
Using Tcl With Synopsys® Tools
Version B-2008.09, September 2012

Copyright Notice and Proprietary Information
Copyright © 2012 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AEON, AMPS, ARC, ARC logo, Architecture to Production, Astro, Behavior Extracting Synthesis Technology
BOCP, Cadabra, CATS, Certify, CHIPit, CODE V, CoMET, Confirma, Design Compiler, DesignSphere, DesignWare,
Formality, Galaxy Custom Designer, Global Synthesis, HAPS, HAPS logo, HapsTrak, HDL Analyst, HSIM, HSPICE,
Identify, IP Catalyst, IP Producer, Leda, LightTools, Magma, Magma Design Automation, Magma logo, MAST, MaVeric,
MdeMon logo, MegaLab, METeor, mGoods logo, MIIX logo, ModelTools, Molten, NanoSim, NOVeA, OpenVera,
Optimization Environment, ORA, PathMill, Physical Compiler, PrimeTime, QuickCap, SCOPE, SiliconSmart, SIMAID,
Simply Better Synthesis, SiVL, SNUG, SolvNet, Sonic Focus, STAR Memory System, SVP Café, Syndicated, Synopsys
DesignWare, Synopsys VCS, Synplicity, Synplicity logo, Synplify, Synplify Lite, Synplify Pro, Synthesis Constraints, Talus,
TetraMAX, TimeMill, UMRBus, VCS, Vera, YieldExplorer, and ZMATRIX are registered trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, ASAP, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia, Columbia-CE, Cosmos, CosmosLE,
CosmosScope, CRITIC, Custom WaveView, CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra,
Design Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon Access, Discovery, Encore, EPIC,
Galaxy, HANEX, HDL Compiler, Hercules, Hierarchical Optimization Technology, High-performance ASIC Prototyping

System, HSIM
plus

, i-Virtual Stepper, IC Compiler, IICE, in-Sync, iN-Tandem, Intelli, Jupiter, Jupiter-DP, JupiterXT,
JupiterXT-ASIC, Liberty, Libra-Passport, Library Compiler, Macro-PLUS, Magellan, Mars, Mars-Rail, Mars-Xtalk,
Milkyway, ModelSource, Module Compiler, MultiPoint, ORAengineering, Physical Analyst, Planet, Planet-PL, Platform
Architect, Polaris, Power Compiler, Processor Designer, Raphael, RippledMixer, Saturn, Scirocco, Scirocco-i, SiWare,
SPW, Star-RCXT, Star-SimXT, StarRC, Synphony Model System Compiler, System Compiler, System Designer, System
Studio, Taurus, TotalRecall, TSUPREM-4, VCSi, VHDL Compiler, Virtualizer, VMC, and Worksheet Buffer are trademarks
of Synopsys, Inc.

Service Marks (SM)
MAP-in and TAP-in are service marks of Synopsys, Inc.

Third Party Trademark Acknowledgements
SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
Entrust is a registered trademark of Entrust Inc. in the United States and in certain other countries. In Canada, Entrust
is a trademark or registered trademark of Entrust Technologies Limited. Used by Entrust.net Inc. under license.
All other product or company names may be trademarks of their respective owners.

Synopsys, Inc.
700 E. Middlefield Road
Mountain View, CA 94043
www.synopsys.com
Using Tcl With Synopsys Tools, version B-2008.09 ii

Copyright Statement for the Command-Line Editing Feature
Copyright © 1992, 1993 The Regents of the University of California. All rights reserved. This code is derived from software
contributed to Berkeley by Christos Zoulas of Cornell University.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.
3. All advertising materials mentioning features or use of this software must display the following acknowledgement:
This product includes software developed by the University of California, Berkeley and its contributors.
4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright Statement for the Line-Editing Library
Copyright © 1992 Simmule Turner and Rich Salz. All rights reserved.

This software is not subject to any license of the American Telephone and Telegraph Company or of the Regents of the
University of California.

Permission is granted to anyone to use this software for any purpose on any computer system, and to alter it and
redistribute it freely, subject to the following restrictions:
1. The authors are not responsible for the consequences of use of this software, no matter how awful, even if they arise
from flaws in it.
2. The origin of this software must not be misrepresented, either by explicit claim or by omission. Since few users ever
read sources, credits must appear in the documentation.
3. Altered versions must be plainly marked as such, and must not be misrepresented as being the original software.
Since few users ever read sources, credits must appear in the documentation.
4. This notice may not be removed or altered.
Using Tcl With Synopsys Tools, version B-2008.09 iii

Using Tcl With Synopsys Tools, version B-2008.09 iv

Contents

About This Manual . x

Customer Support. xii

1. Getting Started

Tcl and Synopsys Tools . 1-2

Entering Commands . 1-4

Basic Command Usage . 1-4
Abbreviating Commands and Options . 1-4
Using Wildcard Characters . 1-5
Case Sensitivity . 1-5

Listing and Rerunning Previously Entered Commands 1-6

Getting Help on Commands . 1-7

Using the help Command . 1-7

Using the man Command . 1-8

Command Status . 1-8

Using the echo and puts Commands to Output Data . 1-9

Command Parsing . 1-10

Substitution . 1-10

Quoting . 1-11

Special Characters . 1-12

2. Tcl Basics

Variables . 2-2

v

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Numeric Variable Precision . 2-3

Variable Substitution . 2-3

Predefined Variables . 2-4

Scripts. 2-4

Creating Comments. 2-5

Loading and Running a Script File. 2-5

Redirecting Script Output. 2-5

Sample Script File . 2-6

Data Types . 2-6

Strings . 2-6

Lists . 2-8

Arrays. 2-9

Expressions . 2-10

Control Flow . 2-12

Using the if Command . 2-12

Using the while Command. 2-13

Using the for Command . 2-14

Using the foreach Command . 2-14

Using the break and continue Commands. 2-15

Using the switch Command . 2-15

Basic File Commands. 2-16

cd and pwd . 2-16

file and glob . 2-17

open, close, and flush . 2-18

gets and puts . 2-19

Nonsequential File Access . 2-20

3. Working With Procedures

Creating Procedures. 3-2

Variable Scope. 3-3

Argument Defaults . 3-4

Variable Numbers of Arguments . 3-5

Using Arrays With Procedures. 3-5

General Considerations for Using Procedures . 3-6

Contents vi

Using Tcl With Synopsys Tools Version B-2008.09
Extending Procedures . 3-6

Using the define_proc_attributes Command . 3-7
define_proc_attributes Command Example . 3-9

Using the parse_proc_arguments Command . 3-9

Considerations for Extending Procedures . 3-11

Displaying Procedure Body and Arguments . 3-12

4. Working With Collections

Creating Collections . 4-2

Pattern Matching . 4-2

Displaying Objects in a Collection. 4-2

Selecting Objects From a Collection Using Filter Expressions 4-4

Using the -filter Option and the filter_collection Command 4-4

Adding Objects to a Collection . 4-5

Removing Objects From a Collection . 4-6

Comparing Collections . 4-6

Iterating Over a Collection . 4-7

Copying Collections . 4-7

Extracting Objects From a Collection. 4-8

5. A Tcl Script Example

DC_rpt_cell Overview . 5-2

DC_rpt_cell Listing and Sample Output . 5-3

DC_rpt_cell Details . 5-7

Defining the Procedure . 5-7

Suppressing Warning Messages . 5-8

Examining the args Argument . 5-9

Initializing Variables . 5-11

Creating and Iterating Over a Collection . 5-12

Collecting the Report Data . 5-13

Formatting the Output . 5-16
Chapter 1: Contents
1-vii

Contents vii

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Appendix A. Tcl Implementation Differences and Limitations

Ways of Identifying Tcl Commands. A-2

Tcl Command Variations. A-2

Command Substitution Exception. A-2

Milkyway Environment Tcl Usage . A-2

Index

Contents viii

Preface

This preface includes the following sections:

• About This Manual

• Customer Support

ix

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
About This Manual

This manual describes how to use the open source scripting tool, Tcl (tool command
language), that has been integrated into Synopsys tools. This manual provides an overview
of Tcl, describes its relationship with Synopsys command shells, and explains how to create
scripts and procedures.

Audience
The audience for Using Tcl With Synopsys Tools is designers who are experienced with
using Synopsys tools such as Design Compiler and IC Compiler and who have a basic
understanding of programming concepts such as data types, control flow, procedures, and
scripting.

Related Publications
For additional information about Using Tcl With Synopsys Tools, see the Design Compiler
and IC Compiler documentation on SolvNet at the following address:

https://solvnet.synopsys.com/DocsOnWeb

You might also want to see the documentation for the following related Synopsys products:

• Design Vision

• DesignWare components

• DFT Compiler

• PrimeTime

• Power Compiler

• HDL Compiler

For additional Tcl-related documentation, you might want to see the following:

• Ousterhout, John K. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

• Welch, Brent B. Practical Programming in Tcl and Tk, 3rd Edition. Prentice Hall PTR,
1999.
Preface
About This Manual x

https://solvnet.synopsys.com/DocsOnWeb

Using Tcl With Synopsys Tools Version B-2008.09
Conventions
The following conventions are used in Synopsys documentation.

Convention Description

Courier Indicates syntax, such as write_file.

Courier italic Indicates a user-defined value in syntax, such as
write_file design_list.

Courier bold Indicates user input—text you type verbatim—in
examples, such as

prompt> write_file top

[] Denotes optional arguments in syntax, such as
write_file [-format fmt]

... Indicates that arguments can be repeated as many
times as needed, such as
pin1 pin2 ... pinN

| Indicates a choice among alternatives, such as
low | medium | high

Ctrl+C Indicates a keyboard combination, such as holding
down the Ctrl key and pressing C.

\ Indicates a continuation of a command line.

/ Indicates levels of directory structure.

Edit > Copy Indicates a path to a menu command, such as
opening the Edit menu and choosing Copy.
Chapter 1: Preface
About This Manual 1-xi
Preface
About This Manual xi

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Customer Support

Customer support is available through SolvNet online customer support and through
contacting the Synopsys Technical Support Center.

Accessing SolvNet
SolvNet includes a knowledge base of technical articles and answers to frequently asked
questions about Synopsys tools. SolvNet also gives you access to a wide range of Synopsys
online services including software downloads, documentation, and technical support.

To access SolvNet, go to the following address:

https://solvnet.synopsys.com

If prompted, enter your user name and password. If you do not have a Synopsys user name
and password, follow the instructions to register with SolvNet.

If you need help using SolvNet, click HELP in the top-right menu bar.

Contacting the Synopsys Technical Support Center
If you have problems, questions, or suggestions, you can contact the Synopsys Technical
Support Center in the following ways:

• Open a support case to your local support center online by signing in to SolvNet at
https://solvnet.synopsys.com, clicking Support, and then clicking “Open A Support
Case.”

• Send an e-mail message to your local support center.

❍ E-mail support_center@synopsys.com from within North America.

❍ Find other local support center e-mail addresses at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

• Telephone your local support center.

❍ Call (800) 245-8005 from within North America.

❍ Find other local support center telephone numbers at
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
Preface
Customer Support xii

https://solvnet.synopsys.com
https://solvnet.synopsys.com
http://www.synopsys.com/Support/GlobalSupportCenters/Pages
http://www.synopsys.com/Support/GlobalSupportCenters/Pages

1
Getting Started 1

This chapter describes the relationship between the tool command language (Tcl) and
Synopsys tools and provides an introduction to working with commands (both Tcl and
Synopsys) within a Synopsys command shell. This chapter contains the following sections:

• Tcl and Synopsys Tools

• Entering Commands

• Getting Help on Commands

• Command Status

• Using the echo and puts Commands to Output Data

• Command Parsing

1-1

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Tcl and Synopsys Tools

Tcl is a widely used scripting tool that was developed for controlling and extending
applications. Tcl was created by John K. Ousterhout at the University of California, Berkeley,
and is distributed as open source software. Tcl is used by many Synopsys command shells
as a scripting tool for automating design processes.

Tcl provides the necessary programming constructs—variables, loops, procedures, and so
forth—for creating scripts with Synopsys commands.

Note that it is the scripting language, not the Tcl shell, that is integrated into Synopsys tools.
This aspect of Tcl encompasses how variables, expressions, scripts, control flow, and
procedures work, as well as the syntax of commands (including Synopsys commands).

The examples in this book use a mixture of Tcl and Synopsys commands, so when
necessary for clarity, a distinction is made between Tcl and Synopsys commands.
Furthermore, Tcl commands that differ from their base implementation are referred to as
Synopsys commands. These commands are exit, history, rename, and source. You can
refer to the Synopsys man pages for a description of how these commands have been
implemented.

If you try to execute the examples in this book, you must do so within a Synopsys command
shell because the Tcl shell does not support Synopsys commands.

Note:
Synopsys commands are distributed per license agreement for a particular Synopsys
tool or product. Because of this, your particular command shell might not support some
of the commands used in the examples. Also, some Synopsys shells implement a special
mode for handling Tcl commands that you might have to consider. As for Tcl commands,
almost all are supported by the Synopsys command shells.

Most Tcl commands supported by Synopsys shells use a one-word form. The majority of
Synopsys commands have a multiple-word form in which each word is separated by an
underscore, for example, foreach_in_collection or create_power_rings. However,
there are also a number of one-word Synopsys commands.

Tcl commands are referred to as built-in commands by the Synopsys help command and as
Tcl built-in commands by the Synopsys man pages.

The following list shows the supported Tcl commands:

after exec history* open split

append expr if package string

array exit* incr pid subst
Chapter 1: Getting Started
Tcl and Synopsys Tools 1-2

Using Tcl With Synopsys Tools Version B-2008.09
* Synopsys implemented version. See Synopsys man pages for differences.

Lists of Synopsys commands are available in the quick reference booklet for a particular
Synopsys tool.

This book provides only the essential information for using Tcl with Synopsys tools. To learn
more about Tcl, consult one of the reference books available on the subject of Tcl (see
“Related Publications” on page x).

binary fblocked info proc switch

bgerror fconfigure interp puts tell

break fcopy join pwd time

catch file lappend read trace

cd fileevent lindex regexp unset

clock filename linsert regsub update

close flush list rename* uplevel

concat for llength return upvar

continue foreach lrange scan variable

encoding format lreplace seek vwait

eof gets lsearch set while

error glob lsort socket

eval global namespace source*
Chapter 1: Getting Started
Tcl and Synopsys Tools 1-3
Chapter 1: Getting Started
Tcl and Synopsys Tools 1-3

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Entering Commands

Tcl and Synopsys commands can be entered interactively into a command shell, or they can
be processed by the command shell from a script file.

For example, in dc_shell you can enter the Tcl set command as follows:

dc_shell> set buf_name lsi_10k/B1I

This command sets the variable buf_name to the value lsi_10k/B1I.

To use a script file, you enter the Synopsys source command with a script file name:

dc_shell> source load_vpna.tcl

This command causes dc_shell to process the script file load_vpna.tcl.

Basic Command Usage
Both Tcl and Synopsys commands consist of a command followed by zero or more
arguments. The syntax for a command is

command argument_list

Arguments of a command can be user-specified, or they can be options to a command. In
the latter case, the command syntax becomes

command cmd_options argument_list

Commands are terminated by new-line characters or semicolons. For example,

set ReportFile netAttr.rpt
set Clean 0; set NumBins 20

When you enter a long command, you can split it across more than one line by using the
backslash character (\). For example,

set physical_library \
/remote/olympia/psyn/db/pdb/physical.pdb

Abbreviating Commands and Options
You can abbreviate Synopsys commands and options to their shortest unambiguous form.
Most Tcl commands cannot be abbreviated, although you can abbreviate their options. For
example, the following Tcl commands are both valid:

dc_shell> info tclversion
8.4
dc_shell> info tclver
8.4
Chapter 1: Getting Started
Entering Commands 1-4

Using Tcl With Synopsys Tools Version B-2008.09
However, the following command returns an error because you cannot abbreviate the info
command:

dc_shell> inf tclversion
Error: unknown command 'inf' (CMD-008)

Set the command abbreviation mode by using the Synopsys sh_command_abbrev_mode
variable. You can view the current command abbreviation setting by using the Synopsys
printvar command, for example,

dc_shell> printvar sh_command_abbrev_mode

The valid values for sh_command_abbrev_mode are Anywhere, Command-Line-Only, and
None.

Command abbreviation is meant as an interactive convenience. Do not use command or
option abbreviation in script files because script files are susceptible to command changes
in subsequent versions of Synopsys tools or Tcl. Such changes can cause abbreviations to
become ambiguous.

Using Wildcard Characters
You can use the asterisk (*) and question mark (?) wildcard characters to perform pattern
matching on objects such as variable names and strings.

You use the * character to match any sequence of characters in an object. For example, u*
indicates all objects that begin with the letter u, and u*z indicates all objects that begin with
the letter u and end in the letter z.

You use the ? character to match any single character. For example, u? indicates all object
names exactly two characters in length that begin with the letter u.

Note:
For restrictions on pattern matching, see Appendix A, “Tcl Implementation Differences
and Limitations.”

Case Sensitivity
Tcl and Synopsys command names and arguments are case sensitive. For example, the
following commands are not equivalent; they refer to two different clocks—one named Clk
and one named CLK.

create_clock -period 20.0 {Clk}
create_clock -period 20.0 {CLK}

Note:
In general, do not use case to differentiate object names because other tools used in the
design process might not support case sensitivity and can mistakenly treat Clk and CLK,
in the previous example, as the same object.
Chapter 1: Getting Started
Entering Commands 1-5
Chapter 1: Getting Started
Entering Commands 1-5

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Listing and Rerunning Previously Entered Commands
You can use the Synopsys history command to list and execute previously entered
commands. If you use the history command without options, a list of executed commands
is printed; by default 20 commands are listed. The list of commands is printed as a formatted
string that shows the event number for each command.

You use the info option of the history command to list a specific number of previously
entered commands. For example, the following command lists the last five executed
commands:

dc_shell> history info 5

You use the redo option of the history command to reexecute a specific command. You
can specify the command to reexecute by its event number or by a relative event number.

The following command executes the command whose event number is 54:

dc_shell> history redo 54

The following command reexecutes the second-to-the-last command:

dc_shell> history redo -2

If you do not specify an event number, the last command entered is reexecuted.

As a shortcut, you can also use the exclamation point operator (!) for reexecuting
commands. For example, to reexecute the last command, enter

dc_shell> !!

To reexecute the command whose event number is 6, enter

dc_shell> !6

Note:
The Synopsys implementation of history varies from the Tcl implementation. For
history usage information, see the Synopsys man pages.
Chapter 1: Getting Started
Entering Commands 1-6

Using Tcl With Synopsys Tools Version B-2008.09
Getting Help on Commands

You can get help on a command by using the Synopsys help or man commands.

Additionally, you can get quick help on a Synopsys command by using its -help option. For
example,

dc_shell> create_clock -help

Note:
To distinguish between Tcl and Synopsys commands, the Synopsys help and man
commands categorize Tcl commands as built-in commands and Tcl built-in commands,
respectively.

Using the help Command
The syntax for the help command is

help -verbose pattern

The arguments are as follows:

-verbose

Displays a short description of the command arguments.

pattern

Specifies a command pattern to match.

Use the help command to get quick help on one or more commands. Use the -verbose
option to see a list of the command’s arguments, as well as a brief description of each
argument.

If you enter help without arguments, a list of all commands arranged by command group (for
example, Procedures, Builtins, and Default) is displayed.

You specify a command pattern to view help on one or more commands. For example, the
following command shows help for all commands starting with for:

dc_shell> help for*

You can get a list of all commands for a particular command group by entering a command
group name as the argument to help. For example,

dc_shell> help Procedures
Chapter 1: Getting Started
Getting Help on Commands 1-7
Chapter 1: Getting Started
Getting Help on Commands 1-7

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Using the man Command
You use the man command, as shown, to get help from the Synopsys man pages:

dc_shell> man query_objects

The man pages provide detailed information about a command.

The syntax for the man command is

man topic

The topic argument can be a command or a topic. For example, you can get information
about a specific command like query_objects, or you can get information about a topic like
attributes.

Command Status

The command status is the value that a command returns. All commands return a string or
null. By default, the command status is outputted to the console window. For example,

dc_shell> set total_cells 0
0
dc_shell> incr total_cells
1

You can redirect this output by using the redirection operator (>) or the Synopsys redirect
command. For example, to redirect the incremented command status to a file, enter

dc_shell> report_timing > file_name.rpt

To both redirect the incremented command status to a file and display it, enter

dc_shell> redirect -tee file_name {incr total_cells}

For more information about redirection, see the redirect man page.
Chapter 1: Getting Started
Command Status 1-8

Using Tcl With Synopsys Tools Version B-2008.09
Using the echo and puts Commands to Output Data

The echo and puts commands allow you to output data to the screen. The echo command
is a Synopsys command that prints out its argument to a console window. Most Tcl tools also
include an echo command; the behavior of this version of echo is different from that of the
Synopsys echo command.

The puts command is a Tcl command, and when used in its simplest form, it prints its
argument to the standard output. Note that the console window might not be the same as
the standard output. The console window is an integral component of the Synopsys tool you
are running, and the standard output is, by default, the operating system command shell
from which you invoked your Synopsys tool.

The syntax for the echo command is

echo -n argument

The arguments are as follows:

-n

Suppresses new-line character output.

argument

The item to output.

The echo command prints the value of argument to the console window, and if the -n
argument is used, echo does not attach a new line to the end of the argument.

The following example prints a line of text and a new line to the console window:

dc_shell> echo "Have a good day."
Have a good day.

The syntax for the puts command is

puts -nonewline file_id arg

The arguments are as follows:

-nonewline

Suppresses output of the new-line character.

file_id

Specifies the file ID of the channel to which to send output.

arg

Contains the output.
Chapter 1: Getting Started
Using the echo and puts Commands to Output Data 1-9
Chapter 1: Getting Started
Using the echo and puts Commands to Output Data 1-9

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
The puts command sends its output, arg, to a channel specified by the file_id argument.
If the -nonewline option is used, puts does not attach a new line to the end of arg. If the
file_id argument is not specified, puts prints to the standard output.

The following example shows how to use puts in its simplest form:

dc_shell> puts "Have a good day."
Have a good day.

For more information about the puts command, see “gets and puts” on page 2-19.

Command Parsing

A Synopsys command shell parses commands (Tcl and Synopsys) and makes substitutions
in a single pass from left to right. At most, a single substitution occurs for each character.
The result of one substitution is not scanned for further substitutions.

Substitution
The substitution types are

• Command substitution

You can use the result of a command in another command (nested commands) by
enclosing the nested command in square brackets ([]). (For an exception, see
“Command Substitution Exception” on page A-2.)

For example,

dc_shell> set a [expr 24 * 2]

You can use a nested command as a conditional statement in a control structure, as an
argument to a procedure, or as the value to which a variable is set. Tcl imposes a depth
limit of 1,000 for command nesting.

• Variable substitution

You can use variable values in commands by using the dollar sign character ($) to
reference the value of the variable. (For more information about Tcl variables, see
“Variables” on page 2-2.)

For example,

dc_shell> set a 24
24
dc_shell> set b [expr $a * 2]
48
Chapter 1: Getting Started
Command Parsing 1-10

Using Tcl With Synopsys Tools Version B-2008.09
• Backslash (\) substitution

You use backslash substitution to insert special characters, such as a new line, into text.
For example

dc_shell> echo "This is line 1.\nThis is line 2."
This is line 1.
This is line 2.

You can also use backslash substitution to disable special characters when weak quoting
is used (see “Quoting” next).

Quoting
You use quoting to disable the interpretation of special characters (for example, [], $, and ;).
You disable command substitution and variable substitution by enclosing the arguments in
braces ({}); you disable word and line separators by enclosing the arguments in double
quotation marks ("").

Braces specify rigid quoting. Rigid quoting disables all substitution, so that the characters
between the braces are treated literally. For example,

dc_shell> set a 5; set b 10
10
dc_shell> echo {[expr $b - $a]} evaluates to [expr $b - $a]
[expr $b - $a] evaluates to 5

Double quotation marks specify weak quoting. Weak quoting disables word and line
separators while allowing command, variable, and backslash substitution. For example,

dc_shell> set A 10; set B 4
4
dc_shell> echo "A is $A; B is $B.\nNet is [expr $A - $B]."
A is 10; B is 4.
Net is 6.
Chapter 1: Getting Started
Command Parsing 1-11
Chapter 1: Getting Started
Command Parsing 1-11

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Special Characters
Table 1-1 lists the characters that have special meaning in Tcl. If you do not want these
characters treated specially, you can precede the special characters with a backslash (\).

For example,

dc_shell> set gp 1000; set ex 750
750
dc_shell> echo "Net is: \$"[expr $gp - $ex]"
Net is: $250

Table 1-1 Tcl Special Characters

Character Meaning

$ Used to access the value of a variable.

() Used to group expressions.

[] Denotes a nested command. (For an exception, see
“Command Substitution Exception” on page A-2.)

\ Used for escape quoting and as a line continuation character.

"" Denotes weak quoting. Nested commands and variable
substitutions still occur.

{ } Denotes rigid quoting. There are no substitutions.

; Ends a command.

Begins a comment.
Chapter 1: Getting Started
Command Parsing 1-12

2
Tcl Basics 2

This chapter provides an overview of the Tcl scripting language. It contains the following
sections:

• Variables

• Scripts

• Data Types

• Expressions

• Control Flow

• Basic File Commands

This chapter is not an exhaustive Tcl reference. It covers the most important aspects of Tcl
to give you a foundation for using Tcl with Synopsys commands. For more information about
Tcl, consult one of the reference books available on the subject of Tcl (see “Related
Publications” on page x).

2-1

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Variables

Tcl supports two types of variables, simple and array. This section describes how to work
with simple variables; arrays are described later in this chapter (see “Arrays” on page 2-9).

The simplest way to create a variable and assign it a value is by using the set command.
For example,

dc_shell> set buf_name lsi_10k/B1I
lsi_10k/B1I
dc_shell> set a 1
1
dc_shell> set b 2.5
2.5

In Tcl, all variables are strings. However, Tcl does recognize variables whose values
represent integer and real numbers (see “Numeric Variable Precision” on page 2-3).

You can append one or more values to a variable by using the Tcl append command. For
example,

dc_shell> set c1 U1; set c2 U2
U2
dc_shell> append c1 " " $c2
U1 U2

The following example shows how you can use a variable to save the result of a command:

dc_shell> set a [expr 42 * 2]

To increase or decrease an integer variable by a fixed amount, use the Tcl incr command.
For example,

dc_shell> set b 10
10
dc_shell> incr b
11
dc_shell> incr b -6
5

The default increment value for incr is 1. An error message is displayed if you try to
increment a variable that is not an integer.

You use the unset command to delete variables. Any type of variable can be deleted with
the unset command.

To find out whether a variable exists, you can use the Tcl info exists command. For
example, to see whether the variable total_cells exists, enter

dc_shell> info exists total_cells
Chapter 2: Tcl Basics
Variables 2-2

Using Tcl With Synopsys Tools Version B-2008.09
The info exists command returns 1 if the variable exists, and it returns 0 otherwise.

To see whether variables exist that match a specified pattern, use the Tcl info vars
command. For example,

dc_shell> info vars total_c*

Numeric Variable Precision
The precision of a numeric variable depends on how you assign a numeric value to it. A
numeric variable becomes a floating number if you use the decimal point; otherwise it
becomes an integer. An integer variable can be treated as a decimal, octal, or hexadecimal
number when used in expressions.

To avoid unexpected results, you must be aware of the precision of a numeric variable when
using it in an expression. For example, in the following commands, the division operator
produces different results when used with integer and floating-point numbers:

dc_shell> set a 10; set b 4.0; set c 4
4
dc_shell> expr $a/$b
2.5
dc_shell> expr $a/$c
2

The first expr command performs floating-point division; the second expr command
performs integer division. Integer division does not yield the fractional portion of the result.
When integer and floating-point variables are used in the same expression, the operation
becomes a floating-point operation, and the result is represented as floating point.

Variable Substitution
You use variable substitution to access the value of a variable. You invoke variable
substitution by preceding a variable name with the $ operator.

The following example uses the Synopsys echo command to print out the value of a
variable:

dc_shell> set buf_name lsi_10k/B1I
lsi_10k/B1I
dc_shell> echo $buf_name
lsi_10k/B1I
Chapter 2: Tcl Basics
Variables 2-3
Chapter 2: Tcl Basics
Variables 2-3

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Predefined Variables
Tcl maintains only a few predefined variables. In contrast, Synopsys command shells use
numerous predefined variables of which you should be aware. For detailed information
about Synopsys predefined variables, see the quick reference booklet for a particular
Synopsys tool.

An example of a Tcl predefined variable is env. The env variable is an array (see “Arrays” on
page 2-9) that contains the environment variable names of the UNIX shell in which the
Synopsys command shell is running. You can view a list of the environment variables by
using the Tcl array command with its names option. For example,

dc_shell> array names env

The list that prints out contains element names that correspond to the names of environment
variables. To reference the value of an environment variable, use $env(ENV_VAR_NAME). For
example, you can view the value of the HOME environment variable by entering

dc_shell> echo $env(HOME)

You can also use the Synopsys getenv command to view the value of an environment
variable. For example,

dc_shell> getenv HOME

If you change the value of an env element, the change is reflected in the environment
variable of the process in which the command shell is running. The env element is returned
to its previous value after the command shell exits.

Scripts

A script is made up of commands (both Tcl and Synopsys) grouped together. Typically, these
commands are stored in a script file to perform a specific process (compiling a design, for
example). However, you can enter a script directly into a command shell by using
semicolons and command continuation.

A command is composed of a command word followed by zero or more options or
arguments. Command names, options, and arguments are separated by white-space
characters (except for new line, which terminates a command).

For more information about command syntax, see “Basic Command Usage” on page 1-4.
Chapter 2: Tcl Basics
Scripts 2-4

Using Tcl With Synopsys Tools Version B-2008.09
Creating Comments
Comment lines are created by placing a pound sign (#) as the first nonblank character of a
line. You can create inline omments by placing a semicolon between a command and the
pound sign. For example,

echo abc; # this is an inline comment

When the command continuation character (\) is placed at the end of a commented
command line, the subsequent line is also treated as a comment. In the following example,
none of the set commands will be executed:

set CLK_NAME Sysclk; set CLK_PERIOD 10; \
set INPUT_DELAY 2

Loading and Running a Script File
You load and run a script file by using the Synopsys source command. For example, if your
script is contained in a file called mysession.tcl, you run the script file by entering

dc_shell> source mysession.tcl

When you specify a file name without directory information, the source command examines
the sh_source_uses_search_path variable to determine whether to use the value of the
search_path variable to search for files. For more information, see the
sh_source_uses_search_path and search_path man pages.

Note:
The Synopsys implementation of source varies from the Tcl implementation. For source
usage information, see the Synopsys man pages.

Redirecting Script Output
As a script file is being processed, you can have the Synopsys source command display
commands and command results by using its -echo and -verbose options. For example,

dc_shell> source -echo -verbose myrun.tcl

You can also save the execution results to an output file by using the pipe operator (>). For
example,

dc_shell> source -echo -verbose myrun.tcl > myrun.out

The execution output of a script file can be changed in various ways. For example, you can
change how variable initializations and error and warning messages are displayed. For more
information about controlling execution output, see the sh_new_variable_message and
suppress_message man pages.
Chapter 2: Tcl Basics
Scripts 2-5
Chapter 2: Tcl Basics
Scripts 2-5

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Sample Script File
Example 2-1 shows a sample script file that sets up a particular session and then performs
a compile:

Example 2-1 Sample Script File

set DESIGN_NAME top
set SUB_MODULE [list sub1.v sub2.v sub3.v]
set CLK_NAME Sysclk
set CLK_PERIOD 10
set INPUT_DELAY 2
set OUTPUT_DELAY 3
read_verilog [list $SUB_MODULE $DESIGN_NAME.v]
current_design $DESIGN_NAME
link
create_clock -p $CLK_PERIOD -n $CLK_NAME [get_ports $CLK_NAME]
set_input_delay $INPUT_DELAY -clock $CLK_NAME [list [all_inputs]]
set_output_delay $OUTPUT_DELAY -clock $CLK_NAME [list [all_outputs]]
compile

Data Types

You can use the following data types, which are described in the sections that follow:

• Strings

• Lists

• Arrays

Note:
Synopsys tools also support a collection data type, which is described in Chapter 4,
“Working With Collections.”

Strings
A string is a sequence of characters. Tcl treats command arguments as strings and returns
command results as strings. The following are string examples:

sysclk
"FF3 FF4 FF5"

To include special characters, such as space, backslash, or new line, in a string, you must
use quoting to disable the interpretation of the special characters (see “Quoting” on
page 1-11).

Most string operations are done by means of the Tcl string command.
Chapter 2: Tcl Basics
Data Types 2-6

Using Tcl With Synopsys Tools Version B-2008.09
The syntax for the string command is

string option arg ...

The arguments are as follows:

option

Specifies an option for the string command.

arg ...

Specifies the argument or arguments for the string command.

For example, to compare two strings you use the compare option as follows:

string compare string1 string2

To convert a string to all uppercase characters, you use the toupper option as follows:

string toupper string

Table 2-1 lists Tcl commands you can use with strings. For more information about these
commands, see the Synopsys man pages.

Table 2-1 Tcl Commands to Use With Strings

Command Description

format Formats a string.

regexp Searches for a regular expression within a string.

regsub Performs substitutions based on a regular expression.

scan Assigns fields in the string to variables.

string Provides a set of string manipulation functions.

subst Performs substitutions.
Chapter 2: Tcl Basics
Data Types 2-7
Chapter 2: Tcl Basics
Data Types 2-7

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Lists
A list is an ordered group of elements; each element can be a string or another list. You use
lists to group items such as a set of cell instance pins or a set of report file names. You can
then conveniently manipulate the grouping as a single entity.

You can create a simple list by enclosing the list elements in double quotation marks ("") or
braces ({}) or by using the Tcl list command. You must delimit list elements with spaces—
do not use commas.

For example, you could create a list of cell instance D-input pins,
I1/FF3/D, I1/FF4/D, and I1/FF5/D, in one of the following ways:

set D_pins "I1/FF3/D I1/FF4/D I1/FF5/D"
set D_pins {I1/FF3/D I1/FF4/D I1/FF5/D}
set D_pins [list I1/FF3/D I1/FF4/D I1/FF5/D]

You use the list command to create a compound (nested) list. For example, the following
command creates a list that contains three elements, each of which is also a list:

set compound_list [list {x y} {1 2.5 3.75 4} {red green blue}]

To access a specific element in a simple or compound list, you use the lindex command.
For example, the following commands print out the first element of the D-pins list and the
second element of the compound_list list:

dc_shell> lindex $D_pins 0
I1/FF3/D

dc_shell> lindex $compound_list 1
1 2.5 3.75 4

Note that lindex is zero based.

Because braces prevent substitutions, you must use double quotation marks or the list
command to create a list if the list elements include nested commands or variable
substitution.

For example, if variable a is set to 5, the following commands generate very different results:

dc_shell> set a 5
5

dc_shell> set b {c d $a [list $a z]}
c d $a [list $a z]

dc_shell> set b [list c d $a [list $a z]]
c d 5 {5 z}
Chapter 2: Tcl Basics
Data Types 2-8

Using Tcl With Synopsys Tools Version B-2008.09
Table 2-2 lists Tcl commands you can use with lists. For more information about these
commands, see the Synopsys man pages.

Arrays
Tcl uses associative arrays. This type of array uses arbitrary strings, which can include
numbers, as its indices. The associative array is composed of a group of elements where
each element is a variable with its own name and value. To reference an array element, you
use the following form:

array_name (element_name)

For example, you can create an array of report file name extensions as follows:

dc_shell> set vio_rpt_ext(ir_drop) .volt
.volt
dc_shell> set vio_rpt_ext(curr_dens) .em
.em
dc_shell> set vio_rpt_ext(curr) .current
.current

Table 2-2 Tcl Commands to Use With Lists

Command Task

concat Concatenates lists and returns a new list.

join Joins elements of a list into a string.

lappend Appends elements to a list.

lindex Returns a specific element from a list.

linsert Inserts elements into a list.

list Returns a list formed from its arguments.

llength Returns the number of elements in a list.

lrange Extracts elements from a list.

lreplace Replaces a specified range of elements in a list.

lsearch Searches a list for a regular expression.

lsort Sorts a list.

split Splits a string into a list.
Chapter 2: Tcl Basics
Data Types 2-9
Chapter 2: Tcl Basics
Data Types 2-9

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
The first set command creates the vio_rpt_ext array and sets its ir_drop element to
.volt. The subsequent commands create new array elements and assign them with values.
Figure 2-1 illustrates how the vio_rpt_ext array is organized.

Figure 2-1 Structure of vio_rpt _ext Array

The following example prints out the curr_dens element:

dc_shell> echo $vio_rpt_ext(curr_dens)
.em

You can use the Tcl array command, along with one of its options, to get information about
the elements of an array. The following commands use the size and names options to print
the size and element names of the vio_rpt_ext array.

dc_shell> array size vio_rpt_ext
3
dc_shell> array names vio_rpt_ext
curr curr_dens ir_drop

For more information about array usage, see the array man page.

Expressions

You use the Tcl expr command to evaluate an expression.

For example, if you want to multiply the value of variable p by 12 and place the result into
variable a, enter the following commands:

dc_shell> set p 5
5
dc_shell> set a [expr (12*$p)]
60

The following command does not perform the desired multiplication:

dc_shell> set a (12 * $p)

Where possible, expression operands are interpreted as integers. Integer values can be
decimal, octal, or hexadecimal. Operands not in an integer format are treated as

Element Element

ir_drop

curr_dens

curr

.volt

.em

.current

ValuesNames
Chapter 2: Tcl Basics
Expressions 2-10

Using Tcl With Synopsys Tools Version B-2008.09
floating-point numbers, if possible (see “Numeric Variable Precision” on page 2-3).
Operands can also be one of the mathematical functions supported by Tcl. For more
information, see the expr man page.

Note:
The expr command is the simplest way to evaluate an expression. You will also find
expressions in other commands, such as the control flow if command. The rules for
evaluating expressions are the same whether you use the expr command or use the
expression within the conditional statement of a control flow command (see “Control
Flow” on page 2-12).

Table 2-3 lists the Tcl operators in order of precedence. The operators at the top of the table
have precedence over operators lower in the table.

Table 2-3 Tcl Operators

Syntax Description Operand types

-a
!a
~a

Negative of a
Logical NOT: 1 if a is zero, 0 otherwise
Bitwise complement of a

int, real
int, real
int

a*b
a/b
a%b

Multiply a and b
Divide a by b
Remainder after dividing a by b

int, real
int, real
int

a+b
a-b

Add a and b
Subtract b from a

int, real
int, real

a<<b
a>>b

Left-shift a by b bits
Right-shift a by b bits

int
int

a<b
a>b
a<=b
a>=b

1 if a is less than b, 0 otherwise
1 if a is greater than b, 0 otherwise
1 if a is less than or equal to b, 0 otherwise
1 if a is greater than or equal to b, 0 otherwise

int, real, string
int, real, string
int, real, string
int, real, string

a==b
a!=b

1 if a is equal to b, 0 otherwise
1 if a is not equal to b, 0 otherwise

int, real, string
int, real, string

a&b
a^b
a|b

Bitwise AND of a and b
Bitwise exclusive OR of a and b
Bitwise OR of a and b

int
int
int
Chapter 2: Tcl Basics
Expressions 2-11
Chapter 2: Tcl Basics
Expressions 2-11

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Control Flow

The Tcl control flow commands—if, while, for, foreach, break, continue, and
switch—determine the execution order of other commands.

The if and switch commands provide a way to select for execution one block of script from
several blocks. The while, for, and foreach commands provide a way to repeat a block of
script (looping). The break and continue commands are used in conjunction with looping
to change the normal execution order of loops.

Using the if Command
An if command requires two arguments; in addition, it can be extended to contain elseif
and else arguments. The required arguments are

• An expression to evaluate

• A script to conditionally execute based on the result of the expression

The basic form of the if command is

if {expression} {
 script
}

The if command evaluates expression, and if the expression result is not zero, script
is executed.

The if command can be extended to contain one or more elseif arguments and a final
else argument. An elseif argument requires two additional arguments: an expression and
a script. An else argument requires only a script.

a&&b
a||b

Logical AND of a and b
Logical OR of a and b

int, real
int, real

a?b:c If a is nonzero, then b, else c a: int, real
b, c: int, real,
string

Table 2-3 Tcl Operators (Continued)

Syntax Description Operand types
Chapter 2: Tcl Basics
Control Flow 2-12

Using Tcl With Synopsys Tools Version B-2008.09
The basic form is as follows:

if {expression1} {
 script1
} elseif {expression2} {
 script2
} else {
 script3
}

The following example shows how to use the elseif and else arguments.

if {$x == 0} {
 echo "Equal"
} elseif {$x > 0} {
 echo "Greater"
} else {
 echo "Less"
}

The elseif and else arguments appear on the same line with the closing brace (}). This
syntax is required because a new line indicates a new command. If the elseif argument is
on a separate line, it is treated as a command, which it is not.

Using the while Command
The while command has two arguments:

• An expression to evaluate

• A script to conditionally execute based on the result of the expression

The while command has the following form:

while {expression} {
 script
}

The while command evaluates expression, and if the expression result is not zero,
script is executed. After script is executed, the while command evaluates expression
again; if expression is still not zero, script is executed again.

For example, the following while command prints squared values from 0 to 10:

set p 0
while {$p <= 10} {
 echo "$p squared is: [expr $p * $p]"; incr p
}

Chapter 2: Tcl Basics
Control Flow 2-13
Chapter 2: Tcl Basics
Control Flow 2-13

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Using the for Command
The for command has four arguments:

• An initialization expression

• A loop-termination expression

• A reinitialization expression

• The script to execute for each iteration of the for loop

The for command has the following form:

for {initial_expr} {termination_expr} {reinit_expr}{
 script
}

The following example prints the squared values from 0 to 10:

for {set p 0} {$p <= 10} {incr p} {
 echo "$p squared is: [expr $p * $p]"
}

Using the foreach Command
The foreach command iterates over the elements in a list. It has three arguments:

• A variable name

• A list

• A script to execute

The foreach command has the following form:

foreach var $somelist{
 script
}

The foreach command executes script for each element in the specified list. Before
executing script, foreach sets var to the value of the next element in the list.

For example, the following foreach command prints the elements of a simple list:

dc_shell> set mylist {I1/FF3/D I1/FF4/D I1/FF5/D}
I1/FF3/D I1/FF4/D I1/FF5/D
dc_shell> foreach i $mylist {echo $i}
I1/FF3/D
I1/FF4/D
I1/FF5/D
Chapter 2: Tcl Basics
Control Flow 2-14

Using Tcl With Synopsys Tools Version B-2008.09
Using the break and continue Commands
The break and continue commands change the flow of the while, for, and foreach
commands.

• The break command causes the innermost loop to terminate.

• The continue command causes the current iteration of the innermost loop to terminate.

In the following example, a list of file names is scanned until the first file name that is a
directory is encountered. The break command is used to terminate the foreach loop when
the first directory name is encountered.

foreach f [which {VDD.ave GND.tech p4mvn2mb.idm}] {
 echo -n "File $f is "
 if { [file isdirectory $f] == 0 } {
 echo "NOT a directory"
 } else {
 echo "a directory"
 break
 }
}

In the following example, the continue command causes the printing of only the squares of
even numbers between 0 to 10:

set p 0
while {$p <= 10} {
 if {$p % 2} {
 incr p
 continue
 }
 echo "$p squared is: [expr $p * $p]"; incr p
}

Using the switch Command
The switch command provides a more compact encoding alternative to using an if
command with lots of elseif arguments. The switch command tests a value against a
number of string patterns and executes the script corresponding to the first pattern that
matches.

The switch command has the following form:

switch $s {pat1 {scripta} pat2 {scriptb} pat3 {scriptc}...}
Chapter 2: Tcl Basics
Control Flow 2-15
Chapter 2: Tcl Basics
Control Flow 2-15

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
For readability, the following form is often used:

switch $s {
 pat1 {scripta}
 pat2 {scriptb}
 pat3 {scriptc}
 ...}

The $s argument is the value to be tested against each pattern (pat1, pat2, and pat3), and
scripta, scriptb, and scriptc represent the script that is executed for each pattern
match.

In the following example, the Tcl glob command is used to generate a list of particular file
types within the current directory, and then the number of files of a particular file type (file
extension) are tabulated and printed.

Tabulates files by their type
set fnames [glob *.em *.volt *.current]
set curr_ct 0; set em_ct 0; set volt_ct 0
foreach f $fnames {
 set f_ext [file extension $f]
 switch $f_ext {
 .current {incr curr_ct}
 .em {incr em_ct}
 .volt {incr volt_ct}
 }
}
echo "There are $curr_ct current files."
echo "There are $em_ct current density files."
echo "There are $volt_ct IR drop files."

The switch command also has three options, -exact, -glob, and -regexp, that affect how
pattern matching is handled. For more information about these options, see the switch man
page.

Basic File Commands

This section provides an overview of Tcl commands you can use when working with files.
You use these commands to work with directories, retrieve information about files, and read
from and write to files.

cd and pwd
The cd and pwd commands are equivalent to the operating system commands with the
same name. You use the cd command to change the current working directory and the pwd
command to print the full path name of the current working directory.
Chapter 2: Tcl Basics
Basic File Commands 2-16

Using Tcl With Synopsys Tools Version B-2008.09
file and glob
You use the file and glob commands to retrieve information about file names and to
generate lists of file names.

You use the file command to retrieve information about a file. The file command has the
following form:

file option arg arg ...

Table 2-4 provides a sample of file command options.

You use the glob command to generate a list of file names that match one or more patterns.
The glob command has the following form:

glob pattern1 pattern2 pattern3 ...

The following example generates a list of .em and .volt files located in the current directory:

set flist [glob *.em *.volt]

Table 2-4 File Command Option Samples

File command and option Description

file dirname fname Returns the directory name part of a file name.

file exists fname Returns 1 if the file name exists, 0 otherwise.

file extension fname Returns the extension part of a file name.

file isdirectory fname Returns 1 if the file name is a directory, 0 otherwise.

file isfile fname Returns 1 if the file name is a file, 0 otherwise.

file readable fname Returns 1 if the file is readable, 0 otherwise.

file rootname fname Returns the name part of a file name.

file size fname Returns the size, in bytes, of a file.

file tail fname Returns the file name from a file path string.

file writable fname Returns 1 if the file is writable, 0 otherwise.
Chapter 2: Tcl Basics
Basic File Commands 2-17
Chapter 2: Tcl Basics
Basic File Commands 2-17

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
open, close, and flush
You use the open, close, and flush commands to set up file access.

The open command syntax is as follows:

open fname access_mode

The access_mode argument specifies how you want the file opened; the default access
mode is read only. Typical access modes include read only, write only, read/write, and
append. (For a complete list of all access modes, see the open man page.) Table 2-5 lists
some commonly used access modes.

The open command returns a string (a file ID) that is used to identify the file for further
interaction with it.

You use the close command to close a file; it has the following syntax:

close $fid

The $fid argument is the file ID of the file that was obtained from an open command.

The following example demonstrates the use of the open and close commands:

set f [open VDD.em w+]
close $f

Table 2-5 Commonly Used Access Modes

Access mode Description

r Opens the file for reading only; the file must already exist. This is the
default access mode.

r+ Opens the file for reading and writing; the file must already exist.

w Opens the file for writing only. If the file exists, truncates it. If the file does
not exit, creates it.

w+ Opens the file for reading and writing. If the file exists, truncates it. If the
file does not exit, creates it.

a Opens the file for writing only; new data is appended to the file. The file
must already exist.

a+ Opens the file for reading and writing. If the file does not exist, creates
it. New data is appended to the file.
Chapter 2: Tcl Basics
Basic File Commands 2-18

Using Tcl With Synopsys Tools Version B-2008.09
You use the flush command to force buffered output to be written to a file. Data written to a
file does not always immediately appear in the file when a buffered output scheme is used.
Instead, the data is queued in memory by the system and is written to the file later; the
flush command overrides this behavior.

The flush command has the following syntax:

flush $fid

gets and puts
You use the gets command to read a single line from a file and the puts commands to write
a single line to a file.

The gets command has the following syntax:

gets $fid var

The $fid argument is the file ID of the file that was obtained from an open command; the
var argument is the variable that is to receive the line of data.

After the line is read, the file is positioned to its next line. The gets command returns a count
of the number of characters actually read. If no characters are read, gets returns -1 and
places an empty string into var.

The puts command has the following syntax:

puts $fid var

The $fid argument is the file ID of the file that was obtained from an open command; the
var argument contains the data that is to be written. The puts command adds a new-line
character to the data before it is outputted.

If you leave out the file ID, the data is written to the standard output. For more information
about this use of puts, see “Using the echo and puts Commands to Output Data” on
page 1-9.
Chapter 2: Tcl Basics
Basic File Commands 2-19
Chapter 2: Tcl Basics
Basic File Commands 2-19

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
The following example demonstrates the use of gets and puts:

Write out a line of text, then read it back and print it
set fname "mytext.txt"
Open file, then write to it
set fid [open $fname w+]
puts $fid "This is my line of text."
close $fid
#
Open file, then read from it
set fid [open $fname r]
set data_in [gets $fid]
close $fid
#
Print out data read
echo $data_in

Nonsequential File Access
 By default, the gets and puts commands access files sequentially. You can use the seek,
tell, and eof commands to manage nonsequential file access.

You use the seek command to move the access position of the file by a specified number of
bytes. The access position is the point where the next read or write occurs in the file. By
default, the access point is where the last read or write ended.

The simplest form of the seek command is

seek $fid offset

The $fid argument is the file ID of the file that was obtained from an open command; the
offset argument is the number of bytes to move the access position.

You use the tell command to obtain the current access position of a file.

The basic syntax of the command is

tell $fid

You use the eof command to test whether the access position of a file is at the end of the
file. The command returns 1 if true, 0 otherwise.
Chapter 2: Tcl Basics
Basic File Commands 2-20

3
Working With Procedures 3

A procedure is a named block of commands that performs a particular task or function. With
procedures, you create new commands by using existing Tcl and Synopsys commands.
This chapter shows you how to create procedures, and it describes how to use Synopsys
procedure extensions.

This chapter contains the following sections:

• Creating Procedures

• Extending Procedures

• Displaying Procedure Body and Arguments

3-1

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Creating Procedures

You use the Tcl proc command to create a procedure. The general form of the proc
command is

proc name args body

The name argument names your procedure. You cannot use the name of an existing Tcl or
Synopsys command. You can, however, use the name of an existing procedure, and if a
procedure with the name you specify exists, your procedure replaces the existing procedure.

The arguments to a procedure are specified in args, and the script that makes up a
procedure is contained in body. You can create procedures without arguments also.
Arguments to a procedure must be scalar variables; consequently you cannot use arrays as
arguments to a procedure. (For a technique to overcome this limitation, see “Using Arrays
With Procedures” on page 3-5.)

The following is a procedure example:

procedure max
returns the greater of two values
proc max {a b} {
 if {$a > $b} {
 return $a
 }
 return $b
}

You invoke this procedure as follows:

dc_shell> max 10 5

To save the result of the procedure, set a variable to its result. For example,

dc_shell> set bigger [max 10 5]

When a procedure terminates, the return value is the value specified in a return command.
If a procedure does not execute an explicit return, the return value is the value of the last
command executed in the body of the procedure. If an error occurs while the body of the
procedure is being executed, the procedure returns that error.

The return command causes the procedure to return immediately; commands that come
after return are not executed.
Chapter 3: Working With Procedures
Creating Procedures 3-2

Using Tcl With Synopsys Tools Version B-2008.09
Variable Scope
Variable scope determines the accessibility of a variable when it is used in scripts and
procedures. In Tcl, the scope of a variable can be either local or global. When working with
scripts and procedures, you must be aware of a variable’s scope to ensure that it is used
properly.

When a procedure is invoked, a local variable is created for each argument of the procedure.
Local variables are accessible only within the procedure from which they are created, and
they are deleted when the procedure terminates. A variable created within the procedure
body is also a local variable.

Variables created outside of procedures are called global variables. You can access a global
variable from within a procedure by using the Tcl global command. The global command
establishes a connection to the named global variable, and references are directed to that
global variable until the procedure terminates. (For more information, see the global man
page.)

You can also access variables that are outside the scope of a procedure by using the Tcl
upvar command. This command is useful for linking to a procedure nonscalar variables (for
example, arrays), which cannot be used as arguments for a procedure. For more information
about this command, see the upvar man page.

It is possible to create a local variable with the same name as a global variable and to create
local variables with the same name in different procedures. In each case, these are different
variables, so changes to one do not affect the other.

For example,

Variable scope example
set ga 5
set gb clock_ext

proc scope_ex1 {a b} {
 echo $a $b
 set gb 100
 echo $gb
}

proc scope_ex2 {a b} {
 echo $a $b
 set gb 4.25
 echo $gb
}

In this script example, ga and gb are global variables because they are created outside of
procedures scope_ex1 and scope_ex2. The variable name gb is also used within
scope_ex1 and scope_ex2. Within these procedures, gb is a local variable. All three
Chapter 3: Working With Procedures
Creating Procedures 3-3
Chapter 3: Working With Procedures
Creating Procedures 3-3

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
instances of gb exist as three different variables. A change to one instance of gb does not
affect the others.

Argument Defaults
You can specify default values for one or more of the arguments of a procedure.

To set up a default for an argument, you place the arguments of the procedure in a sublist
that contains two elements: the name of the argument and its default. For example,

procedure max
returns the greater of two values
proc max {{a 0} {b 0}} {
 if {$a > $b} {
 return $a
 }
 return $b
}

In this example, you can invoke max with two or fewer arguments. If an argument is missing,
its value is set to the specified default, 0 in this case.

With this procedure, the following invocations are all valid:

max
max arg1
max arg1 arg2

You do not have to surround nondefault arguments within braces. For example,

procedure max
returns the greater of two values
proc max {a {b 0}} {
...

You should also consider the following points when using default arguments:

• If you do not specify a particular argument with a default, you must supply that argument
when the procedure is invoked.

• If you use default arguments, you must place them after all nondefault arguments.

• If you specify a default for a particular argument, you must specify a default for all
arguments that follow.

• If you omit an argument, you must omit all arguments that follow.
Chapter 3: Working With Procedures
Creating Procedures 3-4

Using Tcl With Synopsys Tools Version B-2008.09
Variable Numbers of Arguments
You can create procedures with variable numbers of arguments if you use the special
argument args. This argument must be positioned as the last argument in the argument list;
arguments preceding args are handled as described in the previous sections.

Additional arguments are placed into args as a list. The following example shows how to
use a varying number of arguments:

print the square of at least one number
proc squares {num args} {
 set nlist $num
 append nlist " "
 append nlist $args
 foreach n $nlist {
 echo "Square of $n is [expr $n*$n]"
 }
}

Using Arrays With Procedures
When using an array with a procedure, you can make the array a global variable, or you can
use the get and set options of the array command to manipulate the array so that it can be
used as an argument or as the return value of a procedure. Example 3-1 demonstrates the
latter technique.

Example 3-1 Passing an Array to a Procedure

proc foo { bar_list } {
 # bar was an array in the main code
 array set bar_array $bar_list;
 # manipulate bar_array
 return [array get bar_array];
}
set george(one) {two};
set george(alpha) {green};
array set new_george [foo [array get george]];
Chapter 3: Working With Procedures
Creating Procedures 3-5
Chapter 3: Working With Procedures
Creating Procedures 3-5

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
General Considerations for Using Procedures
Keep in mind the following points when using procedures:

• Procedures can use Tcl and Synopsys commands.

• Procedures can use other procedures provided that they contain supported Tcl and
Synopsys commands.

• Procedures can be recursive.

• Procedures can contain local variables and can reference variables outside their scope
(see “Variable Scope” on page 3-3).

Extending Procedures

This section describes the Synopsys define_proc_attributes and
parse_proc_arguments commands. These commands add extended functionality to the
procedures you create. With these commands, you can create procedures with the same
help and semantic attributes as Synopsys commands.

When you create a procedure, it has the following intrinsic attributes:

• The body of the procedure can be viewed with the Tcl info body command.

• The procedure can be modified.

• The procedure name can be abbreviated according to the value of the
sh_command_abbrev_mode variable.

• The procedure is placed in the Procedures command group.

Note:
The procedure does not have help text.

By using the define_proc_attributes command, you can

• Specify help text for the command

• Specify rules for argument validation

• Prevent procedure view and modification

• Prevent procedure name abbreviation

• Specify the command group in which to place the procedure
Chapter 3: Working With Procedures
Extending Procedures 3-6

Using Tcl With Synopsys Tools Version B-2008.09
You use the parse_proc_arguments command in conjunction with the
define_proc_attributes command to enable the -help option for a procedure (see
“Getting Help on Commands” on page 1-7) and to support procedure argument validation.

Using the define_proc_attributes Command
You use the Synopsys define_proc_attributes command to define and change the
attributes of a procedure.

The syntax is

define_proc_attributes proc_name
 [-info info_text]
 [-define_args arg_defs]
 [-command_group group_name]
 [-hide_body]
 [-hidden]
 [-permanent]
 [-dont_abbrev]

The arguments are defined as follows:

proc_name

Specifies the name of the procedure to extend.

-info info_text

Specifies the quick-help text that is used in conjunction with the help command and the
procedure’s -help option. The text is limited to one line.

-define_args arg_defs

Specifies the help text for the procedure’s arguments and defines the procedure
arguments and their attributes.

-command_group group_name

Specifies the command group of the procedure. The default command group is
Procedures. This attribute is used in conjunction with the help command (see “Getting
Help on Commands” on page 1-7).

-hide_body

Hides the body of the procedure. The procedure body cannot be viewed by using the
body option of the info command. This attribute does not affect the info command
when the args option is used.

-hidden

Hides the procedure so the help command cannot access the help page, and the
info proc command cannot access the body of the procedure.
Chapter 3: Working With Procedures
Extending Procedures 3-7
Chapter 3: Working With Procedures
Extending Procedures 3-7

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
-permanent

Prevents modifications to the procedure.

-dont_abbrev

Prevents name abbreviation for the procedure, regardless of the value of the
sh_command_abbrev_mode variable.

You use the -define_args argument to specify quick-help text for the procedure’s
arguments and to define the data type and attributes of the procedure’s arguments. The
-define_args argument is a list of lists (see “Lists” on page 2-8). Each list element is used
to specify attributes for each procedure argument.

For information about using the -define_args arguments within a procedure, see “Using
the parse_proc_arguments Command” on page 3-9. Each list element has the following
format:

arg_name option_help value_help data_type attributes

arg_name

Specifies the name of the argument.

option_help

Specifies a short description of the argument for use with the procedure’s -help option.

value_help

For positional arguments, specifies the argument name; otherwise, is a one-word
description for the value of a dash option. This parameter has no meaning for a Boolean
option.

data_type

Specifies the data type of an argument; the data_type parameter can be one of the
following: string (the default), list, boolean, int, float, or one_of_string. This
parameter is optional.

attributes

Specifies additional attributes for an argument. This parameter is optional. The additional
attributes are described in Table 3-1.
Chapter 3: Working With Procedures
Extending Procedures 3-8

Using Tcl With Synopsys Tools Version B-2008.09
define_proc_attributes Command Example
The following procedure adds two numbers and returns the sum:

dc_shell> proc plus {a b} {return [expr $a + $b]}
dc_shell> define_proc_attributes plus \
 -info "Add two numbers" \
 -define_args {
 {a "first addend" a string required} \
 {b "second addend" b string required} \
 {"-verbose" "issue a message" "" boolean optional} }
dc_shell> help -verbose plus
Usage: plus # Add two numbers
 [-verbose] (issue a message)
 a (first addend)
 b (second addend)
dc_shell> plus 5 6
11

Using the parse_proc_arguments Command
The Synopsys parse_proc_arguments command parses the arguments passed to a
procedure that is defined with the define_proc_attributes command.

You use the parse_proc_arguments command within procedures to support argument
validation and to enable the -help option. Typically, parse_proc_arguments is the first
command called within a procedure. You cannot use the parse_proc_arguments command
outside a procedure.

Table 3-1 Additional Argument Attributes

Attribute Description

required Specifies a required argument. You cannot use this attribute with the
optional attribute.

optional Specifies an optional argument. You cannot use this attribute with the
required attribute.

value_help Specifies that valid values for one_of_string arguments be shown
when argument help is shown for a procedure. For data types other
than one_of_string, this attribute is ignored.

values Specifies the listing of allowable values for one_of_string arguments.
This attribute is required if the argument type is one_of_string. If you
use this attribute with other data types, an error is displayed.
Chapter 3: Working With Procedures
Extending Procedures 3-9
Chapter 3: Working With Procedures
Extending Procedures 3-9

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
The syntax is

parse_proc_arguments -args arg_list result_array

-args arg_list

Specifies the list of arguments to be passed to the procedure.

result_array

Specifies the name of the array in which the parsed arguments are to be stored.

When a procedure that uses the parse_proc_arguments command is invoked with the
-help option, parse_proc_arguments prints help information (in the same style as does
the -verbose option of the Synopsys help command) and then causes the calling
procedure to return. If any type of error exists with the arguments (missing required
arguments, invalid value, and so forth), parse_proc_arguments returns an error, and the
procedure terminates.

If you do not specify -help and the specified arguments are valid, the result_array array
will contain each of the argument values subscripted with the argument name. The
argument names are not the names of the arguments in the procedure definition; the
argument names are the names of the arguments as defined with the
define_proc_attributes command.

Example

In Example 3-2, the argHandler procedure shows how the parse_proc_arguments
command is used. The argHandler procedure accepts an optional argument of each type
supported by define_proc_attributes, then prints the options and values received.

Example 3-2 argHandler Procedure

proc argHandler {args} {
 parse_proc_arguments -args $args results
 foreach argname [array names results] {
 echo " $argname = $results($argname)"
 }
}

define_proc_attributes argHandler -info "argument processor" \
 -define_args {
 {-Oos "oos help" AnOos one_of_string {required value_help
 {values {a b}}}}
 {-Int "int help" AnInt int optional}
 {-Float "float help" AFloat float optional}
 {-Bool "bool help" "" boolean optional}
 {-String "string help" AString string optional}
 {-List "list help" AList list optional} }
Chapter 3: Working With Procedures
Extending Procedures 3-10

Using Tcl With Synopsys Tools Version B-2008.09
Invoking the argHandler procedure with the -help option generates the following output:

dc_shell> argHandler -help
Usage: argHandler # argument processor

-Oos AnOos (oos help:
 Values: a, b)
 [-Int AnInt] (int help)
 [-Float AFloat] (float help)
 [-Bool] (bool help)
 [-String AString] (string help)
 [-List AList] (list help)

Invoking the argHandler procedure with an invalid option generates the following output
and causes an error:

dc_shell> argHandler -Int z
Error: value ’z’ for option ’-Int’ not of type ’integer’ (CMD-009)
Error: Required argument ’-Oos’ was not found (CMD-007)

Invoking the argHandler procedure with valid arguments generates the following output:

dc_shell> argHandler -Int 6 -Oos a
 -Oos = a
 -Int = 6

Considerations for Extending Procedures
When using the extended procedure features, keep in mind the following points:

• The define_proc_attributes command does not validate the arguments you define
by using its -define_args argument.

• Whenever possible, use the Tcl variable numbers of arguments feature (see “Variable
Numbers of Arguments” on page 3-5) to facilitate the passing of arguments to the
parse_proc_arguments command.

• If you do not use parse_proc_arguments, procedures cannot respond to the -help
option. However, you can always use the help command. For example,

help procedure_name -verbose
Chapter 3: Working With Procedures
Extending Procedures 3-11
Chapter 3: Working With Procedures
Extending Procedures 3-11

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Displaying Procedure Body and Arguments

This section describes the commands you can use to display the body and the arguments
of a procedure: the Tcl info command and the Synopsys proc_body and proc_args
commands.

You use the body option of the info command to display the body of a procedure and the
args option to display the arguments.

You can use the proc_body command as an alternative to info body and proc_args as an
alternative to info args.

If you define a procedure with the -hide_body attribute (see “-hide_body” in “Using the
define_proc_attributes Command” on page 3-7), you cannot use the info body or
proc_body commands to view the contents of the procedure.

These commands have the following form:

info body procedure_name
info args procedure_name

proc_body procedure_name
proc_args procedure_name
Chapter 3: Working With Procedures
Displaying Procedure Body and Arguments 3-12

4
Working With Collections 4

A collection is a set of design objects such as libraries, ports, and cells. You create, view, and
manipulate collections by using Synopsys commands provided specifically for working with
collections. This chapter describes how to use Synopsys commands in conjunction with Tcl
for working with collections.

This chapter contains the following sections:

• Creating Collections

• Displaying Objects in a Collection

• Selecting Objects From a Collection Using Filter Expressions

• Adding Objects to a Collection

• Removing Objects From a Collection

• Comparing Collections

• Iterating Over a Collection

• Copying Collections

Note:
For more information about design object types, enter man collections, which will open
the Collections_and_Querying man page or see any Synopsys tool user guide.

4-1

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Creating Collections

You create collections with the Synopsys get_* and all_* commands. The following
example creates a collection of all ports in a design:

dc_shell> get_ports

You can create collections that persist throughout a session or only within the scope of a
command. A collection persists if you set the result of a collection command to a variable.
For example,

dc_shell> set myports [get_ports]

When using dc_shell, the result of the collection command is the collection of objects.

Pattern Matching
Most of the commands that create collections allow you to use a list of patterns. The patterns
can contain the following wildcard characters:

For restrictions on pattern matching, see Appendix A, “Tcl Implementation Differences and
Limitations.”

Displaying Objects in a Collection

All commands that create collections implicitly query the collection when the command is
used at the command prompt; however, for more flexibility, you can use the query_objects
command to display objects in a collection. The query_objects command generates output
that is similar to the output of a report command. The query results are formatted as a Tcl
list (for example, {a b c ...}), so that you can directly use the results.

For example, to display all of the ports that start with the string in, enter the following
command:

dc_shell> query_objects [get_ports in*]
{in0 in1 in2}

Wildcard character Description

* Matches any sequence of characters

? Matches any single character
Chapter 4: Working With Collections
Creating Collections 4-2

Using Tcl With Synopsys Tools Version B-2008.09
The query_objects command also allows you to search the design database directly. For
example, the following command returns the same information as the previous
query_objects command:

dc_shell> query_objects -class port in*
{in0 in1 in2}

To control the number of elements displayed, use the -truncate option. If the display is
truncated, you see an ellipsis (...) as the last element. If default truncation occurs, a
message appears showing the total number of elements that would have been displayed.

You can change the default truncation by setting the collection_result_display_limit
variable to a different value; the default is 100. For more information, see the
collection_result_display_limit man page.

You must use the query_objects command to display objects created by one of the
collection commands because collections do not return objects directly. Collection
commands generate a collection handle, which is an identifier that points to the collection
and is used for subsequent access to the collection objects. By contrast, variables return the
actual object rather than a pointer.

In the following example, the echo $collection_of_ports command returns a pointer to
the collection handle, _sel1, rather than the names of the ports created by the set
collection_of_ports command. However, the echo $name_of_ports command returns
the actual port names.

dc_shell> set collection_of_ports [get_ports IN*]
{IN1 IN2 IN3}
dc_shell> set name_of_ports "IN1 IN2 IN3"
dc_shell> echo $collection_of_ports
_sel1
dc_shell> echo $name_of_ports
{IN1 IN2 IN3}

The following example shows that when you use the query_objects command, the tool
returns the names of the ports created by the set collection_of_ports command.

dc_shell> set collection_of_ports [get_ports IN*]
{IN1 IN2 IN3}
dc_shell> set name_of_ports "IN1 IN2 IN3"
dc_shell> query_objects $collection_of_ports
{IN1 IN2 IN3}
Chapter 4: Working With Collections
Displaying Objects in a Collection 4-3
Chapter 4: Working With Collections
Displaying Objects in a Collection 4-3

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Selecting Objects From a Collection Using Filter Expressions

A filter expression is a set of logical expressions describing the constraints you want to place
on a collection. A filter expression compares an attribute name, such as area or direction,
with a value, such as 43 or input, by means of a relational operator.

Attributes are defined for specific objects, such as designs, cells, nets, pins, and so on.
Attributes are either built in to the tool for each object type, such as the area attribute for
designs and the direction attribute for pins, or you can create them by using the Synopsys
define_user_attribute and set_user_attribute commands.

In the following example, the filter expression selects all hierarchical objects whose area
attribute is less than 12 units:

"is_hierarchical==true && area<12"

You can combine relational expressions by using logical AND (AND or &&) or logical OR
(OR or ||). You can group logical expressions with parentheses to enforce order; otherwise
the order is left to right.

When using a filter expression as an argument to a command, you must enclose the entire
filter expression in quotation marks or braces. However, if you use a string value as an
argument in a logical expression, you do not need to enclose the string in quotation marks.
For example,

"is_hierarchical == true && dont_touch == true"

A filter expression can fail to parse due to the following problems:

• Invalid syntax

• Invalid attribute name

• A type mismatch between an attribute and its compare value

Using the -filter Option and the filter_collection Command
Many commands that create collections accept the -filter option. This option specifies a
filter expression. For example, the following command gets cells that have the hierarchical
attribute:

dc_shell> set hc [get_cells -filter is_hierarchical==true]

To select specific objects from a collection, use the -filter option with a collection
command, when available, or use the filter_collection command. Both the -filter
option and the filter_collection command use filter expressions to restrict the resulting
collection. The filter_collection command takes a collection and a filter expression as
Chapter 4: Working With Collections
Selecting Objects From a Collection Using Filter Expressions 4-4

Using Tcl With Synopsys Tools Version B-2008.09
arguments. The result of the filter_collection command is a new collection, or an
empty string if no objects match the criteria.

For example,

dc_shell> filter_collection [get_cells] is_hierarchical==true

Table 4-1 shows the relational operators that you can use in filter expressions.

Adding Objects to a Collection

You use the add_to_collection command to add objects to a collection. The
add_to_collection command creates a new collection that includes the objects in the
original collection, plus the additional objects. You must define a new variable to store the
new collection. For information about working with variables, see “Variables” on page 2-2.

For example, to create a collection of ports that have names starting with I, enter the
following command:

dc_shell> set ports [get_ports I*]

If you want to create a collection containing ports starting with I and add the CLOCK port to
this collection, enter the following command:

dc_shell> set new_ports [add_to_collection $ports [get_ports CLOCK]]

You can add collections only if they have the same object class. For example, you cannot
add a port collection to a cell collection.

Table 4-1 Relational Operators

Syntax Description Supported types

a<b 1 if a is less than b, 0 otherwise numeric, string

a>b 1 if a is greater than b, 0 otherwise numeric, string

a<=b 1 if a is less than or equal to b, 0 otherwise numeric, string

a>=b 1 if a is greater than or equal to b, 0 otherwise numeric, string

a==b 1 if a is equal to b, 0 otherwise numeric, string, Boolean

a!=b 1 if a is not equal to b, 0 otherwise numeric, string, Boolean
Chapter 4: Working With Collections
Adding Objects to a Collection 4-5
Chapter 4: Working With Collections
Adding Objects to a Collection 4-5

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Removing Objects From a Collection

You use the remove_from_collection command to remove objects from a collection. The
remove_from_collection command creates a new collection that includes the objects in
the original collection minus the specified objects. If the operation results in zero elements,
the command returns an empty string. The original collection is not modified.

For example, you can use the following command to create a collection containing all ports
except for CLOCK:

dc_shell> set cPorts [remove_from_collection \
 [all_inputs] CLOCK]
{in1 in2}

You can specify a list of objects or collections to remove. The object class of each element
you specify must be the same as in the original collection. For example, you cannot remove
a port collection from a cell collection.

You can also remove objects from a collection by using a filter expression that limits the
objects in the collection. For more information, see “Selecting Objects From a Collection
Using Filter Expressions” on page 4-4.

Comparing Collections

You use the compare_collections command to compare the contents of two collections. If
the two collections are the same, the compare_collections command returns zero;
otherwise it returns a nonzero value.

For example,

dc_shell> compare_collections [get_cells *] [get_cells *]

Empty collections can be used in the comparison. By default, the order of the objects in each
collection does not matter. You can make the comparison order-dependent by using the
-order_dependent option.
Chapter 4: Working With Collections
Removing Objects From a Collection 4-6

Using Tcl With Synopsys Tools Version B-2008.09
Iterating Over a Collection

To iterate over a collection, use the foreach_in_collection command. This command
can be nested within other control structures, including another foreach_in_collection
command.

During each iteration, the iteration variable is set to a collection of exactly one object. Any
command that accepts a collection accepts the iteration variable. Do not use the
foreach_in_collection command to directly iterate over a collection.

Example 4-1 shows how the foreach_in_collection command is used.

Example 4-1 foreach_in_collection Example Script

dc_shell> foreach_in_collection itr [get_cell *] {
 if {[get_attribute $itr is_hierarchical] == "true"} {
 echo "[get_object_name $itr] is a hierarchical cell"
 }
 }
I_SUB1 is a hierarchical cell
I_SUB2 is a hierarchical cell
I_SUB3 is a hierarchical cell

Copying Collections

The copy_collection command duplicates a collection, resulting in a new collection. The
base collection remains unchanged. Issuing the copy_collection command is an efficient
mechanism for duplicating an existing collection. Copying a collection is different from
multiple references to the same collection.

For example, if you create a collection and save a reference to it in variable collection1,
assigning the value of collection1 to another variable collection2 creates a second
reference to the same collection.

dc_shell> set collection1 [get_cells "U1*"]
{U10 U11 U12 U13 U14 U15}
dc_shell> set collection2 $collection1
{U10 U11 U12 U13 U14 U15}
dc_shell> printvar collection1
collection1 = "_sel2"
dc_shell> printvar collection2
collection2 = "_sel2"

Note that the output of the printvar command shows the same collection handle as the
value of both variables. A collection handle is an identifier that is generated by the
collection command. The collection handle points to the collection and is used for
subsequent access to the collection objects. The previous commands do not copy the
Chapter 4: Working With Collections
Iterating Over a Collection 4-7
Chapter 4: Working With Collections
Iterating Over a Collection 4-7

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
collection; only the copy_collection command creates a new collection that is a duplicate
of the original.

The following command sequence shows the results of copying a collection:

dc_shell> set collection1 [get_cells "U1*"]
{U10 U11 U12 U13 U14 U15}
dc_shell> printvar collection1
collection1 = "_sel4"
dc_shell> set collection2 [copy_collection $collection1]
{U10 U11 U12 U13 U14 U15}
dc_shell> printvar collection2
collection1 = "_sel5"

Extracting Objects From a Collection
The index_collection command creates a collection of one object that is the nth object in
another collection. The objects in a collection are numbers 0 through n-1.

Although collections that result from commands such as get_cells are not really ordered,
each has a predictable, repeatable order: The same command executed n times (such as
get_cells *) creates the same collection.

For example, to extract the first object in a collection,

dc_shell> set c1 [get_cells {u1 u2}]
{u1 u2}
dc_shell> query_objects [index_collection $c1 0]
{u1}
Chapter 4: Working With Collections
Copying Collections 4-8

5
A Tcl Script Example 5

This chapter contains a sample script that demonstrates how to use many of the Tcl and
Synopsys commands and topics covered in previous chapters. The various aspects of the
sample script are described in detail.

The sample script contains the DC_rpt_cell procedure and the define_proc_attributes
command, which is used to extend the attributes of DC_rpt_cell.

This chapter contains the following sections:

• DC_rpt_cell Overview

• DC_rpt_cell Listing and Sample Output

• DC_rpt_cell Details

5-1

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
DC_rpt_cell Overview

The DC_rpt_cell script has two components. The first is the DC_rpt_cell procedure; the
second is the define_proc_attributes command. The define_proc_attributes
command extends the attributes of the DC_rpt_cell procedure.

The DC_rpt_cell procedure lists all cells in a design and reports if a cell has the following
properties:

• Is a black box (unknown)

• Has a don’t touch attribute

• Has a DesignWare attribute

• Is hierarchical

• Is combinational

• Is a test cell

The DC_rpt_cell procedure takes one argument. The argument is treated as an option that
specifies a desired report type. The options are

• -all_cells – Reports one line per cell, and it generates a summary of the cell count.

• -hier_only – Reports only the hierarchical blocks, including DesignWare parts, and it
generates a summary of the cell count.

• -total_only – Displays only a summary of the cell count.

The define_proc_attributes command is placed after the DC_rpt_cell procedure in the
DC_rpt_cell script file. This command is used to provide help information about the
DC_rpt_cell procedure. The help information is used in conjunction with the Synopsys
help command and includes a short description of the DC_rpt_cell procedure and its
options.

A full listing of the DC_rpt_cell script is shown in Example 5-1 starting on page 5-3, and a
sample output from DC_rpt_cell is shown in Example 5-2 on page 5-6.

To use the DC_rpt_cell script, enter or copy it into a text file named DC_rpt_cell.tcl, load it
into the Synopsys shell by using the source command, then load a design database. The
syntax for DC_rpt_cell is

DC_rpt_cell arg
Chapter 5: A Tcl Script Example
DC_rpt_cell Overview 5-2

Using Tcl With Synopsys Tools Version B-2008.09
For example,

dc_shell> source DC_rpt_cell.tcl
dc_shell> read_file -format ddc TLE_mapped.ddc
dc_shell> DC_rpt_cell -total_only

DC_rpt_cell Listing and Sample Output

Example 5-1 shows the full listing of the DC_rpt_cell sample script file.

Example 5-1 DC_rpt_cell.tcl Listing
#Title: DC_rpt_cell.tcl
#
#Description: This Design Compiler Tcl procedure generates a cell
report of a design.
It reports all cells and the following attributes:
b - black box (unknown)
d - has dont_touch attribute
dw - DesignWare part
h - hierarchy
n - noncombinational
t - test cell
#
#Options: -all_cells one line per cell plus summary
-hier_only every hierarchy cell and summary
-total_only generate summary only
#
#Usage: dc_shell> source DC_rpt_cell.tcl
dc_shell> DC_rpt_cell -t
#
proc DC_rpt_cell args {
 suppress_message UID-101

 set option [lindex $args 0]
 if {[string match -a* $option]} {
 echo " "
 echo "Attributes:"
 echo " b - black-box (unknown)"
 echo " d - dont_touch"
 echo " dw - DesignWare"
 echo " h - hier"
 echo " n - noncombo"
 echo " t - test cell"
 echo " "
 echo [format "%-32s %-14s %5s %11s" "Cell" "Reference" "Area" "Attributes"]
 echo "---"
 } elseif {[string match -t* $option]} {
 set option "-total_only"
 echo ""
 set cd [current_design]
 echo "Performing cell count on [get_object $cd] . . ."
 echo " "
 } elseif {[string match -h* $option]} {
 set option "h"; # hierarchical only
Chapter 5: A Tcl Script Example
DC_rpt_cell Listing and Sample Output 5-3
Chapter 5: A Tcl Script Example
DC_rpt_cell Listing and Sample Output 5-3

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
 echo ""
 set cd [current_design]
 echo "Performing hierarchical cell report on [get_object $cd] . . ."
 echo " "
 echo [format "%-36s %-14s %11s" "Cell" "Reference" "Attributes"]
 echo "---"
 } else {
 echo " "
 echo " Message: Option Required"
 echo " Usage: DC_rpt_cell \[-all_cells\] \[-hier_only\] \[-total_only\]"
 echo " "
 return
 }

 # initialize summary vars
 set total_cells 0
 set dt_cells 0
 set hier_cells 0
 set hier_dt_cells 0
 set dw_cells 0
 set seq_cells 0
 set seq_dt_cells 0
 set test_cells 0
 set total_area 0

 # initialize other vars
 set hdt ""
 set tc_atr ""
 set xcell_area 0

 # create a collection of all cell objects
 set all_cells [get_cells -h *]

 foreach_in_collection cell $all_cells {
 incr total_cells

 set cell_name [get_attribute $cell full_name]
 set dt [get_attribute $cell dont_touch]

 if {$dt=="true"} {
 set dt_atr "d"
 incr dt_cells
 } else {
 set dt_atr ""
 }

 set ref_name [get_attribute $cell ref_name]
 set cell_area [get_attribute $cell area]

 if {$cell_area > 0} {
 set xcell_area $cell_area
 } else {
 set cell_area 0
 }

 set t_cell [get_attribute $cell is_a_test_cell]
 if {$t_cell=="true"} {
 set tc_atr "t"
Chapter 5: A Tcl Script Example
DC_rpt_cell Listing and Sample Output 5-4

Using Tcl With Synopsys Tools Version B-2008.09
 incr test_cells
 } else {
 set tc_atr ""
 }
 set hier [get_attribute $cell is_hierarchical]
 set combo [get_attribute $cell is_combinational]
 set seq [get_attribute $cell is_sequential]
 set dwb [get_attribute $cell DesignWare]
 set dw_atr ""

 if {$hier} {
 set attribute "h"
 incr hier_cells
 set hdt [concat $option $hier]
 if {$dt_atr=="d"} {
 incr hier_dt_cells
 }
 if {$dwb=="true"} {
 set dw_atr "dw"
 incr dw_cells
 }
 } elseif {$seq} {
 set attribute "n"
 incr seq_cells
 if {$dt_atr=="d"} {
 incr seq_dt_cells
 }
 set total_area [expr $total_area + $xcell_area]
 } elseif {$combo} {
 set attribute ""
 set total_area [expr $total_area + $xcell_area]
 } else {
 set attribute "b"
 }

 if {[string match -a* $option]} {
 echo [format "%-32s %-14s %5.2f %2s %1s %1s %2s" $cell_name $ref_name \
 $cell_area $attribute $dt_atr $tc_atr $dw_atr]
 } elseif {$hdt=="h true"} {
 echo [format "%-36s %-14s %2s %2s" $cell_name $ref_name $attribute \
 $dt_atr $dw_atr]
 set hdt ""
 }
 } ; # close foreach_in_collection

 echo "---"
 echo [format "%10s Total Cells" $total_cells]
 echo [format "%10s Cells with dont_touch" $dt_cells]
 echo ""
 echo [format "%10s Hierarchical Cells (incl DesignWare)" $hier_cells]
 echo [format "%10s Hierarchical Cells with dont_touch" $hier_dt_cells]
 echo ""
 echo [format "%10s DesignWare Cells" $dw_cells]
 echo ""
 echo [format "%10s Sequential Cells (incl Test Cells)" $seq_cells]
 echo [format "%10s Sequential Cells with dont_touch" $seq_dt_cells]
 echo ""
 echo [format "%10s Test Cells" $test_cells]
Chapter 5: A Tcl Script Example
DC_rpt_cell Listing and Sample Output 5-5
Chapter 5: A Tcl Script Example
DC_rpt_cell Listing and Sample Output 5-5

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
 echo ""
 echo [format "%10.2f Total Cell Area" $total_area]
 echo "---"
 echo ""
 }

 define_proc_attributes DC_rpt_cell \
 -info "Report all cells in the design" \
 -define_args {
 {-a "report every cell and the summary"}
 {-h "report only hierarchy cells and the summary"}
 {-t "report the summary only"} }

Example 5-2 shows sample output from DC_rpt_cell, using the -h (-hier_only) option.

Example 5-2 DC_rpt_cell Sample Output

Current design is ’TLE’.
Performing hierarchical cell report on TLE . . .

Cell Reference Attributes

datapath fast_add8 h
Multiplicand_reg reg8 h
control_unit control h
Op_register super_reg17 h
datapath/CLA_0 CLA_4bit_1 h
datapath/CLA_1 CLA_4bit_0 h
datapath/CLA_0/FA_0 full_adder_7 h
datapath/CLA_0/FA_1 full_adder_6 h
datapath/CLA_0/FA_2 full_adder_5 h
datapath/CLA_0/FA_3 full_adder_4 h
datapath/CLA_1/FA_0 full_adder_3 h
datapath/CLA_1/FA_1 full_adder_2 h
datapath/CLA_1/FA_2 full_adder_1 h
datapath/CLA_1/FA_3 full_adder_0 h

 247 Total Cells
 0 Cells with dont_touch
 14 Hierarchical Cells (incl DesignWare)
 0 Hierarchical Cells with dont_touch
 0 DesignWare Cells
 32 Sequential Cells (incl Test Cells)
 0 Sequential Cells with dont_touch
 0 Test Cells
 663.00 Total Cell Area

Chapter 5: A Tcl Script Example
DC_rpt_cell Listing and Sample Output 5-6

Using Tcl With Synopsys Tools Version B-2008.09
DC_rpt_cell Details

The DC_rpt_cell script is described sequentially in the following sections:

• Defining the Procedure

• Suppressing Warning Messages

• Examining the args Argument

• Initializing Variables

• Creating and Iterating Over a Collection

• Collecting the Report Data

• Formatting the Output

Defining the Procedure
The DC_rpt_cell procedure requires only one argument, so its definition is simple.
Example 5-3 shows how DC_rpt_cell is defined.

Example 5-3 DC_rpt_cell proc Definition

proc DC_rpt_cell args {

 procedure body ...

}

You use the Tcl proc command to define the procedure; DC_rpt_cell names the
procedure, and args is the variable that receives the argument when the procedure is
invoked. The value of args is used later within the body of the procedure, as described in
“Examining the args Argument” on page 5-9.

The Synopsys define_proc_attributes command provides additional (extended)
information about a procedure (see “Using the define_proc_attributes Command” on
page 3-7). For DC_rpt_cell, the define_proc_attributes command is used to specify
extended help information about DC_rpt_cell. This information is used in conjunction with
the Synopsys help command. Example 5-4 show how define_proc_attributes is used
with DC_rpt_cell.
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-7
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-7

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Example 5-4 define_proc_attributes Command

 define_proc_attributes DC_rpt_cell \
 -info "Procedure to report all cells in ..." \
 -define_args {
 {-a "report every cell and the summary"}
 {-h "report only hierarchy cells and the summary"}
 {-t "report the summary only"} }

The additional information consists of a one-line description of DC_rpt_cell and
descriptions of the options it expects. Example 5-5 shows a sample display of help for
DC_rpt_cell (to see argument information with the help command, you use its -verbose
option).

Example 5-5 DC_rpt_cell Help Usage

dc_shell> help -verbose DC_rpt_cell
DC_rpt_cell # Report all cells in the design (v12/2002)
 -a (report every cell and the summary)
 -h (report only hierarchy cells and the summary)
 -t (report the summary only)

Suppressing Warning Messages
The first line within the body of DC_rpt_cell, shown in Example 5-6, is used to suppress
UID-101 warning messages that occur when an attribute-related command does not find a
given attribute.

Example 5-6 suppress_message Command

proc DC_rpt_cell args {
 suppress_message UID-101
 ...

The DC_rpt_cell procedure reports information about specific cell attributes; however,
some of the cells within the design might not have one of these specific attributes. If this
situation occurs repeatedly, a large number of warning messages will be generated and
outputted to the screen, or if you redirect the output to a log file, the log file might become
undesirably large. Because a UID-101 warning message does not affect the meaning of the
report and is likely to occur frequently within DC_rpt_cell, it is being suppressed.

You use the Synopsys suppress_message command to disable the printing of a specific
warning or informational message. For more information, see the suppress_message man
page.
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-8

Using Tcl With Synopsys Tools Version B-2008.09
Examining the args Argument
The section of script shown in Example 5-7 extracts the report type option from args and
uses this value to determine what the report header will look like; furthermore, this section
is used to handle the entry of invalid options.

Example 5-7 Examining args

...
set option [lindex $args 0]
if {[string match -a* $option]} {
 ...
 } elseif {[string match -t* $option]} {
 ...
 } elseif {[string match -h* $option]} {
 ...
 } else {
 ...
 }
...

The argument to DC_rpt_cell is used to specify what type of report to generate. The Tcl
lindex command is used to extract the option from args, and the result is placed into the
option variable. The Tcl string command with its match option is then used to
conditionally determine what the report header will look like.

The report options are -all_cells, -hier_only, or -total_only; however, the values -a,
-h, and -t are all that are required because the wildcard character (*) is used in the string
match command. (For more information, see the string man page.)

The Synopsys echo command is used to output information, and the Tcl format command
is used in conjunction with echo to generate formatted output (see Example 5-8).

Example 5-8 echo and format Commands
 ...
 echo "Performing hierarchical cell report on [get_object $cd] . . ."
 echo " "
 echo [format "%-36s %-14s %11s" "Cell" "Reference" "Attributes"]
 ...

You use the format command to format lines of output in the same manner as the C
sprintf procedure. The use of format within DC_rpt_cell is described in more detail in
“Formatting the Output” on page 5-16.

The Synopsys current_design and get_object commands are used to display the name
of the current design (see Example 5-9).
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-9
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-9

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Example 5-9 current_design and get_object Commands
 ...
 } elseif {[string match -t* $option]} {
 set option "-total_only"
 ...
 set cd [current_design]
 echo "Performing cell count on [get_object $cd] . . ."
 ...
 } elseif {[string match -h* $option]} {
 set option "h"; # hierarchical only
 echo ""
 set cd [current_design]
 echo "Performing hierarchical cell report on [get_object $cd] . . ."
 ...

You use current_design to set the working design; however, if used without arguments,
current_design returns a collection handle to the current working design (see Chapter 4,
“Working With Collections”). This collection handle is then passed to the get_object
command to obtain the name of the current design.

Note how the following line of script (from Example 5-9) is constructed:

set option "h"; # hierarchical only

In Tcl, you can place multiple commands on one line by using a semicolon to separate the
commands. You can use this feature as a way to form inline comments.

The else block (see Example 5-10) handles an invalid option condition. If no option or an
invalid option is specified, the procedure prints out a message that shows proper argument
usage and then exits.

Example 5-10 Invalid Option Message
 ...

 } else {
 echo " "
 echo " Message: Option Required (Version - December 2002)"
 echo " Usage: DC_rpt_cell \[-all_cells\] \[-hier_only\] \[-total_only\]"
 echo " "
 return
 }
 ...
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-10

Using Tcl With Synopsys Tools Version B-2008.09
Initializing Variables
The section of script shown in Example 5-11 uses the Tcl set command to initialize some of
the variables used by DC_rpt_cell.

Example 5-11 Variable Initialization

 ...
 # initialize summary vars
 set total_cells 0
 set dt_cells 0
 set hier_cells 0
 set hier_dt_cells 0
 set dw_cells 0
 set seq_cells 0
 set seq_dt_cells 0
 set test_cells 0
 set total_area 0

 # initialize other vars
 set hdt ""
 set tc_atr ""
 set xcell_area 0
 ...

The values for these particular variables are expected to change within the
foreach_in_collection loop and within if blocks that might not be executed, so these
variables are set to 0 here to prevent a “no such variable error” should the loop or if blocks
not be executed.
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-11
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-11

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Creating and Iterating Over a Collection
A collection is used to hold the list of all cells in the design. Then, a
foreach_in_collection loop is used to obtain the attribute information about each cell
and to cumulate results for the summary section of the report. (Collections and the
foreach_in_collection command are covered in more detail in Chapter 4, “Working With
Collections.”) Example 5-12 shows the command used to create the collection and the
foreach_in_collection loop.

Example 5-12 Collection Iteration

...
set all_cells [get_cells -h *]

foreach_in_collection cell $all_cells {

 ...

 }; # close foreach_in_collection
...

The Synopsys get_cells command creates a collection of cells from the current design
relative to the current instance. The -h option tells get_cells to search for cells level by
level relative to the current instance. The wildcard character (*) is used as the pattern name
to match—in this case, all cell names.

The result of get_cells is a collection handle that is placed into all_cells. The collection
handle is then used by the foreach_in_collection command to iterate over all the objects
in the collection. For each iteration, an object is placed into cell; then cell is used in the
body of the foreach_in_collection block to derive information about that object (cell
name, reference name, cell area, and cell attributes).
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-12

Using Tcl With Synopsys Tools Version B-2008.09
Collecting the Report Data
The report data is collected into a set of variables by the foreach_in_collection loop
shown in Example 5-12. Cell information is obtained from the design database by the
Synopsys get_attribute command, and the summary data is cumulated inside of if
blocks at various locations within the foreach_in_collection loop. Table 5-1 lists the
variables used for the report.

Table 5-1 DC_rpt_cell Report Variables

Variable Description

Variables used in main body of the report

cell_name Cell name

ref_name Reference name

cell_area Cell area

attribute Cell’s attribute

dt_atr Don’t touch attribute

tc_atr Test cell attribute

dw_atr DesignWare attribute

Variables used in summary section of the report

total_cell Total number of cells

dont_touch Number of cells with don’t touch attribute

hier_cells Number of hierarchical cells (includes DesignWare cells)

hier_dt_cells Number of hierarchical cells with don’t touch attribute

dw_cells Number of DesignWare cells

seq_cells Number of sequential cells (includes test cells)

seq_dt_cells Number of sequential cells with don’t touch attribute

test_cells Number of test cells

total_area Total cell area
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-13
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-13

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
The body of the foreach_in_collection loop looks complex, but the pseudo code shown
in Example 5-13 shows how straightforward it really is.

Example 5-13 Body of foreach_in_collection Loop

...
foreach_in_collection cell $all_cells {
 - Cumulate total cell count
 - Get cell name
 - Collect don’t touch attribute information
 - Get reference name of cell
 - Get cell area
 - Collect test cell attribute information
 - Collect hierarchical attribute information
 - Collect combinational attribute information
 - Collect sequential attribute information
 - Collect DesignWare attribute information
 - Cumulate total area
 - Output one line of cell information
 - Return to top of loop and process next cell object
}; # close foreach_in_collection
...

You obtain cell attributes from the design database by using the Synopsys get_attribute
command, as shown in Example 5-14.

Example 5-14 Obtaining Cell Attributes

...
set dt [get_attribute $cell dont_touch]
...
set ref_name [get_attribute $cell ref_name]
set cell_area [get_attribute $cell area]
...
set t_cell [get_attribute $cell is_a_test_cell]
...
set hier [get_attribute $cell is_hierarchical]
set combo [get_attribute $cell is_combinational]
set seq [get_attribute $cell is_sequential]
set dwb [get_attribute $cell DesignWare]
...

Attributes are properties assigned to design objects, and they range in values. Some are
predefined values, like dont_touch; others are user-defined, while still others can be logical
in nature and have values such as true or false. You can find detailed information about
object properties in the attributes man pages.

The if blocks are used to determine whether the cell has one or more of the properties:
don’t touch, test cell, hierarchical, DesignWare, sequential, or combinational. Along the way,
the totals for the summary section of the report are cumulated. Example 5-15 shows a
sample if block.
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-14

Using Tcl With Synopsys Tools Version B-2008.09
Example 5-15 if Block Example

...
set dt [get_attribute $cell dont_touch]

if {$dt=="true"} {
 set dt_atr "d"
 incr dt_cells
} else {
 set dt_atr ""
}
...

This if block determines whether the cell has the dont_touch attribute, and if so, it sets the
don’t touch attribute variable dt_atr to d and increments the count of don’t touch cells
(dt_cells). If the cell does not have the dont_touch attribute, the dt_atr variable is set to
null. The other if blocks in the body of the foreach_in_collection loop work in a similar
way.

One line of cell information is outputted at the end of the foreach_in_collection loop.
The script that handles this step is shown in Example 5-16.

Example 5-16 Cell Information Output

if {[string match -a* $option]} {
 echo [format "%-32s %-14s %5.2f %2s %1s %1s %2s" \
 $cell_name $ref_name $cell_area $attribute $dt_atr $tc_atr $dw_atr]
} elseif {$hdt=="h true"} {
 echo [format "%-36s %-14s %2s %2s" \
 $cell_name $ref_name $attribute $dt_atr $dw_atr]
 ...
}

There are two possible formats for the line of output; an if block is used to handle the two
possibilities. The line of output is formatted by the format command. How the format
command is used by DC_rpt_cell is explained in the next section.

After a line of cell information is outputted, the next cell object is processed.
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-15
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-15

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Formatting the Output
This section provides an overview of the Tcl format command as it is used by
DC_rpt_cell. The options to the format command are extensive; see the format man
page for a complete description.

Example 5-17 shows sample output from DC_rpt_cell.

Example 5-17 DC_rpt_cell Sample Output

Current design is ’TLE’.
Performing hierarchical cell report on TLE . . .

Cell Reference Attributes
--
datapath fast_add8 h
Multiplicand_reg reg8 h

...

datapath/CLA_1/FA_2 full_adder_1 h
--
 247 Total Cells
 0 Cells with dont_touch

...

 663.00 Total Cell Area
--

Each line of output is generated by the Synopsys echo command. Formatted output is
handled by the format command in conjunction with the echo command.

The basic form of the format command is

format format_string arg_list

The format_string parameter contains text and conversion specifiers. The arg_list
parameter contains one or more variables that are to be substituted into the conversion
specifiers. For example, the following script is used in the summary section of the
DC_rpt_cell report:

echo [format "%10s Total Cells" $total_cells]

In this example, the value of total_cells is substituted into the conversion specifier, %10s,
and is formatted according to the conversion specifier. In this case, the total_cells value
is converted into a text string that is 10 characters wide.
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-16

Using Tcl With Synopsys Tools Version B-2008.09
There is a one-to-one correspondence between conversion specifiers and the variables
placed in the argument list. For example,

echo [format "%-32s %-14s %5.2f %2s %1s %1s %2s" \
 $cell_name $ref_name $cell_area $attribute $dt_atr $tc_atr $dw_atr]

In this example, the list of variables is paired with each of the format specifiers.

The components of the conversion specifier can be used to specify conversion properties
such as data type, minimum field width, precision, and field justification. For example, %5.2f
specifies conversion of a floating point number to a text string that has five characters to left
of the decimal point and two characters to the right.
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-17
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-17

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Chapter 5: A Tcl Script Example
DC_rpt_cell Details 5-18

A
Tcl Implementation Differences and
Limitations A

This appendix describes differences in and limitations to the Synopsys implementation of
Tcl commands.

This appendix contains the following sections:

• Ways of Identifying Tcl Commands

• Tcl Command Variations

• Command Substitution Exception

• Milkyway Environment Tcl Usage

A-1

Using Tcl With Synopsys Tools B-2008.09Using Tcl With Synopsys Tools Version B-2008.09
Ways of Identifying Tcl Commands

Tcl commands that do not vary from their base implementations are referred to as built-in
commands by the Synopsys help command and as Tcl built-in commands by the Synopsys
man pages. Tcl commands that vary from their base implementation are referred to as
Synopsys commands by the help command and the Synopsys man pages.

Tcl Command Variations

The following Tcl commands vary from their base implementation:

• exit – Returns additional session information.

• history – Supports additional arguments.

• rename – Cannot be used on application commands or permanent procedures.

• source – Supports additional arguments.

For a complete description of these commands, see the Synopsys man pages.

Command Substitution Exception

Synopsys tools make one exception to the use of square brackets to indicate command
nesting—you can use square brackets to indicate bus references. Synopsys tools accept a
string, such as data[63], as a name rather than as the word data followed by the result of the
command 63.

Milkyway Environment Tcl Usage

The Milkyway Environment tool uses Tcl equivalents for Scheme commands. Although
these commands provide many Tcl capabilities, they have some limitations, such as not
supporting collections.
Chapter A: Tcl Implementation Differences and Limitations
Ways of Identifying Tcl Commands A-2

Index

A
access mode 2-18
access_mode argument 2-18
add_to_collection command 4-5
all_cells command 5-12
append command 2-2
args argument 3-5
arguments

access_mode 2-18
args 3-5
attributes for 3-8
defaults for 3-4
specifying in procedures 3-2
variable number 3-5

array command 2-4
arrays

associative 2-9
specifying 2-9
using with procedures 3-5

B
body, displaying 3-12
break command 2-12, 2-15
built-in commands, see commands, Tcl

C
cd command 2-16
close command 2-18
collection_result_display_limit variable 4-3
collections

adding objects 4-5
comparing 4-6
copying 4-7
creating 4-2
displaying objects 4-2
duplicating 4-7
extracting objects 4-8
filter expressions 4-4
iterating over 4-7, 5-12
removing objects 4-6
removing objects from 4-6
selecting objects from 4-4
working with 4-1

commands
abbreviating 1-4
arguments 1-4
basic usage 1-4
case sensitivity 1-5
continuation 1-4
control flow 2-12
help 1-7
listing and reusing 1-6
parsing 1-10
IN-1
IN-1

Using Tcl With Synopsys Tools Version B-2008.09
printvar 4-7
status 1-8
substitution 1-10
syntax 1-4
terminating 1-4

commands, built-in, see commands, Tcl
commands, Synopsys

add_to_collection 4-5
all_cells 5-12
compare_collections 4-6
copy_collection 4-7
create_power_rings 1-2
current_design 5-9
define_proc_attributes 3-6, 3-7, 3-9, 5-1,

5-2, 5-7
echo 1-9, 5-9
filter_expression 4-4
foreach_in_collection 1-2, 4-7, 5-11
get_attribute 5-13
get_cells 5-12
get_object 5-9
get_ports 4-2
getenv 2-4
help 1-7
history 1-6
index_collection 4-8
man 1-8
parse_proc_arguments 3-9
printvar 1-5
proc_args 3-12
proc_body 3-12
query_objects 1-8, 4-2
redirect 1-8
remove_from_collection 4-6
source 1-4, 2-5, 5-2
suppress_message 5-8

commands, Tcl
append 2-2
array 2-4
break 2-12, 2-15
cd 2-16
close 2-18

concat 2-9
continue 2-12, 2-15
eof 2-20
expr 2-10
file 2-17

command options 2-17
flush 2-18
for 2-12, 2-14
foreach 2-12, 2-14
format 5-9, 5-16
gets 2-19
glob 2-17
global 3-3
if 2-12, 5-15
incr 1-8
info 2-2
join 2-9
lappend 2-9
lindex 2-9
linsert 2-9
list 2-8, 2-9
llength 2-9
lrange 2-9
lreplace 2-9
lsearch 2-9
lsort 2-9
lsplit 2-9
open 2-18
proc 3-2, 5-7
puts 1-9, 2-19
pwd 2-16
return 3-2
seek 2-20
set 1-4, 1-8, 1-11, 2-2, 2-3, 2-5, 2-10, 4-5,

4-6, 5-11
string 2-6, 5-9
switch 2-12, 2-15
table of commands 1-2
tell 2-20
upvar 3-3
while 2-12, 2-13

comments 2-5, 5-10
IN-2
Index IN-2

Using Tcl With Synopsys Tools Version B-2008.09
compare_collections command 4-6
comparing collections 4-6
concat command 2-9
continue command 2-12, 2-15
control flow 2-12
conventions for documentation xi
copy_collection command 4-7
copying collections 4-7
create_power_rings command 1-2
creating collections 4-2
current_design command 5-9
customer support xii

D
data types, Tcl 2-6

arrays 2-9
DC_rpt_cell

listing 5-3
procedure 5-1, 5-2
sample output 5-6

define_proc_attributes command 3-6, 3-7, 3-9,
5-1, 5-2, 5-7

displaying objects 4-2
dont_touch attribute 5-15
duplicating collections 4-7

E
echo command 1-9, 1-11, 2-3, 5-9
env variable 2-4
eof command 2-20
expr command 1-11, 2-3, 2-10
expressions 2-10
extracting objects from collections 4-8

F
file 2-17

access 2-18, 2-20

basic commands 2-17
command 2-17
command options 2-17

filter expressions 4-4
filter_expression command 4-4
flush command 2-18
for command 2-12, 2-14
foreach command 2-12, 2-14
foreach_in_collection command 4-7, 5-11
format command 5-9, 5-16
formatting output 5-15

G
get_attribute command 5-13
get_cells command 5-12
get_object command 5-9
get_ports command 4-2
getenv command 2-4
gets command 2-19
glob command 2-17
global command 3-3

H
help command 3-7, 3-10
help, getting 1-7
history command 1-6

I
if command 2-12, 5-15
incr command 1-8, 2-2
index_collection command 4-8
info args command 3-12
info body command 3-12
info exist command 2-3
info vars command 2-3
IN-3
Index IN-3

Using Tcl With Synopsys Tools Version B-2008.09
iterating
over collections 4-7, 5-12
over lists 2-14

J
join command 2-9

L
lappend command 2-9
lindex command 2-8, 2-9
linsert command 2-9
list command 2-8, 2-9
list commands, table of 2-9
lists 2-9

compound 2-8
nested 2-8
specifying 2-8

llength command 2-9
loops

for 2-14
foreach 2-14
terminating 2-15
while 2-13

lrange command 2-9
lreplace command 2-9
lsearch command 2-9
lsort command 2-9

M
man command 1-8

N
numeric precision 2-3

O
objects

adding to collections 4-5
displaying 4-2
extracting from collections 4-8

open command 2-18
operator precedence 2-11

P
parse_proc_arguments command 3-6, 3-7,

3-9
parsing arguments 3-9
pattern matching 4-2
precision 2-3
printvar command 4-7
proc command 3-2, 5-7
proc_args command 3-12
proc_body command 3-12
procedure 3-12

argument default values 3-4
arguments 3-4
changing aspects of 3-7
command group 3-7
considerations 3-6, 3-11
creating 3-2
extensions 3-6
hiding contents 3-7
prevent modification 3-8

programming default values 3-4
puts command 1-9, 2-19
pwd command 2-16

Q
query_objects command 1-8, 4-2
quoting

rigid 1-11
weak 1-11
IN-4
Index IN-4

Using Tcl With Synopsys Tools Version B-2008.09
R
redirecting output 2-5
relational operators 4-5
remove_from_collection command 4-6
removing objects from collections 4-6
return command 3-2

S
scope 3-3
scripts 2-4

sample 5-1
search_path variable 2-5
seek command 2-20
selecting objects from collections 4-4
set command 1-4, 1-8, 1-11, 2-2, 2-3, 2-5,

2-10, 4-5, 4-6, 5-11
sh_command_abbrev_mode variable 1-5, 3-8
sh_new_variable_message 2-5
sh_source_uses_search_path variable 2-5
SolvNet

accessing xii
documentation x

source 2-5
source command 2-5, 5-2
special characters 1-12

table of 1-12
split command 2-9
string command 2-6, 2-7, 5-9
string commands, table of 2-7
strings, specifying 2-6
substitution

blackslash 1-11
command 1-10
disabling 1-11
variable 1-10

supported Tcl commands, table of 1-2
suppress_message command 5-8

switch command 2-12, 2-15

T
Tcl data types 2-6

arrays 2-9
list 2-8
string 2-6

tell command 2-20
terminating a loop 2-15

U
unset command 2-2
upvar command 3-3

V
variable 3-5

env 2-4
initializing 5-11
nonscalar 3-3
precision 2-3
predefined 2-4
scope 3-3
simple 2-2
substitution 2-3
types 2-2

variables, Synopsys
collection_result_display_limit 4-3
search_path 2-5
sh_command_abbrev_mode 1-5, 3-8
sh_source_uses_search_path 2-5

W
warning message, suppressing 5-8
while command 2-12, 2-13
wildcard characters 1-5, 4-2
IN-5
Index IN-5

	Preface
	Getting Started
	Tcl and Synopsys Tools
	Entering Commands
	Basic Command Usage
	Abbreviating Commands and Options
	Using Wildcard Characters
	Case Sensitivity

	Listing and Rerunning Previously Entered Commands

	Getting Help on Commands
	Using the help Command
	Using the man Command

	Command Status
	Using the echo and puts Commands to Output Data
	Command Parsing
	Substitution
	Quoting
	Special Characters

	Tcl Basics
	Variables
	Numeric Variable Precision
	Variable Substitution
	Predefined Variables

	Scripts
	Creating Comments
	Loading and Running a Script File
	Redirecting Script Output
	Sample Script File

	Data Types
	Strings
	Lists
	Arrays

	Expressions
	Control Flow
	Using the if Command
	Using the while Command
	Using the for Command
	Using the foreach Command
	Using the break and continue Commands
	Using the switch Command

	Basic File Commands
	cd and pwd
	file and glob
	open, close, and flush
	gets and puts
	Nonsequential File Access

	Working With Procedures
	Creating Procedures
	Variable Scope
	Argument Defaults
	Variable Numbers of Arguments
	Using Arrays With Procedures
	General Considerations for Using Procedures

	Extending Procedures
	Using the define_proc_attributes Command
	define_proc_attributes Command Example

	Using the parse_proc_arguments Command
	Considerations for Extending Procedures

	Displaying Procedure Body and Arguments

	Working With Collections
	Creating Collections
	Pattern Matching

	Displaying Objects in a Collection
	Selecting Objects From a Collection Using Filter Expressions
	Using the -filter Option and the filter_collection Command

	Adding Objects to a Collection
	Removing Objects From a Collection
	Comparing Collections
	Iterating Over a Collection
	Copying Collections
	Extracting Objects From a Collection

	A Tcl Script Example
	DC_rpt_cell Overview
	DC_rpt_cell Listing and Sample Output
	DC_rpt_cell Details
	Defining the Procedure
	Suppressing Warning Messages
	Examining the args Argument
	Initializing Variables
	Creating and Iterating Over a Collection
	Collecting the Report Data
	Formatting the Output

	Tcl Implementation Differences and Limitations
	Ways of Identifying Tcl Commands
	Tcl Command Variations
	Command Substitution Exception
	Milkyway Environment Tcl Usage

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

