
1

DSP Mini-Project:
An Automatic Speaker Recognition System

http://www.ifp.uiuc.edu/~minhdo/teaching/speaker_recognition

1 Overview

Speaker recognition is the process of automatically recognizing who is speaking on

the basis of individual information included in speech waves. This technique makes it

possible to use the speaker's voice to verify their identity and control access to services

such as voice dialing, banking by telephone, telephone shopping, database access

services, information services, voice mail, security control for confidential information

areas, and remote access to computers.

This document describes how to build a simple, yet complete and representative

automatic speaker recognition system. Such a speaker recognition system has potential

in many security applications. For example, users have to speak a PIN (Personal

Identification Number) in order to gain access to the laboratory door, or users have to

speak their credit card number over the telephone line to verify their identity. By

checking the voice characteristics of the input utterance, using an automatic speaker

recognition system similar to the one that we will describe, the system is able to add an

extra level of security.

2 Principles of Speaker Recognition

Speaker recognition can be classified into identification and verification. Speaker

identification is the process of determining which registered speaker provides a given

utterance. Speaker verification, on the other hand, is the process of accepting or rejecting

the identity claim of a speaker. Figure 1 shows the basic structures of speaker

identification and verification systems. The system that we will describe is classified as

text-independent speaker identification system since its task is to identify the person who

speaks regardless of what is saying.

At the highest level, all speaker recognition systems contain two main modules (refer

to Figure 1): feature extraction and feature matching. Feature extraction is the process

that extracts a small amount of data from the voice signal that can later be used to

represent each speaker. Feature matching involves the actual procedure to identify the

unknown speaker by comparing extracted features from his/her voice input with the ones

from a set of known speakers. We will discuss each module in detail in later sections.

2

(a) Speaker identification

(b) Speaker verification

Figure 1. Basic structures of speaker recognition systems

All speaker recognition systems have to serve two distinguished phases. The first one

is referred to the enrolment or training phase, while the second one is referred to as the

operational or testing phase. In the training phase, each registered speaker has to provide

samples of their speech so that the system can build or train a reference model for that

speaker. In case of speaker verification systems, in addition, a speaker-specific threshold

is also computed from the training samples. In the testing phase, the input speech is

matched with stored reference model(s) and a recognition decision is made.

Speaker recognition is a difficult task. Automatic speaker recognition works based

on the premise that a person‟s speech exhibits characteristics that are unique to the

speaker. However this task has been challenged by the highly variant of input speech

signals. The principle source of variance is the speaker himself/herself. Speech signals

in training and testing sessions can be greatly different due to many facts such as people

Input

speech

Feature

extraction

Reference

model

(Speaker #1)

Similarity

Reference

model

(Speaker #N)

Similarity

Maximum

selection

Identification

result

(Speaker ID)

Reference

model

(Speaker #M)

Similarity
Input

speech

Feature

extraction

Verification

result

(Accept/Reject)
Decision

ThresholdSpeaker ID

(#M)

3

voice change with time, health conditions (e.g. the speaker has a cold), speaking rates,

and so on. There are also other factors, beyond speaker variability, that present a

challenge to speaker recognition technology. Examples of these are acoustical noise and

variations in recording environments (e.g. speaker uses different telephone handsets).

3 Speech Feature Extraction

3.1 Introduction

The purpose of this module is to convert the speech waveform, using digital signal

processing (DSP) tools, to a set of features (at a considerably lower information rate) for

further analysis. This is often referred as the signal-processing front end.

The speech signal is a slowly timed varying signal (it is called quasi-stationary). An

example of speech signal is shown in Figure 2. When examined over a sufficiently short

period of time (between 5 and 100 msec), its characteristics are fairly stationary.

However, over long periods of time (on the order of 1/5 seconds or more) the signal

characteristic change to reflect the different speech sounds being spoken. Therefore,

short-time spectral analysis is the most common way to characterize the speech signal.

Figure 2. Example of speech signal

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (second)

4

A wide range of possibilities exist for parametrically representing the speech signal

for the speaker recognition task, such as Linear Prediction Coding (LPC), Mel-Frequency

Cepstrum Coefficients (MFCC), and others. MFCC is perhaps the best known and most

popular, and will be described in this paper.

MFCC‟s are based on the known variation of the human ear‟s critical bandwidths

with frequency, filters spaced linearly at low frequencies and logarithmically at high

frequencies have been used to capture the phonetically important characteristics of

speech. This is expressed in the mel-frequency scale, which is linear frequency spacing

below 1000 Hz and a logarithmic spacing above 1000 Hz. The process of computing

MFCCs is described in more detail next.

3.2 Mel-frequency cepstrum coefficients processor

A block diagram of the structure of an MFCC processor is given in Figure 3. The

speech input is typically recorded at a sampling rate above 10000 Hz. This sampling

frequency was chosen to minimize the effects of aliasing in the analog-to-digital

conversion. These sampled signals can capture all frequencies up to 5 kHz, which cover

most energy of sounds that are generated by humans. As been discussed previously, the

main purpose of the MFCC processor is to mimic the behavior of the human ears. In

addition, rather than the speech waveforms themselves, MFFC‟s are shown to be less

susceptible to mentioned variations.

Figure 3. Block diagram of the MFCC processor

3.2.1 Frame Blocking

In this step the continuous speech signal is blocked into frames of N samples, with

adjacent frames being separated by M (M < N). The first frame consists of the first N

samples. The second frame begins M samples after the first frame, and overlaps it by N -

mel

cepstrum

mel

spectrum

framecontinuous

speech

Frame

Blocking

Windowing FFT spectrum

Mel-frequency

Wrapping
Cepstrum

5

M samples and so on. This process continues until all the speech is accounted for within

one or more frames. Typical values for N and M are N = 256 (which is equivalent to ~ 30

msec windowing and facilitate the fast radix-2 FFT) and M = 100.

3.2.2 Windowing

The next step in the processing is to window each individual frame so as to minimize

the signal discontinuities at the beginning and end of each frame. The concept here is to

minimize the spectral distortion by using the window to taper the signal to zero at the

beginning and end of each frame. If we define the window as 10),( Nnnw , where

N is the number of samples in each frame, then the result of windowing is the signal

10),()()( Nnnwnxny ll

Typically the Hamming window is used, which has the form:

10,
1

2
cos46.054.0)(









 Nn

N

n
nw



3.2.3 Fast Fourier Transform (FFT)

The next processing step is the Fast Fourier Transform, which converts each frame of

N samples from the time domain into the frequency domain. The FFT is a fast algorithm

to implement the Discrete Fourier Transform (DFT), which is defined on the set of N

samples {xn}, as follow:






 
1

0

/2 1,...,2,1,0,
N

n

Nknj

nk NkexX 

In general Xk‟s are complex numbers and we only consider their absolute values

(frequency magnitudes). The resulting sequence {Xk} is interpreted as follow: positive

frequencies 2/0 sFf correspond to values 12/0  Nn , while negative

frequencies 02/  fFs correspond to 112/  NnN . Here, Fs denotes the

sampling frequency.

The result after this step is often referred to as spectrum or period-o-gram.

3.2.4 Mel-frequency wrapping

As mentioned above, psychophysical studies have shown that human perception of

the frequency contents of sounds for speech signals does not follow a linear scale. Thus

6

for each tone with an actual frequency, f, measured in Hz, a subjective pitch is measured

on a scale called the „mel‟ scale. The mel-frequency scale is a linear frequency spacing

below 1000 Hz and a logarithmic spacing above 1000 Hz.

Figure4. An example of mel-spaced filter bank

One approach to simulating the subjective spectrum is to use a filter bank, spaced

uniformly on the mel-scale (see Figure 4). That filter bank has a triangular band pass

frequency response, and the spacing as well as the bandwidth is determined by a constant

mel frequency interval. The number of mel spectrum coefficients, K, is typically chosen

as 20. Note that this filter bank is applied in the frequency domain, thus it simply

amounts to applying the triangle-shape windows as in the Figure 4 to the spectrum. A

useful way of thinking about this mel-wrapping filter bank is to view each filter as a

histogram bin (where bins have overlap) in the frequency domain.

0 1000 2000 3000 4000 5000 6000 7000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Mel-spaced filterbank

Frequency (Hz)

7

3.2.5 Cepstrum

In this final step, we convert the log mel spectrum back to time. The result is called

the mel frequency cepstrum coefficients (MFCC). The cepstral representation of the

speech spectrum provides a good representation of the local spectral properties of the

signal for the given frame analysis. Because the Mel spectrum coefficients (and so their

logarithm) are real numbers, we can convert them to the time domain using the Discrete

Cosine Transform (DCT). Therefore if we denote those Mel power spectrum coefficients

that are the result of the last step are 1,...,2,0,
~
0  KkS , we can calculate the MFCC's,

,~
nc as

Note that we exclude the first component, ,~
0c from the DCT since it represents the

mean value of the input signal, which carried little speaker specific information.

3.3 Summary

By applying the procedure described above, for each speech frame of around 30msec

with overlap, a set of mel-frequency cepstrum coefficients is computed. These are result

of a cosine transform of the logarithm of the short-term power spectrum expressed on a

mel-frequency scale. This set of coefficients is called an acoustic vector. Therefore each

input utterance is transformed into a sequence of acoustic vectors. In the next section we

will see how those acoustic vectors can be used to represent and recognize the voice

characteristic of the speaker.

4 Feature Matching

4.1 Overview

The problem of speaker recognition belongs to a much broader topic in scientific and

engineering so called pattern recognition. The goal of pattern recognition is to classify

objects of interest into one of a number of categories or classes. The objects of interest

are generically called patterns and in our case are sequences of acoustic vectors that are

extracted from an input speech using the techniques described in the previous section.

The classes here refer to individual speakers. Since the classification procedure in our

case is applied on extracted features, it can be also referred to as feature matching.

Furthermore, if there exists some set of patterns that the individual classes of which

are already known, then one has a problem in supervised pattern recognition. These

K-1 n
K

k n S c
K

k
k n

,..., 1 , 0 ,
2

1
cos)

~
(Log ~

1






















8

patterns comprise the training set and are used to derive a classification algorithm. The

remaining patterns are then used to test the classification algorithm; these patterns are

collectively referred to as the test set. If the correct classes of the individual patterns in

the test set are also known, then one can evaluate the performance of the algorithm.

The state-of-the-art in feature matching techniques used in speaker recognition

include Dynamic Time Warping (DTW), Hidden Markov Modeling (HMM), and Vector

Quantization (VQ). In this project, the VQ approach will be used, due to ease of

implementation and high accuracy. VQ is a process of mapping vectors from a large

vector space to a finite number of regions in that space. Each region is called a cluster

and can be represented by its center called a codeword. The collection of all codewords

is called a codebook.

Figure 5 shows a conceptual diagram to illustrate this recognition process. In the

figure, only two speakers and two dimensions of the acoustic space are shown. The

circles refer to the acoustic vectors from the speaker 1 while the triangles are from the

speaker 2. In the training phase, using the clustering algorithm described in Section 4.2,

a speaker-specific VQ codebook is generated for each known speaker by clustering

his/her training acoustic vectors. The result codewords (centroids) are shown in Figure 5

by black circles and black triangles for speaker 1 and 2, respectively. The distance from

a vector to the closest codeword of a codebook is called a VQ-distortion. In the

recognition phase, an input utterance of an unknown voice is “vector-quantized” using

each trained codebook and the total VQ distortion is computed. The speaker

corresponding to the VQ codebook with smallest total distortion is identified as the

speaker of the input utterance.

Speaker 1

Speaker 1
centroid
sample

Speaker 2
centroid
sample

Speaker 2

VQ distortion

Figure 5. Conceptual diagram illustrating vector quantization codebook formation.

One speaker can be discriminated from another based of the location of centroids.

(Adapted from Song et al., 1987)

9

4.2 Clustering the Training Vectors

After the enrolment session, the acoustic vectors extracted from input speech of each

speaker provide a set of training vectors for that speaker. As described above, the next

important step is to build a speaker-specific VQ codebook for each speaker using those

training vectors. There is a well-know algorithm, namely LBG algorithm [Linde, Buzo

and Gray, 1980], for clustering a set of L training vectors into a set of M codebook

vectors. The algorithm is formally implemented by the following recursive procedure:

1. Design a 1-vector codebook; this is the centroid of the entire set of training vectors

(hence, no iteration is required here).

2. Double the size of the codebook by splitting each current codebook yn according to

the rule

)1( nn yy

)1( nn yy

where n varies from 1 to the current size of the codebook, and  is a splitting

parameter (we choose  =0.01).

3. Nearest-Neighbor Search: for each training vector, find the codeword in the current

codebook that is closest (in terms of similarity measurement), and assign that vector

to the corresponding cell (associated with the closest codeword).

4. Centroid Update: update the codeword in each cell using the centroid of the training

vectors assigned to that cell.

5. Iteration 1: repeat steps 3 and 4 until the average distance falls below a preset

threshold

6. Iteration 2: repeat steps 2, 3 and 4 until a codebook size of M is designed.

Intuitively, the LBG algorithm designs an M-vector codebook in stages. It starts first

by designing a 1-vector codebook, then uses a splitting technique on the codewords to

initialize the search for a 2-vector codebook, and continues the splitting process until the

desired M-vector codebook is obtained.

Figure 6 shows, in a flow diagram, the detailed steps of the LBG algorithm. “Cluster

vectors” is the nearest-neighbor search procedure which assigns each training vector to a

cluster associated with the closest codeword. “Find centroids” is the centroid update

procedure. “Compute D (distortion)” sums the distances of all training vectors in the

nearest-neighbor search so as to determine whether the procedure has converged.

10

Find
centroid

Split each
centroid

Cluster
vectors

Find
centroids

Compute D
(distortion)




D

D'D

Stop

D’ = D

m = 2*m

No

Yes

Yes

No
m < M

Figure 6. Flow diagram of the LBG algorithm (Adapted from Rabiner and Juang, 1993)

5 Project

As stated before, in this project we will experiment with the building and testing of an

automatic speaker recognition system. In order to build such a system, one have to go

through the steps that were described in previous sections. The most convenient

platform for this is the Matlab environment since many of the above tasks were already

implemented in Matlab. The project Web page given at the beginning provides a test

database and several helper functions to ease the development process. We supplied you

with two utility functions: melfb and disteu; and two main functions: train and

test. Download all of these files from the project Web page into your working folder.

The first two files can be treated as a black box, but the later two needs to be thoroughly

understood. In fact, your tasks are to write two missing functions: mfcc and vqlbg,

which will be called from the given main functions. In order to accomplish that, follow

each step in this section carefully and check your understanding by answering all the

questions.

11

5.1 Speech Data

Down load the ZIP file of the speech database from the project Web page. After

unzipping the file correctly, you will find two folders, TRAIN and TEST, each contains 8

files, named: S1.WAV, S2.WAV, …, S8.WAV; each is labeled after the ID of the

speaker. These files were recorded in Microsoft WAV format. In Windows systems, you

can listen to the recorded sounds by double clicking into the files.

Our goal is to train a voice model (or more specific, a VQ codebook in the MFCC

vector space) for each speaker S1 - S8 using the corresponding sound file in the TRAIN

folder. After this training step, the system would have knowledge of the voice

characteristic of each (known) speaker. Next, in the testing phase, the system will be

able to identify the (assumed unknown) speaker of each sound file in the TEST folder.

Question 1: Play each sound file in the TRAIN folder. Can you distinguish the voices

of the eight speakers in the database? Now play each sound in the TEST folder in a

random order without looking at the file name (pretending that you do not known the

speaker) and try to identify the speaker using your knowledge of their voices that you just

learned from the TRAIN folder. This is exactly what the computer will do in our system.

What is your (human performance) recognition rate? Record this result so that it could

be later on compared against the computer performance of our system.

5.2 Speech Processing

In this phase you are required to write a Matlab function that reads a sound file and

turns it into a sequence of MFCC (acoustic vectors) using the speech processing steps

described previously. Many of those tasks are already provided by either standard or our

supplied Matlab functions. The Matlab functions that you would need are: wavread,

hamming, fft, dct and melfb (supplied function). Type help function_name

at the Matlab prompt for more information about these functions.

Question 2: Read a sound file into Matlab. Check it by playing the sound file in Matlab

using the function: sound. What is the sampling rate? What is the highest frequency

that the recorded sound can capture with fidelity? With that sampling rate, how many

msecs of actual speech are contained in a block of 256 samples?

Plot the signal to view it in the time domain. It should be obvious that the raw data in

the time domain has a very high amount of data and it is difficult for analyzing the voice

characteristic. So the motivation for this step (speech feature extraction) should be clear

now!

Now cut the speech signal (a vector) into frames with overlap (refer to the frame

section in the theory part). The result is a matrix where each column is a frame of N

samples from original speech signal. Applying the steps “Windowing” and “FFT” to

transform the signal into the frequency domain. This process is used in many different

12

applications and is referred in literature as Windowed Fourier Transform (WFT) or Short-

Time Fourier Transform (STFT). The result is often called as the spectrum or

periodogram.

Question 3: After successfully running the preceding process, what is the

interpretation of the result? Compute the power spectrum and plot it out using the

imagesc command. Note that it is better to view the power spectrum on the log scale.

Locate the region in the plot that contains most of the energy. Translate this location

into the actual ranges in time (msec) and frequency (in Hz) of the input speech signal.

Question 4: Compute and plot the power spectrum of a speech file using different

frame size: for example N = 128, 256 and 512. In each case, set the frame increment M

to be about N/3. Can you describe and explain the differences among those spectra?

The last step in speech processing is converting the power spectrum into mel-

frequency cepstrum coefficients. The supplied function melfb facilitates this task.

Question 5: Type help melfb at the Matlab prompt for more information about

this function. Follow the guidelines to plot out the mel-spaced filter bank. What is the

behavior of this filter bank? Compare it with the theoretical part.

Question 6: Compute and plot the spectrum of a speech file before and after the mel-

frequency wrapping step. Describe and explain the impact of the melfb program.

Finally, complete the “Cepstrum” step and put all pieces together into a single Matlab

function, mfcc, which performs the MFCC processing.

5.3 Vector Quantization

The result of the last section is that we transform speech signals into vectors in an

acoustic space. In this section, we will apply the VQ-based pattern recognition technique

to build speaker reference models from those vectors in the training phase and then can

identify any sequences of acoustic vectors uttered by unknown speakers.

Question 7: To inspect the acoustic space (MFCC vectors) we can pick any two

dimensions (say the 5
th

 and the 6
th

) and plot the data points in a 2D plane. Use acoustic

vectors of two different speakers and plot data points in two different colors. Do the data

regions from the two speakers overlap each other? Are they in clusters?

Now write a Matlab function, vqlbg that trains a VQ codebook using the LGB

algorithm described before. Use the supplied utility function disteu to compute the

pairwise Euclidean distances between the codewords and training vectors in the iterative

process.

13

Question 8: Plot the resulting VQ codewords after function vqlbg using the same

two dimensions over the plot of the previous question. Compare the result with Figure 5.

5.4 Simulation and Evaluation

Now is the final part! Use the two supplied programs: train and test (which

require two functions mfcc and vqlbg that you just complete) to simulate the training

and testing procedure in speaker recognition system, respectively.

Question 9: What is recognition rate our system can perform? Compare this with the

human performance. For the cases that the system makes errors, re-listen to the speech

files and try to come up with some explanations.

Question 10: You can also test the system with your own speech files. Use the

Window’s program Sound Recorder to record more voices from yourself and your

friends. Each new speaker needs to provide one speech file for training and one for

testing. Can the system recognize your voice? Enjoy!

14

REFERENCES

[1] L.R. Rabiner and B.H. Juang, Fundamentals of Speech Recognition, Prentice-Hall,

Englewood Cliffs, N.J., 1993.

[2] L.R Rabiner and R.W. Schafer, Digital Processing of Speech Signals, Prentice-

Hall, Englewood Cliffs, N.J., 1978.

[3] S.B. Davis and P. Mermelstein, “Comparison of parametric representations for

monosyllabic word recognition in continuously spoken sentences”, IEEE

Transactions on Acoustics, Speech, Signal Processing, Vol. ASSP-28, No. 4,

August 1980.

[4] Y. Linde, A. Buzo & R. Gray, “An algorithm for vector quantizer design”, IEEE

Transactions on Communications, Vol. 28, pp.84-95, 1980.

[5] S. Furui, “Speaker independent isolated word recognition using dynamic features of

speech spectrum”, IEEE Transactions on Acoustic, Speech, Signal Processing, Vol.

ASSP-34, No. 1, pp. 52-59, February 1986.

[6] S. Furui, “An overview of speaker recognition technology”, ESCA Workshop on

Automatic Speaker Recognition, Identification and Verification, pp. 1-9, 1994.

[7] F.K. Song, A.E. Rosenberg and B.H. Juang, “A vector quantisation approach to

speaker recognition”, AT&T Technical Journal, Vol. 66-2, pp. 14-26, March 1987.

[8] comp.speech Frequently Asked Questions WWW site,

 http://svr-www.eng.cam.ac.uk/comp.speech/

http://svr-www.eng.cam.ac.uk/comp.speech/

