR2 register may be cleared with the clrf command. TMR2 should be

cleared before starting the timer to get an accurate time delay.

Example Delay Routine

• Assume that Timer2 has been initialized for a 5ms delay.

• Assume also that the timer has been started.

• Delay5ms
; 5ms delay using Timer2
 btfss PIR1,TMR2IF
 goto $-1
 bcf PIR1,TMR2IF
 return

Example Main Loop Timing

• Suppose you want your main loop to be executed every 5ms.

• Make use of the previous delay routine for this.

• Main
 call DoThis
 call DoThat
 call DoSomethingElse
 call Delay5ms
 goto Main

• As long as the other subroutines do not take more than a total of 5ms to execute,

the main loop will be executed at precisely 5ms intervals.

Example Longer Delay

• Suppose you want a half-second delay.

• This is too long for one time-out of Timer2 .

• Make a loop to run the 5ms delay 100 times.

• HalfSecond
; 0.5s delay based on Timer2 set up for 5ms.
 movlw D'100'
 movwf TimeCount
 call Delay5ms
 decfsz TimeCount,F

© Copyright 2002 7- 7
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

 goto $-2
 return

TIMER 1

• Timer 1 is a 16-bit timer module.

• It uses a prescaler and a 16-bit period.

• Upon timeout, a flag will be set.

• Timer 1 is used with the CCP1 (Capture-Compare-PWM) module. CCP1 has

many features that will be discussed in a later chapter. Only the Timer 1 reset

feature will be discussed here.

• Refer to the Timer 1 and CCP1 sections of the data book for more details.

Timer 1 Signal Flow

• The instruction clock is the input for the timer.

• The timer has a prescaler and a 16-bit period. This is shown in Figure 7-2. A

more detailed block diagram is shown in the data book.

TMR1H TMR1L

CCPR1H CCPR1L

= ?

Reset

CCP1IF

Prescaler fOSC / 4 TMR1IF

 Figure 7-2

• The prescaler counts instruction cycles. When it rolls over, the 16-bit counter

comprised of registers TMR1H and TMR1L is incremented.

• When the 16-bit value of TMR1H:TMR1L matches the 16-bit value of

CCPR1H:CCPR1L, the 16-bit counter is cleared and a flag is set.

© Copyright 2002 7- 8
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

• The timer does not automatically stop. It will keep running until your program

issues a command to stop it.

• Timer 1 may be used without the period registers. In this case the 16-bit counter

will roll over and set a timer flag.

Timer 1 Parameters

• The time delay is the product of the prescale value and the period times Ti.

• The prescale may be 1, 2, 4, or 8.

• The period may be 0 to 65,535.

• If the CCP1 module is not used to set a period, then the timer will roll over before

setting a flag. In this case, the period is effectively 65,536.

• Example: Determine values for the Timer 1 prescale and period to give a 100ms

delay for a 4MHz oscillator.

100ms = 100,000·Ti

100,000 = 4 × 25000

Use 4 for the prescaler and 25000 for the period.

Timer 1 Initialization

• Register T1CON is used to set the prescale value.

• Registers CCPR1H and CCPR1L are used to set the period. The upper 8 bits

must be placed in CCPR1H and the lower 8 bits in CCPR1L.

• Register CCP1CON is used to configure the CCP module as the Timer1 period.

Move a value of H'0B' to CCP1CON for this purpose.

• Example: Configure Timer 1 to give a 100ms delay using the parameters of the

previous example.

© Copyright 2002 7- 9
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

InitTMR1

 ; Initialize TMR1 for a 100ms delay with a 4MHz osc.
 ; Prescale = 4, Period = 25000
 movlw B'00100000'
 movwf T1CON
 movlw H'0B'
 movwf CCP1CON
 movlw High D'25000'
 movwf CCPR1H
 movlw Low D'25000'
 movwf CCPR1L
 bcf PIR1,CCP1IF
 return

• Notice the use of the directives High and Low. These tell the assembler to use the

upper or lower 8 bits of the value given.

Timer 1 Flags

• If CCP1 is used to set the period for Timer 1, then the CCP1IF bit of the PIR1

register will be set upon timeout.

• If CCP1 is not used to set the period, then the TMR1IF bit of register PIR1 will be

set upon roll over.

• The flags remain set until cleared by software.

• Setting or clearing of the flags does not stop the timer.

Starting and Stopping the Timer

• The timer is started by setting bit 0 of register T1CON. The bit name is

TMR1ON.

• The timer is stopped by clearing the TMR1ON bit.

Example Delay Routine

• Assume that Timer1 has been initialized for a 100ms delay.

• Assume also that the timer has been started.

© Copyright 2002 7- 10
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

• Delay100ms
; 100ms delay using Timer1
 btfss PIR1,CCP1IF
 goto $-1
 bcf PIR1,CCP1IF
 return

Example Main Loop Timing

• Suppose you want your main loop to be executed every 100ms.

• Make use of the previous delay routine for this.

• Main
 call DoThis
 call DoThat
 call DoSomethingElse
 call Delay100ms
 goto Main

• As long as the other subroutines do not take more than a total of 100ms to

execute, the main loop will be executed at precisely 100ms intervals.

TIMER 1 AS A COUNTER

• Rather than counting instruction cycles, Timer 1 may be configured to count

external pulses.

• For example, you may wish to count pulses on a tachometer pick-up.

Counter Initialization

• Set the TMR1CS bit of register T1CON to make timer 1 a counter.

• Using TRISC assign RC0 as an input.

• Place the signal to be counted on RC0.

• The counter will then count rising edges of RC0.

• The prescaler may be used with the counter. If the prescaler is used, the 16-bit

counter value will be incremented upon roll over of the prescaler.

• You may use the counter with or without CCP1 as a period register.

© Copyright 2002 7- 11
Ellis C. Nuckolls, P.E

EET 3254 - Spring 2002 Chapter 7 - Timers and Counters

Reading the Count Value

• The counter could be used in a couple of ways.

• CCP1 can be used to provide a period. A flag will then be set to indicate that a

certain number of pulses have occurred.

• The counter can also be used without the period. In this case read the 16-bit value

of TMR1H:TMR1L at the beginning and again at the end. Take the difference to

determine how many pulses have occurred.

Using a Crystal with the Counter

• Timer 1 may be used as a timer/counter with an external crystal.

• Place a crystal between RC0 and RC1. Both these pin must be assigned as inputs.

• The maximum allowable frequency is 200kHz. It is intended for use with

32.768kHz crystals.

• Set the T1OSCEN bit of T1CON to enable the oscillator.

• Set the prescaler and period for Timer 1 as described previously. (It may be used

without the period also.)

• A flag will then be set at regular intervals.

• This timing mode is primarily intended to wake the PIC from sleep mode at

regular intervals. Sleep mode is discussed in a later chapter.

EXTERNAL TIMER CHIPS

• External timer chips are available to provide such functions as date and time

keeping.

• These are usually connected to the PIC with a serial interface.

© Copyright 2002 7- 12
Ellis C. Nuckolls, P.E

