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DSP Mini-Project:  
An Automatic Speaker Recognition System 

 

http://www.ifp.uiuc.edu/~minhdo/teaching/speaker_recognition 

 

 

1 Overview 

 

Speaker recognition is the process of automatically recognizing who is speaking on 

the basis of individual information included in speech waves. This technique makes it 

possible to use the speaker's voice to verify their identity and control access to services 

such as voice dialing, banking by telephone, telephone shopping, database access 

services, information services, voice mail, security control for confidential information 

areas, and remote access to computers. 

  

This document describes how to build a simple, yet complete and representative 

automatic speaker recognition system.  Such a speaker recognition system has potential 

in many security applications.  For example, users have to speak a PIN (Personal 

Identification Number) in order to gain access to the laboratory door, or users have to 

speak their credit card number over the telephone line to verify their identity.  By 

checking the voice characteristics of the input utterance, using an automatic speaker 

recognition system similar to the one that we will describe, the system is able to add an 

extra level of security. 

 

2 Principles of Speaker Recognition 

 

Speaker recognition can be classified into identification and verification.  Speaker 

identification is the process of determining which registered speaker provides a given 

utterance. Speaker verification, on the other hand, is the process of accepting or rejecting 

the identity claim of a speaker.  Figure 1 shows the basic structures of speaker 

identification and verification systems.  The system that we will describe is classified as 

text-independent speaker identification system since its task is to identify the person who 

speaks regardless of what is saying. 

 

At the highest level, all speaker recognition systems contain two main modules (refer 

to Figure 1): feature extraction and feature matching.  Feature extraction is the process 

that extracts a small amount of data from the voice signal that can later be used to 

represent each speaker.  Feature matching involves the actual procedure to identify the 

unknown speaker by comparing extracted features from his/her voice input with the ones 

from a set of known speakers.  We will discuss each module in detail in later sections. 
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(a) Speaker identification 

 

 

 

 

(b) Speaker verification 
 

Figure 1. Basic structures of speaker recognition systems 

 

 

All speaker recognition systems have to serve two distinguished phases.  The first one 

is referred to the enrolment or training phase, while the second one is referred to as the 

operational or testing phase.  In the training phase, each registered speaker has to provide 

samples of their speech so that the system can build or train a reference model for that 

speaker.  In case of speaker verification systems, in addition, a speaker-specific threshold 

is also computed from the training samples.  In the testing phase, the input speech is 

matched with stored reference model(s) and a recognition decision is made. 

 

Speaker recognition is a difficult task.  Automatic speaker recognition works based 

on the premise that a person‟s speech exhibits characteristics that are unique to the 

speaker.  However this task has been challenged by the highly variant of input speech 

signals.  The principle source of variance is the speaker himself/herself.  Speech signals 

in training and testing sessions can be greatly different due to many facts such as people 
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voice change with time, health conditions (e.g. the speaker has a cold), speaking rates, 

and so on.  There are also other factors, beyond speaker variability, that present a 

challenge to speaker recognition technology.  Examples of these are acoustical noise and 

variations in recording environments (e.g. speaker uses different telephone handsets). 

 

3 Speech Feature Extraction 

3.1 Introduction 

 

The purpose of this module is to convert the speech waveform, using digital signal 

processing (DSP) tools, to a set of features (at a considerably lower information rate) for 

further analysis.  This is often referred as the signal-processing front end. 

 

The speech signal is a slowly timed varying signal (it is called quasi-stationary).   An 

example of speech signal is shown in Figure 2.  When examined over a sufficiently short 

period of time (between 5 and 100 msec), its characteristics are fairly stationary.  

However, over long periods of time (on the order of 1/5 seconds or more) the signal 

characteristic change to reflect the different speech sounds being spoken.  Therefore, 

short-time spectral analysis is the most common way to characterize the speech signal. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example of speech signal 
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A wide range of possibilities exist for parametrically representing the speech signal 

for the speaker recognition task, such as Linear Prediction Coding (LPC), Mel-Frequency 

Cepstrum Coefficients (MFCC), and others.  MFCC is perhaps the best known and most 

popular, and will be described in this paper. 

 

MFCC‟s are based on the known variation of the human ear‟s critical bandwidths 

with frequency, filters spaced linearly at low frequencies and logarithmically at high 

frequencies have been used to capture the phonetically important characteristics of 

speech.  This is expressed in the mel-frequency scale, which is linear frequency spacing 

below 1000 Hz and a logarithmic spacing above 1000 Hz.  The process of computing 

MFCCs is described in more detail next. 

 

 

3.2 Mel-frequency cepstrum coefficients processor 

 

A block diagram of the structure of an MFCC processor is given in Figure 3.  The 

speech input is typically recorded at a sampling rate above 10000 Hz.  This sampling 

frequency was chosen to minimize the effects of aliasing in the analog-to-digital 

conversion.  These sampled signals can capture all frequencies up to 5 kHz, which cover 

most energy of sounds that are generated by humans.  As been discussed previously, the 

main purpose of the MFCC processor is to mimic the behavior of the human ears.  In 

addition, rather than the speech waveforms themselves, MFFC‟s are shown to be less 

susceptible to mentioned variations. 

 

 
 

Figure 3. Block diagram of the MFCC processor 

 

3.2.1 Frame Blocking  
 

In this step the continuous speech signal is blocked into frames of N samples, with 

adjacent frames being separated by M (M < N).  The first frame consists of the first N 

samples.  The second frame begins M samples after the first frame, and overlaps it by N - 
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M samples and so on.  This process continues until all the speech is accounted for within 

one or more frames.  Typical values for N and M are N = 256 (which is equivalent to ~ 30 

msec windowing and facilitate the fast radix-2 FFT) and M = 100. 

 

3.2.2 Windowing 

 

The next step in the processing is to window each individual frame so as to minimize 

the signal discontinuities at the beginning and end of each frame.  The concept here is to 

minimize the spectral distortion by using the window to taper the signal to zero at the 

beginning and end of each frame.  If we define the window as 10),(  Nnnw , where 

N is the number of samples in each frame, then the result of windowing is the signal 

 

10),()()(  Nnnwnxny ll  

 

Typically the Hamming window is used, which has the form: 
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3.2.3 Fast Fourier Transform (FFT) 

 

The next processing step is the Fast Fourier Transform, which converts each frame of 

N samples from the time domain into the frequency domain.  The FFT is a fast algorithm 

to implement the Discrete Fourier Transform (DFT), which is defined on the set of N 

samples {xn}, as follow: 
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In general Xk‟s are complex numbers and we only consider their absolute values 

(frequency magnitudes).  The resulting sequence {Xk} is interpreted as follow: positive 

frequencies 2/0 sFf  correspond to values 12/0  Nn , while negative 

frequencies 02/  fFs  correspond to 112/  NnN .  Here, Fs denotes the 

sampling frequency. 

 

The result after this step is often referred to as spectrum or period-o-gram. 

 

3.2.4 Mel-frequency wrapping 

 

As mentioned above, psychophysical studies have shown that human perception of 

the frequency contents of sounds for speech signals does not follow a linear scale.  Thus 
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for each tone with an actual frequency, f, measured in Hz, a subjective pitch is measured 

on a scale called the „mel‟ scale.  The mel-frequency scale is a linear frequency spacing 

below 1000 Hz and a logarithmic spacing above 1000 Hz.   

 

 

 

Figure4. An example of mel-spaced filter bank 

 

 

One approach to simulating the subjective spectrum is to use a filter bank, spaced 

uniformly on the mel-scale (see Figure 4).  That filter bank has a triangular band pass 

frequency response, and the spacing as well as the bandwidth is determined by a constant 

mel frequency interval.  The number of mel spectrum coefficients, K, is typically chosen 

as 20.  Note that this filter bank is applied in the frequency domain, thus it simply 

amounts to applying the triangle-shape windows as in the Figure 4 to the spectrum.  A 

useful way of thinking about this mel-wrapping filter bank is to view each filter as a 

histogram bin (where bins have overlap) in the frequency domain. 
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3.2.5 Cepstrum 

 

In this final step, we convert the log mel spectrum back to time.  The result is called 

the mel frequency cepstrum coefficients (MFCC).  The cepstral representation of the 

speech spectrum provides a good representation of the local spectral properties of the 

signal for the given frame analysis. Because the Mel spectrum coefficients (and so their 

logarithm) are real numbers, we can convert them to the time domain using the Discrete 

Cosine Transform (DCT).  Therefore if we denote those Mel power spectrum coefficients 

that are the result of the last step are 1,...,2,0,
~
0  KkS , we can calculate the MFCC's, 

,~
nc  as 

 

 
 

Note that we exclude the first component, ,~
0c  from the DCT since it represents the 

mean value of the input signal, which carried little speaker specific information. 

 

3.3 Summary 

 

By applying the procedure described above, for each speech frame of around 30msec 

with overlap, a set of mel-frequency cepstrum coefficients is computed.  These are result 

of a cosine transform of the logarithm of the short-term power spectrum expressed on a 

mel-frequency scale.  This set of coefficients is called an acoustic vector.  Therefore each 

input utterance is transformed into a sequence of acoustic vectors.   In the next section we 

will see how those acoustic vectors can be used to represent and recognize the voice 

characteristic of the speaker. 

 

 

4 Feature Matching 

4.1 Overview 

 

The problem of speaker recognition belongs to a much broader topic in scientific and 

engineering so called pattern recognition.  The goal of pattern recognition is to classify 

objects of interest into one of a number of categories or classes.  The objects of interest 

are generically called patterns and in our case are sequences of acoustic vectors that are 

extracted from an input speech using the techniques described in the previous section.  

The classes here refer to individual speakers.  Since the classification procedure in our 

case is applied on extracted features, it can be also referred to as feature matching. 

 

Furthermore, if there exists some set of patterns that the individual classes of which 

are already known, then one has a problem in supervised pattern recognition.  These 
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patterns comprise the training set and are used to derive a classification algorithm.  The 

remaining patterns are then used to test the classification algorithm; these patterns are 

collectively referred to as the test set.  If the correct classes of the individual patterns in 

the test set are also known, then one can evaluate the performance of the algorithm. 

 

The state-of-the-art in feature matching techniques used in speaker recognition 

include Dynamic Time Warping (DTW), Hidden Markov Modeling (HMM), and Vector 

Quantization (VQ).  In this project, the VQ approach will be used, due to ease of 

implementation and high accuracy.  VQ is a process of mapping vectors from a large 

vector space to a finite number of regions in that space.  Each region is called a cluster 

and can be represented by its center called a codeword.  The collection of all codewords 

is called a codebook. 

 

Figure 5 shows a conceptual diagram to illustrate this recognition process.  In the 

figure, only two speakers and two dimensions of the acoustic space are shown.  The 

circles refer to the acoustic vectors from the speaker 1 while the triangles are from the 

speaker 2.  In the training phase, using the clustering algorithm described in Section 4.2,  

a speaker-specific VQ codebook is generated for each known speaker by clustering 

his/her training acoustic vectors.  The result codewords (centroids) are shown in Figure 5 

by black circles and black triangles for speaker 1 and 2, respectively.  The distance from 

a vector to the closest codeword of a codebook is called a VQ-distortion.  In the 

recognition phase, an input utterance of an unknown voice is “vector-quantized” using 

each trained codebook and the total VQ distortion is computed.  The speaker 

corresponding to the VQ codebook with smallest total distortion is identified as the 

speaker of the input utterance.  

 

 

Speaker 1

Speaker 1
centroid
sample

Speaker 2
centroid
sample

Speaker 2

VQ distortion

 
 

 

Figure 5. Conceptual diagram illustrating vector quantization codebook formation. 

One speaker can be discriminated from another based of the location of centroids. 

(Adapted from Song et al., 1987) 
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4.2 Clustering the Training Vectors 

 

After the enrolment session, the acoustic vectors extracted from input speech of each 

speaker provide a set of training vectors for that speaker.  As described above, the next 

important step is to build a speaker-specific VQ codebook for each speaker using those 

training vectors.  There is a well-know algorithm, namely LBG algorithm [Linde, Buzo 

and Gray, 1980], for clustering a set of L training vectors into a set of M codebook 

vectors.  The algorithm is formally implemented by the following recursive procedure: 

 

1. Design a 1-vector codebook; this is the centroid of the entire set of training vectors 

(hence, no iteration is required here). 

2. Double the size of the codebook by splitting each current codebook yn according to 

the rule 

)1(  nn yy  

)1(  nn yy  

where n varies from 1 to the current size of the codebook, and  is a splitting 

parameter (we choose  =0.01). 

 

3. Nearest-Neighbor Search: for each training vector, find the codeword in the current 

codebook that is closest (in terms of similarity measurement), and assign that vector 

to the corresponding cell (associated with the closest codeword). 

 

4. Centroid Update: update the codeword in each cell using the centroid of the training 

vectors assigned to that cell. 

 

5. Iteration 1: repeat steps 3 and 4 until the average distance falls below a preset 

threshold 

 

6. Iteration 2: repeat steps 2, 3 and 4 until a codebook size of M is designed. 

 

Intuitively, the LBG algorithm designs an M-vector codebook in stages.  It starts first 

by designing a 1-vector codebook, then uses a splitting technique on the codewords to 

initialize the search for a 2-vector codebook, and continues the splitting process until the 

desired M-vector codebook is obtained. 

 

Figure 6 shows, in a flow diagram, the detailed steps of the LBG algorithm.  “Cluster 

vectors” is the nearest-neighbor search procedure which assigns each training vector to a 

cluster associated with the closest codeword.  “Find centroids” is the centroid update 

procedure.  “Compute D (distortion)” sums the distances of all training vectors in the 

nearest-neighbor search so as to determine whether the procedure has converged. 
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Figure 6. Flow diagram of the LBG algorithm (Adapted from Rabiner and Juang, 1993) 

 

5 Project 
 

As stated before, in this project we will experiment with the building and testing of an 

automatic speaker recognition system.  In order to build such a system, one have to go 

through the steps that were described in previous sections.   The most convenient 

platform for this is the Matlab environment since many of the above tasks were already 

implemented in Matlab.  The project Web page given at the beginning provides a test 

database and several helper functions to ease the development process.   We supplied you 

with two utility functions: melfb and disteu; and two main functions: train and 

test. Download all of these files from the project Web page into your working folder.  

The first two files can be treated as a black box, but the later two needs to be thoroughly 

understood.  In fact, your tasks are to write two missing functions: mfcc and vqlbg, 

which will be called from the given main functions.  In order to accomplish that, follow 

each step in this section carefully and check your understanding by answering all the 

questions. 
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5.1 Speech Data 

 

Down load the ZIP file of the speech database from the project Web page. After 

unzipping the file correctly, you will find two folders, TRAIN and TEST, each contains 8 

files, named: S1.WAV, S2.WAV, …, S8.WAV; each is labeled after the ID of the 

speaker.  These files were recorded in Microsoft WAV format.  In Windows systems, you 

can listen to the recorded sounds by double clicking into the files. 

 

Our goal is to train a voice model (or more specific, a VQ codebook in the MFCC 

vector space) for each speaker S1 - S8 using the corresponding sound file in the TRAIN 

folder.  After this training step, the system would have knowledge of the voice 

characteristic of each (known) speaker.   Next, in the testing phase, the system will be 

able to identify the (assumed unknown) speaker of each sound file in the TEST folder. 

 

Question 1: Play each sound file in the TRAIN folder.  Can you distinguish the voices 

of the eight speakers in the database?  Now play each sound in the TEST folder in a 

random order without looking at the file name (pretending that you do not known the 

speaker) and try to identify the speaker using your knowledge of their voices that you just 

learned from the TRAIN folder.  This is exactly what the computer will do in our system.  

What is your (human performance) recognition rate?  Record this result so that it could 

be later on compared against the computer performance of our system. 

 

5.2 Speech Processing 

 

In this phase you are required to write a Matlab function that reads a sound file and 

turns it into a sequence of MFCC (acoustic vectors) using the speech processing steps 

described previously.   Many of those tasks are already provided by either standard or our 

supplied Matlab functions.  The Matlab functions that you would need are: wavread, 

hamming, fft, dct and melfb (supplied function).  Type help function_name 

at the Matlab prompt for more information about these functions. 

 

Question 2: Read a sound file into Matlab.  Check it by playing the sound file in Matlab 

using the function: sound.  What is the sampling rate?  What is the highest frequency 

that the recorded sound can capture with fidelity? With that sampling rate, how many 

msecs of actual speech are contained in a block of 256 samples? 

 

Plot the signal to view it in the time domain.  It should be obvious that the raw data in 

the time domain has a very high amount of data and it is difficult for analyzing the voice 

characteristic.  So the motivation for this step (speech feature extraction) should be clear 

now! 

 

Now cut the speech signal (a vector) into frames with overlap (refer to the frame 

section in the theory part).  The result is a matrix where each column is a frame of N 

samples from original speech signal.  Applying the steps “Windowing” and “FFT” to 

transform the signal into the frequency domain.  This process is used in many different 
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applications and is referred in literature as Windowed Fourier Transform (WFT) or Short-

Time Fourier Transform (STFT).  The result is often called as the spectrum or 

periodogram. 

 

Question 3: After successfully running the preceding process, what is the 

interpretation of the result?  Compute the power spectrum and plot it out using the 

imagesc command.  Note that it is better to view the power spectrum on the log scale.  

Locate the region in the plot that contains most of the energy.  Translate this location 

into the actual ranges in time (msec) and frequency (in Hz) of the input speech signal. 

 

Question 4: Compute and plot the power spectrum of a speech file using different 

frame size: for example N = 128, 256 and 512.  In each case, set the frame increment M 

to be about N/3.  Can you describe and explain the differences among those spectra? 

 

The last step in speech processing is converting the power spectrum into mel-

frequency cepstrum coefficients.  The supplied function melfb facilitates this task. 

 

Question 5: Type help melfb at the Matlab prompt for more information about 

this function.  Follow the guidelines to plot out the mel-spaced filter bank.   What is the 

behavior of this filter bank?  Compare it with the theoretical part. 

 

Question 6: Compute and plot the spectrum of a speech file before and after the mel-

frequency wrapping step.  Describe and explain the impact of the melfb program. 

 

Finally, complete the “Cepstrum” step and put all pieces together into a single Matlab 

function, mfcc, which performs the MFCC processing. 

 

5.3 Vector Quantization 

 

The result of the last section is that we transform speech signals into vectors in an 

acoustic space.  In this section, we will apply the VQ-based pattern recognition technique 

to build speaker reference models from those vectors in the training phase and then can 

identify any sequences of acoustic vectors uttered by unknown speakers. 

 

Question 7: To inspect the acoustic space (MFCC vectors) we can pick any two 

dimensions (say the 5
th

 and the 6
th

) and plot the data points in a 2D plane.  Use acoustic 

vectors of two different speakers and plot data points in two different colors.  Do the data 

regions from the two speakers overlap each other?  Are they in clusters? 

 

Now write a Matlab function, vqlbg that trains a VQ codebook using the LGB 

algorithm described before.  Use the supplied utility function disteu to compute the 

pairwise Euclidean distances between the codewords and training vectors in the iterative 

process. 
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Question 8: Plot the resulting VQ codewords after function vqlbg using the same 

two dimensions over the plot of the previous question.  Compare the result with Figure 5. 

 

5.4 Simulation and Evaluation 

 

Now is the final part!  Use the two supplied programs: train and test (which 

require two functions mfcc and vqlbg that you just complete) to simulate the training 

and testing procedure in speaker recognition system, respectively. 

 

Question 9: What is recognition rate our system can perform?  Compare this with the 

human performance.  For the cases that the system makes errors, re-listen to the speech 

files and try to come up with some explanations. 
 

Question 10: You can also test the system with your own speech files.  Use the 

Window’s program Sound Recorder to record more voices from yourself and your 

friends.  Each new speaker needs to provide one speech file for training and one for 

testing.  Can the system recognize your voice?  Enjoy! 
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