
Encounter Digital Implementation System
User Guide

Product Version 9.1.3

October 2010

© 2009–2010 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this
document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s
trademarks, contact the corporate legal department at the address shown above or call 1-800-862-4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission
statement, this publication may not be copied, reproduced, modified, published, uploaded, posted,
transmitted, or distributed in any way, without prior written permission from Cadence. This statement grants
you permission to print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s
customer in accordance with, a written agreement between Cadence and its customer. Except as may be
explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any
representations or warranties as to the completeness, accuracy or usefulness of the information contained
in this document. Cadence does not warrant that use of such information will not infringe any third party
rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of
such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Encounter Digital Implementation System User Guide

Contents
About This Manual. 41

Audience . 41
How This Manual Is Organized . 41
Conventions Used in This Manual . 42
Related Documents . 43

EDI System Foundation Flows Documentation . 43
EDI System Product Documentation . 44

1
Product and Licensing Information . 47

Overview . 48
About EDI System Products and Product Options . 48

EDI System . 48
First Encounter Hierarchical Prototyping Solution . 49
EDI System Product Options . 50

About EDI System Licenses . 52
Licensing Terminology . 52
Checking Out Licenses for Product Options . 53
Advanced Node License Required for 32 nm DRC Rules . 53

2
Getting Started . 57

Product and Installation Information . 58
Setting the Run-Time Environment . 58

Supported and Compatible Platforms . 58
Specifying the 64-Bit or 32-Bit Version of EDI System Applications 58

Configuring OpenAccess . 59
Launching the Console . 60
Completing Command Names . 60
Command-Line Editing . 61
October 2010 5 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Control (^) Characters . 61
Escape Sequences . 62

Setting Preferences . 63
Initialization Files . 64

Starting the Software . 66
encounter . 67
Using Generic Parameters to Specify 32- or 64-Bit Version . 71

Interrupting the Software . 72
Interrupt Behavior for Long-running Commands . 72
Interrupting the Execution of Batch Files . 73
Stopping the Software . 74

Using the Log File Viewer . 75
Integrated Log File Viewer . 75
Standalone Log File Viewer . 76

Accessing Documentation and Help . 77
Launching Cadence Help From the Command Prompt . 77
Accessing Documentation and Help From the Encounter GUI 77
Using the Encounter man and help Commands on the Text Command Line 79
Using the Integrated Log File Viewer . 82
Other Sources of Information . 83

3
Customizing the User Interface . 85

Overview . 86
Creating a New Menu . 87
Modifying an Existing Menu . 88

Adding a Menu Element to an Existing Menu . 88
Replacing an Existing Menu Element . 88

Adding a New Toolbar and Toolbutton . 90
Supported Image Formats for Icons . 90

Querying and Configuring Interface Elements . 91
Iterating, Querying, and Configuring a Menu . 91
Updating the Message on the Status Bar . 91
Setting the Main Window’s Size and Title . 92

Migrating Obsolete Internal Menu APIs . 93
October 2010 6 Product Version 9.1.3

Encounter Digital Implementation System User Guide
4
Accelerating the Design Process By Using Multiple-CPU
Processing. 95

Overview . 96
Running Distributed Processing . 99
Running Multi-Threading . 99
Running Superthreading . 100
Setting and Changing the License Check-Out Order . 100
Limiting the Multi-CPU License Search to Specific Products . 100
Releasing Licenses Before the Session Ends . 101
Controlling the Level of Usage Information in the Log File . 101
Where to Find More Information on Multi-CPU Licensing . 101

5
Data Preparation. 103

Generating a Technology File . 104
Creating Technology Information Using LEF . 104
Creating Technology Information Using OpenAccess . 104

Preparing Physical Libraries . 104
Using LEF to Create Physical Libraries . 104
Creating OpenAccess Physical Libraries . 105

Unsupported LEF and DEF Syntax . 105
Unsupported LEF 5.7 Syntax . 105
Unsupported DEF 5.7 Syntax . 106

Generating the I/O Assignment File . 108
Creating an I/O Assignment File . 109
Creating a Rule-Based I/O Assignment File . 120
I/O Pad and Pin Assignment Examples . 121
Performing Area I/O Placement . 124

Preparing Timing Libraries . 128
Encrypting Libraries . 128
Preparing Stamp Models . 129
Preparing Timing Constraints . 129
Preparing Capacitance Tables . 130
October 2010 7 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Preparing Data for Delay Calculation . 130
Preparing Data for Crosstalk Analysis . 130
Checking Designs . 130
Preparing Data in the Timing Closure Design Flow . 131
Converting iPRT Format to LEF . 131

6
Importing and Exporting Designs. 133

Overview . 134
Verifying Data before Importing a Design . 134
Preparing the Design Netlist . 134
Creating a Flat Verilog Netlist from a DEF File . 135

Recommended DEF Import Commands . 135
Reconciling the Object Names and Creating New DEF File That Can Be Used With the
Normal EDI System Flows . 136

Beginning Designs . 137
Beginning a Design with LEF and Verilog . 137
Beginning a Design with OpenAccess . 138

Loading Previously Saved Configuration Files . 139
Loading Configurations Files from the Command Line . 139
Loading Configuration Files from the GUI . 140

Selecting Files . 141
Using Select Files . 141

Working with OpenAccess Designs . 143
Importing an OpenAccess Design . 143
Saving an OpenAccess Design . 143
Restoring an OpenAccess Design . 143
Transferring OpenAccess Data between EDI System and Virtuoso Chip Editor for ECO
144

Handling Verilog Assigns . 144
Saving and Restoring Designs . 144

Saving Designs . 145
Restoring Designs . 145
Saving and Restoring OpenAccess Designs . 145

Importing and Exporting Design Data . 146
Loading a Partition . 146
October 2010 8 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Loading Floorplan Data . 146
Placement File Requirement . 147
Loading an I/O Assignment File . 147
Loading an FSDB File . 147
Saving a Partition . 148
Saving Floorplan Data . 148

Converting an EDI System Database to GDSII Stream or OASIS Format 149
Creating Cells and Instances . 150
Renaming LEF Vias . 150
Merging GDSII Stream or OASIS Files . 151
Merge Examples . 151

About the GDSII Stream or OASIS Map File . 156
Map File Format . 156
Map File Columns . 157
Specifying Object Subtypes . 160
Using Multiple Layers and Data Types . 164

Updating Files during an EDI System Session . 165
SKILL to TCL Mapping . 166

7
Flip Chip Methodologies . 169

Overview . 170
Before You Begin . 170

Flip Chip Flow in EDI System . 172
Flip Chip Flow Steps . 173

SiP Bump Flow . 177
Reducing Data Size for SiP Import (Bypass Flow) . 177
Splitting Wires in Metal Layers . 177
Testing the Package Routing Feasibility . 178

Area I/O Flow . 179
Area I/O (AIO) Command Flow . 180
Routing Bumps to I/O Driver Cells (Hierarchical Area I/O Flow) 180
Flip Chip Routing on Shielded Nets in AIO . 181
Example . 181

Peripheral I/O Flow . 183
October 2010 9 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation . 183
Peripheral I/O Flow Steps . 184
Peripheral I/O (PIO) Command Flow . 185
RDL Planning and Routing . 187
Peripheral I/O Extraction . 195
SI and Timing Analysis . 196

Differentiating Area I/O and Peripheral I/O . 197
Point-To-Point Routing . 198
Distributed Co-design . 200
Swapping Signals . 201
Creating Differential Routing to Signal Bumps . 203

Specify Routing Nets . 204
Define Differential Pairs . 204
Define Nets to Match Tolerance . 205
Define a Shield Net . 205
Route Multiple Nets with Different Widths . 206
Route Nets with Tapering Pin Widths . 207

Examples and Report Files . 209
Routing and Placement Constraints . 209
IO_FILE Example . 211

8
Using ART in Hierarchical Designs . 215

Overview . 216
Types of Active Logic Views . 216

Flat Top . 216
Critical . 217

Creating an Active Logic View . 218
Example of Active Logic View Creation . 218

Applications of ART . 218
Timing Budgeting in Hierarchical Flow . 219
Timing Optimization After Assembling the Post-Routed Partitioned Design 219
October 2010 10 Product Version 9.1.3

Encounter Digital Implementation System User Guide
9
Using Interface Logic Models in Hierarchical Designs 225

Overview . 226
Creating ILMs . 227

Example ILM Creation . 228
Preserving Selected Instances in ILMs . 229
Creating ILMs for Shared Modules . 229
Creating ILMs Without Using Encounter Database . 229

Specifying ILM Directories at the Top Level . 231
Example Top-Level Implementation Flow with ILMs . 231

ILMs Supported in MMMC Analysis . 233
ILMs Supported in SI . 235
Interactive Use of ILMs . 235
ILM Limitations . 236

10
What-If Timing Analysis. 239

Performing What-If Timing Analysis . 239
Prerequisite . 240
Timing Models Supported for What-If Timing Analysis . 240
Using the What-If Timing Commands . 243

11
Bus Planning . 247

Overview . 248
Bus Planning Flow in Encounter . 249
Creating a Bus Guide . 250

Using the Edit Bus Guide GUI . 250
Using Text Commands . 255
Example . 256

Customizing the Bus Guide Display . 260
Highlighting and Dehighlighting the Bus Guide . 260

Saving and Restoring Bus Guide Information . 262
Limitations of Bus Planning . 263
October 2010 11 Product Version 9.1.3

Encounter Digital Implementation System User Guide
12
Partitioning the Design . 265

Overview . 266
Flow Methodologies . 266

Top-down Methodology . 267
Bottom-up Methodology . 271

Specifying Partitions and Blackboxes . 274
Defining Partitions . 275
Defining Partitions as Power Domains . 277
Defining Blackboxes . 277
Handling of Blackboxes with Non-R0 Orientation . 280
Specifying Multiple Instantiated Partitions and Blackboxes 282
Changing Partition Clone Orientation . 283
Specifying Rectilinear Partitions and Blackboxes . 284
Specifying Core-to-I/O Distance for Partition Cuts . 285
Specifying Nested Partitions . 286

Assigning Pins . 287
Assigning Partition and Blackbox Pins . 289
Assigning I/O Pins . 311
Performing Congestion-aware Pin Assignment for Channel-based Designs 315
Assigning Pins on Rectilinear Edges . 318
Swapping Partition Pins . 319
Pin Alignment . 319
Snapping Pins to the Grid . 320
Assigning Pins for Bus Guides . 321
Pin Assignment Limitations . 321

Inserting Feedthroughs . 322
Inserting Feedthrough Buffers . 324
Highlighting the Nets for which Feedthrough Buffers Have been Inserted 335
Utilizing Pre-defined Feedthrough Pins in Custom Macros 335
Inserting Routing Feedthroughs . 341

Generating the Wire Crossing Report . 343
Interpreting the Wire Crossing Report . 344

Estimating the Routing Channel Width . 346
Running the Partition Program . 348
October 2010 12 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Pushing Down Signal Routes . 349
How Top-level Stripes Are Pushed Down . 350
How Bumps, Routes, and Area I/O Cells Are Affected . 353
Limitations . 360

Restoring the Top-Level Floorplan with Partition Data . 365
Concatenating Netlist Files of a Partitioned Design . 366
Saving Partitions . 367
Loading Partitions . 367

Unpartitioning with Routing Data . 367
Working with OpenAccess Database . 369
Parallel Job Processing . 370

13
Floorplanning the Design . 371

Overview . 372
Common Floorplanning Sequence . 373
Viewing the Floorplan . 374
Module Constraint Types . 377

Target Utilization Display . 378
Effective Utilization Display . 380
Calculating Density . 381
Standard Row Spacing . 382

Grouping Instances . 383
Defining the Bounding Box . 384
Adding Logical Hierarchy Without Creating Additional Hierarchy 385
Logical Hierarchy Manipulation . 386

Creating and Editing Rows . 390
Using Vertical Rows . 390
Using Multiple-height Rows . 392

Using Integer Multiple-height Rows . 392
Using Non-Integer Multiple-height Rows . 395
Working with User-defined DEF Files that Contain NIMH Rows or Unaligned Rows 397
Merging Hierarchical Floorplans from Partitions . 400

Performing I/O Row Based Pad Placement . 403
Prerequisites . 403
October 2010 13 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Enabling the I/O Row Flow in EDI System . 404
Use Models . 406

Resizing Rectilinear Blocks . 408
Use Models . 409
Assumptions . 410
Results . 410

Using Blackblobs . 411
Defining Blackblobs . 411
Specifying Blackblobs . 412
Blackblob Useflow . 416
Blackblob Display . 419
Blackblob Overlap . 424
Saving and Restoring Blackblobs . 427

Editing Pins . 428
Pin Snapping on Resized Boundaries . 428
Moving Pins . 428
Swapping Pins . 429
Using the Pin Editor . 429

Running Relative Floorplanning . 439
Orientation Key . 439
Instance Place Example . 440
Pre-Route Examples . 440
Saving and Restoring Relative Floorplan . 442

Saving and Loading Floorplan Data . 442
Resizing the Floorplan . 443

Resize Floorplan Options . 444
Setting Resize Lines . 444
Specifying Resize Directions . 445
Snapping Resize Values . 445
Viewing Resize Lines using Color Preferences . 446
Distributing I/O’s using Resize Floorplan . 448

14
Power Planning and Routing . 451

Overview . 452
October 2010 14 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Before You Begin . 453
Results . 454
Loading, Saving, and Updating Special Route . 454
Creating a Ring with User Defined Coordinates . 454
Global Net Connections . 455

globalNetConnect Command and Connections for Signal Pins and Power/Ground Pins
456

Fixing LEF MINIMUMCUT Violations . 457
Fixing LEF Minimum Spacing Violations . 457
Adding Stripes to Power Domains . 457
Automatic Power Planning (APP) . 459
Creating a Template . 461

Using the IP Block Page . 461
Using the Design Page . 462

Specifying Template Parameters . 463
Instantiating a Template . 464

Template Naming Conventions . 464
Using the Synthesize Power Plan Functionality . 465
Creating Differential Routing to Signal Bumps . 467

15
Low Power Design . 469

Overview . 470
Power Domain Shutdown and Scaling . 470
Support for the Common Power Format (CPF) . 472

CPF Version Support . 472
EDI System Commands Supporting CPF . 472
Loading and Committing a CPF File . 473
Saving a CPF Database . 473
CPF Documentation . 474

Multiple Supply Voltage Flat Flow . 475
Preparing Data . 477
Loading the Configuration File . 480
Floorplanning the Design . 480
Loading and Committing the CPF File . 481
October 2010 15 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Setting the Power Domain Size . 481
Setting the Power Domain mingap . 481
Adding Power Switches . 482
Verify Power Domains . 482
Adding Well Tap Cells . 482
Planning Power . 482
Placing Standard Cells and Macros . 483
Highlight Power Domains (Optional) . 485
Adding Tie High/Low cells . 486
Routing Power . 486
Trial Routing . 487
Optimizing Timing . 489
Synthesizing Clock Trees . 492
Optimizing Timing (Post CTS) . 493
Routing the Design . 493
Analyzing Timing . 493
Analyzing Power . 493
Optimizing Timing (Post-Route) . 494

Multiple Supply Voltage Top-Down Hierarchical Flow . 495
Overview . 495
Always-On Feedthrough Handling . 496
Chip Partitioning . 498
Block-level CPF Generation . 498
Top-Level CPF Generation . 500
Block-Level Implementation . 501
Top-Level Implementation . 501
Chip Assembly . 501

Example of Block-Level CPF Generated by EDI System . 503
Example of Top-Level CPF Generated by EDI System . 506
Multiple Supply Voltage Bottom-Up Hierarchical Flow . 510

Block-Level Implementation . 511
Top-Level Implementation . 512
Chip Assembly . 512

Leakage Power Optimization Techniques . 514
Multi-Vth Optimization . 514
Substrate Biasing . 515
October 2010 16 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power Shutdown Techniques . 519
Power Shutdown Commands . 519
Data Preparation . 520
Buffer Styles . 521
Adding Column Switches . 522
Attaching the Acknowledge Receiver Pin . 523
Enable Chaining . 525
Controlling the Maximum Enable Chain Depth . 528
Synthesizing Acknowledge Trees . 529
Adding Power Switch Rings . 531
Ring Conventions . 533
Using Pitch Control and Offsets . 539

Power Switch Optimization . 549
Power Switch Reduction . 549
Power Switch ECO . 550

16
Placing the Design. 553

Overview . 554
Loading a Design . 554
Preparing for Placement . 554
Guiding Placement With Blockages . 555

Placement Treatment of Preroutes . 556
Adding Well-Tap Cells . 557

Controlling the Distance Between Well-Tap Cells . 558
Adding Well-Tap Cells to MSV Designs . 558
Deleting Well-Tap Cells . 558

Adding End-Cap Cells . 558
Adding End Cap Cells to MSV Designs . 559
Deleting End-Cap Cells . 559

Placing Spare Cells and Spare Modules . 560
Placing Spare Cells That Are Included in the Netlist . 560
Placing Spare Cells That Are Not Included in the Netlist . 561
Spare Cell Placement Behavior . 561
Running Hierarchy-Aware Spare Cell Placement . 563
October 2010 17 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Adding Padding . 566
Adding Instance or Module Padding . 567
Adding Cell Padding . 568

Placing Standard Cells . 570
Running Placement in Multi-CPU Mode . 571

Multi-Threading Placement Steps . 572
Checking Placement . 574

Using the Amoeba View . 575
Using the Density Map . 575

Adding Filler Cells . 576
Adding Fillers to MSV Designs . 576
Deleting Filler Cells . 577

Placing Gate Array Style Filler Cells for Post-Mask ECO . 577
Adding Decoupling Capacitance . 578

Deleting Decoupling Capacitance . 579
Adding Logical Tie-Off Cells . 579
Saving Placement Data . 580
Specifying and Placing JTAG and Other Cells Close to the I/Os 580
Optimizing and Reordering Scan Chains . 581

Specifying Scan Cells . 581
About Scan Chains . 582
Reordering Scan Chains . 582

17
Synthesizing Clock Trees . 593

Before You Begin . 594
Results . 594
Understanding CTS Operation Modes . 595

Manual CTS Mode . 595
Automatic CTS Mode . 596

How CTS Calculates Skew Values . 600
Improving Postroute Correlation . 602
Specifying Macro Model Delays . 603

Macro Model Support for MMMC Views . 603
Dynamic Macro Model . 604
October 2010 18 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Grouping Clocks . 607
Analyzing Hierarchical Clock Trees . 608
Module Placement Utilization . 610
Clock Designs with Tight Area . 610
Balancing Pins for Macro Models . 610
Timing Model Requirement for Cells . 610
Delay Variation and OCV . 610
Understanding Post-CTS Clock Tree Optimization . 611

Using the ckECO Command for Post-CTS Clock Tree Optimization 611
Support for Local Skew Optimization . 612
Command Modes for the ckECO Command . 612
Using a SPEF File with the ckECO Command for RC Estimation 612
Running Post-CTS Optimization with the ckECO Command 613
Guidelines for Using the ckECO Command . 614

Creating a Clock Tree Specification File . 615
Using the Automatic Clock Tree Specification File Generator 615
Example of a Clock Tree Specification File . 617
Naming Attributes Section . 621
NanoRoute Attribute Section . 622
Macro Model Data Section . 623
Clock Grouping Data Section . 627
Clock-Tree Topology Section . 627
Automatic Gated CTS Section . 628
Log File Headings . 646

CTS Report Descriptions . 647
General Information . 647
Macro Model Information . 649
Power Information . 649
AC Current Density Violations . 650

Supported SDC Constraints . 651
Clock Tree Analyst . 652

18
Working with Clock Mesh Structures. 653

Overview . 654
October 2010 19 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Meshes Versus Clock Trees . 654
Creating Clock Meshes . 657

Determining the Mesh Structure . 657
Implementing the Clock Mesh . 662
Analyzing the Clock Mesh . 663
Generating Multiple Spice Run Deck For Big Clock-Mesh Networks 666

19
Editing Wires . 671

Overview . 672
Before You Begin . 673
Results . 673
Using Keyboard Shortcuts . 673

Keyboard Shortcuts That Open Forms . 673
Keyboard Shortcuts That Are Equivalent to Tool Widgets . 673
Keyboard Shortcuts Used in Auto Query Mode . 674
Keyboard Shortcuts Used in Edit Wire Mode . 674
Keyboard Shortcuts Used in Stretch Wire Mode . 675
Keyboard Shortcuts Used to Change Vias . 675

Selecting Wires . 675
Deleting Wires . 676
Moving Wires . 676

Using the Mouse to Move Wires . 676
Using Arrow Keys to Move Wires . 677
Moving Selected Wires or Vias . 677

Adding Wires . 678
Adding a Wire for a Single Net . 678
Adding Wires for Multiple Nets . 679
Adding Wires that Automatically Extend to a Target . 681
Using Override to Add Wire Groups with Multiple Widths and Spacing 682

Cutting Shielding Wires . 683
Trimming Antennas on Selected Stripes . 683
Changing Wire Width . 684
Repairing Maximum Wire Width Violations . 685
Duplicating Wires . 685
October 2010 20 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Stretching Wires . 686
Changing Wire Layers . 686
Splitting and Merging Wires . 687
Adding Vias . 687
Changing Vias . 688
Moving Vias . 689
Reshaping Routes . 689
Controlling Cell Blockage Visibility . 690

20
Using Trial Route for Congestion and Timing Analysis 693

Overview . 694
Data Preparation . 694
Routing A Flat Design . 695
Routing a Partitioned Design . 696
Routing Two-Metal Layer Designs . 698
Routing Using the NanoRoute Global Router . 698
Loading and Saving Route Data . 699
Analyzing Route Data . 699

Congestion Markers in the Display . 699
Congestion Distribution Report . 702

Improving Route Congestion . 708
Using Bus Guides . 709
Additional Information . 710

Wire Overlap . 710

21
Using the NanoRoute Router . 711

About NanoRoute Routing Technology . 714
Routing Phases . 714

Global Routing . 714
Detailed Routing . 715

NanoRoute Router in the EDI System Flow . 716
Before You Begin . 716

Checking Your LEF Files . 716
October 2010 21 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Checking for Problems with Cells, Pins, and Vias . 717
Generating Tracks . 718
Specifying Routing Layers . 718

Interrupting Routing . 720
Using the routeDesign Supercommand . 720
Results . 722
Use Models . 723

Running the NanoRoute Router with EDI System Menu Commands and Forms . . 723
Running the NanoRoute Router with EDI System Text Commands 723
Running the NanoRoute Router in Standalone Mode . 724

Using NanoRoute Parameters . 725
Using Attributes and Options Together . 726

Accelerating Routing with Multi-Threading and Superthreading 728
When to Accelerate Routing . 729
Superthreading Log File Excerpts . 730

Following a Basic Routing Strategy . 732
Using the EDI SystemText Commands . 732
Using the EDI System GUI . 733

Checking Congestion . 736
Using the Congestion Analysis Table . 736
Using the Congestion Map . 738

Resolving Open Nets . 741
Log File Examples . 741
Diagnosing Problems Using verifyTracks . 742
Resolving Additional Open Net Problems . 742

Running Timing-Driven Routing . 744
Input Files . 744
Using the CTE and the NanoRoute Router in Native Mode 744
Using the CTE and Standalone NanoRoute . 745

Routing Clocks . 747
Setting Attributes for Clock Nets . 747
Routing Clock Nets Using the GUI Forms . 748
Running Postroute Optimization . 748

Preventing and Repairing Crosstalk Problems . 749
Crosstalk Prevention Options . 751

Running ECO Routing . 753
October 2010 22 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Limitations . 753
ECO Flow . 754

Evaluating Violations . 755
Violations on Upper Metal Layers . 759
Violations in Timing-Driven Routing . 761
Deleting Violated Nets . 763
Using Additional Strategies to Repair Violations . 763

Concurrent Routing and Multi-Cut Via Insertion . 763
Postroute Via Optimization . 764
Optimizing Vias in Selected Nets . 765
Via Optimization Options . 765
Performing Shielded Routing . 767

Shielding Option . 767
Performing Shielded Routing Using the GUI . 768
Performing Shielded Routing Using Text Commands . 769
Interpreting the Shielding Report . 769

Routing Wide Wires . 770
Using Non-Default Rules . 771

Repairing Process Antenna Violations . 773
Repairing Violations on Multiple-Pin Nets . 773
Changing Layers . 774
Using Diodes . 774
Deleting and Rerouting Nets with Violations . 774
Repairing Violations on Cut Layers . 774
Process Antenna Options . 775
Examples . 775

Using a Design Flow that Includes Astro or Apollo . 777
Troubleshooting . 778

22
Using the Encounter Mixed Signal Router. 779

Overview . 780
Using the Mixed Signal Router . 781
Before You Begin . 781
Results . 781
October 2010 23 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Specialized Routing Techniques . 782
Matched Nets . 782
Differential Pair Nets . 786
Bus Routes . 787
Shielded Nets . 787

Using Routing Constraints . 791
Constraint File Format . 791
Specialized Constraints and Keyword Descriptions . 792

NETS . 792
MATCH . 797
DIFFPAIR . 800
SHIELDING . 807

Creating a Constraint File . 810
Using the Mixed Signal Constraint Editor . 810
Using a Text Editor . 814

Loading a Constraint File . 815
Using the Mixed Signal Constraint Editor Form . 815
Using the Mixed Signal Router Form . 815
Using the routeMixedSignal Command . 817

Editing a Constraint File . 818
Using the Mixed Signal Constraint Editor . 818
Using a Text Editor . 819

Sample Constraint File . 820

23
Digital Mixed Signal Flow . 825

Overview . 827
Design Data and Technology Data Preparation . 830

Software Requirements . 830
Library and Technology Requirements . 830
Generic Guidelines to Run the DMS Flow . 830
Technology Library Preparation . 832
IP Library Preparation . 843

Flow to Convert the EDI System Database to OpenAccess Database 845
DMS Floorplanning Flow . 846
October 2010 24 Product Version 9.1.3

Encounter Digital Implementation System User Guide
DMS Flow Diagram . 847
Verilog Netlist Creation . 848
Floorplanning of Verilog Netlist Using Blackboxes . 849
Generate From Source for Soft Analog Block Layout Using Virtuoso 853
Load Physical View to Merge Optimized Pin Locations and Block Boundary 857
Physical Implementation of Soft Analog Blocks Using Virtuoso 859
Physical Implementation of Soft Digital Blocks Using EDI System 860
Top-level Analog Net and Power Routing . 860
Assembling the Design . 861
Place and Route of Digital Portion at the Top and Early Digital ECO’s 861
Quick Abstract Inference . 862

Static Timing Analysis for Mixed-Signal Designs . 867
The FTM Generation Flow Diagram . 867
Guidelines to Run FTM-Based STA Flow . 868
Steps to Run Static Timing Analysis . 869

Chip Finishing and ECO Flows . 874
Overview . 874
Virtuoso-Based ECO Flow . 875
EDI System-Based ECO Flow . 877

24
Optimizing Metal Density . 883

Overview . 884
Before You Begin . 885

Adding Metal Fill in Multiple-CPU Processing Mode . 885
After You Complete Adding Via and Metal Fill . 885
Metal Fill Features . 886

Staggered Metal Fill Pattern . 886
Connected and Floating Metal Fill . 887
Timing-Aware Metal Fill . 891

Specifying Metal Fill Parameters . 893
Recommendations for Adding Timing-Aware Metal Fill . 894

Timing-Aware Examples . 895
Specifying the Active Spacing Value . 896

Adding Metal Fill Over Macros . 897
October 2010 25 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Recommendations for Power Strapping Mode . 898
Adding Via Fill . 898
Recommendations for Metal/Via Fill Flow . 899
Achieving Gradient Density with Preferred Density Setting . 902
Trimming Metal Fill . 904
Verifying Metal Density . 905
Adding Metal Fill Using the GUI . 906
Adding Metal Fill with Iteration . 906

25
Timing Budgeting . 909

Overview . 910
Is My Design Ready for Budgeting? . 912
Deriving Timing Budgets . 913

Budgeting Using the GUI . 913
Budgeting Using Text Commands . 913
Top-Level Budgets Derived by Using Active Logic View . 914
Deriving Preliminary Budgets in Early Design Phase . 915

Budgeting Output Files for MMMC Designs . 917
Corner Cloning . 917
Mode Cloning . 918

Setup and View Handling for MMMC Designs . 919
Constraints Adjustment . 920
Analyzing Timing Budgets . 922

Resolving Conflicts with Path-Based Exceptions . 922
Budgeting Clock Latency in Propagated Mode . 925

Budgeting Libraries . 927
Resolving Conflicts with Path-based Exceptions . 927
Defining Clocks Inside the Partition . 930

Calculating Timing Budgets . 932
Customizing Budget Generation . 935
Verifying Timing Budgets . 936
Reading the Justify Budget Report . 937

Design Example . 939
SDC Constraints for Design Example . 940
October 2010 26 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Generated Report for Design Example . 940
Constraints Support in Budgeting . 942
Warning Report . 945

Pin Constraint Values Greater than Available Time . 945
Warning Report Example . 945

26
RC Extraction . 947

Overview . 948
Before You Begin . 950

Results . 950
Specifying Temporary File Locations . 950

Extraction Flow in EDI System . 951
Preroute Extraction . 952
Postroute Extraction . 952

Native Detailed . 952
TQRC and IQRC . 953
Incremental Extraction Support for Design Changes . 955
Sign-Off Extraction Using QRC . 957
Inputs for QRC Sign-Off Extraction . 957

Scale Factor Setting . 957
Generating a Capacitance Table . 958

Inputs for Generating a Capacitance Table . 958
Capacitance Table Generation Flow . 959
Generating Capacitance Table With Specified Scaling Factors 964

Reading a Capacitance Table . 965
Reading a QRC Techfile . 966
Correlating Native Extraction With Sign-Off Extraction . 967

Correlating SPEF Files Using the Ostrich Utility . 968
Comparing SPEF Files Using a Perl Script . 971
Defining the Scaling Factor . 974

Distributed Processing . 975
Setting-up Distributed Processing . 975
Generating a Capacitance Table in Multi-CPU Mode . 976
Performing IQRC, TQRC, and Standalone QRC Extraction in Multi-CPU Mode . . . 976
October 2010 27 Product Version 9.1.3

Encounter Digital Implementation System User Guide
27
Calculating Delay . 979

Overview . 980
Data Preparation . 981

Operating Conditions . 981
ECSM Libraries . 981

Delay Calculation Modes and Related Controls . 982
Choosing A Delay Calculation Engine . 983
Running Delay Calculation . 983
Calculating Delay in Multi-Thread Mode . 983

28
Timing Analysis . 985

Overview . 986
Timing Analysis Features . 987
Before You Begin . 988
Reading Timing Libraries . 989

Resolving Discrepancies in Timing Libraries . 989
Reading Timing Constraints . 990

Constraints Quick Reference . 990
Timing Analysis Results . 992
Setting Operating Conditions . 993
Calculating Clock Latency . 994
Defining RC Corners . 995
Specifying Timing Analysis Modes . 997

Definition of Early and Late Paths . 997
Single Timing Analysis Mode . 999
Best-Case Worst-Case (BC-WC) Timing Analysis Mode . 1003
On-Chip Variation (OCV) Timing Analysis Mode . 1008

Clock Path Pessimism Removal . 1013
Analyzing Timing Problems . 1019

Resolving Buffer-Related Problems . 1020
October 2010 28 Product Version 9.1.3

Encounter Digital Implementation System User Guide
29
Debugging Timing Results . 1023

Overview . 1024
Timing Debug Flow . 1025
Generating Timing Debug Report . 1026
Displaying Violation Report . 1026
Analyzing Timing Results . 1027

Viewing Power Domain Information . 1032
Creating Path Categories . 1033

Creating Predefined Categories . 1033
Creating New Categories . 1034
Creating Sub-Categories . 1036
Hiding path categories . 1040
Reporting Path Categories . 1040

Using Categories to Analyze Timing Results . 1042
Analyzing MMMC Categories . 1043
Manual Slack Correction of Categories . 1046

Editing Table Columns . 1046
Cell Coloring . 1048

Viewing Schematics . 1050
Running Timing Debug with Interface Logic Models . 1051

30
Statistical Static Timing Analysis . 1053

SSTA Overview . 1054
SSTA Inputs . 1058
Libraries with sensitivities . 1059
Statistical Parameter Distribution Format (SPDF) File . 1061

Specifying Global or Die-to-Die Variations in SPDF File . 1061
Specifying Random Variations in SPDF File . 1061
Specifying Spatial Variations in SPDF File . 1062

Sensitivity-Based SPEF (S-SPEF) File . 1063
Loading the S-SPEF File . 1063

SSTA Flows . 1064
October 2010 29 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Running Block-Based SSTA . 1065
Running Path-Based SSTA . 1066
SSTA Outputs . 1067

Block-Based SSTA Report . 1067
Path-Based SSTA Report . 1069

SSTA Correlation With Monte-Carlo Analysis . 1071

31
Extracting Timing Models . 1073

ETM Overview . 1074
Using ETMs in Different Timing Analysis Modes . 1075
Limitation of Timing Models . 1076

ETM Inputs . 1078
Guidelines for Generating ETMs . 1079
ETM Generation Flow . 1081

Validating the Generated Model . 1083
Reducing the Size of GreyBox Models . 1084

ETM Outputs . 1086
Timing Library File . 1086

Boundary Nets . 1086
Internal Nets . 1087
Timing Paths . 1087
Minimum Pulse Width and Minimum Period . 1088
Path Exceptions . 1089
Constants . 1089
Gating Checks . 1089
Annotated Delays and Slews . 1090
Design Rules . 1091
Generated Clocks . 1091

Timing Constraints Files . 1094
set_false_path and set_multicycle_path constraints . 1094
set_disable_timing and set_case_analysis . 1094
create_clock and create_generated_clock . 1095
set_input_delay and set_output_delay . 1095
Design Rules . 1095
October 2010 30 Product Version 9.1.3

Encounter Digital Implementation System User Guide
set_load, set_resistance and set_annotated_transition . 1095
set_annotated_delay and set_annotated_check . 1096
set_input_transition and set_driving_cell . 1096

32
Optimizing Timing . 1097

Overview . 1098
Before You Begin . 1098
Results . 1099
Interrupting Timing Optimization . 1101
Performing Optimization Before Clock Tree Synthesis . 1102

Correcting Violations in Pre-CTS Mode for the First Time 1102
Performing Rapid Timing Optimization for Design Prototyping 1103
Using Additional Pre-CTS Timing Optimization Parameters 1103
Performing Incremental Pre-CTS Optimization . 1104
Changing Default Settings in Pre-CTS Mode . 1105

Performing Post-CTS Optimization . 1106
Correcting Violations in Post-CTS Mode . 1106
Using Additional Post-CTS Timing Optimization Parameters 1107
Performing Incremental Post-CTS Optimization . 1108
Changing Default Settings in Post-CTS Mode . 1109

Performing Postroute Optimization . 1110
About Postroute Optimization . 1110
Correcting Violations in Postroute Mode . 1112
Correcting Signal Integrity Violations . 1114
Changing Default Settings in Postroute Mode . 1115

Optimizing Power During optDesign . 1116
Leakage Power Optimization . 1116
Dynamic Power Optimization . 1116

Using Useful Skew . 1117
Using Useful Skew in Pre-CTS Mode . 1117
Using Useful Skew in Post-CTS Mode . 1118
Controlling Useful Skew Optimization . 1118

Using Active Logic View for Chip-Level Interface Circuit Timing Closure 1119
Optimizing Timing in On-Chip Variation Analysis Mode . 1120
October 2010 31 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Specifying the MMMC Environment . 1121
Optimizing Timing in OCV Mode Using the Default Delay Calculator 1123
Optimizing Timing in OCV Mode Using the Sign-Off Delay Calculator 1123

Using Conformal Constraint Designer During Timing Optimization 1123
Post-Processing Approach . 1124
Integrated Approach . 1124

Optimizing Timing Using a Rule File . 1127
Optimizing Timing When the Constraint File Includes the set_case_analysis Constraint . .
1127
Using the Footprintless Flow . 1127
Using Cell Footprints . 1128
AAE-Based SI Optimization . 1130

AAE-Based Setup and Hold Fixing . 1130
AAE SI Timing . 1131
Sample Flow Scripts . 1131

Viewing Added Buffers, Instances, and Nets . 1133
Default Naming Conventions . 1133

33
Interactive ECO . 1135

Overview . 1136
Before You Begin . 1136
Results . 1136
Adding Buffers . 1136
Changing the Cell . 1139
Deleting Buffers . 1141
Displaying Buffer Trees . 1143
Running ECO Placement . 1145
Naming Conventions for Interactive ECO . 1146
Comparing Physical Design Data . 1146

34
Integration with LPA and CCP. 1153

Overview . 1154
Before You Begin . 1154
October 2010 32 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Results . 1155
Running LPA from Encounter . 1155

Routing Layers Only Mode . 1155
Sign-Off Mode . 1164

Running CCP from Encounter . 1175
CCP Flow in Encounter . 1176
Running CCP in Cadence Model Flow . 1176
Running CMP Analysis in TSMC Model Flow . 1182
Viewing Hotspots . 1183

35
Analyzing and Repairing Crosstalk . 1185

Overview . 1186
Inputs and Outputs for SI Analysis . 1187
Setting Up Encounter for SI Analysis . 1188

RC Extraction Settings . 1188
Noise Analysis Settings . 1190
Static Timing Analysis (STA) Settings . 1193
Advanced Settings for SI Analysis . 1194
Example of Setting Up Encounter for SI Analysis . 1198

Preventing Crosstalk Violations . 1199
Fixing Crosstalk Violations . 1200

Data Preparation . 1200
Using optDesign to Fix Setup Violations with Crosstalk Effects 1201
Using optDesign to Fix Hold Violations with Crosstalk Effects 1203
Using optDesign to Fix Transition Time Violations with Crosstalk Effects 1205

Performing XILM-Based SI Analysis and Fixing . 1208

36
Power and Rail Analysis . 1209

Early Rail Analysis . 1210
Early Rail Analysis Key Features . 1210
Prior to Running Early Rail Analysis . 1211
Setting up and Running Early Rail Analysis . 1212
Running Early Rail Analysis in Unplaced Mode . 1224
October 2010 33 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Viewing Early Rail Analysis Results . 1225
Signoff-Rail Analysis . 1230
EDI System and EPS menu differences . 1231

37
Verifying Violations . 1233

Overview . 1234
Test . 1236
Interrupting Verification . 1237
Verifying Connectivity . 1238

Before You Begin . 1238
Types of Connectivity Violations Reported . 1238
Results . 1239

Verifying Metal Density . 1240
Before You Begin . 1240
Results . 1240
Verifying Metal Density in Multi-Thread Mode . 1241

Verifying Geometry . 1242
Before You Begin . 1242
Verifying Geometry in Multi-Thread Mode . 1243
Spacing Violation Checks . 1244
Types of Antenna Violations Reported . 1244
Support for Via Rules . 1245
Results . 1246

Verifying Process Antennas . 1247
Before You Begin . 1247
Verifying PAE . 1247
Results . 1247
Sample Process Antenna Report . 1248

Verifying Maximum Floating Area Violations . 1250
Verifying AC Limit . 1251

Before You Begin . 1251
Results . 1251

Viewing Violations With the Violation Browser . 1252
Viewing Geometry or Metal Density Violations . 1252
October 2010 34 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Viewing Connectivity, Process Antenna, or AC Limit Violations 1252
Viewing Violation Markers From Assura or Calibre . 1252
Violation Browser Features . 1253

Clearing Violations . 1255

38
Analyzing Yield. 1257

Overview . 1258
What Effects Does reportYield Consider? . 1258
Calculating Failure Probabilities . 1259

Critical Area Analysis . 1260
Defect Data and Cumulative Defect Data Functions . 1261

Before You Begin . 1261
Results . 1261
Interrupting Yield Analysis . 1262
Interpreting the Yield Map . 1263

Displaying the Yield Map . 1263
Interpreting the Yield Report . 1266

Yield Report . 1266
Detailed Report . 1270

Understanding the Yield Technology File . 1272
File Format . 1272
File Sections and Keyword Statement Descriptions . 1274
Yield Technology File Example . 1285

Formulas and Calculations . 1288
Calculating the Probability of Failure for a Metal Layer . 1288
Calculating Defect and Cumulative Defect Data . 1288
Cost Formulas . 1291

39
Creating An Initial Floorplan Using Automatic Floorplan
Synthesis . 1293

Overview . 1294
Automatic Floorplan Synthesis Flow . 1295
October 2010 35 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation . 1297
Selecting Seeds . 1297

Importing the Design . 1303
Setting Automatic Floorplan Synthesis Global Parameters . 1304
Creating an Initial Floorplan . 1304
Creating Floorplan for Hierarchical Design . 1305

Macro placement . 1306
Full-chip Floorplan . 1307
Power-Domain Aware Floorplan . 1308

Creating Multiple Alternative Floorplans . 1310
Analyzing the Floorplan . 1311
Adjusting Macro Placement . 1312

Manual Macro Adjustment . 1313
Automatic Floorplan Synthesis Macro Adjustment . 1313

Saving the Floorplan . 1318

40
Performing Multi-Mode Multi-Corner Timing Analysis and
Optimization . 1319

Overview . 1321
Configuring the Setup for Multi-Mode Multi-Corner Analysis . 1322

Creating Library Sets . 1323
Creating Virtual Operating Conditions . 1324
Creating RC Corner Objects . 1325
Creating Delay Calculation Corner Objects . 1326
Adding A Power Domain Definition To A Delay Calculation Corner 1328
Creating Constraint Mode Objects . 1329
Creating Analysis Views . 1333
Setting Active Analysis Views . 1334
Checking the Multi-Mode Multi-Corner Configuration . 1335
Saving Multi-Mode Multi-Corner Configurations . 1336

Controlling Multi-Mode Multi-Corner Analysis Through the Flow 1336
Performing Timing Analysis . 1338
Generating Timing Reports . 1339
Performing Timing Optimization . 1339
October 2010 36 Product Version 9.1.3

Encounter Digital Implementation System User Guide
41
Creating the ICT File . 1341

Format . 1342
Data . 1342
Comments . 1342
Case Sensitivity . 1342
Warnings and Errors . 1342
Invalid Layer Names . 1342
Commands . 1342
Sample ICT File . 1355

42
ECO Flows . 1367

Overview . 1368
Assumptions . 1368
Flows . 1368

Pre-Mask ECO Changes from a New Verilog File . 1370
Preparation . 1370
Flow . 1370
Steps . 1371

Pre-Mask ECO Changes from a New DEF File . 1374
Preparation . 1374
Flow . 1375
Steps . 1375

Pre-Mask ECO Changes from an ECO File . 1378
Preparation . 1378
Flow . 1379
Steps . 1379

Post-Mask ECO Changes from a New Verilog Netlist . 1382
Preparation . 1382
Flow . 1383
Steps . 1383

Post-Mask Gate Array Style ECO from a New Verilog Netlist 1388
Preparation . 1388
October 2010 37 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Steps . 1390

43
ECO Directives. 1393

ADDHIERINST . 1395
ADDINST . 1396
ADDMODULEPORT . 1398
ADDNET . 1399
ATTACHMODULEPORT . 1400
ATTACHTERM . 1401
DELETEBUFFER . 1403
DELETEINST . 1405
DELETEMODULEPORT . 1406
DELETENET . 1407
DETACHMODULEPORT . 1408
DETACHTERM . 1409
INSERTBUFFER . 1410
Example ECO File . 1413

44
Clock Mesh Specification File . 1415

Overview . 1415
Routing Type Definitions . 1416
Cutout Definitions . 1416
Clock Mesh Definitions . 1417

Timing and Power Constraints Section . 1418
Tracing and Analysis Scope Section . 1419
Mesh Structure Section . 1420
Global Mesh Section . 1421
Analysis Section . 1434
Top Chain Section . 1434
Local Tree Section . 1436

Clock Mesh Specification File Example . 1439
October 2010 38 Product Version 9.1.3

Encounter Digital Implementation System User Guide
45
Supported CPF 1.0 Commands . 1445

46
Supported CPF 1.0e Commands . 1455

47
Supported CPF 1.1 Commands . 1469

48
CPF 1.0 Script Example . 1483

49
CPF 1.0e Script Example. 1495

50
CPF 1.1 Script Example . 1501

51
Cadence-Specific Liberty Extensions . 1507

Overview . 1507
Guidelines For Adding ECSM Extensions . 1508
Representing ECSM Information in a Library . 1508
Defining ECSM Extensions in a Library . 1509

ecsm_waveform Group . 1511
ecsm_waveform_set Group . 1514
ecsm_capacitance Group . 1516

Example . 1520

Index. 1529
October 2010 39 Product Version 9.1.3

Encounter Digital Implementation System User Guide
October 2010 40 Product Version 9.1.3

Encounter Digital Implementation System User Guide
About This Manual

The Cadence® Encounter® Digital Implementation System family of products provides an
integrated solution for an RTL-to-GDSII design flow. This manual describes how to install,
configure, and use Encounter Digital Implementation System (EDI System) to implement
digital integrated circuits.

Audience

This manual is written for experienced designers of digital integrated circuits. Such designers
must be familiar with design planning, placement and routing, block implementation, chip
assembly, and design verification. Designers must also have a solid understanding of UNIX
and Tcl/Tk programming.

How This Manual Is Organized

The chapters in this manual are organized to follow the flow of tasks through the design
process. Because of variations in design implementations and methodologies, the order of
the chapters will not correspond to any specific design flow.

Each chapter focuses on the concepts and tasks related to the particular design phase or
topic being discussed.

In addition, the following sections provide prerequisite information for using the EDI System
software:

■ Chapter 2, “Getting Started”

Describes how to install, set up, and run the EDI System software, and use the online
Help system.

■ Chapter 5, “Data Preparation”

Describes how to prepare data for import into the EDI System software.
October 2010 41 Product Version 9.1.3

Encounter Digital Implementation System User Guide
About This Manual
Conventions Used in This Manual

This section describes the typographic and syntax conventions used in this manual.

text Indicates text that you must type exactly as shown. For
example:

analyze_connectivity -analyze all

text Indicates information for which you must substitute a name
or value.

In the following example, you must substitute the name of a
specific file for configfile:

wroute -filename configfile

text Indicates the following:

■ Text found in the graphical user interface (GUI),
including form names, button labels, and field names

■ Terms that are new to the manual, are the subject of
discussion, or need special emphasis

■ Titles of manuals

[] Indicates optional arguments.

In the following example, you can specify none, one, or
both of the bracketed arguments:

command [-arg1] [arg2 value]

[|] Indicates an optional choice from a mutually exclusive list.

In the following example, you can specify any of the
arguments or none of the arguments, but you cannot
specify more than one:

command [arg1 | arg2 | arg3 | arg4]

{ | } Indicates a required choice from a mutually exclusive list.

In the following example, you must specify one, and only
one, of the arguments:

command {arg1 | arg2 | arg3}
October 2010 42 Product Version 9.1.3

Encounter Digital Implementation System User Guide
About This Manual
Related Documents

For more information about the EDI System family of products, see the following documents.
You can access these and other Cadence documents with the Cadence Help online
documentation system.

EDI System Foundation Flows Documentation

■ Encounter Digital Implementation System Foundation Flows User Guide

Describes how to use the scripts that represent the recommended implementation flows
for digital timing closure with the EDI System software.

■ Encounter Digital Implementation System Foundation Flows: Flat
Implementation Flow Guide

{[] []} Indicates a required choice of one or more items in a list.

In the following example, you must choose one argument
from the list, but you can choose more than one:

command {[arg1] [arg2] [arg3]}

{ } Indicates curly braces that must be entered with the
command syntax.

In the following example, you must type the curly braces:

command arg1 {x y}

... Indicates that you can repeat the previous argument.

.

.

.

Indicates an omission in an example of computer output or
input.

Command – Subcommand Indicates a command sequence, which shows the order in
which you choose commands and subcommands from the
GUI menu.

In the following example, you choose Power from the
menu, then Power Planning from the submenu, and then
Add Rings from the displayed list:

Power – Power Planning – Add Rings

This sequence opens the Add Rings form.
October 2010 43 Product Version 9.1.3

../flowSetup/flowSetupTOC.html#firstpage
../flatImpl/flatImplTOC.html#firstpage
../flatImpl/flatImplTOC.html#firstpage

Encounter Digital Implementation System User Guide
About This Manual
Describes the default-effort flat implementation flow, using the EDI System software.

■ Encounter Digital Implementation System Foundation Flows: Hierarchical
Implementation Flow Guide

Describes the default-effort hierarchical implementation flow, using the EDI System
software.

■ Encounter Digital Implementation System Foundation Flows: CPF-Based Low-
Power Implementation Flow Guide

Describes the CPF-Based Low Power implementation flow, using the EDI System
software.

EDI System Product Documentation

■ What’s New in Encounter Digital Implementation System

Provides information about new and changed features in this release of the EDI System
family of products.

■ Encounter Digital Implementation System Known Problems and Solutions

Describes important Cadence Change Requests (CCRs) for the EDI System family of
products, including solutions for working around known problems.

■ Encounter Digital Implementation System Text Command Reference

Describes the EDI System text commands, including syntax and examples.

■ Encounter Digital Implementation System Menu Reference

Provides information specific to the forms and commands available from the EDI System
graphical user interface.

■ Encounter Digital Implementation System Database Access Command
Reference

Lists all of the EDI System database access commands and provides a brief description
of syntax and usage.

■ Encounter Digital Implementation System Library Development Guide

Describes library development guidelines for the independent tools that make up the EDI
System family of products.

■ README file
October 2010 44 Product Version 9.1.3

../hierImpl/hierImplTOC.html#firstpage
../LPImpl/LPImplTOC.html#firstpage
../LPImpl/LPImplTOC.html#firstpage
../soceWN912/soceWN912TOC.html#firstpage
../soceKPNS/soceKPNSTOC.html#firstpage
../fetxtcmdref/fetxtcmdrefTOC.html#firstpage
../encounter/encounterTOC.html#firstpage
../soceDBAref/soceDBArefTOC.html#firstpage
../socelibdev/socelibdevTOC.html#firstpage

Encounter Digital Implementation System User Guide
About This Manual
Contains installation, compatibility, and other prerequisite information, including a list of
Cadence Change Requests (CCRs) that were resolved in this release. You can read this
file online at downloads.cadence.com.

For a complete list of documents provided with this release, see the Cadence Help online
documentation system.

9/23/10
October 2010 45 Product Version 9.1.3

http://downloads.cadence.com

Encounter Digital Implementation System User Guide
About This Manual
October 2010 46 Product Version 9.1.3

Encounter Digital Implementation System User Guide
1
Product and Licensing Information

■ Overview on page 48

■ About EDI System Products and Product Options on page 48

❑ EDI System on page 48

❑ First Encounter Hierarchical Prototyping Solution on page 49

❑ EDI System Product Options on page 50

■ About EDI System Licenses on page 52

❑ Licensing Terminology on page 52

❑ Checking Out Licenses for Product Options on page 53

❑ Advanced Node License Required for 32 nm DRC Rules
October 2010 47 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Product and Licensing Information
Overview

Each Cadence® EDI System product is sold as part of a product package. Product packages
may also include product options. The options provide advanced features and capabilities,
such as support for the common power format, the ability to route mixed signal designs or to
avoid and correct lithography problems .

Each product and product option has a corresponding license. The software uses licenses to
determine the features that are available when the software runs.

About EDI System Products and Product Options

This release of the EDI System software includes the following product packages and
options:

■ EDI System on page 48

■ First Encounter Hierarchical Prototyping Solution on page 49

■ EDI System Product Options on page 50

EDI System

This package includes the products listed in Table 1-1 on page 49. To start any of these
products, type the following UNIX/Linux command:

encounter

Note: You can use the velocity command for backward compatibility. Starting from the 9.1
release, encounter and velocity commands have the same behavior. However, it is
recommended that you use the encounter command.
October 2010 48 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Product and Licensing Information
Table 1-1 EDI System Products

First Encounter Hierarchical Prototyping Solution

In addition to the products listed in Table 1-1 on page 49, the encounter and velocity
commands can be specified to start the products that belong to the First Encounter
Hierarchical Prototyping Solution, which are listed in Table 1-2 on page 49. To start any of
these products, type the following UNIX/Linux command:

encounter

Table 1-2 First Encounter Hierarchical Prototyping Solution

Name Abbreviation Prod.
Num. Description

Encounter Digital
Implementation System
L

EDS-L EDS100 An automatic digital implementation system for
high-performance block-level implementation from
RTL synthesis to GDSII with end-to-end multiple-
CPU functionality on a configurable, extensible,
and scalable platform. Limited to 300,000
instances in the netlist.

Encounter Digital
Implementation System
XL

EDS-XL EDS200 Has all the features of EDS-L without the 300,000
instance limitation. In addition, this product
supports hierarchical designs.

NanoRoute® Ultra SoC
Routing Solution

NRU FE150 Optimized routing and routing verification system
with utmost in speed and capacity for signal
integrity, timing, and interconnect optimization for
manufacturability.

Virtuoso® Digital
Implementation

VDI 3002 Has all the features of EDS-L and adds RTL
Compiler functionality for logic synthesis. Limited
to 50,000 instances in the netlist.

Name Abbreviation Prod.
Num. Description

First Encounter™ L FE-L FE80 An automatic silicon virtual prototyping and
hierarchical partitioning solution with built-in power
planning and floorplanning.
October 2010 49 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Product and Licensing Information
EDI System Product Options

The product options provide the extendibility and cost-effective access to additional advanced
technologies for specific design needs, such as low power design, mixed signal design,
design at advanced nodes and signoff analysis . These product options are available with
both EDI System and First Encounter Hierarchical Prototyping Solution product packages.

The EDI System includes the following product options:

Table 1-3 EDI System Product Options

First Encounter XL FE-XL FE100
GPS

Has all the features of First Encounter XL. In
addition, this product supports RTL, global
physical and clock-tree synthesis.

First Encounter GXL FE-GXL FE800 Has all the features of First Encounter XL. In
addition, this product supports advanced design
for yield (DFY) features.

Name Abbreviation Prod.
Num. Description

Encounter Low Power
GXL Option

ENC-LP Opt. EDS10 Adds advanced low-power functionality by
automating multiple power domain and power-
switch-aware floorplan synthesis, implementation,
and routing, enabled by full common power format
(CPF) support.

Encounter Mixed
Signal GXL Option

ENC-MS Opt. EDS20 Adds mixed signal functionality by allowing you to
transfer design data and routing constraints
between the custom (Virtuoso) and digital design
environments and route the design with the
Encounter mixed signal router.

Note: For mixed signal designs and viewing data
on OpenAccess database, Virtuoso IC6.1 or later
is required.

Name Abbreviation Prod.
Num. Description
October 2010 50 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Product and Licensing Information
Note: The EDS30 and EDS50 product options provide an interface to standalone LPA and
CCP. However, to run these standalone applications you require LPA and CCP licenses.

For more information on these products and options, see EDI System Licensing and
Packaging on SourceLink®.

Encounter Advanced
Node GXL Option

ENC-AN Opt. EDS30 Adds new 32 nm rules support, concurrent
design for yield/design for manufacturing
capability by preventing lithography hotspots and
analyzing and optimizing them if they occur,
support for on-chip/off-chip variation mode and
statistical static timing analysis (SSTA).

For more information on 32 nm rules
licensing, see Advanced Node License
Required for 32 nm DRC Rules.

Encounter DFM GXL
Option

ENC-DFM
Opt.

EDS50 Enables Turbo LPA and brings Litho Physical
Analysis in the design implementation loop, and
allows early detection and screening of potential
litho hotspots.

Name Abbreviation Prod.
Num. Description
October 2010 51 Product Version 9.1.3

http://sourcelink.cadence.com/docs/files/Docs/EDISLicPkg.pdf
http://sourcelink.cadence.com/docs/files/Docs/EDISLicPkg.pdf

Encounter Digital Implementation System User Guide
Product and Licensing Information
About EDI System Licenses

When you run a command to invoke a product or product option, a license is checked out.
Each product and product option has a unique license string (also called a license key). The
following table lists the product and product option names and provides the corresponding
license strings.

Table 1-4 Product and product options and corresponding license strings

Licensing Terminology

The following terminology is useful in understanding licenses.

Base license
The license that is checked out when the software starts. Only a full-fledged product
license can be used as a base license. You cannot use a product option license as a base
license to start the software.

Dynamic license
A license for a product option that is not checked out until a feature provided by the
product option is needed. You can check out more than one dynamic license per base

Product or option License string

Encounter Digital Implementation System L Encounter_Digital_Impl_Sys_L

Encounter Digital Implementation System XL Encounter_Digital_Impl_Sys_XL

NanoRoute Ultra Routing Solution NanoRoute_Ultra

Virtuoso Digital Implementation Virtuoso_Digital_implement

First Encounter L First_Encounter_VIP

First Encounter XL First_Encounter_GPS

First Encounter GXL First_Encounter_GXL

Encounter Advanced Node GXL option Encounter_Adv_Node_GXL

Encounter Low Power GXL option Encounter_Low_Power_GXL

Encounter Mixed Signal GXL option Encounter_Mixed_Signal_GXL

Encounter DFM GXL option Encounter_DFM_GXL
October 2010 52 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Product and Licensing Information
license. For more information on dynamic licenses, see “Checking Out Licenses for
Product Options” on page 53.

Multi-CPU license
A license that enables additional CPUs for multithreading, Superthreading, or distributed
processing. Multi-CPU licenses must be product licenses, and can be checked out after
the base license is checked out. You can check out more than one multi-CPU license per
base license. For more information on multi-CPU licenses, see EDI System Licensing
and Packaging on SourceLink®.

Checking Out Licenses for Product Options

■ The following command specifies the product options to be checked out when you invoke
the software. The product options specified with the -checkoutList parameter are
checked out immediately and the product options specified with the -optionList
parameter are checked out dynamically.

encounter -checkoutList "option1 option2 …" -optionList "option1 option2 …"

Note: If you do not want any product options to be checked out dynamically, use empty
quotes with the -optionList parameter, as follows:

encounter -checkoutList "option1 option2 …" -optionList " "

■ The following command can be used to check out product options after you have invoked
the software. The product option specified with the -checkoutList parameter is
checked out immediately and the product options specified with the -optionList
parameter are checked out dynamically.

setLicenseCheck -checkout option -optionList "option1 option2 …"

With the -checkOut parameter, you can specify only one product option.

Note: If you do not want any product options to be checked out dynamically, use empty
quotes with the -optionList parameter, as follows:

setLicenseCheck -checkout option -optionList " "

Important

You cannot check out a license for a product option if you have not checked out a
base license.

Advanced Node License Required for 32 nm DRC Rules

Newly added DRC rules for 32 nm and smaller process nodes require an Advanced Node
license.
October 2010 53 Product Version 9.1.3

http://sourcelink.cadence.com/docs/files/Docs/EDISLicPkg.pdf
http://sourcelink.cadence.com/docs/files/Docs/EDISLicPkg.pdf
../fetxtcmdref/generalT.html#setLicenseCheck
../fetxtcmdref/generalT.html#setLicenseCheck

Encounter Digital Implementation System User Guide
Product and Licensing Information
Note: The Advanced Node license for 32 nm support is required when running NanoRoute
commands and optDesign -postRoute command (which uses NanoRoute).

The LEF property keywords used for these rules that require an Advanced Node license are
highlighted below in bold text:

Layer (Cut)

[PROPERTY LEF58_TYPE
“TYPE [TSV | PASSIVATION] ;” ;]

[PROPERTY LEF58_BACKSIDE
“BACKSIDE ;” ;]

[PROPERTY LEF58_CUTCLASS
"CUTCLASS className WIDTH viaWidth [LENGTH viaLength] [CUTS numCut]

 ;” ;]

[PROPERTY LEF58_SPACING
"SPACING cutSpacing

[MAXXY
|[CENTERTOCENTER]
[SAMENET | SAMEMETAL | SAMEVIA]
[LAYER secondLayerName [STACK]
| ADJACENTCUTS {2 | 3 | 4} [EXACTALIGNED exactAlignedCut]

WITHIN cutWithin [EXCEPTSAMEPGNET][CUTCLASS className]
[SIDEPARALLELOVERLAP]

| PARALLELOVERLAP [EXCEPTSAMENET | EXCEPTSAMEMETAL | EXCEPTSAMEVIA]
| PARALLELWITHIN within [EXCEPTSAMENET]
| SAMEMETALSHAREDEDGE parwithin [ABOVE][CUTCLASS className]

[EXCEPTTWOEDGES] [EXCEPTSAMEVIA numCut]
| AREA cutArea] ;" ;]

[PROPERTY LEF58_ENCLOSUREEDGE
"ENCLOSUREEDGE [CUTCLASS className][ABOVE | BELOW] overhang

WIDTH minWidth PARALLEL parLength WITHIN parWithin
 [EXCEPTEXTRACUT [cutWithin]]
 [EXCEPTTWOEDGES]
 ;" ;]

[PROPERTY LEF58_ENCLOSURE
“ENCLOSURE [CUTCLASS className][ABOVE | BELOW]

{overhang1 overhang2 | END overhang1 SIDE overhang2}
[WIDTH minWidth

[EXCEPTEXTRACUT cutWithin [PRL | NOSHAREDEDGE]]
| LENGTH minLength
| EXTRACUT
| REDUNDANTCUT cutWithin
];” ;]
October 2010 54 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Product and Licensing Information
[PROPERTY LEF58_SPACINGTABLE
“SPACINGTABLE

[ORTHOGONAL
{WITHIN cutWithin SPACING orthoSpacing} ... ;

|[DEFAULT defaultCutSpacing]
[SAMENET | SAMEMETAL]
[LAYER secondLayerName]
[CENTERTOCENTER { {className1 | ALL}| TO {className2 | ALL}

}...]
CUTCLASS { {className1 | ALL} [SIDE | END]}...

{{className2 | ALL} [SIDE | END] {-|cutSpacing}
{-|cutSpacing}...}...;

]
;” ;

[PROPERTY LEF58_ARRAYSPACING
"ARRAYSPACING [CUTCLASS className] [PARALLELOVERLAP]

[LONGARRAY] [WIDTH viaWidth] CUTSPACING cutSpacing
{ARRAYCUTS arrayCuts SPACING arraySpacing} ... ;
];” ;

[PROPERTY LEF58_ENCLOSUREWIDTH
"ENCLOSUREWIDTH VIAOVERLAPONLY
; " ;]

Layer (Routing)

[PROPERTY LEF58_BACKSIDE
“BACKSIDE ;” ;]

[PROPERTY LEF58_AREA
"AREA minArea

[[EXCEPTMINWIDTH minWidth]
| [EXCEPTEDGELENGTH minLength]

[EXCEPTMINSIZE minWidth minLength] ;" ;]

[PROPERTY LEF58_SPACING
"SPACING eolSpace ENDOFLINE eolWidth [OPPOSITEWIDTH oppositeWidth]

WITHIN eolWithin
[ENDTOEND endToEndSpace [OTHERENDWIDTH otherEndWidth]]
[MAXLENGTH maxLength
|MINLENGTH minLength [TWOSIDES]]
[EQUALRECTWIDTH]
[PARALLELEDGE [SUBTRACTEOLWIDTH] parSpace WITHIN parWithin

[MINLENGTH minLength] [TWOEDGES]]
 [ENCLOSECUT [BELOW | ABOVE] encloseDist CUTSPACING cutToMetalSpace]

;" ;]

[PROPERTY LEF58_SPACINGTABLE
"SPACINGTABLE

PARALLELRUNLENGTH {length} ...
{WIDTH width {spacing} ...} ... ;
October 2010 55 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Product and Licensing Information
[SPACINGTABLE
INFLUENCE {WIDTH width WITHIN distance SPACING spacing} ... ;]

| TWOWIDTHS {WIDTH width [PRL runLength] {spacing} ...} ... ;
| PARALLELSPANLENGTH PRL runLength {SPANLENGTH spanLength {spacing} ... };

;";]

[PROPERTY LEF58_OPPOSITEEOLSPACING
"OPPOSITEEOLSPACING WIDTH width

ENDWIDTH eolWidth [MINLENGTH minLength]
[JOINTWIDTH jointWidth] JOINTLENGTH spanLength

{[JOINTTOEDGEEND jointToEdgeEndLength]
{[EXCEPTEDGELENGTH edgeLength [PRL maxPRL]]}...
ENDTOEND endSpacing endSpacing
ENDTOJOINT endSpacing jointSpacing
JOINTTOEND jointSpacing endSpacing
JOINTTOJOINT jointSpacing jointSpacing ;

;" ;]

[PROPERTY LEF58_MINSTEP
"MINSTEP minStepLength

[MAXEDGES maxEdges]
[MINADJACENTLENGTH minAdjLength
[CONVEXCORNER | minAdjLength2]
| MINBETWEENLENGTH minBetweenLength [EXCEPTSAMECORNERS]
] ;" ;]

[PROPERTY LEF58_EOLEXTENSIONSPACING
"EOLEXTENSIONSPACING spacing

{ENDOFLINE eolWidth EXTENSION extension
[ENDTOEND endToEndExtension]} ...

[MINLENGTH minLength [TWOSIDES]]
;" ;]

[PROPERTY LEF58_SPACINGTABLE
"SPACINGTABLE JOGTOJOGSPACING jogToJogSpacing

JOGWIDTH jogWidth SHORTJOGSPACING shortJogSpacing
{WIDTH width PARALLEL parLength WITHIN parWithin

LONGJOGSPACING longJogSpacing} ...
;";]

[PROPERTY LEF58_WIDTH
"WIDTH minWidth [WRONGDIRECTION]
; " ;]

[PROPERTY LEF58_MINWIDTH
"MINWIDTH minWidth [WRONGDIRECTION]
; " ;]
October 2010 56 Product Version 9.1.3

Encounter Digital Implementation System User Guide
2
Getting Started

■ Product and Installation Information on page 58

■ Setting the Run-Time Environment on page 58

■ Configuring OpenAccess on page 59

■ Launching the Console on page 60

■ Completing Command Names on page 60

■ Command-Line Editing on page 61

■ Setting Preferences on page 63

■ Starting the Software on page 66

■ Interrupting the Software on page 72

■ Using the Log File Viewer on page 75

■ Accessing Documentation and Help on page 77
October 2010 57 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
Product and Installation Information

For product, release, and installation information, see the README file at any of the following
locations:

■ downloads.cadence.com, where you can review the README before you download the
software

■ In the software installation, where it is also available when you are using or running the
software

For information about EDI System licenses, see About EDI System Licenses in the “Product
and Licensing Information” chapter.

Setting the Run-Time Environment

➤ To set the run-time environment, include the following installation directory in your path
install_dir/tools/bin by using the following command:

set path = (<install_dir>/tools/bin $path)

Supported and Compatible Platforms

The README file lists the supported and compatible platforms for this release.

Specifying the 64-Bit or 32-Bit Version of EDI System Applications

You can run the EDI System software in either 32-bit and 64-bit mode. The 32-bit version and
64-bit version of the software are installed in the same tools hierarchy. By default, software
runs in 32-bit mode if it is available.

Note: 32-bit versions of the software are not available for the following platforms:

❑ Sun (sol86 and sun4v)

❑ IBM AIX (ibmrs)

For more information, see the README file.

Use one of the following methods the specify the version to use:

■ Set the CDS_AUTO_64BIT environment variable before starting the software. For more
information, see Using the CDS_AUTO_64BIT Environment Variable on page 59.
October 2010 58 Product Version 9.1.3

http://downloads.cadence.com

Encounter Digital Implementation System User Guide
Getting Started
■ Use a command parameter when you start the software. For information, see Using
Generic Parameters to Specify 32- or 64-Bit Version on page 71.

Using the CDS_AUTO_64BIT Environment Variable

To run 64-bit versions of all or some applications, complete the following steps before starting
the software:

1. If you are using the lnx86 operating system, verify that it supports 64-bit applications.

2. Set the CDS_AUTO_64BIT environment variable.

For example,

❑ To run all applications in 64-bit mode, type the following command:

setenv CDS_AUTO_64BIT ALL

❑ To run just a few applications in 64-bit mode, such as NanoRoute® and CeltIC®, and
all other applications in 32-bit mode, type one of the following commands:

setenv CDS_AUTO_64BIT nanoroute:celtic

setenv CDS_AUTO_64BIT nanoroute,celtic

setenv CDS_AUTO_64BIT 'nanoroute;celtic'

Configuring OpenAccess

The EDI System software installs OpenAccess in the <Cadence_install_dir>/
directory. The software creates a symbolic link from <Cadence_install_dir>/share/
oa to the OpenAccess installation directory.

The software reports the version and data model of OpenAccess with which it was compiled.
For example, when you start the EDI System software, it displays a message similar to the
following:

INFO: This Encounter release has been compiled with OA data Model 4 and OA version
p006.

Important

Cadence recommends that you use the OpenAccess kit that comes with the EDI
System software for almost all uses.

However, if you decide to change the kit, use the OA_HOME environment variable to
override the default OpenAccess installation. Before setting this variable, make sure of
the following:
October 2010 59 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
❑ The version of the OpenAccess kit you specify must use the same or a newer data
model than the one that was included with the EDI System installation.

❑ The release data of the OpenAccess kit that you specify must be newer than the
release data of the one that was included with the EDI System installation.

To set the variable, type the following command:

setenv OA_HOME oa_install_dir

Where oa_install_dir is the path to the OpenAccess installation to use.

For information on the version of OpenAccess supported with this release, see the
README file.

Launching the Console

The window (shell tool, xterm, and so on) where you start the EDI System session is called
the EDI System console. You enter all EDI System text commands in the console window, and
the software displays messages there. When a session is active, the console displays the
following prompt:

encounter>

Note: If you started the software by using the velocity command, the console
displays the following prompt:

velocity>

If you use the console for other actions—for example, to use the vi editor—the session
suspends until you finish the action.

If you suspend the session by typing Control-z, the encounter> prompt is no longer
displayed. To return to the EDI System session, type fg, which brings the session to the
foreground.

Completing Command Names

Use the Tab key within the software console to complete text command names.

After you type a partial text command name and press the Tab key, the software displays the
exact command name that completes or matches the text you typed (if the string is unique to
one text command) or all the commands that match the text you typed.

For example, if you type the following text and press the Tab key

setPlace
October 2010 60 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
The software displays the following command:

setPlaceMode

If you type the following text and press the Tab key

setPl

The software displays the following commands:

setPlaceMode setPlanDesignMode

Command-Line Editing

The Encounter software provides a GNU Emacs–like editing interface. You can edit a line
before it is sent to the calling program by typing control characters or escape sequences. A
control character, shown below as a caret followed by a letter, is typed by holding down the
Control key when typing the character.

Most editing commands can be given a repeat count, n, where n is a number. To enter a
repeat count, press the Esc key, the number, and then the command to execute. For example,
Esc 4 ^f moves forward four characters. If a command can be given a repeat count, the
text [n] is shown at the end of its description.

You can type an editing command anywhere on the line, not just at the beginning. You can
press Return anywhere on the line, not just at the end.

Note: Editing commands are case sensitive: Esc F is not the same as Esc f.

Control (^) Characters

^A Move to the beginning of the line

^B Move left (backwards) [n]

^C Exits from editing mode, returning the console to normal EDI System mode

^D Delete character [n]

^E Move to end of line

^F Move right (forwards) [n]

^G Ring the bell

^H Delete character before cursor (backspace key) [n]

^I Complete filename (Tab key); see below
October 2010 61 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
Escape Sequences

^J Done with line (Return key)

^K Kill to end of line (or column [n])

^L Redisplay line

^M Done with line (alternate Return key)

^N Get next line from history [n]

^P Get previous line from history [n]

^R Search backward (forward if [n]) through history for text; must start line if text
begins with an up arrow

^T Transpose characters

^V Insert next character, even if it is an edit command

^W Wipe to the mark

^X^X Exchange current location and mark

^Y Yank back last killed text

^[Start an escape sequence (Esc key)

^]c Move forward to next character c

^? Delete character before cursor (Delete key) [n]

Esc ^H Delete previous word (Backspace key) [n]

Esc Delete Delete previous word (Delete key) [n]

Esc SP Set the mark (Space bar); see ^X^X and ^Y above

Esc . Get the last (or [n]’th) word from previous line

Esc < Move to start of history

Esc > Move to end of history

Esc b Move backward a word [n]

Esc d Delete word under cursor [n]

Esc f Move forward a word [n]

Esc l Make word lowercase [n]
October 2010 62 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
Setting Preferences

You set preferences at the beginning of a new design import. You can assign special
characters for the design import parser for Verilog®, DEF, and PDEF files, and control the
display of the Floorplan and Physical view windows. You can also change the hierarchical
delimiter character in the netlist before importing the design, and change the DEF hierarchical
default character and the PDEF bus default delimiter before loading the file.

Note: If you change the default values for the DEF delimiter or PDEF bus delimiter, these
changes become the default delimiters for the DEF and PDEF writers.

You can also change the control defaults while working in the floorplan. These defaults
include the snapping of the module guides, minimum module guides, minimum flight line
connection width, and route congestion.

For information on setting design preferences, see Options – Set Preference in the
Encounter Digital Implementation System Menu Reference.

Esc u Make word uppercase [n]

Esc y Yank back last killed text

Esc v Show library version

Esc w Make area up to mark yankable

Esc nn Set repeat count to the number nn

Esc C Read from environment variable _C_, where C is an uppercase letter
October 2010 63 Product Version 9.1.3

../encounter/optionsG.html#des_menu7

Encounter Digital Implementation System User Guide
Getting Started
Initialization Files

The EDI System software uses the following initialization files for setting preferences:

The initialization files are read in the following sequence:

1. .encrc in the home directory

2. .encrc in the working directory

.encrc Used for setting Tcl parameters or adding user-defined Tcl
commands. If different versions of this file exist in the
installation, home, or working directories, the file in the working
directory takes precedence.

Note: Usage of this file is no longer recommended, but is
allowed for backward compatibility. Use enc.tcl instead. This
file is processed before the GUI is created, so it cannot be used
to customize the GUI.

enc.tcl Used for setting Tcl parameters, customizing the GUI, or adding
user-defined Tcl commands or global variables. If different
versions of this file exist in the installation, home, or working
directories, the file in the working directory takes precedence.

Note: The software does not create or modify this file. You must
create the file and then put a copy of the file in the installation
directory (encounter_installation_path/tools/
fe/etc), home directory, or working directory.

enc.pref.tcl Contains design preferences set using the Design, Display,
Floorplan, and Selection tabs in the Preferences form in the
GUI (see Options – Set Preference in the Encounter Digital
Implementation System Menu Reference).

Note: By default, EDI System saves changes that you make to
your preferences to the enc.pref.tcl file in the working
directory.

.enc Contains design preferences set using the Windows tab in the
Preferences form in the GUI (see Options – Set Preference in
the Encounter Digital Implementation System Menu
Reference).
October 2010 64 Product Version 9.1.3

../encounter/optionsG.html#des_menu7
../encounter/optionsG.html#des_menu7

Encounter Digital Implementation System User Guide
Getting Started
3. enc.pref.tcl in the working directory

4. .enc in the home directory

5. enc.tcl in the installation/etc directory

6. enc.tcl in the home directory

7. enc.tcl in the working directory

Note: If initialization files contain conflicting information, the last file read takes precedence.
October 2010 65 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
Starting the Software

To start an EDI System session, type one of the following commands with the appropriate
parameters on the UNIX/Linux command line. If you type a command without parameters, the
software starts in GUI mode and creates a log file and a command file. The system attempts
to check out the license with the most functionality, then the license with the next most
functionality, and so on.

■ encounter

Starts one of the following products:

❑ Encounter Digital Implementation System L

❑ Encounter Digital Implementation System XL

❑ First Encounter™ L

❑ First Encounter XL

❑ First Encounter GXL

❑ NanoRoute Ultra

❑ Virtuoso® Digital Implementation

Note: All the above products can also be started by using the velocity command. The
behavior of the encounter and velocity commands is exactly the same in the 9.1
release. The velocity command has been retained for backward compatibility.

For an overview of the products and product licensing, see “Product and Licensing
Information.”
October 2010 66 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
encounter

encounter
[{ -edsl | -edsxl | -nru | -vdi [-N{1 | 2} |

-fel | -fexl | -fegxl }]
[-checkoutList "lic1 lic2 ..."]
[-cmd file.cmd]
[-config configFile.conf]
[-help]
[-init initFile.tcl]
[-libDefFile libDefFile.defs]
[-log logFile.log]
[-nowin | -win]
[-optionList "lic1 lic2 ..."]
[-multiCpuLicenseList "lic1 lic2 ..."]
[-overwrite]
[-version]
[-wait time_in_minutes]

Parameters

-checkoutList "option1 option2..."

Checks out licenses for the specified product options when the software
starts and holds the licenses for the remainder of the session. The
product options provide additional features to your base license.

If you specify an option that is not allowed with your base product, or an
option without an available license, the software does not check out a
license for that option and instead issues a warning message.

If you specify more than one option, begin and end the list with double
quotation marks or braces.

Specify one or more of the following parameters:

Note: For information on these parameters, see “Product and
Licensing Information.”

cndc CeltIC Nanometer Delay Calculator

encan Encounter Advanced Node GXL option

enclp Encounter Low Power GXL option

encms Encounter Mixed Signal GXL option

encng Encounter Next Generation

Note: This license is used to enable beta features.
October 2010 67 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
epsl Encounter Power System L

epsxl Encounter Power System XL

etsl Encounter Timing System L

etsxl Encounter Timing System XL

nru NanoRoute Ultra Routing Solution

-config configFile.conf

Specifies the design input configuration file. For information on the
configuration file, see “Configuration File Variables” in the Encounter
Digital Implementation System Text Command Reference.

Note: The value of this parameter disables the value specified by the
-init parameter, if both are specified.

{-edsl | -edsxl | -fegxl | -fel | -fexl | -nru | -vdi [-N{1 | 2}]}

Checks out a base license for the specified product.

If the license you specify is not available, the software generates an
error message and does not start.

Specify one of the following licenses:

Note: For information on these parameters, see “Product and
Licensing Information.”

-edsl Encounter Digital Implementation System L

-edsxl Encounter Digital Implementation System XL

-fegxl First Encounter GXL

-fel First Encounter L

-fexl First Encounter XL

-nru NanoRoute® Ultra

-vdi [-N{1 | 2}]

Virtuoso® Digital Implementation

The VDI option is limited to designs with a maximum of
50,000 instances. If you specify -vdi, the software checks
out one VDI option by default. To check out two VDI
licenses, type the following command:

encounter -vdi -N2
October 2010 68 Product Version 9.1.3

../fetxtcmdref/configT.html#firstpage

Encounter Digital Implementation System User Guide
Getting Started
-help Outputs a brief description for each encounter parameter.

-init initFile.tcl

Specifies the Tcl file to read in at the start of the session and starts the
software in non-GUI mode. When the command finishes executing the
Tcl file, the software switches to GUI mode.

Note: The value of the -config parameter disables the value specified
by this parameter, if both are specified.

-libDefFile libraryDefinitionFile.defs

Specifies the path and file name of the library definition file (lib.defs)
for OpenAccess-based flows. If you do not specify this parameter, all
OpenAccess-based operations refer to the lib.defs file in the current
working directory.

-log logFile.log

Specifies a name for the log file. By default, the software saves log files
in the run directory and increments them, for example,
encounter.log, encounter.log1, encounter.log2,
encounter.log3, and so on.
Default: encounter.log

-nowin | -win

Specifies whether the software runs in a GUI environment.
Default: -win

-optionList "option1 option2 …"

Specifies product options to check out dynamically. Even though you
specify options with this parameter, the licenses for the options are not
checked out until they are needed. The licenses are held for the duration
of the session.

If you specify an product option that is not allowed with your base
product, or an option without an available, the software does not check
out that license and instead issues a warning message.

If you specify more than one product option, begin and end the list with
double quotation marks or braces.

Specify one or more of the following parameters:

Note: For information on these parameters, see “Product and
Licensing Information.”
October 2010 69 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
cndc CeltIC Nanometer Delay Calculator

encan Encounter Advanced Node GXL option

enclp Encounter Low Power GXL option

encms Encounter Mixed Signal GXL option

encng Encounter Next Generation

Note: This license is used to enable beta features.

epsl Encounter Power System L

epsxl Encounter Power System XL

etsl Encounter Timing System L

etsxl Encounter Timing System XL

nru NanoRoute Ultra Routing Solution

-multiCpuLicenseList "lic1 lic2 ..."

Specifies an ordered list for automatic multi-CPU license checkout. The
following licenses can be specified with this parameter:

■ edsl

■ edsxl

■ fel

■ fexl

■ fegxl

-overwrite Overwrites the existing log file.

-version Displays the version of Encounter software installed on the host
machine without checking out a license or starting the software.

-wait time_in_minutes

Specifies the amount of time the system waits for a license to become
available. If the license is available in less than the specified wait time,
the system checks out the next needed license without waiting.
Default: 0 (no wait time)
Value range: 0 to 10,000
October 2010 70 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
Using Generic Parameters to Specify 32- or 64-Bit Version

When you start the software, complete the following steps:

1. Specify one of the following parameters:

{-32 | -64 | -32only | -64only | -3264 | -6432}

Note: If the CDS_AUTO_64BIT environment variable is not set and one of the following
parameters is specified, the wrapper sets CDS_AUTO_64BIT to NONE:

❑ -32

❑ -32only

❑ -3264

If the CDS_AUTO_64BIT environment variable is not set and one of the following
parameters is specified, the wrapper sets CDS_AUTO_64BIT to ALL:

❑ -64

❑ -64only

❑ -6432

-32 Tries to run the 32-bit version of the application. If the 32-bit
version is not available, prints a warning and tries to run the 64-
bit version.

-64 Tries to run the 64-bit version of the application. If the 64-bit
version is not available, prints a warning and tries to run the 32-
bit version.

-32only Tries to run the 32-bit version of the application. If the 32-bit
version is not available, prints an error and exits with an error.

-64only Tries to run the 64-bit version of the application. If the 64-bit
version is not available, prints an error and exits with an error.

-3264 Tries to run the 32-bit version of the application. If the 32-bit
version is not available, prints an info and tries to run the 64-bit
version.

-6432 Tries to run the 64-bit version of the application. If the 64-bit
version is not available, prints an info and tries to run the 32-bit
version.
October 2010 71 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
2. Optionally, specify one or more of the following parameters:

[-quiet3264] [-debug3264] [-plat platform] [-v3264] [-help3264]

Interrupting the Software

You can interrupt an EDI System session by using the Ctrl-C key combination. For most
commands, Ctrl-C exits the session and causes the software to issue the following
message:

Interrupt—one more Ctrl-C to exit First Encounter …

■ If you do not press Ctrl-C again, the software proceeds as normal.

■ If you do press Ctrl-C again, the software stops and the session ends.

Interrupt Behavior for Long-running Commands

The behavior of the software when you use Ctrl-C differs for the following long-running
commands:

NanoRoute Router

■ routeDesign

■ globalDetailRoute

For information, see Interrupting Routing in the “Using the NanoRoute Router” chapter.

-debug3264 Prints the environment, updated by the wrapper and the
command launched.

-plat platform

Allows you to override the default platform selection when you
launch the tool from the following directory:

install_root/bin

-quiet3264 Suppresses warning, error, and info messages generated by
the -32, -32only, -3264, -64, -64only, or -6432
parameters.

-v3264 Prints the wrapper’s version string.
October 2010 72 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
Timing Optimization (optDesign)

■ optDesign

For information, see Interrupting Timing Optimization in the “Optimizing Timing” chapter.

Verification

■ verifyGeometry

■ verifyConnectivity

■ verifyPowerVia

■ verifyMetalDensity

■ verifyProcessAntenna

■ verifyACLimit

For information, see Interrupting Verification in the “Verifying Violations” chapter.

Yield Analysis

■ reportYield

For information, see Interrupting Yield Analysis in the “Analyzing Yield” chapter.

Interrupting the Execution of Batch Files

The behavior of the software when you use Ctrl-C differs if you interrupt the execution of a
batch script.

When you press Ctrl-C during the execution of a batch script, the command that is running
when you press Ctrl-C continues to completion. The software then stops and prompts you
to confirm whether to interrupt the script.

■ To confirm that you want to interrupt script, type Y.

In this case, you can save the design and proceed with the flow.

■ To continue running the script, type N.
October 2010 73 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
Stopping the Software

Use one of the following methods to stop the software:

■ In the main EDI System window, select File – Exit.

■ On the text command line, type the following command:

exit
October 2010 74 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
Using the Log File Viewer

The Encounter software provides the following methods to view the log file:

■ Integrated Log File Viewer on page 75

■ Standalone Log File Viewer on page 76

Integrated Log File Viewer

You can use the integrated log file viewer when the software is running. It has the following
features:

■ Ability to expand and collapse command information.

■ Ability to view multiple log files in separate console windows simultaneously.

■ Color coding of error, warning, and information messages.

■ String matching through the Edit – Find/Select Object menu.

For more information, see Find/Select Object in the “Edit Menu” chapter of the
Encounter Menu Reference.

■ Access to the documentation in the Encounter Digital Implementation System Text
Command Reference.

When a log file is displayed, click on any of the underlined commands to open an HTML
window that displays the documentation for that command.

Use one of the following methods to use the viewer:

➤ Select Tools – Log Viewer on the main menu.

The Log File window is displayed. Select the log file to view. The software opens a
separate console window and displays the log file.

For more information, see Tools – Log Viewer in the “Tools Menu” chapter of the
Encounter Digital Implementation System Menu Reference.

➤ On the text command line, type the following command in the console window where the
software is running:

viewLog [-file logFileName]

This command opens the log file in a separate window. It opens the most recently
created log file unless you specify a different log file with the -file parameter.
October 2010 75 Product Version 9.1.3

../etsMR/layoutG.html#FindSelectObject
../encounter/toolsG.html#LogViewer
../fetxtcmdref/generalT.html#viewLog

Encounter Digital Implementation System User Guide
Getting Started
Standalone Log File Viewer

You can use the standalone viewer even if the software is not running. It provides most of the
same functionality as the viewer that is run within the software but does not provide access
to the documentation.

To use the standalone viewer, type the following UNIX/Linux command in the console window:

viewlog [-file logFileName]

The viewer opens the most recently created log file unless you specify a different file with the
-file parameter.
October 2010 76 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
Accessing Documentation and Help

You can access the Encounter documentation and help system by using the following
methods:

■ Launching Cadence Help From the Command Prompt on page 77

■ Accessing Documentation and Help From the Encounter GUI on page 77

■ Using the Encounter man and help Commands on the Text Command Line on page 79

■ Using the Integrated Log File Viewer on page 82

■ Other Sources of Information on page 83

Launching Cadence Help From the Command Prompt

1. Change to the following directory:

installation_dir/tools/bin

2. Enter the following command:

./cdnshelp

After launching Cadence® Help, press F1 or choose Help – Contents to display the help
page for Cadence Help.

For more information see the Cadence Help manual.

Accessing Documentation and Help From the Encounter GUI

The software provides the following two methods to access documentation and help from the
GUI:

■ Select Help on the Main Encounter Menu on page 78

■ Select Help on an Encounter Form on page 79
October 2010 77 Product Version 9.1.3

../cdnshelp/cdnshelpTOC.html#firstpage

Encounter Digital Implementation System User Guide
Getting Started
Select Help on the Main Encounter Menu

➤ Select Help, and then any of the following options:

❑ Help Library

Opens the Cadence Help window, which provides access to all the documentation
shipped with the release.

❑ Encounter Digital Implementation System Menu Reference

Opens the Table of Contents page of the menu reference.

❑ Encounter Digital Implementation System User Guide

Opens the Table of Contents page of the user guide.

❑ Encounter Digital Implementation System Text Command Reference

Opens the Table of Contents page of the text command reference.

❑ Encounter Digital Implementation System Known Problems and Solutions

Opens the Table of Contents page of the known problems and solutions document.

❑ What’s New in Encounter Digital Implementation System

Opens the Table of Contents page of the what’s new document.
October 2010 78 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
Select Help on an Encounter Form

➤ Click the Help button in the bottom right corner of a form.

Clicking the Help button opens the Encounter Digital Implementation System Menu
Reference entry for the form in the Cadence Help window.

Using the Encounter man and help Commands on the Text Command Line

Using the help Command to View the Command Syntax

■ To see syntax information for a command, type the following command in the software
console:

help command_name
October 2010 79 Product Version 9.1.3

../encounter/encounterTOC.html#firstpage
../encounter/encounterTOC.html#firstpage
../fetxtcmdref/generalT.html#help

Encounter Digital Implementation System User Guide
Getting Started
For example, to see syntax information for the loadConfig command, type the
following command:

help loadConfig

The software displays the following text:

Usage: loadConfig <fileName> [0 | 1]

■ To see the entire list of Encounter commands and their syntax, type the following
command in the software console:

help

Using the man Command to View the Command Description

■ To see the complete set of information for an Encounter command, type the following
command in the software console:

man command_name

For example, to see the complete set of information for the loadConfig command, type
the following command:

man loadConfig

The software displays the following text:

loadConfig(1) loadConfig(1)

NAME

loadConfig

SYNTAX

loadConfig <fileName> [0 | 1]

DESCRIPTION

Loads a configuration file. If you use this command in batch mode and
specify a filename, the file is loaded and the design is imported. If you
specify a filename and the 0 parameter, the software loads the file, but
does not import the design. To synchronize all relative paths in the
configuration file to the current working directory, you can precede the
loadConfig command with the setImportMode -syncRelativePath true command.
You can load this configuration file from any directory without first
changing your current working directory to the previous working
directory where the configuration file was saved. You can use the
loadconfig command to import the design when used in batch mode. You can
use it only once in a design session. For more information on the
variables that can be set in the configuration file, see Configuration File
Variables.

Parameters
October 2010 80 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
Example

- The following command loads mydesign.conf file:

loadConfig mydesign.conf

- The following command loads mydesign.conf, but does not
apply the settings in the file:

loadConfig mydesign.conf 0

This populates the fields in the Design Import form.

Click OK to commit settings.

Using the help Command to View Message Summary

■ To see the message summary of a particular message ID, type the following command
in the software console:

help msg_id

For example, to see the message summary for the ENCSYC-3160 message ID, type the
following command:

help ENCSYC-3160

The software displays the following text:

Ignoring the -keepEmptyModule setting in the configuration file. In the non-
physical mode, the software keeps the empty modules and converts them into
leaf cells. Remove the -keepEmptyModule setting from the configuration file.

-help Prints a brief description that
includes the type and default
information for each parameter of
the loadConfig command. For a
detailed description of the command
and all of its parameters, use the
man command: man loadConfig.

<fileName> Specifies the configuration file to
load.

[0 | 1] Specifies whether to apply settings
in the configuration file. 1 loads
the configuration file and imports
the design. 0 loads the
configuration file and does not
import the design.

Default: If you do not specify this
parameter, 1 is selected.
October 2010 81 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
Using the man Command to View Message Detail

■ To see the message detail of a particular message ID, type the following command in the
software console:

man msg_id

For example, to see the message summary for the ENCSYC-3160 message ID, type the
following command:

man ENCSYC-3160

The software displays the following text:

NAME

ENCSYC-3160

SYNOPSIS

Ignoring the -keepEmptyModule setting in the configuration file. In the non-
physical mode, the software keeps the empty modules and converts them into
leaf cells. Remove the -keepEmptyModule setting from the configuration file.

DESCRIPTION

{This warning is displayed when you use the -keepEmptyModule setting in the
configuration file. The software does not honor this setting and keeps the
empty modules (in non-physical mode) by default. In the non-physical mode, the
empty modules are converted into leaf cells. To avoid this warning, remove the
-keepEmptyModule setting from the configuration file.}

Important

The detailed description is not available for all active message IDs.

Using the Integrated Log File Viewer

You can also access the command documentation by using the integrated log file viewer. The
command to start the viewer is viewLog. For more information see “Integrated Log File
Viewer” on page 75 or viewLog in the “General Commands” chapter of the Encounter
Digital Implementation System Text Command Reference.
October 2010 82 Product Version 9.1.3

../fetxtcmdref/generalT.html#viewLog

Encounter Digital Implementation System User Guide
Getting Started
Other Sources of Information

You can also get help on Cadence products by selecting Customer Support on the Help
menu. The Customer Support submenu provides access to the following Cadence
resources:

■ Cadence Online Support

Opens Cadence Online Support in your browser.

■ Web Collaboration

Opens SpaceCruiser in your browser.

■ Education Services

Opens the Education Services Web site in your browser.
October 2010 83 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started
October 2010 84 Product Version 9.1.3

Encounter Digital Implementation System User Guide
3
Customizing the User Interface

■ Overview on page 86

■ Creating a New Menu on page 87

■ Modifying an Existing Menu on page 88

❑ Adding a Menu Element to an Existing Menu on page 88

❑ Replacing an Existing Menu Element on page 88

■ Adding a New Toolbar and Toolbutton on page 90

■ Querying and Configuring Interface Elements on page 91

❑ Iterating, Querying, and Configuring a Menu on page 91

❑ Updating the Message on the Status Bar on page 91

❑ Setting the Main Window’s Size and Title on page 92

■ Migrating Obsolete Internal Menu APIs on page 93
October 2010 85 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Customizing the User Interface
Overview

Encounter Digital Implementation System (EDI System) provides a GUI development kit
comprising five APIs that let you cusotmize the menus, toolbars, status bar, main window, and
other interface elements. The kit comprises the following five APIs:

■ uiAdd

■ uiDelete

■ uiSet

■ uiGet

■ uiFind

For more information on these commands, see the “GUI Commands” chapter of the
Encounter Digital Implementation System Text Command Reference.

Using the commands in the GUI development kit, you can:

■ Add a new menu to the main window menu bar. This includes adding a submenu, menu
commands, separators, checks and radio buttons. For more information, see Creating a
New Menu on page 87.

■ Modify an existing menu. For more information, see Modifying an Existing Menu on
page 88.

■ Add a new toolbar and toolbutton. For more information, see Adding a New Toolbar and
Toolbutton on page 90.

■ Query and configure interface elements, including menus, status bar, and the main
window. For more information, see Querying and Configuring Interface Elements on
page 91.

This chapter provides a suite of simple examples with annotated comments to familiarize you
with the development kit and shorten the learning curve.
October 2010 86 Product Version 9.1.3

../fetxtcmdref/guiT.html#uiAdd
../fetxtcmdref/guiT.html#uiDelete
../fetxtcmdref/guiT.html#uiSet
../fetxtcmdref/guiT.html#uiGet
../fetxtcmdref/guiT.html#uiFind
../fetxtcmdref/guiT.html

Encounter Digital Implementation System User Guide
Customizing the User Interface
Creating a New Menu

Using the uiAdd command, you can create a new menu and add it to the main window menu
bar. You can then add menu elements, such as command, submenu, separator, radio button
and check box, to the new menu using the same uiAdd command.

The following script adds a new menu, labeled ExampleMenu, to the main window menu
bar:

uiAdd expMenu -type menu -label ExampleMenu -in main

uiAdd expCommand -type command -label "ExampleCommand..." -command [list puts
"Example Command"] -in expMenu

uiAdd expSep -type separator -in expMenu

uiAdd expSubmenu -type submenu -label "ExampleSubmenu" -underline 1 -in expMenu

uiAdd expCommand2 -type command -label "ExampleCommand2..." -command [list puts
"Example Command"] -in expSubmenu:

By default, the new ExampleMenu is appended to the end of the menu bar. By specifying
the -before option in Line 1 of the script, you can insert the new menu before a specified
menu.

Lines 2 to 5 of the script add three types of elements to the menu, including command,
separator and submenu.

Similarly, you can add items of type radio and check using the uiAdd command.

For more information on the syntax and parameter of the uiAdd command, see tthe “GUI
Commands” chapter of the Encounter Digital Implementation System Text Command
Reference.

Line 1
Line 2 Line 3

Line 4 Line 5
October 2010 87 Product Version 9.1.3

../fetxtcmdref/guiT.html#uiAdd
../fetxtcmdref/guiT.html#uiAdd
../fetxtcmdref/guiT.html
../fetxtcmdref/guiT.html
../fetxtcmdref/guiT.html#uiAdd
../fetxtcmdref/guiT.html#uiAdd

Encounter Digital Implementation System User Guide
Customizing the User Interface
Modifying an Existing Menu

You can also use the uiAdd command to add or replace menu elements in an exisiting menu.

Adding a Menu Element to an Existing Menu

The following script adds a new command to the existing Verify menu:

set vMenu [uiFind main -type menu -label "Verify"]

uiAdd newVerify -type command -label "New Verify" -command [list puts "New Verify"]
-in $vMenu

Line 1 of the script retrieves the name of the Verify menu and assigns it temporarily to the
variable vMenu. Line 2 adds a new command labeled New Verify to vMenu, which
represents the Verify menu.

Replacing an Existing Menu Element

The following script finds an existing menu element and replaces it with a new one:

set toolMenu [uiFind -type menu -label "Tools"]

set oldMenu [uiFind $toolMenu -type command -label "Design Browser..."]

set before [uiGet $oldMenu -before]

uiDelete $oldMenu

set newMenu ${oldMenu}_new

uiAdd $newMenu -type command -label "New Design Browser..." -before $before -
command "puts {New Design Browser}" -in $toolMenu

In this script:

Line 1 finds name of Verify menu

Line 2 adds new command to Verify menu
October 2010 88 Product Version 9.1.3

../fetxtcmdref/guiT.html#uiAdd

Encounter Digital Implementation System User Guide
Customizing the User Interface
■ Line 1 finds the name of the Tools menu.

■ Line 2 finds an existing command, Design Browser, in the Tools menu by its label.

■ Line 3 finds its neighbor using the uiGet command.

■ Line 4 deletes the Design Browser command using the uiDelete command.

■ Line 5 and 6 create a new menu labeled New Design Browser in the same location.

Line 5 and 6
October 2010 89 Product Version 9.1.3

../fetxtcmdref/guiT.html#uiGet
../fetxtcmdref/guiT.html#uiDelete

Encounter Digital Implementation System User Guide
Customizing the User Interface
Adding a New Toolbar and Toolbutton

Using the uiAdd command, you can add a new toolbar and toolbuttons as shown in the
following script:

uiAdd expToolbar -type toolbar -in main -label "Example Toolbar" -newline true

set ICON_DIR “./”

uiAdd expToolbutton -type toolbutton -in expToolbar -label "Example Toolbutton" -
tooltip "Example Toolbutton" -icon [file join $ICON_DIR example.xbm]

Line 1 adds a new toolbar in the main window. As the -newline option is set to true, the
toolbar is added as a new row. Lines 2 and 3 add a new toolbutton, which uses an .xbm file
as its icon.

Supported Image Formats for Icons

The following image formats are supported for icon files:

Table 3-1

Format Description

BMP Windows Bitmap

GIF Graphic Interchange Format (optional)

JPG, JPEG Joint Photographic Experts Group

PNG Portable Networks Group

XBM X11 Bitmap

XPM X11 Pixmap

Line 1 adds a toolbar in a new row

Lines 2 and 3 add a new toolbutton
October 2010 90 Product Version 9.1.3

../fetxtcmdref/guiT.html#uiAdd

Encounter Digital Implementation System User Guide
Customizing the User Interface
Querying and Configuring Interface Elements

Using the uiGet, uiFind and uiSet commands in the GUI development kit, you can query
and configure various interface elements, including menus, status bar, and the main window.

Iterating, Querying, and Configuring a Menu

The following script finds and sets the File menu’s state.

set menus [uiGet main -menu]

foreach menu $menus {

 if {[uiGet $menu -label] == "File"} {

 uiSet $menu -disabled true

 }

}

This script iterates all the menus in the main window to find the File menu. It disables the File
menu with the uiSet command.

The same thing can also be done using the script below:
set menu [uiFind main -type menu -label "File"]

uiSet $menu -disabled true

Updating the Message on the Status Bar

With the help of the uiGet and uiSet commands, you can also update the message
displayed on the status bar of the main window as shown in the following script:

set edi_statusbar [uiGet main -statusbar]

uiSet $edi_statusbar -message "Example Message"
October 2010 91 Product Version 9.1.3

../fetxtcmdref/guiT.html#uiGet
../fetxtcmdref/guiT.html#uiGet
../fetxtcmdref/guiT.html#uiFind
../fetxtcmdref/guiT.html#uiSet
../fetxtcmdref/guiT.html#uiSet
../fetxtcmdref/guiT.html#uiSet

Encounter Digital Implementation System User Guide
Customizing the User Interface
This script first finds the status bar name with the uiGet command. It then sets its message
using the uiSet command.

Setting the Main Window’s Size and Title

You can use the uiSet command to set the size of the main window as desired. For instance,
you can set the main window size to 800x600 as follows:

uiSet main -geometry 800x600

In addition, uiSet can be used to set the main window’s coordinates and title as in the
following script:

uiSet main -geometry 780x686+232+0

uiSet main -title "New Window Title"

Line 1 of the script sets main window size to 780x686 and its coordinates to 232,0. Line 2
sets the main window’s title to New Window Title.

Updated message on the status bar

Line 2 updates title
October 2010 92 Product Version 9.1.3

../fetxtcmdref/guiT.html#uiGet
../fetxtcmdref/guiT.html#uiSet
../fetxtcmdref/guiT.html#uiSet

Encounter Digital Implementation System User Guide
Customizing the User Interface
Migrating Obsolete Internal Menu APIs

The following tk-based internal menu APIs have been made obsolete in EDI System 9.1
release:

■ uiAddChildMenuSeparator

■ uiAddMenuItem

■ uiAddMenuSeparator

■ uiAddChildMenu

■ uiAddChildMenuItem

■ uiDeleteMenu

■ uiAddMenu

These internal menu APIs can be migrated using the new public APIs. Let’s look at an
example:

The script below uses the old internal menu APIs to add a menu labeled Flow to the menu
bar in the main window.

tk-based menu APIs

uiAddMenu dac Flow

uiAddMenuItem dac CCD {ccd -d ./dofile &}

uiAddMenuItem dac NewSDC {read_sdc -reset leon.sdc}

To do the same using the new public APIs, you can use the following script:

new public APIs

uiAdd dac -type menu -label Flow -in main

uiAdd dac.ccd -type command -in dac -label CCD -command {ccd -d ./dofile &}

uiAdd dac.newSdc -type command -in dac -label NewSDC -command {read_sdc -reset
leon.sdc}

Line 1 of the script adds a menu labeled Flow. Lines 2 and 3 add menu items CCD and
NewSDC to the Flow menu.
October 2010 93 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Customizing the User Interface
October 2010 94 Product Version 9.1.3

Encounter Digital Implementation System User Guide
4
Accelerating the Design Process By
Using Multiple-CPU Processing

■ Overview on page 96

■ Running Distributed Processing on page 99

■ Running Multi-Threading on page 99

■ Running Superthreading on page 100

■ Setting and Changing the License Check-Out Order on page 100

■ Limiting the Multi-CPU License Search to Specific Products on page 100

■ Releasing Licenses Before the Session Ends on page 101

■ Controlling the Level of Usage Information in the Log File on page 101

■ Where to Find More Information on Multi-CPU Licensing on page 101
October 2010 95 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Accelerating the Design Process By Using Multiple-CPU Processing
Overview

You can accelerate portions of the design flow by using multiple-CPU processing. The
Encounter Digital Implementation System (EDI System) software has the following multiple-
CPU modes:

■ Multi-threading

In this mode, a job is divided into several threads, and multiple processors in a single
machine process them concurrently.

■ Distributed processing

In this mode, a job is processed by two or more networked computers running
concurrently.

■ Superthreading

In this mode, a job runs in the distributed processing mode but each distributed job can
also run threads, that is, one or more networked computers, each with multiple
processors, work concurrently to complete a job.

You configure multiple-CPU processing by using the commands described in the Multiple-
CPU Processing Commands chapter of the Encounter Digital Implementation System
Text Command Reference or the Multiple CPU Processing form on the Options menu.

Table 4-1 on page 97 shows the EDI System features that support multiple-CPU processing. .
October 2010 96 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#firstpage
../fetxtcmdref/multicpuT.html#firstpage
../encounter/optionsG.html#MultipleCPUProcessing

Encounter Digital Implementation System User Guide
Accelerating the Design Process By Using Multiple-CPU Processing
Table 4-1 EDI System features that support multiple-CPU processing

Feature Command Limitations/Notes

Capacitance table
generation

generateCapTbl For more information, see Capacitance
Table Generation Flow in the “RC
Extraction” chapter.

Global placement placeDesign

addFiller

■ Supported in default mode only
(-modulePlan is true)

For more information, see Running
Placement in Multi-CPU Mode in the
“Placing the Design” chapter.

Automatic
floorplan
synthesis

multiPlanDesign For more information, see Creating
Multiple Alternative Floorplans in the
“Creating an Initial Floorplan Using
Masterplan” chapter.

Metal fill addMetalFill For more information, see Adding Metal
Fill in Multiple-CPU Processing Mode in
the “Optimizing Metal Density” chapter.

NanoRoute router globalRoute

globalDetailRoute

detailRoute

routeDesign

ecoRoute

■ Superthreading is supported for
detailed routing only.

■ Superthreading options take
precedence over multi-threading
options.

For more information, see Accelerating
Routing with Multi-Threading and
Superthreading in the “Using the
NanoRoute Router” chapter.

TQRC, IQRC, and
Standalone
extraction

setExtractRCMode
extractRC

For more information, see TQRC and
IQRC Extraction and Standalone
Extraction in the “RC Extraction”
chapter.
October 2010 97 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#generateCapTbl
../soceUG/extractRC.html#CapacitanceTableGenerationFlow
../soceUG/extractRC.html#CapacitanceTableGenerationFlow
../fetxtcmdref/placementT.html#placeDesign
../fetxtcmdref/placementT.html#addFiller
../fetxtcmdref/floorplanT.html#multiPlanDesign
../fetxtcmdref/metalfillT.html#addMetalFill
../fetxtcmdref/routeT.html#globalRoute
../fetxtcmdref/routeT.html#globalDetailRoute
../fetxtcmdref/routeT.html#detailRoute
../fetxtcmdref/routeT.html#routeDesign
../fetxtcmdref/interactive_ecoT.html#ecoRoute
../fetxtcmdref/rcextractionT.html#setExtractRCMode
../fetxtcmdref/rcextractionT.html#extractRC
../soceUG/extractRC.html#TQRCandIQRCExtraction
../soceUG/extractRC.html#TQRCandIQRCExtraction
../soceUG/extractRC.html#StandaloneExtraction
../soceUG/extractRC.html#StandaloneExtraction

Encounter Digital Implementation System User Guide
Accelerating the Design Process By Using Multiple-CPU Processing
Related Topics

■ setup.tcl in the Encounter Digital Implementation System Foundation Flows:
Flat Implementation Flow Guide.

■ metal_fill.tcl in the Encounter Digital Implementation System Foundation
Flows: Flat Implementation Flow Guide.

■ Route the Design and Run Postroute Optimization in the Encounter Digital
Implementation System Foundation Flows: Flat Implementation Flow Guide.

Signal integrity
analysis

optDesign
-postRoute -si

timeDesign -si

■ In MMMC mode

■ In non-MMMC mode

■ For backward compatibility,
distributed processing options take
precedence.

■ Superthreading options take
precedence over multi-threading
options.

For more information, see Multi-CPU
Processing Settings in the “Analyzing
and Repairing Crosstalk” chapter.

Verify geometry verifyGeometry For more information, see Verifying
Geometry in Multi-Thread Mode in the
“Verifying Violations” chapter.

Verify connectivity verifyConnectivity For more information, see Verifying
Connectivity in the “Verifying Violations”
chapter.

Verify metal
density

verifyMetalDensity For more information, see Verifying
Metal Density in Multi-Thread Mode in
the “Verifying Violations” chapter.

Delay calculation All commands that
require timing data and
invoke a full delay
calculation.

For more information, see Calculating
Delay in Multi-Thread Mode in the
“Calculating Delay” chapter.

Feature Command Limitations/Notes
October 2010 98 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timinganalysisT.html#timeDesign
../fetxtcmdref/verificationT.html#verifyGeometry
../fetxtcmdref/verificationT.html#verifyConnectivity
../fetxtcmdref/verificationT.html#verifyMetalDensity
../soceUG/delayCal.html#CalculatingDelayMultiThreadMode
../soceUG/delayCal.html#CalculatingDelayMultiThreadMode
../flatImpl/flow.html#setuptcl
../flatImpl/flow.html#metal_filltcl
../flatImpl/flow.html#RoutetheDesignandRunPostrouteOptimization

Encounter Digital Implementation System User Guide
Accelerating the Design Process By Using Multiple-CPU Processing
Running Distributed Processing

To run the software in distributed processing mode, the following two commands are required:

■ setDistributeHost

Use this command to specify a configuration file for distributed processing or create the
configuration for the remote shell, secure shell, or load-sharing facility queue to use for
distributed processing. If you request more machines than are available, most
applications wait until all requested machines are available.

To display the current setting for setDistributeHost, use the getDistributeHost
command.

■ setMultiCpuUsage

Use this command to specify the maximum number of computers to use for processing.

To display the current setting for setMultiCpuUsage, use the
getMultiCpuUsagecommand.

For example, to run the multiPlanDesign command in distributed processing mode on
four machines with a in an existing LSF environment on machines that have 4 GB of memory,
specify the following commands:

setDistributeHost -lsf -queue mem4G
setMultiCpuUsage -remoteHost 4
multiPlanDesign -autoTrials 4

Running Multi-Threading

To run the software in multi-threading mode, the following command is required:

■ setMultiCpuUsage

Use this command to specify the number of threads to use. Upon completion, the log file
generated by each thread is appended to the main log file.

Note: The -localCpu parameter limits the number of threads running concurrently.
Although the software can create additional threaded jobs during run time, depending on the
application in use, only the number of threads specified with this parameter are run at a given
time.

If you ask for more threads than are available, the software issues a warning and runs with
the maximum number of available threads.

For example, to run placement with four threads, specify the following commands:
October 2010 99 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#setDistributeHost
../fetxtcmdref/multicpuT.html#getDistributeHost
../fetxtcmdref/multicpuT.html#setMultiCpuUsage
../fetxtcmdref/multicpuT.html#getMultiCpuUsage
../fetxtcmdref/multicpuT.html#setMultiCpuUsage

Encounter Digital Implementation System User Guide
Accelerating the Design Process By Using Multiple-CPU Processing
setMultiCpuUsage -localCpu 4
placeDesign

Running Superthreading

To run the EDI System software in Superthreading mode, the following two commands are
required:

■ setDistributeHost

■ setMultiCpuUsage

Because Superthreading is distributed processing plus multi-threading, you must specify the
number of hosts and number of threads per host. If you request more machines than are
available, most applications wait until all requested machines are available.

For example, to run the NanoRoute router in Superthreading mode, using a load-sharing
facility queue with two machines and three processors each, specify the following commands:

setDistributeHost -lsf -queue myQueue -resource "mem>4000 OS=RH4"
setMultiCpuUsage -remoteHost 2 -cpuPerRemoteHost 3
detailRoute

Setting and Changing the License Check-Out Order

To change the license check-out order, use the following command:

setMultiCpuUsage -licenseList {nru vdi edsl edsxl fexl fegxl}

For information on the default check-out order, see Encounter Digital Implementation System
Licensing and Packaging on SourceLink®.

Limiting the Multi-CPU License Search to Specific
Products

Each base license allows a set of specific licenses to be used for Multi-CPU processing. This
list can be obtained from the getMultiCpuUsage command after invoking the software.

[DEV]encounter 1> getMultiCpuUsage

Total CPU(s) Enabled: 2

Current License(s): 1 Encounter_Digital_Impl_Sys_XL

keepLicense: true
October 2010 100 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#setDistributeHost
../fetxtcmdref/multicpuT.html#setMultiCpuUsage
../fetxtcmdref/multicpuT.html#setMultiCpuUsage
http://sourcelink.cadence.com/docs/files/Docs/EDISLicPkg.pdf
http://sourcelink.cadence.com/docs/files/Docs/EDISLicPkg.pdf

Encounter Digital Implementation System User Guide
Accelerating the Design Process By Using Multiple-CPU Processing
licenseList: nru edsl edsxl

This license list can be customized from among the available choices by using the
setMultiCpuUsage -licenseList command.

Releasing Licenses Before the Session Ends

By default, the software holds multi-CPU licenses for the duration of the current session. To
release the multi-CPU licenses before the EDI Systemsession ends, complete one of the
following steps:

■ Before running any multi-CPU applications, specify the following command to keep the
acquired multiple CPU-licenses until the current session ends:

setMultiCpuUsage -keepLicense true

To display the current setting for setMultiCpuUsage -keepLicense, use the
getMultiCpuUsage -keepLicense command.

■ At the point when you want to release the multi-CPU licenses (for example, when global
placement finishes), specify the following command:

setMultiCpuUsage -releaseLicense

Controlling the Level of Usage Information in the Log File

Use the following command to set the level of usage information in the log file:

setMultiCpuUsage -threadInfo {0 | 1 | 2}

By default, the software does not write starting and ending information for threads or timing
details to the log file, but you can change this behavior by specifying 1 or 2 for the
-threadInfo parameter.

■ Specify 1 to write the final message to the log file.

■ Specify 2 to write additional starting/ending information for each thread.

Where to Find More Information on Multi-CPU Licensing

See Encounter Digital Implementation System Licensing and Packaging on SourceLink®.
October 2010 101 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#setMultiCpuUsage
../fetxtcmdref/multicpuT.html#getMultiCpuUsage
../fetxtcmdref/multicpuT.html#setMultiCpuUsage
../fetxtcmdref/multicpuT.html#setMultiCpuUsage
http://sourcelink.cadence.com/docs/files/Docs/EDISLicPkg.pdf

Encounter Digital Implementation System User Guide
Accelerating the Design Process By Using Multiple-CPU Processing
October 2010 102 Product Version 9.1.3

Encounter Digital Implementation System User Guide
5
Data Preparation

■ Generating a Technology File on page 104

■ Preparing Physical Libraries on page 104

■ Unsupported LEF and DEF Syntax on page 105

■ Generating the I/O Assignment File on page 108

■ Preparing Timing Libraries on page 128

■ Encrypting Libraries on page 128

■ Preparing Stamp Models on page 129

■ Preparing Timing Constraints on page 129

■ Preparing Capacitance Tables on page 130

■ Preparing Data for Delay Calculation on page 130

■ Preparing Data for Crosstalk Analysis on page 130

■ Checking Designs on page 130

■ Preparing Data in the Timing Closure Design Flow on page 131

■ Converting iPRT Format to LEF on page 131
October 2010 103 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
Generating a Technology File

The technology file provides the software with design rules for placement and routing, and
interconnect resistance and capacitance data for generating RC values and wireload models
for the design. The technology file also contains process information for the metal
interconnect layers, including metal thickness, metal resistance, and line-to-line capacitance
values of metal layers, for determining coupling capacitance.

Creating Technology Information Using LEF

You can use the Library Exchange Format (LEF) to specify technology information. If you do
not have LEF technology information, refer to the LEF/DEF Language Reference for
details on specifying the information manually.

Creating Technology Information Using OpenAccess

You can also create technology information equivalent to the information you specify in LEF,
but in an OpenAccess database format. This allows you to share technology information
easily among tools that support the OpenAccess standard.

Preparing Physical Libraries

To run the Encounter software, you must create physical libraries (cells and macros).

If you have a complete LEF file that contains all cells in the design, and process technology
information, then you can import a LEF file.

Using LEF to Create Physical Libraries

You can use the following methods for creating abstracts for each leaf cell in the design.

■ Use the Abstract Generator.

For more information, see the Cadence Abstract Generator User Guide.

■ Create LEF MACROs manually.

For more information, see the LEF/DEF Language Reference.
October 2010 104 Product Version 9.1.3

../lefdefref/lefdefrefTOC.html#firstpage
../lefdefref/lefdefrefTOC.html#firstpage

Encounter Digital Implementation System User Guide
Data Preparation
Creating OpenAccess Physical Libraries

You can translate the LEF MACROs to OpenAccess format by using a LEF-to-OpenAccess
translator. This allows you to share libraries easily among tools supporting OpenAccess
standard.

Unsupported LEF and DEF Syntax

The Encounter software supports most of the syntax statements in the 5.7 versions of LEF
and DEF with the exception of the ones listed below.

Unsupported LEF 5.7 Syntax

The Encounter software parses but ignores the following LEF 5.7 syntax:

LEF Statement Unsupported Syntax

Layer (Routing) [DIAGWIDTH diagWidth ;]

[DIAGSPACING diagSpacing ;]

[DIAGMINEDGELENGTH diagLength ;]

[SLOTWIREWIDTH minWidth ;]

[SLOTWIRELENGTH minLength ;]

[SLOTWIDTH minWidth ;]

[SLOTLENGTH minLength ;]

[MAXADJACENTSLOTSPACING spacing ;]

[MAXCOAXIALSLOTSPACING spacing ;]

[MAXEDGESLOTSPACING spacing ;]

[SPLITWIREWIDTH minWidth ;]

[HEIGHT distance ;]

[SHRINKAGE distance ;]

[CAPMULTIPLIER value ;]

Macro Pin [TAPERRULE ruleName ;]

[NETEXPR “netExprPropName defaultNetName” ;]

Nondefault Rule [DIAGWIDTH diagWidth ;]

[HARDSPACING ;]

[USEVIARULE viaRuleName ;]

Via Rule Generate [DEFAULT]
October 2010 105 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
The following LEF 5.7 syntax causes an error message in the Encounter software:

Unsupported DEF 5.7 Syntax

The Encounter software parses but ignores the following DEF 5.7 syntax:

LEF Statement Unsupported Syntax

Layer (Routing) DIRECTION {DIAG45 | DIAG135} ;

DEF Statement Unsupported Syntax

Blockages [+ SLOTS]

Groups [+ PROPERTY {propName propValue}...]

Extensions All BEGINEXT syntax

History All HISTORY syntax

Nets [+ SYNTHESIZED]

[+ VPIN vpinName [LAYER layerName] pt pt
[PLACED pt orient | FIXED pt orient | COVER pt orient]]

[+ SUBNET subNetName
[({compName pinName | PIN pinName | VPIN vpinName})]
[NONDEFAULTRULE ruleName]]

Note: SUBNET NONDEFAULTRULE is ignored; routing uses
rule for NET.

[+ USE {RESET | SCAN | TIEOFF}]

Note: Supports ANALOG, CLOCK, GROUND, POWER, and
SIGNAL.

[+ PATTERN {STEINER | WIREDLOGIC}

[+ ESTCAP wireCapacitance]

[+ SOURCE {DIST | NETLIST | TEST | USER}
October 2010 106 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
Pins [+ USE {TIEOFF | SCAN | RESET}

Note: Supports SIGNAL, POWER, GROUND, ANALOG, and
CLOCK.

[+ DIRECTION FEEDTHRU]

[+ NETEXPR “netExprPropName defaultNetName”]

[+ SUPPLYSENSITIVITY powerPinName]

[+ GROUNDSENSITIVITY groundPinName]

Pin Properties All PINPROPERTIES syntax

Property Definitions The object types: GROUP, REGION, and ROW

Regions [+ PROPERTY {propName propVal}...]

Rows [+ PROPERTY {propName propVal}...]

Slots All SLOTS syntax

Special Nets [+ SYNTHESIZED]

[+ VOLTAGE volts]

[+ SOURCE {DIST | NETLIST | USER}]

[+ USE {RESET | SCAN | TIEOFF}]

Note: Supports ANALOG, CLOCK, GROUND, POWER, and
SIGNAL.

[+ PATTERN {STEINER | WIREDLOGIC}]

[+ ESTCAP wireCapacitance]

[+ WEIGHT weight]

Note: + WEIGHT only supported in NETS section.

Special Wiring Statement:

[+ STYLE styleNum]

Note: If included in the DEF file, the software displays an error
message stating that only the default style is supported, ignores the
specified style, and replaces it with the default one.

Styles All STYLES syntax

DEF Statement Unsupported Syntax
October 2010 107 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
The following syntax causes an error message in the Encounter software:

Generating the I/O Assignment File

The I/O assignment file defines the rules that determine how the I/O instances (pad cells and
area I/O), I/O pins, bumps, and bump arrays are organized. The file is rule-based to specify
exact location, global spacing, individual spacing, skip, offset, keep clear, and corner
information. You can specify detailed rules to control the locations, or you can specify minimal
or no rules to allow Encounter to determine the locations automatically.

Encounter does not require you to create an I/O assignment file to run the software. If you do
not specify an I/O assignment file when you import a design, I/Os are assigned randomly.

If you do not specify an I/O assignment file, but you want to set I/O pin or pad placement, use
a DEF file. Load the DEF file after importing the design, then save the floorplan. You can also
save the I/O file to write a sequence file for rule-based work.

If you provide an I/O assignment file, you are not required to specify the exact location of all
I/O pads. You can specify the I/O row name to place the I/O pads in a specific I/O row. Also,
if you do not provide offset values, Encounter spaces the I/O pads evenly along the specified
row. The spacing between the corners and adjacent pads is the same as the spacing between
the other pads.

DEF Statement Unsupported Syntax

Nets

(Regular Wiring
Statement)

[orient]
[STYLE styleNum]
October 2010 108 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
This section discusses the following topics:

■ Creating an I/O Assignment File on page 109

■ Creating a Rule-Based I/O Assignment File on page 120

■ I/O Pad and Pin Assignment Examples on page 121

■ Performing Area I/O Placement on page 124

Creating an I/O Assignment File

You manually create an I/O assignment file using the following template:

(globals

version = 3

io_order = clockwise

total_edge = 10

space = 1.06

)

(row_margin

(top | north | left | west | right | east | bottom | south

(io_row ring_number = 1 margin = 0.0000)

(io_row ring_number = 2 margin = 94.0000)

(io_row ring_number = 3 margin = 181.0000)

)

(...

)

)

(iopad

(top | north | left | west | right | east | bottom | south | row

(locals

row_name = name_of_row

space = 1.2

ring_number = 1

io_order = counterclockwise

)

(inst

name = ioinst_1

skip = 2.2

space = 1.2

offset = 10.2
October 2010 109 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
indent = 10.2

orientation = r180

place_status = fixed

)

(keepclear begin = 10.0 end = 12.0)

(inst

name = ioinst_2

orientation = r180

skip = 2.2

cell = mymaster

)

(endspace gap = 1.2)

)

corner io cell

(topright | northeast | topleft | northwest | bottomright | southeast |
bottomleft | southwest | row

(locals

row_name = name_of_row

ring_number = 1

)

(inst

name = corner_1

orientation = r180

cell = corner_master

)

)

(inst

name = ioinst_2

x = 100.0

y = 200.0

orientation = r180

place_status = fixed

)

)

(iopin

(top | north | edge num = 0

(locals

space = 1.2

io_order = counterclockwise

)

October 2010 110 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
(pin name = “din [0]”

layer = 3

width = 0.28

depth = 0.28

skip = 2.2

space = 1.2

offset = 10.2

place_status = fixed

)

)

(left | west | edge #

)

(right | east | edge #

)

(bottom | south | edge #

)

(up

(pin name="address[2]"

x=158.0700

y=180.6400

layer=4

width=0.2800

depth=0.2800

)

(pin name="rcc_clk"

x=159.3400

y=180.5600

layer=6

width=0.6000

depth=0.8000

)

)

)

(bump

(array

name = array_1

cell = bc1

llx = 100

lly = 100
October 2010 111 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
urx = 100

ury = 100

x = 100.0

y = 200.0

xpitch = 20

ypitch = 20

xspace = 10

yspace = 10

row = 6

column = 6

out_rings = 3

style = stagger | full

center_column = 4

center_row = 4

center_style = stagger | full

)

(bump

name = lvdsov33v12_ca_sref_i42_r1c1

cell = bc1

x = 100.0

y = 200.0

signal = vdd12

type = power | ground

assignment = fixed

array = array_1

orientation = r180

)

)

The following entries are included in the template:

globals

version = 3 Specifies the beginning of a new I/O format.
October 2010 112 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
io_order Specifies the order of the I/O pads and pins.
This can be:

■ clockwise

■ counterclockwise

■ default

Note: The default I/O order for a vertical
edge is from the bottom to the top, and for a
horizontal edge, it is from the left to the right.

total_edge Specifies the number of edges for the
rectilinear block design.

The edges are numbered starting from 0. For
example, if the total_edge is 4, then the
edges are numbered as edge 0, edge 1,
edge 2, and edge 3.

Note: You must verify that the total number of
edges that you specify matches with the
value in the destination design.

space Specifies the global I/O pin spacing, in
μmeters.

iopad locals

space Specifies the local I/O pad spacing, in
μmeters.

Note: This space setting is honored by the
first cell on one edge, when xy or offset is not
specified.

ring_number Specifies the ring number in which the I/O
pad is placed.

row_name Specifies the I/O row name.

iopad instance

name Specifies the name of the I/O instance.
October 2010 113 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
x, y Specifies the absolute x,y location of the I/O
pad instance, starting from the lower left
corner.

Note: Specifying x,y location for sides and
edges of I/O pads is not supported in the I/O
file.

skip Specifies the distance, in μmeters, of the I/O
pad from the previously defined I/O pad.

The value that you specify here is valid only
for this cell.

space Specifies the spacing, in μmeters, between
the pad being defined and the previously
defined pad.

The value that you specify here, overrides
the global space setting.

Core Area

Space between I/Os
October 2010 114 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
offset Specifies the offset in μmeters. The offset of
a pad is the offset from the die boundary,
based on the order direction.

The value that you specify here is valid only
for this cell.

Note: For one I/O pad, you can specify only one of the following
parameters:

■ skip

■ space

■ offset

If you specify all the three parameters, only the last parameter that
you define, is considered for I/O pad placement.

Core Area
Offset

Die Box
October 2010 115 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
indent Specifies the offset, in μmeters, from the row
margin.

However, for designs with single I/O ring, row
margin is 0. Hence, indent is the offset of the
I/O pad from the die boundary.

orientation Specifies the orientation of the I/O.

place_status Specifies the placement status of the I/O pad
instance. This can be:

■ placed

■ covered

■ fixed

Default: fixed.

Die Box Row
margin

Indent

Core Area
October 2010 116 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
keepclear Specifies an area on the chip where you
cannot place pins or pads. Specify a range
between begin and end, in μmeters, on the
chip side in which pins and pads cannot be
placed.

Note: You must define pad cells in the order
in which they appear in the design.

cell Specifies the physical I/O cell.

endspace gap Specifies the space, in μmeters, between the
corner pad and the last I/O pad for the
specified side of the design.

Core Area

Keepclear area

Core Area

Endspace Gap
October 2010 117 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
iopin locals

side Specifies the side of the I/O pin. This can be:

■ top | north

■ left | west

■ right | east

■ bottom | south

edge num = 0 Specifies the edge number of the I/O pin,
with edge num = 0 starting from the left
side of the lowest y coordinate and the left
most corner, in the clockwise direction.

space Specifies the spacing, in μmeters, between
the previously defined pin and the pin being
defined.

The value that you specify here, sets the
global space setting.

iopin

 pin name Specifies the name of a pin. Specify I/Os as
pins for block designs.

layer Specifies the metal layer on which the pin
must be placed.

width Specifies the width of the pin in μmeters. It is
the length of the edge that is centered at the
reference point.

Edge 0

Edge 1

Edge 3

Edge 2
October 2010 118 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
The following commands allow you to create multiple I/O rows on multiple rings:

Note: You can use the Edit I/O Ring form to specify I/O pad rings and row margins for
multiple rows. Alternatively, to achieve the same using text commands, you must first use the
setIoRowMargin command to set the distance from the die boundary edge to start of each

depth Specifies the length of the pin in μmeters.

up Specifies the details of internal
I/O pins.

x, y Specifies the absolute x,y location of the
internal I/O pin.

Note: The I/O file supports specifying xy
location for internal I/O pins only.

Specifies the incremented I/O pin edge
number.

Row Margin

side Specifies the side of the I/O row margin. This
can be:

■ top

■ north

■ left

■ west

■ right

■ east

■ bottom

■ south

ring_number Specifies the I/O ring number on which the I/
O rows are placed, with ring 1 being the
outer most ring.

margin Specifies the distance, in microns, from the
die boundary edge to the I/O row edge.
October 2010 119 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
row and then use the placePadIO command to place the I/O pads evenly between these
rows.

Note: When creating the I/O assignment file, start comment lines with a pound (#) sign.

Specifying Area I/O Information

You can also define the following objects in the I/O assignment file for area I/O placement:

■ Bump

A bump is a piece of metal that works as a bonding pad to the package. When defining
a bump, you must specify its master bump cell and its physical location. You can generate
one bump, or an array of bumps of the same bump cell type.

❑ To define an individual signal bump, use the following syntax:

Bump: bump_name bumpCell_name x y signal type assignment array
orientation

For example,

Bump: A3 BUMP 300 100 vdd12 power fixed array_1 r180

❑ To define an array of bumps, use the following syntax:

Bump: bump_name bumpCell llx lly urx ury x y xpitch ypitch xspace
yspace row column out_rings style center_column center_row
center_style

For example,

Bump: myBumpArray myBumpCell 100 100 100 100 300 100 20 20 10 10 6 6 3 full
4 4 full

■ IOInst

This section specifies the preplaced area I/O instances. Define area I/O instances using
the following format:

IOInst: inst_name [x y [orientation] [place_status]]

For example,

IOInst: A1/B1/BUF1 200 200 r180 fixed

Creating a Rule-Based I/O Assignment File

To create a rule-based I/O assignment file,

1. Create an I/O assignment file with I/O pads in the proper sequence.

This file can include VDD and VSS filler pads.
October 2010 120 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
2. Import the design.

3. After reviewing the I/O pads, choose Design – Save – IO File.

4. On the Save IO File form, select sequence.

5. Edit the new file for reimporting, or use the loadIoFile command.

6. Save the floorplan to a file.

I/O Pad and Pin Assignment Examples

The following example shows statements in a sample I/O assignment file for I/O pads as
shown in the figure below:

version = 3

io_order = clockwise

total_edge = 4

space = 1.06

(inst

name = IOPADS_INST/pad1 W

offset = 235.0000

orientation = R0

place_status = fixed

)

(inst

name = IOPADS_INST/pad2 W

offset = 296.1250

orientation = R0

place_status = fixed

Core Area

I/O Pads
October 2010 121 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
)

Assigning Pads for Multiple Rows

The following example shows statements in a sample I/O assignment file for multiple rows of
I/O pads as shown in the figure below:

version = 3

io_order = clockwise

total_edge = 4

space = 1.06

iopad

(topright

(locals

ring_number = 1

)

(

instname = IOPADS_INST/pad1 W

offset = 235.0000

)

(locals

ring_number = 2

)

(

instaname = IOPADS_INST/pad2 W

offset = 296.1250

)

Core Area

Multiple Row IO Pads
October 2010 122 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
)

Assigning Module Pins

The following example shows an I/O assignment file for module pins as shown in the figure
below:

version = 3

(iopin

(top | north | edge num = 0

(locals

space = 1.2

)

(pin name = address[14] N

layer = 3

width = 0.28

depth = 0.28

offset = 19.4700

place_status = fixed

)

(pin name = address[14] N

layer = 4

width = 0.38

depth = 0.38

offset = 39.2700

place_status = fixed

)

)

Module Area

Module Pins
October 2010 123 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
)

Recognizing Multiple Corner Cells

The following example shows multiple corner cells defined in I/O file. The loadIoFile
command recognizes the multiple corner cells defined in I/O file and place them in the right
corner with right orientation.

version = 3

(iopad

(topright

(

instname = CNR@0001

orientation = RO

cell = ZMGACS101N

)

(

instname = CNR@0002

orientation = RO

cell = ZCGLSNEIS1A

)

)

Performing Area I/O Placement

Before you begin area I/O placement, you must first specify CLASS PAD AREAIO in a LEF
file. Additionally, a SITE or region must be defined for the placeAIO command to place the
CLASS PAD AREAIO macro in the required location. The SITE must be referenced in the
AREAIO macro.

The following example shows a SITE definition followed by a CLASS PAD AREAIO macro
which refers to the SITE.

SITE IO CLASS PAD ; SIZE 210 BY 100.8 ; END IO

MACRO INBUF

CLASS PAD AREAIO ;
FOREIGN INBUF 0.00 0.00 ;
ORIGIN 0 0 ;
SIZE 210 BY 100.8 ;
SYMMETRY X Y R90 ;
SITE 10 ;
PIN PAD
October 2010 124 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
DIRECTION INPUT ;
USE SIGNAL ;
PORT ;
LAYER M6 ;

RECT 95.0 40.0 115.0 60.0 ;

END

END PAD

Note: The CLASS PAD AREAIO saves bump status defined in the DEF file only if the bump
status is FIXED or COVER. See Defining BUMP CELL Placement Status on page 126.

Defining the Connection between a Bump and P/G Pin Shape

The flip chip router (area I/O) determines which power/ground pin shape on the I/O driver cell
must be connected to a bump. The following MACRO PIN statement added in the LEF 5.7
file specifies that the port is a bump connection point for multiple pins.

MACRO PVDD1DGZ

 CLASS PAD AREAIO ;

 FOREIGN PVDD1DGZ 0.000 0.000 ;

ORIGIN 0.000 0.000 ;

 SIZE 40.000 BY 35.280 ;

 SYMMETRY x y r90 ;

 SITE IO1 ;

PIN VDD

DIRECTION OUTPUT ;

USE POWER ;

PORT

CLASS BUMP ;

LAYER METAL8 ;

RECT 5.0 25.0 15.0 35.0 ;

END

END VDD

END PVDD1DGZ

For more information, see “Macro Pin Statement” in the LEF/DEF Language Reference.

Defining BUMP CELL in LEF

Bumps must also be defined in a LEF file. The following example shows a BUMPCELL macro.
October 2010 125 Product Version 9.1.3

../lefdefref/LEFSyntax.html#MacroPinStatement

Encounter Digital Implementation System User Guide
Data Preparation
MACRO BUMPCELL

CLASS COVER BUMP ;
ORIGIN 0 0 ;
SIZE 80.0 BY 80.0 ;
SYMMETRY X Y ;
PIN PAD

DIRECTION INPUT ;
USE SIGNAL ;

PORT
LAYER M6 ;
RECT 0.0 0.0 80.0 80.0 ;
#POLYGON 23.0 0.057.0 0.0 80.0 2

END

END PAD

END BUMPCELL

Defining BUMP CELL Placement Status

You can define the bump cell placement status, FIXED | COVER for a bump object in the
design, in a DEF/IN file or using the Attribute Editor in Encounter. The CLASS PAD AREAIO
saves the bump placement status— FIXED or COVER.

Note: The default bump placement status is PLACED.

The following example shows the BUMP CELL placement status defined in the DEF file:

Bump: Bump_83_2_8 BUMPCELL 255.720 855.720 refclk -fixed -bumpArray array_0 -
placeStatus placed

Bump: Bump_82_1_8 BUMPCELL 155.720 855.720 pllrst -fixed -bumpArray array_0 -
placeStatus cover

Bump: Bump_81_0_8 BUMPCELL 55.720 855.720 ibias -fixed -bumpArray array_0 -
placeStatus fixed

Importing LEF Files

To import the LEF files, use the following procedure:

1. Select File – Import Design.

The Design Import form appears.

2. On the Design page, enter the names of the Verilog files, and choose a top cell
assignment option.

3. In the LEF Files field, type the LEF file names to import, and include the file that contains
the CLASS PAD AREAIO statement. Or, you can click on the … icon to the right of the
field to select files.

4. Click OK.
October 2010 126 Product Version 9.1.3

../encounter/editG.html#AttributeEditor

Encounter Digital Implementation System User Guide
Data Preparation
The Design Import form closes and Encounter imports the data.

To load the floorplan and I/O assignment files separately, use the following procedure:

1. Select File – Load – Floorplan or run the loadFPlan text command.

2. Select File – Load – I/O File or run the loadIoFile text command.

As an alternative, you can include the I/O assignment file in the floorplan file, add the following
statement to your floorplan file before loading your floorplan.

IOFile: iofile_name

Note: You can also specify area I/O rows in DEF or PDEF files.

For more information on the I/O assignment file, see “Creating an I/O Assignment File” on
page 109.
October 2010 127 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
To save your floorplan and I/O assignment files, use the following procedure:

1. Select File – Save – Floorplan. Fill out the form and click Save.

As an alternative, you can specify the saveFPlan text command.

2. Select File – Save – I/O File. Fill out the form and click Save.

As an alternative, you can specify the saveIoFile text command.

To place area I/Os, use either the GUI or command line:

■ To place area I/Os from the GUI, select Tools – Flip Chip – Place & Route – Place
Flip Chip I/O – Area I/O. Fill out the form and click OK.

■ To place area I/Os from the command line, use the placeAIO text command.

Specify the -onlyAIO argument to place only the area I/Os on the area I/O rows. If you
do not specify this argument, all standard cell instances and blocks are also placed.

Specify the -assignBump argument if you have unassigned bumps for area I/O instance
connections. If you specify this argument, area I/O instances are connected to the
nearest unassigned bumps.

Note: You can also assign bumps after area I/O placement by using the assignBump
command.

Preparing Timing Libraries

Timing library files contain timing information in ASCII format for all of the standard cells,
blocks and I/O pad cells. The Encounter software reads timing library format files (.tlf) or
Synopsys Technology Library format files (.lib). You do not need to translate timing library
files before reading them into the software.

Encrypting Libraries

To protect proprietary data, you can encrypt the ASCII library files. Use the lib_encrypt
utility to perform the encryption. The lib_encrypt utility is installed along with the
Encounter software. To encrypt the ASCII library file, use the following command:

lib_encrypt [-ogz] [-help] in_file out_file
October 2010 128 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
Parameters

Preparing Stamp Models

Stamp models contain timing information for a module, such as an instantiated module, block,
or partitioned module. It describes the timing models of large blocks, such as RAM blocks,
microprocessor cores, DSP, and others that have not been synthesized into gate-level
netlists.

A stamp model consists of two files:

■ Model file that describes the ports, timing arcs, and other attributes of the block.

■ Data file that provides technology specific data, including values for timing arcs, port
capacitance, and maximum transitions.

You do not need to translate these files before reading them into the software.

Note: Stamp models supersede timing library models.

Preparing Timing Constraints

To import timing constraints, use the write_script or write_sdc command from within
Design Compiler, PrimeTime, or Physical Compiler. These commands eliminate any variable
substitution confusion, making them easier for the user and the software to read.

Use the write_script command on the design inside dc_shell or pt_shell for the best
results, for example:

write_script -format {ptsh | dcsh | dctcl} -output fileName

Or, you can use the following command:

write_sdc

You do not need to translate either DC or PT constraints before reading them into the
software.

-help Displays the syntax of the lib_encrypt command.

in_file Specifies the name of library file to be encrypted.

-ogz Creates a gzip file of the encrypted output library file.

out_file Specifies the name of the output file.
October 2010 129 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
Note: When reading in constraints, only read in one format type in a session.

Preparing Capacitance Tables

For accurate extraction results, use capacitance tables. You can generate and use separate
capacitance tables for different process corners.

For more information on preparing capacitance tables, see chapter RC Extraction.

Preparing Data for Delay Calculation

If you want to use the SignalStorm® nanometer delay calculator, see Chapter 27, “Calculating
Delay” for information about preparing ECSM libraries.

Preparing Data for Crosstalk Analysis

For information on preparing data for crosstalk analysis, see Chapter 35, “Analyzing and
Repairing Crosstalk.” For more information on preparing cdB noise libraries using the
make_cdB utility, see the “make_cdB Noise Characterizer User Guide.”

Checking Designs

Before importing the design or running Encounter at various stages of the design process,
you can check for missing or inconsistent library and design data.

To perform these checks, use the following command:

checkDesign

You can check for the following data:

■ Physical library

■ Timing library

■ Netlist

■ I/Os

■ Tie-high and tie-low pins

■ Power and ground pins
October 2010 130 Product Version 9.1.3

../soceUG/extractRC.html#firstpage
../fetxtcmdref/importT.html#checkDesign

Encounter Digital Implementation System User Guide
Data Preparation
Cadence recommends that you check libraries and data as follows:

■ Perform I/O checking at any time. I/O problems might not impede any tool, but they might
add to design problems.

■ Perform netlist checking at any time after the design has been loaded.

■ Perform physical library checking before floorplanning.

■ Perform power and ground checking before routing and extraction, and verifying
geometry and connectivity.

■ Perform timing library checking before any timing-related operation (for example, timing-
driven placement or routing, timing optimization, clock-tree synthesis, and static timing
analysis).

■ Perform tie-high and tie-low checking before routing and extraction.

Preparing Data in the Timing Closure Design Flow

For information on preparing data for the timing closure design flow, see the Encounter
Timing Closure Guide.

Converting iPRT Format to LEF

The iprt2lef translator converts DRC rules, place-and-route technology data, and RCX
data from iDRC, iPRT and iRCX format to the technology LEF format.

For more information about this translator, refer to the iPRT to LEF Translator Application
Note on Cadence Online Support.
October 2010 131 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation
October 2010 132 Product Version 9.1.3

Encounter Digital Implementation System User Guide
6
Importing and Exporting Designs

■ Overview on page 134

■ Verifying Data before Importing a Design on page 134

■ Preparing the Design Netlist on page 134

■ Creating a Flat Verilog Netlist from a DEF File on page 135

■ Beginning Designs on page 137

■ Loading Previously Saved Configuration Files on page 139

■ Selecting Files on page 141

■ Working with OpenAccess Designs on page 143

■ Handling Verilog Assigns on page 144

■ Saving and Restoring Designs on page 144

■ Importing and Exporting Design Data on page 146

■ Converting an EDI System Database to GDSII Stream or OASIS Format on page 149

■ About the GDSII Stream or OASIS Map File on page 156

■ Updating Files during an EDI System Session on page 165

■ SKILL to TCL Mapping on page 166
October 2010 133 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Overview

The Encounter Digital Implementation System (EDI System) software provides the following
options for saving, restoring, importing, and exporting design data:

Verifying Data before Importing a Design

To check that Verilog, LEF, and .lib files are available at the beginning of an EDI System
session, use the following command:

setCheckMode -netlist true -library true

EDI System performs this check by default. To report the current checking mode, use the
following command:

getCheckMode

Preparing the Design Netlist

The EDI System software requires that your Verilog® design netlist or OpenAccess netlist be
unique so that you can run Clock Tree Synthesis (CTS), Scan Reorder, and timing
optimization features.

➤ To ensure that the names of all instantiated cell types are unique in a Verilog netlist, use
the following command:

Starting (importing)
designs

Allows you to specify data for starting a design or
load existing configuration files.

Saving designs Allows you to save the work you complete on designs
during a design session for access at a later date.

Restoring designs Allows you to load saved data from a previous design
session.

Loading design data Allows you to load design data saved in various
stages of the design process, and to bring data from
specific formats (DEF, PDEF, SPEF, SDF, and OA
Cellview) into the EDI System environment.

Saving and exporting
design data

Allows you to save design data in various stages of
the design process, and to export data in specific
formats (DEF, PDEF, GDS, and OASIS) from the EDI
System environment.
October 2010 134 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
uniquifyNetlist

The uniquifyNetlist command tests all levels of intermediate modules. It does not test
leaf cells.

There is no equivalent command for uniquifying OpenAccess netlists. You must manually
ensure that the names of all instantiated cell types are unique.

Creating a Flat Verilog Netlist from a DEF File

Cadence requires a Verilog netlist for design import. There is an exception: if you have a DEF
file that contains connectivity information, you can import this file. This is not the
recommended approach.

Caution

After loading the DEF netlist, you can perform floorplanning, non-timing
driven placement and routing, wire editing, and verification. You cannot
use the DEF netlist flow for parasitic extraction, delay calculation, and
timing-driven placement and routing effectively because the DEF names
do not properly match the Verilog names used in timing constraints and
timing analysis.

Recommended DEF Import Commands

Important

Cadence highly recommends using these commands instead of the alternative DEF
import flow.

To import a DEF file that contains connectivity information, use either of the following
commands:

■ defToVerilog defFile verilogFile

The defToVerilog command loads the DEF netlist, saves the netlist as a Verilog file,
and frees the design, enabling to you continue in the EDI System environment.

■ loadDefFile defFile

The loadDefFile command loads a DEF file to build EDI System’s in-memory
database. In order to use this command, the library data must be present in memory (use
the loadLefFile command).
October 2010 135 Product Version 9.1.3

../fetxtcmdref/importT.html#uniquifyNetlist

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
For more information, see the defToVerilog and loadDefFile commands in the
Encounter Digital Implementation System Text Command Reference.

Reconciling the Object Names and Creating New DEF File That Can Be
Used With the Normal EDI System Flows

The following procedure imports the Verilog file generated by the saveNetlist command
in the previous encounter session, and reconciles names in the DEF and Verilog files. This
procedure is required if you want to retrieve more information from the original example.def
file.

1. Start EDI System.

encounter

2. Use a configuration file containing commands to load the LEF file and the Verilog file
generated by the saveNetlist command from the first session.

loadConfig output.conf

3. Import the DEF file.

defIn -verilog_from_def_netlist_flow example.def

This command reads all DEF constructs, not just connectivity.
October 2010 136 Product Version 9.1.3

../fetxtcmdref/importT.html#defToVerilog
../fetxtcmdref/importT.html#loadDefFile

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Note: The -verilog_from_def_netlist_flow parameter is used in this flow only.
The the defIn operation uses this parameter to correct special characters so that the
names in the output.def file match the names in the new Verilog file.

4. Write the DEF file.

defOut [other-options] output.def

The output.def file is equivalent to the example.def file, but with the Verilog names
resolved. It can be used in future encounter sessions without the
-verilog_from_def_netlist_flow parameter.

5. Exit the current session.

exit

Now, you can use output.conf, output.v, and output.def in any encounter flow.

Beginning Designs

Before you begin a design, you must first prepare the data. For more information, see “Data
Preparation” in the Encounter Digital Implementation System User Guide.

Beginning a Design with LEF and Verilog

To begin a LEF and Verilog design, complete the following steps:

1. Select File – Import Design.

2. Select the Basic tab if it is not already selected.

3. Specify the gate-level Verilog netlist files to import in the Files text field.

4. Select one of the following options to specify the top cell:

❑ Auto Assign

Automatically extracts the top cell name from the netlist, provided the netlist contains
only one design.

❑ By User

(Default) Specifies the name of the top cell when a netlist contains more than one
design (more than one top design name). The top cell name specified is the design
the software imports and processes.

5. Specify the LEf files to import. You must specify the technology LEF file first, then specify
the standard cell LEF and block LEF in any order.
October 2010 137 Product Version 9.1.3

../soceUG/dataprep.html#firstpage
../soceUG/dataprep.html#firstpage

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
The LEF file provides technology information, such as metal layer and via layer
information and via generation rules, which is used in the Add Rings and Add Stripes
forms. The router also uses the technology information contained in the LEF file.

If a cell is defined multiple times, EDI System reads the geometry information only from
the first definition. For subsequent definitions, EDI System reads the antenna information
only.

Note: If the LEF file contains all the physical information for the design, no other files are
required for the Technology Information/Physical Libraries panel.

6. Click Save or OK.

❑ Save saves your settings to a configuration file. The design is not imported.

❑ OK uses the current settings to import the design. The configuration file is not
updated.

Beginning a Design with OpenAccess

To begin an OpenAccess design, complete the following steps:

1. Select File – Import Design.

2. Click the Basic tab, then select OA.

3. Specify the following information:

❑ Library

Specifies the OpenAccess database library.

❑ Cell

Specifies the OpenAccess database cell.

❑ View

Specifies the OpenAccess database view.

4. Specify the following OpenAccess technology and physical library information:

❑ OA Reference Libraries

Specifies the OpenAccess reference libraries to import. The first OpenAccess
reference library listed in this field must contain the technology information for the
leaf cells.
October 2010 138 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Each reference library is processed using the abstract view name list (Abstract
View Names).

For example, if the reference library is “lib1 lib2”, and the abstract view name
list is “abstract abstract2”, LEF MACRO information is processed for lib1
with the abstract view. Then, for any cells in lib1 that didn notvhave abstract,
but did have abstract2, that view is processed for MACRO information. If a cell has
both views, the first one is used. The process then is repeated for lib2.

❑ OA Abstract View Names

Specifies the OpenAccess view names that the software should examine to find the
equivalent LEF MACRO information (for example, PINS, OBS, FOREIGN).

❑ OA Layout View Names

Specifies the layout view names (separated by spaces) to import.

5. Click Save or OK.

❑ Save saves your settings to a configuration file. The design is not imported.

❑ OK uses the current settings to import the design. The configuration file is not
updated.

Note: In version 8.1 and earlier of the software, lib.defs was used by default.
However, in EDI System 9.1, the cds.lib plugin is used by default to improve
interoperability between EDI System and Virtuoso.

If you still want EDI System to interoperate with 8.1 and earlier versions, use the
lib.defs plugin.

To use lib.defs plugin, set the following:

setenv OA_PLUGIN_PATH install_hierarchy_root/share/oa/data/altplugins

Loading Previously Saved Configuration Files

You can use either the command line or GUI to load previously saved configuration files.

Loading Configurations Files from the Command Line

To load a previously saved configuration file, use the following command:

loadConfig fileName [0 | 1]
October 2010 139 Product Version 9.1.3

../fetxtcmdref/importT.html#loadConfig

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
If you use this command in batch mode and specify a filename, the file is loaded and the
design is imported. If you specify a filename and the 0 parameter, the software loads the file,
but does not import the design.

To apply settings specified in the current configuration file and import the design, use the
following command:

commitConfig

Related Topics

■ Configuration File Variables in the Encounter Digital Implementation System Text
Command Reference.

■ Load and Check Data in the Encounter Digital Implementation System Foundation
Flows: Flat Implementation Flow Guide.

Loading Configuration Files from the GUI

To load a previously saved configuration file from the GUI, complete the following steps:

1. Select File – Import Design.

2. Select the Basic tab if it is not already selected.

3. Click Load.

The Load Import Configuration form is displayed.

4. Select the directory of the file you want to load.

5. Select Input config file (*.conf*) in the Files of type field.

6. Specify a file name or click on the filename in the window. The filename suffix is .conf.

7. Click Open.

The Load Import Configuration form closes.

The configuration file is loaded.

8. In the Design Import form, continue to specify data you want to import into the design.

9. Click Save or OK.

❑ Save saves your settings to a configuration file. The design is not imported.

❑ OK saves your settings to a configuration file and starts the design import process.
This might take several minutes to complete, depending on the size of your design.
October 2010 140 Product Version 9.1.3

../flatImpl/flow.html#LoadandCheckData
../fetxtcmdref/configT.html#firstpage

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
When the design is loaded, the Design Import form closes and the design displays
in the EDI System main window.

Selecting Files

Many of the text fields on the Design Import form contain a browse (...) button that opens a
separate form for selecting files. The name of the form corresponds to the specific file you are
selecting; for example, Netlist Files, LEF Files, or Timing Files. These forms are provided for
easier file management.

Using Select Files

1. On the Design Import form, click the browse (...) button next to the text field of the file
type in which you are interested.

This opens the Files form for that file type. For example, clicking the browse button next
to the Max Timing Libraries field opens the Timing Files form.

2. To type in a specific filename, do the following:

a. In the first text field, type one or more filenames, specify wildcards, or select a
directory. Use spaces to separate multiple filenames.

b. Click Add.

The filenames appear in the Files list of this form and in the specific Files field of
the Design Import form.
October 2010 141 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
c. Click close.

3. To choose a file from a directory, do the following:

a. Click the file folder icon.

This expands the form and displays a list of directories and files.

b. Select one or more files in the Files list.

c. Click Add.

The filenames appear in the Files list of this form and in the specific Files field of
the Design Import form.

d. Click close.

4. To delete files, select the file(s) to be deleted in the Files list and click Delete.

The files are deleted from the both this form and the Design Import form.
October 2010 142 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Working with OpenAccess Designs

■ Importing an OpenAccess Design on page 143

■ Saving an OpenAccess Design on page 143

■ Restoring an OpenAccess Design on page 143

■ Transferring OpenAccess Data between EDI System and Virtuoso Chip Editor for ECO
on page 144

Importing an OpenAccess Design

For information on importing OpenAccess designs, see “Beginning Designs” on page 137.

Saving an OpenAccess Design

Before you attempt to save an OpenAccess design for the first time, you must set the
Reference Libraries and Abstract View values on the Design Import form.

Then, after you run File – Restore Design and then select OA in a new session, the EDI
System software restores the design state to the same as state it was in when you used File
– Save Design and then select OA in the previous session.

Restoring an OpenAccess Design

To restore an OpenAccess design, use one of the following methods:

■ To load the netlist information from an Open Access database, select File – Import
Design, click the Basic tab, then select OA. Specify the information needed in the
Library, Cell, and View fields.

■ After you have imported the design, if the OpenAccess database contains physical
information, select File – Load – OA Cellview.

■ To restore a design that you saved previously by using File – Save Design – OA, select
File – Restore Design – OA.

Note: If you saved the design in EDI System, then edited and saved it under a different name
using another tool, you must run the copyOaRestoreFiles command to copy the required
information from the original Library/Cell/View that was saved.
October 2010 143 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Transferring OpenAccess Data between EDI System and Virtuoso Chip
Editor for ECO

1. From an EDI System session, save the OpenAccess design.

saveOaDesign lib cell view

2. Exit the EDI System session.

3. Open the OpenAccess database in the Virtuoso Chip Editor tool and edit the design.

Note: You must use Virtuoso Chip Editor rather than the Virtuoso Layout Editor.

4. Save the design.

5. Exit the VCE tool.

6. Start an EDI System session.

7. Restore the OpenAccess design.

restoreOaDesign lib cell view

Handling Verilog Assigns

Verilog assign statements may be added, removed, or replaced with buffers automatically by
EDI System. However, if IPO cannot resolve design-rule violations (DRVs) of nets with an
assign statement, you may need to replace the assign statement with a buffer by specifying
the following command before loading a design:

setDoAssign on -buffer buffer_name

The above command replaces each assign statement with a buffer, including ones that are
not involved with a DRV problem. It also does not affect an assign statement driven by 1'b1/
1'b0 unless the following command is also specified:

setImportMode -bufferTieAssign 1

Saving and Restoring Designs

This section contains the following general guidelines for saving and restoring your design
data:

■ Saving Designs on page 145

■ Restoring Designs on page 145

■ Saving and Restoring OpenAccess Designs on page 145
October 2010 144 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Saving Designs

To save a design, you can use the text command or menu command.

■ Use the text command as follows:

saveDesign sessionName

or

■ From the EDI System GUI, use the menu command as follows:

File – Save Design and click the Encounter option button.

The design files you save depend on the work completed during an EDI System session. For
example, if you did not perform Trial Route on an imported design, the saved design data will
not include a route file.

Important

You can save a netlist file only if you made a design change during the EDI System
session. If you make no changes, EDI System references the original netlist when it
saves the design. Do not use the Save Design form to save a partition.

Restoring Designs

To restore a design, you can use the text command or menu command.

■ Use the text command as follows:

restoreDesign sessionName.dat

or

■ From the EDI System GUI, use the menu command as follows:

File – Save Design and click the Encounter option button.

Saving and Restoring OpenAccess Designs

For information on saving and restoring OpenAccess designs, see “Working with
OpenAccess Designs” on page 143.
October 2010 145 Product Version 9.1.3

../encounter/designG.html#savedesignencounter
../fetxtcmdref/importT.html#saveDesign
../fetxtcmdref/importT.html#restoreDesign
../encounter/designG.html#savedesignencounter

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Importing and Exporting Design Data

This section contains some general suggestions for importing design data into the EDI
System environment and exporting data out of the EDI System environment.

Loading a Partition

To load a partition, you can use the menu command as follows:

File – Load – Partition

Before you load a partition, perform the following tasks:

1. Import the design

2. Load the full chip (flat) floorplan, including partition specifications

3. Commit the partition without pin assignment or a timing budget

4. Place and route each of the partitions

When you load a partition design, the EDI System software rebuilds the individual partition
and the top level, so that the entire chip can be analyzed. When you load a saved partition,
the software loads all the files that are selected in the Load Partition File form.

Important

The netlist and routing must be consistent when you load a partition that contains
routing data. For example, if your netlist was modified after in-place optimization
(IPO) or after running NanoRoute, you should make sure that the loaded routing
results correctly correspond to the new netlist.

Loading Floorplan Data

To load floorplan data, use the following menu command:

File - Load - Floorplan

When you load a floorplan, the EDI System software treats the following items as floorplan
data:

■ Floorplan dimensions

■ Standard cell rows
October 2010 146 Product Version 9.1.3

../encounter/designG.html#LoadPartition
../encounter/designG.html#LoadFloorplanFile

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
■ Floorplan guides

■ Hard blocks (macros)

■ Blackboxes

■ Power structures

■ Density screens

■ Placement blockages

■ Routing blockages

■ Pin blockages

■ Partition pin cuts

■ Feedthrough guides

Important

Blocks and instances that you load with the Load Floorplan command are set as
preplaced.

Placement File Requirement

Before you load the floorplan file that was used to generate the placement file, make sure the
placement file is in EDI System format.

Loading an I/O Assignment File

If you do not read an I/O assignment file into your EDI System session, and if no I/O pad
instances are preplaced, the EDI System software randomly places I/O pad instances.

Loading an FSDB File

Before you begin, run a simulation-based power analysis with VCD input. Load an FSDB file
for detailed power analysis using the Debussy Waveform (nWave) tool.
October 2010 147 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Saving a Partition

You can save import configuration, netlist, floorplan, special route, and vendor-specific files
for each partition, including the top level.

Note: Regardless of your choice of output file, the Verilog® netlist, configuration file, and
floorplan file are always saved.

Important

You can specify a timing constraint output format for each partition only if you
selected Derive Timing Budget when you ran the Partition program.

Saving Floorplan Data

When you save a floorplan, the EDI System software treats the following items as floorplan
data:

■ Floorplan dimensions

■ Standard cell rows

■ Floorplan guides

■ Hard blocks (macros)

■ Blackboxes

■ Power structures

■ Density screens

■ Placement blockages

■ Routing blockages

■ Pin blockages

■ Partition pin cuts

■ Feedthrough guides

After you save a floorplan, the EDI System software creates the following files:

■ A general floorplanning file with the extension .fp

■ A power route data file with the extension .fp.spr

If there is an entry in the IO Cell Libraries field in the Design Import form, a third file is
created with the extension .fp.areaio.
October 2010 148 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Converting an EDI System Database to GDSII Stream or
OASIS Format

To convert an EDI System database to GDSII Stream or OASIS format at any stage of the
design flow, use the following commands:

■ For GDSII Stream format:

❑ setStreamOutMode

❑ streamOut

Create GZIP files by appending .gz to the filename. The streamOut -merge
command can read files with the .gz extension.

Note: You can also use the following GUI forms:

❍ Options – Set Mode – Mode Setup – StreamOut

❍ File – Save – GDS/OASIS

■ For OASIS format:

❑ setOasisOutMode

❑ oasisOut

Note: You can also use the following GUI forms:

❍ Options – Set Mode – Mode Setup – OasisOut

❍ File – Save – GDS/OASIS

If the database is partitioned into hierarchical blocks, create a file that includes all cells by
completing the following steps:

1. Generate GDSII Stream or OASIS files for the hierarchical blocks.

2. Merge the block-level GDSII Stream or OASIS files to make a top-level file for the whole
design.

Related Topics

To see where this step fits in the design flow, see Analyze SI, Run Post-SI Optimizatin and
Physical Verification and Generate GDS in the Encounter Digital Implementation System
Foundation Flows: Flat Implementation Flow Guide.
October 2010 149 Product Version 9.1.3

../encounter/optionsG.html#ModeSetupOasisOut
../encounter/designG.html#GDSOASISExport
../fetxtcmdref/importT.html#setStreamOutMode
../fetxtcmdref/importT.html#streamOut
../encounter/optionsG.html#ModeSetupStreamOut
../encounter/designG.html#GDSOASISExport
../fetxtcmdref/importT.html#setOasisOutMode
../fetxtcmdref/importT.html#oasisOut
../flatImpl/flow.html#AnalyzeSIRunPost-SIOptimization
../flatImpl/flow.html#AnalyzeSIRunPost-SIOptimization

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
For more information, see “Merging GDSII Stream or OASIS Files” on page 151.

Creating Cells and Instances

When it converts the database, the software creates instances according to following cases:

■ If a LEF MACRO does not have any FOREIGN statements, or if a MACRO name and
FOREIGN name are the same, the software creates one top-level instance that has the
same name as the MACRO. At the cell level, a cell with the same name as the MACRO
already exists, so the software does not create any new cells.

■ If a LEF MACRO has multiple FOREIGN statements, or if the MACRO name and FOREIGN
name are different, the software also creates one top-level instance that has the same
name as the MACRO. However, at the cell level there is no cell with the same name as the
MACRO, so the software creates one. This cell contains pointers to the data for each
FOREIGN structure in the LEF MACRO.

Renaming LEF Vias

To force the streamOut or oasisOut commands to give unique names to LEF vias, type
one of the following commands before running the streamOut or oasisOut command:

■ setStreamOutMode -SEvianames true

■ setOasisOutMode -SEVianames true

These commands rename all LEF vias, and all generated vias, using the following naming
convention:

topSructureName_VIA index

Examples of renamed vias are chip_VIA1 and bigDesign_VIA23.

For more information, see setStreamOutMode or setOasisOutMode in the Encounter
Digital Implementation System Text Command Reference.
October 2010 150 Product Version 9.1.3

../fetxtcmdref/importT.html#setStreamOutMode
../fetxtcmdref/importT.html#setOasisOutMode

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Merging GDSII Stream or OASIS Files

The software allows you to merge several GDSII Stream or OASIS files into a single file for
hierarchical designs. It merges cells that are either referenced (instantiated) in the design or
can be referenced in a recursive search from any child cell that is referenced in the design.
For example, if a merge file contains cells A, B, C, X, Y, and Z, and C has a reference to X, and
X has a reference to Y, and the design references cells A, B, and C (but not directly X, Y, or Z),
the software merges cells A, B, C, X, and Y, but not Z.

The software creates a file in the highest version number of all the merge files.

Merging Files Using the Command Line

1. Create the block-level GDSII Stream or OASIS files by using one of the following
commands:

streamOut -merge list_of_GDS_files [-uniquifyCellNames]

oasisOut -merge list_of_OASIS_files [-uniquifyCellNames]

If you specify the -uniquifyCellNames parameter, you must list the top-level file first,
as the software uses the first name in the search path when renaming cells. For more
information, see “Merge Examples” on page 151.

2. Create the top-level GDSII Stream or OASIS file by using the block-level files as the
merge files.

The software issues warning messages if any of the files, including the block-level files,
contain structures with the same name or if it renames any cells.

The top-level GDSII Stream or OASIS file contains the following structures:

■ Top structure (the design data from the EDI System software)

■ Via structures (output from the EDI System design data)

■ Leaf cell structures and their children (copied from the merge files)

■ Intermediate structures from the FOREIGN structure

Merge Examples

The following examples show the order dependency in merge files. In the examples, the
COMMON cells may be the same or different. If the cells are different, or if you are not sure
whether they are the same or different, use the -uniquifyCellNames parameter in
addition to the -merge parameter.
October 2010 151 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Note: In the examples, for simplicity GDS and streamOut are used. If you are merging
OASIS format files, substitute OASIS for GDS and oasisOut for streamOut.

Case 1

Most cases are similar to the following:

■ 2contains cells X, COMMON (COMMON is instantiated in X).

■ GDS2 contains cell Y, COMMON (COMMON is instantiated in Y).

The design instantiates cells X and Y.

■ For examples of cases where hierarchical cells are involved and the contents of a
hierarchical cell is different from another cell with the same name, see “Case 2” on
page 153.

Example 1
streamOut -merge {GDS1 GDS2}

■ GDS1 processed: X and COMMON are copied from GDS1.

■ GDS2 processed: Y is copied from GDS2, COMMON is assumed to be the same, so it is not
copied, Y references the version of COMMON that was copied from GDS1.

Example 2
streamOut -merge {GDS2 GDS1}

■ GDS2 processed: Y and COMMON are copied from GDS2.

■ GDS1 processed: X is copied from GDS1, COMMON is assumed to be the same, so it is not
copied, X references the version of COMMON that was copied from GDS2.

Example 3
streamOut -merge {GDS1 GDS2} -uniquifyCellNames

■ GDS1 processed: X and COMMON are copied from GDS1.

■ GDS2 processed: Y is copied from GDS2, COMMON is copied from GDS2 but renamed
COMMON_GDS2 due to uniquification, reference from Y to COMMON is changed to
COMMON_GDS2.
October 2010 152 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Example 4
streamOut -merge {GDS2 GDS1} -uniquifyCellNames

■ GDS2 processed: Y and COMMON are copied from GDS2.

■ GDS1 processed: X is copied from GDS2, COMMON is copied from GDS2 but renamed to
COMMON_GDS1 due to uniquification, reference from X to COMMON is changed to
COMMON_GDS1.

Results

Assuming the COMMON cells are copies of the same cell, the results of Example 1 and
Example 2 are the same. Example 3 and Example 4 are geometrically equivalent, but have
duplicate copies of the COMMON cell (with one copy with a different name).

Assuming the COMMON cells are different, the results of Example 1 and Example 2 are not
correct. In this case, the results of Example 3 and Example 4 are both correct, but yield
different cell names depending on the order.

Case 2

In some cases, hierarchical cells are involved and the contents of a hierarchical cell is
different from another cell with the same name. The following examples show the results of
order dependency of merge files in these cases.

■ GDS1 contains cells X, Y (Y is instantiated in X).

■ GDS2 contains cell Y.

The Y cells in the files contain different information.

The design instantiates cells X and Y.

Example 5
streamOut -merge {GDS1 GDS2}

■ GDS1 processed: X and Y are copied from GDS1.

■ GDS2 processed: Y from GDS2 is dropped.
October 2010 153 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Example 6
streamOut -merge {GDS2 GDS1}

■ GDS2 processed: Y from GDS2 is copied from GDS2.

■ GDS1 processed: X is copied from GDS1, Y is dropped (references from X to Y now use
the one copied from GDS2).

Example 7
streamOut -merge {GDS1 GDS2} -uniquifyCellNames

■ GDS1 processed: X and Y are copied from GDS1.

■ GDS2 processed: Y from GDS2 is dropped.

Example 8
streamOut -merge {GDS2 GDS1} -uniquifyCellNames

■ GDS2 processed: Y from GDS2 is copied from GDS2.

■ GDS1 processed: X is copied from GDS1, Y is copied from GDS1 but renamed to Y_GDS1
due to uniquification, reference from X to Y changed to Y_GDS1.

Results

Assuming the Y cells are copies of the same cell, the results of Example 5, Example 6, and
Example 7 are the same. The results of Example 8 are geometrically equivalent, but have two
copies of the Y cell, and one copy has a different name.

Assuming the Y cells are different, you must know whether the design is supposed to have its
Y cell from GDS1 or GDS2. If the correct version of Y is from GDS1, then Example 5 and
Example 7 give the correct results. If the correct version of Y is from GDS2, then only Example
8 gives the correct results.

For more information, see the following commands:

■ streamOut

■ oasisOut
October 2010 154 Product Version 9.1.3

../fetxtcmdref/importT.html#streamOut
../fetxtcmdref/importT.html#oasisOut

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Merging GDS/OASIS Files Using the GUI

Use the GDS/OASIS Export form.

1. Choose File – Save – GDS/OASIS.

2. Fill in the appropriate fields on the form.

For more information, see Save – GDS/OASIS in the “File Menu” chapter of the Encounter
Digital Implementation System Menu Reference.

Merging GDSII Stream or OASIS Files for Hierarchical Assembly of Partitioned Blocks

To merge GDSII Stream/OASIS files for the hierarchical assembly of partitioned blocks for
further usage, such as, LVS/DRC, following are the methods described below which would
result in two different uniquified cell names in the GDSII Stream/OASIS files:

Method 1

Building *block*.gds files requires running the following steps:

streamOut pnrblock1.gds ... -merge {std.gds}

streamOut pnrblock2.gds ... -merge {std.gds}

streamOut top.gds ... -merge {std.gds pnrblock1.gds pnrblock2.gds}

Note: This method results in copying of the cells from std.gds being uniquified for each
block (if -uniquifyCellNames is enabled) since each pnrblock has its own copy of cells.

Method 2

Building *block*.gds files without merging cells (deferred merging to top level), requires
running the following steps (LVS/DRC cannot be performed at the block level):

streamOut pnrblock1.gds ... (no -merge)

streamOut pnrblock2.gds ... (no -merge)

streamOut top.gds ... -merge {pnrblock1.gds pnrblock2.gds std.gds}

Note: No matter where std.gds is placed, there is no cell name conflict with
pnrblock1.gds and pnrblock2.gds. For Method 1, if pnrblock1 used a cell that was
not used in the top level, and if std.gds was merged with pnrblock1.gds, then that cell
is uniquified and merged with top.gds because the tool checks the cell's hierarchy.

Note: The streamOut command is not dependent on the order of the list of GDSII files
provided with -merge parameter. All cells used by top or other cells are merged, but different
order will generate different uniquified cell names.
October 2010 155 Product Version 9.1.3

../encounter/designG.html#GDSOASISExport

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
About the GDSII Stream or OASIS Map File

When the software converts an EDI System database to GDSII Stream or OASIS format, it
creates a file for mapping the layers in the EDI System database to a GDSII Stream or OASIS
database. The file can handle up to 1000 GDSII Stream or OASIS layers. In the file each layer
is assigned a unique number and is described on a separate line. You must customize the file
to make it appropriate for your design.

Related Topics

■ Flat Implementation Flow chapter in the Encounter Digital Implementation System
Foundation Flows: Flat Implementation Flow Guide.

❑ “Results”

Map File Format

The file has the following four columns, and may contain comments:

■ Layer object name (layerObjName)

■ Layer object type (layerObjType)

■ Layer number (layerNumber)

■ Data type (dataType)

Each comment starts and ends with a hash mark (#) and must be the first or last argument
on a line. It can be preceded by spaces or tabs.

Following is a short example of a map file with comments:

#This comment is the first argument on a line#
METAL1 NET 1 0
METAL1 SPNET 999 0

#This comment is preceded by white space#
METAL1 PIN 1000 0

#This comment is preceded by a tab#
METAL1 LEFPIN 2000 0
METAL1 FILL 3000 0
METAL1 VIA 4000 0 #This comment is at the end of a line#
METAL1 VIAFILL 5000 0
METAL1 LEFOBS 10000 0
NAME METAL1/NET 20000 0
October 2010 156 Product Version 9.1.3

../flatImpl/flow.html#firstpage
../flatImpl/flow.html#Results

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Map File Columns

layerObjName Specifies one of the following objects:

LEF_layer_name Specifies a LEF layer from the LAYER
statement in the LEF technology file.

If the layerObjName is a LEF layer name,
the layerObjType must specify the DEF
object type.

COMP Specifies component outlines.

If the layerObjName is COMP, the
layerObjType must specify ALL.

DIEAREA Specifies the chip boundary.

If layerObjName is DIEAREA, the
layerObjType must specify ALL.
October 2010 157 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
NAME Specifies a text label for the layer name and
associated object type. If you do not want to
output text labels, remove the NAME lines
from the file.

There is no limit on the length of a structure
(cell) name. Because some GDS/OASIS
readers have a 32-character limit, the EDI
System software issues a warning message
when a structure name is longer than 32
characters.

If layerObjName is NAME,
layerObjType can be a composite layer
name/object type (LEFPIN, NET, PIN, or
SPNET), or COMP.

■ LEFPIN places the label on the LEF
MACRO PIN shape. (Applies only when
the -outPutMacros parameter is
specified. For more information, see
streamOut or oasisOut.)

■ NET places the label on the NET.

■ PIN places the label on the PIN or I/O
abstract pad.

■ SPNET places the label on the
SPECIALNET.

■ COMP places the label on the placed DEF
component.

layerObjType Specifies an object type.

You can specify a subtype for some layerObjTypes. For
more information, see “Specifying Object Subtypes” on
page 160.

ALL ■ In routing layers, ALL is equivalent to
NET, SPNET, VIA, PIN, LEFPIN, FILL,
FILLOPC, LEFOBS, VIAFILL, and
VIAFILLOPC.

■ In cut layers, ALL is equivalent to VIA,
VIAFILL, and VIAFILLOPC.
October 2010 158 Product Version 9.1.3

../fetxtcmdref/importT.html#streamOut
../fetxtcmdref/importT.html#oasisOut

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
BLOCKAGE Equivalent to DEF BLOCKAGES without
+ FILLS.

BLOCKAGEFILL Equivalent to DEF BLOCKAGES with
+ FILLS.

CUSTOM Applies to addCustomText and
addCustomBox information only.

For more information, see addCustomText
and addCustomBox.

FILL Equivalent to DEF FILLS without + OPC or
DEF SPECIALNETS with + SHAPE
FILLWIRE.

You can separate FILL into floating and
connected fill by specifying the FLOATING
subtype. For more information, see “Fill
Subtype” on page 161.

FILLOPC Equivalent to DEF FILLS with + OPC or
DEF SPECIALNETS + SHAPE
FILLWIREOPC.

You can separate FILLOPC into floating and
connected fill by specifying the FLOATING
subtype. For more information, see “Fill
Subtype” on page 161.

Note: DEF 5.6 does not support this object
type.

LEFOBS Equivalent to LEF OBS. (Applies only when
the -outPutMacros parameter is specified.
For more information, see streamOut or
oasisOut.)

LEFPIN Equivalent to LEF PIN. (Applies only when
the -outPutMacros parameter is specified.
For more information, see streamOut or
oasisOut.)

NET Equivalent to DEF NETS wiring. For more
information, see “Net Name Subtype” on
page 162.

PIN Equivalent to DEF PINS.
October 2010 159 Product Version 9.1.3

../fetxtcmdref/importT.html#addCustomText
../fetxtcmdref/importT.html#addCustomBox
../fetxtcmdref/importT.html#streamOut
../fetxtcmdref/importT.html#oasisOut
../fetxtcmdref/importT.html#streamOut
../fetxtcmdref/importT.html#oasisOut

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
See the “DEF Syntax” chapter in the LEF/DEF Language Reference for more information
on the object types.

Important

Layer names or object types that exist in the EDI System database but are not
specified in the map file are not output to the GDSII Stream or OASIS file.

Specifying Object Subtypes

You can specify subtypes for some layerObjTypes. Specifying a subtype allows you to
split the data from a layerObjType, so that part of it is output to one layerName/
dataType and part of it is output to another layerName/dataType, or to copy it, so it is
output to more than one layerName/dataType. For example, if you use the FLOATING
subtype for FILL, you can divide the output for FILL so that FILL that is FLOATING is output
to one layerName/dataType and FILL that is not FLOATING is output to a different

SPNET Equivalent to DEF SPECIALNETS without
+ SHAPE FILLWIRE or + SHAPE
FILLWIREOPC. For more information, see
“Net Name Subtype” on page 162.

TEXT Applies to strip box information.

For more information, see dbCreateText

VIA For via master creation for regular vias.

VIAFILL You can separate VIAFILL into floating and
connected fill by specifying the FLOATING
subtype. For more information, see “Fill
Subtype” on page 161.

VIAFILLOPC You can separate VIAFILLOPC into floating
and connected fill by specifying the
FLOATING subtype. For more information,
see “Fill Subtype” on page 161.

Note: DEF 5.6 does not support this object
type.“Fill Syntax” on page 107

layerNumber Specifies the GDSII Stream/OASIS layer number or numbers.
The number must be an integer between 1 and 65535.

dataType Specifies the GDSII Stream/OASIS data type or data types. The
data type must be an integer between 0 and 65535.
October 2010 160 Product Version 9.1.3

../lefdefref/DEFSyntax.html#firstpage
../soceDBAref/cmds_A-E.html#dbCreateText

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
layerName/dataType, or you can output FILL that is FLOATING to a specified
layerName/dataType and also output it to the same layerName/dataType as FILL
that is not FLOATING.

You can specify the following subtypes:

■ Floating and non-floating metal and via fill

For more information, see “Fill Subtype” on page 161.

■ Net names

For more information, see “Net Name Subtype” on page 162.

■ Voltage levels

For more information, see “Voltage Subtype” on page 162.

■ VIA cut sizes

For more information, see “SIZE Subtype” on page 163.

Fill Subtype

Use the following syntax to specify metal and via fill:

layerObjName layerObjType[:FLOATING] layerNumber dataType

:FLOATING is optional. It specifies unconnected fill. Use this syntax for FILL, FILLOPC,
VIAFILL, and VIAFILLOPC shapes.

In the map file, FLOATING shapes can be output to a different layerNumber/dataType
than the non-FLOATING (connected) shapes, or they can be output to the same
layerNumber/dataType and to a different layerNumber/dataType.

For example, to divide the output of metal fill shapes, so that non-floating fill on METAL1 is
output to layerNumber 8 dataType 0 and floating fill to layerNumber 8 dataType
51, the map file would have the following statements:

METAL1 FILL 8 0
METAL1 FILL:FLOATING 8 51

To output the connected metal fill shapes on METAL1 to layerNumber 8 dataType 0
and floating fill to both layerNumber 8 dataType 0 and to layerNumber 8 dataType
51, the map file would have the following statements:

METAL1 FILL 8 0
METAL1 FILL:FLOATING 8 0,51
October 2010 161 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Net Name Subtype

Use the following syntax to specify layers for nets. The syntax affects wires only, not vias.

For special nets, use the following syntax:

layerObjName SPNET[:netName] layerNumber dataType

For regular nets, use the following syntax:

layerObjName NET[:netName] layerNumber dataType

:netName is optional. Use the whole net name of any net.

For example, to output special nets named VDD on LEF layer METAL1 to GDS layer 41, and
all other special nets on LEF layer METAL1 to GDS layer 31, include the following lines in
the map file:

METAL1 SPNET:VDD 41 0
METAL1 SPNET 31 0

Voltage Subtype

Use the following syntax to specify the voltage level for nets, special nets, pins, and vias:

layerObjName layerObjType:VOLTAGE:minVoltage[:maxVoltage] layerNumber
dataType

For example, to output nets on LEF layer METAL1 with a minimum voltage of 1.8 to
layerNumber 31 dataType 3, use the following syntax:

METAL1 NET:VOLTAGE:1.8 31 3

To output nets on LEF layer METAL1 with a minimum voltage of 1.8 and a maximum voltage
of 2.499 to layerNumber 31 dataType 3, use the following syntax:

METAL1 NET:VOLTAGE:1.8:2.499 31 3

If you specify both net names and voltages in the file, the net name overrides the voltage
(because the net name is more specific than the voltage). In the following example, VDD nets
are output to layerName/dataType 31 4, even whose voltage is between 1.8 and 2.499.

METAL1 NET:VDD 31 4
METAL1 NET:VOLTAGE:1.8:2.499 31 1

As with other subtypes, you can output objects with different voltages to different
layerNames/dataTypes, or you can copy the output, so that it appears in more than one
layerName/dataType in the map file. In the following example, nets whose voltage is
between 1.8 and 2.499 are output to both layerName/dataType 31 0 and layerName/
dataType 31 1.
October 2010 162 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
METAL1 NET 31 0
METAL1 NET:VOLTAGE:1.8:2.499 31 0,1

SIZE Subtype

You can use the SIZE attribute to specify the size of cuts to be checked. The SIZE attribute
applies only to VIA object types (VIA, VIAFILL, and VIAFILLOPC) and to their cut layers. A
warning message is displayed if the SIZE attribute is applied to a non-cut layer or a non-VIA
object.

The map file syntax is as follows:

layer VIA:SIZE:value1xvalue2 gdsLayer gdsDatatype
layer VIAFILL:SIZE:value1xvalue2 gdsLayer gdsDatatype
layer VIAFILLOPC:SIZE:value1xvalue2 gdsLayer gdsDatatype

The cut size values value1 and value2 are specified in microns.

Examples of usage of SIZE attribute are given below:

VIA12 VIA:SIZE:0.1x0.1 41 0
VIA12 VIA:SIZE:0.1x0.2 41 1
VIA12 VIA:SIZE:0.2x0.2 41 2

For rectangles both the cut orientations are checked using one statement. For example, cuts
0.1x0.2 and 0.2x0.1 are checked using the following statement:

VIA12 VIA:SIZE:0.1X0.2 41 1

It is recommended to define a via without using the SIZE attribute. For example,

VIA12 VIA 41 0
VIA12 VIA:SIZE:0.1x0.1 41 0
VIA12 VIA:SIZE:0.1x0.2 41 1
VIA12 VIA SIZE:0.2x0.2 41 2

In this case, all the possible cut sizes are checked. If, say, three standard cut sizes are
specified, the “default” size is picked and not the one specified using the SIZE attribute. The
“unsized” construct is used to check cuts that do not have standard sizes.

For 0.1x0.1 VIA defined without a SIZE attribute, you can also specify a simpler usage, such
as,

VIA12 VIA 41 0
VIA12 VIA:SIZE:0.1x0.2 41 1
VIA12 VIA SIZE:0.2x0.2 41 2
October 2010 163 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Using Multiple Layers and Data Types

The following examples show the use of multiple layers and data types.

To output ... To ... Use ...

METAL1 NET 31 0 Single layer, single data
type

31:0

METAL1 NET 31 0,1 Single layer, two data types 31:0, 31:1

METAL1 NET 31,32 0 Two layers, single data type 31:0, 32:0

METAL1 NET 31,32 0,1 Two layers, two data types 31:0, 31:1, 32:0, 32:1

METAL1 NET 31 0
METAL1 NET 32 1

Two layers, each with a
different data type

31:0, 32:1
October 2010 164 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Updating Files during an EDI System Session

The following table lists the files you can replace or update incrementally during an EDI
System session:

* The EDI System software loads information for display only. You cannot edit it.

Type Replace Update How

ILM N N

LEF N Y loadLefFile -incremental

Encounter Tech File N N

Timing Libraries N N

Timing Constraints Y Y loadTimingCon -incr

Stamp Models N N

I/O Assignment File Y N loadIoFile

Partition File Y N specifyPartition

Floorplan File Y N loadFPlan

Placement File Y N restorePlace

Routing File Y N restoreRoute

Special Route File Y Y Use loadSpecialRoute to replace

DEF Y Y defIn (use -scanChain option to
update scan chains)

PDEF Y Y pdefIn
October 2010 165 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
SKILL to TCL Mapping

The following table shows the mapping of Virtuoso SKILL functions to EDI System TCL
functions while using the setOaxMode -bindkey parameter.

Virtuoso Key
(Default) SKILL Function

EDI
System
Key
(Default)

EDI System
Command

Shift-k leHiClearRuler() K cleanRuler

Shift-m leHiMerge() M mergeWire

Shift-q leEditDesignProperties() Q summaryReport

Shift-r leHiReShape() R resizeMode

Shift-s leHiSearch() S getWireInfo

Shift-u hiRedo() U redo

Shift
<DrawThru3>

hiZoomOut() Z zoomOut

a geSingleSelectPoint() a selectMode

c leHiCopy() c copySpecialWire

e leHiEditDisplayOptions() e popUpEdit

f hiZoomAbsoluteScale
(hiGetCurrentWindow())

f fit

k leHiCreateRuler() k createRuler

m leHiMove() m moveWireMode

o leHiCreateVia() o addViaMode

q leHiEditProp() q attributeEditor

Shift-o leHiRotate() r rotateInstance

s leHiStretch() s stretchWireMode

u leUndo() u undo

w hiPrevWinView
(hiGetCurrentWindow())

w previousView
October 2010 166 Product Version 9.1.3

../fetxtcmdref/importT.html#setOaxMode

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
Note: If the setOaxMode –bindkey parameter is used, then the Virtuoso Key column
applies to EDI System for all of the equivalent commands in the mapping.

z hiZoomIn() z zoomIn

4- Down arrow key geScroll(nil \\\"n\\\"
nil)

Up panUp

5- Down arrow key geScroll(nil \\\"s\\\"
nil)

Down panDown

4-Down arrow key geScroll(nil \\\"w\\\"
nil)

Left panLeft

5-Down arrow key geScroll(nil \\\"e\\\"
nil)

Right panRight

F2 geSave() F2 saveDesign

Delete leHiDelete() Delete deleteSelected

Escape cancelEnterFun() Escape cancel

Ctrl-d geDeselectAllFig() Ctrl-d deselectAll

Ctrl-n leSetFormSnapMode
(\\\"90XFirst\\\")

Ctrl-n snapFloorplan

Ctrl-r hiRedraw() Ctrl-r redraw

Ctrl-s leHiSplit() Ctrl-s splitWire
October 2010 167 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs
October 2010 168 Product Version 9.1.3

Encounter Digital Implementation System User Guide
7
Flip Chip Methodologies

■ Overview on page 170

■ Flip Chip Flow in EDI System on page 172

■ SiP Bump Flow on page 177

■ Area I/O Flow on page 179

■ Peripheral I/O Flow on page 183

■ Differentiating Area I/O and Peripheral I/O on page 197

■ Point-To-Point Routing on page 198

■ Distributed Co-design on page 200

■ Swapping Signals on page 201

■ Creating Differential Routing to Signal Bumps on page 203

■ Examples and Report Files on page 209
October 2010 169 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Overview

Flip chip is a methodology for placing I/O bumps and driver cells over the entire chip area in
either a boundary (peripheral I/O) or core (area I/O) configuration. The Encounter Digital
Implementation System (EDI System) flip chip design handles bump arrays, I/O drivers,
electrostatic discharge cells (ESDs), and routing information. Power, ground, and signal
assignments are made after the bumps are placed.

Note: Flip chip is sometimes referred to as area I/O placement in EDI System
documentation. Area I/O placement is a subset of flip chip.

Related Packaging Tools

Allegro® Package Designer (APD) and Allegro® SiP Digital Layout are related packaging
tools that interface with flip chip. You must have a separate license to run APD. The
documentation for APD is provided in the Allegro® Package Designer User Guide
available on SourceLink.

To check the package routing from the bump array, use the APD/SiP tool.

Before You Begin

Before using flip chip, the following information is required:

■ Parameter data for:

❑ Bumps

❑ I/O drivers

Bump Array

Power bump (red)

Ground bump (yellow)

Signal bump (blue)
October 2010 170 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Using this Chapter

The flows in this chapter include steps with examples of how to use flip chip.

■ For general flip chip flow information, see “Flip Chip Flow in EDI System” on page 172.

■ For information on a specific type of flow, see one of the following sections:

❑ SiP Bump Flow on page 177

❑ Area I/O Flow on page 179

❑ Peripheral I/O Flow on page 183

Related Flip Chip Information

■ Text commands

For information on the flip chip commands, see the “Flip Chip Commands” chapter of the
Encounter Digital Implementation System Text Command Reference.

■ Flip Chip Toolbox Menu

For information on the flip chip forms, see the “Flip Chip” section of the Tools Menu
chapter in the Encounter Digital Implementation System Menu Reference.
October 2010 171 Product Version 9.1.3

../encounter/toolsG.html#FlipChipToolbox
../fetxtcmdref/flipchipT.html#firstpage

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Flip Chip Flow in EDI System

The following figure shows the general EDI System flip chip flow including sub flows.

1 License Required

SiP-based Bypass Flow2

using -noCoreCells option
of the defOut command

2 Bypasses Flip Chip Toolbox menu (see Reducing Data Size for SiP Import (Bypass Flow) on

1

2

3

4

5

6

Typical

Flow

VCE (Virtuoso)

Place Design

Block Design

Partition

Verilog
Netlist

LEF
EDI System

APD1

Add Stripes

SiP Bump Flow

Add Stripes

Place I/O / Assign Bumps

Edit Bumps

Load Floorplan

Route Design

Perform Power Routing /
Signal Routing using Flip Chip

Verify Connectivity

RC Extraction

Timing Analysis

Update Power

Output Files

Read LEF/

Define

Assign Bumps/
RDL

Verification/
Export

Package Design

IO_FILE

 IO_PLACE

VCE–OA

Route Feasibility

Cross Probing

SiP / APD

DEF Bump

EDI Syse

October 2010 172 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Flip Chip Flow Steps

1. Load the floorplan.

Load the floorplan as in a typical EDI System flow.

Note: The floorplan information can be passed to SiP through the DEF file.

The following files are imported during this step:

❑ Verilog netlist

A Verilog structural netlist is required for the design connectivity. No bumps are
allowed in the netlist since they are physical cells.

❑ LEF File

The LEF input files must contain the normal technology information, standard cell
macros plus the IO PAD, and bump LEFS.

❍ The LEF BUMP MACRO must contain CLASS COVER BUMP.

❍ The LEF IO Driver cells must contain CLASS PAD (peripheral I/O) or CLASS
PAD AREAIO (area I/O).

For more information, see Differentiating Area I/O and Peripheral I/O on page 197.

Text Command: loadLefFile

❑ OA database via Virtuoso (VCE)

The Virtuoso Chip Editor (VCE) can be used through the OpenAccess (OA) 2.0
database.

Note: This is a specialized flow. The VCE data should be imported as flat so the
routes can be extracted.

❑ IO_FILE, IO_PLACE, or DEF Bump file

Import either the IO_FILE, IO_PLACE, or DEF Bump file.

❍ The IO_FILE contains bumps, I/O rows (optional), and I/O instances (optional).
For an example IO_FILE, see “IO_FILE Example” on page 211.

Text Command: loadIoFile

❍ The IO_PLACE file can be used for specific placement of peripheral I/Os or
double I/O rows.

Text Command: loadIoFile
October 2010 173 Product Version 9.1.3

../fetxtcmdref/importT.html#loadLefFile
../fetxtcmdref/floorplanT.html#loadIoFile
../fetxtcmdref/floorplanT.html#loadIoFile

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
❍ The DEF file can be used to import bumps.

Text Command: defIn

2. Define the bumps using the bump flow.

❑ Bump Flow— See “SiP Bump Flow” on page 177.

The area I/O flow supports several methods to define the bumps:

❍ Bump Matrix Generation
Use the bump matrix generator. These bumps will be assigned later in step 5.

❍ IO_FILE Generation
Generate an IO_FILE that contains the x and y locations of the bumps along
with the x and y locations of the I/O rows. The I/O rows are the rows or sites into
which the I/O driver cells are placed. These bumps may or may not be assigned
to signals at this time.

❍ APD Bump Generation
Use APD to generate the bump matrix or other DEF input file, and pass the
bumps via a DEF instance.

3. Edit the bumps.

Use the following flip chip forms to edit bumps:

❑ Edit Bump Array

❑ Add Bump to Bump Array

❑ Unassign Bump

❑ Swap Signals

4. Add stripes.

Generate the power stripes on the chip using the addStripe text command.

5. Place driver cells and assign bumps.

Use the placeAIO -onlyAIO -assignBump command and options to place the area
I/O driver cells into the rows/sites closest to the corresponding bumps. If the bumps are
not assigned at this time, this command assigns the bumps and also place all of the
standard cells, if requested.

Use the placePIO command to perform initial peripheral I/O pad placement. After you
run the assignBump command to assign the signal and power/ground bumps, use the
October 2010 174 Product Version 9.1.3

../encounter/toolsG.html#FlipEditBumpArray
../encounter/toolsG.html#FlipAddBumpToArray
../fetxtcmdref/importT.html#defIn
../encounter/toolsG.html#fcp_menu5
../encounter/toolsG.html#SwapSignal
../fetxtcmdref/fp_special_routeT.html#addStripe
../fetxtcmdref/flipchipT.html#placeAIO
../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/flipchipT.html#assignBump

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
placePIO -assignBump -noRandomPlacement command and options to optimize
the initial bump assignment.

6. Connect the power and ground bumps / signal bumps.

Use the fcroute -type power command and option to connect the power and
ground bumps to stripes.

Use the fcroute -type signal command and option to connect the signal bumps
to the I/O driver cell specified in the netlist.

If required, use the routePointToPoint command for SPECIALNETS, to connect any
remaining I/O pad pins and bumps, or wires and bumps, or bumps and stripes that were
not routed correctly during fcroute.

Important

Before running the placePIO and fcroute commands, you must specify the flip
chip constraints using the setFlipChipMode command which loads data for
placePIO and fcroute commands.

Note: If you want to view the flight lines before you route the bumps, you must first be in
the Floorplan view. Then, use the left mouse button to click on the bump.

The remainder of the flow is similar to the typical EDI System flow.

7. Partition the design.

Bumps, bump routing, power routing, and I/O driver cells can be pushed down as
blockages into the partition. See specifyPartition and handlePtnAreaIo
commands for more information.

8. Place the design.

Place the design using the placeAIO command.

9. Route the design.

NanoRoute (globalDetailRoute command) can be used to connect the regular nets
in the design.

10. Verify the connectivity.

Verify the bump (physical cells) connections to the logical cells using the
verifyConnectivity command.

11. Run extraction.
October 2010 175 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/flipchipT.html#fcroute
../fetxtcmdref/flipchipT.html#fcroute
../fetxtcmdref/partitionT.html#specifyPartition
../fetxtcmdref/flipchipT.html#handlePtnAreaIo
../fetxtcmdref/flipchipT.html#placeAIO
../fetxtcmdref/routeT.html#globalDetailRoute
../fetxtcmdref/verificationT.html#verifyConnectivity
../fetxtcmdref/flipchipT.html#routePointToPoint
../fetxtcmdref/flipchipT.html#fcroute
../fetxtcmdref/flipchipT.html#setFlipChipMode
../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/flipchipT.html#fcroute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Extract the RC data using the runQRC command or the extractRC command and then
generate a SPEF file. The runQRC command input is the DEF output file which contains
the bumps that are not present in the original Verilog file. You can create a Verilog output
file containing bumps to match the runQRC command SPEF.

Note: You can also create a defout file and convert the bumps to pins so you do not have
to create a physical verilog.

12. Do a timing analysis.

The timing analysis report is the same as in the normal EDI System flow. See
report_timing command.

13. Update power.

Update power using the report_power and analyze_early_rail commands. A flip
chip design can have multiple power sources.

14. Output the files.

Write out the DEF, Verilog, OpenAccess, SPEF, and GDSII files. The defOut command
contains the -noCoreCells option to reduce the data sent to APD. For more
information, see the “Reducing Data Size for SiP Import (Bypass Flow)” on page 177.
October 2010 176 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#runQRC
../fetxtcmdref/rcextractionT.html#extractRC
../fetxtcmdref/timinganalysisT.html#report_timing
../fetxtcmdref/importT.html#defOut
../fetxtcmdref/cpeT.html#report_power
../fetxtcmdref/railanalysisT.html#analyze_early_rail

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
SiP Bump Flow

For information on the SiP bump flow, see System-in-Package Flow Guide available on
SourceLink or in the SiP Product Help.

Reducing Data Size for SiP Import (Bypass Flow)

You can use the -noCoreCells option of the defOut command to reduce data size for
import into SiP. The syntax is as follows:

defOut -noCoreCells

This flow bypasses the bump flow (see Flip Chip Flow in EDI System on page 172).

Important

You should use the -noCoreCells option whenever you are creating a DEF file for
SiP.

Splitting Wires in Metal Layers

If wires that route the bumps are wider than the LEF MAXWIDTH parameter, you can use the
editFixWideWires command to split them.

For wires splitting in specific metal layers, you can modify a LEF layer with a specific
MAXWIDTH parameter as shown in the following example for LAYER M5.

LAYER M5 TYPE ROUTING ; DIRECTION VERTICAL ;

 WIDTH 0.70 ; SPACING 0.70 ; PITCH 1.4 ;

 CAPACITANCE CPERSQDIST 0.0001000 ; RESISTANCE RPERSQ 0.010000 ;

 MAXWIDTH 8.0 ;

END M5

After running the editFixWideWires command, wires in this layer are split to satisfy the
MAXWIDTH value in the LEF file.

The following figure shows how a 16.0 micron wire is split using this LEF layer code and the
editFixWideWires command. The resulting split wires will be slightly less than 8.0
microns each. There will be a split spacing between the wires such that the total width is 16.0
microns.

The split spacing is automatically determined by considering the MINSPACING, PARALLEL
RUNLENGTH SPACING, and DENSITY constraints. The split spacing will be greater than or
October 2010 177 Product Version 9.1.3

../fetxtcmdref/importT.html#defOut
../fetxtcmdref/wireeditT.html#editFixWideWires

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
equal to the MINSPACING constraint. There is no manual control for the split spacing
parameter.

Testing the Package Routing Feasibility

You can test the package routing feasibility of the design using APD / SiP.

For more information, see the Cadence Chip I/O Planner User Guide or the SiP Digital
Architect/Layout User Guide on SourceLink.

16.0 micron width wire

becomes
two < 8.0 micron width wires

< 8.0 micron width wire

spacing
16.0
microns

< 8.0 micron width wire
October 2010 178 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Area I/O Flow

For Area I/O designs, bumps are placed within the core area of the design, and the bonding
pads are not built into the bump cells. This means that the bump cells require routing to the
pads.

To create an Area I/O design, complete the following steps:

1. Load the floorplan.

Use the Load FPlan File form to load the floorplan file.

2. Define the bumps.

Use the Create Bump Array form to set up the bump array.

3. Create area I/O driver rows.

Use the Create Area IO Row form to set up the area I/O rows.

4. Place Area I/O pads and standard cells.

Use the Place Area I/O form to place I/O driver cells.

5. Assign signals, power, and ground to the bumps.

❑ Use the Assign Signals form to assign the signals to the bumps. Signal bumps are
blue-filled squares.

❑ Use the Assign Power/Ground Bumps form to assign power and ground to bumps.
Power bumps are red-filled squares. Ground bumps are yellow-filled squares.

6. Add area I/O filler cells in the blank sites of the specified area I/O row clusters using
addAIoFiller command.

7. Create power rings and stripes.

❑ Use the Add Rings form to create rings around the core area and around the power
and ground bumps.

❑ Use the Add Stripes form to create stripes that connect to the power and ground
bumps.

8. Connect power, from bumps to I/O cells or from bumps to rings/stripes.

Use the Route Flip Chip - Advanced - Routing Style form to establish the power
connections.

Note: The remainder of this flow is similar to the typical EDI System flow.
October 2010 179 Product Version 9.1.3

../encounter/toolsG.html#FlipBumpArray
../encounter/toolsG.html#FlipIODriver
../encounter/toolsG.html#FlipSignalWork
../encounter/toolsG.html#FlipPowerGnd
../fetxtcmdref/flipchipT.html#addAIoFiller
../encounter/designG.html#LoadFloorplanFile
../encounter/toolsG.html#PlaceAIO
../encounter/powerG.html#AddRingsBasic
../encounter/powerG.html#AddStripesBasic
../encounter/toolsG.html#RouteFlipChipAdvanced

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Area I/O (AIO) Command Flow

The area I/O command flow is described as follows:

Routing Bumps to I/O Driver Cells (Hierarchical Area I/O Flow)

The hierarchical area I/O flow allows you to route the bumps, using the fcroute command,
to I/O driver cells and then push down (partition) this data into a lower level.

Area I/O Flow using Text Commands

floorPlan or defIn

ciopCreateBump

addAIORow

placeAIO -onlyAIO -assignBump

addAIoFiller

addRing

addStripe

fcroute

Place area I/O in rows

and assign bumps

Assign bumps
October 2010 180 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#floorPlan
../fetxtcmdref/importT.html#defIn
../fetxtcmdref/flipchipT.html#ciopCreateBump
../fetxtcmdref/flipchipT.html#addAIORow
../fetxtcmdref/flipchipT.html#placeAIO
../fetxtcmdref/flipchipT.html#addAIoFiller
../fetxtcmdref/fp_special_routeT.html#addRing
../fetxtcmdref/fp_special_routeT.html#addStripe
../fetxtcmdref/flipchipT.html#fcroute
../fetxtcmdref/flipchipT.html#fcroute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
The text command is:

handlePtnAreaIo buffer_name

This command pushes down data in the partition as follows:

■ Bumps become routing blockages

■ I/O cells become placement and routing blockages

■ An internal pin is created over the I/O cell pin

■ A boundary pin is created

■ A buffer is created between the internal pin and the boundary pin

Note: If you want to view the flight lines before you route the bumps, you must first be in the
Floorplan view. Then, use the left mouse button to click on the bump.

Flip Chip Routing on Shielded Nets in AIO

When using the fcroute shielding option in the AIO mode with manhattan (90 degree) routing
style, the defOut marks the shielded nets as ‘SHIELD’, while displaying the SHAPE and
ROUTED status of the metal shield wire.

Note: Shielding nets is not supported in PIO mode.

Example

Consider the following example in which the fcroute command connects signal bumps to I/
O cells using 90 degree signal routing for AIO; The command adds a side shield (VSS) on
both sides of the signal route.

Command
fcroute -type signal -designStyle aio -routeStyle manhattan -layerChangeToplayer 8
-layerChangeBotLayer 7 -routeWidth 8 -constraintFile CFG/aio.constr

Constraint File CFG/aio.constr: Shield Net Description
SHIELDING

SHIELDBUMP true
SHIELDWIDTH 0.4
SHIELDLAYERS abc
SHIELDNET VSS
scan_out_2
port_pad_data_out[15]
October 2010 181 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#fcroute
../fetxtcmdref/flipchipT.html#handlePtnAreaIo

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
END SHIELDING

DEF Syntax

The defOut contains the SHIELD syntax as follows:

-scan_out_2 (Bump_27_6_2 PAD) (IOPADS_INST/Pscanout2op PAD)

+ ROUTED METAL8 16000 + SHAPE IOWIRE (1255310 541920) (1369310 *)

NEW METAL8 16000 + SHAPE IOWIRE (1263310 533920) (* 695760)

+ PROPERTY BUMP_ASSIGNMENT “ASSIGNED”

;

-VSS (* VSS)

+ SHIELD scan_out_2 METAL8 800 + SHAPE IOWIRE (1275310 554320) (1315310 *)
NET METAL7 16000 + SHAPE IOWIRE (1255310 541920) (1315310 *)
NET METAL8 800 + SHAPE IOWIRE (1250510 529520) (1315310 *)
+ ROUTED METAL6 16000 + SHAPE STRIPE (1553200 109600) (* 186800)
NET METAL6 16000 + SHAPE STRIPE (1753200 109600) (* 186800)
+ SHIELD scan_out_2 METAL8 800 + SHAPE IOWIRE (1275710 553920) (* 675760)
METAL7 16000 + SHAPE IOWIRE (1263310 533920) (* 695760)
METAL8 800 + SHAPE IOWIRE (1250910 529120) (* 675760)
October 2010 182 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Peripheral I/O Flow

The peripheral I/O approach to flip chip methodology places I/O driver cells at the edges of
the core area of the design. This means that the bump cells require routing to the I/O driver
cells using the top-most layer with or without one extra layer below. This layer is called the
redistribution layer (RDL), and is used to connect the bumps to the I/O pads. The procedures
and examples in this section use the two-layer approach.

The peripheral I/O flow is similar to area I/O, wherein you can use I/O rows (regions/sites) to
place the I/O driver cells since they remain on the boundary. The peripheral I/O flow also
includes non-orthogonal (45-degree) RDL routing, I/O cell optimization, and bump
reassignment for better single layer routing.

Since the top two layers are used for RDL routes, and RDL routes are wider than regular
routes, coupling effects from the RDL routes to regular routes can be significant. To avoid
huge coupling effects, avoid regular routing in one layer below the RDL.

There are three major aspects of the peripheral I/O flow:

■ RDL planning and routing

❑ The automatic placement of the I/O cells on the edge of the design

❑ The optimization of the I/O cells and the reassignment of bumps to enhance single
layer routing.

❑ Non-orthogonal routing on the redistribution layer (RDL).

■ RC extraction

■ Signal integrity and timing analysis

Data Preparation

The LEF CLASS statements for I/O pad cells and bump cells must contain the following
classes for the peripheral I/O flow to work.

I/O cell: CLASS PAD AREAIO

Bump cell: CLASS COVER BUMP

These are the LEF properties used for connecting power/signal bumps to power/signal I/O
cells.

Normally, the bump to I/O pad connection is defined in the Verilog file. The signal names are
specified in the Verilog top module port list, and the I/O cells are connected to these ports.
October 2010 183 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
For I/O power pads which are not defined in the Verilog file, you can define the connection of
the I/O pads to bumps using the command:

■ fcroute -connectPowerCellToBump

The MACRO PIN statement added in LEF 5.7 tells which power/ground pin shape on the I/
O driver cell must be connected to a bump. See Defining the Connection between a Bump
and P/G Pin Shape in the “Data Preparation” chapter of the Encounter Digital
Implementation System User Guide.

Peripheral I/O Flow Steps

The peripheral I/O implementation flow is similar to the traditional physical implementation
flow, except for the handling of bump cells and RDL routing.

There are four major elements of the flow:

■ After the initial floorplanning stage (set die and area and place I/O driver cells), the RDL
implementation flow includes bump placement and assignment, optimization of I/O driver
cell placement, and RDL routing.

■ The bump placement and assignment is passed to APD (Allegro® Package Designer)
for package design. You can determine the route feasibility by using APD to check the
bump routability to the package. This can be invoked from the EDI System user interface.

■ The RDL-routed design is then ready for power planning / QRC / other placement and
routing operations.

■ Initial parasitics can be extracted in EDI System using the extractRC command. If more
accurate parasitics are required, the signal-routed design can be streamed out in GDSII
format and sent to Assura™ RCX for extracting RC parasitics, which can be used for
timing and SI analysis with the RDL effects.
October 2010 184 Product Version 9.1.3

../soceUG/dataprep.html#ConnectBumpPGPinShape
../soceUG/dataprep.html#ConnectBumpPGPinShape

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Peripheral I/O (PIO) Command Flow

The peripheral I/O command flow is described as follows:

Peripheral I/O Flow using Text Commands

floorPlan or defIn

ciopCreateBump

assignBump

placePIO -assignBump -noRandomPlacement

addRing

addStripe

fcroute

Initial assignment of bumps

placePIO
Initial placement

Optimize assignment of
bumps
October 2010 185 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#floorPlan
../fetxtcmdref/importT.html#defIn
../fetxtcmdref/flipchipT.html#ciopCreateBump
../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/flipchipT.html#assignBump
../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/fp_special_routeT.html#addRing
../fetxtcmdref/fp_special_routeT.html#addStripe
../fetxtcmdref/flipchipT.html#fcroute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
The following flow diagram shows the major flow components for implementing an RDL
design.

Power Planning and Routing

Placement, CTS, IPO, Routing

RDL Extraction with
extractRC or Assura RCX

Bump Creation and

Bump and IO Optimization

RDL Routing

IR-Drop Analysis Timing Analysis SI Analysis

Initial Floorplanning

.lib

LEF

Captbl

CDB
Netlist SDC

RDL Planning
and Routing

Package Design and
Analysis with APD

LEF and DEF

Incremental
SDF

DEF, Verilog,
VCD/TWF,

Power Location

RCLG
Model

GDS

Violation Fixing

Instance Voltage

Violation Fixing

Coupled SPEF

TWF; Incremental SDF
October 2010 186 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
RDL Planning and Routing

The following are the basic steps for planning and routing in a peripheral I/O flow.

1. Load the floorplan.

Use the Load FPlan File form to load the floorplan file.

2. Define the bumps.

Create a bump matrix based on bump pitch and other parameters by using the EDI
System bump selection and assignment user interface or the ciopCreateBump text
command.

From the EDI System user interface, select Tools -> Flip Chip -> Create Bump Array.

3. Place the peripheral I/Os. See “Place peripheral I/O pads” on page 189.

4. Assign the power and ground bumps either by loading a predefined I/O File using the
loadIoFile command or by using the EDI System bump selection and assignment
user interface or the text command, assignPGBumps.

From the EDI System user interface, select Tools -> Flip Chip -> Assign Power/
Ground.

5. Assign the signal bumps by either loading a predefined I/O File using the loadIoFile
command or by using the EDI System bump selection and assignment user interface or
the text command, assignBump.

From the EDI System user interface, select Tools -> Flip Chip -> Assign Signal.

The assignBump command uses the signal names (ports) in the Verilog top module list
and assigns them to the closest I/O cell. The assignBump command assumes the I/O
cells have been preplaced.

6. Route the signal and power/ground bumps to the I/O driver cells or power/ground stripes
using the fcroute command. See “Route bumps” on page 193.

7. If the routing is not optimal, either reassign the bumps or change the I/O cell placement
using the placePIO command. See “Reassign bumps” on page 192.

8. Snap or split route.

Use the snapRoute command to snap the 45-degree routes created by APD to the
manufacturing grid.

Use the splitRoute command to split 45-degree routes that are wider than the
maximum width.
October 2010 187 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#placePIO
../encounter/designG.html#LoadFloorplanFile
../fetxtcmdref/flipchipT.html#ciopCreateBump
../fetxtcmdref/floorplanT.html#loadIoFile
../fetxtcmdref/flipchipT.html#assignPGBumps
../fetxtcmdref/floorplanT.html#loadIoFile
../fetxtcmdref/flipchipT.html#assignBump
../fetxtcmdref/fp_special_routeT.html#snapRoute
../fetxtcmdref/fp_special_routeT.html#splitRoute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
9. Create power rings and stripes.

❑ Use the Add Rings form to create rings around the core area and around the power
and ground bumps.

❑ Use the Add Stripes form to create stripes that connect to the power and ground
bumps.

10. Connect power, from bumps to I/O cells or from bumps to rings/stripes.

Use the Route Flip Chip - Advanced - Routing Style form to establish the power
connections.

Note: The remainder of this flow is similar to the typical EDI System flow.

The EDI System log file displays the routing status of each bump-pad pair in the fcroute PIO
mode.
October 2010 188 Product Version 9.1.3

../encounter/toolsG.html#RouteFlipChipAdvanced
../encounter/powerG.html#AddRingsBasic
../encounter/powerG.html#AddStripesBasic

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
The following diagram shows the peripheral I/O task flow.

Place peripheral I/O pads

Since CLASS PAD AREAI/O cells are not automatically placed, you must invoke a command
to randomly place the I/Os on the periphery. This command has an option to specify the
number of peripheral I/O rows (rings).

Netlist IO_Place LEF/OA

Floor Plan

Create/Assign

Place PIO

Power Planning

RDL Route

Route Power

Place Cells

DEF

Use the GUI to create
the matrix and assign
bumps or use an I/O file
to initialize and optimize
I/O placement

Use fcroute to connect
from I/Os to bumps;
fcroute to connect from
stripes to bumps, and
placeDesign for
standard cells

Route Cells

Extraction with Assura RCX

Read SPEF

Power Analysis/Encounter®
Power System (Next-
Generation VoltageStorm)

Timing

Metal Fill

Edit Wires

Write Data

Edit routes with VCE

Also use VCE
via OA

Verify connectivity, geometry, etc.

DEF, OA, GDSII

Peripheral I/O RDL Flow
October 2010 189 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
From the EDI System user interface, select Tools -> Flip Chip -> Place & Route -> Place
Flip Chip I/O -> Peripheral I/O.

The syntax for the placePIO command is

placePIO [-assignBump] [-optIOs] [-overflowMap] [-maxIOHeight] [-ioFile fileName]
[-rdlConstraintFile fileName] [-noRandomPlacement] [-extraConfig filename] [-
cellList {cellList}] [-instList {instList}] [-powerDomain powerDomainName] [-
ioRow IORowNameList]

Note: The placePIO command also reads flip chip options from setFlipChipMode
command.

Another method for creating the initial I/O placement is to read in an I/O file specifying the
Pad: or IOInst: syntax with the instance name and side of the design or XY location.

You can refine the initial placement or reassign bumps by using various command options.
The initial placement can be modified in two ways:

■ Fixed Bumps

If the bumps have been assigned, the I/O cells can be moved using the placePIO
command to help ensure a one-layer route.

■ Fixed I/Os

The bumps can be reassigned to improve the routing if the I/O cells have been fixed.

Once the placement is finished, the data can be stored in the floor plan file and restored. The
I/O cells can also be moved manually with the move command since there are no specified I/
O rows.
October 2010 190 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/flipchipT.html#placePIO

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
The following figure shows the results of the placePIO command.

Optimize peripheral I/O placement

During peripheral I/O placement, you can specify a constraint file which controls certain
features of the optimization. For an example of a constraint file, see Routing and Placement
Constraints on page 209.
October 2010 191 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
The following figure shows the results of the placePIO command.

Note: placePIO has two features. The first is to randomly place the I/O cells on the
periphery, and the second is to optimize the I/O pad cells. If you specify an I/O file with the
-ioFile option or use the -noRandomPlacement option, placePIO does not do a random
placement.

Reassign bumps

To optimize the bump assignment, use the placePIO -assignBump -
noRandomPlacement command.
October 2010 192 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Route bumps

This command routes the bumps to I/O cells using 45-degree routing.

1. In EDI System, select signal routing type, using fcroute -type signal

By default, 45-degree routing style is selected.

2. Select the peripheral I/O routing style using the command fcroute -designStyle
pio.

This option calls both the detail and global routers to route the bumps.

3. Set the minimum escape distance from the bump to where the route can proceed at an
angle. Specify either the Minimum Escape Distance constraint on the form or use the
command fcroute -minEscapeDistance unit to specify the distance.

4. To specify the minimum distance before the route can turn, you must create a
configuration file (fcroute.config) and include the following command:

srouteMinlength value

Use the command -fcroute -extraConfig fcroute.config to specify the file or
specify the file from the Route Flip Chip Advanced form.

5. You can specify the routing constraints by using the -constraintFile option.

fcroute -constraintFile file_name

For example:

fcroute -constraintFile fcroute.constr

For an example of an fcroute constraint file, see Routing and Placement Constraints
on page 209.

Alternatively, you can specify basic and advanced routing and placement constraints
using the Flip Chip Route form in the EDI System GUI.

For more information, see the following topics in the Tools Menu chapter of the
Encounter Digital Implementation System Menu Reference:

❑ Flip Chip Route– Basic

❑ Flip Chip Route – Advanced
October 2010 193 Product Version 9.1.3

../encounter/toolsG.html#RouteFlipChipAdvanced
../encounter/toolsG.html#RouteFlipChipBasic
../encounter/toolsG.html#FlipChipRoute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
The following figure shows the results of the fcroute command.

Splitting wires

You can use the splitRoute command to split the RDL layer after it has been routed if you
do not use the native fcroute splitting.

splitRoute [-absWidth value1] [-maxWidth value2] [-minSpacing value3]

The fcroute command splits the route during the routing process. The splitRoute
command is used after routing is complete, most often when working with an APD-routed
DEF tile where the route was not split.

You can invoke the wire splitting function during fcroute by specifying the MAXWIDTH value
in the LEF layers section.
October 2010 194 Product Version 9.1.3

../fetxtcmdref/fp_special_routeT.html#splitRoute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
LAYER METAL7

....

MAXWIDTH 10.0 ;

Adding power stripes

You can use the addStripe command to add a power stripe over or between power bumps
without specifying the exact xy locations. If the stripe is on a different layer than the bump
layer, addStripe will automatically drop a via array.

From the EDI System user interface, select Power -> Power Planning -> Edit Power
Planning Option -> Stripe

You can also open the Edit Power Planning Option form by clicking the +icon next to the
Use option set field on the Basic tab of the Add Stripes form.

The syntax for the addStripe command is
addStripe

Routing the power bumps

➤ Route the power routes to the stripes by using the EDI System user interface or the
fcroute text command.

From the EDI System user interface, select Tools -> Flip Chip -> Place & Route -> Route
Flip Chip -> Advanced -> Routing Style -> Connect Power

The syntax for the fcroute command is

fcroute –type power

Peripheral I/O Extraction

In the RDL extraction flow for designs using peripheral I/O methodology, EDI System outputs
the design with the RDL routing into a GDS file that is fed into RCX for parasitic extraction at
the cell-level. RCX generates a cell-level SPEF/DSPF file that is used for timing and signal
integrity analysis.

There are two steps involved in parasitic extraction with RCX.

■ LVS is run to perform connectivity extraction.

■ RCX is run to perform parasitic extraction.
October 2010 195 Product Version 9.1.3

../fetxtcmdref/fp_special_routeT.html#addStripe
../fetxtcmdref/flipchipT.html#fcroute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
The following diagram illustrates this flow.

Inputs to Extraction

■ Verilog netlist for annotation, generated by SoCE

■ GDS of design with RDL, generated by SoCE

■ RCX technology data

Outputs from Extraction

■ Cell-level SPEF/DSPF for SI/Timing analysis

■ Includes coupling RDL nets to signal nets

SI and Timing Analysis

The following procedure describes the signal integrity and timing analysis flow for an RDL
design using the coupled SPEF file generated by the RCX extraction tool.

1. Restore the design.

restoreDesign routedSession.dat designname

This command restores the routed view of the design including the regular routing and
RDL routing.

SPEF/
DSPF

Design
.def

Design
.def

Stream
mapping file

Design + RDL
.gds

Design
.v

Techfiles &
command files

SOCE
Routing

LVS/RCX
Extraction

Signal Integrity
Timing

Design
.v

SoCE RDL Extraction Flow

RDL Extraction
October 2010 196 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
2. Import the coupled SPEF file from RCX.

spefIn rcx_coupled.spef

Make sure all the parasitics of the SPEF are back annotated in EDI System. If all the nets
are back annotated, EDI System displays the following message:

0 nets are missing in SPEF file.

3. Perform timing analysis in EDI System.

❑ Run timing analysis using the timeDesign command.

timeDesign –postRoute –reportOnly

This command reports worst and total negative slack as well as register-to-register,
input-to-register, and input-to-output port slacks.

4. Analyze signal integrity by performing SI analysis in EDI System. The SI engine analyzes
the design for glitch and SI violations. It generates incremental sdf for the delay induced
due to SI. The incremental sdf is used to analyze timing with SI effects.

timeDesign -postRoute -si

This command analyzes the design for SI and creates the analysis report. Later, the
command uses an incremental sdf file for timing analysis and reports the worst negative
slack path with SI-induced delay.

The following listing is a sample script for signal integrity and timing analysis in EDI System.

timeDesign –postRoute –reportOnly -si

Differentiating Area I/O and Peripheral I/O

The LEF I/O Driver cells must contain CLASS PAD (for peripheral I/O) or CLASS PAD
AREAIO (for area I/O).

Note: Depending on your design style, you may need to modify the LEF macro CLASS
statement.

■ Area I/O

CLASS PAD AREAIO = I/O cell without bump.

CLASS PAD AREAIO is used by the assignBump and placeAIO commands.

Additionally, the SITE must be defined and referenced in the LEF macro. See Performing
Area I/O Placement on page 124 in the Data Preparation chapter for more information
and example.

■ Peripheral I/O
October 2010 197 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#assignBump
../fetxtcmdref/flipchipT.html#placeAIO

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
CLASS PAD = I/O cell with bound pad.

CLASS PAD is used by the io_placer to place the pads along the boundary.

By default, the CLASS PAD macro is automatically placed along the boundary when the
configuration file is read. You can also load a file with the loadIoFile command.

The normal wire bound I/O cells are CLASS PAD, however, to use the assignBump and
placePIO commands, they must be CLASS PAD AREAIO even on the periphery.

LEF MACRO CLASS PAD and PAD AREAIO

To support a peripheral I/O-driver with flip-chip bumps flow, PAD AREAIO cells are allowed
outside the core box.

■ LEF MACRO CLASS PAD has the bonding pad built into the cell.

■ LEF MACRO PAD AREAIO has no bonding pad built-in, so it requires routing to the
bump.

Point-To-Point Routing

The Point-To-Point routing in flip chip enables routing between any two DEF SPECIALNET
objects such as a bump and an I/O pad pin, a wire and a bump, or a bump and a stripe. The
point-to-point router can point any location in the chip area.

Use the point-to-point router any time on special nets, especially after you run fcroute and
you find an area where routing is not complete or an area which contains a problem route. In
such cases, delete the problem route and reroute using the point-to-point router.

To perform point-to-point routing:

1. From the EDI System user interface, select Tools -> Flip Chip -> Place & Route ->
Route Point to Point.

or

In the tools area, click the routePoint2Point icon, and press the F3 key.

2. In the Point-To-Point form, specify the minimum width.

3. Select 2 points in the design, an I/O pad pin and a bump (or a wire). View the routing that
occurs between the 2 selected points.
October 2010 198 Product Version 9.1.3

../encounter/toolsG.html#RouteFlipChipPointToPoint
../fetxtcmdref/flipchipT.html#fcroute
../fetxtcmdref/flipchipT.html#assignBump
../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/floorplanT.html#loadIoFile

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
To view the point-to-point routing, ensure that you are in the physical view in EDI System.
If the point-to-point route is not complete, check the encounter.log file or check for any
error message on the screen.

The point-to-point router connects any two objects defined in the Point-To-Point form only.
The router automatically selects the net name when you point the two objects — bump and
I/O pad.

Alternatively, you can run the routePointToPoint command to perform point-to-point
routing.
October 2010 199 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#routePointToPoint

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
The following example displays the results of the routePointToPoint command:

Distributed Co-design
Distributed co-design is a flow in which the package design and IC design are done in a
distributed manner, and the package and IC design teams share data through text file
exchange. The data shared includes information about die size, I/O pad ring placement, pin
and bump placement, and so on.

routePointToPoint -routeLayer M8:M8 -width 0.44 -spacing 0.46 -routeStyle
doubleBend -pin {IOPADS_INST/Ptdspip01 PAD (944.4765 1013.278)} -pin
{Bump_81_8_8 port_pad_data_in[1] (933.832 917.4755)}
October 2010 200 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
The following command in EDI enable reading the I/O and bump — placement and
assignment information from SiP layout into EDI System:

■ readIoUpdate

The package balls in the package file dumped out by the SiP layout in XML format can be
correctly displayed in EDI System even when the design is a flipchip design.

After saving the package XML file in the SiP Layout, you can load the package data in the EDI
System floorplan view using the readPackage command.

For more information, see the Flip Chip Commands chapter in the Encounter Digital
Implementation System Text Command Reference.

Swapping Signals

Signal swapping allows you to swap signals between bumps. Signals must be assigned to
either one or both of the bumps to be swapped.

1. Click on the two bumps for the signals you want to swap.

2. Select Tools – Flip Chip – Swap Signal.

The figures below show signal swapping as follows:

■ Highlight the Bumps on page 202

■ Signals Swapped on page 203
October 2010 201 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#readIoUpdate
../fetxtcmdref/flipchipT.html#readPackage

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Highlight the Bumps

The following figure shows two highlighted bumps with signals to be swapped (bumps A
and B).

Note: If you want to view the flight lines before you swap signals, you must first be in the
Floorplan view. Then, use the left mouse button to click on the bump.

Bump A

Bump B
October 2010 202 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Signals Swapped

The following figure shows the signals after swapping.

Creating Differential Routing to Signal Bumps

Differential routing creates wires of the same length or configuration between a set of sources
and targets. Use the Route Flip Chip - Advanced - Routing Constraints form to specify
differential routing parameters.

Bump A

Bump B
October 2010 203 Product Version 9.1.3

../encounter/toolsG.html#RouteFlipChipAdvancedConstraints

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
You can create a constraint file to define differential pairs, shield nets, and nets to match
tolerance. The following information provides the syntax and examples for creating a
constraint file.

Specify Routing Nets

Syntax
NETS

WIDTHRANGE

WIDTHSTEP

SPACING

PINSPACING dbUnitSpacing

<nets>

END NETS

Example
NETS

WIDTHRANGE 5:10

WIDTHSTEP 1

SPACING 0.1

PINSPACING 0.2

out[10] out[11] out[14] out[19 out[8] out[9]

out[15] out[16] out[17] out[18] resetn

clk out[12] out[12] out[13] out[15] out[3] out[3]

END NETS

Define Differential Pairs

Important

DIFFPAIR is supported only in the fcroute AIO mode.

Syntax
DIFFPAIR

THRESHOLD

<2 nets>

END DIFFPAIR
October 2010 204 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Example
DIFFPAIR

THRESHOLD 0.2

port_pad_data_out[7]

port_pad_data_out[8]

END DIFFPAIR

Define Nets to Match Tolerance

Syntax
MATCH

TOLERANCE

<2 or more nets>

END MATCH

Example
MATCH

TOLERANCE 0.2

tdigit[1] tdigit[2] tdigit[3]

END MATCH

Define a Shield Net

Important

Shielding is supported only in the fcroute AIO mode.

Syntax 1
SHIELDING

SHIELDBUMP true | false
SHIELDWIDTH
SHIELDGAP
SHIELDLAYERS Above | Below | Common
SHIELDNET
<nets>

END SHIELDING
October 2010 205 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Example 1
SHIELDING

SHIELDBUMP true
SHIELDWIDTH 0.4
SHIELDGAP 0.1
SHIELDLAYERS Above
SHIELDNET VSS
scan_out_2
port_pad_data_out[15]

END SHIELDING

Route Multiple Nets with Different Widths

The following shows a constraint syntax that allows one fcroute command to route multiple
routes with different widths.

fcroute -constraintFile file_name

Example Constraints File
NETS

WIDTH 24.0
ROUTELAYERS 7:7
SPACING 0.1
Net Definition

VDDPST #apply two nets only
VSSPST

END NETS

NETS

WIDTH 20.0
ROUTELAYERS 8:7
SPACING 0.1
Net Definition

~VDDPST #negation - for all other nets
~VSSPST #negation

END NETS
October 2010 206 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#fcroute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Route Nets with Tapering Pin Widths

Tapering feature is enabled in the area I/O mode, wherein fcroute uses a thin routing width
on I/O pins and wide routing width on the bumps.

You can specify the Tapering constraint in the fcroute constraint file. The constraint syntax
is as follows:

Syntax 1
NETS

TAPERSTEP stepsizevalue

TAPERWIDTH PINWIDTH | value

<nets>

END NETS

where,

Non- Tapering
Route Width

Tapering
Route Width
October 2010 207 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Example 1
NETS

TAPERSTEP 1 # 1 enables tapering, 0 disables tapering

TAPERWIDTH PINWIDTH | value # If PINWIDTH is specified, the router

fetches the pin width automatically as the
starting routing width; If value is specified,
the router starts routing with the width
value.

vssx_0 # Specifies the net name

vddcx_1 # Specifies the net name

END NETS

TAPERSTEP: 0 | 1 Specifies the step between the width of I/O pin and route width
specified in -routeWidth.

Default: 1

0: Allows to connect in narrow direction without tapering.

TAPERWIDTH: PINWIDTH | value

Specifies the tapering width value.

Default: PINWIDTH
October 2010 208 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Examples and Report Files

Routing and Placement Constraints

The following listing is the constraint file that is used for both fcroute and placePIO.

For individual constraint descriptions, see Route Flip Chip - Advanced -Routing Constraints
page in the Tools Menu chapter of the Encounter Digital Implementation System Menu
Reference.

**

Routing constraints: fcroute -designStyle aio | pio

**

#One constraint file is used for fcroute and placePIO

VERSION 2

WIDTH 10 ; global constraint
SHIELDBUMP ; global constraint

NETS

out[10]

END NETS

DIFFPAIR

WIDTH 20 ; can’t accept, because of global constraint
MAXLENGTH 1000 ; can’t accept, because of global constraint
SHIELDWIDTH 0.5 ; local constraint
SHIELDLAYERS abc ; local constraint

out[111] out[114] SHIELDNET VDD

END DIFFPAIR

DIFFPAIR

out[119] out[120]

END DIFFPAIR

SHIELDING

WIDTH 20 ; can’t accept, because of global constraint
SHIELDWIDTH 0.5 ; local constraint
SHIELDLAYERS abc ; local constraint

out[18] out[19] out[115] out[116] out[117] out[118] resetn

END SHIELDING

DIFFPAIR and MATCH results maybe different in -designStyle aio | pio

DIFFPAIR

out[10] out[11] SHIELDNET VDD
out[14] out[19]

END DIFFPAIR
October 2010 209 Product Version 9.1.3

../encounter/toolsG.html#RouteFlipChipAdvancedConstraints
../fetxtcmdref/flipchipT.html#fcroute
../fetxtcmdref/flipchipT.html#placePIO

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
#SHIELDING only works with fcroute -designStyle aio

SHIELDING

SHIELDNET VDD (width spacing)

in1 net2
out1 out2

END SHIELDING

#NETS only work with fcroute -designStyle pio

NETS

WIDTH 24.0
ROUTELAYERS 8:7
SPACING 0.1
VDDPT # apply two nets only
VSSPT

END NETS

NETS

WIDTH 20.0
ROUTELAYERS 8:7
SPACING 0.1
~VDDPT # negation - for all other nets.
~VSSPT # negation

END NETS

BUMPREGION

AREA 3942.0 3545.0 3903.0 -3979.0 -3868.0 -3932.0 3774.0 -3521.0

VDD*

END AREA

END BUMPREGION

**

Placement constraints: Only used with placePIO command

**

FIXNETPAD

net_name_list

END FIXNETPAD ;(All the pads associated with given nets are fixed)

FIXPAD

pad_name_list

END FIXPAD ;(All the pads in the list are fixed)

FIXNETPADSIDE {EAST WEST SOUTH NORTH}

net_name_list

END FIXNETPADSIDE

FIXPADSIDE {EAST WEST SOUTH NORTH}

pad_name_list

END FIXPADSIDE

GROUPNET

net_name_list
October 2010 210 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
END GROUPNET

GROUP

pad_name_list

END GROUP

FIXBUMP

net1 net2 net3

END FIXBUMP

**

Resistance constraints for all (MAXRES) and/or individual nets (RESTABLE)

used by placePIO command

**

NETS

WIDTHRANGE

ROUTELAYERS

MAXRES <resistance(ohms)>

NET_1

NET_2

END NETS

RESTABLE

#<Netname> <resistance(ohms)>

NET_1 0.1

NET_2 0.2

END RESTABLE

IO_FILE Example

The following sample is an IO_FILE file showing bumps, I/O rows, and I/O instances. Format
definitions follow the sample.

BumpCell: BUMPCELL Rect 1 Layer 6 0.000 0.000 80.000 80.000
Bump: bumpAry_16_3_3 BUMPCELL 697.440 696.800 DI[1]
Bump: bumpAry_15_2_3 BUMPCELL 497.440 696.800 DO[1]
Bump: bumpAry_14_1_3 BUMPCELL 297.440 696.800 DO[0]
Bump: bumpAry_13_0_3 BUMPCELL 97.440 696.800 SO
Bump: bumpAry_12_3_2 BUMPCELL 697.440 496.800
Bump: bumpAry_11_2_2 BUMPCELL 497.440 496.800
Bump: bumpAry_10_1_2 BUMPCELL 297.440 496.800
Bump: bumpAry_9_0_2 BUMPCELL 97.440 496.800
Bump: bumpAry_8_3_1 BUMPCELL 697.440 296.800 DI[0]
Bump: bumpAry_7_2_1 BUMPCELL 497.440 296.800
Bump: bumpAry_6_1_1 BUMPCELL 297.440 296.800 SI
Bump: bumpAry_5_0_1 BUMPCELL 97.440 296.800
Bump: bumpAry_4_3_0 BUMPCELL 697.440 96.800 CLK
October 2010 211 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
Bump: bumpAry_3_2_0 BUMPCELL 497.440 96.800
Bump: bumpAry_2_1_0 BUMPCELL 297.440 96.800 SM
Bump: bumpAry_1_0_0 BUMPCELL 97.440 96.800

IORow: IOROW_1 520.100 596.400 IO1 R0 V 100.800 2
IORow: IOROW_2 520.100 126.000 IO1 R0 V 100.800 2
IORow: IOROW_3 119.700 596.400 IO1 R0 V 100.800 2
IORow: IOROW_4 119.700 126.000 IO1 R0 V 100.800 2

IOInst: test_clk/clk/inbuf 520.100 126.000 R0 -fixed
IOInst: test_clk/test/smbuf 119.700 126.000 R0 -fixed
IOInst: test_clk/test/sibuf 119.700 226.800 R0 -fixed
IOInst: test_clk/test/sobuf 119.700 697.200 R0 -fixed
IOInst: ioall/io_A/inbuf_0/inbuf 520.100 226.800 R0 -fixed
IOInst: ioall/io_A/inbuf_1/inbuf 520.100 596.400 R0 -fixed
IOInst: ioall/io_B/outbuf_0/outbuf 119.700 596.400 R0 -fixed
IOInst: ioall/io_B/outbuf_1/outbuf 520.100 697.200 R0 -fixed

Format Definitions

■ I/O Rows:
IOROW: iorow_name x y site_name [orient] [[H | V] step num]

■ I/O instances:
IOInst: inst_name [x y [orient] [-fixed]]

iorow_name Specifies the row name.

x y Specifies the x and y coordinates, in microns, of the origin.

site_name Specifies the site name. This must be defined in the LEF file.

orient Specifies the row orientation.

H | V Specifies either a Horizontal or a Vertical row.

step Specifies the site width or height (depending on orientation), in
microns, of the row.

num Specifies the number of sites in the row (multiply by step for
row length).

inst_name Specifies the instance name.

x y Specifies the x and y coordinates, in microns, of the origin.

orient Specifies the instance orientation.
October 2010 212 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
For more information, see the addAIORow command in the “Flip Chip Commands” chapter
of the Encounter Digital Implementation System Text Command Reference.

-fixed Sets the placement status to fixed.
October 2010 213 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#addAIORow

Encounter Digital Implementation System User Guide
Flip Chip Methodologies
October 2010 214 Product Version 9.1.3

Encounter Digital Implementation System User Guide
8
Using ART in Hierarchical Designs

■ Overview on page 216

■ Types of Active Logic Views on page 216

■ Creating an Active Logic View on page 218

■ Applications of ART on page 218

❑ Timing Budgeting in Hierarchical Flow on page 219

❑ Timing Optimization After Assembling the Post-Routed Partitioned Design on
page 219
October 2010 215 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs
Overview

Active-logic Reduction Technology (ART) is a technique that is used to activate certain
portion of a logic in a design and masking the other logic, while maintaining full physical
design database in memory. In ART, an active logic view contains only the active portion of
the logic.

ART can be applied to any timing-related command, such as timing budgeting or timing
optimization to reduce run time and memory usage. In timing operations, an active logic view
contains only the set of timing paths exposed to the specific operation. When applied to timing
optimization, active logic views enable cross-hierarchical optimization while preserving the
full hierarchical view of the design after optimization is complete.

Types of Active Logic Views

The tool creates an active logic view based on the partition boundaries, set of critical timing
paths, block module boundaries, and physical area. There are two types of active logic views:

■ Flat Top

■ Critical

Flat Top

A flat top is a partition-based active logic view that activates the top-level paths and the
interface path of partition blocks. The logic inside the partition blocks is excluded from the
timing database.
October 2010 216 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs
The following figure shows the flat top active logic view:

Critical

The critical active logic view activates all paths in a design that have a negative slack. All other
logic in the design is masked.

Flat Top (Partition-Based Active Logic View)

Design Partitions Active Logic View

Masked Logic

Critical Path-Based Active Logic View

Masked Logic
October 2010 217 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs
Creating an Active Logic View

To create an active logic view, load the entire chip as a design in the Encounter Digital
Implementation System (EDI System) software, specify the partition, and then run the
createActiveLogicView command with an appropriate option.

Important

An active logic view cannot be saved as a database or a file. Run the
createActiveLogicView command to create an active logic view.

Note: The EDI System software considers MMMC settings while creating an active logic
view.

Example of Active Logic View Creation

The following method shows time budgeting using active logic view in a hierarchical design:

To create an active logic view:

1. Mark the top-level timing graph to mask all logic inside the interface logic of each
partition.

createActiveLogicView -type flatTop

2. Derive timing budget.

deriveTimingBudget

3. Clear ART marking.

clearActiveLogicView

Note: Timing database will be rebuilt when the next timing command is called.

Applications of ART

ART helps reduce run time and memory snapshots for big designs. It brings the active portion
of a design to a size that is manageable for flat analysis.

This section provides information about the use of ART in timing budgeting and timing
optimization during the post-route stage.
October 2010 218 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs
Timing Budgeting in Hierarchical Flow

In a hierarchical flow, the deriveTimingBudget command creates timing constraints for
the partition blocks based on timing budgeting with full-chip timing conditions. During timing
budgeting, it is not essential to analyze the paths that are enclosed in partitions. In such a
situation, the flatTop type of an active logic view provides an exact condition that activates
the top-level logic and interface logic of the partition blocks. It takes less memory and run
time.

Timing Optimization After Assembling the Post-Routed Partitioned
Design

After assembling the design, you might see timing issues at the top-level logic, the interface
paths of the partition blocks, or the internal paths of partition blocks as you have a full-chip
view. In the traditional hierarchical flow, you might need to go back to the partition level to
solve the timing issues that might be time consuming.

The ART-based post-route optimization flow helps reducing the overhead and works
effectively for the timing issues because it contains the full-chip view for solving the timing
issues.

ART-based Post-Route Optimization

When you perform ART-based post-route optimization, the top-level timing paths and
interface paths of partition blocks are activated by ART as active logic views and then they
are optimized. The other internal paths of the partition blocks are masked and not optimized.
This technique saves memory usage and run time for large designs.

Important

ART-based post-route optimization is partition aware. Therefore, after completing
ART-based post-route optimization, you can still partition your design and sign it off
at the block level or convert these blocks to IPs.
October 2010 219 Product Version 9.1.3

../fetxtcmdref/timingbudgetingT.html#deriveTimingBudget

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs
The following figure shows timing optimization using active logic views in the EDI System
hierarchical flow:

To use ART-based flow, run the following commands:

setOptMode -virtualPartition true
optDesign -postRoute [-hold][-noECORoute]
setOptMode -virtualPartition false

The setOptMode -virtualPartition command runs the ART-based post-route
optimization. The optDesign command internally applies active logic view for the design.

Partitioning

Partition Block
Implementation

Assemble Design

Timing OK?

Sign-off

No

ART-based Post-Route
Optimization
optDesign
(-virtualPartition)

No

Yes

Traditional
Hierarchical
Flow
October 2010 220 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs
The following figure depicts the setOptMode -virtualPartition command flow details:

Steps to Run ART-Based Post-Route Optimization

1. Assemble the partition blocks and the top partition.

assembleDesign -fe -topDir partition1.enc.dat \
-blockDir Block1.enc.dat \
....
-blockDir Block10.enc.dat \
-saveEcoRef -ecoRefDir partitions_eco

The assembleDesign command creates full-chip data from the partition blocks and the
top-level partition data to apply ART-based post-route optimization. Using the following
options, assembleDesign creates an ECO reference file for hierarchical ECO routing
after optDesign:

❑ The -saveEcoRef parameter creates a directory for every partition block that is
specified in the assembleDesign command. It also creates the ECO reference
files for these partition blocks. For more information about the -saveEcoRef

ART Marking

optDesign

-noECORoute?

ecoRoute

End

No

Yes
October 2010 221 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs
parameter, see the assembleDesign command in “Partition Commands” chapter
of the Encounter Digital Implementation Text Command Reference.

❑ The -ecoRefDir directoryName parameter is used to specify the directory
where the files generated by -saveEcoRef parameter are saved. If you do not
specify this parameter, the files generated by -saveEcoRef are saved in the
current working directory.

❑ The ECO reference files are used during hierarchical ECO routing after
optDesign. The files are placed in the directory which is created by the
-saveEcoRef parameter or the -ecoRefDir parameter. In the process of
hierarchical ECO routing, an ECO reference file is used to identify ECO nets in the
design to make ECO routing more efficient.

The ECO reference file gets updated after routing.

Caution

The ECO reference file and the directory has been designed for an
efficient hierarchical ECO routing. To avoid any unexpected issues within
the flow, do not modify the ECO reference file.

Tip

During assembleDesign, if a DEF file and a Verilog netlist are used, there can be
a run-time penalty at ecoRoute because the routing results have been imported
from the DEF file.

Contact your Cadence representative if you require help.

Caution

The ART-based post-route optimization resolves timing issues for top-
level paths and interface paths of partition blocks. Therefore, ensure that
the internal paths of partition blocks have no timing issues and are DRC
checked for routing before optimization.

2. Perform optimization using ART and execute optDesign for the assembled design.

setOptMode -virtualPartition true
optDesign -postRoute
setOptMode -virtualPartition false

or

setOptMode -virtualPartition true
optDesign -postRoute -noECORoute
setOptMode -virtualPartition false
October 2010 222 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assembleDesign

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs
You can also use this flow for hold violation. By default, the hierarchical ecoRoute is
called to ensure that design can be partitioned and it uses the ECO reference file which
was generated earlier using the assembleDesign command.

The hierarchical ecoRoute might reset some settings that have been set using the
command file, especially the global EDI System variables. Cadence recommends that
you reinitialize the global variables after completing ART-based post-route optimization.

Tip

Disable the ART controls after ART-based portion of the flow is completed to ensure
that there are no side effects on other parts of the flow.

Run the following command after ART-enabled portion of the flow is completed:

setOptMode -virtualPartition false

Caution

SI fixing is not supported in this flow.

3. Run ECO routing.

This is an optional step if you have used -noECORoute earlier. To execute the
hierarchical ecoRoute, run the following command:

ecoRoute -handlePartition

The ecoRoute -handlePartition parameter enables hierarchical ECO routing that
maintains the partition structure of the design and performs routing with reasonable run
time for a large design.

The hierarchical ecoRoute performs routing by maintaining the partition-pin location
and number of pins of the partition for ECO nets which have been changed by the IPO
operation using optDesign in the flow. An ECO reference file is used in the process.

Note:

❑ Use ecoRoute -handlePartition together with assembleDesign -
saveEcoRef as a part of the flow. This is similar to the ART-based post-route
optimization which is done for a hierarchical design. To use this command apart from
this flow, contact your Cadence representative.

❑ You can apply multiple-CPU processing for ecoRoute -handlePartition. For
help regarding its usage, contact your Cadence representative.
October 2010 223 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs
Caution

You can still use the ecoRoute command without the -handlePartition
parameter. However, you will be unable to partition your design if you do
not use this parameter.
October 2010 224 Product Version 9.1.3

Encounter Digital Implementation System User Guide
9
Using Interface Logic Models in
Hierarchical Designs

■ Overview on page 226

■ Creating ILMs on page 227

❑ Example ILM Creation on page 228

❑ Preserving Selected Instances in ILMs on page 229

❑ Creating ILMs for Shared Modules on page 229

■ Specifying ILM Directories at the Top Level on page 231

❑ Example Top-Level Implementation Flow with ILMs on page 231

■ ILMs Supported in MMMC Analysis on page 233

■ ILMs Supported in SI on page 235

■ Interactive Use of ILMs on page 235

■ ILM Limitations on page 236
October 2010 225 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs
Overview

Models are compact and accurate representations of timing characteristics of a block. An
Interface Logic Model (ILM) is a structural representation of a block, specifically a subset of
the block’s structure including instances along the I/O timing paths, clock-tree instances, and
instances or net coupling affecting the signal integrity (SI) on I/O timing paths.

Instead of using a blackbox at the top level, you create an ILM at the block level and use it as
you would use a blackbox.

The advantages of using ILMs are as follows:

■ More accurate analysis than a black box flow

❑ More SI aware than combined .lib or .cdb approach

❑ Can model clock generator inside block

❑ More accurate timing and SI reduces the number of design iterations to close timing
and SI.

■ No need to characterize blocks

❑ Works on a actual design data

■ Can be used in the initial prototyping stage for very big designs. when loading full design
data is not feasible.

❑ Allows you to modify only top-level data

❑ Fully preserves implemented partitions

■ Uses the original constraint file for top-level analysis

❑ No abstraction for timing exceptions
October 2010 226 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs
Creating ILMs

In the hierarchical design flow, you create a detailed block-level implementation of a block,
then specify the createInterfaceLogic command to create an ILM for the block. This
command creates the specified directory containing ILM files.

You can also create ILMs for blocks that are in an intermediate stage of design, then use the
data at the top level of the design for preliminary timing optimization.

Important

An ILM created for an incomplete block is not as accurate as an ILM created for a
complete block. Always use ILMs for complete blocks to complete the top-level
design.

The software generates ILM data for CTS, signal integrity, and other design stages (pre-CTS,
post-CTS, post-route)

■ ILM data for pre-CTS, post-CTS, and post-route

The model contains the netlist of the circuitry leading from the I/O ports to interface
sequential instances (that is, registers or latches), and from interface sequential
instances to I/O ports. The clock tree leading to the interface registers is preserved.

ILMs do not contain information about the following:

❑ Internal register-to-register paths, if internal logic is not part of the interface path

❑ Internal paths (if -noInterClockPath is used): Internal paths controlled by
different clock, or clocks connected to the ILM module through different ports.

If the logic between the I/O ports is pure combinational, it is preserved in an ILM.

■ ILM data for SI

The model includes all of the above, plus aggressor drivers or nets which affect I/O paths.
It also includes the timing window files in the ILM model directory.

■ ILM data for CTS

The model includes all clocked instances (clock sinks), and clock tree instances and
nets.

Use createInterfaceLogic -writeSDC to generate block level constraints which can
be used:
October 2010 227 Product Version 9.1.3

../fetxtcmdref/partitionT.html#createInterfaceLogic

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs
■ During a bottom-up design flow to manually build a top-level constraint file from the block
constraints. The generated block-level .sdc file contains references to the block
instances or pins or nets which made it into the ILM model netlist.

■ To validate a model at the block level. For example, an ILM netlist and the .sdc file can
be read in a separate Encounter session and timing analysis can be run on all paths.
Then, the results can be compared against timing for the same path during full-block
implementation.

Note: When createInterfaceLogic is called, all views are generated for multi-corner,
multi-mode (MMMC) analysis.

Example ILM Creation

The following method creates a model that can be used in the top-level implementation flow
by both timeDesign and optDesign for both setup and hold efforts, including post-route
SI optimization. This model is also used during clockDesign.

createInterfaceLogic -hold -dir block_A.ILM

Sample Summary Report

The following is a sample summary report generated at the end of the
createInterfaceLogic command:

--
createInterfaceLogicSummary

--

Model Reduced Instances Reduced Registers

ilm_data 7153/7621 (93%) 174/285 (61%)
cts_data 7254/7621 (95%) 0/285 (0%)
si_ilm_data 6793/7621 (89%) 160/285 (56%)

In this report, the reduction ratio in the ilm_data model is 93 percent which means that 7153
out the total 7621 instances for this block have been eliminated. Only 468 instances are
written to the Verilog netlist for the ilm_data model out of which 111 instances are registers.

This summary report applies to a block using MMMC. Therefore, views with worst reduction
ratio are displayed for each model.

Note: You can run the following commands for improving the reduction ratio:

❑ setIlmMode -highFanoutPort false

❑ createInterfaceLogic -noInterClockPath
October 2010 228 Product Version 9.1.3

../fetxtcmdref/partitionT.html#setIlmMode
../fetxtcmdref/partitionT.html#createInterfaceLogic

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs
Preserving Selected Instances in ILMs

You can force the selected instances and nets to be included in the ILM model by using the
createInterfaceLogic -keepSelected parameter.

1. Select instances or nets using the selectInst or selectNet commands.

2. Specify createInterfaceLogic -keepSelected.

Creating ILMs for Shared Modules

You can use the same sub-block module in different ILM blocks, enabling reuse of versatile
modules. The createInterfaceLogic command considers constant propagate, so that
only the enabled parts of a module are considered when creating ILMs for the reused
modules. Because the Encounter database cannot handle the same module name in different
circuits, the software automatically modifies the module names with the following rule:

topModuleName+timestamp+$+moduleName

As an example, one ILM block (ModuleA) uses an ALU module (ALU) as an unsigned ALU,
and a second block (ModuleB) uses the ALU as a signed ALU. You can change the input
signal to use the ALU differently, setting one ALU as sign enabled and the other to off. When
you run the createInterfaceLogic command, the software considers only the enabled
parts of the ALU when creating ILMs for ModuleA and ModuleB. The software also ensures
that the name of the ALU module in ModuleA and the name of the ALU module in ModuleB
are different.

Creating ILMs Without Using Encounter Database

If you do not have Encounter database for an implemented block but have a Verilog netlist,
constraints, and SPEF for that block, then use the createILMDataDir command to store
data in the ILM format.

Following is the usage of the createILMDataDir command:

createILMDataDir -cts -si -dir block_A.ILM -cell block_A -mmmc -verilog myfile.v

createILMDataDir -cts -si -dir block_A.ILM -cell block_A -mmmc -incr \
-spef max.spef.gz -rcCorner rcMax

createILMDataDir -cts -si -dir block_A.ILM -cell block_A -mmmc -incr \
-spef typ.spef.gz -rcCorner rcTyp

createILMDataDir -cts -si -dir block_A.ILM -cell block_A -mmmc -incr \
-spef min.spef.gz -rcCorner rcMin

createILMDataDir -cts -si -dir block_A.ILM -cell block_A -mmmc -incr \
-sdc funMaxMax.sdc -viewName funct-devSlow-rcMax
October 2010 229 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs
createILMDataDir -cts -si -dir block_A.ILM -cell block_A -mmmc -incr \
-sdc funMaxTyp.sdc -viewName funct-devSlow-rcTyp

createILMDataDir -cts -si -dir block_A.ILM -cell block_A -mmmc -incr \
-sdc tstMaxMax.sdc -viewName test-devSlow-rcMax

createILMDataDir -cts -si -dir block_A.ILM -cell block_A -mmmc -incr \
-sdc funMinMin.sdc -viewName funct-devFast-rcMin

createILMDataDir -cts -si -dir block_A.ILM -cell block_A -mmmc -incr \
-sdc tstMinMin.sdc -viewName test-devFast-rcMin
October 2010 230 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs
Specifying ILM Directories at the Top Level

Use specifyIlm to use the ILM data for a block at the top partition level rather than using
the default .lib model. You can run specifyIlm multiple times in the same session. Each
time you run this command, the software overwrites the previous setting for the block. If
master/clones exist in the design, the cell name will have the name of the master partition.

Note: You can use this command (and unSpecifyIlm) only if the ILMs are unflattened
(unflattenIlm). You cannot change ILM settings in flattened or ILM view.

Use unSpecifyIlm to revert to using the .lib model for the block.

■ The following form enables you to specify and unspecify ILM directories:

❑ Design Import – Advanced – Specify ILM

Example Top-Level Implementation Flow with ILMs

1. Before you start the Encounter tool, prepare the top-level Verilog file, if needed.

If you use the Encounter hierarchical flow in a previous Encounter session, then the
savePartition command automatically creates the top-level data. Else, you need the
following in the top-level directory:

❑ A Verilog netlist that includes dummy modules for the blocks (ILM or Liberty) in the
design.

❑ A view definition file since ILMs are supported only in the MMMC mode. If you have
a non-MMMC design, create or load a view definition file that contains the following:

set_analysis_views -setup {mode1_slowCorner} -hold {mode1_fastCorner}

2. Start an Encounter session from the top-level module directory within the directory where
the partitions are saved.

3. Load the config file, including the top-level netlist, ILM directory name,
ilm_blocks.lib (optional if using ILM), stdcells.lib, and .lef for the block and
chip-level constraints.

loadConfig fileName

specifyIlm -cell block_A -dir ../block_A/block_A.ILM

specifyIlm -cell block_B -dir ../block_B/block_B.ILM

As an alternative, you can use the GUI to specify the ILM directories.

Design Import – Advanced – Specify ILM

Specify the directory for each module, and the timing constraints file.
October 2010 231 Product Version 9.1.3

../fetxtcmdref/partitionT.html#unspecifyILM
../fetxtcmdref/partitionT.html#specifyILM

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs
4. Load the floorplan.

loadFPlan top_floorplan

5. Place the design.

placeDesign

6. Run pre-CTS timing optimization.

optDesign -preCTS

7. Build the clock tree.

clockDesign

8. Run post-CTS timing optimization.

optDesign -postCTS

or

optDesign -postCTS -hold ;#optional

9. Route the design.

routeDesign

10. Run post-route optimization for setup.

optDesign -postRoute

11. Run post-route optimization for setup and hold.

optDesign -postRoute -hold

12. Run post-route optimization for SI.

optDesign -postRoute -si

If you want to create an ILM of the resulting block for use in the next level up in the hierarchy,
run the following steps with the above-mentioned flow:

1. Flatten the design as creating ILM calls timing analysis.

setIlmType -model si
flattenIlm

2. Perform timing analysis.

timeDesign -postRoute -si

3. Create ILM.

createInterfaceLogic -dir block_parent
October 2010 232 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs
ILMs Supported in MMMC Analysis

Cadence strongly recommends that you use ILMs in the MMMC mode. If you have a non-
MMMC design, create and load a view definition file that contains the following:

set_analysis_views -setup {mode1_slowCorner} -hold {mode1_fastCorner}

The MMMC analysis for designs including ILMs is identical to MMMC analysis for black box
designs except for the following considerations:

1. Views, modes, and corners at the top and partition levels must have same names.

2. When you use create_constraint_mode to specify constraints for MMMC, you must
specify the ILM constraints using the -ilm_sdc_files parameter (that is, timing in the
presence of ILMs get constraints from the -ilm_sdc_files parameter, not the -
sdc_files parameter). The .sdc files specified with the -ilm_sdc_files parameter
are allowed to reference nets or pins internal to the ILM model.

3. The interactive constraint commands are currently not supported when using ILMs. Use
the update_constraint_mode -ilm_sdc_files to change the current constraints
files. When using ILMs, the -ilm_sdc_files is used. It allows references to nets or
pins internal to the ILM model.

Note: In the current ILM flow, the SDC constraints (originally specified against the complete
flat netlist for the design) that reference parts of the design that were pruned cause warnings
and errors during constraint loading. In this release, you can set the temporary
timing_suppress_ilm_constraint_mismatches global variable to true to suppress
all error and warning messages related to the unfound objects. Note that this command might
also suppress error messages that might be of use (that is, where the top-level pins or nets
or instances cannot be found).

Currently, constraints are used during timing in the flattened mode. So, the internal ILM
instances are seen instead of the LEF pins of the ILMs. Therefore, reading the bounding box
constraints causes errors without using the
timing_suppress_ilm_constraint_mismatches variable.

If you want to see the LEF pins of the ILM in GUI, the design must be in the unflattened mode.
October 2010 233 Product Version 9.1.3

../fetxtcmdref/timingglobalsT.html#timing_suppress_ilm_constraint_mismatches

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs
The following figure shows the flattened and unflattened ILM. The LEF pins of the ILM are
visible after unflattening the ILM.

Flattened ILM Unflattened ILM
October 2010 234 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs
ILMs Supported in SI

ILM supports the -si parameter for optDesign and timeDesign. These commands
automatically run setIlmType -model si before calling flattenIlm such that the SI ILM
model is used. Therefore, your present post-route optimization scripts should run
successfully in the presence ILMs (without any additional changes).

The following command can be used to get timing reports containing the SI push-out delays
on nets using the -setIlmType -model command:

setIlmType -model si

Flattens to the timing model

flattenIlm

Reflattens to SI model, then does not unflatten (All other design
commands unflatten upon exit, regardless of the flattened/unflattended
state before invocation)

timeDesign -postroute -si

Adds incremental delay column (for SI push-out delays) in timing output:

set_global_report_timing_format {instance arc cell fanout load slew delay
incr_delay arrival}

Minimizes the width of the report such that it easily fits into the screen
without wrapping

set_table_style -name report_timing -no_frame -indent 0

report_timing

Note: You can also invoke the Global Timing Debugger (Timing – Debug Timing – Generate)

Interactive Use of ILMs

■ Commands such as optDesign, timeDesign, clockDesign, and so on
automatically take care of flattening and upon completion, leaves the design in an
unflattened state.

■ Timing commands require you to run flattenIlm first so that the nets and instances
internal to ILM are exposed to the timing engine.

encounter> flattenIlm
ilmView> report_timing

Notice that the prompt changes to ilmView after flattenIlm.

■ The Global Timing Debugger (GTD) also requires the design to be in a flattened state.
GTD displays rows with instances or nets which are internal to the ILM as grayed out.
October 2010 235 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs
■ The new -ilm parameter has been added to the saveNetlist command to write a
netlist with ILM guts. This parameter can be specified only in the flattenIlm state.

■ The non-timing commands require the design to be in an unflattened state before
invocation:

ilmView> unflattenIlm
encounter>verifyGeometry

ILM Limitations

When ILMs are present in a design, ensure that you set the following variable in the
~/enc.tcl file in your home directory or ./enc.tcl file in the run directory before loading the
design:

set soceIlmEnableCommandControl 2

In the present release, all previously entered interactive constraints are lost while running
unflattenIlm, which is automatically called at the end of running design commands, such
as placeDesign, optDesign, clockDesign, routeDesign, saveDesign and so on.
Therefore, it does not save the interactive constraints.

If the design is in the flattened mode, timeDesign does not run unflattenIlm while
exiting and leaves the interactive constraints intact. Therefore, you can use timeDesign
(and report_timing, and Timing Debug GUI) to debug interactive constraints in the
presence of ILMs.

If you want the design commands (including saveDesign) to honor new constraints when
ILMs are present in the design, perform either of the following:

■ Edit one of the existing -ilm_sdc_files (as defined in the
create_constraint_mode command in the viewdefinition.tcl file) and then
run the following in the MMMC mode:

flattenIlm

set_interactive_constraint_modes {yourListOfViews}

set_analysis_view -setup "[all_setup_analysis_views]"

-hold "[all_hold_analysis_views]"

In non-MMMC mode, edit the existing .sdc file and then run the following commands:

flattenIlm

unloadTimingCon

loadTimingCon -ilm previous.sdc
October 2010 236 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs
The above commands force reading of this changed constraint file (this is the
set_analysis_view command found in this design’s viewdefinition.tcl file)
again.

■ Create a file with additional constraints and then run the following commands in the
MMMC mode:

flattenIlm

set_interactive_constraint_modes {yourListOfViews}

set previousSDCs [get_constraint_mode constraintName -ilm_sdc_files]

update_constraint_mode -name constraintName -ilm_sdc_files

[concat $previousSDCs additional.sdc]

set_analysis_view -setup "[all_setup_analysis_views]"

-hold "[all_hold_analysis_views]"

In the non-MMMC mode, run the following commands:

flattenIlm

loadTimingCon -ilm additional.sdc -incr

The above commands automatically read in these additional constraints (as well as the
previous constraints).
October 2010 237 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs
October 2010 238 Product Version 9.1.3

Encounter Digital Implementation System User Guide
10
What-If Timing Analysis

Performing What-If Timing Analysis

You use blackboxes or blackblobs in large designs containing hierarchical flows when gate-
level details are not available at the beginning of the design cycle. You can easily modify the
timing model of a blackbox or blackblob at the top level because it is not a hard macro. Using
the Encounter software, you can make quick modifications to the timing model of a blackbox
or blackblob, and run timing analysis to check the impact of the modifications. This feature is
known as what-if timing budgeting. The Encounter software provides what-if timing
commands to support what-if timing budgeting. For more information on what-if timing
commands, see the chapter What-if Timing Commands,” in the Encounter Text Command
Reference.

Important

The what-if timing analysis commands do not support the Multi-Mode Multi-Corner
(MMMC) feature.
October 2010 239 Product Version 9.1.3

../fetxtcmdref/bbox_timingT.html#firstpage

Encounter Digital Implementation System User Guide
What-If Timing Analysis
The following diagram shows the what-if budgeting flow.

Prerequisite

Prior to using what-if timing commands, you must load the what-if timing models into the
database because the what-if timing commands simulate the modifications of the timing arcs.

If you do not have timing models in the early design phase, you can use the
setWhatIfClockPort command to create clock ports. You can then use the clock port to
create timing arcs.

Timing Models Supported for What-If Timing Analysis

The Encounter software supports two timing models for what-if timing analysis: intrinsic and
normalized. You can select only one mode at a time.

Figure 10-1 shows the intrinsic timing model.

setWhatIfTimingMode

setWhatIfClockLatency -init

setWhatIfDriveType
setWhatIfCombDelay
setWhatIfSeqDelay
setWhatIfTimingCheck
setWhatIfClockLatency -new

getWhatIfAssertions
getWhatIfClockLatency

deleteWhatIfTimingAssertions

checkWhatIfTiming

saveWhatIfTimingAssertions
saveWhatIfTimingModel
saveWhatIfConstraints

Set one time for all the blackboxes or
blackblobs of the design

Work for each blackbox or blackblob

Top TA Okay?

What-if command file
.lib

SDC, DC, PT
October 2010 240 Product Version 9.1.3

../fetxtcmdref/bbox_timingT.html#setWhatIfClockPort

Encounter Digital Implementation System User Guide
What-If Timing Analysis
Figure 10-1 Intrinsic Timing Model

The data types associated with the numbers in the Figure 10-1 and the corresponding
commands that you use to specify that data are as follows:

An intrinsic timing model uses the following formula for timing arcs ending on output ports:

Delay = constant delay + driver delay (look-up table)

If you do not use slew specifications in an intrinsic timing model, the timing arc is a 2-D timing
table containing input slew and output capacitance dependencies. With slew specifications,
the timing arc is only load dependent.

Figure 10-2 shows the normalized timing model.

Data Type Command

1 Combinational delay from an input port to the input of
the driver

setWhatIfCombDelay

2 Delay from the clock input port to the data input port setWhatIfTimingCheck

3 Sequential delay from the clock input port to the input
of the driver

setWhatIfSeqDelay

4 Type of Driver setWhatIfDriveType

5 Driver input slew

7 Clock insertion delay to internal registers setWhatIfClockLatency

1

5

3
7

5

4

4

2

October 2010 241 Product Version 9.1.3

../fetxtcmdref/bbox_timingT.html#setWhatIfCombDelay
../fetxtcmdref/bbox_timingT.html#setWhatIfTimingCheck
../fetxtcmdref/bbox_timingT.html#setWhatIfSeqDelay
../fetxtcmdref/bbox_timingT.html#setWhatIfDriveType
../fetxtcmdref/bbox_timingT.html#setWhatIfClockLatency

Encounter Digital Implementation System User Guide
What-If Timing Analysis
Figure 10-2 Normalized Timing Model

The data types associated with the numbers in Figure 10-2, and the corresponding
commands that you use to specify that data is as follows:

A normalized timing model uses the following formula for timing arcs ending on output ports:

Delay = constant delay - driver delay* + driver delay (look-up table)

Where,

constant delay = Timing arc delay including driver delay

driver delay* = Constant delay considering an input slew and an output capacitance

constant delay - clock latency must be greater than driver delay*

Data Type Command

1 Combinational delay from an input port to the output
port. It includes the driver delay

setWhatIfCombDelay

2 Delay from the clock input port to the data input port setWhatIfTimingCheck

3 Sequential delay from the clock input port to the data
output port. It includes the driver delay

setWhatIfSeqDelay

4 Driver type setWhatIfDriveType

5 Driver input slew

6 Total driver output net capacitance

7 Clock insertion delay to internal registers setWhatIfClockLatency

6

6

1

45

2 3
7

5 4
October 2010 242 Product Version 9.1.3

../fetxtcmdref/bbox_timingT.html#setWhatIfCombDelay
../fetxtcmdref/bbox_timingT.html#setWhatIfTimingCheck
../fetxtcmdref/bbox_timingT.html#setWhatIfSeqDelay
../fetxtcmdref/bbox_timingT.html#setWhatIfDriveType
../fetxtcmdref/bbox_timingT.html#setWhatIfClockLatency

Encounter Digital Implementation System User Guide
What-If Timing Analysis
In a normalized timing model mode driver input slew is always required. In this mode, timing
arcs are only load dependant. If you do not specify the driver total output net capacitance, the
software takes real net capacitance into account.

Using the What-If Timing Commands

You can perform the following tasks with the what-if timing commands:

■ Selecting Timing Model

Use the following command to select the timing mode:

❑ setWhatIfTimingMode

■ Defining generated clocks on internal pins:

Use the following command to create an internal pin and to define a generated clock on
the pin.

❑ createWhatIfInternalGeneratedClock

■ Set the following values on the what-if ports, if required:

❑ Capacitance

❑ Maximum capacitance

❑ Maximum transition

❑ Maximum fanout

Use the following command to set these values on the what-if ports:

❑ setWhatIfPortParameters

By default, the parameters specified with the setWhatIfPortParameterscommand
are applied to all ports in the what-if timing analysis model. If you want to apply the values
for a particular port, specify the port name with the setWhatIfPortParameters
-port parameter.

■ Selecting the precedence between the values set by setWhatIfDriveType command
and the values set by the setWhatIfPortParameters command

On output ports, parameters such as capacitance value, maximum capacitance values,
maximum transition value, or the maximum fanout value can come from the driver
(setWhatIfDriveType command) or they can be set through the
setWhatIfPortParameters command.
October 2010 243 Product Version 9.1.3

../fetxtcmdref/bbox_timingT.html#setWhatIfTimingMode
../fetxtcmdref/bbox_timingT.html#createWhatIfInternalGeneratedClock
../fetxtcmdref/bbox_timingT.html#setWhatIfPortParameters
../fetxtcmdref/bbox_timingT.html#setWhatIfPortParameters
../fetxtcmdref/bbox_timingT.html#setWhatIfPortParameters

Encounter Digital Implementation System User Guide
What-If Timing Analysis
Use the following command to define which of these values will take precedence in case
of a conflict.

❑ setWhatIfTimingMode

■ Modifying Timing Arcs

While what-if commands are the same for both intrinsic and normalized timing models,
the delay value specified in the commands for the combinatorial and the sequential
timing arcs has different meaning. The driver output net capacitance is a characteristic
of the normalized timing model only. Whenever you create or modify a timing arc, the
timing graph is updated automatically. The Encounter software recomputes the entire
timing arc whenever any of the parameter such as clock insertion delay, timing arc delay
or driver type is modified.

Note: The timing sense of the driver is taken into account in the combinatorial what-if
timing arc description—while applying the drive type, the timing sense of the
combinatorial arc is replaced by the timing sense of the driver’s timing arc. For sequential
arcs, the timing sense is always set to non_unate.

Use the following commands to modify timing arcs:

❑ setWhatIfDriveType

❑ setWhatIfCombDelay

❑ setWhatIfSeqDelay

❑ setWhatIfTimingCheck

❑ setWhatIfClockPort

❑ setWhatIfClockLatency

■ Getting Timing Arcs Assertions

Use the following command to get what-if timing arc assertions:

❑ getWhatIfTimingAssertions

■ Saving Timing Arcs Assertions

Use the following command to save what-if timing arc assertions:

❑ saveWhatIfTimingAssertions

■ Deleting Timing Arcs Assertions

Use the following command to delete the what-if timing arc assertions:

❑ deleteWhatIfTimingAssertions
October 2010 244 Product Version 9.1.3

../fetxtcmdref/bbox_timingT.html#setWhatIfTimingMode
../fetxtcmdref/bbox_timingT.html#setWhatIfDriveType
../fetxtcmdref/bbox_timingT.html#setWhatIfCombDelay
../fetxtcmdref/bbox_timingT.html#setWhatIfSeqDelay
../fetxtcmdref/bbox_timingT.html#setWhatIfTimingCheck
../fetxtcmdref/bbox_timingT.html#setWhatIfClockPort
../fetxtcmdref/bbox_timingT.html#setWhatIfClockLatency
../fetxtcmdref/bbox_timingT.html#getWhatIfTimingAssertions
../fetxtcmdref/bbox_timingT.html#saveWhatIfTimingAssertions
../fetxtcmdref/bbox_timingT.html#deleteWhatIfTimingAssertions

Encounter Digital Implementation System User Guide
What-If Timing Analysis
■ Checking Timing Assertions

Use the following command to check the what-if timing assertions:

❑ checkWhatIfTiming

■ Generating what-if timing Models

After modifying the what-if timing model (in memory) using the what-if command, you can
generate an updated timing model (.lib).

Use the following command to generate an updated .lib file:

❑ saveWhatIfTimingModel

■ Generating What-If SDC constraints

The Encounter software generates the what-if timing constraints considering the top-
level environment of the blackbox or blackblob. It provides a higher convergence for a
top-down flow. The software generates drive, load and transition as IN context. The
software generates the input and output delays as OUT context taking into account the
last modifications done when you use the what-if commands.

Use the following command to save the What-If constraints:

❑ saveWhatIfConstraints
October 2010 245 Product Version 9.1.3

../fetxtcmdref/bbox_timingT.html#checkWhatIfTiming
../fetxtcmdref/bbox_timingT.html#saveWhatIfTimingModel
../fetxtcmdref/bbox_timingT.html#saveWhatIfConstraints

Encounter Digital Implementation System User Guide
What-If Timing Analysis
October 2010 246 Product Version 9.1.3

Encounter Digital Implementation System User Guide
11
Bus Planning

■ Overview on page 248

■ Bus Planning Flow in Encounter on page 249

■ Creating a Bus Guide on page 250

❑ Using the Edit Bus Guide GUI on page 250

❑ Using Text Commands on page 255

❑ Example on page 256

■ Customizing the Bus Guide Display on page 260

❑ Highlighting and Dehighlighting the Bus Guide on page 260

■ Saving and Restoring Bus Guide Information on page 262

■ Limitations of Bus Planning on page 263
October 2010 247 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning
Overview

The Bus Planning feature in the Encounter software enables you to plan and create bus
guides which are used to guide the path of busses for floorplanning, partition pin optimization,
feedthrough insertion, congestion prediction in trialroute, and final routing in nanoroute.

Most designs need bus planning for estimating the design size and routing channel widths.
Without bus guides, the routers do not route all the bus bits together on the desired path.
Routing the bus bits outside the desired path can have high cost implications. Hence it is very
important to accurately plan the bus guide layouts.

Bus planning is critical in the prototyping stage of the hierarchical flow. Use the bus planning
capability to guide the path of bus routing for feedthrough insertion, partition pin optimization,
and congestion prediction. If you are in the implementation stage, use bus planning to guide
the path of busses for detailed routing.
October 2010 248 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning
Bus Planning Flow in Encounter

For hierarchical designs, you create bus guides before or after assigning the partition/black
box pins. For flat or top-level designs, you create bus guides before routing. Normally, you
create bus guides before pin assignment.

The following steps describe the bus planning flow in Encounter:

1. Importing the design

Import the design into the Encounter environment.

2. Floorplanning the design

If the design is a partition design then specify partitions. For more information, see
Specifying Partitions and Blackboxes in the “Partitioning the Design” chapter of the
Encounter User Guide.

If it is a black box design then define black boxes and specify their sizes. You can
manually preplace black boxes/macros or run planDesign to automatically place them.
Further, adjust the floorplan if needed.

3. Defining net groups

Group the bus bit nets together as net groups using createNetGroup and/or
addNetToNetGroup commands.

4. Creating bus guides

Create bus guides associated with the net groups, to guide routing for all the nets of the
specified net group. Bus guides can be created using the Edit Bus Guide GUI and/or
the createBusGuide command. See Creating a Bus Guide on page 250.

5. Placing the design

Place the standard cells. If you do not want the Encounter placer (placeDesign) to
move your macros and/or black boxes, set their placement status to fixed before
running placement.

Note: This is an optional step for designs that do not have standard cells at full-chip level.

6. (Optional) Routing the design

Run trialRoute to route the design.

7. (Optional) Inserting feedthrough buffers

Feedthrough can be inserted based on routing or placement. If trialRoute was run
before this step, then feedthroughs are inserted based on routing.
October 2010 249 Product Version 9.1.3

../soceUG/partitioning.html#SpecifyingPartitionsandBlackboxes
../fetxtcmdref/floorplanT.html#planDesign
../fetxtcmdref/partitionT.html#createNetGroup
../fetxtcmdref/partitionT.html#addNetToNetGroup
../fetxtcmdref/busplanT.html#createBusGuide
../encounter/editG.html#EditBusGuide
../fetxtcmdref/placementT.html#placeDesign
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/routeT.html#trialRoute

Encounter Digital Implementation System User Guide
Bus Planning
For more information, see Inserting Routing Feedthroughs in the “Partitioning the
Design” chapter of the Encounter User Guide.

8. Assigning pins

Assign pins using assignPtnPin command.

9. Committing partition

Commit partitions using partition command.

10. Saving Partition

Save the partition information using savePartition command.

11. Running NanoRoute/Mixed Signal Route at the top-level design

Perform detailed routing using NanoRoute router / Mixed Signal Route
(routeMixedSignal) at the top-level design.

Creating a Bus Guide

A bus guide consists of one or more overlapping segments. It must always be associated with
a net group. So, before creating a bus guide you must define a net group. Remember that a
net group can either be assigned to a bus guide or a pin guide, but not to both. For each bus
guide segment that you create, you must specify a layer or a layer range.

You can create a bus guide Using the Edit Bus Guide GUI and/or Using Text Commands.

Using the Edit Bus Guide GUI

The bus guide editor in Encounter, allows you to create bus guides before or after assigning
the bus pins. Using the Edit Bus Guide form, you can edit the bus guide properties and
interactively create the bus guide. You can specify the net group associated with the bus
guide, layer or layer range on which the bus guide is to be created, and the width of the bus
guide segment. By default, the bus guide editor derives the default minimum guide width
required to hold all the nets assigned to the bus guide. If the bus guide connects to placed
pins on block edges, the bus guide editor automatically adjusts the width of the guide segment
to cover all the pins of nets in the net group. The bus guide editor provides options to enable
October 2010 250 Product Version 9.1.3

../soceUG/partitioning.html#NetGroup
../soceUG/nanoroute.html#firstpage
../soceUG/partitioning.html#InsertingRoutingFeedthroughs
../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#savePartition
../fetxtcmdref/mixedsignalT.html#routeMixedSignal

Encounter Digital Implementation System User Guide
Bus Planning
overlapping check for bus guides created on a specific layer and display flight lines of nets in
the net group, when creating the bus guides.

For more information on the Edit Bus Guide form, see Edit - Object - Edit Bus Guide in
the “Edit Menu” chapter of the Encounter Menu Reference.

Drawing a Bus Guide

To draw a bus guide in Encounter, you must first click the Add Bus Guide icon in the
toolbar.

Once you are in the bus planning mode, you can draw the bus guide segment by clicking the
left mouse button and dragging it along the points of center line for the guide segment. To
end a bus guide segment, double-click the left mouse button. By default, the bus guide
extends half width for the overlapping end of the created segment. However, if the guide
segment overlaps with another segment that has bigger or smaller width, the bus guide
October 2010 251 Product Version 9.1.3

../encounter/editG.html#EditBusGuide
../encounter/editG.html#firstpage

Encounter Digital Implementation System User Guide
Bus Planning
editor uses half the width of the other segment for the extension of the overlapping end.

Note: All the segments of the bus guide should overlap to ensure continuity; Otherwise, the
router (nanoroute) may create routing problems or may take longer time to run.

You can specify a new segment connected to an existing segment as shown in the following
image where segment 4 overlaps with segment 1:

Figure 11-1

Segment 1

Overlapping
Segment 2

Extension of the
overlapping end using half
the width of Segment 1

Inst A

Inst B

Segment 1

Segment 2

Segment 4

Bus Guide

Segment 3
October 2010 252 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning
You can also draw a bus guide segment that connects to the placed pins of the associated
net group.

Figure 11-2

If you click on the partition boundary side where the pins are placed, the bus guide editor
automatically snaps to these pins. If the width value specified in the bus guide editor is smaller
than the width required to fully cover all these pins, the bus guide editor derives new width for
the guide segment such that all the associated physical pin geometries are covered. If the
width value is bigger than the width that needs to cover all pins, the editor will use the current
width value without adjusting it.

In the Figure 11-2 on page 253, the width of the segment defined by the first and the second
digitized points is derived based on the placed pin information such that the segment width
can fully cover the all the pins. The width of the next segment (defined by second and third
points) is the width that is specified in the bus guide editor.

The snapping of bus guides to pins (partition or black box pins) occur at the start or at the end
of the bus guide, when you double-click to end the bus guide.

Inst A

Inst B

2nd Digitized
Point

This segment
has the width
specified in the
bus guide GUI

1st Digitized
Point
October 2010 253 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning
The following example illustrates the snapping behavior at the starting digitized point. The
snapping occurs before you specify the second point:

The following example illustrates the snapping behavior at the end of a bus guide

To view the attributes of a bus guide that you created, double-click the bus guide segment to

Start Digitized Point
(single-click)

1st Digitized Point

Last Digitized Point or Double-click

2nd Digitized Point
October 2010 254 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning
display the Attribute Editor as shown in the following example:

A bus guide gets deleted when you delete it’s associated net group.

Using Text Commands

You can create and edit bus guides using the following text commands:

Commands Usage

createBusGuide Creates a bus guide segment.

deleteBusGuide Deletes a bus guide.

Note: You can also delete a bus guide segment by
selecting the segment and pressing the Del key on the
keyboard.

deselectBusGuide Deselects a bus guide segment.

selectBusGuide Selects a bus guide segment.
October 2010 255 Product Version 9.1.3

../encounter/editG.html#ObjAttr
../fetxtcmdref/busplanT.html#createBusGuide
../fetxtcmdref/busplanT.html#deleteBusGuide
../fetxtcmdref/busplanT.html#deselectBusGuide
../fetxtcmdref/busplanT.html#selectBusGuide

Encounter Digital Implementation System User Guide
Bus Planning
For more information on the commands, see the “Bus Plan Commands” chapter in the
Encounter Text Command Reference.

The following Example describes the steps to create bus guides using text commands.

Example

This sample script creates 2 bus guides for 2 bus nets, abcBusNet and cdeBusNet. The
abcBusNet bus has 32 bus bits and cdeBusNet has 100 bus bits. 2 net groups,
abcNetGroup and cdeNetGroup are defined for abcBusNet and cdeBusNet busses,
respectively. 2 bus guides are used to guide routing for these 2 busses for feedthrough
insertion:

#Restore the bBoxFP.enc.dat design of top cell Test that is already being floorplanned

restoreDesign bBoxFP.enc.dat Test

#Create net groups for busses abcBusNet and cdeBusNet

createNetGroup abcNetGroup -net abcBus*

createNetGroup cdeNetGroup -net cdeBus*

#Create bus guide for bus net abcBusNet[0..31]. This bus guide has 4 segments.

createBusGuide -netGroup abcNetGroup -centerLine 4421.8 10749.36 4960.8 10749.36 -
width 90 -layer Metal4:Metal8

createBusGuide -netGroup abcNetGroup -centerLine 4900.8 10809.36 4900.8 9470 -width
90 -layer Metal3:Metal7

createBusGuide -netGroup abcNetGroup -centerLine 4840.8 9530.0 11525.4 9530.0 -
width 90 -layer Metal4:Metal8

createBusGuide -netGroup abcNetGroup -centerLine 11465.4 9590.0 11465.4 9203.5 -
width 90 -layer Metal3:Metal7

#Create bus guide for net cdeBusNet[0..99] that has only one vertical segment.

createBusGuide -netGroup cdeNetGroup -centerLine 15300.7 7061 15300.7 11230 -width
300 -layer Metal5:Metal7

Place the design since design has some top-level cells

placeDesign

#Run trialRoute with option -printWiresOutsideBusguide to report any nets that
are routed outside specified bus guide areas

selectBusGuideSegment Selects a bus guide segment with its specified bounding
box.

Commands Usage
October 2010 256 Product Version 9.1.3

../fetxtcmdref/busplanT.html#firstpage
../fetxtcmdref/busplanT.html#selectBusGuideSegment

Encounter Digital Implementation System User Guide
Bus Planning
trialRoute -printWiresOutsideBusguide

#Continue with the normal flow, invoking feedthrough insertion, pin assignment, and so on...
October 2010 257 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning
The following figure displays the bus guide associated with the net group abcNetGroup,
highlighted in green, and the bus guide associated with the net group cdeNetGroup,
highlighted in red:

Segment 1 of
abcNetGroup

Segment 2

Segment 3 Segment 4

Segment 5 of
cdeNetGroup

After running createBusGuide to create 5 segments

Segments 1, 2, 3, and 4 belong to abcNetGroup
Segment 5 belongs to cdeNetGroup
October 2010 258 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning
The following figure displays the routing of the bus abcBusNet[0...31], routed within the
bus guide area:

All the 32-bus bits of abcBusNet group are routed within the bus guide area.

After running the placeDesign and trialRoute
October 2010 259 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning
Customizing the Bus Guide Display

You can specify multiple colors for bus guide objects in the design, using the Bus Guide
Color Selection form. (Color Preferences — Objects — Bus Guide — Bus Guide Color
Selection)

Highlighting and Dehighlighting the Bus Guide

After specifying colors for bus guides, you can highlight the bus guides in the design using
the Edit — Bus Guide — Color menu command.

Alternatively, you can run the setBusGuideMultiColors command to color the bus guides
and resetBusGuideMultiColors command to clear the bus guide colors.
October 2010 260 Product Version 9.1.3

../encounter/startingG.html#BusGuideColorSelection
../fetxtcmdref/busplanT.html#setBusGuideMultiColors
../fetxtcmdref/busplanT.html#resetBusGuideMultiColors
../encounter/editG.html#BusGuideColors

Encounter Digital Implementation System User Guide
Bus Planning
The following example displays the bus guides before you run the
setBusGuideMultiColors command:

Non-
highlighted
Bus Guides
October 2010 261 Product Version 9.1.3

../fetxtcmdref/busplanT.html#setBusGuideMultiColors

Encounter Digital Implementation System User Guide
Bus Planning
The following example displays the bus guides after you ran the
setBusGuideMultiColors command:

Saving and Restoring Bus Guide Information

The bus guide data is stored in the floorplan spr file (.fp.spr file). You can save and restore
this information using the saveFPlan and loadFPlan commands.

However, you cannot load the.fp.spr file having bus guide information from the 8.1
version, into an older version of Encounter.

Highlighted
Bus Guides
October 2010 262 Product Version 9.1.3

../fetxtcmdref/busplanT.html#setBusGuideMultiColors
../fetxtcmdref/floorplanT.html#loadFPlan
../fetxtcmdref/floorplanT.html#saveFPlan

Encounter Digital Implementation System User Guide
Bus Planning
Limitations of Bus Planning

■ Feedthrough insertion does not honor bus planning. Once you insert feedthroughs in the
design, the existing bus guides will no longer be valid.

■ The software currently does not provide checks to detect the following:

❑ Overlapping bus guide segments on different layers

❑ Complete bus guide coverage from source to sink

❑ Complete coverage of placed pins

❑ Enough room for routing.
October 2010 263 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning
October 2010 264 Product Version 9.1.3

Encounter Digital Implementation System User Guide
12
Partitioning the Design

■ Overview on page 266

■ Flow Methodologies on page 266

■ Specifying Partitions and Blackboxes on page 274

■ Assigning Pins on page 287

■ Inserting Feedthroughs on page 322

■ Generating the Wire Crossing Report on page 343

■ Estimating the Routing Channel Width on page 346

■ Running the Partition Program on page 348

■ Restoring the Top-Level Floorplan with Partition Data on page 365

■ Concatenating Netlist Files of a Partitioned Design on page 366

■ Saving Partitions on page 367

■ Loading Partitions on page 367

■ Working with OpenAccess Database on page 369

■ Parallel Job Processing on page 370
October 2010 265 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Overview

Most of the system-on-a-chip devices are designed in a traditional flat flow that avoids the
effort to set up a design hierarchy. However, in multi-million gate designs, this could result in
memory limitations and long run time. Designs team can develop and adopt a hierarchical
flow to shorten the turnaround time on large designs. Designs can be divided into
manageable partitions; each partition can be independently assigned to different design
groups to be developed in parallel.

Flow Methodologies

Hierarchical design can be divided into three general stages: chip planning, implementation,
and chip assembly.

■ Chip Planning

Breaks down a design into block-level designs to be implemented separately.

■ Implementation

This stage consists of two sub-stages: block implementation for a block-level design, and
top-level implementation for a design based on block-level design abstracts and timing
models.

■ Chip Assembly

Connects all block-level designs into the final chip.

This chapter covers the following methodologies in the partitioning area:

■ Top-down Methodology

■ Bottom-up Methodology
October 2010 266 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Top-down Methodology

The top-down methodology usually consists of top-down planning, implementation, and chip
assembly stages. Use this methodology to create a top-level or hierarchical floorplan from a
flat floorplan based on fenced modules. In this approach, the die size, shape, and I/O pads
locations will drive block and partition placement. Block-level design size and pins will be
generated based on the top-level floorplan.

Chip Planning

The following steps describe the most common flow for chip planning, which includes
specifying partitions and blackboxes:

1. Import the entire design to be partitioned.

Import the design into the Encounter Digital Implementation System (EDI System)
environment. You can also include blackboxes.

2. (Optional) Define the blackboxes.

If your design has blackboxes that are not specified in step 1, you can define them after
reading in the netlist. You can also adjust the size of the blackboxes. For more
information, see Saving Blackboxes.

3. Lay out the floorplan.

Manually pre-place all modules that will become partitions or blackboxes. You can also
generate an initial floorplan by running plandesign to place Macros, then place standard
cells and/or bring all modules inside the core by generating the floorplan guide (using the
Floorplan – Generate Floorplan Guide menu command or the generateGuide text
command).

4. Run power planning.

5. Specify the modules and blackboxes that will become partitions.

You can further adjust blackbox size, if necessary. For more information, see Specifying
Partitions and Blackboxes.

6. Run placement.

7. (Optional) Insert feedthrough buffers.

Insert feedthrough buffers into partitions to avoid routing nets over partition areas. This
step is necessary for channelless or mixed designs. For more information, see Inserting
Feedthroughs.
October 2010 267 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#generateGuide

Encounter Digital Implementation System User Guide
Partitioning the Design
Run Trial Route before this step if you want to run route-based feedthrough insertion. You
must also run Trial Route if you want to display and generate a list of all nets that cross
over the top of each partition (using the Partition – Show Wire Crossing menu
command or the showPtnWireX text command).

8. Run Trial Route

Depending on what stage of the design is in, such as prototyping, intermediate, tapeout,
use the appropriate option of the trialRoute command. For example, the
-floorplanMode option should be used for prototyping and the -highEffort option
should be used for tapeout mode. Use the -handlePartition or the
-handlePartitionComplex parameter for channel-based designs. Use the
-handlePartitionComplex parameter for channelless designs only after the
feedthrough insertion step.

For channel based designs with thick channels, instead of running trialRoute with
the -handlePartitionComplex parameter, use trialRoute -
fastRouteForPinAssign. This route option generates routing topology similar to
trialRoute -handleParittionComplex but with lesser run time because it routes
only the inter partitions and top-level nets.

If your design has blackboxes, you can run the trialRoute command with the
-routeBasedBBPin parameter. With this parameter, the trialRoute command
determines near-optimal location for blackbox pins with respect to top channel
congestion and places blackbox pins at these locations. The trialRoute command
then creates routes to the blackbox pins without crossing over blackboxes.

The results give the first-order location of aligning the partition pins.

9. Assign partition pins and blackbox pins using the assignPtnPin command.

10. Regenerate the routes that follow assign pins using the trialRoute -honorPin
command.

11. Validate pin assignment result

12. If needed, refine the pin assignment results or perform incremental pin assignment.

If pin placement results need to be improved, you can further refine pin placement
manually or automatically. After re-adjusting pins, verify pin placement again.

13. Budget the timing for blocks using the deriveTimingBudget command.

14. Partition the design using the partition command.

If your design has multiple instantiated partitions, run the alignPtnClone command
before the pin assignment step to make sure that all partition clones are well aligned with
the master partition on a power mesh so you will not have any problems when flattening
October 2010 268 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/partitionT.html#alignPtnClone
../fetxtcmdref/timingbudgetingT.html#deriveTimingBudget
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/partitionT.html#showPtnWireX

Encounter Digital Implementation System User Guide
Partitioning the Design
the partitions. For more information, see Specifying Multiple Instantiated Partitions and
Blackboxes.

15. Save the partition.

This creates a directory for each block, and saves its netlist, floorplan, and budgeted
constraints to this directory. For top-level designs, this also creates a directory containing
the top-level netlist, floorplan, simple timing model, and physical abstract for each
partition block or blackbox. Subsequent work should be done in these block-level and
top-level directories for implementing the block-level and top-level designs, respectively.

Tip

You should do all design work in each saved partition directory, including the
top-level directory.

Implementation

After the chip planning is complete, the next stage is to implement the individual blocks. The
detail of each block is implemented using the constraints for timing, size, and pin assignment
determined during the planning stage. Block implementation should be done at a block
directory that was generated by the savePartition step. At the completion of this step,
block abstracts, timing models, a DEF file, and a GDSII file should be generated to be used
in top-level implementation and chip-assembly.

The next step is to implement the top-level designs with block model data, such as LEF, timing
model, power model, and noise model.

Chip Assembly

Chip assembly is the last stage in the top-down process and consists of bringing together the
detailed information for the top-level and all of the blocks for full chip extraction, power, timing,
and crosstalk analysis. Chip assembly is done using the assembleDesign command.

Note: Before using the assembleDesign command, for each design, save the top-level and
the block-level designs using the saveDesign -def command.

As an example, consider a design called dtmf that has two partitions: arb and tdsp. After
running the partition command, the partition directories are saved under the PTN
directory. You would, therefore, implement the following:

■ top-level design dtmf_chip

■ arb block
October 2010 269 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#savePartition
../fetxtcmdref/partitionT.html#partition

Encounter Digital Implementation System User Guide
Partitioning the Design
■ tdsp block

The design files are arb.enc.dat and tdsp.enc.dat for the arb and tdsp blocks
respectively. The following figure shows the directory structure:

You can now perform chip assembly using the assembleDesign command. This command
does the following:

■ Concatenates the Verilog netlist files from the partitions back to the top level

Note: The partition netlists and top level netlist are changed from the time the save
partition step was performed.

■ Merges the design data with the original top design level. By default, data from DEF files
is used. However, you can use the -fe parameter to specify that EDI System data should
be used. You can also use data in the OpenAccess database format.

■ Brings back the row information if the -row parameter is specified.

■ Preserves scan chain information at partition block level design, thus minimizing the
floorplan data loss during partition and assemble design cycle. The start and stop scan
chain points at partition block I/O pins are adjusted back to instances that connect to
scan chain points. Top-level scan chains are not connected to block-level scan chains.

Run this command from the directory that contains the full chip-level floorplan for the
top-down hierarchical flow.

For details of the syntax and the parameters, see the description of the assembleDesign
command in the Encounter Digital Implementation System Text Command Reference.

For this example, you would run the assembleDesign command as follows:

assembleDesign -topDir PTN/dtmf_chip/dtmf_chip.enc.dat -blockDir PTN/arb/
arb.enc.dat -blockDir PTN/tdsp/tdsp.enc.dat -topFP fullChip.fp

dtmf_chip
directory

arb directory tdsp directory

dtmf_chip.enc.dat
file

arb.enc.dat file tdsp.enc.dat file

PTN directory
October 2010 270 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#assembleDesign

Encounter Digital Implementation System User Guide
Partitioning the Design
This assembles the entire design.

You can also use the assembleDesign command to bring back specified block data from
OpenAccess database. Here is an example:

assembleDesign -topDesign testOALib DTMF layout -block testOALib ptn1 layout -block
testOALib ptn2 layout

In this example, the OpenAccess database top-level library is testOALib, the top-level cell
name is DTMF, and the top-level view is layout. Two blocks, ptn1 and ptn2, have been
specified.

Note: The assembleDesign command supports rectilinear partitions. It also supports
nested blackboxes for the place-and-route data (-fe parameter) and the OpenAccess
database. However, because blackbox information cannot be specified in a block-level DEF
file, nested blackboxes are not supported for the DEF flow.

Bottom-up Methodology

The bottom-up methodology consists of implementation and assembly stages. In the bottom-
up methodology, the size, shape, and pin position of block-level designs will drive the top-level
floorplanning.

Implementation

Each block in the design must be fully implemented. This includes place and route as well as
clock, power, and I/O.

This section covers the following topics:

■ Block Implementation

■ Top-level Implementation

Block Implementation

The size of a block-level design can be derived or adjusted using the Floorplan – Specify
Floorplan menu command or the floorPlan text command. The EDI System software can
support a rectilinear block level design. You can use the same procedure to create a
rectilinear partition to create a rectilinear block-level design using the following steps:

1. Click on the Cut Rectilinear widget from the Tools area.

2. Move the mouse to an edge or corner of the design.
October 2010 271 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/floorplanT.html#floorPlan

Encounter Digital Implementation System User Guide
Partitioning the Design
3. Left click and drag over the area.

4. Left click again to complete the cut.

At a block level design the rectilinear information will be stored in a floorplan file as a
CellPtnCutList syntax, for example:

CellPtnCutList: execute_i 2
0.0000 142.5100 37.1200 181.4400
156.3800 154.9350 180.1800 181.4400

You can run the assignIoPins text command to assign I/O pins based on placement
information.

You can specify initial I/O pin placement in an I/O constraint file. For more information, see
the Generating the I/O assignment File section in the “Data Preparation” chapter of the
Encounter Digital Implementation System User Guide. You can read in the I/O
constraint file into the EDI System environment during the design import step, or use the
loadIoFile text command after reading in the netlist.

If an I/O constraint file does not exist, an initial I/O pin placement can be derived from cell
placement. After placing macros and standard cells, the placer can internally call the
assignIoPins text command to place I/O pins based on current cell placement. By default,
pins are placed under power areas on different layers. Use the -pinOffStripes or
-noPinBelowStripe option of the assignIoPins command to disable the default
behavior.

Note: Use the setPlaceMode -placeIoPins option to disable I/O pin assignment during
placement.

After I/O pins have been assigned, you can further refine the current I/O pin assignment by
doing either of the following:
October 2010 272 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assignIoPins

Encounter Digital Implementation System User Guide
Partitioning the Design
■ Adjust pins (using the Pin Editor or the editPin text command). You can also use direct
pin manipulation to manually move selected pins to different locations.

■ Run incremental pin assignment by running the assignIoPins text command. This
command honors fixed pins and re-assigns only the ones that have a placed or
unplaced status.

Note: The loadIoFile text command automatically sets the I/O pin placement status to
fixed. For the pins that need to be re-assigned, you must change their pin placement status.

You can use the legalizePin text command to resolve pin overlaps or pins
off-grid.

Top-level Implementation

After block implementation, an abstract should be developed for each block-level design that
will be used in the top-level implementation.

For the bottom-up approach, create a top-level floorplan where block-level abstracts would be
referenced in the top-level design.

Chip Assembly

For the bottom-up approach, see Chip Assembly, to bring together all the top-level and block-
level netlists and routing information.

Note: For the bottom-up approach, do not use the -topFP option of the assembleDesign
command.
October 2010 273 Product Version 9.1.3

../fetxtcmdref/partitionT.html#legalizePin
../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#editPin

Encounter Digital Implementation System User Guide
Partitioning the Design
Specifying Partitions and Blackboxes

■ Defining Partitions on page 275

■ Defining Partitions as Power Domains on page 277

■ Defining Blackboxes on page 277

■ Saving Blackboxes on page 279

■ Handling of Blackboxes with Non-R0 Orientation on page 280

■ Specifying Multiple Instantiated Partitions and Blackboxes on page 282

■ Changing Partition Clone Orientation on page 283

■ Specifying Rectilinear Partitions and Blackboxes on page 284

■ Specifying Core-to-I/O Distance for Partition Cuts on page 285

■ Specifying Nested Partitions on page 286

■ Assigning Pins on page 287
October 2010 274 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Defining Partitions

To designate partitions, use the definePartition and specifyPartition text
commands and the Specify Partition form.

The following figure shows an example of how some of the fields in the Specify Partition form
relate to the partition. For a description of all the fields, see Specify Partition in the Encounter
Digital Implementation System Menu Reference.

To specify a module as a partition, complete the following steps:

1. Move the module inside the core area.

You can manually move a module, or use the setObjFPlanBox text command, to
define a new module boundary with its coordinates in the core area.

Partition Core

Partition Pins

Min Pin spacing is
every other metal trackStd

Cell
Row
October 2010 275 Product Version 9.1.3

../fetxtcmdref/partitionT.html#definePartition
../fetxtcmdref/partitionT.html#specifyPartition
../encounter/partitionG.html#SpecifyPartition
../encounter/partitionG.html#SpecifyPartition

Encounter Digital Implementation System User Guide
Partitioning the Design
Note: A blackbox is a special partition where this restriction does not apply.

Note: You cannot create donut shaped objects during the partition flow.

2. Specify the name of the partition.

3. Specify the instance name of a module that is to become a partition.

Note: A partition cannot have another partition as its ancestor or descendant. For the
case where more than one module is instantiated with the same cell type, see Specifying
Multiple Instantiated Partitions and Blackboxes.

4. Specify the space, in micrometers, between the module boundary and core design area
of the partition module.

5. (Optional) If the partition row height is different than specified in the Core Spec page of
the Design Import form, specify the row height, in micrometers.

6. (Optional) To account for wide wires at the top-level design, specify the extra spacing, in
micrometers, around the partition.

At the top-level design, this information is saved as part of the partition section in a
floorplan file. This information is also saved in a partition floorplan file when saving
partitions. By default, this value is 0; the top-level router uses minimum wire spacing.

7. Specify the selected metal layers that are used for routing in the partition and generating
partition pins.

A normal six-metal layer selection process is M1, M2, M3, M4 and M5 selected, and M6
unselected. When saving the partition, the LEF generated for this partition will have
routing blockages on their layers so that the top-level router is aware of which metal
layers are being used in the partition.

The selected metal layers generate a file which is saved in the top-level design directory.
This file notifies the top-level which metal layers are being used in the partition. In
addition, the floorplan file generated by saving partition will include the routing blockage
for the partition. To customize routing interconnects over a partition, use the Add
Partition Feedthrough widget.

8. (Optional) Specify the pin pitch dimension for the partition sides.

9. (Optional) Select or deselect the metal layers from the defaults.

Deselecting all metal layers for a side of a partition prevents pins from being created for
the entire side of that partition.

The selection of partition pin metal layers works in conjunction with the Partition Pin
Guide floorplan object. The partition pin guide object specifies exactly where the pins are
October 2010 276 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
to be created. When partition pin guide objects are not used, the partition pins are
created where the top-level routing connects with the partition.

10. Add the partition information to the Partition List field and save the partition
specification file.

Defining Partitions as Power Domains

If a block-level design has different row structures than a top-level design, you will need to
define a partition as a power domain. The power domain must be a hierarchical instance. The
power domain will have the same size as the partition fence.

To specify a partition as a power domain, complete the following steps:

1. Import the design.

2. Create the power domain.

3. Floorplan the design.

In this step you would normally place the I/Os, place the power domain, and so on.

4. Assign a partition to a power domain by specifying the same power domain hierarchical
instance as the partition.

5. Continue with the normal partition flow (see Defining Partitions on page 275).

Defining Blackboxes

Normally a blackbox is a module with content that is not well defined. However, a well-defined
module can also be defined as a blackbox. A blackbox is similar to a hard block, but like a
fence, a blackbox can be resized, reshaped, and have pins assigned. After a blackbox has its
pins assigned and is partitioned, it behaves like a hard block. The blackbox feature can be
used only with a partitioned design.

After the netlist has been loaded, you can further specify which modules or cells will be
regarded as blackboxes, or modify the existing blackbox sizes. A blackbox size can be
specified in terms of an estimated area (an actual value or an area value in terms of gate
count), or a fixed block width and height.

You can define a blackbox in the following ways:

■ Use the setImportMode -treatUndefinedCellsAsBbox False -
keepEmptyModule True command before importing a design. Once the design is
October 2010 277 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
imported, specify a module or hard macro as blackbox using the specifyBlackBox
command or the Specify Black Box GUI form.

Note: Converting a hard macro into a blackbox will not update the blockage definitions
when you change the blackbox size.

■ Define LEF abstracts for blackboxes. You can specify a blackbox library in the LEF Files
field of the Design Import form.

If a blackbox LEF abstract is specified in the LEF Files field, the LEF abstract should
have CLASS type as BLOCK BLACKBOX to indicate it is a blackbox.

The following is an example of a blackbox LEF abstract:

MACRO amba_dsp
CLASS BLOCK BLACKBOX ;
ORIGIN 0 0 ;
SIZE 4411.8600 BY 5697.3600 ;

END amba_dsp

After defining a blackbox with any of the above methods, you can further modify an existing
blackbox size with the specifyBlackBox command.

Note: You can use the getBlackBoxArea command to retrieve the standard cell area,
macro area, and cell utilization value for the specified blackbox.

Caution

If you convert a hard macro into a blackbox or define a blackbox with a
LEF abstract that has obstructions, the obstructions size will not be
updated with a new blackbox size. Due to this limitation, obstructions
may be intruded outside of the new blackbox boundary.

Blackbox Flow

Note: Even though there are more than one ways to define a black box, it is recommended
that you define a black box by using the specifyBlackBox command.

The following flow specifies blackboxes with an original netlist that has modules with content
that is not well-defined:

1. Import the design. By default, the EDI System software keeps empty modules
(setImportMode
-treatUndefinedCellAsBbox false -keepEmptyModule true)

2. Specify the blackboxes or load a floorplan file with blackbox information.
October 2010 278 Product Version 9.1.3

../fetxtcmdref/partitionT.html#specifyBlackBox
../fetxtcmdref/importT.html#setImportMode
../encounter/partitionG.html#SpecifyBBox
../fetxtcmdref/partitionT.html#specifyBlackBox
../fetxtcmdref/partitionT.html#getBlackBoxArea
../fetxtcmdref/partitionT.html#specifyBlackBox

Encounter Digital Implementation System User Guide
Partitioning the Design
3. Floorplan the design.

4. (Optional) Save the design, which saves the blackbox information.

5. Run placement.

6. (Optional) Run Trial Route with or without the -routeBasedBBPin parameter. When
you run Trial Route with this parameter, Trial Route determines near-optimal location for
blackbox pins with respect to top channel congestion and places blackbox pins at these
locations. Trial Route then creates routes to the blackbox pins without crossing over
blackboxes.

7. Proceed with the normal hierarchical flow for the design.

There is no separate step required for assigning blackbox pins or committing the blackbox.

After the blackbox pins are placed at near-optimal location by running Trial Route with the
-routeBasedBBPin parameter, use the assignPtnPin command to finally place
blackbox pins to honor user-specified constrains.

When you partition the design, blackboxes as well as regular partitions are committed.
Blackboxes get converted to hard macros at top-level design that display as a Block objects
in the Attribute Editor.

The following flow is an ECO flow where the contents of the black box are now well defined.

1. Restore the design (or import the design and load a floorplan with the black box
information)

2. Run the loadBlackBoxNetlist command to incrementally load the netlist for the
blackbox. You can run this command without exiting the current session of the EDI
System software.

3. Run the convertBlackBoxToFence command to convert the blackbox to a fence.

Note: To convert the fence back to a blackbox, run the convertFenceToBlackBox
command.

Continue with the following steps to finalize pin assignment for the black box:

4. Proceed with the normal hierarchical flow for the design.

Saving Blackboxes

To save blackbox information, use the saveDesign command or the File – Save Design
menu command.
October 2010 279 Product Version 9.1.3

../fetxtcmdref/partitionT.html#loadBlackBoxNetlist
../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/floorplanT.html#saveFPlan
../fetxtcmdref/partitionT.html#convertBlackBoxToFence
../fetxtcmdref/partitionT.html#convertFenceToBlackBox
../encounter/editG.html#ObjAttr

Encounter Digital Implementation System User Guide
Partitioning the Design
Deleting Blackboxes

If a blackbox is an empty module in the netlist, or a cell without a physical macro definition,
you must modify the netlist before you can delete it.

Tip

You should not delete a blackbox that was originally defined as a macro in the
technology file; otherwise, you might have problems with loosely integrated
applications because these application interfaces automatically generate only
macro definitions for blackboxes. You should only use the delete capability to try out
different floorplan.

Handling of Blackboxes with Non-R0 Orientation

The partitioning- and blackbox-related commands in EDI System support only those
blackboxes whose master instances have an R0 orientation. Clones with a non-R0 orientation
clones are, however, supported.

Partitioning-related commands such as assignPtnPin, partition, assembleDesign,
flattenPartition, convertBlackBoxToFence, and editPin work only with those
blackboxes whose master instances have an R0 orientation.

Several commands in the EDI System software automatically convert the orientation of
master blackboxes to R0.

In addition, you can also run the changeBBoxMasterToR0 command to convert the
orientation of the master blackboxes to R0. This would be useful for example, you restore a
design and want to convert the orientation of all the master blackboxes to R0.

The following sections provide addition information about automatic conversion of orientation
and about the changeBBoxMasterToR0 command.

■ Automatic Conversion of Orientation on page 280

■ Performing R0 Transformation on page 282

Automatic Conversion of Orientation

When the following commands change the orientation of a master instance blackbox to non-
R0, the commands automatically convert the new orientation to R0:

■ specifyBlackBox
October 2010 280 Product Version 9.1.3

../fetxtcmdref/partitionT.html#specifyBlackBox
../fetxtcmdref/partitionT.html#changeBBoxMasterToR0
../fetxtcmdref/partitionT.html#changeBBoxMasterToR0
../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#flattenPartition
../fetxtcmdref/partitionT.html#convertBlackBoxToFence
../fetxtcmdref/partitionT.html#editPin

Encounter Digital Implementation System User Guide
Partitioning the Design
■ flipInst

■ multiPlanDesign

■ orientateInst

■ placeInstance

■ planDesign

■ rotateInst

In addition:

■ Opening the Attribute Editor for such a master blackbox automatically converts the
orientation to R0.

■ Using the Flip or the Rotate options from the context menu (the menu that appears when
you click the middle mouse button on an object) automatically converts the orientation to
R0.

■ Using the Flip or the Rotate options on the Floorplan toolbox automatically converts the
orientation to R0. For more information, see Floorplan Toolbox in the “Floorplan Menu”
chapter of Encounter Digital Implementation System Menu Reference.

The conversion includes the following:

■ Cell blackbox geometries (PORT, OBS, and so on) are transformed.

■ Master instances are converted to R0 orientation. The clone instances are oriented
accordingly.

Note: The placement location remains unchanged.

■ Any pin guides, pin blockages, and pin constraints associated with transformed
blackboxes are deleted.

Important

There is no change in the design physically as a result of these transformations.
Only the cell orientation and the instance representation are modified.

As an example, if the blackbox master instance is MX, then after the transformation:

■ cell geometries are transformed to MX

■ The orientation of the master instance is changed to R0.
October 2010 281 Product Version 9.1.3

../encounter/floorplanG.html#FloorplanToolbox
../fetxtcmdref/floorplanT.html#flipInst
../fetxtcmdref/floorplanT.html#multiPlanDesign
../fetxtcmdref/floorplanT.html#multiPlanDesign
../fetxtcmdref/floorplanT.html#orientateInst
../fetxtcmdref/placementT.html#placeInstance
../fetxtcmdref/floorplanT.html#planDesign
../fetxtcmdref/floorplanT.html#rotateInst

Encounter Digital Implementation System User Guide
Partitioning the Design
Performing R0 Transformation

For designs that contain blackboxes whose master instances have a non-R0 orientation, you
can use the changeBBoxMasterToR0 command to convert the orientation of the master
blackboxes to R0. The syntax of the command is as follows:

changeBBoxMasterToR0 [-checkOnly] [{cellName | cellNameList}]

If a cell name, or a list of cell names, is not specified, the command converts the orientation
of all the non-R0 master blackboxes to R0.

If the -checkOnly parameter is specified, the command does not actually convert the
orientation of any master blackbox; it only displays the number of master blackboxes whose
orientation would have been changed had the command been run without the -checkOnly
parameter.

For more information, see the description of the changeBBoxMasterToR0 command in the
Encounter Digital Implementation System Text Command Reference.

Tip

When you are ready to run a loosely integrated application, complete the following steps:

1. Run the saveDesign command to make sure that you have updated the size and pin
information.

2. Exit the EDI System software, or use the freeDesign text command.

3. Rerun the EDI System software with the updated macro information.

To delete all the blackboxes in the design, use the unspecifyBlackBox -all command.

Specifying Multiple Instantiated Partitions and Blackboxes

When a module with multiple instantiations (also known as repeated partitions) of the same
cell type is assigned to become a partition, you can specify either one of the multiple
instantiated hierarchical instances to be partitions. The name of a hierarchical instance used
for partition specification becomes the master partition, and the other instantiations are
clones of this master partition.

Note: All the master and clone hierarchical instances should be placed inside the core before
you specify the partition. This restriction does not apply to blackboxes.
October 2010 282 Product Version 9.1.3

../fetxtcmdref/importT.html#saveDesign
../fetxtcmdref/importT.html#freeDesign
../fetxtcmdref/partitionT.html#unspecifyBlackBox
../fetxtcmdref/partitionT.html#changeBBoxMasterToR0
../fetxtcmdref/partitionT.html#changeBBoxMasterToR0

Encounter Digital Implementation System User Guide
Partitioning the Design
When working with repeated partitions, you should be aware of the following:

■ You can only specify one instance as a master partition. The EDI System software will
treat the other instances are partition clones.

■ For the top-down hierarchical flow, where the top-level design is implemented first, the
instance must have a R0 orientation; otherwise, you will run into problems with the pin
assignment, feedthrough buffer insertion, and commit partition steps.

■ For the bottom-up hierarchical flow, where the block is implemented first, the partition
master can have a non-R0 orientation. Make sure all the non-uniquified instances are
placed inside the core before you specify the partition.

■ For non-uniquified blackboxes, the EDI System software automatically converts all
hierarchical instances of a same module as repeated blackboxes. The hierarchical
instance that is first instantiated in the netlist is treated as the master blackbox.

■ Partition and blackbox clones can be rotated and flipped if the design only has regular
square vias, and flipped if regular vias used in the design are symmetry in the flip
directions.

■ Partition clones share the same pin assignment and pushed-down data as their partition
master, you must run the alignPtnClone command before the commit partition step
to make sure all the partition clones are well aligned with the master on power mesh so
you do not run into problems when flattening the partitions.

■ For master and clones partitions, the EDI System software automatically snaps the clone
partitions such that clones will have the same row structure and pattern as their master.
To disable this snapping capability, use the -noEqualizePtnHInst option of the
loadFPlan command.

Changing Partition Clone Orientation

After specifying the partition, you can change the partition clones’ orientation by using the
setClonePtnOrient command or through Attribute Editor during floorplanning.

For routing purposes, the EDI System software automatically stitches regular wires and
rotates vias correctly for non-R0 orientations, such as MX, MY, R90, R180, and R270.

For example, there is a case where some of the clones follow the orientation of the master
instance (R0), and some are placed with R180 orientation. After chip assembly, the EDI
System software flips and places the clone instances’ standard cells to match the R180 clone
orientation, and repositions the routing according to the R180 orientation.
October 2010 283 Product Version 9.1.3

../encounter/editG.html#ObjAttr
../fetxtcmdref/partitionT.html#setClonePtnOrient

Encounter Digital Implementation System User Guide
Partitioning the Design
Because R90 and R270 orientation clones have vertical rows, all the cell placement, routing,
and IPO should be done at the top-level before flattening step. After flattening the design, you
should only run full chip flat timing analysis.

The following example shows a design that has R90, R180, and R270 orientation clones:

Note: The illustration above only shows the wire information inside the partition, and does
not include the top-level connection.

Specifying Rectilinear Partitions and Blackboxes

You can specify a rectilinear (non-rectangular) partition shape by adding a cut area. The
partition’s cut area will have no cell placement and no routing. Pins are assigned to the
rectilinear partition edges, as shown in the following figure:

Floorplan View Physical View after Unpartitioning
(does not show the top-level connection)

Master
Partition

R270
R180

R0 R90

Partition Area

pins

pins

Cut Area
October 2010 284 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
The rectilinear pin assignment recognizes the rectilinear edges when assigning pins, and
supports any rectilinear shape. See Assigning Pins on Rectilinear Edges on page 318 for
more information.

To add a cut area to the partition or blackbox, complete the following steps:

1. Click on the Cut Rectilinear widget from the Tools area.

2. Move the mouse to an edge or corner of the partition or blackbox.

3. Left click and drag over the area.

4. Left click again to complete the cut.

A macro definition file (LEF) will be created with blockage on the overlap layer covering the
cut area. For the top-level partition, the cut area allows block or cell placements.

The equivalent text command is setObjFPlanBoxList with the Module object type. For
backward compatibility, you can also use the createPtnCut text command. You should
specify a module as a partition before using createPtnCut.

For repeated partitions or blackboxes, when you create a cut on one instance—either master
or clone—the cut is applied to the other instances as well.

Note: If a cut is made on a blackbox that has pins assigned to it, the affected blackbox pins
are automatically moved to the new edge boundary created by the cut.

Specifying Core-to-I/O Distance for Partition Cuts

Core-to-I/O distance is specified in the Specify Partition form. If the partition has a partition
cut, core-to-I/O distance is honored where the cut is specified. The specified top, bottom, left,
and right core-to-I/O distances is automatically assigned for the cutting edges that face the
north, south, west, and east side, respectively.
October 2010 285 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
For example, if you specify a core-to-I/O distance of 5 μm for the top and bottom, and 2 μm
for left and right sides:

The core to I/O distance for the edge A (facing east) should be 2 μm. The core to I/O distance
for the edge B (faced to north) should be 5 μm, same as the top side.

Specifying Nested Partitions

The EDI System software does not support a partition that is nested inside another partition.
For nested partitions, you can work around this limitation by specifying the second-level
partition at the partition-level design.

For example, consider a case where the module mult_32 is a nested module inside the
module tdsp_core and you want to define both mult_32 and tdsp_core as partitions. For
this, first define tdsp_core as a partition and then follow the normal partition flow to define
mult_32 as a partition. Here are the steps:

1. Import the design.

2. Specify tdsp_core as partition.

3. Perform placement and routing.

4. Commit the partition tdsp_core.

5. Save the partition.

6. Change to the tdsp_core partition directory.

7. Define mult_32 as a partition.

B

5 μm

5 μm
2 μm

2 μm

A

October 2010 286 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Assigning Pins

You can optimize partition and blackbox pins in the EDI System environment based on routing
or placement information. You can assign the pins or ports to a location on a partition, and
set various constraints as per your requirements on pin assignment, for example, you can
create pin blockages on specified areas.

Run the Check Pin Assignment menu command (Partition – Check Pin Assignment) or the
checkPinAssignment text command after pin assignment to make sure that all pins are
assigned, are placed on routing grids, and are not overlapping.

Blackbox pins are assigned in the same way as partition pins.

Pin assignment supports the following:

■ Rectilinear partitions and black boxes

■ Repeated partitions and black boxes. Both master and clones are considered when
assigning their pins.

■ Designs with an arbitrary origin.

■ Non-uniform tracks.

Note: Pin assignment assigns only signal pins but it does honor power/ground stripes and
followpins. Power and ground pins are created when the design is partitioned.

Important

You cannot assign blackbox or partition pins when design is unplaced and unrouted.
Make sure you place the design before partitioning; otherwise, all pins will be
unplaced.

The following sections describe pin assignment in EDI System:

■ Assigning Partition and Blackbox Pins

■ Assigning I/O Pins

■ Performing Congestion-aware Pin Assignment for Channel-based Designs

■ Assigning Pins on Rectilinear Edges

■ Swapping Partition Pins

■ Snapping Pins to the Grid

■ Assigning Pins for Bus Guides
October 2010 287 Product Version 9.1.3

../encounter/partitionG.html#CheckPinAssignment
../fetxtcmdref/partitionT.html#checkPinAssignment

Encounter Digital Implementation System User Guide
Partitioning the Design
■ Pin Assignment Limitations
October 2010 288 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Assigning Partition and Blackbox Pins

Assigning pins for partitions and blackboxes includes the following steps:

■ Setting Pin Constraints on page 289

■ Assigning Pins on page 299

■ Validating Pin Placement Results on page 302

■ Refining Pin Assignment and Fixing Pin Violations on page 306

■ ECO Pin Assignment on page 309

Setting Pin Constraints

The EDI System software provides a number of constraints to control or guide partition,
blackbox, or I/O pin assignment:

■ Pin Group

■ Net Group

■ Pin Guides

■ Pin Size (Width and Height)

■ Pin Spacing

■ Pin Layers

■ Pin-to-corner distance

■ Pin Blockage

Pin Group

While assigning bus pins or signal pins that you want to be placed together, you can specify
a constraint for these pins by creating a cell pin group. You can create a cell pin group with
the createPinGroup text command or by using the Edit Pin Group GUI form (Edit–Edit
Pin Group). You can add pins to a cell pin group with the createPinGroup text command
or with the addPinToPinGroup text command.

Cell pin groups do not have to be associated with a partition pin guide because a pin group
is not a constraint on any partition edge. In this case, the pin assignment program can freely
place this group of pins on any edge of the partition. However, pins that belong to this pin
group are still placed together in adjacent locations.
October 2010 289 Product Version 9.1.3

../fetxtcmdref/partitionT.html#createPinGroup
../fetxtcmdref/partitionT.html#createPinGroup
../fetxtcmdref/partitionT.html#addPinToPinGroup
../encounter/editG.html#EditPinGroup

Encounter Digital Implementation System User Guide
Partitioning the Design
With a pin group you can:

■ Optimize order of pins within a cell pin group to improve wire length using the
-optimizeOrder option of the createPinGroup text command. If this option is not
specified, the pin order is exactly as specified in the pin group.

■ Place pin members of a pin group on alternate layers using the -alternateLayer
parameter of the createPinGroup text command.

■ Specify pin spacing. The default minimum pin spacing between pins of a cell pin group
is two tracks.

The following commands create a pin group pGroup1 that consists of 3 INT bus bit pins of
the module ALU. These pins can be optimized within the pin group:

createPinGroup pGroup1 -cell ALU -pin {INT[0] INT[2] INT[3]} -optimizeOrder

Or

createPinGroup pGroup1 -cell ALU -optimizeOrder

addPinToPinGroup -cell ALU -pinGroup pGroup1 -pin {INT[0] INT[2] INT[3]}

Use the deletePinGroup command to delete a pin group or all pin groups.

Use the deletePinFromPinGroup command to delete a pin from a pin group.

Net Group

You can create a net group using the createNetGroup command or by using the Edit Net
Group GUI form (Edit–Edit Net Group). You can specify net members when creating a net
group or add them later using the addNetToNetGroup command. To be honored by pin
assignment, net groups must be used in conjunction with a pin guide.

As for a pin group, you can optimize net pin order, alternate pin layers, and specify pin spacing
for a net group.

The following commands create a net group nGroup1 that has two nets NET1 and NET2 with
minimum pin spacing of 2 tracks.

createNetGroup nGroup1 -net {NET1 NET2} -spacing 2

Or

createNetGroup nGroup1 -spacing 2

addNetToNetGroup nGroup1 -net {NET1 NET2}

Use the deleteNetGroup command to delete a net group or all net groups.
October 2010 290 Product Version 9.1.3

../fetxtcmdref/partitionT.html#createPinGroup
../fetxtcmdref/partitionT.html#createPinGroup
../fetxtcmdref/partitionT.html#deletePinGroup
../fetxtcmdref/partitionT.html#deletePinFromPinGroup
../fetxtcmdref/partitionT.html#createNetGroup
../encounter/editG.html#EditNetGroup
../encounter/editG.html#EditNetGroup
../fetxtcmdref/partitionT.html#addNetToNetGroup
../fetxtcmdref/partitionT.html#deleteNetGroup

Encounter Digital Implementation System User Guide
Partitioning the Design
Note: When you delete a net group, any bus guide associated with the net group also gets
deleted.

Use the deleteNetFromNetGroup command to remove a net from a net group.

Pin Guides

You can create a pin guide to constrain a bus, net, pin, net group, or pin group to be placed
in specific areas. A pin guide is used for specifying a physical guided area where pins
belonging to the pin guide will be placed.

Note: While creating a pin guide, you cannot optimize the order of pin members or specify
minimum spacing. If you want to control the pin order and the pin spacing of the members of
a pin guide, first create a net group or a pin group and associate this net group or pin group
with a pin guide.

A pin guide can support multiple constraint pin layers. In addition, any bus, net, pin, net group,
or pin group can be assigned to multiple pin guides.

You can create a pin guide using the Create Pin Guide widget from the GUI or through the
createPinGuide text command. A physical location constraint can be specified either as a
rectangular area or as an edge constraint. If you specify a physical location constraint as an
edge constraint, you will also need to specify the partition/black box cell name.

Here are a few examples of using the createPinGuide text command to create a pin guide.

Example 1: The following command creates a pin guide for a net group nGroup1. The pin
order within this net group will be optimized. The pin members of this pin guide can be placed
on the top edge of the cell ALU. Pins will be placed on Metal2 or Metal4 layers:

createNetGroup nGroup1 -net {NET1 NET2} -optimizeOrder

createPinGuide -netGroup nGroup1 -edge 1 -cell ALU -layer {Metal2 Metal4}

Example 2. The following command creates a pin guide for a pin group pGroup1 of cell/
module ALU. Pins of this pin guide will have a minimum spacing of 2 tracks:

createPinGroup pGroup1 -cell ALU -pin {INT[0] INT[2] INT[3]} -spacing 2

createPinGuide -area 678.52 371.25 778.53 787.33 -pinGroup pGroup1 -cell ALU

The pins will be assigned on the preferred layers.

Example 3. The following command creates a pin group pGroup2. This pin group can be
placed on the top edge or the right edge of the cell TDSP. For top edge, pins can be assigned
on the Metal4 or Metal6 layers. For right edge, pins can be assigned on the Metal5 layer.

createPinGroup pGroup2 -cell TDSP -pin p_addr* -optimizeOrder

createPinGuide -edge 1 -pinGroup pGroup2 -cell TDSP -layer {Metal4 Metal6}
October 2010 291 Product Version 9.1.3

../fetxtcmdref/partitionT.html#deleteNetFromNetGroup
../encounter/startingG.html#AddPartitionPinGuides
../fetxtcmdref/partitionT.html#createPinGuide
../fetxtcmdref/partitionT.html#createPinGuide

Encounter Digital Implementation System User Guide
Partitioning the Design
createPinGuide -edge 2 -pinGroup pGroup2 -cell TDSP -layer Metal5

You can also use the GUI to create a partition pin guide, as follows:

After you have determined a pin guide location in the design display area, you can create a
partition port for a net or bus name and add a partition pin guide. To add a partition pin guide
through the GUI, complete the following steps:

1. In the Tools area, click the Create Pin Guide widget.

2. Press the F3 key to bring up the Set Pin Guide Options GUI form. Alternatively, select
Edit – Create Pin Guide to display the Set Pin Guide Options GUI form. Use this form to
specify the pin guide name, cell name, mode (by area or by edge), and the applicable
layers.

3. Click and drag over a partition fence overlap to specify the area or edge.

For vertical edges, the first pin generated starts from the bottom intersect point. For
horizontal edges, the first pin generated starts from the left intersect point, as shown in
the following figure:

The default pin spacing is 2, which places one pin for every two metal tracks. You can
change the pin spacing with the Minimum Pin Pitch field in the Specify Partition form,
or by changing spacing of the associated pin group or net group. You can use the Move/
Resize/Reshape tool to modify the pin guide location.

Note: For a partition that has a rectangular cut, the partition pin guide must be placed
on the edge of the cut. You can also use a pin guide to assign pins, net group, or a pin
group to a specific side without specifying a pin guide area by using the
createPinGuide command.

4. Change the partition pin guide object name to the net, bus, or net group name.

Use the partition pin guide attribute editor to change pin guide name to a net name, or
the name of a predefined net group or pin group.

Partition

Partition
Pin Guide 1

Partition
Pin Guide 2

Creates ports at the right side,
starting bottom-to-top

Creates ports at the top side,
starting left-to-right
October 2010 292 Product Version 9.1.3

../encounter/startingG.html#AddPartitionPinGuides
../encounter/partitionG.html#SpecifyPartition
../encounter/startingG.html#MoveResizeReshape
../encounter/startingG.html#MoveResizeReshape
../fetxtcmdref/partitionT.html#createPinGuide
../encounter/editG.html#SetPinGuideOptions

Encounter Digital Implementation System User Guide
Partitioning the Design
If the partition pin guide was assigned the net group name, all nets and buses added to
this net group name will have partition pins generated for the partition. Pins are
generated in the order the net or bus was entered by the addNetToNetGroup
command. Pins for unconnected nets and buses are randomly assigned. You can also
use the partition pin guide to assign floating pins.

Use the deletePinGuide command to delete a pin guide or all pin guides.

Pin Size (Width and Height)

By default, pin size will be created based on the minimum area rule. Use the
setLayerPinWidth and setLayerPinDepth commands to set new pin width and depth
of a routing layer for a specific partition/black box cell. When this constraint is defined, pin
assignment will use these values for creating pin size.

You can also specify pin size for a specific pin or pin group using the setPinWidth and the
setPinDepth commands.

Use the getLayerPinWidth and the getLayerPinDepth commands to retrieve pin width
and depth for particular layer(s) of specific partition/black box cell.

Use the getPinWidth and the getPinDepth commands to retrieve width and depth of a
specific pin or pin group.

Example 1: The following commands set the pin width and depth of layer Metal2 for partition
cell ALU to 0.4 and 0.6 respectively.

setLayerPinWdith -cell ALU -layer Metal2 -width 0.4

setLayerPinDepth -cell ALU -layer Metal2 -depth 0.6

Example 2: The following commands set the pin width of pin group pGroup1 to 0.3 and pin
depth of pin pGroup1 to default.

setPinWidth -cell ALU -pinGroup pGroup1 -width 0.3

setPinDepth -cell ALU -pinGroup pGroup1 -default

With this example, all the pins of pin group pGroup1 will have the width 0.3 and the default
depth.

Pin Spacing

You can set minimum pin spacing in terms of track number using the Specify Partition form
(Partition – Specify Partition). The default pin spacing is 2, which places a pin for every two
metal tracks.
October 2010 293 Product Version 9.1.3

../encounter/partitionG.html#SpecifyPartition
../fetxtcmdref/partitionT.html#addNetToNetGroup
../fetxtcmdref/partitionT.html#deletePinGuide
../fetxtcmdref/partitionT.html#setLayerPinWidth
../fetxtcmdref/partitionT.html#setLayerPinDepth
../fetxtcmdref/partitionT.html#setPinWidth
../fetxtcmdref/partitionT.html#setPinDepth
../fetxtcmdref/partitionT.html#getLayerPinWidth
../fetxtcmdref/partitionT.html#getLayerPinDepth
../fetxtcmdref/partitionT.html#getPinWidth
../fetxtcmdref/partitionT.html#getPinDepth

Encounter Digital Implementation System User Guide
Partitioning the Design
You can modify the pin spacing in the following ways:

■ Global pin spacing at design level

Use the setGlobalMinPinSpacing and the getGlobalMinPinSpacing
commands to set and retrieve global pin spacing. This spacing value will be applied to
all partition/black box pins of the design.

■ Partition/black box level

Use the definePartition command with -minPitchTop, -minPitchBottom,
-minPitchLeft, and -minPitchRight parameters to specify minimum pin spacing
for a partition. Similarly, to specify the minimum pin spacing for a blackbox, use the
specifyBlackBox command with -minPitchTop, -minPitchBottom,
-minPitchLeft, and -minPitchRight parameters.

■ Specific partition/black box area or edge

Use the setMinPinSpacing and the getMinPinSpacing commands to set and get
the minimum pin spacing for a particular edge or all edges of a partition/black box cell.

The -edge parameter of the setMinPinSpacing and getMinPinSpacing
commands can take the following values:

❑ N, S, W, E (supports both upper and lower case)

❑ T, B, L, R (supports both upper and lower case)

❑ dbcN, dbcS, dbcE, dbcW

Example1: The following commands set the minimum pin spacing for top and bottom
edge of partition cell ALU to 1 track.

setMinPinSpacing -cell ALU -edge T -spacing 1

setMinPinSpacing -cell ALU -edge B -spacing 1

Example 2: The following command sets minimum pin spacing for all edges of partition
cell TDSP to 3 tracks

setMinPinSpacing -cell TDSP -all -spacing 3

■ Pin group or net group

Use the createPinGroup or the createNetGroup commands to specify minimum
pin spacing at the pin group or net group level. This specified minimum pin spacing will
apply to all the pin members of the specified pin group or net group.

■ Pin level

Use the setPinConstraint command to specify minimum pin spacing of a particular
pin.
October 2010 294 Product Version 9.1.3

../fetxtcmdref/partitionT.html#specifyBlackBox
../fetxtcmdref/partitionT.html#setGlobalMinPinSpacing
../fetxtcmdref/partitionT.html#getGlobalMinPinSpacing
../fetxtcmdref/partitionT.html#definePartition
../fetxtcmdref/partitionT.html#setMinPinSpacing
../fetxtcmdref/partitionT.html#getMinPinSpacing
../fetxtcmdref/partitionT.html#setMinPinSpacing
../fetxtcmdref/partitionT.html#getMinPinSpacing
../fetxtcmdref/partitionT.html#createPinGroup
../fetxtcmdref/partitionT.html#createNetGroup
../fetxtcmdref/partitionT.html#setPinConstraint

Encounter Digital Implementation System User Guide
Partitioning the Design
As spacing constraint can be specified at more than one level, pin assignment will honor
spacing constraint in the following order:

■ Pin spacing

■ Net group or pin group spacing

■ Partition/black box spacing on a particular edge

■ Partition/black box spacing

■ Global spacing

Pin Layers

Specify pin layers that will be used for placing pins on a specific partition side using the
Specify Partition form (Partition – Specify Partition menu command). The equivalent text
command is setAllowedPinLayersOnEdge.

You can specify layer constraints at partition level, pin guide level, or pin level.

■ Partition level

Layer constraint per edge can be specified at partition level using either

❑ the Specify Partition form (Partition – Specify Partition menu command), or

❑ the definePartition command with -pinLayerTop, -pinLayerBottom,
-pinLayerLeft, and -pinLayerRight parameters. These layer constraints will
be applied to all pins on a particular edge of the specified partition.

❑ the setAllowedPinLayersOnEdge command with the -layer and -edge
options. This command

■ Pin guide level

Use the -layer parameter of the createPinGuide command to specify layer
constraints for all pin members of a pin guide. Layer constraint at pin guide will override
the layer constraint at partition level.

■ Pin level

Use the -layer parameter of the setPinConstraint command to specify layer
constraint for a specific partition/black box pin.

Note: Layers can be specified using the LEF layer names or layer ID numbers.

Layer constraint at pin level will have higher priority than layer constraint at partition level.
October 2010 295 Product Version 9.1.3

../fetxtcmdref/partitionT.html#setAllowedPinLayersOnEdge
../encounter/partitionG.html#SpecifyPartition
../fetxtcmdref/partitionT.html#setAllowedPinLayersOnEdge
../encounter/partitionG.html#SpecifyPartition
../fetxtcmdref/partitionT.html#definePartition
../fetxtcmdref/partitionT.html#createPinGuide
../fetxtcmdref/partitionT.html#setPinConstraint

Encounter Digital Implementation System User Guide
Partitioning the Design
If a layer constraint is applied to a pin that also belongs to a pin guide, the pin guide layer
constraint will have higher precedence.

If a layer constraint is being applied to a pin that already belongs to a pin group a or net group,
the layer constraint will not be applied. To apply layer constraint for this pin, first remove this
pin from the pin group or net group, and then apply the pin layer constraint.

Pin-to-corner distance

To keep pins away from partition/black box corners, you can set the pin-to-corner distance
constraint.

Use the setPinToCornerDistance command to set pin to corner distance for a particular
corner or all corners of a specific cell.

Use the getPinToCornerDistance command to retrieve the pin-to-corner value of a
cell-specific corner or all corners.

Use setPinToCornerDistance -cell * to set global pin-to-corner distance that will be
applied to all partition and blackboxes in the current design. The default value is 5 routing
tracks.

The -corner cornerNumber parameter of the commands specifies the corner of the
partition block. This is an integer value, where corner numbering starts at 0 from the
lower-left corner of a partition clock-wise. Corner 0 is the corner that has the smallest y
value.

Example: The following command sets pin-to-corner distance for corner 0 and corner 2 of the
cell ALU to 8 routing tracks.

setPinToCornerDistance -cell ALU -corner 0 8

setPinToCornerDistance -cell ALU -corner 2 8

Corner 0

Corner 1Corner 2
October 2010 296 Product Version 9.1.3

../fetxtcmdref/partitionT.html#setPinToCornerDistance
../fetxtcmdref/partitionT.html#getPinToCornerDistance
../fetxtcmdref/partitionT.html#setPinToCornerDistance

Encounter Digital Implementation System User Guide
Partitioning the Design
Pin Blockage

After determining the partition pin blockage point, you can block that area from assigning pins
on specific metal layers. Pin assignment engines also honor regular routing blockages if they
intersect with partition edges.

You can create pin blockages with the Create Pin Blockage widget or by using the
createPinBlkg command.

Note: Trial Route does not honor the partition pin blockage.

To create the partition pin blockage with the Create Pin Blockage widget, complete the
following steps:

1. Click the Create Pin Blockage widget from the Toolbox. Alternatively, select Floorplan –
Edit Floorplan – Create Pin Blockage.

2. Left click and drag over a partition fence overlap.

3. Use the Attribute Editor to specify the metal layers to block.

The following command creates a pin blockage for the entire left edge of cell TDSP on layer
M5.

createPinBlkg -edge 0 -cell TDSP -layer 5

If the -layer option is not specified, the pin blockage will be created on all partition/black box
reserved routing layers.

Use the deletePinBlkg command to delete a pin blockage or all pin blockages
(deletePinBlkg -all).

Performing Pin Pre-Assignment

You can pre-assign a pin before pin assignment using the Pin Editor or the editPin text
command. These pre-assigned pins will have fixed placement status so pin optimizers will
honor them. For more details, see the Pin Editor section in the “Edit Menu” chapter of the
Encounter Digital Implementation System Menu Reference.

Setting Constraints on a Specific Pin

Use the setPinConstraint command to specify the following constraints for a particular
pin:

■ Physical location
October 2010 297 Product Version 9.1.3

../encounter/startingG.html#AddPartitionPinBlockage
../fetxtcmdref/partitionT.html#createPinBlkg
../fetxtcmdref/partitionT.html#deletePinBlkg
../encounter/editG.html#PinEditor
../fetxtcmdref/partitionT.html#editPin
../encounter/startingG.html#AddPartitionPinBlockage
../encounter/editG.html#PinEditor
../fetxtcmdref/partitionT.html#setPinConstraint
../encounter/editG.html#ObjAttr

Encounter Digital Implementation System User Guide
Partitioning the Design
A pin can be constrained by specifying its coordinate (x, y) location and its preferred
routing layer. If specified location is not on valid track, the pin will be snapped to the
closest location. To keep the pin on non-preferred routing layer or to not snap the pin, use
the editPin command instead.

Besides an actual physical location, a pin can also be constrained to a particular edge.

■ Layer

■ Spacing

For example, the following command specifies that the pin reset of partition cell mult_32
should be placed on top edge with either Metal5 or Metal7 routing layer.

setPinConstraint -cell mult_32 -pin reset -edge 1 -layer {Metal5 Metal7}

For setting pin size constraint for a specific pin use the setPinWidth and setPinDepth
commands.

The following salient points apply to setting the pin constraints for a specific pin:

■ If constraints are applied to a pin that also belongs to a pin guide, the pin guide constraint
will have higher precedence.

■ If a location and/or layer constraint is being applied to a pin that already belongs to a pin
group or a net group, the constraint will not be applied. To apply location and/or layer
constraint for this pin, first remove this pin from the pin group or net group, and then apply
the pin constraint(s).

■ If a pin with layer constraints defined is added to a net group or pin group, the pin cannot
be added to a pin group or a net group with the createPinGroup, createNetGroup,
addPinToPinGroup, or addNetToNetGroup commands because the pin has already
been constrained. To add this pin to a pin group or net group remove the constraints first
(using the unsetPinConstraint command).

■ If the following constraints cannot be met during pin assignment, the EDI System
software will issue a warning message and the constrained pins will be placed at the
lower-left corner of the partition/black box with unplaced placement status:

❑ Pin constraint

❑ Pin group constraint

❑ Net group constraint

Use the unsetPinConstraint command to remove constraint settings for a specific pin.
October 2010 298 Product Version 9.1.3

../fetxtcmdref/partitionT.html#editPin
../fetxtcmdref/partitionT.html#setPinWidth
../fetxtcmdref/partitionT.html#setPinDepth
../fetxtcmdref/partitionT.html#createPinGroup
../fetxtcmdref/partitionT.html#createNetGroup
../fetxtcmdref/partitionT.html#addPinToPinGroup
../fetxtcmdref/partitionT.html#addNetToNetGroup
../fetxtcmdref/partitionT.html#unsetPinConstraint

Encounter Digital Implementation System User Guide
Partitioning the Design
Assigning Pins

There is no separate step required for assigning black box pins. To assign pins, use the
Partition – Assign Pins GUI menu or the assignPtnPin text command.

Pin assignment supports the following:

■ Rectilinear partitions and black boxes

■ Repeated partitions and black boxes.

■ Non-uniform tracks

Pin assignment assigns signal pins but it does honor power/ground stripes and followpins.
Power and ground pins will be created during the partition step.

Placement-based Pin Assignment

Pin assignment is based on connectivity flightlines. Cell placement should be performed
before running pin assignment.

Route-based Pin Assignment

For route-based pin assignment, routing should be performed prior to the assignPtnPin
command. Routing cross points with partition/black box boundary will be used as guidance
for pin assignment.

For a design that has blackboxes, if you want to have near-optimal locations for black box pins,
the -routeBasedBBPin option should be used. The differences between Trial Route with
and without -routeBasedBBPin options are as follows:

Default Trial Route performs the following:

❑ Assigns initial black box pins based on connectivity

❑ Creates temporary routing blockages over black boxes based on black box reserved
routing layers

❑ Runs trialRoute to route to black box pins

❑ Removes temporary blockages

Trial Route with the -routeBasedBBPin parameter performs the following:

❑ Shrinks black box boundary and runs connectivity based pin assignment to get initial
pin location
October 2010 299 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#assignPtnPin

Encounter Digital Implementation System User Guide
Partitioning the Design
❑ Runs partition-aware routing (ptnAwareRouteForPA)

❑ Re-adjusts black box pins to actual black box boundary based on routing cross point

❑ Creates temporary routing blockages

❑ Runs trialRoute to route to black box pins

❑ Removes temporary blockages

For channel-based designs that have thick channels, instead of using trialRoute -
handleParitionComplex, it is recommended to run trialRoute -
fastRouteForPinAssign.

However, if the design has black boxes then you can run Trial Route with -
routeBasedBBPin and -handlePartitionComplex options.

Tips for Assigning Partition Pins

For most of the designs, running the assignPtnPin command without any option should
give a reasonable result. However specific options can provide better results in some cases.
These options are described here:

■ -maxPinMovementForAlign and -skipPinRefine parameters

If you have ran partition aware routing (trialRoute -fastRouteForPinAssign or
trialRoute -handlePartitionComplex) for pin assignment, you should use these
parameters to minimize pin movement from existing routing cross points because these
routing cross points should give near-optimal pin locations.

Example:

trialRoute -fastRouteForPinAssign
assignPtnPin -maxPinMovementForAlign 20 -skipPinRefine

■ -ptn ptnName -pin pinList parameter

Use this parameter for running incremental pin assignment or assigning specific pins of
specific partitions.

This parameter can be used in the following pin assignment scenarios:

❑ When you want to assign critical pins first and then assign the rest of partition and/
or black box pins.

❍ First, run pin assignment to assign these critical or specific pins. Use the above
option in conjunction with the -markFixed parameter so these pins will not be
moved by second pin assignment run.
October 2010 300 Product Version 9.1.3

../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/partitionT.html#ptnAwareRouteForPA
../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/routeT.html#trialRoute

Encounter Digital Implementation System User Guide
Partitioning the Design
❍ Run pin assignment again to assign the rest of the pins.

Example:

assignPtnPin -ptn tdsp_core_glue -pin {p_address[0] p_address[3]} -ptn
alu_32 -pin rom_data* -markFixed

assignPtnPin

In the previous example, if you are running routed based pin assignment, you should
run trialRoute between the first and the second pin assignment run so that the
routing that will be used for the second pin assignment is based on pin locations of
the first pin assignment step.

❑ Run incremental pin assignment

This scenario is in contrast to the first scenario where you would run pin assignment
for all partition and/or black box pins, and then further re-optimize some specific
pins.

Example:

assignPtnPin

assignPtnPin -ptn mult_32 -pin {reset addr*}

If reset and all addr pins of the partition mult_32 have fixed placement status,
you should also use -moveFixedPin option; otherwise pin optimizer will not move
fixed pins.

■ -noPinLayerOverlap parameter

Use this parameter if you do not want the pin optimizer to place signal pins overlapping
each other on different layers. This option can be used to avoid DRC violations between
adjacent pins and the routing connecting to these pins.
October 2010 301 Product Version 9.1.3

../fetxtcmdref/routeT.html#trialRoute

Encounter Digital Implementation System User Guide
Partitioning the Design
The previous figure shows that adjacent pins are placed on alternate layers M2 and M4.

■ -enforceRoute parameter

With this parameter, pin assignment completely follows the routing information without
honoring any user-specified pin constraints and pin locations may not be legal. This
option should only be used for a rough pin assignment or for comparing pin locations
based purely on routing result with pin locations that are legalized. If you want to use
this pin placement result for your implementation stage, you need to run the
legalizePin command after the assignPtnPin command to legalize them.

Validating Pin Placement Results

You can perform the following steps to validate and correct pin placement results:

■ Checking the Pin Legality on page 303

■ Reporting QoR of Pin Assignment on page 303

■ Adjusting Pins on page 306

■ Aligning Partition Pins on page 307

■ Running incremental Pin Assignment on page 308
October 2010 302 Product Version 9.1.3

../fetxtcmdref/partitionT.html#legalizePin
../fetxtcmdref/partitionT.html#assignPtnPin

Encounter Digital Implementation System User Guide
Partitioning the Design
■ Adjusting Floorplan or Floorplanning the Design Again on page 308

■ Performing Pin Assignment Again on page 308

Checking the Pin Legality

Use the checkPinAssigment command to make sure that pins are legalized (for example,
the pins snap to routing grid, are on reserved routing layers, honor user-specified constraints,
do not cause any DRC violations, and so on).

You can check

■ All partition/black box pins

Example: The following command checks all partition/black box pins in the current
design and saves the result into the output file pinLegality.rpt.

checkPinAssignment -outFile pinLegality.rpt

■ All pins of a specific partition

Example: The following command checks all pins of the partition TDSP_CORE

checkPinAssignment -ptn TDSP_CORE -pin *

■ Specific partition pins

Example: The following command checks all bus pins p_addrs and rom_data of the
partition TDSP_CORE

checkPinAssignment -ptn TDSP_CORE -pin {p_addrs* rom_data*}

Note: You can use the -verbose parameter of the checkPinAssigment command to print
detailed pin-specific information for each reported violation. You cans also exclude certain
checks, for example, checks related to pin spacing violation or pin layer violation. For more
information, see the description of the checkPinAssigment command in the Encounter
Digital Implementation System Text Command Reference.

Reporting QoR of Pin Assignment

You can use the pinAnalysis command to report certain Quality of Results (QoR) metrics
for pin assignment. The pinAnalysis command deletes the existing routes, reroutes the
design ensuring that the routes pass through partition pins, and reports pin assignment QoR
metrics.
October 2010 303 Product Version 9.1.3

../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/partitionT.html#checkPinAssignment
../fetxtcmdref/partitionT.html#checkPinAssignment
../fetxtcmdref/partitionT.html#checkPinAssignment

Encounter Digital Implementation System User Guide
Partitioning the Design
Important

The pinAnalysis command creates new routes. The original routes are not
retained.

Note: The pinAnalysis command reroutes the design using trialRoute -honorPin.
This command thus takes at least as much time as running Trial Route. Also, because Trial
Route is run, you can use the generated routing information for other applications such as
time budgeting.

When you run the pinAnalysis command after assigning pins but before committing the
partition, the following are reported:

■ Pin-deviation from routing cross-points

■ Estimated net-length and via-count

■ Comparison between net lengths, via counts, and congestion indexes of the original and
the new routes

Note: Original route refers to the routing that was performed before the pin assignment
step. New route reefers to the routing performed by the pinAnalysis command.

■ Number of two-pin nets that have aligned pins and number of two-pin nets that have
unaligned pins

■ CPU time and memory usage

When you run the pinAnalysis command after committing the partition, the following are
reported:

■ Estimated total top-channel net-length and via-count

■ Congestion report with overall congestion index values for top-level channel nets

■ Number of two-pin nets that have aligned pins and number of two-pin nets that have
unaligned pins

■ Run time and memory usage

You can check the legality of pin assignment (similar to the functionality of
checkPinAssignment command) by specifying the -checkLegality parameter with the
pinAnalysis command.

You can also save the output of the command in a text file by specifying the -outFile
parameter.
October 2010 304 Product Version 9.1.3

../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/partitionT.html#checkPinAssignment

Encounter Digital Implementation System User Guide
Partitioning the Design
In addition to displaying the report on screen, this command also generates the report in an
HTML file named pinAnalysis.html. The legality details for every partition are available
through hyperlinks in the HTML report file.

As an example, the following command checks the legality of pin assignment, displays the
QoR report for pin assignment on the screen, and also prints the QoR report to a file named
pinAnalysisMetricReport.

pinAnalysis -checkLegality -outFile pinAnalysisMetricReport

The output of the previous command is similar to the following:

Analysing Pin Assignment.....

===

Pin Legality Report:

| Partiton | Total | Internal | Unplaced | Legal | Illegal |
| Name | Pins | Pins | Pins | Pins | Pins |

| results_conv | 39 | 0 | 39 | 0 | 0 |

| tdsp_core | 114 | 0 | 114 | 0 | 0 |

| dtmf_chip | 0 | 0 | 0 | 0 | 0 |

===

Pin QoR Report:

Unaligned 2-pin Net: DTMF_INST/t_addrs[0].

Unaligned 2-pin Net: DTMF_INST/m_clk.

There are 2 unaligned 2-pin nets.

===

| QoR Metric | Before Pin-Assignment | After Pin-Assignment | Percent Increase |

October 2010 305 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
| Horizontal | 0.000% | 0.032% | NA |
| Congestion | | | |

| Vertical | 0.000% | 0.697% | NA |
| Congestion | | | |

| Total | 6.089e+05um | 6.150e+05um | 1.011% |
| Net-Length | | | |

| Total | 48300 | 54036 | 11.876% |
| Via-Count | | | |

Completed pinAnalysis (CPU=0:00:07.6 MEM=5.9)

Note: The internal pins (shown in the Legality Report) are not checked for legality. Internal
pins are the pins that are not on the partition boundary.

In the previous table, the Before Pin-Assignment column shows the results of the routing
before pin assignment and the After Pin-Assignment column shows the results of the
routing after pin assignment.

Refining Pin Assignment and Fixing Pin Violations

After assigning partition or blackbox pins, you can further refine the current pin assignment
and fix any pin violations using one or more of the following methods:

■ Adjusting Pins

■ Aligning Partition Pins

■ Running incremental Pin Assignment

■ Adjusting Floorplan or Floorplanning the Design Again

■ Performing Pin Assignment Again

These steps are explained in the following sections.

Adjusting Pins

You can Adjust pins using the Pin Editor or the editPin text command. You can also use
direct pin manipulation to manually move selected pins to different locations.
October 2010 306 Product Version 9.1.3

../encounter/editG.html#PinEditor
../fetxtcmdref/partitionT.html#editPin

Encounter Digital Implementation System User Guide
Partitioning the Design
Aligning Partition Pins

You can align partition pins with other block pins (using the Pin Editor or the pinAlignment
text command).

The pinAlignment command can be used to align partition/black box pins with or without
specified reference object(s). Reference objects can be hard macros, blackboxes, I/O pads,
and standard cells.

You can use the pinAlignment command in different ways to align pins:

■ Align specific pins with the specified referenced object

pinAlignment -refObj <refInstName> -ptnInst <instName> -pinNames <pinList>

■ Align all pins of specified partition/blackbox instance that connect with the specified
reference object

pinAlignment -refObj <refInstName> -ptnInst <instName>

■ Align all pins of every partition/blackbox that connects with the specified reference object

pinAlignment -refObj <refInstName>

■ Align specific pins of specified partition/blackbox instance

pinAlignment -ptnInst <instName> -pinNames <pinList>

■ Align all pins of specified partition/blackbox

pinAlignment -ptnInst <instName>

■ Align all possible partition/blackbox pins

pinAlignment

If the referenced object is not specified, the pinAlignment command will automatically
derive referenced object based on connectivity information. If the aligned pin has multiple
connections, the referenced object will be derived based on the following priority:

■ Hard macro pin

■ I/O pad pin or I/O pin

■ Partition pin

■ Standard cell pin

By default an aligned pin will:

■ be snapped to routing grid. Use -noSnap option if you want that pins should not be
snapped.
October 2010 307 Product Version 9.1.3

../fetxtcmdref/partitionT.html#pinAlignment
../fetxtcmdref/partitionT.html#pinAlignment
../fetxtcmdref/partitionT.html#pinAlignment
../fetxtcmdref/partitionT.html#pinAlignment

Encounter Digital Implementation System User Guide
Partitioning the Design
■ have the same layer routing with the referenced pin. Use the -keepLayer option to keep
existing aligned pin layer. Use the -newLayer option to assign new layer for aligned pin.

■ not be legalized. Use the -legalizePin option to legalize aligned pin(s).

■ have a fixed pin status. Use the -markPlaced option to assign placed status to aligned
pin(s).

Running incremental Pin Assignment

Based on the current pin assignment result, re-run pin assignment. You can specify pin
constraints to further guide new pin placement.

If you want to reoptimize only a few specific pins, use the -ptn and the -pin options of the
assignPtnPin command to specify the list of pins that will be reassigned.

Example: The following command reoptimizes address bus bit pins, rom_data bus bit pins of
partition ALU, and reset pin of partition ARB:

assignPtnPin -ptn ALU -pin {address* rom_data[*]} -ptn ARB -pin reset

By default, -ptn and -pin options will not reassign specified pins if they have fixed status.
Use the -moveFixedPin option with the -ptn and -pin options to force specified fixed
pins to be reassigned.

However if you want to keep only a few existing pins and re-optimize the rest of the pins,
instead of specifying many pins, you can mark these existing pins to fixed placement status
using the setPtnPinStatus command and then re-run pin assignment (without using
-ptn and -pin options):

setPtnPinStatus <partitionName> <pinName> fixed

assignPtnPin

Adjusting Floorplan or Floorplanning the Design Again

Sometimes a sub-optimal floorplan can also lead to a bad pin placement result. If this is the
case, re-adjust the floorplan and run pin assignment again.

Performing Pin Assignment Again

Perform pin assignment again. If the partitions or blackboxes have been committed, use the
flattenPartition command to unassign the pins. If the partitions or blackboxes are not
yet committed, use the setPtnPinStatus command to unplace the pins.
October 2010 308 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#setPtnPinStatus
../fetxtcmdref/partitionT.html#flattenPartition
../fetxtcmdref/partitionT.html#setPtnPinStatus

Encounter Digital Implementation System User Guide
Partitioning the Design
ECO Pin Assignment

The EDI System software provides incremental or ECO pin assignment capability. This
capability can be used in the ECO flow where partition/black box ports in the original netlist
get modified (added/deleted). In this flow, you can preserve most of the existing partition/
black box pin locations and let the software assign the newly added pins.

General Flow

1. Import design.

2. Floorplan design (specify partition/black box information in this step).

3. Run placement.

4. Route design.

5. Save full chip floorplan and/or save design for later use.

6. Assign pins (assignPtnPin).

7. Save partition/black box pin information into a partition file (savePtnPin).

8. Route design to connect to new partition/black box pins (trialRoute -honorPin).

9. Derive timing budget (deriveTimingBudget).

10. Commit partitions/black boxes (partition).

11. Save top and partition information into each directory (savePartition).

After having new modified netlist, ECO pin assignment can be run as follows:

12. Import design with new modified netlist.

13. Load full-chip floorplan that saved in the previous step 5.

14. Place and route the design. Placement and routing information that are saved in the step
5 can be restored if still applicable.

15. Use the loadPtnPin command to load the partition file that was saved in the previous
step 7 or the partition file (or DEF file) of each partition block to preserve existing
partition/blackbox pin locations. Make sure that partition/blackbox pins in partition file
have fixed placement status so they will not be moved in the next step, pin assignment.

16. Run pin assignment to assign the newly added pins.
October 2010 309 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#loadPtnPin
../fetxtcmdref/partitionT.html#savePtnPin
../fetxtcmdref/partitionT.html#savePartition
../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/timingbudgetingT.html#deriveTimingBudget

Encounter Digital Implementation System User Guide
Partitioning the Design
Saving the Partition Pins

Use the savePtnPin command to save pin placement information for later use. The
command provides options to save pin information of

■ Specific partition/blackbox

Example: Save pin locations of partition execute_i into file execute_i.ptn

savePtnPin -ptn execute_i execute_i.ptn

■ All partitions and/or blackboxes

Example: Save pin information of all partitions and/or black boxes in the current design

savePtnPin -all allPtnPin.ptn

■ Current block-level design

Example: Save I/O pin locations of the current design

savePtnPin -design ioPin.ptn

Restore Partition Pin Information

Use the loadPtnPin command to restore/load pin placement information of a particular
partition/blackbox. The command restores the following:

■ A partition file that is generated by the savePtnPin or the saveFPlan
(floorplan.fp.ptn) commands

Example: Load pin locations of the partition ALU from partition file ALU.ptn

loadPtnPin -ptnName ALU -inFile ALU.ptn

■ Block-level DEF file

Example: Load pin locations of partition ALU from ALU DEF file

loadPtnPin -ptnName ALU -def ALU.def
October 2010 310 Product Version 9.1.3

../fetxtcmdref/partitionT.html#savePtnPin
../fetxtcmdref/partitionT.html#loadPtnPin

Encounter Digital Implementation System User Guide
Partitioning the Design
Assigning I/O Pins

For a top-down hierarchical flow, I/O pins of a block-level design will normally be assigned
during the full-chip pin assignment. This pin placement information is saved in a block-level
floorplan partition file (floorplan.fp.ptn) or a DEF file that is generated by the
savePartition command.

For a bottom-up hierarchical flow, I/O pin placement can be generated from an I/O constraint
file or during the cell placement step.

You can also explicitly run I/O pin assignment with the assignIoPins command.

This section covers the following topics:

■ Setting Pin Constraints on page 311

■ Performing Initial Pin Assignment on page 311

■ Refining Pin Placement on page 312

■ Validating Pin Placement on page 313

Setting Pin Constraints

The EDI System software provides a number of pin constraint commands to control or guide
I/O pin assignment. The same set of pin constraint commands that are used for setting
constraints for partition/blackbox pins can also used for I/O pins. The only difference is that
you do not need to specify the -cell option for I/O pins. For more information, see Setting
Pin Constraints on page 289 in the Assigning Partition and Blackbox Pins section of this
document.

Performing Initial Pin Assignment

For a bottom-up flow, initial pin placement can be generated by any of the following methods:

■ Using an I/O constraint file

An I/O constraint file can be read into the EDI System environment during the design
import step. Or, you can use the loadIoFile command to load a constraint file after
netlist had been read in.

An I/O constraint file can be created by manually editing a text file.
October 2010 311 Product Version 9.1.3

../fetxtcmdref/partitionT.html#savePartition
../fetxtcmdref/partitionT.html#assignIoPins

Encounter Digital Implementation System User Guide
Partitioning the Design
For more information about I/O constraint file, see the “Generating the I/O assignment
File” section in the “Data Preparation” chapter of the Encounter Digital
Implementation System User Guide.

■ Randomly assigning I/O pins

You can create an I/O template file with random I/O pin assignment using the following
steps. I/O placement is evenly distributed on design boundary:

a. Import design

b. Run the saveIoFile command with the -template option

c. Use the loadIoFile command to load I/O file generated from the step 2

■ Placing the design

After importing a design and floorplanning it, you should place the design. By default, the
EDI System placer (placeDesign) internally invokes the I/O pin assignment to place I/
O pins based on the current floorplan.

Note: Set the -placeIoPins option of the setPlaceMode command to False if you
want to disable I/O pin assignment during the placement step.

Refining Pin Placement

After I/O pins are assigned, you can further refine the current I/O pin assignment by one of
the following methods:

■ Manually adjust pins by direct pin manipulations or using pin editor.

■ Use the assignIoPins command to further optimize I/O placement.

Using the assignIoPins Command to Optimize I/O Placement

The assignIoPins command assigns I/O pins based on placement information. The design
must be placed before this command is run. The command supports:

■ Rectilinear designs

■ Non-uniform tracks

■ User-specified constraints

By default, the assignIoPins command will honor fixed pins and only assign pins that have
placed/unplaced placement status. If the initial I/O placement is generated by loading a
constraint file (that is, the loadIoFile command automatically set I/O placement status to
October 2010 312 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#saveIoFile
../fetxtcmdref/floorplanT.html#loadIoFile
../fetxtcmdref/placementT.html#placeDesign
../fetxtcmdref/partitionT.html#assignIoPins

Encounter Digital Implementation System User Guide
Partitioning the Design
fixed) you should change I/O pins placement status to placed using setPtnPinStatus
command before running I/O pin assignment.

To incrementally assign I/O pins, you can do one of the following:

■ Specify pins that should be re-optimized using the -pin option.

Example: Re-assign all p_address bus pins, int, and bio I/O pins of the design tdsp_core.
Optimize these specified pins even though they have fixed placement status.

assignIoPins -pin {p_address[*] int bio} -moveFixedPin

■ Mark I/O pins that you want to keep with fixed status and run the assignIoPins
command. This scenario can be used when you want to re-optimize most of I/O pins.

Example: Preserve port_pad_data_in and port_pad_data_out buses and clock
pins, and re-optimize the rest.

setPtnPinStatus tdsp_core port_pad_data* fixed

setPtnPinStatus tdsp_core clk fixed

assignIoPins

Validating Pin Placement

After assigning I/O pins, it is recommended that you check for I/O legalization.

Use the checkPinAssigment command to make sure that pins are legalized (such as they
snap to routing grid, are on reserved routing layers, honor user-specified constraints, not
cause any DRC violations, and so on).

You can check:

■ All I/O pins

Example: Verify all I/O pins of the current design and output the result into the output file
pinLegality.rpt.

checkPinAssignment -outFile pinLegality.rpt

■ Specific I/O pins

Example: Verify all bus pins BG_scan_in, BG_scan_out, and the write pin of the
design

checkPinAssignment -pin {BG_scan* write}

If any pin violation is detected, you can:

■ Manually adjust pins by direct pin manipulation or using pin editor.
October 2010 313 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assignIoPins
../fetxtcmdref/partitionT.html#checkPinAssignment
../fetxtcmdref/partitionT.html#setPtnPinStatus

Encounter Digital Implementation System User Guide
Partitioning the Design
■ Run the legalizePin command to automatically legalize pins. You can legalize all I/O
pins or specific I/O pins of the design. Fixed pins will not be adjusted unless the
-moveFixedPin option is specified.

Example1: legalizePin

With this example, the EDI System software will legalize all pins in the design. If the
design is a block-level design that also has partition/blackbox -pins, it will also adjust the
partition/ blackbox pins. If you want to legalize only the I/O pins but not the partition/black
box pins, you should use legalizePin -pin * instead.

Example2: legalizePin -pin * -moveFixedPin

With this example, the EDI System software will legalize all I/O pins. Fixed pins will also
be adjusted because the option -moveFixedPin has been specified.

Example3: legalizePin -pin {clock reset rom_data*}

The EDI System software will legalize clock, reset, and all rom_data bus bit pins of the
design. Pins with fixed status will not be moved.
October 2010 314 Product Version 9.1.3

../fetxtcmdref/partitionT.html#legalizePin

Encounter Digital Implementation System User Guide
Partitioning the Design
Performing Congestion-aware Pin Assignment for Channel-based
Designs

To perform route-based pin placement for channel-based designs, it is recommended that
you run partition-aware routing instead of a routing that does not take partitions into
consideration. Pin assignment decisions based on such partition-aware routing are more
optimal with respect to top-channel congestion. However, Trial Route when run in
partition-aware mode (trialRoute -handlePartitionComplex) is much slower
compared to flat (partition-unaware) Trial Route.

To generate a partition-aware routing topology similar to trialRoute
-handlePartitionComplex, but in much lesser time, you can use the
ptnAwareRouteForPA command (or trialRoute -fastRouteForPinAssign).

This command generates a routing topology similar to the handlePartitionComplex
topology for approximately 95% of the inter-partition nets, in about 3X-6X lesser time. For the
remaining inter-partition nets, the topology is similar to that generated by flat Trial Route.

The syntax of the command is as follows:

ptnAwareRouteForPA trialRouteOptions -intraNets

where:

■ trialRouteOptions are the parameters of the TrialRoute command

■ -intraNets specifies that intra-partition nets should also be routed.

Note: If Trial Route is invoked with the -handlePartition option, the
-handlePartition option is ignored and a warning is displayed.

The ptnAwareRouteForPA command should be called before pin assignment. The use
flow is:

1. Import the design.

2. Floorplan the design.

3. Run the ptnAwareRouteForPA command.

4. Assign partition pins.

5. Run trialRoute -honorPin

6. Derive time budgeting.
October 2010 315 Product Version 9.1.3

../fetxtcmdref/partitionT.html#ptnAwareRouteForPA
../fetxtcmdref/partitionT.html#ptnAwareRouteForPA
../fetxtcmdref/partitionT.html#ptnAwareRouteForPA
../fetxtcmdref/routeT.html#trialRoute

Encounter Digital Implementation System User Guide
Partitioning the Design
The ptnAwareRouteForPA command generates a tabular output listing the nets that were
routed in partition-aware manner and those that were not. An example of the output is as
follows:

Inter Partition Net groups summary:

■ NetGrp: Indicates a group of nets. For example, NetGrp 7 indicates the set of nets that
logically connect instances only in partition tdsp_core and in partition
ram_128X16_test.

NetGrp Normal/PtnAware NetCount ptnNames

1 PtnAware 87(223 tdsp_core(DTMF_INST/TDSP_CORE_INST)

2 PtnAware 42(223) ram_256x16_test(DTMF_INST/
RAM_256x16_TEST_INST)

3 PtnAware 32(223) G1(DTMF_INST/G1_PH

4 PtnAware 20(223) results_conv(DTMF_INST/RESULTS_CONV_INST)

tdsp_core(DTMF_INST/TDSP_CORE_INST)
ram_128x16_test(DTMF_INST/
RAM_128x16_TEST_INST)

5 Normal 18(223) ram_128x16_test(DTMF_INST/
RAM_128x16_TEST_INST)

6 Normal 15(223) results_conv(DTMF_INST/RESULTS_CONV_INST)

7 Normal 3(223) tdsp_core(DTMF_INST/TDSP_CORE_INST)

ram_128x16_test(DTMF_INST/
RAM_128x16_TEST_INST)

8 Normal 2(223) G1(DTMF_INST/G1_PH)
results_conv(DTMF_INST/RESULTS_CONV_INST)
tdsp_core(DTMF_INST/TDSP_CORE_INST)

9 Normal 1(223) G1(DTMF_INST/G1_PH)

tdsp_core(DTMF_INST/TDSP_CORE_INST)

10 Normal 1(223) G1(DTMF_INST/G1_PH)
results_conv(DTMF_INST/RESULTS_CONV_INST)

11 Normal 1(223) G1(DTMF_INST/G1_PH)
tdsp_core(DTMF_INST/TDSP_CORE_INST)

12 Normal 1(223) G1(DTMF_INST/G1_PH)
results_conv(DTMF_INST/RESULTS_CONV_INST)
ram_256x16_test(DTMF_INST/
RAM_256x16_TEST_INST)
ram_128x16_test(DTMF_INST/
RAM_128x16_TEST_INST
October 2010 316 Product Version 9.1.3

../fetxtcmdref/partitionT.html#ptnAwareRouteForPA

Encounter Digital Implementation System User Guide
Partitioning the Design
■ Normal/PtnAware: Indicates whether the nets of this group are routed in
partition-aware routing topology or flat routing topology.

■ NetCount: Indicates the number of nets in the corresponding net group. For example,
NetGrp 7 contains 3 nets out of a total of 223 inter-partition nets in this design.

■ ptnNames: indicates the partitions to which the nets in this group of nets connect.

Salient Points About Congestion-aware Pin Assignment

The following points apply to the behavior and usage of the congestion-aware pin assignment
feature:

■ The routing topology generated by the ptnAwareRouteForPA command should be
used only for the pin assignment flow.

■ The net groups are sorted in descending number of nets in them.

■ The net groups that have a significant number of inter-partition nets are routed in a
partition-aware manner. The remaining netgroups with fewer inter-partition nets are
routed in a manner similar to flat trialRoute.

■ There is a possibility of more DRC violations in the routing topology generated by the
ptnAwareRouteForPA command as compared to trialRoute
-handlePartitionComplex. However, for pin assignment purposes, it has little or no
impact in deciding the location of partition pins.

■ This command is suited only for channel-based designs. Also, the improvement in
quality of results of pin assignment, with respect to top channel congestion, is more
visible in case the design has thick channels.
October 2010 317 Product Version 9.1.3

../fetxtcmdref/partitionT.html#ptnAwareRouteForPA
../fetxtcmdref/partitionT.html#ptnAwareRouteForPA

Encounter Digital Implementation System User Guide
Partitioning the Design
Assigning Pins on Rectilinear Edges

Rectilinear pin assignment can recognize rectilinear edges when assigning pins. It can
support any rectilinear shape (such as L, T, and U shapes). For rectilinear boundaries created
with partition cuts, the edges are identified by starting at the lower-left-most corner, moving
clockwise to mark each edge with a direction flow, as shown in the following figure:

All the edges with the same direction flow are considered to be on the same side and have
the same user-specified pin constraints.

Right

Top

Left

Bottom

Top

Top

Start Point

Right Left
October 2010 318 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Swapping Partition Pins

1. Select two pins of the same partition.

2. With the cursor over one of the selected pins, click and hold the middle mouse button to
bring up the context pop-up menu.

3. Select Swap Pins (or use the swapPins command).

Pin Alignment

Using pinAlignment, the following command aligns A0 and A1 pins of blockB to the
reference pins of blockA:

pinAlignment -block blockB -refBlock blockA {A0 A1}

Target Block

A[0]

A[1]

A[0]

A[1]

Reference Block

Target Block

A[0]

A[1]

Reference Block

A[0]

A[1]

Before Pin Alignment After Pin Alignment
October 2010 319 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#swapPins
../fetxtcmdref/partitionT.html#pinAlignment

Encounter Digital Implementation System User Guide
Partitioning the Design
Snapping Pins to the Grid

To snap center of pins to nearest intersecting routing grid, where the horizontal and vertical
routing tracks cross, use the snapPtnPinsToTracks text command. For example, the
following command snaps center of partition ptn_xy pins to the nearest intersecting routing
grid:

snapPtnPinsToTracks ptn_yz

ptn_yz before snapPtnPinsToTracks ptn_yz after snapPtnPinsToTracks
October 2010 320 Product Version 9.1.3

../fetxtcmdref/partitionT.html#snapPtnPinsToTracks

Encounter Digital Implementation System User Guide
Partitioning the Design
Assigning Pins for Bus Guides

A bus guide helps ensure that buses are routed together over blocks and is typically used in
early floorplanning stages. For more information on the Bus Guide feature, see Chapter 10,
Bus Planning.

The use model of pin assignment for a bus guide is similar to that of a pin guide. The
assignPtnPin command supports bus guides by treating a bus guide as a pin guide that is
associated with a net group. When you assign pins for a design containing a bus guide, all
pins of the corresponding net group are placed in the specified bus guide area.

If the specified bus guide area is not large enough to cover all the net group pins, the
assignPtnPin command issues a warning message and places the maximum possible net
group pins in bus guide area. The rest of pins are placed outside the pin guide area such that
the pins stay together.

Bus guide pin assignment also supports all features of net group such as -optimizeOrder,
-alternateLayer, and non-default rules.

The check pin assignment, pin legalization and pin refinement features also support bus
guides.

Important

The bus guide feature is intended to guide partition pins and blackbox pins and not
I/O pins. The I/O pin assignment feature (assignIoPins command) does not,
therefore, take bus guides into account.

Pin Assignment Limitations

■ Does not support non-R0 orientation black box (non-R0 master black box) pin
assignment. For more information, see Handling of Blackboxes with Non-R0 Orientation
on page 280.

■ Does not assign or legalize pins on non-preferred routing layers

■ Does not assign power/ground pins. For top-down hierarchical flow, power and ground
pins will be created during the partition step. For bottom-up flow, power/ground pins
should be created at design boundary during power planning stage.

■ Partition/blackbox pin assignment may cause routing crossing. In such cases, run the
pinAlignment command to improve pin QoR (Quality of Results).
October 2010 321 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#assignIoPins

Encounter Digital Implementation System User Guide
Partitioning the Design
Inserting Feedthroughs

There are two types of feedthroughs you can use for partitions: feedthrough buffers and
routing feedthroughs. Both types offer different approaches for inserting feedthroughs.
Inserting feedthrough buffers allows a netlist change, whereas inserting routing feedthroughs
does not.

Important

Before inserting feedthroughs, you should determine what stage the design is in,
such as prototyping, intermediate, tapeout, and set the appropriate global options
by running the setMode commands, such as setPlaceMode and
setTrialRouteMode. For example, when inserting feedthroughs during
prototyping, you could set modes with the following commands:

setPlaceMode -fp
setTrialRouteMode -floorplanMode true
setExtractMode -default

You can use the insertPtnFeedthrough command (or the Insert Feedthrough Buffer
form) to insert feedthrough buffers into the partitions, and the createPtnFeedthrough
command (or the Create Physical Feedthrough form) to create a partition routing feedthrough
object. The differences between how these two commands affect the design are as follows:

■ insertPtnFeedthrough

The insertPtnFeedthrough text command inserts feedthrough buffers into the
partitions to change the partition netlists, and avoids routing nets over partition areas.
This command affects the design in the following areas:

❑ Changes both the top-level and partition-level netlists.

❑ After inserting buffers, it automatically calls ecoPlace to place these buffers close
to the partition boundary. However, insertPtnFeedthrough does not place the
feedthrough pins, which should be assigned during partitioning.

❑ Inserted buffers will be part of the partition netlists and pushed down to the partition
level during Partitioning.

❑ Wherever a net enters and exits a partition, two ports and a buffer (or two buffers
with the -doubleBuffer option) are added to the partition netlist.

❑ For nets that enter or exit a partition several times, such as a “T” shaped connection,
three ports will be created. For a cross shaped connection, four ports will be created.
October 2010 322 Product Version 9.1.3

../encounter/partitionG.html#InsertFeedthrough
../encounter/partitionG.html#CreateFeedthroughs
../fetxtcmdref/partitionT.html#insertPtnFeedthrough
../fetxtcmdref/partitionT.html#insertPtnFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design
❑ Use the Design Browser to view the newly added buffer instance and net names for
each partition. The new port names have a FE_FEEDX_.....net_name prefix.

❑ For pure channelless designs, use the -chanLess option to insert feedthrough
buffers for all nets that connect to partitions, except nets that can be connected
directly between two adjacent partitions.

❑ For mixed designs, not all nets should become feedthrough nets. To exclude certain
nets, such as clock nets or high fanout nets, use the -excludeNet option. This
option is based on the topology of the partition neighborhood relationship, so trial
routing is not required before inserting feedthrough buffers, although it could help
improve the quality of results.

❑ To specify a file that contains net names for which to insert feedthrough buffers, use
the -selectNet option. You can create this file manually, create a list of nets via a
script, or use showPtnWireX.

❑ Whether you use the -chanLess or -selectNet options, the EDI System
software does not necessarily insert a feedthrough.

❑ Feedthrough insertion is driven by connectivity when Trial Route is not run before
insertPtnFeedthrough.

❑ You can save feedthrough insertion buffer topology tree information in a file by using
the -saveTopoFile parameter. You can later use this topology tree file with
another ECO netlist and replicate the feedthrough insertions. For more information,
see “Replicating Feedthrough Insertions Across ECO Netlists” on page 331.

❑ The insertPtnFeedthrough command can detect if the design has power
domains. This way, appropriate buffers can be derived automatically from power
domain library binding to support both Always On and switchable power domains.
However, an error message is reported if no regular buffer is found for an Always
On power domain in the feedthrough path.

❑ The insertPtnFeedthrough command removes nets that are inserted with
feedthrough buffers from any net groups to which they belong. After running this
command you should, therefore, update the net groups that contain feedthrough
nets.

■ createPtnFeedthrough

The createPtnFeedthrough text command inserts routing feedthroughs into the
partitions without changing the design netlist. This command affects the design in the
following areas:

❑ Manages only the physical aspect of a partition, not the logical aspect.
October 2010 323 Product Version 9.1.3

../fetxtcmdref/partitionT.html#createPtnFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design
❑ No new ports are added to a partition and no buffers are added to the partition
netlist.

❑ For channel feedthroughs, this creates channels for over-the-block routing on
specified layers at the top-level design. These channels are pushed down as routing
blockages on the correct routing layers at the partition level during Partitioning.

❑ For placement island feedthroughs, the EDI System software reserves these areas
for inserting buffers at the top-level design after running the insertRepeater
command. These island feedthroughs will be pushed down as placement blockages
and routing blockages on all routing layers at the partition level during partitioning.

Inserting Feedthrough Buffers

Partition feedthrough insertion manages partitioned designs that have nets that need to be
pushed down to become a component of each partition design. That is, each feedthrough
buffer must be added to the partitioned design, which changes the partition’s netlist. This
approach is typically used in channelless designs and in designs with limited channel
resources.

A pure channelless design has no channel routing resource—connections among partitions
are always done by means of module abutment and pin alignment. A mixed or partially
channelless design has limited routing resource in the channels; therefore, abutment and pin
alignment is only performed on selected nets.

The following example shows how nets are selected for feedthrough buffers:

Inserting Feedback Buffers

You can insert a feedthrough buffer to a net that loops back to an original partition to avoid
the net routing over a partition area using the insertPtnFeedBackBuffer text command,
which you should run after the feedthrough insertion step.

I/O pin
net1

Partition A

net 2

IN

OUT IN

Partition B Partition C

Feedthrough Candidates
October 2010 324 Product Version 9.1.3

../fetxtcmdref/partitionT.html#insertPtnFeedBackBuffer

Encounter Digital Implementation System User Guide
Partitioning the Design
The following example shows a situation where net LoopBack connects to output pin O and
input pin I of Partition A, and input I2 of Partition C.

By inserting a feedthrough buffer (BUF1) with the insertPtnFeedthrough text
command, and inserting a feedback buffer (BUF2) with the insertPtnFeedBackBuffer
text command, LoopBack now connects to the input pins of BUF1 and BUF2, as shown in the
following figure:

Limitations

■ Each partition must be intact. A non-child instance cannot be preplaced in another
partition. This would present a top-level net connection problem.

■ Partition pin guides cannot be used during feedthrough insertion.

■ A partition design that has repeated partition modules is not supported. Exclude all nets
that connect into a repeated partition module.

■ The Unpartition program cannot remove the inserted buffers for the feedthrough nets.

■ Does not handle blackboxes.

■ It might not handle clock nets efficiently because the insertPtnFeedthrough text
command does not take timing into account.

Partition A

I2

I

Partition B Partition C

O
LoopBack

BUF1

Partition A

I2

I

Partition B Partition C

O

BUF2
October 2010 325 Product Version 9.1.3

../fetxtcmdref/partitionT.html#insertPtnFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design
■ It cannot handle nets that are connected to two or more glue logic standard cells. This
type of net should be excluded from feedthrough insertion.

■ It might not provide good quality of results for high fanout nets. You should exclude high
fanout nets and clock nets from feedthrough insertion to avoid timing and routing
problems.

Procedure

1. Design the top-level floorplan for the partition design.

2. Run Placement.

3. (Optional) Run Trial Route.

Important

Up to step 3, the flow is similar to a partition design flow. To control which nets get
buffers inserted, complete step 4. If all nets require buffering, skip step 4 and use
the insertPtnFeedthrough text command’s -chanLess option.

4. Create a file to identify which nets get buffers.

You can manually edit the file, create a script, or generate a wire crossing file (see
Generating the Wire Crossing Report on page 343).

5. Generate the feedthrough buffers and nets.

Use the insetPtnFeedthrough -chanLess command, or insetPtnFeedthrough
-selectNet with the created net file.

Note: Step 6 returns to the normal partition design flow.

6. Run Trial Route to completely connect the design, including the inserted feedthrough
buffers.

7. Run Partition to generate the partition pins and change the partition module status to
hard block.

8. Run Save Partition.

This saves the design and generates a top-level directory and partition directories.
October 2010 326 Product Version 9.1.3

../fetxtcmdref/partitionT.html#insertPtnFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design
Using a Topology File to Insert Feedthrough Buffers

You can guide the insertion of feedthrough buffers for specific nets by providing the
feedthrough topology information for those nets in a topology file. You can manually create
this file and subsequently edit it.

Note: If you are using topology files from releases prior to the 8.1 release, they will still work
with this release.

Note: The syntax is case sensitive.

The syntax of the topology information in the file is as follows.

Comment line

version version_string;

nametype netname

 fromtype-totype from_name to_name route_data=(x,x,x,x,x,x)];

 fromtype-totype from_name to_name route_data=(x,x,x,x,x,x);

.

.

.

end nametype

nametype netname

 fromtype-totype from_name to_name route_data=(x,x,x,x,x,x)];

 fromtype-totype from_name to_name route_data=(x,x,x,x,x,x);

.

.

.

end nametype

.

.

.

October 2010 327 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
The description of the syntax is as follows

nametype Can be net, bus, or netgroup. The value netgroup
represents all nets in the net group. You should update the net
group after feedthrough insertion step.

Here are some examples of nametype:

■ bus myBus[0:1] specifies bus bits

■ net myBus[0:1] specifies a scalar net.

■ bus myBus[1] specifies a bus bit

■ net mybus[1] specifies a scalar net or a bus bit. In case
both exist in the design, use the Verilog escape name and
use the dbgIsBackSlashInNamesHiddenFlag variable
to resolve correctly.
October 2010 328 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
netname Can be a net name, bus name, or a net group name. Wildcards
(* or ?) can be used for net name, bus name, or net group
name.

If more than one net group is matched with wildcard, the
insertPtnFeedthrough command will issue a warning
message and:

■ use only the first matched net group

■ ignore the other ones.

Wild cards can only be used for a bus name BUT not bus range.
Example you cannot specify bus busname[1:*].

Specifying bus entries: If a bus named databus has 32 bits
(from 0 to 31), its r bus entries are specified as follows:

■ bus databus specifies all 32 bits from 0 to 31

■ bus databus[13:23] specifies databus[13] to
databus[23]

■ bus databus[13] specifies only the bit 13 of databus

You cannot provide any net-specific entries for multiple bus bits,
net groups, or wildcard nets. Hence, bus topologies cannot be
specified for bus nets connected to top-level instance pins or to
I/O pins.

Using escape mechanism for special characters: The
following escape mechanisms remove all restrictions on
characters:

■ \\ for the backslash character (\) itself

■ \b for blank

■ \t for tab

■ \n for new line

■ \0 for null

■ \s for semicolon (semicolon (;) is the path statement
terminator).

Any other character which follows a backslash (\) is taken
literally. For example, \a is considered as a. If one wants to use
*,? literally then must use escaping as these are used for
wildcards.
October 2010 329 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
All version- and topology-statements in the topology file end with a semicolon (;). Any extra
spaces are ignored.

Here is an example of a topology file:

Note: If a net appears twice in any form, the first entry
corresponding to the net is used. The subsequent entries
generate an error.

fromtype Can have one of the following values:

■ io for I/O pins

■ hinst for hierarchical instance name of a partition or
partition clone

■ instterm for top-level instance pins

totype Can have one of the following values:

■ io for I/O pins

■ hinst for hierarchical instance name of a partition or
partition clone

■ instterm for top-level instance pins

■ hinstfb for hierarchical instance name of a partition or
partition clone. This can only be used as part of the
combination hinst-hinstfb, which specifies a feedback
buffer path.

version Version is the format version. The format version for this release
is 1.0.

If the topology file does not have the version statement then the
insertPtnFeedthrough command will parse the file as per
the format of the version prior to the 8.1 release.

route_data Optional field that specifies routing information.

This is not a user-specified field. This field is created when the
insertPtnFeedthrough command is run with the
-saveTopoFile parameter. This field is used only for ECO
purposes.

The route_data parameter is not available if the totype is
hinstfb.
October 2010 330 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
############################

version 1.0;

net net1

io-hinst net1 i_b;

hinst-instterm i_b inst_c/net1;

end net

net clk*

hinst-hinst i_a i_b;

hinst-hinst i_b i_c;

end net

netgroup group_a

hinst-hinst i_a i_b;

hinst-hinst i_b i_c;

end netgroup

bus databus[0:31]

hinst-hinst i_a i_b;

hinst-hinst i_b i_c;

end bus

############################

Replicating Feedthrough Insertions Across ECO Netlists

While performing a feedthrough insertion through the insertPtnFeedthrough command,
you can save the feedthrough buffer topology tree information in a file by specifying the
-saveTopoFile parameter as follows:

insertPtnFeedthrough -saveTopoFile TopoFileName

where TopoFileName is the name of the file in which topology information is saved.

When you run the insertPtnFeedthrough command on another ECO netlist, you can use
the saved file to replicate feedthrough buffer insertions by specifying the -topoFile
parameter as follows:

insertPtnFeedthrough -topoFile SavedTopoFileName

where SavedTopoFileName is the name of the file that was saved earlier using the
-saveTopoFile parameter.
October 2010 331 Product Version 9.1.3

../fetxtcmdref/partitionT.html#insertPtnFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design
This way, you can save a file with feedthrough buffer topology tree information and use it to
create the same feedthrough buffer insertions across multiple netlists.

The flow can be summarized as follows:

1. Import a design.

2. Perform floorplanning on the design.

3. Perform feedthrough buffer insertion and save the feedthrough buffer topology tree
information in a file (use the -saveTopoFile parameter of the
insertPtnFeedthrough command).

4. Import design with a new ECO netlist.

Note: The ECO netlist should not contain the original inserted feedthrough buffers.

5. Perform feedthrough buffer insertion with the topology file saved from step 3 (use the
-saveTopoFile parameter of the insertPtnFeedthrough command).

Note: If you use the -topoFile parameter, only those nets that are specified in the
topology file are considered for feedthrough buffer insertion.

Note: If a net does not exist in the design, it should not be in the topology file. For
example, if ECO changes remove a net, that net should be removed from the topology
file.

6. Repeat steps 4 and 5 for more ECO netlists, if required.

Reducing the Number of Buffers and Ports Added for Route-based Feedthrough
Insertions

You can use the -reduceAddedPort parameter of the insertPtnFeedthrough
command to specify that feedthrough insertion should follow the routing topology more
closely. This can help reduce the number of added ports and buffers.

The ports are created at the route crossing points. The status of the added ports is set to
Fixed. Subsequent use of Trial Route will make the routes pass through these pins.
Therefore, there is no need to create partition pin guides for these pins.

Note: The -reduceAddedPort parameter is applicable only for route-based feedthrough
insertions.

This behavior is illustrated through the following scenarios:

■ Net Connecting to Non-partition Instance Terminals in the Top-level Routing Channels:
October 2010 332 Product Version 9.1.3

../fetxtcmdref/placementT.html#addFiller

Encounter Digital Implementation System User Guide
Partitioning the Design
■ Net Connecting Through Adjoining Partition

Net Connecting to Non-partition Instance Terminals in the Top-level Routing Channels

The following diagram illustrates the improvement in feedthrough insertion where a net
connects to a non-partition instance terminals in the top-level routing channels.

Net Connecting Through Adjoining Partition

The following diagram illustrates the improvement in feedthrough insertion between partitions
where there is another partition in between.
October 2010 333 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Abbreviating Lengthy Feedthrough Net Names

You can abbreviate inserted feedthrough net names so that the net names will not extend too
long if you run the insertPtnFeedthrough or insertPtnFeedBackBuffer commands
multiple times. With the -useShortName option, you can eliminate the use of the old net
name and partition names, and instead use a running count for the new net names.

For example, if a feedthrough net reset connects two partitions tt_chiplet and
video_chiplet, the feedthrough net name is:

FE_FEEDX_NET_C__tt_chiplet_video_chiplet_reset

The net name abbreviation convention for feedthrough buffer insertion when using the
insertPtnFeedthrough -useShortName command are:

Net Names FE_FTN_n, where n is an integer

Buffer Names FE_FTB_n, where n is an integer
October 2010 334 Product Version 9.1.3

../fetxtcmdref/partitionT.html#insertPtnFeedthrough
../fetxtcmdref/partitionT.html#insertPtnFeedBackBuffer

Encounter Digital Implementation System User Guide
Partitioning the Design
The net name abbreviation convention for feedback buffer insertion when using the
insertPtnFeedBackBuffer -useShortName command are:

Highlighting the Nets for which Feedthrough Buffers Have been Inserted

Once you insert partition feedthrough buffers with the insertPtnFeedthrough command,
you can highlight these nets with the hiliteFeedthroughNets command. The highlighted
feedthrough path consists of the nets, the terms that the nets connect to, and the instances
that contain those terms.

For the hiliteFeedthroughNets command to work, the insertPtnFeedthrough
command must be run with the -netMapping parameter. The net mapping file generated
with the insertPtnFeedthrough -netMapping parameter is used by the
hiliteFeedthroughNets command to highlight the feedthrough nets.

To dehighlight the feedthrough nets, run the dehighlight command.

Utilizing Pre-defined Feedthrough Pins in Custom Macros

Some designs contain hard macros, which could, for example, be IP blocks or analog blocks.
chip-level routing might not be possible without passing over these blocks. Or, in other cases,
routing might not meet timing requirements if it detours around these blocks. To facilitate
routing these blocks might provide pre-defined feedthrough pins

You can utilize these predefined feedthroughs using the connectMacroFeedthrough
command. This command automatically connects the feedthrough pins to nets that have
wires crossing over these blocks or macros.

Use Flow

The connectMacroFeedthrough command uses the routing topology to connect the pre-
defined feedthrough nets. Therefore, the design must be placed and routed before you run
the connectMacroFeedthrough command. The use flow is as follows:

1. Import the design.

2. Floorplan the design.

Net Names FE_FB_NET_n, where n is an integer

Buffer Names FE_FB_BUF_n, where n is an integer
October 2010 335 Product Version 9.1.3

../fetxtcmdref/partitionT.html#connectMacroFeedthrough
../fetxtcmdref/partitionT.html#connectMacroFeedthrough
../fetxtcmdref/partitionT.html#connectMacroFeedthrough
../fetxtcmdref/partitionT.html#insertPtnFeedthrough
../fetxtcmdref/partitionT.html#hiliteFeedthroughNets
../fetxtcmdref/generalT.html#dehighlight
../fetxtcmdref/partitionT.html#insertPtnFeedthrough
../fetxtcmdref/partitionT.html#insertPtnFeedthrough
../fetxtcmdref/partitionT.html#hiliteFeedthroughNets
../fetxtcmdref/partitionT.html#hiliteFeedthroughNets

Encounter Digital Implementation System User Guide
Partitioning the Design
3. Perform placement.

4. Run Trial Route.

Important

At least one vertical and one horizontal routing layer must be available (that is, not
blocked) on the macro(s). Otherwise, there will be no routing over the macro(s). In
case the macro has all the layers blocked, manually remove the blockage over one
horizontal and vertical layer.

5. Connect the built-in feedthroughs through the connectMacroFeedthrough
command.

Note: Before running detailed routing, take care of the unused feedthrough input pins that
are left floating. For example, you might want to assign them to tie-high or tie-low. You can
save the list of the unused ports with the connectMacroFeedthrough -
floatingPortList command.

How the connectMacroFeedthrough Command Connects Feedthroughs

The following points illustrate the criteria for feedthrough selection and other important
features of the connectMacroFeedthrough command:

■ The connectMacroFeedthrough command considers all routing on all layers that
cross the specified custom macro boundaries.

■ The command searches for a feedthrough whose in and out pins lie on the same sides
of the macro on which the wires enter and exit the macro.

■ A feedthrough that has pins that are closer to the intersections has a higher probability
of selection. Both input and output pins are considered. Layer information is ignored
while evaluating the distance. To consider only pins within a specific distance from the
wire crossing, use the -maxSearchDistance parameter.

■ The command creates new nets and ports as required.

■ If multiple feedthrough insertions are performed, the command keeps track of the
feedthroughs already used, and does not assign such feedthroughs again.

■ The new nets (the nets that connect to feedthrough output pins) have the following
naming convention:

FE_FTM_x_netName

where x is a unique numeric identifier and netName is the name of the original net.
October 2010 336 Product Version 9.1.3

../fetxtcmdref/partitionT.html#connectMacroFeedthrough
../fetxtcmdref/partitionT.html#connectMacroFeedthrough
../fetxtcmdref/partitionT.html#connectMacroFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design
■ You can select only specific nets for or exclude specific instances or nets. You can also
specify the distance till which the command will search for a connected feedthrough. The
feedthrough connectivity is described through a mapping file, which is described in the
section Mapping File For Describing Feedthrough Connectivity on page 339.

Feedthrough Connection for Abutted Macros

For abutted custom macros, the connectMacroFeedthrough command detects the paths
formed by the abutted feedthrough pins. The EDI System software considers only the end
points of the detected paths, and picks those feedthroughs that will give good results.

The following figures show how EDI System selects the feedthroughs for insertion in the
abutted custom macros.
October 2010 337 Product Version 9.1.3

../fetxtcmdref/partitionT.html#connectMacroFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design
The following figure shows pre-defined custom feedthroughs in the design.

The following figure shows how these feedthroughs are utilized by the
connectMacroFeedthrough command. Notice the feedthrough pins, represented by

Wire crossing over macro
October 2010 338 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
yellow squares, that are added at the intersection of the macro boundary and the pre-defined
nets.

Mapping File For Describing Feedthrough Connectivity

The feedthrough connectivity is defined through a mapping file that is provided as a
parameter to the. If a mapping file is not specified with the connectMacroFeedthrough
command, EDI System assumes that a file with the name portmap in the current directory
is used by default.

The syntax of the file is as follows:

MACRO MacroName

Macro definition section

END MACRO

The definition of the macro is provided in the Macro definition section, which can
contain one or more feedthrough sections. The name of the feedthrough section is optional.
October 2010 339 Product Version 9.1.3

../fetxtcmdref/partitionT.html#connectMacroFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design
Note: The definitions for all custom macros to be used in the design should be in a single
portmap file.

The syntax of the Feedthrough section is as follows. The name of the feedthrough is optional.

Feedthrough [FeedthroughName]

Pin Section

END FEEDTHROUGH

Each Feedthrough section contains one section for the input pin and one section for the
output pin.

Note: Multi-fanout feedthrough sections are not supported.

The syntax of the pin section is as follows:

PIN PinName

END PIN

Note: All the predefined macro feedthrough pins should be floating pins.

Here is an example of a mapping file:

MACRO RAMXXX

FEEDTHROUGH feedthrough1

PIN feedthrough1_in

END PIN

PIN feedthrough1_out

END PIN

END FEEDTHROUGH

FEEDTHROUGH feedthrough2

PIN feedthrough2_in

END PIN

PIN feedthrough2_out;

END PIN

END FEEDTHROUGH

END MACRO
October 2010 340 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Limitations

The connectMacroFeedthrough command has the following limitations:

■ Multi-fanout feedthroughs are not supported.

■ Routing blockage and congestion are not considered. However, because topology is
derived from routing, this should not be a concern.

■ Bidirectional pins (INOUT) are not supported.

■ The topology is derived from the routing results. Therefore, you might need to specify
certain Trial Route options (for example, options to block or unblock certain routing
tracks) to get the desired routing results.

■ Floating module ports connected to a net are not supported because there is no routing
to the floating module ports.

■ Rectilinear hard macros are not supported.

Inserting Routing Feedthroughs

Routing feedthroughs and hole punch buffers reserve a portion of the partition area for top-
level use. Because the partition’s netlist does not change, no new ports are created for the
partition. Buffers are inserted in top-level netlist but occupy space within the partition’s fence.
Partition feedthroughs are used to indicate the top-level partition’s concession within the
partition fence.

Partition feedthroughs should be defined before running the Partition program, which
automatically generates appropriate placement and routing blockages within the partition and
in top-level view to reflect the real estate ownership scheme. For example, a routing
feedthrough with Metal6 will generate a Metal6 routing blockage for the partition, and an
opening in the Metal6 blockage in the top level.

Note: The partition feedthrough discussed in this section is a floorplan object. It affects a
partition only physically (not logically) and does not affect partition feedthrough buffer cells.
October 2010 341 Product Version 9.1.3

../fetxtcmdref/partitionT.html#connectMacroFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design
A routing feedthrough (slot) within the partition’s fence is used by the top-level partition’s
routing, and an island within the partition’s fence can be used by the top-level partition’s
placement, as shown in the following figure:

Note: Routing feedthroughs can be used without placement islands.

To create a channel-type feedthrough, use the Create Physical Feedthrough tool widget.
After adding a partition feedthrough to the design, you can use the Attribute Editor to change
its layers. The specified routing layers are reserved for top-level use, and the partition uses
the other layers. You can create an island type partition feedthrough in a similar way, but all
layers are deselected.

To insert routing feedthroughs and hole punch buffers, complete the following steps:

1. Create routing feedthroughs using one of the following methods:

Method 1: Use the Create Physical Feedthrough widget to create the feedthrough
buffer on the partition. Select the buffer and open the Attribute Editor form, specify the
metal layer, and click OK. This creates the channel for the routing on the specified layers
at the top level, and pushes down appropriate routing blockages at the block level.

Method 2: If you want to specify narrow feedthroughs or several of them on a given
partition, choose Partition – Create Physical Feedthroughs to open the Create
Physical Feedthrough form. To specify which partition you want, click on the partition in
the design display area, then click get selected. Complete the form and click OK.

2. (Optional) if you have hole punch buffers, create an island to specify where the holes are
to be punched in the partition.

To do this, use the Create Physical Feedthrough widget to create a routing blockage
and placement island, run IPO or buffer insertion to place buffers into the island, then
deselect all layers after double-clicking on the island. This creates the island for buffer
placement at the top level, and pushes down the appropriate routing and placement
blockage at the block level.

Routing
Feedthroughs
(slots)

Islands
October 2010 342 Product Version 9.1.3

../encounter/partitionG.html#CreateFeedthroughs
../encounter/partitionG.html#CreateFeedthroughs
../encounter/startingG.html#AddPartitionFeedthrough
../encounter/editG.html#ObjAttr

Encounter Digital Implementation System User Guide
Partitioning the Design
3. Run Partition.

This automatically creates routing blockages for the channel feedthroughs, and
placement blockages for the placement island, as shown in the following figure:

Generating the Wire Crossing Report

You can display and write a file of wires that physically cross over partitions using the
showPtnWireX text command or the Partition – Show Wire Crossing menu command.

The results are saved to a designName.wirecrossing file that reports nets that cross
each partition in a design. For any net that crosses more than one partition, you can use it as
a starting point for generating a list of nets for feedthrough insertion.

Tip

Edit the designName.wirecrossing file to exclude high fanout nets, clock nets,
and nets that are connected to two or more glue logic standard cells to avoid timing
and routing problems on these nets. You can use the resulting file with the
insertPtnFeedthrough text command’s -selectNet option. Note that the
EDI System software determines the buffer tree topology, so not all specified nets
will receive inserted feedthroughs. For example, nets that connect directly between
adjacent partitions are not candidates for feedthrough insertion.

Channel
Feedthrough
(layer M6)

Channel
Feedthrough
(layer M5)

Placement
Island

Routing
Obstruction
(layer M6)

Routing
Obstruction
(layer M5)

Placement
Obstruction

Partition with
Partition Feedthroughs

Committed Partition
October 2010 343 Product Version 9.1.3

../fetxtcmdref/partitionT.html#showPtnWireX
../fetxtcmdref/partitionT.html#insertPtnFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design
Interpreting the Wire Crossing Report

The wire crossing report section lists the nets, their wire lengths, in micrometers, and the
shape of the wire in relation to the partition. For example, the following report segment is for
a partition module named ptn01:

###
Nets that cross partition module ptn01
Box (335 335) (833 567)
Format: Net <netName> <wireLength> <shape>
###

Net A 65 I
Net B 80 L
Net C 1050 T
Net D 132 X
...

The first net in the report, A, has a wire length of 65 micrometers in an ‘I’ shape, which
indicates that the net crosses the partition on opposite sides, as follows:

Net A 65 I

The second net in the report, B, has a wire length of 80 micrometers in an ‘L’ shape, which
indicates that the net crosses the partition on adjacent sides, as follows:

Net B 80 L
October 2010 344 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
The third net in the report, C, has a wire length of 105 micrometers in an ‘T’ shape, which
indicates that the net crosses the partition on three sides, as follows:

Net C 105 T

The fourth net in the report, D, has a wire length of 132.30 micrometers in an ‘X’ shape, which
indicates that the net crosses the partition on all four sides, as follows:

Net D 132 X

In the report, you can also include the total length of the wire crossing the block in the
horizontal X direction and total length of the wire crossing the block in the vertical Y direction
using the -delta option of the showPtnWireX command. For example, the following report
segment is for the same partition module named ptn01 using the -delta option:

##
Nets that cross partition module ptn01
Box (335 335) (833 567)
Format: Net <netName> <wireLength> <shape> <deltaX> <deltaY>
##

Net A 65 I 0 65
Net B 80 L 38 47
...

The first net in the report, A, has a wire length of 65 micrometers in an ‘I’ shape, with a total
of 0 length in the horizontal X direction, and 65 in the vertical Y direction:
October 2010 345 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Net A 65 I 0 65

The second net in the report, B, has a wire length of 80 micrometers in an ‘L’ shape, with a
total of 38 length in the horizontal X direction, and 47 in the vertical Y direction:

Net B 80 L 38 47

In the above example, the 38 length in the X direction is calculated for the X direction net
segments (X1 + X2 + X3), and the 47 in the Y direction is calculated for the Y direction net
segments (Y1 + Y2 + Y3).

Estimating the Routing Channel Width

For committed partitions and blackboxes with assigned pins, channel width estimation uses
the current pin assignment. If partition pins are not assigned, they are placed at the lower-left
corner. In this case, the EDI System software issues a warning message because the
estimator cannot produce a good result.

For uncommitted partitions, channel width estimation runs the Partition program, assigns
pins, estimates the channel widths, and runs the Unpartition program. For blackboxes without
assigned pins, it assigns pins and estimates the channel widths.

Channel width estimation also considers topology constraints to drive block placement.
These constraints are block-to-block boundary, block-to-block distance, block order and

Net B
X1

X2

X3

Y1

Y2

Y3

Horizontal segment net length
X1 = 15
X2 = 5
X3 = 18

Vertical segment net length
Y1 = 10
Y2 = 12
Y3 = 25
October 2010 346 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
alignment, block aspect ratio, net weight (from global trialRoute), and block halo. The
channel width estimator also respects these constraints so that their top-level block floorplans
are not dramatically changed. If there is conflict between a specified constraint and the
minimum required channel spacing, the EDI System software honors the minimum required
channel spacing.

This feature produces a report containing the following information:

■ Estimated required spacing, in micrometers, between partitions, blackboxes, and hard
macros.

■ Estimated required spacing surrounding each partition based on its pins (the relative
distance between partition blocks required for top-level routing).

■ Estimated distance between blocks and core boundaries (top, bottom, left, right).

The following figure shows an example of how the channel estimation report relates to the
design:

Hard MacroPartition Blackbox

Block1 Block2 Current Required

bot-boundaryINST124.6 28.8
bot-boundaryINST254.3 46.9
bot-boundaryHB225.0 31.2
lft-boundaryINST138.2 45.5
lft-boundaryINST343.2 37.8
lft-boundaryHB146.8 33.5
INST1 INST3 64.8 39.4
INST1 INST2 72.1 55.7
HB1 top-boundary57.2 10.9
HB1 BB1 44.5 69.1
INST4 top-boundary59.5 51.7
INST4 rht-boundary53.0 50.5
...
...

HB1

HB2

INST3

INST1
INST2

INST3BB1
October 2010 347 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Running the Partition Program

The Partition program creates the partitions in the top-level design. This changes the
module’s status from a fence to a block and generates pins if routing data exists from running
Trial Route. When the Partition program is run, the Trial Route data is deleted because the
current placement and route data are not suitable for further work at the top level. The
partition pin guide (floorplan) object can be used to determine the location of the pins, and
nets or buses will be assigned to the partition pin guide objects.

If the partitions are changed, then the placement and Trial Route programs must be rerun. To
change the status of the partition from being a hard block, you must run Unpartition to flatten
the partition.

Important

After you run the Partition program and save the partition data, you should exit the
session and start a new session for the top-level design and for each partition in their
newly created UNIX directories.

Note: Running the Partition program creates a blockage on an OVERLAP layer even though
the OVERLAP layer is not defined in the technology section of the LEF file. As a result, the
partition LEF file cannot be loaded into either the EDI System software or any standalone
tools. If your design has rectilinear partitions or feedthroughs, the OVERLAP layer must be
defined in the technology section of the LEF file.

Important

If a partitioned design is unpartitioned and then partitioned again, it will lose the
original routing and timing information. The routing and timing information are not
preserved during the unpartition-partition process.

To restore the timing information, Save your routing data before partitioning. If you
unpartition later, run the restoreRoute text command to get the routing information,
then run extractRC, and then buildTimingGraph, to restore timing information.

Important

To preserve the existing power/ground pins during partitioning and create additional
pins based on the power structure that crosses partitions in the floorplan, use the
partition command with the -keepPGPin parameter.

You can save the partition data in an OpenAccess database. For more information, see
Working with OpenAccess Database on page 369.
October 2010 348 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition

Encounter Digital Implementation System User Guide
Partitioning the Design
Creating a Top-Level Partition

1. Run the Partition program.

2. Run Trial Route on the top-level partition.

3. Check for routing congestion.

If there is no congestion, you are done. If there is congestion, continue to step 4.

4. Run the Unpartition program and add more routing resources to the congested area.

5. Rerun the Partition program.

Repeat steps 1 – 5 until there is no routing congestion.

Block-Level Partition

To create a block-level partition, complete the following steps:

1. Run the Partition program.

2. Check to see if each partition size is suitable.

If it is, you are done. If it is not, continue to step 3:

3. Run the Unpartition program.

4. Increase the size of the block.

5. Rerun the Partition program.

Continue with the steps above until you have reached suitable partition sizes.

Pushing Down Signal Routes

During partition program, you can use the -pushRoute parameter of the partition
command to push down signal routes to the respective partitions.

Important

Before running the partition -pushRoute command, you can check the
hierarchy violations for nets on the partitions with the checkHierRoute command.

Here’s the pushdown behavior with the -pushRoute parameter of the partition
command:
October 2010 349 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#checkHierRoute

Encounter Digital Implementation System User Guide
Partitioning the Design
■ The following routes are pushed down:

❑ Intra-partition nets routed completely within the routed boundary.

❑ Inter-partition nets that cross the partition boundary only once and that pass
through the partition pin location.

■ Top nets that are routed completely in the top channels are retained at the top

■ All other nets are deleted.

For nets that have a hierarchy violation, only the wire segments that have a hierarchy violation
on the nets are discarded. The other wire segments are retained.

How Top-level Stripes Are Pushed Down

This section explains how stripes on the top level are pushed down into the partition when
you run the partitioning program. The following scenarios are discussed:

■ The Default Behavior on page 350

■ Behavior with the -stripStayOnTop Option on page 351

The Default Behavior

The following table summarizes the default behavior.

Stripe Position How Stripe Is Pushed Down

Stripe is completely
inside partition
boundary

■ Top-level: The stripe is removed from the top.

■ Block-level: The stripe is pushed down as two pins and one
stripe.

■ Block Abstract:

❑ On layers reserved for partition, two pins are created on
the boundary.

❑ On layers not reserved for partition, one big LEF pin is
created.
October 2010 350 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Behavior with the -stripStayOnTop Option

The -stripStayOnTop parameter in the partition command specifies that stripes that
are not on a layer reserved by the partition are retained at the top level and are also copied
into the partition. The following table explains how the stripes on the top level are pushed
down to the partition when you run the partitioning program with the -stripStayOnTop
parameter.

Stripe is partially inside
partition boundary.

■ Top-level: The stripe is retained at the top.

■ Block-level: The stripe is pushed down as two pins and one
stripe.

■ Block Abstract: The stripe is pushed down as a big LEF pin.

Stripe is outside but
close to partition
boundary

■ Top-level: The stripe is retained at the top.

■ Block-level: The stripe is retained at the top and is copied as
a routing blockage (same size as stripe) with a
+PUSHDOWN attribute.

■ Block-abstract: No effect.

Stripe Position How Stripe Is Pushed Down
October 2010 351 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition

Encounter Digital Implementation System User Guide
Partitioning the Design
Stripe Position How Stripes Are Pushed Down

Stripe completely inside
partition boundary

■ Top-level:

❑ On layers not reserved for partition, the stripe is retained
at the top and is copied to the block-level design.

❑ On layers reserved for partition, the stripe is pushed
down to the block-level design.

■ Block-level:

❑ On layers not reserved for partition, the stripe is retained
at the top and is copied as two pins and one stripe.

❑ On layers reserved for partition, the stripe is pushed
down as two pins and one stripe.

■ Block Abstract:

❑ On layers not reserved for partition, two pins are created
at the edges.

❑ On layers reserved for partition except the topmost layer,
two pins are created at the edges.

❑ On the topmost layer reserved for partition, one big LEF
pin is created.

Stripe is partially inside
Partition boundary.

■ Top-level: The stripe is retained on the top and is copied to
the block-level design.

■ Block-level: The stripe is retained at the top and is copied as
two pins and one stripe.

■ Block Abstract: The stripe is retained at the top and is copied
as a big LEF pin.

Stripe is outside but
close to boundary

■ Top-level: Stripe is retained at the top.

■ Block-level: Stripe is retained at the top and is copied as a
routing blockage (same size as wire) with a +PUSHDOWN
attribute.

■ Block-abstract: No effect.
October 2010 352 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
How Bumps, Routes, and Area I/O Cells Are Affected

This section illustrates how bumps and routes are handled when the design uses hierarchical
partitioning with flip chip RDL routing and 45-degree routes. This information pertains to the
partition command.

Note: In the releases of EDI System prior to 6.1, the area I/O cells had to be part of the
top-level netlist; otherwise, DRC violations were reported during block implementation. From
the 6.1 release onwards, the area I/O cells can be at the top level or be a part of the partition
netlist. This section describes the behavior for both the cases.

After the partition, LEF obstruction is cut against the overlapping bumps at the top. This is
done for all the bumps (power/gnd/signal/unused). Similarly the routing blockages inside the
partition is cut against the pushed down bump.

The following scenarios are discussed:

■ Area I/O Cells are Part of the Top-level Netlist

■ Area I/O Cells are Part of the Partition Netlist:

❑ Bumps and Routing are on Top Routing Layer—Behavior with the stripStayOnTop
parameter

❑ Bumps and Routing are on Reserved Routing Layer—Behavior with the
stripStayOnTop parameter

❑ Bumps and Routing are on Top Routing Layer—Default Behavior

❑ Bumps and Routing are on Reserved Routing Layer—Default Behavior)

Area I/O Cells are Part of the Top-level Netlist

When area I/O cells are part of the top-level netlist, signal bumps and routes remain bumps
and wires at the top level, but become routing blockages at the partition level. This allows
routing at the block level while preserving the space for the signal bumps and routes.
October 2010 353 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition

Encounter Digital Implementation System User Guide
Partitioning the Design
Power and ground bumps and routes are copied and pasted (duplicated) from the top level to
the partition. This allows power analysis at the block level. When the design is flattened, the
duplicate power and ground bumps and routes are removed from the block level.

Area I/O Cells are Part of the Partition Netlist

When area I/O cells are part of the partition netlist, the pushdown behavior depends on:

■ whether the stripStayOnTop parameter has been specified with the partition
command.

■ whether the bumps and routing are on the top routing layer or the reserved routing layer

Important

In this case (that is, area I/O cells are part of the partition netlist), the behavior
applicable to area I/O cells is also applicable to any other instance to which the bump
is logically connected.

If the area I/O cell and the bump connection pass through a partition pin, the pin will not be
assigned when you assign partition pins. These partition pins are assigned only when you
run the partition command. If the bump overlaps the partition, a partition pin is created,
with a geometry similar to that of the bump. If the bump does not overlap the partition, the pin
is created during special route pushdown. The pin is created on the partition boundary where
the routes between the bump and the area I/O cross the partition boundary.

For floating partition pins that are connected to a bump, the assignPtnPin command will
check if the bump physically overlaps with the partition. If so, the command will not assign the
pin and a partition pin is created, with a geometry similar to that of the bump, only when the
partition command is run. Otherwise, the pin is assigned on the partition boundary by
assignPtnPin command.

Top Level Partition Level

Area I/O cell Area I/O cell Placement and Routing
Blockage

Signal bump Signal bump Placement and Routing
Blockage

Signal route Signal Route Routing blockage

Power and ground bump Bump Bump (copied and pasted)

Power and ground route Route Route (copied and pasted)
October 2010 354 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#assignPtnPin

Encounter Digital Implementation System User Guide
Partitioning the Design
The following sections discuss the behavior for the following cases:

■ Bumps and Routing are on Top Routing Layer—Behavior with the stripStayOnTop
parameter

■ Bumps and Routing are on Reserved Routing Layer—Behavior with the stripStayOnTop
parameter

■ Bumps and Routing are on Top Routing Layer—Default Behavior

■ Bumps and Routing are on Reserved Routing Layer—Default Behavior

Note: For all the listed scenarios, the push down behavior for signal routes is similar to the
behavior described in the How Top-level Stripes Are Pushed Down on page 350.

Bumps and Routing are on Top Routing Layer—Behavior with the stripStayOnTop
parameter

The following table summarizes the behavior when the bumps and the routing are on the top
routing layer and you run the partition command with the -stripStayOnTop parameter.

Object Type Top Level Partition Level

Area I/O cell An pin equivalent pin to the area
I/O pin is created in the partition
LEF file. This pin has the same
size, location, and metal layer as
the area I/O pin.

Area I/O cell is retained in the
partition netlist
October 2010 355 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition

Encounter Digital Implementation System User Guide
Partitioning the Design
Signal bump Signal bump stays on top and,
additionally, an equivalent pin is
created in the partition LEF file.

■ If the bump overlaps fully
or partially with the
partition, and connects to
the partition:

An equivalent pin for the
signal bump is created in
the partition LEF file.
This pin has the same
size, location, and metal
layer as the bump.

■ If the bump overlaps with
the partition but is not
connected to the
partition:

The signal bump is
pushed down as a
routing blockage.

Object Type Top Level Partition Level
October 2010 356 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Signal Routes Signal Routes routed on the top
routing layers stays at top.

■ If the signal route
overlaps the partition
and is also connected to
a area I/O cell inside the
overlapping partition and
a signal bump at the top,
the signal route is copied
and pasted to the
partition. The pushed
down net will be the
internal net in the
partition and will be
named based on the
partition port it is
connected to inside the
partition.

■ If the signal route
overlaps the partition to
which it is not connected
(that is, it is not
connected to any
instance inside the
partition but to a bump at
top), these routes are
copied and pasted as
routing blockages inside
the overlapping partition.

Object Type Top Level Partition Level
October 2010 357 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Bumps and Routing are on Reserved Routing Layer—Behavior with the
stripStayOnTop parameter

The following table summarizes the behavior when the bumps and the routing are on the
reserved routing layer and you run the partition command with the
-stripStayOnTop parameter.

Bumps and Routing are on Top Routing Layer—Default Behavior

The following table summarizes the default behavior when the bumps and the routing are on
the top routing layer. The default behavior in this context refers to the behavior that occurs
when you run the partition command without the -stripStayOnTop parameter.

Object Type Top Level Partition Level

Area I/O cell Not applicable
because area I/O
cell is already part
of the partition
netlist.

Area I/O cell is retained in
the partition netlist.

Signal bump Signal bump stays
on top and,
additionally, an
equivalent pin is
created in the
partition LEF file.

Bumps get pushed down to
the partition as an
equivalent pin in the
partition DEF file.

Signal route Signal routes are
removed from the
top.

Routing gets pushed down
inside the partition block

Object Type Top Level Partition Level

Area I/O cell Not applicable
because area I/O
cell is already part
of the partition
netlist.

Area I/O cell is retained in
the partition netlist
October 2010 358 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#partition

Encounter Digital Implementation System User Guide
Partitioning the Design
Bumps and Routing are on Reserved Routing Layer—Default Behavior

The following table summarizes the default behavior when the bumps and the routing are on
the reserved routing layer.

Signal bump Bump Stays at
Top. An additional
Bump pin is
created in
partition LEF file.

Bumps get pushed down
inside the partition block as
an equivalent pin in
partition DEF file.

Signal route Signal routes are
removed from the
top.

Routing gets pushed down
inside the partition block

The routes on top routing
layer are cut from the top
and pasted inside the
partition. For details, please
refer to How Top-level
Stripes Are Pushed Down
on page 350.

Object Type Top Level Partition Level

Area I/O cell Not applicable. Area I/O cell is retained in
the partition netlist

Signal bump Signal bump stays
at top. An additional
bump pin is created
in the partition LEF
file.

Bumps get copied down
inside the partition block as
a pin.

Signal route Signal routes are
removed from the
top.

Routing gets pushed down
inside the partition block.

Object Type Top Level Partition Level
October 2010 359 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Limitations

■ The pushdown of the signal bumps as an equivalent pin inside the partition is not
supported for the non-rectangular shapes of the bump cell.

■ If the pushed down area I/O cell has pin shapes on the top routing layers, the blockages
created on the top routing layers are not cut against these component pins.

■ If the signal routes are pushed down to the partition, any routes that do not overlap with
the partition but lie close enough to the partition boundary and may thus result in spacing
violations at chip assembly, will be pushed down as blockage inside the partition. This
may result in some blockages being pushed down to the partition but outside the partition
box.

The following examples illustrate the behavior:

■ Case 1: All Routing Layers Reserved for the Partition

■ Case 2: Top Layer Not Reserved for Routing

Case 1: All Routing Layers Reserved for the Partition

The design has six routing layers. All the layers are reserved for the partition. Signal Bump
SM is connected to area I/O cell inside the partition.

The following diagram shows the floorplan view before partitioning.
October 2010 360 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
The following figure shows the view at top after partitioning.

The following figure shows the view inside the partition
October 2010 361 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Case 2: Top Layer Not Reserved for Routing

The design has six routing layers. Layers M1-M5 are reserved for the partition. M6 is the top
routing layer.

The following diagram shows the floorplan view before partitioning.

The following diagram shows the view at the top after partitioning with the
-stripStayOnTop parameter specified.
October 2010 362 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
The following figure shows the view on the top after partitioning with the pins visible.

The following figure shows the view on the top after partitioning without the
-stripStayOnTop parameter specified.
October 2010 363 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
The following figure shows the view on the top after partitioning with visible routing blockages
on layer M6.

The following figure shows the view inside partition with the display of the routing blockages
turned off

Note:
October 2010 364 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Restoring the Top-Level Floorplan with Partition Data

1. Import the entire design from the top-level directory that was created or updated when
you saved the partition.

If any portion of the design (top level or any partition) was changed by running scan
optimization, CTS, or IPO, the changed netlist of the entire design is imported, not the
original netlist. This changed netlist is usually created by concatenating each of the
partition netlists to the top-level netlist. To do this, use a text editor to manually edit it, or
use the Design Import form to create a single Verilog netlist of the entire design (see
“Concatenating Netlist Files of a Partitioned Design” on page 366).

Important

If a tool changes the partition netlist, you must update the full chip netlist. Some
routers, such as NanoRoute™, might modify the partition netlist. The EDI System
software requires that the full chip netlist, loaded during Design Import, be
consistent with the routed partition netlist.

2. Load the top-level floorplan used to partition the entire design.

3. Set the Partition forms with Perform Pin Assignment deselected and partition the
design.

4. Load the top-level placement data from the top-level directory.

5. Choose File – Load – Partition.

This opens the Load Partition form.

6. In the Load Partition form, enter the directory name where the partition data was saved.

7. Click OK.

Tip

In place of steps 5, 6, and 7, you can use the setTopCell command to restore the
partition and top-level data for the entire design. This is especially useful for
restoring placement data from a DEF or TDF file.

Note: To perform a full chip analysis or a timing budget refinement analysis, use the
Unpartition form to flatten the design.
October 2010 365 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Concatenating Netlist Files of a Partitioned Design

To create a single Verilog netlist of the entire design, including the top level and all the
partitions, complete the following steps:

1. Start a new EDI System session.

2. Choose File – Import Design to open the Design Import form, and click the Basic tab
if it is not selected.

3. In the Verilog Files field, enter each netlist filename in the order from top-level netlist
followed by the partition netlist files.

Note: The partition netlist are read from each of the partition’s work directories.

4. Click OK.

5. Choose File – Save – Netlist to open the Save Netlist form.

6. Enter a Verilog file netlist name in the Netlist File field.

7. Click OK.

8. Use the saved Verilog file to restore the top-level floorplan with partition data (see
“Restoring the Top-Level Floorplan with Partition Data” on page 365).
October 2010 366 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Saving Partitions

You can save partition results, including the top-level partition, to their own subdirectories so
that each partition can be worked on concurrently. Each partition directory contains all files
necessary to run the EDI System software. Files necessary to run back-end tools in DEF,
PDEF, and TDF formats can be selected when saving partitions.

To save a partition, use the Save Partition form or the savePartition text command.

Caution

Do not use the Save Design form to save a partition.

You can also save partitions in the OpenAccess database format. For more information, see
Working with OpenAccess Database on page 369

Loading Partitions

After completing the design work for each partition and the top level, you can restore a
partitioned design to the top level, which includes loading all the partition design directories
and its data.

To restore a saved partition design, use the Load Partition form.

Unpartitioning with Routing Data

When loading a partition, it is important that the loaded routing results correctly correspond
to the new netlist. To ensure that the netlist and routing file are consistent, you need to
unpartition with the routing data using the following steps:

1. Load the original flat design.

This is the original design before running the partition steps.

2. Specify the partition and save to a file (to be loaded later in step 7).

3. Run partitioning with pin assignment.

4. Save the partitions and the top level.

5. For each partition and the top-level, run the block-level implementation with the following
commands:

❑ encounter
October 2010 367 Product Version 9.1.3

../encounter/designG.html#SavePartition
../fetxtcmdref/partitionT.html#savePartition
../encounter/designG.html#LoadPartition

Encounter Digital Implementation System User Guide
Partitioning the Design
❑ restoreDesign (for the block or top level)

❑ trialRoute or nanoroute or wroute

❑ saveRoute

6. Load the original design (the same design loaded in step 1).

If the netlist has been modified after step 1 (for example, in the case where a netlist is
modified after in-place optimization or running NanoRoute) use the updated netlist
instead.

To specify the updated netlist, you must first specify top-level netlist, then the block-level
netlists in the Verilog Files field of the Design Import form’s Design page. For example,
top.v block1.v block2.v ...

Important

The netlist and routing must be consistent when loading a partition with routing data,
be sure you load the design with floorplanning, placement, and routing data that is
consistent with the data saved in step 4.

7. Load the partition file (specified in step 2).

8. Run partitioning without pin assignment.

9. Load the partition data.

For each partition, select the partition, then change the partition view (using the
Partition – Change Partition View menu command) and load all the data for the
viewed partition. You can use either the DEF file, or the .fp, .place and .route files.

10. Reset the view back to the top level (using the Partition – Change Partition View menu
command).

11. Load the top-level data.

You can read in the top-level physical information by either using the DEF file or the
placement (.place) and routing (.route) file. You must not read in the floorplan (.fp) file
again because the floorplan information was already read in at the very beginning.

Note: Top-level physical information can only be loaded using DEF.

12. Unpartition the design (flattenPartition).
October 2010 368 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design
Working with OpenAccess Database

You can save and load designs using the OpenAccess database. The following commands
and parameters are used for OpenAccess database designs.

■ The savePartition command can save files in OpenAccess database format:

❑ -oaPtnLib

Specifies an OpenAccess directory library name where the top-level and the block-level
designs will be saved.

❑ -oaPtnView

Specifies a view name for the top view and the partition view.

❑ -refLibs

Specifies a list of reference libraries.

■ The assembleDesign command supports assembling the saved OpenAccess format
files.

❑ -topDesign

Specifies the top-level name.

❑ -block

Specifies the block names.

■ The updateBlock command can bring back block information from OpenAccess
database files.

❑ -topDesign

Specifies the top-level name.

❑ -block

Specifies the block names.

The general flow for designs that use an OpenAccess database is the same as described
throughout this chapter.

The following command saves the partition information/files in the OpenAccess database
format. The information for the top and the block level designs (all blocks) will be written in the
libForOA directory view with the view name ptnView1.

savePartition -oaPtnLib libForOA -oaPtnView ptnView1
October 2010 369 Product Version 9.1.3

../fetxtcmdref/partitionT.html#savePartition
../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#updateBlock

Encounter Digital Implementation System User Guide
Partitioning the Design
The following command assembles the design after bringing back information from the
top-level cell DTMF and block-level cells TDSP_CORE and TDSP_ARB.

assembleDesign -topDesign libForOA DTMF ptnView1 -block libForOA TDSP_CORE ptnView1
-block libForOA TDSP_ARB ptnView1

For ECO flow, the updateBlock command can be used to bring back the information from
the top- and block level-cells. Here is an example:

updateBlock -topDesign libForOA DTMF ptnView1 -block libForOA TDSP_CORE ptnView1
-block libForOA TDSP_ARB ptnView1 -all

Parallel Job Processing

With parallel processing, you can distribute jobs using a remote shell (rsh) or load sharing
facility (LSF), specify host names for running jobs, and specify job information, such as block
working directories and their run scripts.

The following procedure provides the most common steps for parallel job processing:

1. Import the design.

2. Floorplan the design.

3. Assign pins.

4. Run Timing Budgeting.

5. Partition the design.

6. Save the partition

7. Run parallel job processing to implement the blocks.

For more information, see:

■ Set Multiple CPU Usage in the “Options Menu” chapter of the Encounter Digital
Implementation System Menu Reference.
October 2010 370 Product Version 9.1.3

../fetxtcmdref/partitionT.html#updateBlock
../encounter/optionsG.html#MultipleCPUProcessing

Encounter Digital Implementation System User Guide
13
Floorplanning the Design

■ Overview on page 372

■ Common Floorplanning Sequence on page 373

■ Viewing the Floorplan on page 374

■ Module Constraint Types on page 377

■ Grouping Instances on page 383

■ Creating and Editing Rows on page 390

■ Using Vertical Rows on page 390

■ Using Multiple-height Rows on page 392

■ Performing I/O Row Based Pad Placement on page 403

■ Resizing Rectilinear Blocks on page 408

■ Using Blackblobs on page 411

■ Editing Pins on page 428

■ Running Relative Floorplanning on page 439

■ Saving and Loading Floorplan Data on page 442

■ Resizing the Floorplan on page 443
October 2010 371 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Overview

Floorplanning a chip or block is an important task of physical design in which the location,
size, and shape of soft modules, and the placement of hard macros are decided. Depending
on the design style or purpose, floorplanning can also include row creation, I/O pad or pin
placement, bump assignment (flip chip), bus planning, power planning, and more. For
example, floorplanning is very important when preparing the design for timing closure and
detailed routing. Floorplanning, in conjunction with placement and trial routing, can be an
iterative design process.

The Encounter Digital Implementation System (EDI System) software provides a rich set of
commands and GUI functions to floorplan your design interactively. There are also
commands for creating an initial floorplan automatically, or, resize a finished floorplan while
keeping relative placement of objects.

■ For information on floorplan commands, see the Floorplan Commands chapter, in the
Encounter Digital Implementation System Text Command Reference.

■ For information on floorplan GUI, see the Floorplan Menu chapter, in the Encounter
Digital Implementation System Menu Reference.

EDI System includes several keyboard shortcuts for use with the floorplanning feature. Make
sure you type the bindkey while the main EDI System window is active and the cursor is in
the design display area. The Binding Key form contains a complete list of bindkeys. To display
this form, select Options – Set Preference from the EDI System menu, then click the
Binding Key button on the Design tab of the Preferences form, or use the default b binding
key.
October 2010 372 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#firstpage
../encounter/floorplanG.html#firstpage
../encounter/optionsG.html#BindingKey

Encounter Digital Implementation System User Guide
Floorplanning the Design
Common Floorplanning Sequence

Floorplanning usually starts by preplacing blocks, modules, and submodules according to the
prepared floorplan. All other modules or blocks not in the prepared floorplan are left outside
the chip area.

The following steps describe the most common sequence for floorplanning:

1. Importing the design.

2. Studying the design’s connectivity.

3. Performing the minimum amount of floorplanning based on the chip design floorplan, or
do no floorplanning at all.

4. In some cases, no floorplanning is required. For example, a front-end designer might
want to predict the quality of the design’s netlist by initially placing the entire design
without any floorplanning. This iteration provides a good indication of how the blocks
should be located and arranged together with the larger modules. After a few iterations,
it should be clear how to position the blocks and modules in the floorplan.

5. Running placement and Trial Route to view placement and routing congestion.

Optionally, running resize floorplan to enlarge or shrink the die after placement and
routing. See Resizing the Floorplan on page 443.

6. In this case, floorplanning is done to detail the pre-placement of all blocks, most likely
done by a back-end designer to gauge the feasibility of a prepared floorplan.

7. The placer places all remaining blocks that were not preplaced in the floorplan, and also
recognizes the floorplan object, such as power and ground routes.

8. If you are at the design’s top-level in the display area and want to generate a guide for a
submodule, ungroup the top module until you have reached the submodule.

9. Using the full chip placement to refine block (hard macro and blackbox) locations.

(Optional) Based on the full chip placement results—placement density and routing
congestion, running resize floorplan to enlarge or shrink the die.

10. View the placements of blocks to determine if you need to change the alignment or
orientations.

11. Looking for congestion in modules and change heavily congested modules’ placement
density to a lower percentage (using the createDensityArea text command).

12. (Optional) If you made any changes in step 5, or especially step 6, rerun placement.
October 2010 373 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#createDensityArea

Encounter Digital Implementation System User Guide
Floorplanning the Design
Important

To place macros that were not pre-placed during floorplanning, it is recommended
that you run planDesign first and set the status ‘fixed’, before proceeding to
placeDesign. This is because, placeDesign may not be able to place unfixed
hard macros optimally.

Viewing the Floorplan

In the design display area, the objects to the left of the core area are the top-level modules,
which can be moved and reshaped. The objects to the right of the chip area are the blocks,
which can be moved but not reshaped.

Use the G key (ungroup), or click the Hierarchy Down icon, to display the submodules for a
selected module guide. Each time you use the G key, you move further down the hierarchy.
Use the g key (group), or click the Hierarchy Up icon, to move up the hierarchy.

Modules Core Area Blocks
October 2010 374 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#planDesign
../fetxtcmdref/placementT.html#placeDesign
../fetxtcmdref/placementT.html#placeDesign

Encounter Digital Implementation System User Guide
Floorplanning the Design
In Floorplan view, you can view the block pins and connection flight lines by clicking on a block
or module. Flight lines show the connections and number of connections between the
selected module or block to any other modules and blocks.

The pins for blocks are displayed where the flight lines terminate to help you orient the blocks
so that the block pins face in the direction that best reduces routing congestion.

To set options for displaying flight lines in the design, select Options – Set Preference from
the EDI System menu, then click the Flightline tab on the Preferences form in the GUI.

Number of Connections
October 2010 375 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
You can change the die or core size; the margins between the core box and I/O pad instances;
and the individual die (head), I/O, or core box sizes. These boxes are shown in the following
figure.

You can move module or instance groups outside the core area.

Core Box (Chip Area)

IO Box

Die (Head) Box
October 2010 376 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Module Constraint Types

The entire design size is initially calculated during design import, and each module size is
calculated. The size of the modules are determined by either the core utilization or the core
width and height specifications. The imported design modules can have one of the following
constraint types:

■ None—The module is not pre-placed in the core design area. The contents of the module
are placed without any constraints.

■ Guide—The module is preplaced in the core design area.

A module guide represents the logical module structure of the netlist. The purpose of a
module guide is to guide placement to place the cells of the module in the vicinity of the
guide’s location. The preplaced guide is a soft constraint, which is discussed later in this
section. After the design is imported, but before floorplanning, you can locate module
guides on the left side of the core area, which appear as pink objects (by default) in the
Floorplan view.

When a module is preplaced in the core design area, it snaps to a standard cell row in
the vertical direction and to a metal 2 pitch in the horizontal direction (the default). This
default can be changed to snap to the manufacture grid (in the Preferences form’s
Floorplan page).

To create a guide for a module, or a group that contains hierarchical instances, instances
(leaf instance), or other groups, use the createGuide command or select Guide from
the Attribute Editor’s Constraint Type pulldown menu.

■ Fence—The module is a hard constraint in the core design area.

After specifying a hierarchical instance as a partition, the constraint type status of a
module guide is automatically changed to a fence.

The physical outline of a fence module is rigid, and the design for the module is self-
contained within the rigid outline. Only child instances must be contained within the
partition physical outline; non-child blocks or modules that do not belong to the partition
are excluded, and should not be pre-placed within another partition. This restriction is a
hard restriction for third party back-end tools where the placement file for a partition does
not match the partition netlist.

To create a fence for a module, or a group that contains hierarchical instances, instances
(leaf instance), or other groups, use the createFence command or select Fence from
the Attribute Editor’s Constraint Type pulldown menu.

Note: Fence groups can potentially cause overlaps that cannot be corrected because
the EDI System software cannot move the cells out of the group.
October 2010 377 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#createGuide
../fetxtcmdref/floorplanT.html#createFence

Encounter Digital Implementation System User Guide
Floorplanning the Design
■ Region—This constraint is the same as a fence constraint except that instances from
other modules can be placed within its physical outline by placement. A module guide is
changed to a status of Region when preplaced in the core design area.

To create a region for a module, or a group that contains hierarchical instances, instances
(leaf instance), or other groups, use the createRegion command or select Region
from the Attribute Editor’s Constraint Type pulldown menu.

Note: Region groups can potentially cause overlaps that cannot be corrected because
the EDI System software cannot move the cells out of the group.

■ Soft Guide—This constraint is similar to a guide constraint except there are no fixed
locations. This provides stronger grouping for the instances under the same soft guide.
The soft guide constraint is not as restrictive as a fence or a region constraint, so some
instances might be placed further away if they have connections to other modules.

To create a soft guide for a module, or a group that contains hierarchical instances,
instances (leaf instance), or other groups, select SoftGuide from the Attribute Editor’s
Constraint Type pulldown menu.

Target Utilization Display

Module constraints display a target utilization (TU=%) value to represent their physical design
size. This is an estimation of module utilization for the given size of the module where only
standard cell and hard macro areas are considered; floorplan constraints, such as placement
blockages, are not considered. This value is calculated by the standard cells area plus the
hard macros area, divided by the module area. The initial TU values are calculated during
design import.

The TU percentage helps judge the physical size of a module guide to customize the shape
of the module in the floorplan. For example, modules SH19 and SH7 have a TU values of
October 2010 378 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#createRegion

Encounter Digital Implementation System User Guide
Floorplanning the Design
77.2%. If the modules are reshaped with the same area, they retain their TU values, as shown
in the following figure:

You can place them in the core area so they are preplaced close to one another, as shown in
the following figure:

The position of the module guide is a placement constraint, and the final definition of the
module is determined by several factors. The most important factor—the highest priority of

TU=77.2%

SH19

SH19

TU=77.2%reshape

TU=77.2%

SH7

reshape
TU=77.2%

SH7

SH7

SH19

Block Block
October 2010 379 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
constraint—is the connectivity between itself and other modules. Other floorplan constraints,
such as neighboring preplaced module guides, preplaced blocks, placement blockages, and
routing blockages, are also considered, but at a lower priority than connectivity.

Note: You can use a stronger constraint for keeping modules SH19 and SH7 close together
using the Group Instances form, and even a stronger constraint by saving the regrouped
netlist.

Unlike module guides, the positions of fences and regions is a hard placement constraint and
are not moved by the same factors.

Effective Utilization Display

For fences and regions, you can display the effective utilization (EU=%) value. The EU value
takes into account the actual cells and hard macros in the fence or region, placement or
routing blockages, partition cuts, and other floorplan constraints. It is a good practice to
update the EU value before running placement.

Click the Display/Calculate Effective Utilization toolbar widget (the % button above the
design display area) to display the EU value for each fence and region, as shown in the
following figure.

Note: The displayed EU values are not automatically updated. You must click the Display/
Calculate Effective Utilization toolbar widget each time you want to display the updated
EU value. This calculation could be time consuming, especially for larger designs.

Note: If the EU value is at or exceeds 100% for a fence or region, placement changes the
fence or region to a guide. To avoid this, before you run placement, make sure to check and
update the EU value, if necessary.

TU=77.2% EU=84.7%

SH19
October 2010 380 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Calculating Density

When specifying the floorplan, you can determine the core and module sizes by total density
or standard cell density using the Core Utilization or Std. Utilization options, respectively,
in the Specify Floorplan form.

Core Utilization determines the initial size of the core area and the initial size of the pink
module guides off to the left of the die area. The total density is calculated as follows:

Core Size = (standard cell area/core utilization) + (macro area + halo)

In determining the size of the core area and module guides, standard cells and hard macros
are treated the same. However, you can determine how densely objects can be packed by
weighing the standard cell density separately from the hard macro density. The standard cell
density is calculated as follows:

Core Size = (standard cell area /standard cell utilization) + (macro area + halo)

The size of the core is smaller once you specified your floorplan by using Std. Utilization.
October 2010 381 Product Version 9.1.3

../encounter/floorplanG.html#SpecifyFP

Encounter Digital Implementation System User Guide
Floorplanning the Design
Standard Row Spacing

To configure the rows, use the setFPlanRowSpacingAndType command, or the options
from the Standard Cells Rows panel of the Specify Floorplan form. The following row
configurations are supported:

Bottom R0 and flip

Bottom R0 and flip/abut Bottom MX and flip/abut Bottom R0 and abut

Bottom MX and flip Bottom R0
October 2010 382 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#setFPlanRowSpacingAndType

Encounter Digital Implementation System User Guide
Floorplanning the Design
Grouping Instances

The hierarchy of the new instance group is formed at the common point of the modules and
submodules. The following example shows how the hierarchy is changed from the common
point if submodules B and F are added to a new group called group_A.

To delete an instance from an instance group, complete the following steps:

1. Choose Tools – Design Browser.

2. In the Design Browser, click on and highlight the module or submodule guide(s) to be
deleted from the instance group.

3. Click the Delete Group/Group Member icon.

To add an instance to an existing group name, complete the following steps:

1. Click on and highlight the module or submodule guide(s) to be added to an instance
group.

2. Choose the Floorplan – Instance Group submenu to select the group name.

F

D

E

A

B C

D

E

A

C

B F

group_ATopTop
October 2010 383 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
To save the instance group back to the netlist, use the Generate Regrouped Netlist form
(Floorplan – Generate Regrouped Netlist).

Defining the Bounding Box

During floorplanning, you can use the setObjFPlanBox command to define a bounding box
of a specified object, and the setObjFPlanBoxList command to define rectilinear shape
of an object, which is comprised of two or more boxes.

This section provides graphical information to illustrate some of the command examples in
the Floorplan Commands chapter of the Encounter Digital Implementation System Text
Command Reference.

setObjFPlanBox

The following command specifies a bounding box for Module abc at a lower left x coordinate
of 100.0, a lower left y coordinate of 100.0, and upper right x coordinate of 400.0, and an
upper right y coordinate of 545.0:

setObjFPlanBox Module abc 100.0 100.0 400.0 545.0

100.0, 100.0

Module abc

400.0, 545.0
October 2010 384 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
setObjFPlanBoxList

The following command defines a rectilinear boundary for Module xyz. The rectilinear
boundary is made up of two bounding boxes: (371.46, 537.60) (696.96, 754.35), and (412.5,
754.32) (696.96, 920.64):

setObjFPlanBoxList Module xyz 371.46 537.60 696.96 754.35 412.5 754.35 696.96
920.64

Adding Logical Hierarchy Without Creating Additional Hierarchy

The EDI System software enables you to add logical hierarchy without creating additional
hierarchy. For example:

createInstGroup /TTT -isPhyHier

addInstToInstGroup /TTT U5

addInstToInstGroup /TTT U7

runRcNetlistRestruct

Note: The leading slash character (/) in /TTT is required for the software to create a
temporary group named /TTT.

After restructuring, the result looks like this:

371.46, 537.60

Module abc

696.96, 754.35

Module xyz

412.5, 754.35

696.96, 920.64

AAA

U1U4U0

EEEDDDCCC

TTT

BBB

U6U3U2

HHHGGGFFF

U5, U7
October 2010 385 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
For more information, see the runRcNetlistRestruct command in the Encounter
Digital Implementation System Text Command Reference.

Logical Hierarchy Manipulation

In addition to Adding Logical Hierarchy Without Creating Additional Hierarchy, you can also
manipulate the logical hierarchy as follows:

■ Moving Instances to a New Top Module on page 386

■ Moving Instances to an Existing Module on page 387

■ Moving Instances to the Top Root Level on page 388

For more information, see the runRcNetlistRestruct command in the Encounter
Digital Implementation System Text Command Reference.

Moving Instances to a New Top Module

➤ To move an instance to a new top module named TOP101, you can do the following:

createInstGroup TOP101 -isPhyHier

addInstToInstGroup TOP101 PMEMDSP/PRAMDLD/U10

addInstToInstGroup TOP101 PMEMDSP/PRAMDLD/U11
October 2010 386 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#runRcNetlistRestruct
../fetxtcmdref/floorplanT.html#runRcNetlistRestruct

Encounter Digital Implementation System User Guide
Floorplanning the Design
runRcNetlistRestruct

Moving Instances to an Existing Module

➤ To move an instance to an existing module named DRAMDSP/DRAMDLD, you can do the
following:

createInstGroup /DRAMDSP/DRAMDLD -isPhyHier

addInstToInstGroup /DRAMDSP/DRAMDLD DIFTOP/DIF/U13

addInstToInstGroup /DRAMDSP/DRAMDLD DIFTOP/DIF/U14

runRcNetlistRestruct

Before Restructuring After Restructuring
October 2010 387 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Note: The leading / (slash) is required for an existing module.

Moving Instances to the Top Root Level

➤ To move an instance to the top root level, you can do the following:

createInstGroup /AUDIO_TOP_test_1_test_1_test_1 -isPhyHier

addInstToInstGroup /AUDIO_TOP_test_1_test_1_test_1 DSPCORE31/U10

addInstToInstGroup /AUDIO_TOP_test_1_test_1_test_1 DSPCORE31/U11

addInstToInstGroup /AUDIO_TOP_test_1_test_1_test_1 DSPCORE31/U12

runRcNetlistRestruct

Before Restructuring After Restructuring
October 2010 388 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Note: The leading / (slash) is required for the top root level.

Before Restructuring After Restructuring
October 2010 389 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Creating and Editing Rows

You can create and edit rows in different regions. The following table lists the commands that
you can use to create and cut rows.

For more information on using these commands, see the Encounter Digital
Implementation System Text Command Reference.

You can also use the following forms available through the GUI:

■ Create Core Rows, available through Floorplan – Row – Create Core Row.

■ Cut Core Rows, available through Floorplan – Row – Cut Core Row .

■ Stretch Core Rows, available through Floorplan – Row – Stretch Core Row.

Using Vertical Rows

Caution

Support for vertical rows is a beta feature. Usage and support of this beta
feature are subject to prior agreement with Cadence. Contact your
Cadence representative if you have any questions.

In addition to horizontal rows, EDI System also supports vertical rows.You can import designs
with vertical rows and output design data containing the layout of vertical rows. Vertical rows
appear vertically in the display. You can select and query vertical rows and delete them with
the delete key. The commands that snap rows to row grid also support vertical rows. These
commands are snapFPlan, relativeFPlan, and the interactive move command.

createRow Creates rows for the specified site. The row boundary can be
defined by core area or the area that you specify. This command
supports the creation of overlapping rows. This command can
create only horizontal rows. By default, the rows are flipped and
abutted.

cutRow Cuts site rows that intersect with the specified area or object.

deleteRow Deletes the specified row(s).

stretchRows Stretches selected rows. For example, you can specify that the
left edge of all selected rows should be aligned to the left-most
edge among all selected rows.
October 2010 390 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#createRow
../fetxtcmdref/floorplanT.html#cutRow
../fetxtcmdref/floorplanT.html#deleteRow
../fetxtcmdref/floorplanT.html#stretchRows
../fetxtcmdref/floorplanT.html#snapFPlan
../fetxtcmdref/floorplanT.html#relativeFPlan
../encounter/floorplanG.html#EditCoreRowCreate
../encounter/floorplanG.html#EditCoreRowCut
../encounter/floorplanG.html#EditCoreRowStretch

Encounter Digital Implementation System User Guide
Floorplanning the Design
Horizontal and vertical rows can co-exist, but at different layers of hierarchy. You cannot
create horizontal and vertical rows together on the same level of hierarchy.

The configuration variable ui_isVerticalRow is used to specify whether the rows are
horizontal or vertical. The variable can be set to 0 (for horizontal rows) or 1 (for vertical rows)
as follows:

set rda_Input(ui_isVerticalRow) {0|1}

By default, EDI System imports designs with the rows horizontal, that is, the value of the
variable is set to 0. To import designs with vertical rows, set this variable to 1.

While specifying a floorplan, you can specify that the rows are vertical by using the
-verticalRow parameter of the floorPlan command, or by specifying Vertical Rows in
the Row Direction field of the Specify Floorplan form in the GUI.

The EDI System software generates vertical rows, provided the design data or the library
meets the following prerequisites:

■ The SITE width is more than the SITE height.

■ Each SITE is stacked one above the other, when rows are created.

■ MY and R0 row orientations are supported.

■ The cells are stacked vertically, when they are placed and their power rails run vertically.

■ The preferred direction of M1 is vertical.

Limitations

The following limitations apply to vertical rows:

■ Vertical rows cannot be created inside power domains.

■ Non-integer and multiple integer vertical rows are not supported.

■ Vertical rows cannot be created or edited directly. That is, the createRow, cutRow,
deleteRow, and stretchRows commands are not supported for vertical rows.

Note: You can, however, select rows to query, and delete rows with the delete key.
October 2010 391 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#floorPlan
../fetxtcmdref/floorplanT.html#createRow
../fetxtcmdref/floorplanT.html#cutRow
../fetxtcmdref/floorplanT.html#deleteRow
../fetxtcmdref/floorplanT.html#stretchRows
../encounter/floorplanG.html#SpecifyFloorPlanBasic

Encounter Digital Implementation System User Guide
Floorplanning the Design
Using Multiple-height Rows

In many cases, designs contain cells with different standard cell heights. For example, a
design might utilize multiple standard cell libraries–possibly from different foundries or library
vendors–which might have different standard cell heights.

Standard cell designers create multiple-height standard cells for improving performance.
Also, in a design with multiple power domains, standard cells with different voltages will
probably have different footprints and different heights.

The EDI System software supports multiple-height standard cells by supporting:

■ a combination of integer multiple-height rows

■ a combination of non-integer multiple-height rows

Using Integer Multiple-height Rows

The EDI System software automatically generates integer multiple-height rows overlapping
the single-height core rows provided the design data or the library meets the following
prerequisites:

■ The LEF file contains integer multiple-height SITE definitions and MACROS that use the
SITE.
October 2010 392 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
■ The netlist includes at least one instantiation of such an integer multiple-height cell.

After you import the design or specify the floorplan, the core area is automatically populated
with default rows and multiple-height rows are automatically generated.

Here is an extract from a sample LEF file that contains integer multiple-height SITE definitions
and a MACRO that uses a SITE:

SITE coreSite

SYMMETRY X Y ;

CLASS CORE ;

SIZE 0.660 BY 5.040 ;

END coreSite

SITE doubleHeightSite

SYMMETRY X Y ;

CLASS CORE ;

SIZE 0.660 BY 10.080 ;

END doubleHeightSite

MACRO DFFX64

CLASS CORE ;

FOREIGN DFFX64 0 0 ;

ORIGIN 0 0 ;

SIZE 21.12 BY 10.080 ;

SYMMETRY X Y ;

SITE doubleHeightSite ;

...

END DFFX64

When you create integer multiple-height rows, the rows are automatically aligned with the
single-height row. You cannot create unaligned integer multiple-height rows.

For information on creating and editing rows, see Creating and Editing Rows on page 390
October 2010 393 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
The following figure illustrates a double-height row flipped to align with the orientation of the
single row.

The following figure illustrates a triple-height row flipped to align with the orientation of the
single row.
October 2010 394 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Using Non-Integer Multiple-height Rows

You can also use non-integer multiple-height (NIMH) rows in your designs.

While creating NIMH rows, ensure the following:

■ NIMH rows must be created only in those areas that have power domains associated
with them.

■ any newly created NIMH rows in an area must be an integer multiple of any existing rows
in the area.

You can create a power domain using the createPowerDomain command or through the
the Create Power Domain form, available in the GUI through Power – Multiple Supply
Voltage – Create/Modify Power Domain.

Each hierarchical instance to be declared as a power domain can only have one type of NIMH
standard cells. In other words, NIMH rows inside any particular power domain must have the
same height. Multiple types of NIMH standard cells require multiple power domains to be
created. For example, if you want to use standard cells with heights that are respectively 2.5,
3.25, and 4.1 times the height of a standard single-height cell, you should create three power
domains, with each power domain containing one type of NIMH row.

When you create a power domain, EDI System automatically detects the SITE that is
common to all the cells and creates the rows inside the power domain.

The following diagram illustrates how rows are automatically generated within the power
domain for standard cells of the hierarchical instance.
October 2010 395 Product Version 9.1.3

../fetxtcmdref/msvT.html#createPowerDomain

Encounter Digital Implementation System User Guide
Floorplanning the Design
The following diagram illustrates how standard cells of the hierarchical instance are all placed
on the row inside the power domain.

If NIMH standard cells of different height are included in one hierarchical instance, use the
createPowerDomain and the modifyPowerDomainMember commands to ensure that
the same types of NIMH cells are grouped within the same power domain.

For example, consider the case where the instances inst1 and inst3 can have NIMH rows
of one height and the instances inst2 and inst4 can have NIMH rows of another height.
The following commands create two power domains NIMH1 and NIMH2, associate the
instances inst1 and inst3 with the power domain NIMH1, and associate the instances
inst2 and inst4 with the power domain NIMH2.

createPowerDomain NIMH1

createPowerDomain NIMH2

modifyPowerDomainMember NIMH1 -instances TOP/MixLevel/inst1

modifyPowerDomainMember NIMH2 -instances TOP/MixLevel/inst2

modifyPowerDomainMember NIMH1 -instances TOP/MixLevel/inst3

modifyPowerDomainMember NIMH2 -instances TOP/MixLevel/inst4

The modules and/or instance groups can be moved outside the core boundary but within the
die. Since new rows are not created automatically in this area, you can use the createRow
command to create new rows.

Manual editing of rows might not be preserved by floorPlan, resizeFP, and
initCoreRow commands.
October 2010 396 Product Version 9.1.3

../fetxtcmdref/msvT.html#createPowerDomain
../fetxtcmdref/msvT.html#modifyPowerDomainMember
../fetxtcmdref/floorplanT.html#createRow
../fetxtcmdref/floorplanT.html#floorPlan
../fetxtcmdref/floorplanT.html#resizeFP
../fetxtcmdref/floorplanT.html#initCoreRow

Encounter Digital Implementation System User Guide
Floorplanning the Design
EDI System displays a warning message if you try to move a power domain outside the core
boundary, and snaps the power domain inside the core.

Working with User-defined DEF Files that Contain NIMH Rows or
Unaligned Rows

In case of integer multiple-height rows, as long as the rows are overlapping the single-height
rows, standard cells will by default be legally placed on their corresponding site or row
definition.

However, if you import a user-defined plan through a DEF file that contains NIMH rows and
unaligned rows, you need to define power domain(s) for each of these disjoint special row
style. Otherwise, these rows might not be correctly placed.

The following figure illustrates a user-defined floorplan brought in through a DEF file.
October 2010 397 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
The following figure illustrates how placement without power domain association results in
illegal placement.
October 2010 398 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
The following figure illustrates how placement with the correct power domain association
results in legal placement.

By default, when a power domain is moved or (re)located in the main core row area, rows are
initialized. To keep the rows brought in by the DEF file, you should pre-place and pre-size the
power domains that cover the NIMH rows and the unaligned rows.

Here is an example flow:

createPowerDomain NIMH -timingLibs slow(common)

createPowerDomain UNALIGNEDROW -timingLibs slow(common)

modifyPowerDomainMember NIMH -instances NIMH_inst \

power (VDD:VDD) -ground (VSS:VSS)

modifyPowerDomainMember UNALIGNED -instances comp0 \

power (VDD:VDD) -ground (VSS:VSS)

modifyPowerDomainAttr NIMH -box 50 35 125 145

modifyPowerDomainAttr UNALIGNEDROW -box 142.2 90.2 336.6 110.0

#note. Box (50,35)(125,145) Covering NIMH rows

#note. Box (142.20,90.2) (336.6,110.0) Covering the unaligned rows

defIn userDefineRow.def

placeDesign
October 2010 399 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Merging Hierarchical Floorplans from Partitions

While flattening partitions with the flattenPartition command, you can bring back row
information, including NIMH rows and unaligned rows, from an existing floorplan. You can
then run placement and routing to further improve the design performance.

Use the flattenPartition command with the -bringBackRow parameter to preserve
the row information. The flattenPartition command also supports rotated partitions.

Power domains are automatically created and associated with each of the partition that have
NIMH or unaligned rows. These automatically created power domain have the following
characteristics:

■ The minGap value is the same as the placement halo defined for the partition at the full-
chip level.

■ The timing library is the same as that specified at the full-chip level.

■ The global net connection is the same as that for the full-chip level, which is the same as
the partition floorplan global net connection.

■ The value of the RouteSearchExt field is set to the default value of 0.0.

■ The core-to-edge distances are not preserved as an attribute of the power domain, but
are preserved in the merged floorplan.

■ Row Parameters are not translated or detected.

■ The power domain is set to alwaysOn.

The recommended use model for bringing back non-integer multiple-height rows or unaligned
rows is as follows:

Top-down flow

1. Create power domains at full-chip level design.

2. Specify the same hierarchical instance for power domain as defined for the partition.

Bottom-up flow

1. Create power domains at top-level design.

2. Create one PD for each of the partitions.

3. Assign instance blocks as a member of the created power domain.
October 2010 400 Product Version 9.1.3

../fetxtcmdref/partitionT.html#flattenPartition
../fetxtcmdref/partitionT.html#flattenPartition
../fetxtcmdref/partitionT.html#flattenPartition

Encounter Digital Implementation System User Guide
Floorplanning the Design
For more information on the flattenPartition command, see the Encounter Digital
Implementation System Text Command Reference.

The following figure shows a full-chip view with the partition halos specified.
October 2010 401 Product Version 9.1.3

../fetxtcmdref/partitionT.html#flattenPartition

Encounter Digital Implementation System User Guide
Floorplanning the Design
The following figure illustrates the result when you use the flattenPartition command
without the -bringbackRow parameter

The following figure illustrates the result with you use the flattenPartition command
with the -bringbackRow parameter. In this case, the NIMH rows and the unaligned rows are
brought back to the top-level inside the power domain.
October 2010 402 Product Version 9.1.3

../fetxtcmdref/partitionT.html#flattenPartition
../fetxtcmdref/partitionT.html#flattenPartition

Encounter Digital Implementation System User Guide
Floorplanning the Design
Performing I/O Row Based Pad Placement

In many cases, designs contain multiple-height I/O pads or asymmetric I/O rings, for example,
a design might have a single I/O ring on one side and double rings or no rings on the other
side, or no rings on part of a certain side. For such designs, the EDI System software enables
you to create, edit, save, and restore I/O rows and perform pad placement based on the I/O
rows.

You can create I/O rows anywhere in the die - within the core or in the periphery and use the
I/O row flow for both, pad and area I/Os.

Prerequisites

1. LEF technology file should contain I/O SITE definition.

Before you begin the I/O row flow in EDI System, you must first define I/O SITE for each
type of I/O cell in the LEF I/O macro (LEF technology file).

2. Each I/O cell LEF must have correct CLASS and SITE type specified.

Consider the following examples that define LEF I/O SITE and CLASS PAD MACRO in
the I/O assignment file, each I/O CLASS PAD macro is referenced with the I/O SITE:

Example 1

The I/O SITE IOPFC is referenced from the I/O CLASS PAD MACRO pnl_qdr_vp:

SITE IOPFC

SYMMETRY y ;

CLASS PAD ;

SIZE 0.1 BY 321.94 ;

END IOPFC

MACRO pnl_qdr_vp

CLASS PAD ;

FOREIGN pnl_qdr_vp ;

ORIGIN 0.000 0.000 ;

SIZE 35.000 BY 321.940 ;

SYMMETRY X Y R90 ;

SITE IOPFC ;

...

END pnl_qdr_vp

Example 2
October 2010 403 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
The corner site, IOPFCCRNR, is referenced from the CLASS PAD MACRO
pnl_qdr_iocrnr:

SITE IOPFCCRNR

SYMMETRY y ;

CLASS PAD ;

SIZE 321.94 BY 321.94 ;

END IOPFCCRNR

MACRO pnl_qdr_iocrnr

CLASS PAD ;

FOREIGN pnl_qdr_iocrnr ;

ORIGIN 0.000 0.000 ;

SIZE 32.940 BY 321.940 ;

SYMMETRY X Y R90 ;

SITE IOPFCCRNR ;

...

END pnl_qdr_iocrnr

For more information, see “Generating the I/O Assignment File” in Data Preparation
chapter of the Encounter Digital Implementation System User Guide.

3. If the design contains multiple I/O SITES, the gap between the core boundary and the
die boundary must be greater than the biggest I/O SITE; Otherwise, the EDI System
software issues a warning and no I/O rows are created. EDI System does not
automatically expand the core or die boundary to accommodate all the I/O pads.

Enabling the I/O Row Flow in EDI System

To start using the I/O row flow in EDI System, you must enable the I/O row flow by doing one
of the following:

■ Specify set rda_Input(use_io_row_flow) {1} in the EDI System configuration
file.
October 2010 404 Product Version 9.1.3

../soceUG/dataprep.html#GeneratingIOAssignmentFile

Encounter Digital Implementation System User Guide
Floorplanning the Design
■ Select Use I/O Row for I/O Placement check box in the Floorplan - Specify
Floorplan - Advanced GUI form.

■ Set the setIoFlowFlag command to 1.

Note: By default, the I/O row flow is Off.
October 2010 405 Product Version 9.1.3

../encounter/floorplanG.html#SpecifyFloorPlanAdvanced
../encounter/floorplanG.html#SpecifyFloorPlanAdvanced
../fetxtcmdref/floorplanT.html#setIoFlowFlag

Encounter Digital Implementation System User Guide
Floorplanning the Design
Use Models

Starting a new design

1. Import the design in EDI System

2. Set the I/O row flow by selecting the Use I/O Row for I/O Placement check box in the
Specify Floorplan - Advanced GUI form.

3. By default, one I/O row is created on each side of the chip, between the core boundary
and the die boundary. If the design has multiple I/O sites in the library, then rows are
created for each side based on the number of I/O sites used in the design.

By default, the I/O pads are placed randomly on the I/O rows.

4. In the resulting design, you can create I/O rows using the Create I/O Row form.

5. Edit (move/stretch/rotate/flip) the I/O rows using the Edit I/O Row form or using the text
commands.
October 2010 406 Product Version 9.1.3

../encounter/floorplanG.html#SpecifyFloorPlanAdvanced
../encounter/floorplanG.html#EditIoRow
../encounter/floorplanG.html#CreateIORow

Encounter Digital Implementation System User Guide
Floorplanning the Design
The text commands that can be used for creating and editing I/O rows are described in
the following table:

Optionally, you can specify the I/O row constraints in the I/O assignment file. For more
information, see “Generating the I/O Assignment File” in the Data Preparation chapter of
the Encounter Digital Implementation System User Guide.

Note: To add I/O filler cells to the new I/O rows, use the addIoRowFiller command.
You can delete the filler cells using deleteIoRowFiller command.

After designing the rows, save the design in a floorplan file (*.fp) using the saveDesign or
saveFPlan command.

Commands Usage

createIoRow Creates an I/O row.

flipInst Flips the selected I/O row through x or y axis.

fplanFlipOrRotateInstance

Flips or rotates the selected instances.

stretchRows Stretches the selected I/O rows.

moveSelObj Moves the selected row to a specific location. Since the
pads are already placed on the I/O rows, by default when
you move the I/O rows, the pads also move with the rows.

deleteRow Deletes the selected I/O row. You can also delete the row by
selecting the row and pressing the Del key on the keyboard.

setIoRowMargin

Sets the distance from the die boundary edge to the I/O row
starting edge location. You can use this command for
multiple I/O rows.

snapFPlanIO Snaps the I/O pads onto the correct side of the I/O rows if
the pads are not already on the rows.

spaceIoInst Spaces the selected I/O pads on the I/O rows, horizontally
or vertically by a specified distance value.
October 2010 407 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#createIoRow
../fetxtcmdref/floorplanT.html#flipInst
../fetxtcmdref/floorplanT.html#fplanFlipOrRotateInstance
../fetxtcmdref/floorplanT.html#stretchRows
../fetxtcmdref/floorplanT.html#moveSelObj
../fetxtcmdref/floorplanT.html#deleteRow
../fetxtcmdref/floorplanT.html#snapFPlanIO
../soceUG/dataprep.html#GeneratingIOAssignmentFile
../fetxtcmdref/importT.html#saveDesign
../fetxtcmdref/floorplanT.html#saveFPlan
../fetxtcmdref/floorplanT.html#spaceIoInst
../fetxtcmdref/floorplanT.html#addIoRowFiller
../fetxtcmdref/floorplanT.html#deleteIoRowFiller
../soceUG/dataprep.html#firstpage
../fetxtcmdref/floorplanT.html#setIoRowMargin

Encounter Digital Implementation System User Guide
Floorplanning the Design
Reading an old design

If you already have a design with placed pads, created using an earlier version of EDI System
(v6.2 and above) and you want the design to be read into current version of EDI System to
use the new I/O row flow:

1. Restore the design with placed pads, using restoreDesign command or load the
floorplan information from the file, using the Load FPlan File form or the loadFPlan text
command. Optionally, load the I/O constraint file using loadIoFile command.

2. Turn on the I/O row flow by setting the I/O flow flag (setIoFlowFlag) to 1.

3. Create the initial I/O rows using the createIoRow -deriveByCells command. This
command creates I/O rows based on the existing pad placement.

Once you have rows and pads placed in the design, you can continue to create more
rows or edit the rows.

Use the changeIoConstraints command to change the constraints of the I/O row
read from the I/O constraints file.

You can also use the Attribute Editor to change the I/O pad location or pad orientation
from the GUI.

4. After editing the I/O rows and the I/O row constraints, run the snapFPlanIO command
to snap the I/O pads and area I/O’s onto the legal sites/rows.

5. Save the design in a floorplan file (*.fp) using the saveDesign or saveFPlan
command.

Resizing Rectilinear Blocks

Given an initial rectilinear block in the floorplan, EDI System automatically resizes it’s
bounding box by enlarging or shrinking the edges of the box proportionally in the X and Y
directions, ensuring that the specified target utilization is met.

During this process, to retain the original shape of the rectilinear block, you must specify the
-keepShape parameter in the floorPlan command. Consider analog designs where you
have digital blocks that need to be fit into the analog chip and the shape of the block is already
pre-defined. In such mixed-signal designs, you can retain the block shape during resizing,
and also meet the specified target utilization value by shrinking or expanding the floorplan
using the floorplan -keepShape util value, where util is the target utilization value.
October 2010 408 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#loadFPlan
../fetxtcmdref/importT.html#restoreDesign
../fetxtcmdref/floorplanT.html#createIoRow
../fetxtcmdref/floorplanT.html#loadIoFile
../fetxtcmdref/floorplanT.html#setIoFlowFlag
../fetxtcmdref/floorplanT.html#changeIoConstraints
../fetxtcmdref/floorplanT.html#snapFPlanIO
../encounter/editG.html#ObjAttr
../fetxtcmdref/importT.html#saveDesign
../fetxtcmdref/floorplanT.html#saveFPlan
../fetxtcmdref/floorplanT.html#floorPlan

Encounter Digital Implementation System User Guide
Floorplanning the Design
Use Models

1. Import a DEF file or a floorplan file (*.fp) that contains a rectilinear block boundary or you
cut one corner of a rectangular block. This results in the core utilization missing the target
value.

2. Run the floorplan -keepShape util command to automatically shrink or
expand the block boundary, proportionally, in the X and Y directions, trying to meet the
specified target utilization.

Consider the following example of a rectilinear block whose current target utilization value is
0.75.

To meet a target utilization of 0.55, expand the rectilinear block.

Module abc

TD = 0.75

Current Size

floorplan origin (0,0)

Module abc

TD = 0.55

Expand

floorplan -keepShape 0.55

floorplan origin (0,0)
October 2010 409 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
To meet a target utilization of 0.95, shrink the rectilinear block.

In both the cases, the shape of the block is retained, and the required target utilization is met.

For I/O pins, prior to resize, EDI System saves the I/O file sequence internally and loads the
file back after resize. The side and sequence of the I/O pin remains the same as in the old
block, but the pins get distributed evenly.To redistribute the I/O pins, you must edit the pins
manually in the resize block.

Assumptions

The automatic resizing of rectilinear blocks is based on the following assumptions:

■ The rectilinear blocks are L-shaped.

■ The floorplan origin, (0,0) remains unchanged during the resize.

■ The instances inside the block move proportionally or stay fixed during the resize.

Results

The results of automatic resizing of rectilinear blocks are as follows:

■ The shape of the block is preserved during the resize.

■ Pre-placed macros are adjusted to the new size as much as possible.

■ Pre-routed wires are removed after the resize.

■ The core rows and block pins are automatically adjusted after the resize.

TD = 0.95 Shrink

floorplan -keepShape 0.95
October 2010 410 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Using Blackblobs

■ Defining Blackblobs on page 411

■ Specifying Blackblobs on page 412

■ Blackblob Useflow on page 416

■ Blackblob Display on page 419

■ Blackblob Overlap on page 424

■ Saving and Restoring Blackblobs on page 427

Defining Blackblobs

The EDI System software provides support for blackboxes, which are used for modeling
entities that will ultimately be implemented as standalone partitions. Blackboxes have a fixed
shape, have full routing blockages along one or more layers, and require specific pin
assignment along the edges.

You can use blackboxes for performing what-if timing analysis. For more information, see
Performing Blackbox What-If Timing Analysis in the “Timing Analysis” chapter of the
Encounter Digital Implementation System User Guide.

However, in many cases, the design might contain entities for which a netlist is not initially
available but eventually, the entity will have a flat implementation, that is, it will not be
implemented as a hard macro. Such entities ultimately comprise standard cells, and possibly
some macros and are called blackblobs.

Because of their characteristics, blackblobs have the following advantages over blackboxes:

■ Blackblobs need not necessarily have a square or rectangular shape. Therefore, the
partition area is better utilized.

■ The pins need not necessarily be along the edges of the blackblob—they can be
anywhere in the blackblob because the blackblob is not implemented as a macro. You do
not need to assign pins for the blackblob; the connections and pins are represented by
super cell pins.

■ Blackblobs can overlap during placement—their placement is more typical of a
placement guide, instead of a fence.

■ In general, iterative closure on a floorplan is faster for blackblobs.
October 2010 411 Product Version 9.1.3

../soceUG/whatif.html#WhatIfAnalysis

Encounter Digital Implementation System User Guide
Floorplanning the Design
The shape of a blackblob is determined by the placer. The display of a blackblob is similar to
that of a regular instance. You can select a blackblob and query it in the floorplan view. You
can move a blackblob in the floorplan view, but not in other views. You should not adjust or
stretch a blackblob.

Note: If a design contains blackblobs, there might be a difference between the wire lengths
reported by Trial Route and by placement. This is because while reporting the wire length,
Trial Route does not include the intra-net routing inside blackblobs whereas placement does.

Specifying Blackblobs

You can use the specifyBlackBlob command to create a blackblob. You can also use the
Floorplan – Specify Blackblob form in the GUI to create a blackblob.

Any module that does not have to be implemented as a partition can be specified as a
blackblob.

The following points apply to the specification of blackblobs:

■ Blackblob module netlist can be undefined, partially defined, or have instantiated hard
macros and/or standard cells. These macros and cells may or may not have connections.

■ You should specify the overall blackblob area.

■ The shape of the blackblob is automatically determined during blackblob placement.

■ Pins need not be assigned for a blackblob because the external connections or pins are
represented by super cell pins.

■ Timing for a blackblob is specified using What-if Timing Analysis capability. You can
create a timing model for a blackblob right after specifying it (not requiring you to
floorplan a design first).

■ You can use empty Verilog modules while creating blackblobs—the empty modules are
displayed and are available for selection when you create blackblobs with the
Specify Blackblob form, accessed from the Floorplan – Specify Blackblob menu.

Important

To have the list of empty modules available in the GUI, add the following line to the
configuration file:

set rda_Input(import_mode) {-treatUndefinedCellAsBbox 0 -keepEmptyModule 1
-useLefDef56 1}

■ You can create blackblobs inside power domains. For this, the blackblob module must be
inside the power domain module.
October 2010 412 Product Version 9.1.3

../encounter/floorplanG.html#SpecifyBlackblob
../fetxtcmdref/floorplanT.html#specifyBlackBlob
../encounter/floorplanG.html#SpecifyBlackblob

Encounter Digital Implementation System User Guide
Floorplanning the Design
The following options are used for specifying a blackblob:

■ Area

Initial blackblob area can be specified in any of the following manner:

❑ Total blackblob area. This includes the area of any hard macros that you have
specified.

❑ Gate area. This area may or may not include any hard macros that you have
specified.

❑ Gate count and area per gate values. This area may or may not include any hard
macros that you have specified.

If the blackblob netlist contains instantiated hard macros and/or standard cells, the initial
blackblob area includes these macro and/or cell areas.

■ Target utilization

Similar to a module guide target utilization. This utilization is mainly used for deriving the
initial blackblob area.

■ Placement porosity

The placement porosity specifies the percentage of cell area that will be added to the
blackblob area during placement. This is used by the EDI System placer for cell padding
during the placement step. The cell padding reserves some area for the IPO cells to be
placed over the blob area.

■ Routing porosity

Specifies the routing resources, per layer, that will be reserved for the blackblob (this
porosity is for standard cell area only). A routing porosity of 50% on M1 suggests that
50% of M1 can be routed over the blob area. A higher routing porosity implies more
routing resources.

The following specifyBlackBlob command specifies a blackblob alu_32 with area 20000
square microns and a target utilization value of 20%.

specifyBlackBlob - cell alu_32 -area 20000 -targetUtil 20

After specifying the blackblob using the specifyBlackBlob command, the blob is
represented by the blob guide in the floorplan view.The display of a blackblob is similar to that
of a regular instance. The shape of a blackblob is determined by the placer.

Note: You can move a blackblob in the floorplan view, but not in other views. You cannot,
however, stretch a blackblob.
October 2010 413 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#specifyBlackBlob
../fetxtcmdref/floorplanT.html#specifyBlackBlob

Encounter Digital Implementation System User Guide
Floorplanning the Design
The figure below displays the results of this command. By default, blackblob objects are
displayed in green as shown here:

Blackblob cell alu_32

totalArea = 20000 Height = 141.421
targelUtil = 20% Width = 141.421

gateArea = (totalArea * targetUtil) / 100
= (20000 * 20) / 100
= 4000
October 2010 414 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
To view the attributes of a blackblob that you created, double-click the blackblob to display the
Attribute Editor as shown in the following example.

Blackblobs nested inside a partition are supported. However such blackblob(s) will be
automatically unspecified before partitions are committed. If you want to have a blackblob
inside a partition block-level design, you will need to drill down to the partition block level
design and specify the blackblob again.

Once you have specified blackblobs, run the elaborateBlackBlob command. This
command instantiates the hard macros inside blackblobs and completes the virtual
connections for these hard macros. The blackblobs are also filled with dummy instances as
per the size/area specified.
October 2010 415 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#elaborateBlackBlob
../encounter/editG.html#ObjAttr

Encounter Digital Implementation System User Guide
Floorplanning the Design
Typically, you would run the elaborateBlackBlob command once after you have specified
the blackblobs in the design with the specifyBlackBlob command. For example, you
might call the specifyBlackBlob command several times in a script, and when all
blackblobs have been specified, you would run the elaborateBlackBlob command once
to instantiate the hard macros and/or complete the virtual connections for macros and blob
cells.

The elaborateBlackBlob command is run automatically when you restore a design that
contains blackblobs.

If you specify blackblobs through the Specify Blackblob GUI form, the
elaborateBlackBlob command will automatically be invoked when you click the Apply or
the OK button.

You can unspecify a blackblob through the unspecifyBlackBlob command.

Limitations

The following limitations apply to blackblobs:

■ Non-uniquified netlists are not supported. Make sure all netlists are uniquified before you
specify a blackblob.

■ The gate area of the blackblob remains the same even after you resize the blackblob in
the floorplan view. In order to adjust the size of a blackblob, you should re-specify the
blackblob using the specifyBlackBlob command.

Blackblob Useflow

This section describes the blackblob useflow for the following scenarios:

■ General Blackblob Flow on page 416

■ ECO Blackblob Flow on page 417

■ Blackblob Flow for Placing Macros Using Automatic Floorplan Synthesis on page 418

General Blackblob Flow

The general blackblob flow, that is, when you do not perform an ECO netlist update for the
blackblob, is as follows:

1. Import the design.
October 2010 416 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#elaborateBlackBlob
../fetxtcmdref/floorplanT.html#specifyBlackBlob
../fetxtcmdref/floorplanT.html#specifyBlackBlob
../fetxtcmdref/floorplanT.html#elaborateBlackBlob
../fetxtcmdref/floorplanT.html#elaborateBlackBlob
../fetxtcmdref/floorplanT.html#elaborateBlackBlob
../fetxtcmdref/floorplanT.html#unspecifyBlackBlob
../encounter/floorplanG.html#SpecifyBlackblob
../fetxtcmdref/floorplanT.html#specifyBlackBlob

Encounter Digital Implementation System User Guide
Floorplanning the Design
2. Specify blackblobs.

3. Run the elaborateBlackBlob command if you specified the blackblobs with the
specifyBlackBlob command and not through the GUI.

4. Optionally use What-If Timing Analysis capability to create timing model for the
blackblobs and to perform a quick timing analysis.

5. Optionally pre-place blackblobs in the floorplan view to guide blackblob placement.

6. Run placement (placeDesign):

❑ EDI System placer treats blackblobs as soft module guides. It places all the
instantiated hard macros and/or cells, and user-specified hard macros (if any) to
derive blackblob shapes.

❑ If blackblob placement porosity information is specified, placer adds cell pads during
blob placement to honor user-specified placement utilization.

❑ Blackblobs placement can be overlapping.

❑ You run either non-timing-driven or timing-driven placement.

7. If you re-specify a blackblob specification or manually change location of a blackblob
module guide in the floorplan, run the placement step again to get correct blackblob
placement.

8. Optionally run the generateGuide command to generate blackblob guide in the design
for later use.

9. Run Trial Route. Trial Route take into account user-specified blackblob routing porosity
information to derive blob routing resources on the fly. Maximum blackblob porosity value
will be used for calculating overlapping blackblob area(s).

10. Save the design.

11. Optionally run What-If timing analysis.

12. Continue with the normal flow.

ECO Blackblob Flow

The flow when you have updated blackblob netlists is as follows:

1. Restore a blackblob design. Or, perform the following steps:

a. Import the design.

b. Specify blackblob(s).
October 2010 417 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#elaborateBlackBlob
../fetxtcmdref/floorplanT.html#specifyBlackBlob
../fetxtcmdref/placementT.html#placeDesign
../fetxtcmdref/floorplanT.html#generateGuide

Encounter Digital Implementation System User Guide
Floorplanning the Design
c. Run the elaborateBlackBlob command if you specified the blackblobs with the
specifyBlackBlob command and not through the GUI

d. Run placement

2. Optionally run the generateGuide command to generate blackblob module guide(s) in
the core area based on the current cell placement. This step is recommended.

3. Use the loadBlackBlobNetlist to incrementally load updated blackblob netlist(s).

4. After loading new update blackblob netlist,

5. If you want to retain the blackblobs as blackblob objects:

a. Re-specify the blackblob area if the existing block area is smaller than the area
generated by the updated netlist.

a. Run placement once again.

Otherwise

a. Run the unspecifyBlackBlob command to convert blackblob object back to the
module with the new updated netlist.

a. Run placement.

6. Proceed with the normal flow.

Blackblob Flow for Placing Macros Using Automatic Floorplan Synthesis

You can use Automatic Floorplan Synthesis to place macros inside and outside blackblobs
because it generates a quick, initial floorplan that can be used as a starting point for making
the final floorplan. The blackblob flow for running Automatic Floorplan Synthesis to place
macros inside and outside blackblobs is as follows:

1. Import the design.

2. Specify blackblob(s).

3. Run the elaborateBlackBlob command if you specified the blackblobs with the
specifyBlackBlob command and not through the GUI.

4. Generate an initial floorplan with the planDesign command to place all macros in the
design including embedded blob macros.

5. Manually adjust the macros if needed and mark them as fixed.

6. Optionally run What-If timing analysis.
October 2010 418 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#elaborateBlackBlob
../fetxtcmdref/floorplanT.html#elaborateBlackBlob
../fetxtcmdref/floorplanT.html#specifyBlackBlob
../fetxtcmdref/floorplanT.html#planDesign
../fetxtcmdref/floorplanT.html#specifyBlackBlob
../fetxtcmdref/floorplanT.html#unspecifyBlackBlob
../fetxtcmdref/floorplanT.html#loadBlackBlobNetlist
../fetxtcmdref/floorplanT.html#generateGuide

Encounter Digital Implementation System User Guide
Floorplanning the Design
7. Optionally pre-place blackblobs in floorplan view to guide placement.

8. Run placeDesign to place blackblobs to derive the blackblob shape.

Blackblob Display

After you specify a module as a blackblob, the module becomes a block instance. However,
in the floorplan view, a blackblob object is represented as a blackblob module guide instead
of an instance block. This way, you can guide the placement of the blackblob.

After blackblob specification, the blackblob is displayed on the left side of the design in the
floorplan view. By default, blackblob objects are displayed in green as shown here:

You can perform the following actions on the blackblob:

■ Select the blackblob.

■ Move the blackblob to pre-place it in the floorplan view to guide the placement.

■ Query a blackblob. In the floorplan view, a blackblob has the type Module. In the physical
view, the type is Block.

Note: Although you can resize the blackblob in the floorplan view, the blackblob gate area
remains the same. If you want to adjust the size of a blackblob, you should re-specify the
blackblob using the specifyBlackBlob command with the same target utilization value.

Blackblob
October 2010 419 Product Version 9.1.3

../fetxtcmdref/placementT.html#placeDesign
../fetxtcmdref/floorplanT.html#specifyBlackBlob

Encounter Digital Implementation System User Guide
Floorplanning the Design
After specifying a blackblob, you need to run placement to place the design and obtain the
blackblob shape in the amoeba and physical views. Blackblob instances will have non-
contiguous shapes (islands) if the macros and/or cells of the blackblob are not placed close
together. After placement step, when you select a blackblob:

■ In the floorplan view, the instantiated hard macros and the user-specified hard macros
will be highlighted.

■ In the amoeba and physical view, blackblob instance will be highlighted.

The following figure shows the amoeba view after placement.
October 2010 420 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
The following figure shows the physical view after placement.

The physical view display of the blackblob is based on the union of all the bloblets (gate area),
standard cells and hard macros that belong to the blackblob.

The blackblob shape in the physical view after placement step will correspond to the total
blackblob area specified during the blackblob specification.
October 2010 421 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
The following figures show the different types of blackblob enclosures after placement.

Blackblob with a singe shape
October 2010 422 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Blackblob with multiple shapes
October 2010 423 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Blackblob Overlap

The blackblob overlap can happen in any of the following ways:

■ Overlap between Blackblobs on page 425

■ Overlap between Standard Cells and Blackblobs on page 426

Blackblob with a macro inside
October 2010 424 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Overlap between Blackblobs

Blackblobs can be overlapped because they resemble module guides whose cells can be
placed outside the guides. The following figure shows the overlap between two blackblobs,
multi_32 and execute_i.
October 2010 425 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Overlap between Standard Cells and Blackblobs

Standard cells can be placed over blackblobs because the guide allows other cells to be
placed in their guide area. The following figure shows the overlap between standard cells and
a blackblob.
October 2010 426 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Saving and Restoring Blackblobs

The blackblob placement information and the netlist information are saved in different files. It
is, therefore, recommended that you save a design with blackblob information using the
saveDesign command so that the design floorplan can be restored correctly. It is not
sufficient to save only the floorplan file, except when blackblobs have not yet been placed.

Blackblob specifications such as area-related information, placement porosity, routing
porosity, target utilization, and user-specified macros are saved in a floorplan file.

The blackblob placement information is saved in a design placement file. Blackblob boundary,
location, and pin information are automatically derived when the design is restored. The
elaborateBlackBlob command is also run automatically.
October 2010 427 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#elaborateBlackBlob
../fetxtcmdref/importT.html#saveDesign

Encounter Digital Implementation System User Guide
Floorplanning the Design
Editing Pins

This section describes how you can move and manipulate pins in your design. For information
on blackbox and partition pins, see the Assigning Pins section in the “Partitioning the Design”
chapter of the Encounter Digital Implementation System User Guide.

Pin Snapping on Resized Boundaries

As the boundary size increases, the pins maintain their exact horizontal and vertical
coordinates, depending on the modified edge. As the boundary size decreases, the pin snap
retains its relative position on the modified edge. This following figure illustrates this capability.
For the size decreasing example, pins A1 and A2 are both snapped to the upper right corner.

Note: This feature is limited to rectangular edges.

Moving Pins

To move a pins or a group pins, they should be at the same block and same side of the block.
By default, all pins will move together relatively and the layer will be changed to the
appropriate layer if the side was changed. For example, layer M2 is changed to M1 when
moving pins from top to left. Moving pins from top to bottom does not change the layer.

To move a selected pin or group of pins in the design display area from one edge to another
edge (including rectilinear edges) on a module, complete the following steps:

Note: For pin groups, this will preserve the relative position between pins.

1. Click the Move/Resize/Reshape widget.

2. Select (left-click) the pin in the design display area.

For a group of pins, press the Shift key to highlight each pin.

Size Increase Size Decrease

A1

A2
October 2010 428 Product Version 9.1.3

../soceUG/partitioning.html#AssigningPins

Encounter Digital Implementation System User Guide
Floorplanning the Design
3. Left click on the pin(s) and move them to the new location.

Tip

To zoom out on the design display area while dragging the pins, press the
Shift-Z key combination.

You can use the moveGroupPins command for moving the pin(s) to the new location.

Swapping Pins

You can swap pins using the swapPins command or the Swap Pins option in the design
display area by completing the following steps:

1. Select two pins of the same block.

2. With the cursor over one of the selected pins, right-click the mouse to bring up the context
menu.

3. Select Swap Instances.

Using the Pin Editor

You can use the Pin Editor to display and edit pins and pin groups. To open the Pin Editor,
choose Edit – Pin Editor. For information in the fields and options, see Pin Editor in the Edit
Menu chapter of the Encounter Digital Implementation System Menu Reference.

Here are the main features of the Pin Editor:

■ Works for all type of pins such as partition pins, blackbox pins, and I/O pins

■ When moving pins, associated pin geometry is moved or updated accordingly

■ Can be used to move a single pin and/or a group of pins

■ Supports pin editing by various criteria such as location, layer, side/edge, and so on

■ Provides pin spreading capabilities. For more information, see Using the Pin-Spreading
Feature on page 430

■ Provides pin snapping capabilities such as to manufacturing grid, user grid, and layer
track.

■ Supports non-preferred routing layers for all supported snapping grids.
October 2010 429 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#moveGroupPins
../fetxtcmdref/floorplanT.html#swapPins
../encounter/editG.html#PinEditor

Encounter Digital Implementation System User Guide
Floorplanning the Design
■ Honors pin constraints at partition-level and pin-level, as well as constraints defined
through the GUI.

■ Supports pre-assigned pins.

■ Supports rectilinear edges (multiple edges per side).

The editPin command provides the equivalent functionality of the Pin Editor.

The following sections describes some of the features that you can use with the Pin Editor.

Using the Pin-Spreading Feature

The Pin Editor includes a utility to spread pins along the edges of a block. There are four
different methods of spreading pins:

■ Use a pin as the starting point (anchor) and provide a pin spacing distance.

■ Use the center of a side or edge as the starting point and provide a pin spacing distance.

■ Space the pins evenly along the side or edge, using the ends of the side or edge as the
starting and ending points. The Pin Editor calculates the pin spacing distance.

■ Space the pins evenly using explicit starting and ending points on the side or edge. The
Pin Editor calculates the pin spacing distance.

Basic Concepts for Pin Spreading

Two basic concepts underlie the pin-spreading functionality of the Pin Editor:

■ Pin ordering affects the starting point for pin spreading.

Use the Pin Editor’s Group Bus, Reverse Order, or Reorder Pin List functions to
specify the first pin in a group. The coordinates of the first pin in a group provide the
starting point from which to spread pins.

■ Pin spacing distances can be expressed in either positive or negative values:

Positive spacing values spread pins to the right along a horizontal block edge, or up
along a vertical block edge.

Negative spacing values spread pins to the left along a horizontal block edge, or down
along a vertical block edge.

Note: You cannot specify pin spacing distances with spacing methods that rely on the
Pin Editor to determine the spacing.
October 2010 430 Product Version 9.1.3

../fetxtcmdref/partitionT.html#editPin

Encounter Digital Implementation System User Guide
Floorplanning the Design
The following sections provide details on the four pin-spreading methods supported by the
Pin Editor.

Using a Pin as the Starting Point for Spreading Pins

For this method, you select a group of pins and sort them in the desired order. The first pin
in the list serves as the starting point (anchor) for spreading the other pins in the group.

You must also provide the pin spacing distance if you are spreading more than one pin.

Assume that your design contains four pins (A1, A2, A3, and A4) that are currently spaced
2.0 μm apart. You want to spread the pins to the right with 3.0 μm spacing, using A1 as the
starting point. To do this you must

1. Sort the pins so that A1 is the first pin in the list.

The coordinates of A1 appear in Starting X/Y.

2. Select Spread – From Starting Point on the Pin Editor form.

3. Specify a positive spacing value: 3.0.

The following figure illustrates this situation:

Original spacing: 2.0 μm A1 A2 A3 A4

Desired spacing: 3.0 μm, with A1 as
starting point and the pins spreading to
right

A1 A2 A3 A4
October 2010 431 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
The following figure shows how pins are spread from a pin as starting point in case of
rectilinear partitions for a side with multiple edges. In this case, the specified side is bottom,
and the pins are therefore spread along the edges of the bottom side.

Now assume that you want to spread the pins to the left with 4.0 μm spacing, using A4 as the
starting point. To do this you must

1. Sort the pins so that A4 is the first pin in the list.

The coordinates of A4 appear in Starting field of the Pin Editor form.

2. Specify a negative spacing value: -4.0.

The following figure illustrates this situation:

Using the Center of a Side or Edge as the Starting Point for Spreading Pins

For this method, you select a group of pins and sort them in the desired order.

You must also provide the pin spacing distance.

Pin to be used as
starting point

Original spacing: 2.0 μm A1 A2 A3 A4

Desired spacing: 4.0 μm, with A4 as starting point
and the pins spreading to the left

A1 A2 A3 A4
October 2010 432 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Assume that your design contains four pins (A1, A2, A3, and A4). You want to define new
spacing and then group the pins so that the group is centered on the midpoint of the block
edge. To do this you must

1. Sort the pins in the desired order (optional).

2. Select Spread – From Center on the Pin Editor form.

3. Specify a positive spacing value: 3.0.

The following figure illustrates this situation:

Original pin spacing
A1 A2 A3 A4

New spacing, with the pin group
centered on the midpoint of the
block edge

A1 A2 A3 A4

Edge midpoint
October 2010 433 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
The following figure shows how pins are spread from a center point in case of rectilinear
partitions where a side with multiple edges has been specified. In this case, the specified side
is bottom, and the pins are therefore spread from the center of the bottom side.

Spacing Pins Evenly Along an Edge or Side

For this method, you select a group of pins and sort them in the desired order.

You do not specify a pin spacing distance because the Pin Editor calculates the appropriate
distance, based on the length of the block edge or side, and spaces the pins evenly along the
block edge or side.

Assume that one edge of your design contains four pins (A1, A2, A3, and A4). You want to
spread the pins evenly along the block edge. To do this you must

1. Sort the pins in the desired order (optional).

Length of bottom side

Pins are spread from center
of bottom side.
October 2010 434 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
2. Select Spread – Along Entire Edge on the Pin Editor form.

The following figure illustrates this situation:

The following figure shows how pins are spread along a side in case of rectilinear partitions
where a side with multiple edges has been specified. In this case, the specified side is
bottom, and the pins are, therefore, spread along the edges of the bottom side.

Spacing Pins Evenly Using Explicit Starting and Ending Points

For this method, you select a group of pins and sort them in the desired order.

You do not specify a pin spacing distance because the Pin Editor calculates the appropriate
distance, based on the specified starting and ending points, and spaces the pins evenly along
the edge or side.

Original pin spacing
A1 A2 A3 A4

New spacing, with pins
spread evenly between
the ends of the block edge

A2A1 A4A3

First placed pin
Pins are spread evenly across
the edges of the side.
October 2010 435 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Assume that one edge of your design contains four pins (A1, A2, A3, and A4). You want to
spread the pins evenly along the block edge between two sets of coordinates. To do this you
must

1. Sort the pins in the desired order (optional).

2. Select Spread – Between Points on the Pin Editor form .

3. Revise the starting and ending coordinates as desired.

The following figure illustrates this situation:

The following two figures shows how pins are spread along a side in case of rectilinear
partitions where a side with multiple edges has been specified.

Original pin spacing
A1 A2 A3 A4

New spacing, with pins
spread evenly between the
two sets of coordinates
85.0, 0.0 and 130.0,
0.0 A1 A2 A3 A4

85.0, 0.0 100.0, 0.0 115.0, 0.0 130.0, 0.0
October 2010 436 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
In the following case, the specified side is bottom, and the pins are, therefore, spread along
the edges of the bottom side.

End point

Start point

Edge 0

Edge 19 Edge 15

Pins spread from edge 19 to edge 11 (19,
17, 15, 11)

Edge 11
October 2010 437 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
In the following case, the specified side is right, and the pins are, therefore, spread along
the edges of the right side.

Pins spread from edge 18 to edge 6
(18, 14, 12, 10, 6)

Edge 0

Edge 18

Start point

End point

Edge 10

Edge 14
October 2010 438 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Running Relative Floorplanning

This section describes how to use the Floorplan menu’s Relative Floorplan form to capture
and define the placement relationship of floorplan objects independently from the actual
coordinates in a floorplan.

The Relative Floorplan program provides a more flexible way to place objects, such as
modules, blocks, groups, blockages, pin guides, pre-routed wires, and power domains. Block
I/O pins can be used as reference objects but they cannot be relative objects. You can capture
and define the placement relationship of floorplan objects independently from the actual
coordinates in a floorplan. You can also resize a module or blackbox based on other floorplan
objects, while maintaining its current area based on a specified width and height, a given
dimension (width or height), and a target utilization value. You can also specify a wire’s start
or end point relative to the reference object’s reference corner, or specify a wire’s start or end
point directly.

Before relative floorplanning, the design must be loaded into the current EDI System session.

Orientation Key

The following table is a key to the orientation of placed objects:

Value Definition

R0 No rotation

MX Mirror through X axis

MY Mirror through Y axis

R180 Rotate counter-clockwise 180 degrees

MX90 Mirror through X axis and rotate counter-clockwise 90 degrees

R90 Rotate counter-clockwise 90 degrees

R270 Rotate counter-clockwise 270 degrees

MY90 Mirror through Y axis and rotate counter-clockwise 90 degrees
October 2010 439 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Instance Place Example

The following figure shows an example of instance placement.

Pre-Route Examples

You can generate pre-routed relative floorplan information automatically after you have pre-
routed a relative floorplan. The following example and illustrations show how the relative
floorplan pre-route feature operates.

The following commands specify that S3, S2, and S1 are relative to object I2 and the core:

relativeFPlan –-preRoute VDD 1 2 0.44 0.44 I2 BR X2 Y2 I2 TR X3 Y3

relativeFPlan –-preRoute VDD 1 2 0.44 0.44 I2 BL X1 Y1 I2 BR X2 Y2

relativeFPlan –-preRoute VDD 1 2 0.44 0.44 core BL X0 Y0 I2 BL X1 Y1

Place instA inside instB
with Right relation and
align to Bottom side by
0 micrometer.

instB

instA

instB
instA

Place instA inside instB
with Above relation and
align to Left side by
0 micrometer.

I2 I1

I3

S4
S3

S2
S1

10 μm
October 2010 440 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
When I2 is stretched southward, the original distance between its south side and the S2 side
of the wire is readjusted, but maintains its distance from the south side at 10 μm.

The following commands specify that S1 and S2 are relative to the object I2 and the
Core_Boundary:

relativeFPlan –-preRoute VSS 1 2 0.44 0.44 I1 TL x1 y1 Core_Boundary TR x2 y2

relativeFPlan –-preRoute VDD 1 2 0.44 0.44 I1 TR x3 y3 Core_Boundary TR x4 y4

relativeFPlan –-preRoute VSS 1 2 0.44 0.44 I1 TL x5 y5 Core_Boundary TR y6 y6

relativeFPlan –-preRoute VDD 1 2 0.44 0.44 I1 TR x7 y7 Core_Boundary TR x8 y8

In the above example, when I1 is stretched northward, the S1 and S2 wires are shortened.

I2 I1

I3

I2 I1

I3

S4
S3

S2

S1

10 μm

S1 S2

I1

I3

I2 I2 I1

I3
October 2010 441 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Saving and Restoring Relative Floorplan

The EDI System software automatically saves all the executed menu and text commands for
the relative floorplanning actions in the encounter.cmd file.

To save all the relative floorplan commands that were executed during a session, click the
Save button on the Relative Floorplan form. This saves a script that can be used later for
updating or adjusting an existing floorplan based on the new blocks’ size and position. You
can also save the constraints associated with an object through the saveRelativeFPlan
command.

To restore the relative floorplan information to the design display area, use the
restoreRelativeFPlan text command.

For more information, see “Floorplan Commands” in the Encounter Digital
Implementation System Text Command Reference.

Saving and Loading Floorplan Data

You can save and load floorplan data at any time during a session.

➤ To save the floorplan information to a file, use the Save FPlan File form or the
saveFPlan text command.

➤ To load the floorplan information from a file, use the Load FPlan File form or the
loadFPlan text command.

Related Topics

To see where this step fits in the design flow, see Load and Check Data in the Encounter
Digital Implementation System Foundation Flows: Flat Implementation Flow Guide.
October 2010 442 Product Version 9.1.3

../flatImpl/flow.html#LoadandCheckData
../fetxtcmdref/floorplanT.html#saveRelativeFPlan
../fetxtcmdref/floorplanT.html#restoreRelativeFPlan
../fetxtcmdref/floorplanT.html#saveFPlan
../fetxtcmdref/floorplanT.html#loadFPlan

Encounter Digital Implementation System User Guide
Floorplanning the Design
Resizing the Floorplan

The resize floorplan feature enables you to resize a floorplan while maintaining the relative
locations of the floorplan objects.

Normally, floorplan resizing is done

■ to reduce the die size on a finished floorplan.

■ to expand or shrink the die during floorplan creation, based on the full chip placement
results.

You can use the Floorplan - Resize Floorplan form in the EDI System GUI to perform the
resize functions in the design. Alternatively, you can also run the resizeFP command to
resize the floorplan.

Use Case 1

To reduce the die size on a finished floorplan, i.e floorplan of the previous tapeout.

1. Import the design.

2. Load the floorplan file or DEF file.

3. Run resize floorplan using the resizeFP command.

4. Run placement, trial route, and power planning. For more details, see Common
Floorplanning Sequence on page 373.

Use Case 2

To expand or shrink the die during floorplan creation, based on the full chip placement results.

1. Import the design.

2. Perform floorplanning based on the chip design floorplan.

3. Run placement and trial route to view placement and routing congestion.

4. Run resize floorplan to enlarge or shrink the die after placement and routing, using the
resizeFP command.

5. Manually refine floorplan—include macro/IO placement, module constraints, blockages,
power plan.
October 2010 443 Product Version 9.1.3

../encounter/floorplanG.html#ResizeFloorplan
../fetxtcmdref/floorplanT.html#resizeFP
../fetxtcmdref/floorplanT.html#resizeFP
../fetxtcmdref/floorplanT.html#resizeFP

Encounter Digital Implementation System User Guide
Floorplanning the Design
6. Rerun placement, if required. For more details, see Common Floorplanning Sequence
on page 373.

Resize Floorplan Options

The space among floorplan objects can be resized in two ways:

Proportional Spacing

Distributes the space among floorplan objects proportionally (resizeFP -proportional).
It can shrink or expand the space in both, X and/or Y directions. However, you cannot adjust
pre-routed wires using proportional spacing.

See Resize Floorplan Proportional mode in the “Floorplan Menu” chapter of the
Encounter Digital Implementation System Menu Reference for more information.

Shift-based Spacing

Shifts the selected floorplan objects at appropriate location(s) without changing the location
of all the existing floorplan objects. (resizeFP -shiftBased)

You can perform automatic resizing or resize the floorplan based on resize lines defined using
the setResizeLine command. The shift-based resize maintains the existing pre-routed
wire topology and automatically adjusts bus guides during resizing.

See Resize Floorplan Shift Based mode in the “Floorplan Menu” chapter of the Encounter
Digital Implementation System Menu Reference for more information.

Setting Resize Lines

For performing shift-based resizing, you must specify one or multiple resize lines. These
resize lines must be orthogonal since they can overlap if specified in the same direction. For
example,

setResizeLine -direction H (x1 y1) (x2 y1) (x2 y3) (x4 y3) (x4 y5) (x6 y5) -width 20

When specifying a resize line, if you do not specify a coordinate for the resize line, the
setResizeLine command automatically derives the missing coordinate. For example, the
following command automatically derives the missing coordinate for setting the resize line:

setResizeLine -direction H (x1 y1) (x2 *) -width 20
October 2010 444 Product Version 9.1.3

../encounter/floorplanG.html#ResizeFloorplan
../fetxtcmdref/floorplanT.html#setResizeLine
../encounter/floorplanG.html#ResizeFloorplan
../fetxtcmdref/floorplanT.html#setResizeLine

Encounter Digital Implementation System User Guide
Floorplanning the Design
Specifying Resize Directions

Resizing can be done in X and Y directions. Positive values mean expanding the space and
negative values indicate shrinking. However, EDI System does not support a scenario where
resizing line by expanding and shrinking, both occur on the same direction. For example, the
following command specifies a resize line in vertical direction with a resize width of 100
microns:

setResizeLine -direction V (x1 y1) (* y2) -width 100

The following command again resizes the floorplan in the same X direction with a negative
value of -200 microns:

resizeFP -xSize -200

EDI System displays a warning message in such a situation.

Snapping Resize Values

The resize values (shrink/expand) can be snapped to a multiple integer of the metal layer
pitch.

Note: Specify the resizeFP -snapToTrack option to snap resize values.

For example, if the horizontal metal pitch is 1.5 microns and you want to shrink the floorplan
by 8 microns in y direction, the actual shrink value is 7.5 microns, the nearest multiple integer
of the metal pitch.

See Resize Floorplan in the “Floorplan Menu” chapter of the Encounter Digital
Implementation System Menu Reference for more information.
October 2010 445 Product Version 9.1.3

../encounter/floorplanG.html#ResizeFloorplan

Encounter Digital Implementation System User Guide
Floorplanning the Design
Viewing Resize Lines using Color Preferences

Once you specify the resize lines to perform shift-based resizing, you can display the resize
lines in EDI System by setting the Resize Line option in the Color Preferences - View-
Only form.

However, the resize lines disappear once you run the resizeFP command.

Resize Line
(Shrink)

Resize Line
(Expand)
October 2010 446 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#resizeFP

Encounter Digital Implementation System User Guide
Floorplanning the Design
Example 13-1 Setting a Resize Line Before running resizeFP

setResizeLine -direction H -width -20.0000 (269.00 621.00) (1367.00 621.00)

Resize Line
Visible in the
Floorplan
October 2010 447 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Example 13-2 Resize Line Disappears After Running resizeFP -shiftBased Command

Note: During resizing, the target size may not be achievable. You have to force resize to meet
the target size as much as possible, using the resizeFP -forceResize option.

Distributing I/O’s using Resize Floorplan

When distributing the I/O’s using resizeFP,

■ The space between I/O pads can be adjusted evenly or proportionally. By default, the I/
O’s are distributed evenly.

■ The I/O side constraints and order constraints are honored.

■ The offset that exists between I/O’s and the design boundary is preserved.

resizeFP -shiftBased
October 2010 448 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#resizeFP

Encounter Digital Implementation System User Guide
Floorplanning the Design
Example 13-3 Distribution of I/Os Before resizeFP

I/O distribution before resizeFP
October 2010 449 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design
Example 13-4 Distribution of I/O’s after resizeFP -ioProportional

Proportional I/O distribution after resizeFP -xSize 50 -ioProporitonal
October 2010 450 Product Version 9.1.3

Encounter Digital Implementation System User Guide
14
Power Planning and Routing

■ Overview on page 452

■ Before You Begin on page 453

■ Results on page 454

■ Loading, Saving, and Updating Special Route on page 454

■ Creating a Ring with User Defined Coordinates on page 454

■ Global Net Connections on page 455

■ Fixing LEF MINIMUMCUT Violations on page 457

■ Fixing LEF Minimum Spacing Violations on page 457

■ Adding Stripes to Power Domains on page 457

■ Automatic Power Planning (APP) on page 459

■ Creating a Template on page 461

■ Specifying Template Parameters on page 463

■ Instantiating a Template on page 464

■ Using the Synthesize Power Plan Functionality on page 465

■ Creating Differential Routing to Signal Bumps on page 467
October 2010 451 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power Planning and Routing
Overview

Power planning and routing is composed of the following components:

■ Adding a core ring

■ Adding block rings

■ Adding stripes to the core area

■ Adding stripes over blocks within the design

■ Adding ring pins

■ Creating a pad ring

■ Connecting pad pins

■ Routing standard cell pins

■ Connecting block pins

■ Connecting unconnected stripe

■ Routing to power bumps

Use the Encounter power planning features to create power structures such as rings, stripes,
and ring pins for the design. To create power structures, complete the following steps:

1. Load a LEF file that contains technology information before you add power rings and
power stripes. If the LEF file is not loaded, you will not be able to select metal layers on
the power planning forms.

2. Specify the floorplan.

3. Establish logical power connectivity. You can issue the globalNetConnect command
or use the Global Net Connections form, which is accessed from the Floorplan menu.

4. Cut standard cell rows around macros. Whenever a floorplan change is made, the rows
must be cut. Issue the cutCoreRow command to cut the rows based on placement
blockages.

❑ To highlight the cut rows, issue the displayCutRow command.

❑ To remove the display of cut rows, issue the clearCutRow command.

5. Add power rings around the core of the design, and block rings around blocks, row
clusters, and power domains.
October 2010 452 Product Version 9.1.3

../fetxtcmdref/fp_special_routeT.html#globalNetConnect
../encounter/floorplanG.html#GlobalNetConnect
../fetxtcmdref/fp_special_routeT.html#cutCoreRow
../fetxtcmdref/fp_special_routeT.html#displayCutRow
../fetxtcmdref/fp_special_routeT.html#clearCutRow
../encounter/powerG.html#AddRings

Encounter Digital Implementation System User Guide
Power Planning and Routing
6. Add power stripes within the overall design, within a specific area, or over specified
blocks or power domains.

7. Save special route data.

After your design is placed, you can use the Encounter power routing features to make the
final power connections. The SRoute software creates pad rings and routes power and
ground nets to the following power structures:

■ Block pins

■ Pad pins

■ Standard cell pins

■ Unconnected stripes

Use the SRoute form to specify routing to any or all of these structures. In addition, you can
specify whether or not the software should make the connections by changing layers or
allowing jogs.

Before You Begin

Before you can begin power planning, the following conditions must be met:

■ The design must be loaded into the current Encounter session.

The following input file is required:

■ The design file

Before you can begin power routing, the following conditions must be met:

■ The design must have power rings and stripes.

The following input file is required:

■ A LEF file that contains technology and macro information.
October 2010 453 Product Version 9.1.3

../encounter/powerG.html#AddStripes
../encounter/routeG.html#SRoute

Encounter Digital Implementation System User Guide
Power Planning and Routing
Results

After using the power planning software, your design has preliminary power structures that
provide the foundation for hooking up each cell to a power source.

After using the power routing software, your design has power connections between pins of
specified nets on the blocks and pads to nearby rings or stripes. Your design is ready for
combined power and rail analysis to determine whether power structures and connections
provide sufficient power to the design.

Loading, Saving, and Updating Special Route

To load special route data into a design, use the Load Special Route form. When loading the
floorplan, the .fp and .fp.spr. files are included. The filename extension entered in the
Load FPlan form is .fp, not .fp.spr.

When creating special routes, use the Save Special Route form or the Save Design form to
save the special route data plus vias.

Floorplan files are saved with the following extensions:

■ .fp — Contains the general floorplan information.

■ .fp.spr — Contains the special route data.

You can also use the Save DEF form to save special route information in the DEF file.

Creating a Ring with User Defined Coordinates

To create a block ring or a core ring in a specific location, complete the following steps:

1. Choose Power – Power Planning – Add Rings.

This opens the Basic page of the Add Rings form.

2. Specify the net names for power rings to be created.

3. Select User defined coordinates.

4. Select either Core ring or Block ring.

If you select Core ring, the shape of the wires is ring. If you select Block ring, the
shape of the wires is blockring.
October 2010 454 Product Version 9.1.3

../encounter/designG.html#LoadSpecialRoute
../encounter/designG.html#SaveSpecialRoute
../encounter/designG.html#SavingDesign
../encounter/designG.html#SaveDEF
../encounter/powerG.html#AddRingsBasic

Encounter Digital Implementation System User Guide
Power Planning and Routing
5. Specify a set of coordinates.

You must specify at least four pairs of coordinates. Specify the x coordinate followed by
the y coordinate for each corner of the ring. Separate each coordinate with a space.

For example, to define a 100 x 100 square ring at the bottom left corner of the design,
specify the coordinates as follows:

0 0 0 100 100 100 100 0

You can create a rectilinear ring by specifying an even number of coordinate pairs. For
example, specify the following set of coordinates to create an L-shaped ring:

0 0 0 100 50 100 50 50 100 50 100 0

You must specify the coordinates in a linear sequence. For example, if you specify the
coordinates in the following sequence, the ring is not created because the sequence of
the coordinates defines the bottom left, top right, top left, and top right corners:

0 0 100 100 0 100 100 0

You must also specify coordinates that create perpendicular wires. For example, if you
specify the following coordinates, the ring is not created because the coordinates define
an edge that slants:

0 0 0 100 100 100 50 0

6. Click Apply or OK.

The ring is created in the exact location specified by the coordinates.

Global Net Connections

Global net connections connect terminals and nets to the appropriate power and ground nets
so that power planning, power routing, detail routing, and power analysis functions operate
correctly for the entire design. Some of these terminals and nets are contained in the Verilog®
netlist, and others are contained in the LEF file.

From the Verilog netlist, you can connect the following type of nets to power and ground nets:

■ Power and ground nets

Connect between the power and ground nets to the appropriate power and ground nets.
These power and ground nets are wire keywords in the Verilog netlist.

■ Tie-hi and tie-lo nets

Connect between the tie-hi and tie-lo nets to the appropriate power and ground nets.
These are keywords in the Verilog netlist, such as 1’b0, 1’b1, supply0, and supply1.
October 2010 455 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power Planning and Routing
■ Local nets

Connect between the local nets to the global nets. These local nets are wire keywords
in the Verilog netlist.

From the LEF file, you can connect the following type of terminals and nets to power and
ground nets:

■ Power and ground terminals

Connect between the power pins to the appropriate power and ground nets. vdd! and
gnd! are examples of these power and ground pin and net names in the LEF file.

■ Filler cell nets

Connect between the power pins to the appropriate power and ground nets. You can
specify these connections before or after adding filler cells.

To assign pins or nets to a global net, use the Global Net Connections form (Floorplan –
Global Net Connections). For more information, see Global Net Connections in the
“Floorplan Menu” chapter of the Encounter Menu Reference.

Important

The order of global net connections are important, especially when the Apply All or
the Override prior connection options are selected in the Global Net Connections
form. Apply All connects all pins or nets in the design to the specified global net.
Override prior connection first disconnects pins and local nets that are already
connected to a global net, then reconnects them to the specified global net specified
in the form.

You can also use the globalNetConnect text command to assign global net connections.
For more information, see “Power Planning Commands” in the Encounter Text Command
Reference.

globalNetConnect Command and Connections for Signal Pins and Power/
Ground Pins

The globalNetConnect -type net command automatically connects only signal pins
to the global net—not power or ground pins.

To reconnect power or ground pins to the global net after using the commitConfig
command, use the command globalNetConnect -type pgpin -pin pin_name -
all -override. All global net connection rules and any rules specified in the configuration
file are saved in the floorplan file.
October 2010 456 Product Version 9.1.3

../encounter/floorplanG.html#GlobalNetConnections
../fetxtcmdref/fp_special_routeT.html#globalNetConnect

Encounter Digital Implementation System User Guide
Power Planning and Routing
Fixing LEF MINIMUMCUT Violations

If your design contains violations to the LEF MINIMUMCUT rule, use the fixMinCutVia
command as a post-processing step. This command replaces power vias flagged by a
violation marker because of a violation of the LEF MINIMUMCUT rule. The via is replaced
with a via that contains the minimum number of cuts based on the LEF rule, and the violation
marker is removed. If the via cannot be replaced, the violation marker is not removed.

See the “Power Route Commands” in the Encounter Text Command Reference for more
information.

Fixing LEF Minimum Spacing Violations

If your design contains violations of the LEF minimum spacing rule, use the fillNotch
command as a post-processing step. The command fill gaps, which removes same net
violations between generated vias and wires or pins where these violations are flagged by the
Verify Geometry software. Using this command, you do not have to sacrifice via size by
trimming vias in order to fix same net spacing violations.

See “Verify Commands” in the Encounter Text Command Reference for more information.

Adding Stripes to Power Domains

When you use the Each selected block/domain/fence option on the Basic page of the Add
Stripes form, stripes are placed according to the location of the power domain ring.
Sometimes the location of the power domain ring was not specified at the time the power
domain was created. In this case, you must indicate the location of power domain rings to the
power planning software by issuing the following command:

modifyPowerDomainAttr -rsExts top bottom left right

The top, bottom, left, and right values specify a distance from the edge of the power
domain boundary. Rings between the power domain boundary and the specified distance are
considered power domain rings.

■ Specify negative values if the power domain ring is inside the power domain boundary.
The power planning software considers any ring from the power domain boundary to the
specified distance inside the boundary to be a power domain ring. When you add
stripes, the software trims the stripes at the ring. The stripe also correctly recognizes
block rings within the power domain and breaks at those rings if you specify the Omit
October 2010 457 Product Version 9.1.3

../fetxtcmdref/powerrouteT.html#fixMinCutVia
../fetxtcmdref/interactive_ecoT.html#fillNotch
../encounter/powerG.html#AddStripesBasic

Encounter Digital Implementation System User Guide
Power Planning and Routing
stripes inside block rings option on the Advanced page of the Add Stripes form. The
following illustration shows how the stripe is created when you specify negative values.

■ Specify positive values if the power domain ring is outside the power domain boundary.
The power planning software considers any ring from the power domain boundary to the
specified distance outside the boundary to be a power domain ring, and extends the
stripes to that ring. The stripe also correctly recognizes block rings within the power
domain and breaks at those rings if you specify the Omit stripes inside block rings
option on the Advanced page of the Add Stripes form. The following illustration shows
how the stripe is created when you specify positive values.

Power Domain BoundaryStripe

Block Ring

Block Ring for
Power Domain

Power Domain Boundary

Block Ring around
Power Domain

Stripe

Block Ring
October 2010 458 Product Version 9.1.3

../encounter/powerG.html#AddStripesAdvanced

Encounter Digital Implementation System User Guide
Power Planning and Routing
If the location of the power domain ring is not specified, the stripe begins and ends at the
power domain boundary. If the power domain ring is inside the power domain, the stripe
recognizes it as a block ring. This can cause the stripe to break in the wrong locations if you
specify the Omit stripes inside block rings option on the Advanced page of the Add
Stripes form, and can create antennas, as shown in the following illustration.

Automatic Power Planning (APP)

With traditional power planning software, you must add core rings, pad rings, block rings,
horizontal stripes, and vertical stripes separately. You could obtain this type of power plan by
either issuing separate text commands or by filling out the Add Ring, Add Stripe, and SRoute
forms multiple times.

Using the APP software, you can create a power plan template that includes all of these
features. The template can be applied to specific designs, providing a simpler method for
creating a cohesive power plan. You can also use the same template when the floorplan is
modified to easily regenerate power structures.

Once you have created a template, you can instantiate it with design-specific information,
such as the width and pitch of stripes. The Specify Template Parameter form also provides
you with tools that help you determine the power needs of the design so that you can use
these templates within a design to come close to a prototype power plan.

When creating a power plan using the synthesize power plan (SPP) functionality, the APP
software uses an estimated power value that is based on the power constructs in the timing
library files (.libs) and the capacitance values in the LEF file, an optional IR-drop threshold

Power Domain BoundaryStripe

Block Ring

Block Ring for
Power Domain

Antennas
October 2010 459 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power Planning and Routing
value, an optional user template to analyze the design data, the floorplan data, and the cell
library data to create a base system template. The APP software then uses this base system
template, user template (if specified), and the power value to estimate the ring width, stripe
width, and pitch to create the power structure.

The power grid synthesis (PGS) feature of the APP software automatically creates and
optimizes the power structure by properly scaling wire width and stripe pitch to meet IR-drop
design constraints when such a threshold is specified.

You can also use the APP software to optimize an existing power structure.

To access the APP software, select Power – Power Planning – Synthesize Power Plan
or Power – Power Planning – Optimize Power Plan.
October 2010 460 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power Planning and Routing
Creating a Template

The Edit Power Plan Template form allows you to set up a generic power plan for any design,
as well as specific power plans for IP blocks within a particular design.

To create a template, complete the following steps.

1. Choose Power – Power Planning – Synthesize Power Plan.

This opens the Synthesize Power Plan form.

2. Click Use template to create power plan.

3. Click Design or IP.

4. Click

❑ The New icon to create a new template

❑ The Open icon to view or edit an existing template after you choose a template from
the drop-down list.

Using the IP Block Page

1. Click the IP radio button on the Synthesize Power Plan form, then the New or Open
icons.

This opens the IP Block page of the Edit Power Plan Template form. This page contains
options that specify ring and stripe properties for each IP block. This page is divided into
three areas:

❑ The upper-left quadrant contains a list of all IP blocks in the design. This list is
obtained from the LEF file.

❑ The lower-left quadrant shows a preview of how the selected block or blocks will look
in the design.

❑ The right side contains options for specifying rings around blocks and stripes over
blocks. It also contains buttons that let you set or unset the options for the blocks
selected in the upper right quadrant.

This part of the form has two subtabs:

❍ Use the Block Ring tab to specify whether a block ring is required for a
particular IP block whether a block ring is to be created, and if so, whether the
block ring can be shared by other blocks.
October 2010 461 Product Version 9.1.3

../encounter/powerG.html#EditPowerPlanIPBlock

Encounter Digital Implementation System User Guide
Power Planning and Routing
❍ Use the Stripe tab to specify whether stripes should be created over a
particular block, and if so, which layer, width, and pitch values are to be used.

2. Select one or more IP blocks from the list in the upper left quadrant.

3. Click the Block Ring tab, then specify block ring options for the selected IP blocks.

4. Click the Stripes tab, then select Stripe over the block.

5. Select the R0 option, then specify stripe configuration options for the selected IP blocks
when they are not rotated from their original positions.

6. Select the R90 option, then specify stripe configuration options for the selected IP blocks
when they are rotated 90 degrees from their original positions.

7. When the display in the upper right quadrant looks correct, click the Set button.

8. Repeat steps 3-7 for additional IP blocks.

9. When all blocks that require block rings or stripes have been set:

❑ Click Save to save the configuration to the existing template.

❑ Click Save as, which opens the Specify Template Name form; specify a name in
Template Name, then click OK.

Using the Design Page

1. Click the Design radio button on the Synthesize Power Plan form, then the New or Open
icons.

This opens the Design page of the Edit Power Plan Template form. This page contains
ring and stripe configuration options for the core area of the design. This page is divided
into four quadrants:

❑ The upper left quadrant, Display Template Hierarchy, displays the name(s) of
regions, IP library template, and option set.

❑ The upper right quadrant allows you to define ring and stripe characteristics for a
region in the design, and allows you to add or modify regions in the design.

❑ The lower left quadrant shows a preview of how the rings and stripes will be created
in the actual design.

❑ The lower right quadrant allows you to define region, net template, IP library
template, and power planning option set names.
October 2010 462 Product Version 9.1.3

../encounter/powerG.html#EditPowerPlanDesign

Encounter Digital Implementation System User Guide
Power Planning and Routing
2. Specify the Ring and Stripe configurations in the upper right quadrant.

The configuration is shown in the lower left quadrant.

3. Specify a region name to indicate the configuration to be used at the top level of the
design or by a particular power domain.

4. Specify a name in the Net Template Name field in the lower right quadrant of the form
if you want the configuration to be used by a particular power or ground net.

The software uses the region name as the net template name to indicate a configuration
for use by both the power net and ground net when the Net Template Name field is
empty.

5. Select the IP Library Template you want to use from the dropdown list in the lower right
quadrant of the form.

6. Choose a power planning option set from the dropdown list if you want to use a set of
special stripe or ring options.

Use the create/edit option set icon to edit or view the option set you have chosen.

7. Click the IP Block tab to view (but not edit) the IP library template used after you add
and double-click the region template in Design Template Hierarchy.

8. When you have finished configuring all region templates:

❑ Click Save to save the configuration to the existing template.

❑ Click Save as, which opens the Specify Template Name form; specify a name in
Template Name, then click OK.

Specifying Template Parameters

When specifying the template parameters, a system template is not required. The software
creates a system template if one is not provided. The template parameters are based on the
system template and the total average power value that is specified. You can specify the
template parameters by clicking on the Specify Template Parameter icon, which allows you
to add specific information for the chip-level power structures, such as the width, offset, and
stripe count or pitch for each layer.

The Design and Template windows of this form allow you to associate templates with design
components.
October 2010 463 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power Planning and Routing
The appearance of the top portion of this form (Template Parameter) depends on the power
structures you have selected. The bottom half of the form (Configure Template Parameter)
is always the same. The top half of the form contains a set of default values based on the total
power value specified on the Synthesize Power Plan form.

The Configure Template Parameter area contains options for using power analysis data to
provide better estimates for the width, offset, and count/pitch values in the top portion of the
form. You can click the Update Template Parameter button to update them. You can also
modify these parameter values manually.

Instantiating a Template

In general, to create a power structure with the synthesize power plan software, you need
three sets of data:

■ A power value for the entire design (estimated by the APP software)

■ The IR-drop threshold for the entire design (optional)

■ A power plan template—either a design template or IP library template (optional)

If you do not provide a template, the APP software creates a base system template. You can
also start with an IP library template and the APP software will create the top-level design
template.

To use power grid synthesis (PGS), specify an IR-drop threshold for the design whether you
provide a power plan template or not.

Template Naming Conventions

APP creates output templates according to the following naming conventions.

Input template for APP Output template from APP

Design
template IP template Design

template IP template

Without template

— — appD appD_appR
October 2010 464 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power Planning and Routing
Using the Synthesize Power Plan Functionality

The synthesize power plan functionality (SPP) can quickly create a power plan using only the
total average power value (estimated by the APP software) and the layer electromigration
(EM) limits. Such power plan creation is useful for both prototyping and regular flows.

■ In a prototyping flow, you only need to provide the layer EM limits to generate a power
plan.

■ In a regular flow, you need to provide the layer EM limits and IR-drop threshold values to
generate a non-pessimistic power plan. (Set the EM limits by choosing Power – Power
Planning – Specify Electromigration to open the Specify Electromigration Limits
form.)

❑ To compute the parameters for the template, SPP takes the EM limits and IR-drop
threshold (optional) into consideration.

❑ Cadence strongly recommends that you manually define the EM limits in the Specify
Electromigration Limits form if a DCCURRENTDENSITY specification is not available
in the LEF file.

When you use SPP, IR-drop threshold is an optional value. If you do not provide an IR-drop
threshold value, then the resulting power plan should be considered a prototype power plan.

With user’s template

uD — appD_uD appD_uD_appR_regionN

— uIP appL_uIP appL_uIP_appR

With system template

appD — appD appD_appR

appD_uD — appD_uD appD_uD_appR_regionN

appL_uIP — appL_uIP appL_uIP_appR

— appD_appR appD appD_appR

— appD_uD_appR_region1 appD_uD appD_uD_appR

— appL_uIP_appR appL_uIP appL_uIP_appR

Input template for APP Output template from APP

Design
template IP template Design

template IP template
October 2010 465 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power Planning and Routing
The SPP process consists of the following general steps.

1. Creating a base system template.

SPP analyzes the design data, floorplan data, and cell library data to define the base
system template.

SPP takes power domains into account and creates separate base system templates for
each domain.

The base system template contains the following information:

❑ Core ring layer information (required); core ring information (optional). SPP
analyzes the floorplan and block data to determine the core ring layers.

❑ Pad ring information (optional). SPP analyzes the pad cells and determines the pad
ring requirements.

❑ Block ring layers and width per cell (required); block rings (optional). SPP analyzes
block data to determine the block ring layers and width.

❑ Stripe layers (required); stripes (optional). SPP uses the information gathered for
core rings and block rings to determine the stripe layers.

Use the Edit Power Plan Template form to define custom templates for the designs. If you
have a custom template, then SPP overwrites the base system template with the custom
template.

2. Estimating the template parameters.

SPP determines the width, spacing, and offset for core rings, and the width, spacing,
offset, and pitch for stripes.

❑ SPP tries to create a finer mesh so that every block has stripes nearby.

❑ Template parameters are estimated for a prototype-based flow, hence the
parameters are slightly pessimistic.

3. Creating a power plan.

SPP creates the power plan with the template and para meters that it calculated in step 1
and step 2.

When creating the power plan, SPP considers the following:

❑ Blocks to be excluded while creating core rings.

❑ The clustering of blocks to create shared block rings.
October 2010 466 Product Version 9.1.3

../encounter/powerG.html#EditPowerPlanTemplate

Encounter Digital Implementation System User Guide
Power Planning and Routing
❑ The topmost stripe layers go over the blocks and bottommost layers break at the
block rings.

❑ Stripes are extended based on the presence of outermost targets.

4. Refining the power plan.

Once the power plan is created, SPP runs fast rail analysis to determine whether the
power plan generated in step 3 meets the IR-drop threshold constraint or not. If the
power plan does not meet the IR-drop threshold constraint, SPP adjusts the power plan
size virtually and determines the type of changes required in the prototype power plan to
meet the IR-drop threshold constraint.

5. Recreating the power plan.

Based on the feedback from step 4, SPP updates the power plan.

Creating Differential Routing to Signal Bumps

Differential routing creates wires of the same length or configuration between a set of sources
and targets. Use the Route Flip Chip Signal form to specify differential routing parameters.

You can create a constraint file to specify differential pair definitions, as well as shield net
definitions and differential group definitions. The following example shows how to set up a
constraint file:

Differential pair definition

###balanced routing with shielding

out[10] PAIR out[11] SHIELDNET VDD

###balanced routing without shielding

out[8] PAIR out[9]

Shield net defintition

out[5] SHIELDNET VDD

out[3] SHIELDNET VSS

Differential group definition

out[15] GROUP out[16] out[17] out[18] resetn

clk GROUP out[12] out[13]
October 2010 467 Product Version 9.1.3

../encounter/routeG.html#RouteFlipChipBasic

Encounter Digital Implementation System User Guide
Power Planning and Routing
October 2010 468 Product Version 9.1.3

Encounter Digital Implementation System User Guide
15
Low Power Design

■ Overview on page 470

■ Power Domain Shutdown and Scaling on page 470

■ Support for the Common Power Format (CPF) on page 472

■ Multiple Supply Voltage Flat Flow on page 475

■ Multiple Supply Voltage Top-Down Hierarchical Flow on page 495

■ Multiple Supply Voltage Bottom-Up Hierarchical Flow on page 510

■ Leakage Power Optimization Techniques on page 514

■ Power Shutdown Techniques on page 519

■ Power Switch Optimization on page 549
October 2010 469 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Overview

This chapter describes how the multiple supply voltage (MSV) feature can help you save
power in your design.

There are two types of MSV designs:

■ Multiple Supply Single Voltage (MSSV)

Core logic runs at a single voltage, but some portions of the logic are isolated on their
own power supply.

■ Multiple Supply Multiple Voltage (MSMV)

Supplies of different voltages are used for core logic.

A power domain (also known as voltage island) is a floorplan object in the Encounter Digital
Implementation System (EDI System) software. A power domain has a fence constraint and
a specific library (.lib, .lef) associated with it. Cells that belong to a power domain can be
placed only within that power domain. The exception to this rule is level shifter cells, which
are used to communicate between power domains of different voltages. By constraining the
design this way, a complete place and route flow can be used on an MSV design. You can
automatically place level shifters, perform timing optimization, run clock tree synthesis (CTS)
across domain boundaries, and obtain DRC-clean power routing.

Power Domain Shutdown and Scaling

You can reduce power consumption either by shutting down a power domain or operating it
at a reduced voltage (voltage scaling).

Power domain shutdown is a technique in which an entire power domain is shut down during
a specific mode of operation. This results in both leakage power and dynamic power savings
because the transistors are isolated from the supply and ground lines. You must use isolation
cells when shutting down domains in order to drive the interface signals to predetermined
known states. In many cases, a design in the shutdown mode operates at a single voltage
throughout the design (an MSSV design); however, the portion of the design that is shut off
must be in a different power domain. This is necessary because this portion must be isolated
from the rest of the system so that it can be shut off independently from the rest of the core
logic. For more information on power shutdown, see “Power Shutdown Techniques” on
page 519

In power domain scaling (also known as voltage scaling), one or more domains operate at a
lower voltage than that of the other core logic. Power domain scaling provides dynamic power
October 2010 470 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
savings, and can provide leakage power savings, depending the on the threshold
characteristics of the library for the scaled domain.

Note: These techniques can be used separately or together in the same design.

The following figure shows three power domains: RTC, PD1, and the default power domain,
which contains PD1 and RTC.

■ The default power domain contains the PD1 and RTC power domains. PD1 and the
default domain can share libraries.

■ Power domain PD1 and the default power domain operate at the same voltage. Power
switches enable PD1 to shut down.

■ Power domain RTC operates at a different voltage than PD1 and the default domain.

■ RTC can always remain on.

■ You must insert voltage level shifters between the default domain and RTC, and between
PD1 and RTC.

■ Isolation cells (clamps) drive outputs of a power domain to known states when that power
domain is shut down.

default domain
1.2V

RTC
0.9V

PD1 (Shut-Off)
1.2V

isolation

shifter

shifter
October 2010 471 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Support for the Common Power Format (CPF)

Cadence provides a Common Power Format (CPF) that enables you to freely exchange data
between Cadence tools supporting the low-power design flows, and most importantly,
capture low power design intent early in the design process rather than late in the back-end
cycle. A CPF file captures all design and technology-related power constraints, which can be
used throughout the design flow.

You can do one or both of the following:

■ Save a native EDI System design as CPF

■ Create a Common Power Format (CPF) file, read the CPF file into EDI System, run the
commands, and create a CPF database

CPF commands perform functions such as the following:

■ Creating power domains and specifying their power/ground connections

■ Specifying timing libraries

■ Creating analysis view and defining library set for each power domain

■ Defining operating conditions

■ Defining low power cells

■ Creating low power rules: isolation rules, level shifter rules, SRPG rules, power switch
rules)

Note: If there is a minor CPF change during the flow, you can either perform CPF ECO or a
view-related update during the flow, without running the flow from the beginning.

CPF Version Support

The EDI System software supports the following versions of CPF:

■ CPF 1.0 (default)

■ CPF 1.0e

■ CPF 1.1

EDI System Commands Supporting CPF

■ loadCPF
October 2010 472 Product Version 9.1.3

../fetxtcmdref/msvT.html#loadCPF

Encounter Digital Implementation System User Guide
Low Power Design
■ commitCPF

■ saveCPF

Loading and Committing a CPF File

A GUI enables you to load and commit a CPF file:

■ Power – Multiple Supply Voltage – Load/Commit CPF

This GUI corresponds to the following text commands:

■ loadCPF

Reads a CPF file into EDI System for error checking

■ commitCPF

Executes (commits) the CPF commands within the EDI System environment

Saving a CPF Database

The saveDesign command prevents you from saving an EDI System database from
obsolete EDI System MSV commands.

By default, if the design was created with MSV commands only and no CPF file, then the
design cannot be saved to the EDI System database with saveDesign.

Complete the following steps to save a CPF database:

1. Save the CPF file from an EDI System database.

saveCPF

2. Exit the current session

3. Start a new session

4. Load the CPF file into EDI System.

loadCPF

5. Execute the commands in the CPF file.

commitCPF

6. Save the design.

saveDesign
October 2010 473 Product Version 9.1.3

../fetxtcmdref/msvT.html#commitCPF
../fetxtcmdref/msvT.html#saveCPF
../fetxtcmdref/msvT.html#saveCPF
../encounter/powerG.html#LoadCommitCPF
../fetxtcmdref/msvT.html#loadCPF
../fetxtcmdref/msvT.html#commitCPF
../fetxtcmdref/importT.html#saveDesign
../fetxtcmdref/msvT.html#loadCPF
../fetxtcmdref/msvT.html#commitCPF
../fetxtcmdref/importT.html#saveDesign

Encounter Digital Implementation System User Guide
Low Power Design
CPF Documentation

For more information about CPF, see the following documents:

■ EDI System Text Command Reference

Documents the following EDI System commands supporting the CPF flow. Descriptions
on obsolete native EDI System commands are provided.

■ EDI System Menu Reference

Documents the loadCPF/saveCPF GUI.

■ EDI System User Guide

❑ Provides a sample CPF 1.0 script in the “CPF 1.0 Script Example” chapter.

❑ Provides a sample CPF 1.0e script in the “CPF 1.0e Script Example” chapter

❑ Provides a sample CPF 1.1 script in the “CPF 1.1 Script Example” chapter

❑ Provides a list of supported CPF 1.0 commands in the “Supported CPF 1.0
Commands” chapter

❑ Provides a list of supported CPF 1.0e commands in the “Supported CPF 1.0e
Commands” chapter.

❑ Provides a list of supported CPF 1.1 commands in the “Supported CPF 1.1
Commands” chapter.
October 2010 474 Product Version 9.1.3

../fetxtcmdref/fetxtcmdrefTOC.html#firstpage
../encounter/encounterTOC.html#firstpage
../soceUG/SupportedCPF1Commands.html#firstpage
../soceUG/SupportedCPF1Commands.html#firstpage
../soceUG/SupportedCPF1eCommands.html#firstpage
../soceUG/SupportedCPF1eCommands.html#firstpage
../soceUG/CPFScript.html#firstpage
../soceUG/soceUGTOC.html#firstpage
../soceUG/CPF1eScript.html#firstpage
../soceUG/SupportedCPF11Commands.html#firstpage
../soceUG/SupportedCPF11Commands.html#firstpage
../soceUG/CPF11Script.html#firstpage

Encounter Digital Implementation System User Guide
Low Power Design
Multiple Supply Voltage Flat Flow

The MSV flat flow is based on CPF. The flow includes the following steps:

This section includes the following topics:

■ Preparing Data on page 477

■ Loading the Configuration File on page 480

■ Floorplanning the Design on page 480

■ Loading and Committing the CPF File on page 481

■ Setting the Power Domain Size on page 481

■ Setting the Power Domain mingap on page 481

■ Adding Power Switches on page 482

■ Verify Power Domains on page 482

Load the config file

Floorplan the design

Load and commit CPF

Set power domain size

Set power domain mingap
(optional)

verify the PowerDomain

Add Power Switches

Add well tap cells (optional)

Plan power

Place the design

Add tie hi/lo cells (optional)

Optimize timing (post-CTS)

Synthesize clock trees

Optimize timing (pre-CTS)

Route power

Route the design

optDesign -postRoute

Prepare data

Highlight power domains
(optional)

Trial routing
October 2010 475 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
■ Adding Well Tap Cells on page 482

■ Planning Power on page 482

■ Placing Standard Cells and Macros on page 483

■ Highlight Power Domains (Optional) on page 485

■ Adding Tie High/Low cells on page 486

■ Routing Power on page 486

■ Trial Routing on page 487

■ Optimizing Timing on page 489

■ Synthesizing Clock Trees on page 492

■ Optimizing Timing (Post CTS) on page 493

■ Routing the Design on page 493

■ Analyzing Timing on page 493

■ Analyzing Power on page 493

■ Optimizing Timing (Post-Route) on page 494
October 2010 476 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Preparing Data

You must prepare data as follows before you begin an MSV design:

■ Preparing the Netlist on page 477

■ Preparing Libraries on page 477

■ Defining Level Shifter Cells on page 478

Preparing the Netlist

■ Power domains can contain one or more modules as members.

■ A power domain can also be a partition, provided that the partition is the sole member of
the domain.

Preparing Libraries

In an MSV flow, the same cell may have instances in different regions operating at different
voltages. For such a cell, characterize a different NLDM (or table look-up) for each operating
voltage.

Top modA-1a

modA-1b

modA-1_1

modA-1_2

RAM

modA-1_3

modA-1

modA-2

I/O Cells

modB

modA

PD1

= Non-default domain
October 2010 477 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Your design must satisfy the following requirements:

■ All library files loaded into the system to represent different voltage characterizations
must have different library names.

■ Any given library must have one and only one voltage associated with it.

■ Min and max libraries may share the same library name.

Two or more power domains may have the same set of min/max libraries bound to them, as
is usually the case in shutdown methodologies. You can then associate each library with a
unique operating condition (and hence voltage) associated with it; for example:

If you specify min and max timing libraries when you import the design, the timing library
information appears in the configuration file as follows:

set rda_Input(ui_timelib,max) "stdcell_1V.lib stdcell_2V.lib stdcell_3V.lib"
set rda_Input(ui_timelib,min) "stdcell_1V.lib stdcell_2V.lib stdcell_3V.lib"

If you specify common timing libraries when you import the design, the timing library
information appears in the configuration file as follows:

set rda_Input(ui_timelib) "stdcell_1V.lib stdcell_2V.lib stdcell_3V.lib"

Defining Level Shifter Cells

Level shifter cells are used to communicate between power domains of different voltages. The
main characteristic of the level shifter cell is the presence of a secondary power rail or pin that
operates at a different voltage than the primary power pins.

Library File Library Name OpCondName

stdcell-1V.lib Stdcell_1V 1V_min

1V_max

stdcell-2V.lib Stdcell_2V 2V_min

2V_max

stdcell-3V.lib Stdcell_3V 3V_min

3V_max
October 2010 478 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
The EDI System software supports the following level shifter types:

The secondary power pin is modeled as a rail or pin. You must describe the secondary rail or
pin as a power pin with shape ABUTMENT in LEF. The following example shows the LEF
description of a pin named VDDL:

PIN VDDL
DIRECTION INOUT ;
USE power ;
SHAPE ABUTMENT ;
PORT ;
LAYER METAL1 ;
RECT 5.860 1.700 8.110 1.990 ;

Note: The shifter cell can be an integral multiple of the standard cell height.

VSS Rail

Main VDD Rail (VDD)

External rail or pin
(VDD2)

Can be multiple row heights (2X, 3X …)

Shifter cell with
external pin

VSS

VSS

VSS VDD

VDD

VDD

VDD2

VDD2

Shifter cell with different
VDD at top and bottom

Shifter cell
with split VDD
rail

VDD2

Shifter cell with
external rail

VSS

VDD

VDD2
October 2010 479 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Loading the Configuration File

➤ To load the configuration file, use the following command:

loadConfig

Floorplanning the Design

Create a floorplan for the design. For more information about creating floorplans, see
“Floorplanning the Design” in the EDI System User Guide.

1. Place I/Os.

2. Use the Move/Shape/Resize icon to move control logic into the power domain.

3. Manually move the power domains into the core area.

4. (Optional) Change the shape of a power domain to a rectilinear shape by adding power
domain cuts. The Cut Rectilinear icon allows you to interactively create power domain
cuts that define rectilinear power domains. The power domain cuts mask out portions of
the power domain to enable you to see the shape of the power domain. The equivalent
text command is createPowerDomainCut.

5. (Optional) Preplace hard macros.

6. Save the floorplan file (.fp).

Use the saveFPlan command or select Design – Save – Floorplan from the GUI.

The following example shows the kind of information saved:

■ Power domain information: design.fp

POWERDOMAIN: NAME=TDSPCore

VOLT=0.9680 LAYER=0 ALWAYSON=0

NRLIB=4

TIMELIB=tcbn45lpbwp_c060907bc0d88(common)

TIMELIB=tcbn45lpbwp_c070208bc1d10d88(common)

TIMELIB=tcbn45lpbwphvt_c070208bc0d88(common)

TIMELIB=tcbn45lpbwp_c070208bc0d88(common)

MINGAPTOP=16.0000 MINGAPBOT=16.0000 MINGAPLEFT=16.0000

MINGAPRIGHT=16.0000

RSEXTTOP=50.0000 RSEXTBOT=50.0000 RSEXTLEFT=50.0000 RSEXTRIGHT=50.0000

ROWFLIP=3 SITE=core ROWSPACETYPE=2 ROWSPACING=0.0000

MODULE=HDRDID1BWPHVT POWER=(VDD_TDSPCore:VDD)

POWER=(VDD_TDSPCore_R:TVDD) GND=(VSS:VSS)
October 2010 480 Product Version 9.1.3

../soceUG/floorplanning.html#firstpage
../fetxtcmdref/msvT.html#createPowerDomainCut

Encounter Digital Implementation System User Guide
Low Power Design
MODULE=LVLHLD2BWP POWER=(VDD_TDSPCore:VDD) GND=(VSS:VSS)

MODULE=PTLVLHLD2BWP POWER=(VDD_TDSPCore_R:TVDD) GND=(VSS:VSS)

MODULE=TDSP_CORE_INST POWER=(VDD_TDSPCore_R:TVDD)

POWER=(VDD_TDSPCore:VDD) GND=(VSS:VSS)

END_PD

POWERDOMAIN: NAME=PLL

...

END_PD

Loading and Committing the CPF File

1. To read-in the CPF that contains CPF commands, use the following command:

loadCPF fileName

This command reads the file and performs lint, parsing, and semantics checking. This
command does not execute any of the command within the CPF file.

2. To commit the CPF file, use the following command:

commitCPF

This command executes the CPF commands loaded by loadCPF. Running this
command does the following:

❑ Creates power domains

❑ Creates logical power/ground net connections

❑ Specifies timing libraries for power domains

❑ Inserts shifter cells and isolation cells

❑ Replaces regular registers with state-retention (SRPG) registers

Setting the Power Domain Size

➤ To do specify the power domain physical size, use the following command:

setObjFPlanBox

Setting the Power Domain mingap

➤ (Optional) To set the power domain mingap, use the following command:

modifyPowerDomainAttr -minGaps
October 2010 481 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Adding Power Switches

➤ To add power switches, use the following command:

addPowerSwitch

The tool supports two types of power switch insertion: ring or column style. For more
information, see “Power Shutdown Techniques” on page 519.

Verify Power Domains

1. Use the verifyPowerDomain command to verify that the following conditions were
met:

verifyPowerDomain -gconn -place -xNetPD

❑ Power and ground pins of instances within a power domain are connected to the
power and ground nets of that power domain.

❑ Only those cells assigned to a power domain are placed within the boundary of the
power domain.

❑ The correct level shifters are inserted on all nets crossing power domains.

Note: The verifyPowerDomain command checks that libraries specified for each
power domain of each dc_corner are complete for each power domain member list.

2. Correct all errors before continuing.

Adding Well Tap Cells

➤ To add well tap cells, use the following command:

addWellTap

For more information, see “Leakage Power Optimization Techniques” on page 514

Planning Power

Each domain must have complete power and ground rings. To create the power plan, use one
of the following approaches:

■ Use the automatic power planner (APP) to assign a template to each power domain. For
more information, see Power Planning and Routing on page 451 in the EDI System
User Guide.

■ Use GUI or text commands
October 2010 482 Product Version 9.1.3

../fetxtcmdref/msvT.html#verifyPowerDomain

Encounter Digital Implementation System User Guide
Low Power Design
To create rings, complete the following steps:

1. Create core rings (no changes for MSV).

2. Create block rings for power domains and hard macros.

To use the GUI to create rings around a power domain, choose Power – Power
Planning – Add Rings. Select the Block ring(s) around: Selected domain/fences/
reefs option.

For more information, see “Power Menu” in the EDI System Menu Reference.

The equivalent text command is addRing -type {block_rings -around
power_domain}.

3. Create block rings for hard macros (no changes for MSV).

To create stripes for a selected power domain or for all power domains, complete the following
steps:

1. Create stripes in either of the following ways:

❑ Select a power domain, then use the Each selected block/power domain/fence
option on the Basic tab of the Add Stripes form to create power stripes for a selected
power domain.

The equivalent text command is addStripe with the -over_power_domain
parameter set to 1.

❑ Use the All domains option on the Basic tab of the Add Stripes form to create
power stripes for all power domains.

The equivalent text command is addStripe with the -all_domains parameter
set to 1.

Note: To create a mesh, you must use the addStripe command twice: once for vertical
stripes and once for horizontal stripes.

Note: If the power and ground nets for the stripes do not match the power domain power
and ground nets, a warning message displays.

2. Create stripes to connect power domain rings to core rings.

Placing Standard Cells and Macros

1. Place standard cells that have not already been placed.

setPlaceMode -timingDriven
placeDesign
October 2010 483 Product Version 9.1.3

../fetxtcmdref/fp_special_routeT.html#addRing
../encounter/powerG.html#AddStripesBasic
../fetxtcmdref/fp_special_routeT.html#addStripe
../encounter/powerG.html#AddStripesBasic
../fetxtcmdref/fp_special_routeT.html#addStripe

Encounter Digital Implementation System User Guide
Low Power Design
This software recognizes power domains automatically and ensures that the fences are
respected.

In scan reordering, to maintain the hierarchical ports so that shifters and isolation cells
will not be changed, use the following command:

setScanReorderMode -keepHierPort

The following figure shows scan reordering without -keepHierPort:

As shown in this figure, the software adds two hierarchical ports.

The following figure shows scan reordering with -keepHierPort:

A single hierarchical port is maintained.

The software places all standard cells and hard macros within the boundary of the power
domain to which they are assigned. In addition, voltage level shifters are placed around
the power domain boundary.

4

3 1

2 1

4 3

2

PD2

PD1PD1

PD2

4

3 1

2 4

3 2

1

PD2

PD1PD1

PD2
October 2010 484 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Voltage level shifters are placed along the inside edge of the power domain boundary, on
the row ends. For top and bottom rows, multiple shifter cells are placed at row ends, if
needed.

2. Highlight shifters (Optional)

To highlight shifters, use the following command:

reportShifter -highlight

As an alternative, from the main menu, you can select Power – Multiple Supply
Voltage – Highlight Power Domains to highlight the shifters.

Note: Shifter information is not saved in the database.

3. Verify power domains again (Optional)

To verify power domains (optional) and ensure that the design has no violations, use the
following command:

verifyPowerDomain -xNetPD fileName -isoNetPD fileName

Highlight Power Domains (Optional)

After the design is placed, you can highlight the power domain in the following ways:

■ Using the Floorplan View

Select a power domain from the Floorplan view. When you switch to the Physical view,
all power domain members are highlighted, except for I/O pads.

■ Using the Design Browser

The software displays power domains as groups in the Design Browser. Select the Group
object to view all power domains listed in the PDGroups category. Select one of the
power domains and click on the Highlight button. All power domain members (including
the I/O pads) that were assigned to that domain are highlighted in the Physical view.

■ Using the Text Command

Use the hilitePowerDomain command to highlight all power domain members,
including I/O pads, assigned to the power domain; for example:

hilitePowerDomain PD2

■ Using the Highlight Power Domains GUIs:

Power – Multiple Supply Voltage – Highlight Power Domains

This form has three tabs:
October 2010 485 Product Version 9.1.3

../encounter/powerG.html#HighlightPowerDomains

Encounter Digital Implementation System User Guide
Low Power Design
❑ Power Domain

Highlights power domains, P/G nets, level shifters, and/or power switches in a power
domains. You can highlight non-default power domains only.

❑ Signal Net/HLS Cell

Enables you to select categories of signal nets or Hvt, Lvt, or Svt cells.

❑ Highlight Set

Enables you to customize the highlight colors.

Adding Tie High/Low cells

➤ Add tie high/low cells; for example, for PD1:

addTieHiLo -cell TIEONE_PD1 -tiHiPin Z -powerDomain PD1

Routing Power

The EDI System software uses the sroute command to route the followpin connections and
the additional power pins contained in level shifters, just is it routes regular followpins.

➤ To use the power router, use the following command:

sroute

The sroute command does the following:

❑ Connects power/ground nets from end to end, terminating at the power rings.

❑ Connects voltage level shifters pins to the closest segment of the ring surrounding
the power domain.

You can also use the sroute command to route level shifter pins as well as primary nets
within a domain. For example:

sroute -powerDomains { TDSP } -secondaryPinNet { vdd } -allowJogging 1
-allowLayerChange 1 -nets { vdd_lp vss }

sroute -powerDomains { DEFAULT } -secondaryPinNet { vdd_lp } -allowJogging 1
-allowLayerChange 1 -nets { vss vdd }

clearDrc

➤ To use the Sroute GUI, complete the following step.

Select Route – Special Route to display the Sroute – Basic form.
October 2010 486 Product Version 9.1.3

../encounter/powerG.html#HighlightMSVObjPD
../encounter/powerG.html#HighlightMSVObjSignalNet
../encounter/powerG.html#HighlightMSVObjSet
../encounter/routeG.html#SRouteBasic
../fetxtcmdref/powerrouteT.html#sroute

Encounter Digital Implementation System User Guide
Low Power Design
❑ If you select the Standard cell pins option on the Basic tab of the SRoute form,
SRoute connects power and ground nets from end-to-end, terminating at the power
rings.

❑ Standard cell pins automatically recognize voltage level shifters and connect the
standard cells to the correct power nets.

❑ If you select the Level shifter pins option, sroute connects voltage level shifter
pins to the closest segment of the ring around the power domain.

For more information, see Sroute – Basic in the “Route Menu” chapter of the EDI
System Menu Reference.

➤ To route always-on pins in SRPG cells, specify the following command before you run
sroute:

setPGPinUseSignalRoute

For example, NanoRoute connects cell RSDF to pin TVDD, and cell PTBUFF to pin
TVDD:

setPGPinUseSignalRoute RSDF:TVDD PTBUFF:TVDD
routePGPinUseSignalRoute -nets VDD_TDSPCore_R

Trial Routing

By default, the trialRoute command is not MSV-aware, so you must use the following
options to setTrialRouteMode:

■ -handleEachPD true

■ -handlePDComplex true

If you have nested power domains, use the following setTrialRoute parameter:

■ -handlePDComplex true
October 2010 487 Product Version 9.1.3

../encounter/routeG.html#SRouteCellPins
../encounter/routeG.html#SRouteBasic
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/routeT.html#setTrialRouteMode
../fetxtcmdref/msvT.html#setPGPinUseSignalRoute

Encounter Digital Implementation System User Guide
Low Power Design
The following figure shows trialRoute behavior without MSV-aware settings:

■ Net from A to B is routed outside of PD1

■ Net from B to C is routed through PD2

■ Net from C to D routed through PD4

The following figure shows trial routing when you specify setTrialRouteMode
-handlePDComplex true and -handleEachPD true:

■ Net from A to B is routed only inside PD1

■ Net from B to C is routed only through the Default power domain

■ Net from C to D is routed only inside PD3

LPNonMSVAwareTrialRoute.gif

B

PD1 PD2

PD4

A

PD3

C

D

default

LPMSVAwareTrialRoute.gif

B

PD1 PD2

PD4

A

PD3

C

D

default
October 2010 488 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Optimizing Timing

➤ To optimize timing at this phase of the design, use the following command:

optDesign -preCTS

Note: In pre-CTS mode, the tool automatically synthesizes the buffer tree, but you must first
specify always-on buffers in the CPF file.

Instance cells that belong to different power domains are bound to different timing libraries.
Instances are bound to TLF or .lib libraries when you create power domains. Each power
domain has a set of associated timing libraries. During timing optimization, new cells (added
or changed) are associated only with a timing library that is part of the power domain.

You do not need to set any special options to optimize timing for an MSV design.

Depending on the stage at which you want to optimize timing, use one of the following
commands:

■ optDesign -preCTS

■ optDesign -postCTS

■ optDesign -postRoute

Inserted cells are assigned to the appropriate power domain, and power and ground pins are
connected to the correct power and ground nets. The software places the inserted cells within
the appropriate domain boundary.

Note: The same scenarios apply to isolation cells.
October 2010 489 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
The following scenario shows how the software optimizes timing across a net that crosses
power domains of different voltages.

■ Logically, the buffer instance name is in B HInst, and the master cell is from library B.

■ Physically, the buffer is placed as close as possible to the level shifter on the opposite
domain location determined by the need to fix timing.

Power domain A
Libraries A

LevelShifter_A2B

stdCell_A

Power domain B
Libraries B

Inserted buffer

No buffers are inserted
between these points
October 2010 490 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
The following scenario shows how the software optimizes timing inside a power domain that
does not contain a level shifter.

■ Logically, the buffer instance name is in A HInst, and the master cell is from library A.

■ Physically, the buffer is placed as close as possible to the level shifter on the opposite
domain location determined by the need to fix timing.

Power domain A
Libraries A

LevelShifter_A2B

Power domain B
Libraries B

Inserted buffer

stdCell_A

No buffers are inserted
between these points
October 2010 491 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
The following scenario shows timing optimization behavior for nets connecting for I/Os.

■ Logically, the buffer instance names are in A HInst, and the master cells are from library
A.

■ Physically, buffers are placed within power domain A only.

■ The same applies to isolation cells.

Synthesizing Clock Trees

1. Before running clockDesign, use the following command to make clockDesign
power-aware:

setCTSMode -powerAware true

2. To synthesize clock trees, run clockDesign.

For all clocks within a domain, CTS selects buffers from the domain’s libraries and places
buffers within the domain’s boundary.

For all clocks crossing power domains, CTS assumes that level shifters are present. CTS
does the following:

Power domain A
Libraries A

Inserted buffer

stdCell_A

Power domain C
Libraries C

No buffers inserted

Inserted buffer

No buffers inserted
October 2010 492 Product Version 9.1.3

../fetxtcmdref/clockT.html#clockDesign
../fetxtcmdref/clockT.html#setCTSMode

Encounter Digital Implementation System User Guide
Low Power Design
■ Establishes a single entry/exit point for each domain

■ Selects buffers from appropriate libraries

■ Places the buffers within domain boundaries

■ Performs cloning and decloning

Optimizing Timing (Post CTS)

➤ To optimize timing in post-CTS mode, use the following command:

optDesign -postCTS

Routing the Design

1. Before running NanoRoute, use the following command to make nanoRoute MSV-aware:

setNanoRouteMode -routeHonorPowerDomain true

2. To route the design, run globalDetailRoute.

Analyzing Timing

Each power domain has a set of associated timing libraries. Instance cells that belong to
different power domains are bound to corresponding timing libraries, which allows you to
perform timing analysis with no further changes for MSV.

➤ To analyze timing, run timeDesign as you would ordinarily.

Analyzing Power

Power analysis software recognizes power domains and calculates power values accordingly.

To perform power analysis for a design with MSV, choose Power – Rail Analysis and use
the Edit Pad Location form to create a power pad location file for each net. For more
information, see Edit Pad Location in the “Power Menu” chapter of the EDI System Menu
Reference.

The power analysis software can use an instance power file to calculate instance IR drop
instead of a global net voltage.

You can specify that power analysis reports be organized by net. If you specify a report name,
the report for all nets is placed in that one file. If you do not specify a report name, a separate
October 2010 493 Product Version 9.1.3

../fetxtcmdref/routeT.html#setNanoRouteMode
../encounter/powerG.html#EditPadLocation

Encounter Digital Implementation System User Guide
Low Power Design
file contains each report. For example, if the net names are VDD1 and VDD2, the report names
are VDD1.report and VDD2. report.

For more information about how power analysis supports MSV, see “Running Power Analysis
with EDI System,” in the Power Analysis chapter.

Optimizing Timing (Post-Route)

➤ After routing, use the following command to optimize timing:

optDesign -postRoute
October 2010 494 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Multiple Supply Voltage Top-Down Hierarchical Flow

This section discusses the following topics:

■ Overview on page 495

■ Always-On Feedthrough Handling on page 496

■ Chip Partitioning on page 498

■ Block-level CPF Generation on page 498

■ Top-Level CPF Generation on page 500

■ Block-Level Implementation on page 501

■ Top-Level Implementation on page 501

■ Chip Assembly on page 501

Overview

The EDI System tool supports the low power top-down CPF-based hierarchical flow built on
the regular EDI System hierarchical flow. The difference is that, in the CPF-based hierarchical
flow, you partition the chip-level CPF file into block-level CPF files and a top-level hierarchical
CPF file. You then use those CPF files to implement the block level and top level designs.

The CPF-based hierarchical flow supports the following scenarios:

■ The partition is physically the same as the power domain. The hierarchical instance is
logically the same for power domain and partition.

■ The power domain is physically inside partition. The power domain hierarchical instance
is logically a sub hierarchical instance of partition.
October 2010 495 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
■ Partition is physically inside power domain. The partition hierarchical instance is logically
one (and only one) of the hierarchical instances of power domain.

Always-On Feedthrough Handling

In the hierarchical flow, when you commit CPF, the tool replaces assign statements with
always-on buffers for the net connecting to always-on logic or a net whose driver is always-
on. The tool identifies these nets automatically as follows:

■ The driver of the feedthrough and the feedthrough path are always on

■ The output of the feedthrough is defined by identify_always_on_driver in the
chip-level CPF file

The tool can also insert a feedthrough buffer in a partition that resides in a shut-off power
domain.

Load chip-level CPF

Block-level implementation in
CPF flow

Top-level implementation in
CPF flow

Block-level data
including CPF files

Top-level data
including CPF files

EDI System hierarchical flow

Load chip-level CPF

Chip assembly
October 2010 496 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
If a feedthrough already exists in an input netlist (for example, a netlist for some reused
blocks), the feedthrough may use the assign statements and regular buffers. The tool
identifies the always-on feedthroughs and replaces the regular buffers or assign statements
with always-on buffers defined in the chip-level CPF when you commit the CPF file.

If you use insertPtnFeedthrough to insert a feedthrough in the hierarchical flow, use the
-buffer parameter to add an always-on buffer on the feedthrough. The tool can trace

Switchable power domain

assign

Always-on logic Always-on logic

Switchable power domain

Regular buffer

Always-on logic Always-on logic
identify_always_on_driver
October 2010 497 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
through always-on buffers and propagate the always-on attribute as shown in the following
figure:

Chip Partitioning

Low power hierarchical partitioning with CPF is a combination of the Multi-Mode Multi-Corner
(MMMC) and CPF flows. Do the following:

1. Derive the MMMC timing budget by deriveTimingbudget and saveTimingBudget.
For more information, see the “Timing Budgeting” chapter of the EDI System User
Guide.

2. Use savePartition to generates CPF files for each block-level design (partition), and
a hierarchical CPF file for top-level design.

3. (Optional) If the power domain is inside the partition, save the floorplan file for chip
assembly.

Block-level CPF Generation

Block-level CPF is used to implement block-level design and determine the power domain
attribute for the partition boundary pin at top-level implementation. When you commit CPF,
the tool generates block-level CPF from the chip-level CPF file as follows:

■ Low power information in CPF

Swtichable power domain

Always-on buffer

Always-on logic Always-on logic
October 2010 498 Product Version 9.1.3

../fetxtcmdref/timingbudgetingT.html#deriveTimingBudget
../fetxtcmdref/timingbudgetingT.html#saveTimingBudget
../soceUG/timingbudgeting.html#firstpage
../fetxtcmdref/partitionT.html#savePartition

Encounter Digital Implementation System User Guide
Low Power Design
❑ Pushes down naming style, hierarchy separator, CPF version, and library set
definitions

❑ Pushes down low power cell definitions

❑ Creates the power domains referenced by the block-level CPF files

❑ Creates the power domains’ power/ground nets and connections

❑ Pushes down the scope-related rules or commands such as state retention rules,
power switch rules, and identify_always_on_driver rules

❑ For level shifter and isolation rules:

❍ If the rules specify the shifter and isolation are added into a block, the tool
pushes down those rules into block-level CPF

❍ If the rules specify the shifter and isolation are added outside a block, the tool
does not push down those rules into block-level CPF.

❑ Assigns the power domain attribute to each partition boundary pin

❑ Pushes down all the nominal conditions and power modes

❑ Creates virtual ports to control low power logic by using set_design -ports

Note: Virtual ports do not exist in the netlist, but are needed to enable power switch,
isolation, state-retention logic, and so on, in the block level

■ MMMC information in CPF

The analysis views, operating conditions and power domain library binding are written
into the viewdefinition.tcl file by timing budget commands as part of MMMC
setup. Block-level CPF does not include this information.
October 2010 499 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Important

The tool marks the partition boundary pin power domain attribute that will determine
whether there is a domain-crossing for the net connecting to the pin. The following
example shows how the tool marks the power domain attribute for the partition
boundary pin and determines whether to push down the isolation rule:

For always-on feedthroughs, the tool automatically traces through the feedthrough and
assigns both the input and output pins of the feedthrough as always on.

For the net connecting to the partition boundary pin without an isolation or level shifter cell,
the tool assigns the pin to the power domain of its driver domain.

Top-Level CPF Generation

The tool generates top-level CPF from the chip-level CPF file hierarchically, as follows:

Isolation cell

Enable

PD1

PD2 (partition) PD2 (partition)

Enable

Isolation cell

PD1

A A

1. Port A is marked as PD1 in the block-level
CPF
2. The isolation rule is pushed down

1. Port A is marked as PD2 in the block-level
CPF
2. The isolation rule is kept at the top level
October 2010 500 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
■ Sources the block-level CPF to find block-level boundary power domain information

■ Maps all block power domains to top-level global power domains through the
set_instance -domain_mapping command

■ Maps virtual port in block CPF to the top-level signal by set_instance
-port_mapping

■ Creates the same power domains and their global connections as those at chip-level

The tool retains other CPF information at top-level CPF as follows:

■ Retains isolation or level shifter rules when the isolation or level shifter is inserted at top
level.

■ Discards rules in block-level scope such as state retention and power switch rules

■ Retains library sets, cell definitions, nominal condition, power mode and MMMC views at
the chip level

Block-Level Implementation

1. Implement the block-level design with an MMMC flow, using the block-level CPF file
generated at the partitioning step and the viewdefinition.tcl file created by
deriveTimingBudget.

2. After completing block-level implementation, use saveDesign -def to save the block-
level design in def format for chip assembly.

Top-Level Implementation

1. Implement the top-level design with an MMMC flow, using the hierarchical top-level CPF
file generated at the partition step and the viewdefinition.tcl file created by
deriveTimingBudget.

2. After completing top-level implementation, use saveDesign -def to save the top-level
design in def format for chip assembly.

Chip Assembly

Chip assembly assembles the physical data you generated at the block level and block level.

1. If there is a power domain inside partition, specify the chip-level floorplan with
assembleDesign -chipFP.
October 2010 501 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
2. Load the chip-level CPF after the assembly to restore the low power settings and
continue to chip-level verification and chip finishing.
October 2010 502 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Example of Block-Level CPF Generated by EDI System

Note: A special construct is used to avoid duplicate definition for timing-related CPF files
when sourced by top-level CPF. If the
[set_instance]==[set_hierarchy_separator] condition is True, then the tool
recognizes the implementation is at the block level, and loads the related timing information.
If the condition is False, then the tools sources the block-level CPF file at top level, and does
not load the timing-related information.

set_design tdsp_core \
-ports {n_41}

set_hierarchy_separator "/"

create_power_domain -name TDSPCore -default \
-shutoff_condition {n_41}

create_power_nets -nets VDD_TDSPCore \
-voltage 0.792 \
-internal

update_power_domain -name TDSPCore \
-internal_power_net {VDD_TDSPCore}

create_power_nets -nets VDD_TDSPCore_R \
-voltage 0.792

create_global_connection -net VDD_TDSPCore_R \
-domain TDSPCore \
-pins TVDD

create_global_connection -net VDD_TDSPCore \
-domain TDSPCore \
-pins VDD

create_ground_nets -nets VSS

create_global_connection -net VSS \
-domain TDSPCore \
-pins VSS

create_power_domain -name AO
-boundary_ports { clk reset SRPG_PG_in SRPG_PG_in_1 DFT_sen n_41,…}

create_power_nets -nets VDD -voltage 0.792

update_power_domain -name AO -internal_power_net {VDD}

if {[set_instance]==[set_hierarchy_separator]} {

define_library_set -name ao_wc_0v99
-libraries { ../../LIBS/N45/timing/wc.lib}

define_library_set -name ao_wc_0v792 \
-libraries { ../../LIBS/N45/timing/AOwc0d72.lib}

define_library_set -name tdsp_wc_0v792 \
-libraries { ../../LIBS/N45/timing/wc0d72.lib}

create_operating_corner -name WC08COM_AO \
-voltage 0.792 \
-process 1 \
-temperature 125 \
-library_set ao_wc_0v792

create_operating_corner -name WC08COM_TDSP \
-voltage 0.792 \
October 2010 503 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
-process 1 \
-temperature 125 \
-library_set tdsp_wc_0v792

create_nominal_condition -name low_ao -voltage 0.792

update_nominal_condition -name low_ao -library_set ao_wc_0v792

create_nominal_condition -name off -voltage 0

create_power_mode -name PM_LO_FUNC \
-domain_conditions { AO@low_ao TDSPCore@off} \
-default

update_power_mode -name PM_LO_FUNC \
-sdc_files {../../RELEASE/mmmc/dtmf_recvr_core_dull.sdc}

create_analysis_view -name AV_LO_FUNC_MAX_RC1 \
-mode PM_LO_FUNC \
-domain_corners { AO@WC08COM_AO TDSPCore@WC08COM_TDSP}
}

define_isolation_cell -cells {LVLLH} \
-ground {VSS} \
-enable {NSLEEP} \
-valid_location {to} \
-power {VDD}

define_level_shifter_cell -cells {LVLH} -valid_location {to} \
-output_power_pin {VDD} \
-input_voltage_range {0.792:0.99:0.099} \
-output_voltage_range {0.792:0.99:0.099}
-ground {VSS} -direction {down}

define_level_shifter_cell -cells {PTLVLH} \
-valid_location {to} \
-direction {down} \
-output_power_pin {TVDD} \
-output_voltage_range {0.792:0.99:0.099} \
-ground {VSS} -input_voltage_range {0.792:0.99:0.099}

define_level_shifter_cell -cells {LVLLH} \
-valid_location {to} \
-input_power_pin {VDDL} \
-output_power_pin {VDD}
-input_voltage_range {0.792:0.99:0.099} \
-output_voltage_range {0.792:0.99:0.099} \
-output_voltage_input_pin {NSLEEP}\
-ground {VSS} \
-direction {up}

define_level_shifter_cell -cells {LVLLHD} \
-input_voltage_range {0.792:0.99:0.099} \
-valid_location {to} \
-direction {up} \
-output_power_pin {VDD} \
-output_voltage_range {0.792:0.99:0.099} \
-ground {VSS} \
-input_power_pin {VDDL}

define_state_retention_cell -cells {RSDF} \
-ground {VSS} \
-save_function {SAVE} -power {TVDD} \
-restore_function {!NRESTORE} \
-clock_pin {CP} \
-power_switchable {VDD}
October 2010 504 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
define_power_switch_cell -cells {HDRDID HDRDIA}
-stage_2_enable {!NSLEEPIN2} \
-stage_1_output {NSLEEPOUT1} \
-power {TVDD} \
-stage_2_output {NSLEEPOUT2} \
-power_switchable {VDD} \
-stage_1_enable {!NSLEEPIN1} \
-type {header}

define_always_on_cell -cells {PTBUFF PTLVLH} \
-ground {VSS} \
-power {TVDD} \
-power_switchable {VDD}

create_level_shifter_rule -name LSRULE_H2L \
-to {TDSPCore} \
-from {AO} \
-exclude {n_41 SRPG_PG_in SRPG_PG_in_1}

update_level_shifter_rules -names LSRULE_H2L \
-cells {LVLH} \
-location {to}

create_level_shifter_rule -name LSRULE_H2L_AO
-from {AO} \
-to {TDSPCore} \
-pins {n_41 SRPG_PG_in SRPG_PG_in_1}

update_level_shifter_rules -names LSRULE_H2L_AO
-location {to} \
-cells {PTLVLH}

create_state_retention_rule -name SRPG_TDSP \
-save_edge {SRPG_PG_in} \
-domain {TDSPCore} \
-restore_edge {!SRPG_PG_in_1}

update_state_retention_rules -names SRPG_TDSP \
-cell {RSDF} \
-library_set {tdsp_wc_0v792}

create_power_switch_rule -name TDSPCore_SW \
-domain {TDSPCore} \
-external_power_net {VDD_TDSPCore_R}

update_power_switch_rule -name TDSPCore_SW \
-prefix {CDN_SW_} \
-cells {HDRDID} \
-acknowledge_receiver {switch_en_out}

end_design
October 2010 505 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Example of Top-Level CPF Generated by EDI System

The top-level CPF file is a hierarchical. Since the block-level design is a blackbox during top-
level implementation, the block-level CPF sourced by top-level CPF is only used to assign the
blackbox boundary pin power domain.

set_cpf_version 1.0

set_design dtmf_recvr_core

set_hierarchy_separator "/"

create_ground_nets -nets Avss

create_ground_nets -nets VSS

create_power_nets -nets VDD \
-voltage 0.792

create_power_nets -nets Avdd \
-voltage 0.990

create_power_nets -nets VDD_TDSPCore_R \
-voltage 0.792

create_power_nets -nets VDD_TDSPCore \
-voltage 0.792 \
–internal

define_library_set -name ao_wc_0v99 \
-libraries { ../LIBS/N45/timing/tcbn45lpbwp_c060907wc.lib}

define_library_set -name ao_wc_0v792 \
-libraries { ../LIBS/N45/timing/tcbn45lpbwp_c060907wc0d72.lib}

define_library_set -name tdsp_wc_0v792 \
-libraries { ../LIBS/N45/timing/tcbn45lpbwp_c060907wc0d72.lib}

source cpf_1.0_hierarchical_PD.tcl

set_instance TDSP_CORE_INST \
-port_mapping { {n_41 PM_INST/power_switch_enable}} \
-domain_mapping { {TDSPCore TDSPCore} {AO AO}}

source TDSP_CORE_INST.cpf

create_power_domain -name TDSPCore \
-shutoff_condition {PM_INST/power_switch_enable}

create_global_connection -net VDD_TDSPCore_R \
-domain TDSPCore \
-pins TVDD

create_global_connection -net VDD_TDSPCore \
-domain TDSPCore \
-pins VDD

create_global_connection -net VSS \
-domain TDSPCore \
-pins VSS

create_power_domain -name AO \
-default

update_power_domain -name AO \
-internal_power_net {VDD}
October 2010 506 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
create_global_connection -net VDD_TDSPCore \
-domain AO \
-pins VDDL

create_global_connection -net VDD \
-domain AO \
-pins VDD

create_global_connection -net VSS \
-domain AO \
-pins VSS

create_power_domain -name PLL \
-instances { PLLCLK_INST}

update_power_domain -name PLL \
-internal_power_net {Avdd}

create_global_connection -net VDD \
-domain PLL \
-pins VDDL

create_global_connection -net Avdd \
-domain PLL \
-pins avdd!

create_global_connection -net Avdd \
-domain PLL \
-pins VDD

create_global_connection -net Avss \
-domain PLL \
-pins VSS

create_global_connection -net Avss \
-domain PLL \
-pins agnd!

create_operating_corner -name WC08COM_AO \
-voltage 0.792 \
-process 1 \
-temperature 125 \
-library_set ao_wc_0v792

create_operating_corner -name WC08COM_TDSP \
-voltage 0.792 \
-process 1 \
-temperature 125 \
-library_set tdsp_wc_0v792

create_nominal_condition -name low_ao \
-voltage 0.792

update_nominal_condition -name low_ao \
-library_set ao_wc_0v792

create_nominal_condition -name off -voltage 0

create_power_mode -name PM_LO_FUNC \
-domain_conditions { AO@low_ao PLL@high_ao TDSPCore@off}

update_power_mode -name PM_LO_FUNC \
-sdc_files {../RELEASE/mmmc/dtmf_recvr_core_dull.sdc

create_analysis_view -name AV_LO_FUNC_MAX_RC1 \
-mode PM_LO_FUNC \
-domain_corners { AO@WC08COM_AO PLL@WCCOM_AO TDSPCore@WC08COM_TDSP}

define_isolation_cell -cells {LVLLH} \
-ground {VSS} \
October 2010 507 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
-enable {NSLEEP} \
-valid_location {to} \
-power {VDD}

define_level_shifter_cell -cells {LVLH} \
-valid_location {to} \
-output_power_pin {VDD} \
-input_voltage_range {0.792:0.99:0.099} \
-output_voltage_range {0.792:0.99:0.099} \
-ground {VSS} \
-direction {down}

define_level_shifter_cell -cells {PTLVLH} \
-valid_location {to} \
-direction {down} \
-output_power_pin {TVDD} \
-output_voltage_range {0.792:0.99:0.099} \
-ground {VSS} \
-input_voltage_range {0.792:0.99:0.099}

define_level_shifter_cell -cells {LVLLH} \
-valid_location {to} \
-input_power_pin {VDDL} \
-output_power_pin {VDD} \
-input_voltage_range {0.792:0.99:0.099} \
-output_voltage_range {0.792:0.99:0.099} \
-output_voltage_input_pin {NSLEEP} \
-ground {VSS} -direction {up}

define_level_shifter_cell -cells {LVLLHD} \
-input_voltage_range {0.792:0.99:0.099} \
-valid_location {to} \
-direction {up} \
-output_power_pin {VDD} \
-output_voltage_range {0.792:0.99:0.099} \
-ground {VSS} \
-input_power_pin {VDDL}

define_state_retention_cell -cells {RSDF} \
-ground {VSS} \
-save_function {SAVE} \
-power {TVDD} \
-restore_function {!NRESTORE} \
-clock_pin {CP} -power_switchable {

define_power_switch_cell \
-cells {HDRDID HDRDIAO} \
-stage_2_enable {!NSLEEPIN2} \
-stage_1_output {NSLEEPOUT1} \
-power {TVDD} \
-stage_2_output {NSLEEPOUT2} \
-power_switchable {VDD} \
-stage_1_enable {!NSLEEPIN1} \
-type {header}

define_always_on_cell -cells {PTBUFF PTLVLH} \
-ground {VSS} \
-power {TVDD} \
-power_switchable {VDD}

create_isolation_rule -name ISORULE \
-from {TDSPCore} \
-isolation_condition {!PM_INST/isolation_enable} \
-isolation_output {high}
October 2010 508 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
update_isolation_rules -names ISORULE \
-location {to} \
-cells {LVLLH}

create_level_shifter_rule \
-name LSRULE_H2L_PLL \
-from {PLL} \
-to {AO}

update_level_shifter_rules -names LSRULE_H2L_PLL \
-location {to} \
-cells {LVLHLD}

end_design
October 2010 509 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Multiple Supply Voltage Bottom-Up Hierarchical Flow

This section discusses the following topics:

■ Block-Level Implementation on page 511

■ Top-Level Implementation on page 512

■ Chip Assembly on page 512

The EDI System tool supports the low power bottom-up CPF-based hierarchical flow built on
the regular EDI System bottom-up hierarchical flow. The difference is that you use the existing
October 2010 510 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
block-level CPF files to construct the top-level hierarchical CPF file, and implement the design
using the CPF flow.

Block-Level Implementation

You can use any combination of hard and soft blocks.

For the hard blocks (that are already implemented),

Create a top-level
CPF fileBlock-level

CPF files

Top-level
Implementation
(CPF-based)

Block-level
Implementation

(CPF-based)

Chip
assembly

Load and commit
top-level CPF file

Update
library sets

Update
sdc constraints

Update physical power
domain information inside

blocks

To validation

Load and commit CPFLoad and commit CPF
October 2010 511 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
➤ Place the blocks in top-level floorplan.

For the soft blocks,

1. Load and commit the block-level CPF files.

2. Implement the blocks using the block-level CPF implementation flow.

After completing block-level implementation,

1. Save the block-level design in def format for chip assembly.

saveDesign -def

2. If a power domain exists inside a block, use the following command to obtain the physical
information about the power domain.

saveCPF tmp.cpf

The tool restores the physical information for the power domain inside block (partition)
after chip assembly.

Top-Level Implementation

Before top-level implementation,

➤ Manually build the top-level CPF file by reusing the block-level CPF files as follows:

Set_instance HinstOfBlock –domain_mapping { {..} } –port_mapping { {..} }

Source block.cpf

The CPF file you create contains the same type of information as in the previous example
file: “Example of Top-Level CPF Generated by EDI System” on page 506.

To implement the design,

➤ Use the CPF implementation flow using the hierarchical top-level CPF file.

After completing top-level implementation,

➤ Use the following command to save the top-level design in DEF format:

saveDesign -def

Chip Assembly

➤ To assemble the design’s physical data, use the following command:

assembleDesign
October 2010 512 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
After chip assembly,

1. To restore the lower power setup for chip-level verification and chip finishing, load and
commit the top-level hierarchical CPF file.

2. (Optional) Update power domain physical information inside block.

a. To update power domain shape, use the following command:

setObjFPlanBox

b. To update the power domain attribute, use the following command:

modifyPowerDomainAttr

Note: These steps are necessary only if you have a power domain inside a partition.

3. To update the library set, use the following command:

update_library_set –name –timing {..}

4. To apply chip-level timing constraints (sdc files), use the following command:

update_constraint_mode –name –sdc_files

5. Proceed to design verification.
October 2010 513 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Leakage Power Optimization Techniques

■ Multi-Vth Optimization on page 514

■ Substrate Biasing on page 515

Multi-Vth Optimization

You can optimize non-critical path logic for leakage, while preserving the critical timing slack
(WNS).

Note: Run multi-Vth optimization only after your design meets timing.

1. Report the total leakage power in the design.

reportPower -leakage

If you want to obtain a report file, run reportPower -leakage with the -outfile
fileName option.

The following example is a leakage report showing the total leakage power in microwatts,
along with cell usage statistics. For each library, the number of cells used in the design
and the total leakage power dissipated by the cells are listed.

Total leakage power = 785.079708uW
Cell usage statistics:
Library normalVt, 49265 cells (64.855650%), 733.007529uW (93.367269%)
Library highVt, 26696 cells (35.144350%), 52.072179uW (6.632725%)

2. Optimize leakage power.

optLeakagePower

This command resizes low voltage threshold gates in the design to gates with a higher
voltage threshold, while maintaining timing. This command only resizes cells that have
positive slack. Cells that belong to any library are candidates for swapping. The
-highEffort parameter overrides effort levels set by setOptMode.

Note: The optLeakagePower is a standalone command that can be used when a
netlist is already optimized in timing and on which you want to reclaim as much leakage
power as possible. It is recommended that you use optLeakagePower without any
options.

3. After running the optLeakagePower command, you can create a new leakage power
report to view results.

reportPower -leakage -outfile fileName
October 2010 514 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Optimizing Leakage Power While Running optDesign (Recommended)

You can optimize non-critical path logic for leakage power by using the setOptMode
command in the following ways:

■ If leakage power optimization is a second priority after timing convergence, then use
setOptMode -leakagePowerEffort low after placeDesign. The leakage power
optimization is automatically done by optDesign -postRoute.

■ If leakage power optimization is as critical as timing convergence, then use setOptMode
-leakagePowerEffort high right after placeDesign. The leakage power
optimization is done by each optDesign step.

Note: When setOptMode -leakagePowerEffort is set to low or high, the hold fixing
steps ensure to not insert any low-voltage threshold gates. Only high-voltage threshold gates
are used to fix the hold-time violations.

Substrate Biasing

Substrate biasing is another technique for reducing leakage power. Changing the body
voltage of the field effect transistor (FET) affects both the threshold voltage and the static
leakage current.

To bias the substrate, insert biasing cells into a region of the design. In EDI System, you can
do this in either of two ways:

■ Use the addWellTap command to add bias cells at regular intervals.

addWellTap -maxGap

■ Add well taps in a checkerboard configuration; for example,

addWellTap -cellFILL1 -maxGap 20 -checkerBoard -fixedGap

addWellTap -cellFILL2 -maxGap 20 -powerDomain PD -checkerboard -fixedGap
October 2010 515 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
These commands produce results such as those shown in the following figure:

For well tap cells, you must add stripes to connect the secondary power/ground pins in the
vertical or horizontal direction.

1. Select Floorplan – Custom Power Planning – Add Stripes.

2. On the Basic page, select Over P/G pins.

3. Click on Master Name.

4. Type the master name of the standard cell.

5. Select Pin Layer.

The top layer is the default.

1/2 gap on
interfaces

Full gap
everywhere
else
October 2010 516 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
The following figures show how well tap cells are connected. The software connects the
secondary power/ground pins vertically or horizontally to the nearest secondary power/
ground pins, regardless of whether the pins extend fully across the cell.

Stripes

Primary P/G pins

Secondary P/G pins

Well tap cell with
secondary power pins
extended vertically
across the cell

Well tap cell with
secondary power pins
within the boundaries
of the cell

Stripes
October 2010 517 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Stripes

Primary P/G pins

Secondary P/G pins

Well tap cells with
secondary power pins
extended horizontally
across the cell
October 2010 518 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Power Shutdown Techniques

Power shutdown is a coarse-grain methodology for performing power gating. This technique
shuts off a specific power domain under certain conditions. There are two styles of this
methodology:

■ Ring style: All switches are inserted outside the domain.

■ Column style: All switches are inserted inside the power domain.

Power Shutdown Commands

The EDI System software includes two ways to insert power switches:

■ Text command:

addPowerSwitch

■ Menu commands:

❑ For power switch ring forms, select the following from the EDI System main menu:

Power – Multiple Supply Voltage – Add Power Switch – Ring

Forms:

❍ Power Switch Insertion - Ring – Sides

❍ Power Switch Insertion – Ring – Switch

❍ Power Switch Insertion – Ring – Filler

❍ Power Switch Insertion – Ring – Buffer

❍ Power Switch Insertion – Ring – Breaker

❍ Power Switch Insertion – Ring – Corner Cells

❍ Power Switch Insertion – Ring – Enable Connection

❍ Power Switch Insertion – Ring – Switch Cell Count

❍ Power Switch Insertion – Ring – Cell Offset

❍ Power Switch Insertion – Ring – Cell Orientation

❑ For power switch column forms, select the following from the EDI System main
menu:
October 2010 519 Product Version 9.1.3

../fetxtcmdref/msvT.html#addPowerSwitch
../encounter/powerG.html#PowerSwitchRing
../encounter/powerG.html#PSORingSides
../encounter/powerG.html#PSORingSwitch
../encounter/powerG.html#PSORingFiller
../encounter/powerG.html#PSORingBuffer
../encounter/powerG.html#PSORingBreaker
../encounter/powerG.html#PSORingCornerCells
../encounter/powerG.html#PSORingEnableConnection
../encounter/powerG.html#PSORingSwitchCellCount
../encounter/powerG.html#PSORingCellOffset
../encounter/powerG.html#PSORingCellOrientation

Encounter Digital Implementation System User Guide
Low Power Design
Power – Multiple Supply Voltage – Add Power Switch – Column

Forms:

❍ Power Switch Insertion – Column – Switch Cell and Enable Connection

❍ Power Switch Insertion – Column – Switch Arrangement

Data Preparation

For ring-style switch insertion, prepare the data as follows:

■ Assign CLASS RING to the power switch cell in the LEF file. No SITE information is
required.

■ Ensure that there are enable nets to drive the buffer inside of the power switch cell, and
acknowledge nets to exit the power switch cell. These nets are used as input to the
-enableNetIn and -enableNetOut options to addPowerSwitch.

■ Specify the power/ground net and pin connects of the power switch cell.

For column-style switch insertion, prepare the data as follows:

■ Assign CLASS CORE and the correct SITE definition for the switch cell in the LEF file.

■ Specify the power/ground net and pin connections of the power switch cell.

■ Specify the distance between the columns and switches in microns (horizontal pitch
value).

For ring style, you need to know the following:

■ For power planning, to ensure that the power stripes connect to the power switch cell

■ NanoRoute connects enable signals. Abutment depends on the physical layout of the
power switch cell.

For column style, you need to know the following:

■ In the addPowerSwitch command, the -enableNetOut option can only specify one net
name, which will be the net base name. The tool adds the suffix _columnNumber.

■ The dimension of the power switch cells must be an integer multiple of a single-height
standard cell.
October 2010 520 Product Version 9.1.3

../encounter/powerG.html#PSOColumnSwitchCell
../encounter/powerG.html#PSOColumnSwitchArrangement
../encounter/powerG.html#PowerSwitchColumn

Encounter Digital Implementation System User Guide
Low Power Design
Buffer Styles

The following figure shows column switch cell, which contains a buffer. This cell has a height
of two times the standard cell height.

The following figure shows a ring switch cell, which contains a buffer. The cell has the same
height as a standard cell. Ring switch cells can also contain two buffers with different
directions.

PSO_columnswtichwithbuffer.
gif (sic)

2 Stdcell Row Height
GND rail

VDDS railVDD

VDDS rail

PSO_ringswitchwithbuffer.gif

VDD VDDS

GND

Ring Switch Cell
October 2010 521 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Adding Column Switches

The column switch methodology adds power switches entirely within the power domain. The
following figure shows an example of column switches within a power domain:

To add column switches, use the following command:

addPowerSwitch -column

The following parameters are required:

-powerDomain
-enablePinIn
-enablePinOut
-enableNetIn
-enableNetOut
-globalSwitchCellName

Optionally, you can specify the following:

replaced
PSO_columnswitchmethodology.gif

En_out_1

(200μm)
Column Pitch

PD1

En_out_2 En_out_3

En_in

(150μm
Left Offset
October 2010 522 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
■ Offsets from the top, bottom, right, and/or left side of the power domain.

■ Area in which the tool can place switches.

■ Power/ground pin connections.

■ Many other options.

Instead of using the text command, you could use the menu command as follows:

➤ From the main EDI System window, choose Power – Multiple Supply Voltage –
Power Switch Insertion, then click on the Column button.

With the text command, you can place the switches in a checkerboard pattern as follows:

addPowerSwitch -column -checkerboard

This command allows you to reserve space for other uses or reduce the number of switches,
for example, and possibly reduce leakage power.

Attaching the Acknowledge Receiver Pin

In CPF, you can specify an input pin that must be connected to an output pin of the last power
switch in the chain. This information is specified in CPF as follows:

update_power_switch_rule -name string
-acknowledge_receiver pin ...

The addPowerSwitch command can connect the output pin of the last switch cell to the
acknowledge pin specified by update_power_switch_rule.

replaced

Std Cell Rows Power Switch Cells
October 2010 523 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
The following figure shows enableNetOut PD1_C_A connected to Inst_D as specified in
CPF:

Example

In the CPF file:

create_power_switch_rule -name sw1 -domain PD1 -external_power_net VDDH
update_power_switch_rule -name sw1 -cells COLUMN_SW -acknowledge_receiver Inst_D/A

Power switch insertion command:

addPowerSwitch -column -powerDomain PD1 -enablePinIn SWIN -enablePinOut SWOUT
-enableNetIn PSO1_1 -globalSwitchCellName COLUMN_SW -leftOffset 3 -horizontalPitch
100

Verilog file after addPowerSwitch is run:

BUFXH Inst_D (.Y(switch_out), .A(PD1_C_A));
...
COLUMN_SW pso1_PD1_1_COLUMN_SW_9_52_3 (.SWOUT(PD1_C_A),
.SWIN(psoPSI_PD1_EnNet_1_3_9_49_0));
October 2010 524 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Inst_D/A is connected to the PD1_C_A net and is connected to the SWOUT pin of the last
switch.

Important

Do not specify -enableNetOut because this setting interferes with and overrides
the -acknowledge_receiver specification.

Enable Chaining

By default, the enableNetIn is connected to the bottom of each column and the
enableNetOut exits from the top of each column, in parallel. The following commands let
you create a columns with daisy-chain enables:

■ -backToBackChain

Connects the enableNetOut at the top of a column to the enableNetIn at the top of
the next column, and connects the enableNetOut at the bottom of a column to the
enableNetIn at the bottom of the next column.
October 2010 525 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
The following figure shows -backToBackChain with the LtoR (left-to-right) option:
October 2010 526 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
The following figure shows -backToBackChain with the RtoL (right-to-left) option:

Example:

addPowerSwitch \
-column \
-powerDomain DSP \
-switchModuleInstance dummy_dsp_1 \
-enablePinIn {NSLEEPIN2} \
-enablePinOut {NSLEEPOUT2} \
-enableNetIn {UNCONNECTED249} \
-globalSwitchCellName HDRDIHVTD2 \
-enableNetOut {power_out_ack} \
-leftOffset 15.0 \
-bottomOffset 0.0
-horizontalPitch 150.0 \
-backToBackChain RtoL

■ -loopbackAtEnd

Connects the enablePinOut of the last cell in the chain to the enablePinIn of the
same cell.

In the following example, two -enablePinIn and -enablePinOut pins are specified,
so you can use -loopbackAtEnd:
October 2010 527 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
addPowerSwitch \
-column \
-powerDomain DSP \
-switchModuleInstance dummy_dsp_1 \
-enablePinIn {NSLEEPIN2 NSLEEPIN1} \
-enablePinOut {NSLEEPOUT2 NSLEEPOUT1} \
-enableNetIn {UNCONNECTED249} \
-globalSwitchCellName HDRDIHVTD2 \
-enableNetOut {power_out_ack} \
-leftOffset 15.0 \
-bottomOffset 0.0 \
-horizontalPitch 150.0 \
-topDown \
-backToBackChain RtoL \
-loopbackAtEnd

Controlling the Maximum Enable Chain Depth

You can control the ramp-up time for the power domain by specifying the number of column
switches are allowed in an enable chain before a new chain is started.

➤ To control the maximum number of switches in an enable chain, use the following
parameter:

-maxChainDepth integer

The software then starts a new enable chain at the next switch, as shown in the following
figure:
October 2010 528 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Synthesizing Acknowledge Trees

The EDI System tool can automatically create acknowledge trees that you would otherwise
build manually. The acknowledge tree collects enable signals exiting the power domain and
funnels them to an acknowledge receiver pin.

1. Use the following parameters to create the acknowledge tree:

■ -acknowledgeTreeCell

■ -acknowledgeTreeHierInstance

If you do not specify -acknowledgeTreeHierInstance, the tool places the cells in the top
module.

No maxChainDepth
specified

-maxChainDepth = 4
Enable chain stops at

four switches

addPowerSwitch -column -powerDomain PD1 -maxChainDepth 4
October 2010 529 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
The following figure shows an acknowledge tree built from cells of type Cell, placed in
hierarchical instance HInst.
October 2010 530 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Adding Power Switch Rings

You can add power switches in a ring entirely outside the boundary of the power domain as
shown below.

In this figure, the switches abut and connect to the next switch. Because the switches in this
example contain two built-in buffers with different directions, the enable net loops around the
inner side of the ring, connects at the corner, and loops back around to where it becomes the
enable net out.

This technique is useful when the power domain is a pre-designed macro.

To create a power switch ring, use the following command:

En_in

En_out

Note:
Switch cell has
2 built-in buffers
with different
directions

Switchable Power Domain
PD1
October 2010 531 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
addPowerSwitch -ring

The following parameters are required:

-powerDomain
-enablePinIn
-enablePinOut
-enableNetIn
-enableNetOut

By default, the tool distributes cells evenly in the ring. To stack cells instead, use the following
command:

addPowerSwitch -ring -distribute 0

Instead of using the text command, you could use the menu command as follows:

➤ From the main EDI System window, select Power– Multiple Supply Voltage – Add
Power Switch, then click on the Ring tab. Select Distribute Switches on the Switch
Cell Count form.

With ring options, you have many ways of configuring the switch ring. Among many
possibilities, you can do the following:

■ Control how switches are distributed around the ring

■ Choose the sides on which you want to add switch cells

■ Specify the breaker, buffer, filler, switch, and corner cells you want to use on specified
sides

■ Specify the distance between the power domain and each side of the ring

■ Choose the orientation of cells on specified sides

■ Arrange the buffer, breaker, filler, and switch cells in a pattern

Creating Patterns

When you create rings, you can specify a pattern that customizes switch placement. If you do
not specify a pattern, the software adds switches evenly around the power domain.

The following command shows a pattern of cells that repeats on all sides:

addPowerSwitch -ring \
-powerDomain TDSP2 \
-enablePinIn {A0} -enablePinOut {Z0} \

enableNetIn swcontrol_2 -enableNetOut swack_2
-specifySides {1 1 1 1 1 1 1 1}
-sideOffsetList {3 3 3 3 3 3 3 3 }
-globalSwitchCellName {{CDN_RING_SW S} {CDN_RING_SW_1 D} {CDS_RING_SW_2 G}}\
-cornerCellList CDN_RING_CORNER_UL \
October 2010 532 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
-globalFillerCellName {{CDN_RING_FILLER F}}
-insideCornerCellList CDN_RING_CORNER_InCell \
-globalPattern {S S D D G G F}

In this example, the command adds power switches in the following pattern:

CDN_RING_SW CDN_RING_SW CDN_RING_SW_1 CDN_RING_SW_1 CDN_RING_SW_2 CND_RING_SW_2
CDN_RING_FILLER

The command repeats the pattern on each side. If you want to continue the pattern on the
next side or edge, use the -continuePattern parameter.

Ring Conventions

The EDI System software supports rectilinear power domains, such as the 20-sided power
domain shown below:

The default side/corner numbering is clockwise from the starting corner (Corner 0), which is
always the lower left corner of the power domain.

Corner numbering starts with 0. Side numbering starts with 1.

Specifying Sides in a Switch Ring

Use addPowerSwitch -specifySides to add switches around a power domain of any
number of sides.

Each value provided in the -specifiedSides parameter corresponds to a side of the
power domain. The 1 value indicates that the tool should add switches on a side, and 0

replaced
PSO_rectilinearconventions.gif

Side 2

Side 1

Corner 0
(lower left corner)
October 2010 533 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
indicates that it should not. For example, for switches on all sides of a 4-sided power domain,
use -specifySides {1 1 1 1}. By default, the tool adds switches on all sides.

The following example shows how you can place switches on every other side of the 20-sided
power domain.

addPowerSwitch -ring -specifySides {1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0}

Starting the Enable Chain at a Different Corner

By default, the enable net enters at Corner 0. To select the corner at which you want the
enable net to enter, use the -startEnableChainAtCorner. This example does the
following:

■ Adds power switches on sides 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19

■ Starts the enable corner to corner 4.

PSO_specifysidesexample1.gif

Corner 0

PD boundary only PD boundary
with switches

Enable Net
Enters
October 2010 534 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
addPowerSwitchRing -ring -specifySides {1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0} -startEnableChainAtCorner 4

Counter-Clockwise

The -counterclockwise option reverses the corner/side numbering from Corner 0. What
was side 20 in the previous example becomes side 1 in this example.

addPowerSwitch -ring -specifySides {1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0} -counterclockwise

PSO_startenable.gif

Corner 0

Corner 4

Enable Net
Enters

PSO_counterclockwise.gif

Enable Net
Enters

Corner 0
October 2010 535 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
In the following example, side/corner numbering is counterclockwise, and the enable net
enters at Corner 4. Note how location of the specified corner differs from the location of the
corner specified without the -counterclockwise parameter.

addPowerSwitch -ring -specifySides {1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0} -counterclockwise -startEnableCorner 4

Left Sides

The following command adds switches only to the left sides of the power domain: Sides 1, 3,
5, 9, 17.

addPowerSwitch -ring -leftSide 1

PSO_enablenetcounterclockwise

Enable Net
Enters

Corner 0

PSO_leftside.gif

Corner 0
October 2010 536 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Right Sides

The following command adds switches only to the right sides of the power domain: Sides 7,
11, 13, 15, and 19.

addPowerSwitch -ring -rightSide 1

Horizontal Sides

The following command adds switches only to the horizontal sides of the power domain:
Sides 2, 4, 6, 8, 10, 12, 14, 16, and 18.

addPowerSwitch -ring -horizontalSide 1

PSO_rightside.gif

Corner 0

PSO_horizontalside.gif

Corner 0
October 2010 537 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Vertical Sides

The following command adds switches only to the vertical sides of the power domain: Sides
1, 3, 5, 7, 9, 11, 13, 15, and 19.

addPowerSwitch -ring -verticalSide 1

Top Sides

The following command adds switches only to the top sides of the power domain: Sides 2, 6,
8, 10, and 14.

-addPowerSwitch -ring -topSide 1

PSO_verticalside.gif

Corner 0

PSO_topside.gif

Corner 0
October 2010 538 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Bottom Sides

The following command adds switches only to the bottom sides of the power domain: Sides
4, 12, 16, 18, and 20.

-addPowerSwitch -ring -bottomSides 1

Using Pitch Control and Offsets

You can control switch placement by using the following parameters:

■ -globalOffset

■ -bottomOffset

■ -topOffset

■ -leftOffset

■ -rightOffset

■ -horizontalOffset

■ -verticalOffset

■ -sideOffsetList {value ...}

■ -startOffset

■ -startOffsetBottom

■ -startOffsetTop

■ -startOffsetLeft

Corner 0
October 2010 539 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
■ -startOffsetRight

■ -startOffsetHorizontal

■ -startOffsetVertical

■ -sideStartOffsetList {value...}

■ -endOffset

■ -endOffsetBottom

■ -endOffsetTop

■ -endOffsetLeft

■ -endOffsetRight

■ -endOffsetHorizontal

■ -endOffsetVertical

■ -sideEndOffsetList {value...}

■ -forceOffset [0|1]

■ -switchPitch

■ -switchPitchBottom

■ -switchPitchHorizontal

■ -switchPitchLeft

■ -switchPitchRight

■ -switchPitchTop

■ -switchPitchVertical

■ -switchPitchSideList {value...}

Forcing Offsets

Offsets you specify are the minimum offsets you require to complete the power switch ring.
Resulting offsets could be quite different from the ones you specify. To force the tool to comply
as much as possible to the offset values, specify -forceOffset 1.
October 2010 540 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Setting the Global Offset

Instead of placing switches against the power domain boundaries, you can place them away
from the boundaries by the specified distances.

➤ To specify the same offset for all sides, use the -globalOffset parameter.

The default offset value is 0 (no offset).

The following figure shows equal offsets for a rectangular power domain if -forceOffset
1 is specified:

Power Domain -globalOffset

-globalOffset

-globalOffset

-globalOffset
October 2010 541 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
The following figure shows global offsets for a rectilinear power domain:

Setting Different Offsets for Different Sides

➤ To specify different offsets for different sides, use the -leftOffset, -rightOffset,
-bottomOffset, and/or -topOffset parameters.

-globalOffset

-globalOffset

-globalOffset

-globalOffset

-globalOffset

-globalOffset

-globalOffset

-globalOffset-globalOffset

-globalOffset

-globalOffset

-globalOffset
October 2010 542 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
The following example shows a different offset for each side if -forceOffset is specified:

➤ To specify offsets for the top and bottom, use the -horizontalOffset parameter.

➤ To specify offsets for the left and right sides, use the -verticalOffset parameter.

Power Domain -rightOffset

-bottomOffset

-topOffset

-leftOffset
October 2010 543 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
The following figure shows how -leftOffset, -rightOffset, -bottomOffset,
-topOffset parameters affects rectilinear power domains:

➤ To specify offsets for the horizontal sides, use the -horizontalOffset parameter.

➤ To specify offsets for the vertical sides, use the -verticalOffset parameter.

Specifying Switch Location

You can choose the location for placing the first and/or last cell in a power switch row, and the
spacing between switches in a row. Use the following parameters:

-topOffset

-bottomOffset

-rightOffset

-bottomOffset -bottomOffset

-topOffset -topOffset

-rightOffset

-rightOffset

-leftOffset

-leftOffset

-leftOffset
October 2010 544 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
■ -startOffset*: Places the first cell instance on a side a specified distance from the
nearest left, right, top bottom, vertical or horizontal offset (if specified) or the nearest
power domain edge.

■ -endOffset*: Places the last cell a specified distance from the nearest *Offset (if
specified) or the nearest power domain boundary at the end of the side.

■ -switchPitch*: Specifies the distance from switch to switch (not the spacing between
switches).

The following table shows the start, end, and pitch parameters:

You can omit offsets because the default values are 0. You can omit pitch because, by default,
the cells abut. The software starts placing cells at corner 0.

■ You can combine the following:

❑ -startOffset with other -startOffset* parameters

❑ -endOffset with other -endOffset* parameters

❑ -switchPitch with other -switchPitch* parameters

If there is more than one start or end offset, or switch pitch, on a side, the software always
uses the most specific parameter for the side. For example, if both -startOffset and
-startOffsetRight are specified, the tool uses the -startOffsetRight value for
the right side.

■ You can combine the global offsets and pitch with side-specific offsets and pitch.

❑ For example, for a rectangular power domain:

Start Offset End Offset Switch Pitch Applies to

-sideStartOffsetList -sideEndOffsetList -switchPitchSideList Specified side(s)

-startOffsetBottom -endOffsetBottom -switchPitchBottom Bottom side(s)

-startOffsetTop -endOffsetTop -switchPitchTop Top side(s)

-startOffsetRight -endOffsetRight -switchPitchRight Right side(s)

-startOffsetLeft -endOffsetLeft -switchPitchLeft Left side(s)

-startOffsetHorizontal -endOffsetHorizontal -switchPitchHorizontal Horizontal side(s)

-startOffsetVertical -endOffsetVertical -switchPitchVertical Vertical side(s)

-startOffset -endOffset -switchPitch All sides equally
October 2010 545 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
-startOffsetTop 1 -endOffsetLeft -2 -switchPitch 3

❑ For example, for a rectilinear power domain:

-startOffset -1 -switchPitchSideList {3, 4, 3, 0, 0, 0, 0, 0, 0, 0}

■ You can combine any side-specific parameters.

❑ For example, for a rectangular power domain:

-startOffsetLeft 1 -startOffsetRight 2 -endOffsetTop -2 -switchPitch 3

❑ For example, for a rectilinear power domain:

-startOffsetRight -1 -switchPitchSideList {3, 3, 3, 2, 2, 2, 1, 1, 1, 3}

Note: All -startOffset and -endOffset values can be positive or negative, which affect
cell placement toward or away from the center of the side. Pitch values can be positive only.

Example of Offsets

The following example shows a clockwise switch ring with the following parameters:

■ -leftOffset

■ -bottomOffset

■ -startOffsetLeft

■ -startOffsetBottom

■ -endOffsetLeft

■ -endOffsetBottom

■ -switchPitchLeft

■ -switchPitchBottom
October 2010 546 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Different switch pitches are specified for the left and bottom sides, and the start and end
offsets are positive or negative.

■ The first switch on the left side is placed a distance -startOffsetLeft from the edge
of the -bottomOffset boundary.

-switchPitchLeft

-startOffsetLeft
(positive value)

Power Domain-leftOffset

-bottomOffset

-startOffsetBottom
(positive value)

-switchPitchBottom

Switch Switch

Switch

Switch

Switch

-endOffsetLeft
(negative value)

Switch

-endOffsetBottom
(positive value)

-topOffset = 0
October 2010 547 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
■ The second switch on the left side is placed a distance -switchPitchLeft from the
bottom edge of the first switch on the side.

■ The last switch on the left side is placed a distance -endOffsetLeft above the
-topOffsetbecause the -endOffsetLeft value is negative. In this case, the
-topOffset is 0, so the last switch is placed above the top power domain boundary.

■ The first switch on the bottom side is placed a distance -startOffsetBottom from the
right edge of the power domain. There is no -rightOffset or -topOffset specified.

■ The second switch on the bottom side is placed a distance -switchPitchBottom from
the right edge of the first switch on the side.

■ The last switch on the bottom side is placed -endOffsetBottom to the right of the
-leftOffset edge. The -endOffsetBottom parameter has a positive value.
October 2010 548 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
Power Switch Optimization

The optPowerSwitch command lets you perform power switch optimization in two ways:

■ Optimize (reduce) the number of power switches in the ring and columns

■ Perform ECOs to replace a filler cell with a switch or replace a switch with a bigger switch

You can use these two features in the following flow:

■ Define the floorplan and power domains

■ Synthesize the power grid

■ Optimize power switches

■ Place the design

■ Run trialRoute

■ Synthesize the clock tree

■ Perform power switch ECO

■ Perform buffer tree synthesis

Power Switch Reduction

For power switch optimization (reduction), you can use the following options to
optPowerSwitch:

■ -readPowerSwitchCell

■ -commit

■ -effort

■ -maxIRDrop

■ -maxSwitchIRDrop

■ -net

■ -padFile

■ -readInstancePower

■ -reportFile
October 2010 549 Product Version 9.1.3

../fetxtcmdref/msvT.html#optPowerSwitch

Encounter Digital Implementation System User Guide
Low Power Design
■ -setDontTouchCells

■ -setDontTouchInstances

■ -totalPower

Power Switch ECO

For power switch ECO, you can use the following options:

■ -vsdgInFile

■ -reportFile

■ -fixViolations

■ -reportViolationsOnly

You can now fix IR violations due to added power switches.

1. Add power switches to your design.

2. Create a complete power structure.

3. Pre-characterize power gating cells in Libgen.

4. Run Voltage Storm analysis to detect IR violations.

5. Use the new optPowerSwitch command to repair these violations.

Note: In power switch optimization, the inserted power switches could overlap standard cells.
After running optPowerSwitch, run refinePlace to move the standard cells away from
the switches.
October 2010 550 Product Version 9.1.3

../fetxtcmdref/msvT.html#optPowerSwitch
../fetxtcmdref/msvT.html#optPowerSwitch
../fetxtcmdref/placementT.html#refinePlace

Encounter Digital Implementation System User Guide
Low Power Design
The following figures shows the power switch optimization ECO flow with VSDG:

Floorplan

Power switch insertion

Power planning

Placement, routing, and
remaining back-end flow

Power Switch ECO

VSDG analysis

.def

vs2fe_pg.rpt
October 2010 551 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Low Power Design
October 2010 552 Product Version 9.1.3

Encounter Digital Implementation System User Guide
16
Placing the Design

■ Overview on page 554

■ Preparing for Placement on page 554

■ Loading a Design on page 554

■ Guiding Placement With Blockages on page 555

■ Adding Well-Tap Cells on page 557

■ Adding End-Cap Cells on page 558

■ Placing Spare Cells and Spare Modules on page 560

■ Adding Padding on page 566

■ Placing Standard Cells on page 570

■ Running Placement in Multi-CPU Mode on page 571

■ Checking Placement on page 574

■ Adding Filler Cells on page 576

■ Placing Gate Array Style Filler Cells for Post-Mask ECO on page 577

■ Adding Decoupling Capacitance on page 578

■ Adding Logical Tie-Off Cells on page 579

■ Saving Placement Data on page 580

■ Specifying and Placing JTAG and Other Cells Close to the I/Os on page 580

■ Optimizing and Reordering Scan Chains on page 581
October 2010 553 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Placing the Design
Overview

After floorplanning, place the cells in the design. Placement considers the modules that were
placed during floorplanning and takes into account the hierarchy and connectivity of the
design. It honors floorplanning constraints, including guides, regions, and fences. For
descriptions of the constraint types, see “Module Constraint Types” on page 377.

After the cells are placed and resulting violations corrected, run pre-CTS optimization.

Loading a Design

Load a design by using the restoreDesign command or by reading in the following files:

■ Encounter Digital Implementation System (EDI System) configuration file (*.config), with
.lib, .lef, timing constraint file, and capacitance table specified

■ One of the following files:

❑ Floorplan file (*.fp) with all blocks pre-placed

❑ DEF file (the DEF file can contain scan chain information)

For more information, see

■ “Importing and Exporting Designs” on page 133

■ restoreDesign in the “Import and Export Commands” chapter of the EDI System
Text Command Reference.

■ Load and Check Data in the Encounter Digital Implementation System Foundation
Flows: Flat Implementation Flow Guide

Preparing for Placement

Before placement, run the following commands and correct problems. Some of these
commands generate reports you can use as a baseline for comparisons later in the flow.

■ Run runN2NOpt to remap and reoptimize the gate-level netlist to improve timing and
area. For more information, see runN2NOpt in the “Netlist-to-Netlist Command” chapter
of the Encounter Digital Implementation System Text Command Reference.

■ Run checkDesign to check the integrity of the integrity of the library and design data.
For more information, see checkDesign in the “Import and Export Commands” chapter
of the Encounter Digital Implementation System Text Command Reference.
October 2010 554 Product Version 9.1.3

../fetxtcmdref/importT.html#restoreDesign
../flatImpl/flow.html#LoadandCheckData
../fetxtcmdref/n2nT.html#runN2NOpt
../fetxtcmdref/importT.html#checkDesign

Encounter Digital Implementation System User Guide
Placing the Design
■ Run checkPlace (or checkDesign -place) or use the Violation Browser to check for
violations caused by preplaced cells or blocks. For more information, see checkPlace
in the “Placement Commands” chapter of the Encounter Digital Implementation
System Text Command Reference or Violation Browser in the “Tools Menu” chapter
of the Encounter Digital Implementation System Menu Reference.

■ Run timeDesign -prePlace to get an idea of Zero Wire Load timing of the design.
For more information, see timeDesign in the “Timing Analysis (Common Timing
Engine) Commands” chapter of the Encounter Digital Implementation System Text
Command Reference.

■ Run createObstruct to create blockages (this is usually done during floorplanning).
For more information see Guiding Placement With Blockages on page 555 or
createObstruct in the “Floorplan Commands” chapter of the Encounter Digital
Implementation System Text Command Reference.

■ Use one of the following methods to place and fix hard blocks.This step is necessary
because placeDesign does not place blocks in default mode.

❑ Run planDesign. For information, see planDesign in the “Floorplan Commands”
chapter of the Encounter Digital Implementation System Text Command
Reference.

❑ Manually place and fix hard blocks.

For more information on preparing the design for placement, see “Data Preparation” on
page 103.

Guiding Placement With Blockages

Use placement blockages to help guide placement.

Create the blockages during the floorplanning session by using the following command:

createObstruct

After creating a blockage, assign an attribute to it by using the Attribute Editor.

Alternatively, you can create placement blockages using the Set Placement Blogkage
Options form. For more information, see Create Placement Blockage in the “Floorplan
Menu” chapter of the Encounter Digital Implementation System Menu Reference.
October 2010 555 Product Version 9.1.3

../fetxtcmdref/placementT.html#checkPlace
../encounter/toolsG.html#ViolationBrowser
../fetxtcmdref/timinganalysisT.html#timeDesign
../fetxtcmdref/floorplanT.html#createObstruct
../fetxtcmdref/floorplanT.html#planDesign
../encounter/floorplanG.html#SetPlacementBlockageOptions

Encounter Digital Implementation System User Guide
Placing the Design
A placement blockage has one of the following attributes:

Tip

If the design has routing violations in the small channels between hard blocks,
consider running createObstruct to add soft placement blockages in these
areas. Although the blockages obstruct standard cells during placement, they do not
obstruct optimization operations. Using soft blockages can help improve both timing
and routability.

For more information, see

■ createObstruct in the “Floorplan Commands” chapter of the Encounter Digital
Implementation System Text Command Reference

■ Attribute Editor in the “Tools Menu” chapter of the Encounter Digital Implementation
System Menu Reference

Placement Treatment of Preroutes

Placement treats preroutes the same way it treats routing blockages: It places standard cell
instances at legal locations where there should not be any DRC violations against preroutes
or routing blockages.

Typically, you use preroutes for special nets that are floorplanned (pre-designed) before
placement, such as power, ground, and clock mesh nets, where you do not want any standard

Hard The area cannot be used to place blocks or cells. By default,
createObstruct creates blockages with this attribute.

Note: In default mode, placeDesign does not place blocks.

Soft The area cannot be used to place blocks or cells during placement, but can be
used during in-place optimization, clock tree synthesis, ECO placement, or
placement legalization (refinePlace).

Partial Sets a percentage of the area that is unavailable for placement. Use the
Blockage Percentage pull-down menu to select a percentage. For example, a
partial blockage of 75 percent means that up to 25 percent of placement
density is allowed in the area.

Note: A partial blockage of 100 percent (or 0 percent placement density screen)
behaves as a soft blockage.
October 2010 556 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#createObstruct
../encounter/editG.html#AttributeEditor

Encounter Digital Implementation System User Guide
Placing the Design
cells placed underneath. Instances placed next to power and ground stripes honor the design
spacing rule. Instances placed next to routing blockage objects are set adjoined.

By default, the EDI System software blocks the placement of standard cells on metal2 for a
three-metal layer process. The software blocks placement on metal2 and metal3 for a four
or more metal layer process.

You can change this behavior by using the following command before running placement:

setPrerouteAsObs

For more information, see setPrerouteAsObs in the “Placement Commands” chapter of
the Encounter Digital Implementation System Text Command Reference.

Adding Well-Tap Cells

Well taps are physical-only filler cells that are required by some technology libraries to limit
resistance between power or ground connections to wells of the substrate. Well-tap cells are
placed in a preplaced status, so future placement commands do not move them.

The following diagram shows an example of well-tap cell placement. In this diagram, the cells
are staggered in the site rows.

Add well taps after the floorplan is fixed and hard blocks are placed, but before placing
standard cells.

Use one of the following methods to add well-tap cells:

■ Add Well Tap Instances form

■ addWellTap command

Well taps

Site Rows
October 2010 557 Product Version 9.1.3

../fetxtcmdref/placementT.html#setPrerouteAsObs

Encounter Digital Implementation System User Guide
Placing the Design
Controlling the Distance Between Well-Tap Cells

Use the addWellTap -cellInterval or -maxGap parameter to specify the maximum
distance between well-tap cells in the same row.

■ -cellInterval measures the distance from the center of one well-tap cell to the
center of the next well-tap cell in the same row.

■ -maxGap measures the distance from the right edge of one well-tap cell to the left edge
of the next well-tap cell in the same row.

By default, the software always leaves a distance that is at least 45 percent of the specified
maximum distance between well-tap cells in the same row. For example, if the specified
maximum distance between same-row well-tap cells is 48.0 microns, the default minimum
distance would be 21.6 microns.

Adding Well-Tap Cells to MSV Designs

In cases where there are different voltages in the same design, also known as a multi-voltage
(MSV) design, specify the power domain in which to insert the well-tap cells by using the
following command:

addWellTap -powerDomain

Deleting Well-Tap Cells

To remove added well-tap cells, use the Delete Instances form or the deleteFiller
command. If you specify an area, the deleteFiller command deletes only well-tap cells
that are completely contained within the area; it does not delete well-tap cells that cross the
area boundary.

For more information see the following topics:

■ addWellTap and deleteFiller in the “Placement Commands” chapter of the
Encounter Digital Implementation System Text Command Reference.

■ Add Well Tap and Delete Filler in the “Placement Menu” chapter of the Encounter
Digital Implementation System Menu Reference

Adding End-Cap Cells

End-cap cells are preplaced physical-only cells that are required to meet certain design rules.
They are placed at the ends of the site rows, and are used in some technologies for power
October 2010 558 Product Version 9.1.3

../fetxtcmdref/placementT.html#addWellTap
../fetxtcmdref/placementT.html#deleteFiller
../encounter/placeG.html#AddWellTap
../encounter/placeG.html#DeleteFiller

Encounter Digital Implementation System User Guide
Placing the Design
distribution. End-cap cells are placed in a preplaced status, so future placement commands
do not move them. Add end-cap cells to the design before any other standard cells are
placed, but after hard blocks are placed in the floorplan.

The following diagram shows an example of end-cap cell placement. The cells are placed at
the ends of each site row.

To add end-cap cells, use the Add End Cap Instances form or the addEndCap command.

Adding End Cap Cells to MSV Designs

In cases where there are different voltages in the same design, specify the power domain in
which to insert the end cap cells by using the following command:

addEndCap -powerDomain

Deleting End-Cap Cells

To remove end-cap cells, use the Delete Instances form or the deleteFiller command. If
you specify an area, the deleteFiller command deletes end-cap cells that are completely
contained within the area; it does not delete end-cap cells that cross the area boundary.

For more information see

■ addEndCap and deleteFiller in the “Placement Commands” chapter of the
Encounter Digital Implementation System Text Command Reference

■ Add End Cap Instances and Delete Instances in the “Placement Menu” chapter of the
Encounter Digital Implementation System Menu Reference

EndcapsEndcaps

Site Rows
October 2010 559 Product Version 9.1.3

../fetxtcmdref/placementT.html#addEndCap
../fetxtcmdref/placementT.html#deleteFiller
../encounter/placeG.html#AddEndCap
../encounter/placeG.html#DeleteFiller

Encounter Digital Implementation System User Guide
Placing the Design
Placing Spare Cells and Spare Modules

Placing Spare Cells That Are Included in the Netlist

If spare cell instances are included in the gate-level netlist, the software places them during
preplacement processing; however, you must specify them during the floorplanning session.

Tip

Cadence recommends that you place clusters of spare cells at different locations
within the core area to allow easy access to the cells from different parts of the core.

1. Specify the spare cells by using the following command:

specifySpareGate

❑ Use the following parameter to identify the module whose hierarchy contains the
spare cell instances: -hinst

2. If the design contains hierarchical modules, specify the following setPlaceMode
parameter to ensure that the spare cells within the modules are kept within bounds of the
hierarchy, even if no constraint is set on it:

-moduleAwareSpare

This parameter is valid whether setPlaceMode -modulePlan is true or false.

For more information on using this parameter, see “Running Hierarchy-Aware Spare Cell
Placement” on page 563.

Note: In the GUI, select the Hierarchy Aware Spare Cell Placement option on the
Design – Mode Setup – Placement form.

Related Topics

To see this step in the design flow, see Place the Design and Run Pre-CTS Optimization in
the Encounter Digital Implementation System Foundation Flows: Flat
Implementation Flow Guide.

For more information, see the following commands in the “Placement Commands” chapter of
the Encounter Digital Implementation System Text Command Reference:

■ setPlaceMode

■ specifySpareGate
October 2010 560 Product Version 9.1.3

../flatImpl/flow.html#PlacetheDesignandRunPre-CTSOptimization
../fetxtcmdref/placementT.html#setPlaceMode
../fetxtcmdref/placementT.html#specifySpareGate

Encounter Digital Implementation System User Guide
Placing the Design
Placing Spare Cells That Are Not Included in the Netlist

If the netlist does not include spare cell instances, you must create a spare module and place
it before you place the standard cells.

1. Use the following command to create a spare module:

createSpareModule

2. Use the following command to place the module:

placeSpareModule

To delete a spare module, use the following command:

deleteSpareModule

For more information, see the following commands in the “Placement Commands” chapter of
the Encounter Digital Implementation System Text Command Reference:

■ createSpareModule

■ placeSpareModule

■ deleteSpareModule

Spare Cell Placement Behavior

■ If there are no floorplanning constraints, or if the design has not been floorplanned, the
software places spare cell instances randomly in the core area.

■ If a spare cell instance is contained in a fence or a region, the software places the
instance randomly in the fence or region that includes the instance.

■ If spare cell instances in the netlist are grouped into modules, the software places the
modules in a grid fashion in the core area.

Note: For information on controlling spare cell placement when hierarchy is an issue,
see “Running Hierarchy-Aware Spare Cell Placement” on page 563.

Spare cell distribution is dependent upon the way spare cells are connected.

■ If the spare cells are floating (that is, if they are not connected) or they are connected to
power or ground, they are evenly distributed in the placement area.

■ If the spare cells have connections to other spare cells, they are treated as a spare cell
group and are placed close to one another in the placement area.

■ If the spare cells, or a group of spare cells, have a connection to a non-spare cell
instance, they are placed close to that instance.
October 2010 561 Product Version 9.1.3

../fetxtcmdref/placementT.html#createSpareModule
../fetxtcmdref/placementT.html#placeSpareModule
../fetxtcmdref/placementT.html#deleteSpareModule

Encounter Digital Implementation System User Guide
Placing the Design
To instruct the software to disregard spare cell connections and distribute the cells evenly in
the placement area, complete one of the following steps before running placement:

■ Specify the following command:

setPlaceMode -ignoreSpare true

■ Select the Ignore Spare Cell Connections option on the Placement page of the
Design – Mode Setup form.

For more information, see setPlaceMode in the “Placement Commands” chapter of the
Encounter Digital Implementation System Text Command Reference or Mode Setup –
Placement in the “Design Menu” chapter of the Encounter Digital Implementation
System Menu Command Reference.
October 2010 562 Product Version 9.1.3

../fetxtcmdref/placementT.html#setPlaceMode
../encounter/optionsG.html#ModeSetupPlacement
../encounter/optionsG.html#ModeSetupPlacement

Encounter Digital Implementation System User Guide
Placing the Design
Running Hierarchy-Aware Spare Cell Placement

To control placement of spare cells or modules in the netlist when hierarchy is an issue, use
the following commands:

■ specifySpareGate {-hinst | -inst}

■ setPlaceMode -moduleAwareSpare {true | false}

The following examples and figures show how these commands affect placement.

specifySpareGate -inst blk1/spare_1/*
Works also for specifySpareGate -hinst
setPlaceMode -moduleAwareSpare true
#Works also for -moduleAwareSpare true -modulePlan false
placeDesign

To place the spare cells evenly in the core, without binding them to the lt_top_0_i
hierarchy, use the following commands:

for {set x 0} {$x <6} {incr x 1} {
specifySpareGate -inst lt_top_0_i/spare_${x}i/*
}

placeDesign

The log file, before Iteration 1, contains the following information: Identified 240 spare
or floating instances, with no clusters.
October 2010 563 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Placing the Design
To place the spare cells within the bounds of the lt_top_0_i hierarchy, using the following
commands:

for {set x 0} {$x <6} {incr x 1} {
specifySpareGate -inst lt_top_0_i/spare_${x}i/*
}

setPlaceMode -moduleAwareSpare true
placeDesign

The log file, before Iteration 1, contains the following information: Identified 240 spares
within logical modules.
October 2010 564 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Placing the Design
To spread out the spare cells evenly as six clusters in the core, without binding them to the
lt_top_0_i hierarchy, use the following commands:

for {set x 0} {$x <6} {incr x 1} {
specifySpareGate -hinst lt_top_0_i/spare_${x}i/*
}

placeDesign

The log file, before Iteration 1, contains the following information: Identified 240 spares
or floating instances, where some are grouped into 6 clusters.
October 2010 565 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Placing the Design
To place the spare cells within the bounds of the lt_top_0_i hierarchy, use the following
commands:

for {set x 0} {$x <6} {incr x 1} {
specifySpareGate -hinst lt_top_0_i/spare_${x}i/*
}

setPlaceMode -moduleAwareSpare true
setPlaceMode -modulPlan false
placeDesign

The log file, before Iteration 1, contains the following information: Identified 240 spares
within logical modules, of which 240 are in 6 spare-only modules.

Adding Padding

Add padding to reserve placement space for cells or routing added after placement, for
example, to make sure there is room to insert clock buffers when running Clock Tree
Synthesis (CTS) on a highly localized clock. The software adds the padding on the right side
of placed instances at a default metal2 pitch dimension.

You can add padding to instances, leaf cells, and hierarchical modules.
October 2010 566 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Placing the Design
Tip

If the clock in your design is concentrated in a tight area, reserve three to five percent
of the targeted final utilization to add clock buffers. If your initial settings do not
provide sufficient space for the buffers, add more padding and rerun placement after
CTS or placement optimization.

Adding Instance or Module Padding

Instance padding and module padding reserve space during global placement so it can be
used later in the design flow, for cells added during placement legalization (refinePlace),
Clock Tree Synthesis (CTS), or timing optimization.

Adding Instance Padding

Instance padding is specified in terms of the number of sites occupied by each instance. For
example, if a row fits 30 instances without padding, you can specify padding of two sites for
each instance in the row. In this case, each instance in the row will then occupy two sites, and
the row will fit only 15 instances.

1. Specify the following command:

specifyInstPad

Tip

To add extra padding on the most timing-critical instances on timing-critical paths,
run the following command before placing standard cells:

setPlaceMode -tdInstPadding true

2. (Optional) Report instance padding by using the following command:

reportInstPad

To delete instance padding, use the following command:

deleteInstPad

For more information, see the following commands in the “Placement Commands” chapter of
the Encounter Digital Implementation System User Guide:

■ specifyInstPad

■ reportInstPad

■ deleteInstPad
October 2010 567 Product Version 9.1.3

../fetxtcmdref/placementT.html#specifyInstPad
../fetxtcmdref/placementT.html#reportInstPad
../fetxtcmdref/placementT.html#deleteInstPad

Encounter Digital Implementation System User Guide
Placing the Design
Adding Module Padding

To reduce localized congestion, add module padding.

1. Specify the following command:

setPlaceMode -modulePadding module factor

This command adds padding within hierarchical modules by spreading out the standard
cell instances within the modules. The padding is specified in terms of a factor that is
applied to the instance area of all the cells within the module. For example, a factor of 1.2
increases the area by 20 percent.

This parameter is disabled when -modulePlan false is specified.

Note: The software ignores factors that are less than 1.0.

2. Run standard cell placement.

For more information, see setPlaceMode in the “Placement Commands” chapter of the
Encounter Digital Implementation System User Guide.

Adding Cell Padding

Cell padding adds hard constraints to placement. The constraints are honored by cell
legalization, CTS, and timing optimization, unless the padding is reset after placement so
those operations can use the reserved space. You can use cell padding to reserve space for
routing.

➤ Specify the following command:

specifyCellPad

This command adds padding on the right side of library cells during placement. (Padding
location is dependent on the orientation of the cell. For example, if the library cell is
flipped when it is instantiated, the padding is on the left side.) The padding is specified
in terms of a factor that is applied to the metal2 pitch. For example, if you specify a factor
of 2, the software ensures that there is additional clearance of two times the metal2 pitch
on the right side of the specified cells.

Tip

To add padding to a cell if any signal pin is near enough to the border to cause DRC
violations with any metal geometry, run the following command before placing
standard cells:

setPlaceMode -padForPinNearBorder true
October 2010 568 Product Version 9.1.3

../fetxtcmdref/placementT.html#setPlaceMode

Encounter Digital Implementation System User Guide
Placing the Design
To delete cell padding, use the following command:

deleteAllCellPad

For more information, see the following commands in the “Placement Commands” chapter of
the Encounter Digital Implementation System User Guide:

■ specifyCellPad

■ deleteAllCellPad
October 2010 569 Product Version 9.1.3

../fetxtcmdref/placementT.html#specifyCellPad
../fetxtcmdref/placementT.html#deleteAllCellPad

Encounter Digital Implementation System User Guide
Placing the Design
Placing Standard Cells

Place standard cells with the placeDesign command. By default, the command runs
preplacement optimization and standard cell placement. If you specified SDC timing
constraints, it runs in timing-driven mode by default. If you specified scan information, it
performs scan tracing and reordering by default.

Important

If placeDesign does not place the standard cells, for example if all instances are
fixed or if there is no placeable area, then placeDesign also skips I/O pin
assignment.

This command was designed as a super command; that is, with the following exceptions, you
can use it to place standard cells without specifying any placement options for your initial
placement.

■ If the design has more than 1,000 floorplan constraints or other types of complex
floorplan constraints, run the following command before placing standard cells:

setPlaceMode -modulePlan false

■ If the design has clock-gating cells, run the following commands before placing standard
cells:

specifyClockTree -clkfile fileName
setPlaceMode -clkGateAware true

■ To reduce to switching power on power-critical nets, consider running the following
command before placing standard cells:

setPlaceMode -powerDriven true

Tune the initial placement by trying the following techniques:

■ If the design is congested, try the following command, then rerun placement:

setPlaceMode -congEffort high

■ If the design has local congestion, try the following command, then rerun placement:

setPlaceMode -modulePadding module factor

■ If the utilization increased by more than five percent after pre-CTS optimization,
compared to what it was after placeDesign, try the following command:

placeDesign -inPlaceOpt

The run time for this command is longer than the run time without the -inPlaceOpt
parameter.
October 2010 570 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Placing the Design
Related Topics

■ placeDesign and setPlaceMode in the “Place Commands” chapter of the
Encounter Digital Implementation System Text Command Reference

■ specifyClockTree in the “Clock Tree Synthesis Commands” chapter of the
Encounter Digital Implementation System Text Command Reference

■ Place the Design and Run Pre-CTS Optimization in the Encounter Digital
Implementation System Flat Flow Guide

Running Placement in Multi-CPU Mode

The placeDesign command and the addFiller command supports multi-threading.
Multi-threading accelerates placement by splitting a job into two or more tasks that run
concurrently on a single machine that has multiple processors. The placement acceleration
is not linear, however, because some set-up and synchronization time is required.

Multi-threading requires additional licenses. The number of additional licenses required is
dependent on the “base” Encounter Digital Implementation System license (the base license
is the license used to invoke the software) and the number of threads you want to use.

Multi-threading placement has the following limitations:

■ It is supported by global placement only, not by placement legalization.

■ It is not supported when the -modulePlan parameter is set to false.

■ It is not supported in the blackblob flow.

■ The maximum number of threads you can use is eight. If you request more, the software
issues a warning and sets the number of threads to eight.

Important

To get the greatest benefit from multi-threading, your placement job should be the
only job running on your machine—you should avoid all other tasks, even a regular
system backup. For example, a machine with four CPUs that is running backup or
other system tasks that occupy one CPU might show less speed-up with four
threads than a machine running no system tasks that is running global placement
with three threads.
October 2010 571 Product Version 9.1.3

../fetxtcmdref/placementT.html#placeDesign
../fetxtcmdref/placementT.html#setPlaceMode
../fetxtcmdref/clockT.html#specifyClockTree
../flatImpl/flow.html#PlacetheDesignandRunPre-CTSOptimization

Encounter Digital Implementation System User Guide
Placing the Design
Multi-Threading Placement Steps

To run multi-threading placement, complete the following steps. You can complete these
steps before running any commands that run multiple-CPU processing, or before running
placement. Because the Encounter Digital Implementation System software has a common
interface for multiple-CPU processing (multi-threading or distributed processing), you need
specify these commands only once per session, and any application that can run in multiple-
CPU processing mode can use the additional licenses and processors.

1. (optional) Use the following command to specify the number of multiple-CPU licenses to
check out and the license check-out order:

setMultiCpuUsage [-acquireLicense integer] [-localCpu name]\
[-licenseList licenses]

If you do not use this command, the software runs it automatically, using a default check-
out order and requesting the appropriate number of licenses based on the parameters
you set for setMultiCpuUsage.

2. Use the following command to specify the maximum number of threads to use:

setMultiCpuUsage -localCpu name

If you request more threads than are available, the software uses the maximum number
that are available.

Note: It is generally not a good idea to request more threads than the number of CPUs
in your machine, as it will slow down the machine and waste licenses.

3. (optional) Use the following command to release the additional licenses after global
placement:

setMultiCpuUsage -keepLicense true

Tip

Alternatively, run the following command after placement to release the additional
licenses immediately:

setMultiCpuUsage -releaseLicense

4. Run global placement.

The log file reports the number of threads used for multi-threading placement just before
it shows the global placement iterations, for example:

Placement running 2 threads.

5. (optional) Check the run-time information at the end of the placeDesign section of the
log file.
October 2010 572 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Placing the Design
(cpu for global=1:25:08) real=0:50:32***
Placement multithread real runtime: 0:50:32 with 2 threads.
Core Placement runtime cpu: 1:14:24 real: 0:41:42
Starting refinePlace ...

The number to look for in the log is Placement multithread real runtime. In the
preceding example, the Placement multithread real runtime is 0:50:32.

Calculating Multi-Thread Speed-Up

The amount of time used for global placement is calculated by using the following formula:

Global Placement = Core Placement + Timing Analysis + Congestion Analysis

In some designs, when timing and congestion analysis consume a high percentage of run
time, the speed-up factor from multi-threading is not significant.

In the preceding example, if only one thread were used, the log would have reported the
following:

(cpu for global=1:13:53) real=1:15:09***
Core Placement runtime cpu: 1:04:53 real: 1:05:59
Starting refinePlace ...

Comparing the times from the two log segments gives the following calculations:

■ real time (1 thread) = 1:15:09 = 4509 seconds

■ real time (2 threads) = 0:50:32 = 3032 seconds

4509 / 3032 = 1.49

Important

If other jobs are running during multi-threading placement, the real time includes
the run time for those jobs, so you do not get an accurate speed-up comparison.

Related Topics

■ Accelerating the Design Process By Using Multiple-CPU Processing

■ “Multiple Processing Commands” chapter in the Encounter Digital Implementation
System Text Command Reference.

■ “Multiple CPU Processing” in the Encounter Digital Implementation System Menu
Reference
October 2010 573 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#firstpage
../encounter/optionsG.html#MultipleCPUProcessing

Encounter Digital Implementation System User Guide
Placing the Design
Checking Placement

Use the following methods to check placement:

■ Amoeba view

For more information, see “The Main Window” chapter in the Encounter Digital
Implementation System Menu Reference.

■ checkPlace command

■ For more information, see checkPlace in the “Placement Commands” chapter of the
Encounter Digital Implementation System Text Command Reference.

■ Placement density map

For information, see the following references:

❑ “Placement Commands” chapter of the Encounter Digital Implementation
System Text Command Reference

❍ getDensityMapMode

❍ reportDensityMap

❍ setDensityMapMode

❑ “Placement Menu” chapter of the Encounter Digital Implementation System
Menu Reference

❍ Display Density Map

■ Violation Browser

Note: The Violation Browser does not indicate the layer on which a placement
violation occurs.

For information, see Violation Browser in the “Tools Menu” chapter of the Encounter
Digital Implementation System Menu Reference.
October 2010 574 Product Version 9.1.3

../encounter/startingG.html#firstpage
../fetxtcmdref/placementT.html#checkPlace
../fetxtcmdref/placementT.html#getDensityMapMode
../fetxtcmdref/placementT.html#reportDensityMap
../fetxtcmdref/placementT.html#setDensityMapMode
../encounter/placeG.html#DisplayDensityMap
../encounter/toolsG.html#ViolationBrowser
../encounter/toolsG.html#ViolationBrowser

Encounter Digital Implementation System User Guide
Placing the Design
Using the Amoeba View

Use the Amoeba view to see the placement of modules and blocks. For example, in the
following figure you can see the outlines of the hard blocks and the modules, and that the
instances in each of the modules are placed closely together.

To display the Amoeba view, select the Amoeba view widget from the Views panel in the
main EDI System window.

For more information, see “The Main Window” chapter in the Encounter Digital
Implementation System Menu Reference.

Using the Density Map

Use one of the following methods to turn the display of the density map on or off:

■ Select Density Map on the list of Visibility toggles in the main EDI System window.

■ Clock the All Colors button to open the Color Preferences form, then select the View
Only tab, and select Density Map, in the Multi-Color Layers section.

hard block

modulemodule
October 2010 575 Product Version 9.1.3

../encounter/startingG.html#firstpage

Encounter Digital Implementation System User Guide
Placing the Design
Adding Filler Cells

The software uses filler cells to fill the gaps between standard cell instances. Filler cells also
provide decoupling capacitance to complete the power connections in the standard cell rows
and extend N-well and P-well regions. The reason to add them as the last placement step is
that you cannot run in-place optimization after they are added. After routing, the software
checks for DRC violations created by the added filler cells.

To add filler cells, use the Add Filler form or the addFiller command.

Tip

Provide a list of filler cells so that at least one filler cell can be used to fill the space
without causing DRC violations.

Add Filler recognizes whether a filler cell has implant layer geometries and attempts to add
fillers that honor the implant layers’ width and spacing rules. By judicious selection of filler
cells, the software can correct implant layers' minimum spacing errors by putting in same
voltage threshold implant layer fillers in spaces between two same implant layer cells. Add
Filler also avoids creating implant layer minimum width errors by abutting fillers of same
implant layer as the adjacent cells, thus extending the implant layer width.

Important

Add Filler expects to be provided with cells of all types of implant layers to be able
to completely fill the design's core area with fillers. For example, if only a low-voltage
implant layer filler is provided, and the abutting logical cell has a high-voltage implant
layer, then Add Filler places the provided low-voltage implant filler only if its width
satisfies the minimum width rule for that implant layer.

Adding Fillers to MSV Designs

In cases where there are different voltages in the same design, also known as a multi-voltage
(MSV) design, you might need to specify the power domain in which the fillers are to be
inserted using the -powerDomain parameter of the addFiller command. If this parameter
is not specified for MSV designs, the command only inserts default power domain fillers. Any
region that does not belong to a specific power domain is assigned to the default power
domain.
October 2010 576 Product Version 9.1.3

../encounter/placeG.html#AddFiller
../fetxtcmdref/placementT.html#addFiller
../fetxtcmdref/placementT.html#addFiller

Encounter Digital Implementation System User Guide
Placing the Design
Deleting Filler Cells

To remove added filler cells, use the Delete Instances form or the deleteFiller command.
If you specify an area, the deleteFiller command deletes only filler cells that are
completely contained within the area; it does not delete filler cells that cross the area
boundary.

Placing Gate Array Style Filler Cells for Post-Mask ECO

You can use pre-existing Gate Array (GA) style filler cells in regular CORE sites during a post-
mask ECO flow. As such, the placer can add GA fillers at any grid location, rather than in a
GA CORE grid.

➤ Specify the following command:

ecoPlace -useGAFillerCells GAFillerCells

The placer first finds the optimal location each instance based on its connectivity, then
searches for the nearest GA filler cell that is equal to or larger in size. A GA cell is placed at
the GA filler location, and the original GA filler is deleted.

GA filler cell

Decoupling Cell

Standard Cell
October 2010 577 Product Version 9.1.3

../encounter/placeG.html#DeleteFiller
../fetxtcmdref/placementT.html#deleteFiller

Encounter Digital Implementation System User Guide
Placing the Design
If the GA filler is larger than the GA cell, the placer creates a new GA filler instance using the
list of GA filler cells you provide and places the filler in the gap.

The ecoPlace command also contains options that let you map unplaced standard cells to
spare cells, and map GA cells to GA core sites. You can specify that instances that are
PLACED cannot be moved.

For more information, see the following command in the Encounter Digital Implementation
System Text Command Reference:

■ ecoPlace in the “Interactive ECO Commands” chapter

Adding Decoupling Capacitance

Adding decoupling capacitance to a design can help maintain a stable voltage between power
and ground when signal nets switch. This can reduce IR drop for power nets and limit
bouncing on ground nets.

The EDI System software adds decoupling capacitance by choosing from the specified
available decoupling capacitance cell candidates, and adding enough cells until their
combined total capacitance value equals the user-specified value. You can insert decoupling
capacitance homogeneously inside a specified area, or based on the peak current density of
the instances in the area.

1. To define the cells to use for decoupling capacitance insertion, use the
addDeCapCellCandidates command.

Uses largest GA
filler cell to fill-up
potential gap

Decoupling Cell

Standard CellGA Cell

Places cell with
same origin,
orientation, and
flip state

GA Cell
October 2010 578 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#ecoPlace
../fetxtcmdref/delaycalcT.html#addDeCapCellCandidates

Encounter Digital Implementation System User Guide
Placing the Design
For example, the following commands define two decoupling capacitance cell
candidates: DECAP1 has a capacitance value of 10fF, and DECAP8 has a capacitance
value of 5fF.

addDeCapCellCandidates DECAP1 10

addDeCapCellCandidates DECAP8 5:

2. To add the specified total decoupling capacitance to the design, use the addDeCap
command.

For example, the following command adds 1000 fF of capacitance to the design using
DECAP1 and DECAP8 cells:

addDeCap -totCap 1000 -cells DECAP1 DECAP8

Deleting Decoupling Capacitance

➤ To clear all available decoupling cell candidates, use the
clearDeCapCellCandidates command.

➤ To delete all of the decoupling capacitance cells in a design, use the deleteDeCap
command.

Adding Logical Tie-Off Cells

Tie-off cell instances provide connectivity between the tie-hi and tie-lo logical input pins of the
netlist instances to power and ground. This connectivity does not cross the hierarchy module
boundaries. The number of tie-off instances added can be controlled by setting the distance
and fanout constraints using the setTieHiLoMode command.

To add logical tie-off cells to the design after placing the netlist, use the Add TieHiLo form or
the addTieHiLo command. To remove added logical tie-off cell instances, you can use the
Delete TieHiLo form or the deleteTieHiLo command.
October 2010 579 Product Version 9.1.3

../fetxtcmdref/placementT.html#addDeCap
../fetxtcmdref/delaycalcT.html#clearDeCapCellCandidates
../fetxtcmdref/delaycalcT.html#deleteDeCap
../fetxtcmdref/placementT.html#setTieHiLoMode
../encounter/placeG.html#AddTieHiLoInstances
../fetxtcmdref/placementT.html#addTieHiLo
../encounter/placeG.html#DeleteTieHiLo
../fetxtcmdref/placementT.html#deleteTieHiLo

Encounter Digital Implementation System User Guide
Placing the Design
Saving Placement Data

You can save placement data in the EDI System place format or in DEF, PDEF, and TDF
placement data formats. This can be done at any time after running placement. To save
placement data, use the savePlace command or the saveDesign command.

Specifying and Placing JTAG and Other Cells Close to the
I/Os

You can constrain the placement of JTAG cells and other cells so they are placed close to the
outer core area. Place these cells before you run placement in the rest of the design.

When the software runs JTAG placement, it creates a temporary blockage over the area
where the cells must not be placed and removes it after the placement.

You can constrain the placement of instances, hierarchical instances, or cells.

1. Use the following command to constrain placement:

specifyJtag

To include instances or cells other than JTAG cells, you must identify them with this
command.

a. To undo the specification, use the following command:

unspecifyJtag

2. To place the instances or cells, use the following command:

placeJtag

3. (optional) To generate a report of the JTAG placement, use the following command:

reportJtagInst

To undo JTAG placement, use the following command:

unplaceJTAG

Tip

If you do not want to place regular instances in the JTAG outer core area after
running JTAG placement, specify a placement blockage prior to running placement.
October 2010 580 Product Version 9.1.3

../fetxtcmdref/placementT.html#savePlace
../fetxtcmdref/importT.html#saveDesign

Encounter Digital Implementation System User Guide
Placing the Design
Related Topics

To see this step in the design flow, see Place the Design and Run Pre-CTS Optimization in
the Encounter Digital Implementation System Foundation Flows: Flat
Implementation Flow Guide.

For more information, see the following commands in the “Placement Commands” chapter of
the Encounter Digital Implementation System User Guide:

■ specifyJtag

■ unspecifyJtag

■ placeJtag

■ reportJtagInst

■ unplaceJtag

■ traceJtag

Optimizing and Reordering Scan Chains

The placeDesign command reorders scan chains by default, unless it is in prototyping
mode. If you decide not to reorder scan cells with placeDesign, use the information
provided in this section to reorder scan chains.

Related Topics

To see this step in the design flow, see Place the Design and Run Pre-CTS Optimization in
the Encounter Digital Implementation System Foundation Flows: Flat
Implementation Flow Guide.

Specifying Scan Cells

Scan cells are usually identified and read automatically from the timing library during design
import. Use the specifyScanCell command to define scan cells that the software cannot
retrieve from the library.

You can specify scan chains in a design by defining them in a DEF or TDF file, or by using
the specifyScanChain command.
October 2010 581 Product Version 9.1.3

../flatImpl/flow.html#PlacetheDesignandRunPre-CTSOptimization
../fetxtcmdref/placementT.html#specifyJtag
../fetxtcmdref/placementT.html#unspecifyJtag
../fetxtcmdref/placementT.html#placeJtag
../fetxtcmdref/placementT.html#reportJtagInst
../fetxtcmdref/placementT.html#unplaceJtag
../fetxtcmdref/placementT.html#traceJtag
../flatImpl/flow.html#PlacetheDesignandRunPre-CTSOptimization
../fetxtcmdref/placementT.html#specifyScanCell
../fetxtcmdref/placementT.html#specifyScanChain

Encounter Digital Implementation System User Guide
Placing the Design
If scan chains are specified by reading in a DEF file, the software does a native scan trace.
The scan DEF file is stored in the database and, when the scanReorder command runs,
the software matches the scans and honors the ordered segments. However, if you run
specify setPlaceMode -reorderScan false, the software does not perform scan chain
reordering, so the DEF file will not include the + ORDERED statement in the SCANCHAINS
section.

About Scan Chains

If you do not need to retain the scan chain order in your design, you can change the order of
the scan flip-flop connections along any or all scan chains. Changing the connection order
eases connection constraints on the scan cells, but does not constrain their placement.

To facilitate reordering of the scan nets, uniquify the incoming netlist and make sure that it
does not contain Verilog assignment statements involving scan nets. A scan net is a net that
resides along the scan datapath—that is, a net that connects the scan flip-flops in a scan
chain.

If the netlist is uniquified, but contains Verilog assignment statements involving scan nets, use
the following command to insert a temporary buffer into the netlist to enable reordering of
these nets:

setDoAssign on -buffer bufferName

Then load the design in the EDI System software with the loadConfig command.

When the EDI System software reads the netlist, it outputs the following messages:

Reading netlist ...
Reading verilog netlist ".fileName"
Inserting temporary buffers to remove assignment statements.

If buffers were added by setDoAssign, these buffers remain in the final netlist and replace
the Verilog assignment statements.

Reordering Scan Chains

Use one of the following approaches to scan chain reordering:

■ Native scan reordering

Use this approach in the following conditions:

❑ Single-clock domain, single-edge chains

❑ Multiple clock domain chain segments separated by data lockup elements
October 2010 582 Product Version 9.1.3

../fetxtcmdref/placementT.html#scanReorder
../fetxtcmdref/placementT.html#setPlaceMode
../fetxtcmdref/importT.html#loadConfig

Encounter Digital Implementation System User Guide
Placing the Design
❑ Shared functional output signal chains

■ ScanDEF-based reordering

Use this approach in the following conditions:

❑ All simple scan chain architectures (handled by the native approach)

❑ Implied domain transition scan chains (without data lockup elements)

❑ Scan chains with ordered segments

❑ Scan chains generated by LogicVision software

After reordering scan chains, save a netlist of the design using one of the following methods:

■ Save Netlist form (Design – Save – Netlist)

■ saveNetlist command

Native Scan Reordering Approach

Use the native approach to scan chain reordering when you do not have a scanDEF file.

This approach requires that you use the specifyScanChain command to identify the
START and STOP signals of the top-level chains, or chain segments, in the netlist. Using this
information, the software identifies the scan flip-flops along the scan chain when running the
scanTrace command to analyze the scan flip-flop connections. You can also auto-detect
data lockup latch elements using the scanTrace -lockup command.

If the scan cells are not listed in the timing library, you must specify them before tracing the
scan chains. You can identify scan cells with the specifyScanCell command.

After scanTrace has identified the elements along the chain, complete the following steps:

1. (Optional) Ignore the scan connections:

setPlaceMode –ignoreScan true

2. (Optional) Set scan reorder options:

setScanReorderMode -skipMode [skipNone | skipBuffer | skipTwoPinCell]

3. Run placement:

placeDesign

The recommended flow for scan chains that have data lockup latches is as follows:

1. Specify a scan chain in the design:
October 2010 583 Product Version 9.1.3

../encounter/designG.html#SaveNetlist
../fetxtcmdref/importT.html#saveNetlist
../fetxtcmdref/placementT.html#specifyScanCell

Encounter Digital Implementation System User Guide
Placing the Design
specifyScanChain

2. Trace the scan chain connection with the automatic detection lockup latch elements:

scanTrace -lockup [-verbose]

3. (Optional) Ignore the scan connections:

setPlaceMode –ignoreScan true

4. (Optional) Set scan reorder options:

setScanReorderMode [-skipNone | -skipBuffer | -skipTwoPinCell]

5. Run placement:

placeDesign

The recommended flow for scan chains that have data lockup flip-flops is as follows

1. Specify a scan chain in the design:

specifyScanChain ...

2. Specify a cell or instance as a lockup flip-flop element:

specifyLockupElement ...

3. (Optional) Ignore the scan connections:

setPlaceMode –ignoreScan true

4. (Optional) Set scan reorder options:

setScanReorderMode -skipMode [skipNone | skipBuffer | skipTwoPinCell]

5. Run placement:

placeDesign

Note: The scanReorder command automatically calls scanTrace internally if you have
not previously run scanTrace. By default, this internal scanTrace run specifies that the
tracing will not detect lockup elements (-noLockup); therefore, if you have lockup latches,
Cadence recommends using the scanTrace -lockup command before scanReorder, or
specifyLockupElement prior to running scanReorder.

Valid Design Types

You can use the native approach to scan chain reordering on designs comprising a simple
scan chain architecture with the following characteristics:

■ Single-clock domain, single-edge chains
October 2010 584 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Placing the Design
In the following figure, all foo_reg scan flip-flops are triggered by the same clock
domain and phase.

❑ foo_reg_1, foo_reg_2, and foo_reg_2 scan flip-flops are triggered by clk1
(positive edge).

specifyScanChain chain1 -start SI -stop SO
scanTrace [-verbose]

■ Multiple clock domain chain segments separated by data lockup elements

In the following figure, all domain or edge transitions are separated by a data lockup
element.

❑ foo_reg_1 and foo_reg_2 scan flip-flops are triggered by clk1 (positive edge).

❑ foo_reg_3 and foo_reg_4 scan flip-flops are triggered by clk2 (positive edge).

❑ LU represents a data lockup element of type latch.

specifyScanChain chain1 -start SI –stop SO
scanTrace -lockup [-verbose]

All elements along the scan chain are assumed reorderable from the specified START
and STOP signals unless there is a data lockup element in the scan data path. The
presence of a data lockup element works as a boundary so that the chain segments on
either side of the lockup element are individually reordered. For this example, the top-
level chain is reordered as two individual scan chain segments:

❑ reorderable segment 1: SI > LU/D

❑ reorderable segment 2: LU/Q > SO

SI QSI QSI

foo_reg_1 foo_reg_2

SI Q

foo_reg_3

SO

clk

SI QSI QSI

foo_reg_1 foo_reg_2

D Q

LU
clk1

SI Q

foo_reg_3

SI Q

foo_reg_4

clk2

SO

EN
October 2010 585 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Placing the Design
■ Shared functional output signal chains

If the STOP signal of the scan chain is also a shared functional output, the endpoint of
the scan chain must be specified to the scan input (SI) pin of the last register in the scan
chain, or to the data input pin of the multiplexer (MUX), which drives the shared functional
output signal. This is necessary because scanTrace does not perform the forward trace
from the last flip-flop in the scan chain through the MUX instance. The following figure is
an example of shared functional output:

The following command sequence performs the forward trace from the last flip-flop in the
scan chain to the MUX instance:

specifyScanChain chain1 -start in[0] -stop MUX/B
scanTrace -lockup [-verbose]

The following command sequence does not perform the forward trace from the last flip-
flop through the MUX instance; scanTrace will not succeed:

specifyScanChain chain1 -start in[0] –stop out[0]
scanTrace -lockup [-verbose]

Scan Chains with Two-Pin Logic Cells

Scan chains often contain two-pin logic cells, usually buffers. The scan tracing algorithm
always recognizes and traces through two-pin cells. The scanReorder command
parameters control whether two-pin cells remain in the scan chain after scan reordering.

SI QSI Qin[0]

foo_reg_1 foo_reg_2

D Q

LU
clk1

SI Q

foo_reg_3

SI Q

foo_reg_4

clk2

1

0
out[0]

shift_enable

Functional

Scan data
 connection

 connection
EN

B

A

October 2010 586 Product Version 9.1.3

../fetxtcmdref/placementT.html#scanReorder

Encounter Digital Implementation System User Guide
Placing the Design
In the following scan chain example, buffer A is in the scan chain, but not part of the functional
logic of the design, and therefore can be deleted. Buffer B is part of the functional logic, and
must not be deleted.

The scanReorder -skipMode skipNone command retains all two-pin cells in the scan
chain, and reordering changes only the connections to the two-pin cells’ outputs. The nets
connected to the two-pin cells’ inputs will not be modified. In the preceding example, both
buffers A and B would be retained, and scan reordering would be performed by rearranging
the scan input pin connected to their output nets.

The scanReorder -skipMode skipBuffer command reconnects the scan chain so that
buffers (as defined by setBufFootPrint) are skipped. Buffers that are not part of the
functional logic are deleted. This disconnects scan inputs and reconnects them directly to a
scan output pin, skipping all buffers. Any two-pin cells that are not buffers are retained in the
scan chain in the same manner as skipNone.

In the preceding example, buffer A would be deleted and functional buffer B would be retained
in the netlist. Scan reordering would disconnect the scan input pin from the output of buffer
B, and reconnect some other scan input pin to the input net of buffer B, so buffer B would no
longer be in the scan chain.

The scanReorder -skipMode skipTwoPinCell command works the same as
scanReorder -skipMode skipBuffer, except that it is not limited to buffers. Any two-
pin cell will be treated as skipBuffer would treat a buffer.

Important

Because scanReorder -skipMode skipTwoPinCell does not consider the
functionality of cells that it removes from the scan chain, it can change the scan
chain in unpredictable ways. For example, if buffer A in the preceding example was
an inverter, it would be removed, and the test pattern would have to be changed to
account for the loss of inversion.

SI QSI Q SI Q SI Q

Buffer A Buffer B

To other
functional
logic

To other
functional
logic
October 2010 587 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Placing the Design
scanDEF-Based Reordering Approach

If you have a scanDEF file that describes the set of reorderable scan chains in the design,
Cadence recommends using the scanDEF approach. To reorder scan chains with the
scanDEF approach, complete the following steps:

1. Read in the scanDEF file:

defIn –scanChain

Note: In the case where a DEF file contains a SCANCHAIN section, the defIn
command automatically reads in the scanDEF file, so the -scanChain parameter is not
necessary.

2. (Optional) Ignore the scan connections:

setPlaceMode –ignoreScan true

3. Run placement:

placeDesign

Using the scanReorder Command

When running the scanReorder command, the EDI System software uses the begin and
endpoints from the scanDEF chains to trace the connectivity of the scan chains in the netlist.
This check verifies whether the elements in the netlist scan chains are represented as
elements in their respective scanDEF chains. As a result of this check, an internal
representation of each scanDEF chain is created in the EDI System database.

When a netlist-to-scanDEF file mismatch occurs, for each instance mismatched,
scanReorder issues the following WARNING message:

WARNING (SOCSC-5003): The scan chain was found to pass through instance <inst>
in the netlist, but this instance does not appear in the DEF scan chain.

Mismatches of combinational components (buffers or inverters) in the scan data path can be
expected if the netlist has undergone pre-placement optimization, or if the scanDEF file is not
properly formatted, as described in Netlist-to-scanDEF mismatch section. Sequential
mismatches are tolerated if the mismatch occurs for a scan flop from the FLOATING section
only of the scanDEF chain. However, sequential mismatches are not expected and indicate
a discrepancy between the scan chains in the netlist, and the scanDEF chains. You should
investigate the source of the discrepancy before proceeding with reordering. If necessary,
revise the scanDEF description of the scan chains.

Using the internal representation of the scanDEF chains, EDI System issues the following
message prior to reordering the chains in the netlist:

INFO: Scan reorder based on traced netlist chains.
October 2010 588 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Placing the Design
INFO: Medium effort Scan reorder

INFO: Reordering scan chain <chainName>

Netlist-to-scanDEF Mismatch

Netlist-to-scanDEF mismatches can occur if a driving scan flip-flop is buffered (or inverted) to
the SI pin of the next scan flip-flop in the scan chain. In this situation, the driving scan flop
and buffer (or inverter) should be captured to the scanDEF file as an ORDERED segment,
rather than capturing the driving scan flip-flop as a freely reorderable element in the
FLOATING section of the scanDEF chain. The correct syntax for the FLOATING and
ORDERED sections of the scanDEF file is as follows:

- chain X
+ START PIN
+ FLOATING

....
next_scan_flop_reg (IN SI) (OUT SO)

+ ORDERED
driving_scan_flop_reg (IN SI) (OUT SO)
buf_instance (IN A) (OUT Y)

+ STOP

In previous releases of EDI System, when a scanDEF to netlist mismatch occurred, scan
reorder would abort. If the mismatches were due to combinational components (buffers or
inverters) in the scan data path, you could still proceed with scan reordering by issuing
scanReorder with the following parameters:

scanReorder -defInForce

For backward compatibility, these options are maintained in this release of the tool. However,
in order to leverage the new netlist-to-scanDEF tracing feature, you should remove these
parameters from the scanReorder command

The -defInForce parameter forces reordering to use the scanDEF file.

scanDEF File Format

The scanDEF file follows a pin-based format that describes the set of scan chains or chain
segments which are reorderable in the design. The syntax is as follows:

SCANCHAINS numScanChains ;
[- chainName

[+ COMMONSCANPINS [(IN pin)][(OUT pin)]]
[+ START {fixedInComp | PIN} [outPin]]
{+ FLOATING {floatingComp [(IN pin)] [(OUT pin)]}...}
[+ ORDERED

{fixedComp [(IN pin)] [(OUT pin)]
fixedComp [(IN pin)] [(OUT pin)]}
[fixedComp [(IN pin)] [(OUT pin)]]...]

[+ STOP {fixedOutComp | PIN} [inPin]] ;]...
END SCANCHAINS
October 2010 589 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Placing the Design
The logic synthesis tool writes the input scanDEF file after the top-level scan chains are
created in the design. Each top-level scan chain can be segmented into multiple scanDEF
chains because the elements along each scanDEF chain must belong to the same clock
domain, and be triggered by the same active edge of clock. Scan flip-flops that are freely
reorderable along the scan chain are captured to the FLOATING section. Fixed segments (a
set of connected elements), which are reordered as a fixed entity along the scan chain, are
captured to the ORDERED section. Each scan chain must also have a START and STOP signal
that defines the reordering start and end points of the scan chain.

Note: You can use the following RTL Compiler command: write_scandef > fileName

Valid Design Types

You can use the scanDEF approach to reorder top-level scan chains. This section provides a
reordering example for implied domain transition scan chains, and an example of scan chains
with fixed-ordered segments. You can also use this approach with all simple scan chain
architectures that can use the native approach, as well as scan chains generated by
LogicVision software.

■ Implied domain transition scan chains

The scan flip-flops are triggered by alternate active edges of the same clock domain. The
negative (positive) edge triggered segment precedes the positive (negative) edge
triggered segments, respectively. In the following example, the implied domain transition
occurs at neg2_reg to pos1_reg:

In this example, the two scan chain segments are as follows:

❑ clk1 (negative edge) consisting of elements neg1_reg and neg2_reg

❑ clk1 (positive edge) consisting of elements pos1_reg, pos2_reg, pos3_reg,
and pos4_reg

Because the domain transition is done implicitly (without a data lockup element), the
scan chain must be segmented to be properly reordered. In the scanDEF format, the top-
level chain becomes two scanDEF chains, segmented by clock domain and clock edge;

SI QSI Qin

neg1_reg neg2_reg
clk1

1

0
outFunctional

 connection

SI QSI Q

pos1_reg pos2_reg

SI QSI Q

pos3_reg pos4_reg

Domain transition occurs

shift_enable

A

B

Scan data
 connection
October 2010 590 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Placing the Design
the pos1_reg scan flip-flop is sacrificed to anchor the domain transition. This register
becomes an internal end and internal being point of scan DEF chains (chain1 and
chain2 respectively):

SCANCHAINS 2 ;
- chain1
+ START pin in
+ FLOATING

neg1_reg (IN SI) (OUT Q)
neg2_reg (IN SI) (OUT Q)

+ STOP pos1_reg SI
;
- chain2
+ START pos1_reg Q
+ FLOATING

pos2_reg (IN SI) (OUT Q)
pos3_reg (IN SI) (OUT Q)

+ STOP pos4_reg SI
;
END SCANCHAINS

Note: The shared functional output signal (out) is not the STOP signal of the second
scan chain segment. Instead, the scan chain is terminated to the IN pin of the last scan
flop in the positive-edge triggered segment (BuildGates/PKS), or terminated to the data
input pin of the MUX (other third-party tools).

■ Scan chains with ORDERED segments

An order segment is a set of connected elements that can be reconnected along the scan
chain based on its placement. Reconnection to the fixed segment occurs using the IN
pin of the first element and the OUT pin of the last element of the ordered segment. The
connections of the other elements in the ordered segment are presumed connected and
remain as intact connections. When an ORDERED segment is reconnected in the scan
chain, the location of the ORDERED segment appears as a comment in the FLOATING
section and again in the ORDERED section in order to correlate the segment to its location
in the FLOATING section. The notation is as follows:

ORDERED segment integer;

The integer corresponds to as many ORDERED segments as defined in the original scan
chain. For example, a scanDEF chain with one ORDERED segment is as follows:

SCANCHAINS 1 ;
- chain0

+ START PIN scan_in
+ FLOATING

out_reg_0 (IN SI) (OUT Q)
out_reg_1 (IN SI) (OUT Q)
out_reg_2 (IN SI) (OUT Q)
out_reg_3 (IN SI) (OUT Q)

+ ORDERED
out_reg_4 (IN SI) (OUT Q)
u_buf (IN A) (OUT Y)

+ STOP PIN scan_out ;
END SCANCHAINS
October 2010 591 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Placing the Design
After reordering the output, the scanDEF file is as follows:

SCANCHAINS 1 ;
- chain0

+ START PIN scan_in
+ FLOATING

out_reg_2 (IN SI) (OUT Q)
out_reg_1 (IN SI) (OUT Q)

ORDERED segment 1
out_reg_3 (IN SI) (OUT Q)
out_reg_0 (IN SI) (OUT Q)

+ ORDERED
ORDERED segment 1

out_reg_4 (IN SI) (OUT Q)
u_buf (IN A) (OUT Y)

+ STOP PIN scan_out ;
END SCANCHAINS

Therefore, the connectivity of the elements along the reordered scan chain is as follows:

Saving Scan Files

After scan reorder is run, save a DEF or TDF file using the following command:

defOutBySection -noNets -noComps -scanChains

With this command, you can view the new order of elements along the scan chain. However,
you should use the scanDEF output file for viewing purposes only, not a subsequent
reordering pass.

To save scan files, use the Save Scan File form or the defOut or tdfOut commands.

Loading Scan Files

To load scan files in either DEF or TDF formats, use the Load Scan File form. For DEF, use
the defIn command. For TDF, you can also use the tdfIn command.

SI QSI Qscan_in

out_reg_2 out_reg_1
clk1

scan_outSI QSI Q

out_reg_4 out_reg_3

SI Q

out_reg_2

ORDERED segment 1

A Y

u_buf
October 2010 592 Product Version 9.1.3

../fetxtcmdref/importT.html#defOut
../fetxtcmdref/importT.html#tdfOut
../fetxtcmdref/importT.html#defIn
../fetxtcmdref/importT.html#tdfIn

Encounter Digital Implementation System User Guide
17
Synthesizing Clock Trees

■ Before You Begin on page 594

■ Results on page 594

■ Understanding CTS Operation Modes on page 595

■ How CTS Calculates Skew Values on page 600

■ Improving Postroute Correlation on page 602

■ Specifying Macro Model Delays on page 603

■ Grouping Clocks on page 607

■ Analyzing Hierarchical Clock Trees on page 608

■ Module Placement Utilization on page 610

■ Clock Designs with Tight Area on page 610

■ Balancing Pins for Macro Models on page 610

■ Timing Model Requirement for Cells on page 610

■ Delay Variation and OCV on page 610

■ Understanding Post-CTS Clock Tree Optimization on page 611

■ Creating a Clock Tree Specification File on page 615

■ CTS Report Descriptions on page 647

■ Supported SDC Constraints on page 651

■ Clock Tree Analyst on page 652
October 2010 593 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Before You Begin

Before you run CTS on your design, make sure the following files are available:

■ Clock tree specification file

■ Verilog netlist

■ GDSII or LEF physical library

■ Proper RC model from LEF, Encounter™ technology file, or Encounter Digital
Implementation System (EDI System) capacitance table

For information on RC extraction in EDI System, see RC Extraction on page 947 of the
Encounter Digital Implementation System User Guide.

■ Timing constraints file (optional)

■ .lib file or TLF file with timing models for standard cells and cell footprint names

■ Placement information, such as a DEF file or an EDI System placement file

Related Topics

To see where this step fits in the design flow, see Run CTS and Post-CTS Optimization in the
Encounter Digital Implementation System Foundation Flows: Flat Implementation
Flow Guide.

Results

After a CTS run, CTS creates reports on the results of the run in ASCII text or HTML format.
CTS also creates routing guide files (to guide NanoRoute on routing the clock nets) and
macro model files (for partitions or modules).
October 2010 594 Product Version 9.1.3

../flatImpl/flow.html#RunCTSandPostCTSOptimization

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Understanding CTS Operation Modes

There are two modes for running CTS: manual and automatic.

■ Manual CTS mode allows you to control the number of levels and the number of buffers,
and specify the types of buffers at each level.

■ In automatic CTS mode, CTS automatically determines the number of levels and buffers
based on the timing constraints in the clock tree specification file, such as the maximum
delay and maximum skew.

Manual CTS Mode

You can run manual CTS on a clock net and specify the levels of clock buffers. CTS builds the
clock buffer tree according to the clock tree specification file, generates the clock tree
topology, and balances the clock phase delay with inserted clock buffers. However, CTS does
not trace the clock net.

The following is an example of clock-tree specification file syntax and a graphic
representation of that syntax:

CTS

MCK_GE MCK_GE

Added by CTS L
ev

el
 1

, 2
 C

L
K

B
U

F4
0

L
ev

el
 2

, 2
0

C
L

K
B

U
F2

0

T
o

Fl
ip

Fl
op

s

T
o

Fl
ip

Fl
op

s
ClockNetName MCK_GE
LevelNumber 2
LevelSpec 1 2 CLKBUF40
LevelSpec 2 20 CLKBUF20
PostOpt YES
End
October 2010 595 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Automatic CTS Mode

You can run automatic CTS to synthesize the clock design on a clock net or on a gated clock
design. However, CTS does not trace the clock net.

Automatic CTS on Nets

For automatic CTS on a net, CTS builds the clock buffer tree according to the clock tree
specification file, generates the clock tree topology, and balances the clock phase delay with
appropriately sized, inserted clock buffers.
October 2010 596 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
The following is an example of clock tree specification file syntax for automatic CTS on a net
and a graphic representation of the syntax:

Automatic CTS for Gated Clocks

For automatic-gated CTS, CTS traces the clock tree starting from a root pin. The tracing
begins at the root pin, then continues through the buffers, inverters, multi-output cells, and
gated instances to establish the clock tree. The tracing stops at

■ A clock pin

■ An asynchronous set/reset pin

F/Fs

F/Fs

MacroModel Pin mem_core/clk

CTS does not trace through gates, because NoGating rising

Added by CTS

Phase Delay 1

Phase Delay 2

CTS delay1

CTS delay2

CTS buffer4

CTS buffer2

CTS buffer3

Phase Delay 3

AutoCTSRootPin
Sink Input
Transition Time

Buffer Input
Transition Time Skew

CTS buffer5

SH1/I23/Z

is specified, but the skew is balanced.

Phase Delay 4

MacroModel pin mem_core/clk 20ps 18ps 20ps 18ps 0ff
AutoCTSRootPin SH1/I23/Z
NoGating rising
Buffer INV14 CLKBUF12 CLKBUF40 CLKBUF20 DEL4
MaxDelay 5ns
MinDelay 0ns
MaxSkew 500ps
End
October 2010 597 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
■ An input pin without any timing arc to an output pin

■ A user-specified leaf pin or excluded pin

■ Data pin of registers (or flops)

■ Asynchronous set or reset pin of registers (or flops)

■ Enable pins of tristate instances

After the tracing, CTS builds the clock buffer tree topology to balance the clock phase delay
with inserted clock buffers.

Note: Cadence recommends using the ckSynthesis -check command to check the
gated clock tree of your design before running automatic gated CTS mode. After running the
command, review the trace report file, topCellName.cts_trace. If tracing fails, the
-forceReconvergent parameter of the ckSynthesis command could resolve tracing
failures.
October 2010 598 Product Version 9.1.3

../fetxtcmdref/clockT.html#ckSynthesis

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
The following is an example of clock tree specification file syntax for automatic CTS on a
gated clock and a graphic representation of the syntax:

F/Fs

Phase Delay 1

CTS buffer1

CTS buffer2

AutoCTSRootPin

Sink Input
Transition Time

Max Skew

SH1/I23/Z

CTS buffer4

Phase Delay 2

Added by CTS

CTS buffer3
Buffer Input
Transition Time

No clock skew balance performed

Pin XPU/CAM/C

Pin FPU/CORE/A

FPU/CORE or
can be a std cell

XPU/CAM

MacroModel Pin mem_core/clk

AutoCTSRootPin SH1/I23/Z
MaxDelay 5ns
MinDelay 0ns
MaxSkew 500ps
MaxDepth 20
NoGating NO
RouteType CK1
LeafPin
+ FPU/CORE/A rising
ExcludedPin
+ XPU/CAM/C
PreservePin
+ pinA
+ pinB
MaxCap
+ buf1 20ff
+ buf2 50ff
Buffer buf1 buf2 inv1 inv2 del1
End
October 2010 599 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
How CTS Calculates Skew Values

CTS calculates skew at the edge of the clock root in the following fashion:

■ Rise skew and fall skew are calculated relative to the edge of the clock root—for
example, rise skew is calculated based on the rising edge at the clock root.

Note: The edge polarity at the leaf pins can be rising or falling, regardless of whether
CTS is reporting on rise skew or fall skew.

■ Rise skew is the maximum difference of all the arrival times of the clock signal at the
leaf inputs, as measured from a rising edge at the clock root.

■ Fall skew is the maximum difference of all the arrival times of the clock signal at the leaf
inputs, as measured from a falling edge at the clock root.

■ Trigger-edge skew is based on all the arrival times of the active clock signal at the leaf
inputs. The calculation considers the trigger-edge polarity of the receiving leaf inputs,
and represents the worst-case trigger-edge-to-trigger-edge skew in the design. See the
accompanying figure.

Note: Trigger-edge skew can be greater or smaller than rise skew or fall skew.

The following example illustrates how CTS calculates various skew values:

Assume that a design has two flip-flops, FF1 and FF2:

FF1 rise: 3.0 ns; fall: 3.6 ns

FF2 rise: 3.4 ns; fall: 4.0 ns

Rise skew is 0.4 ns; fall skew is 0.4 ns.

Assume that FF1 is a falling-edge-triggered flip-flop, and that FF2 is a rising-edge-triggered
flip-flop. The trigger-edge skew is 3.6 ns - 3.4 ns = 0.2 ns.

Assume that FF1 is a rising-edge-triggered flip-flop, and that FF2 is a falling-edge-triggered
flip-flop. The trigger-edge skew is 4.0 ns - 3.0 ns = 1.0 ns.
October 2010 600 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
The following figure illustrates how trigger-edge skew can be smaller than either rise skew or
fall skew:

100 ps

300 ps

500 ps

800 ps

A

B

C

D

Rise skew (C - A): 500 ps - 100 ps = 400 ps
Fall skew (D - B): 800 ps - 300 ps = 500 ps
Trigger-edge skew (C - B): 500 ps - 300 ps = 200 ps
T = Trigger edge

T

T

October 2010 601 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Improving Postroute Correlation

You can create a routing guide file that CTS automatically uses to direct the global detailed
routing of clock nets. This process helps achieve tighter correlation between preroute (Steiner
tree) and postroute topologies.

There are two methods of improving postroute correlation with a routing guide file. The
difference between the two methods is this: With Method 2, CTS reports on the clock tree
before you complete the detailed routing on the design.

Method 1

1. In the Encounter console, type setCTSMode -routeGuide true.

2. In the clock tree specification file, include RouteClkNet YES, or use the text command
createClockTreeSpec -routeClkNet.

3. In the Encounter console, type ckSynthesis.

4. Check your run directory for the clock tree timing report (top_level_cell.ctsrpt).

Method 2

1. In the clock tree specification file, include RouteClkNet NO.

2. In the Encounter console, type ckSynthesis.

3. In the Encounter console, type routeClockNetWithGuide [-clk
clock_root_pin_name]

4. Check your run directory for the clock tree timing report (top_level_cell.ctsrpt).
October 2010 602 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Specifying Macro Model Delays

You use the MacroModel statement to specify pin delays. A macro model is a block with
synthesized clock trees, and thus has delays that have been identified.

There are three ways to define the macro model:

■ Cell or port delay specification—All instantiations of cells have the same pin delay.

MacroModel port cellName/portName maxRiseDelay minRiseDelay
maxFallDelay minFallDelay extraCap

where cellName is the cell type name and the portName is the port name. For
example:

MacroModel port ram256x64/clk 10ns 80ns 110ns 7ns 0.35ff

■ Pin instance delay specification—This specification can supersede a cell delay or port
delay specification.

MacroModel pin leafPinName maxRiseDelay minRiseDelay
 maxFallDelay minFallDelay extraCap

where the leafPinName is the leaf pin instance name. For example:

MacroModel pin mem_pin/clk 20ps 18ps 20ps 18ps 0.29ff

Delay units for MacroModel statements must be specified in nanoseconds (ns) or
picoseconds (ps), for example, 200ps, 1ns.

■ INSERTION_DELAY statement in the TLF file.

INSERTION_DELAY(CLK FAST 01 01 DELAY(InsDelay0) SLEW(InsSlew1))
INSERTION_DELAY(CLK SLOW 01 01 DELAY(InsDelay0) SLEW(InsSlew1))

For information on TLF, see the Timing Library Format Reference.

For illustrations of MacroModel behavior, see Automatic CTS on Nets on page 596 and
Automatic CTS for Gated Clocks on page 597.

Macro Model Support for MMMC Views

Macro models support MMMC views.

■ The cell-based macro models are specified as:

MacroModel port cellName/portName maxRiseDelay minRiseDelay maxFallDelay
minFallDelay extraCap viewName

■ The instance-based macro models are specified as:

MacroModel pin leafPinName maxRiseDelay minRiseDelay maxFallDelay
minFallDelay extraCap viewName
October 2010 603 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Note: The view names are the analysis views specified by the MMMC setting.

For MMMC setup, if you do not specify a view name, the macro model is applied to the default
setup view while all other views are applied with some auto-scaling according to the ratio of
the cell delay of each view to the default setup view. If MMMC is not enabled and view name
is specified in macro model, then the tool displays an error message on specifying the view
name.

Example1

Consider the following statements:

MacroModel pin inst1/CK 0.4ps 0.4ps 0.4ps 0.4ps 0pf
MacroModel pin inst1/CK 0.3ps 0.3ps 0.3ps 0.3ps 0pf view2

If you specify macro model for one pin without any view and the following statement is a
macro model statement for the same pin but with a specific view name. For example, view2.
Assuming there are three active views: view1, view2, view3, then view2 will get the delay
value of the second statement (because the latest overrides the previous) and view1
(assuming view1 is the default setup view) will get the value from first statement and view3
will get a scaled delay value.

Therefore, the tool interprets it as :

MacroModel pin inst1/CK 0.4ps 0.4ps 0.4ps 0.4ps 0pf view1
MacroModel pin inst1/CK 0.3ps 0.3ps 0.3ps 0.3ps 0pf view2
MacroModel pin inst1/CK 0.4ps 0.4ps 0.4ps 0.4ps 0pf view3

Example2

Consider the following statements:

MacroModel pin inst1/CK 0.3ps 0.3ps 0.3ps 0.3ps 0pf view2
MacroModel pin inst1/CK 0.4ps 0.4ps 0.4ps 0.4ps 0pf

The tool interprets it as:

MacroModel pin inst1/CK 0.4ps 0.4ps 0.4ps 0.4ps 0pf view1
MacroModel pin inst1/CK 0.4ps 0.4ps 0.4ps 0.4ps 0pf view2
MacroModel pin inst1/CK 0.4ps 0.4ps 0.4ps 0.4ps 0pf view3

Dynamic Macro Model

A dynamic macro model is used to minimize the skew between the reference pin and the
target pin during CTS. The reference pin is a clock instance pin along a clock path. The target
pin must be a leaf pin.

DynamicMacroModel ref refInstPinName pin targetInstPinName [offset delayNumber]
October 2010 604 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
where refInstPinName is the reference instance pin name, targetInstPinName is
the target instance pin name, and delayNumber specifies the offset arrival delay in
nanoseconds or picoseconds.

As an example, the DynamicMacroModel statement can be used when your design
contains clock dividers. The following figure contains two flops, A and B. A ThroughPin has
been defined in the clock pin of Flop B. So, the clock pin of Flop A is balanced with the group
of flops and not with the clock pin of Flop B because of the ThroughPin that has been
defined in Flop B. Using a dynamic macro model in Flop A, you can balance the skew
between the two flops. You can then specify clock pin of Flop B as a reference pin and clock
pin of Flop A as the target pin so that the clock pin of flop A is balanced with the clock pin of
flop B. The DynamicMacroModel statement minimizes the skew between these two flops to
avoid timing violation on the data path.

The following figure illustrates how the skew is minimized between the reference pin and the
target pin using dynamic macro model.

If there are multiple DynamicMacroModel statements where the target pin is referenced to
more than one reference pin, the latter overrides the previous statement.

The offset parameter is optional. Instead of minimizing the difference between the arrival
delays at the reference and the target pins, the offset parameter allows you to specify the
offset arrival delay for the target pin. The offset arrival delay can be a positive or a negative
value. A positive offset number indicates a shorter clock path for the target pin as
compared to that of a reference pin. The default value of the offset parameter is 0.

CLK

AutoCTSRootPin

Reg

RegD Q

Reg

D Q

Dynamic Macro Model

ThroughPin

Flop A Flop B
October 2010 605 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Example

In the following example, a clock tree is built by minimizing the skew between the reference
pin (Clock_gate/CGC1/CLK) and the target pins (fsm_reg1/CLK, fsm_reg2/CLK, and
so on).

..
DynamicMacroModel ref Clock_gate/CGC1/A pin fsm_reg1/CLK offset 1
DynamicMacroModel ref Clock_gate/CGC1/A pin fsm_reg2/CLK offset 1
..

A

B

CLK

AutoCTSRootPin

Six Flops

Dynamic Macro Model

Clock_gate/CGC1

Reg

Reg

No Timing Path
October 2010 606 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Grouping Clocks

Clock grouping is available in automatic CTS mode. All clock root pin names entered into a
clock group that will have their sinks meet the maximum skew as specified in the clock tree
specification file. CTS balances the clock tree roots as if they were one tree.

The sinks of all clock root pins listed in a ClkGroup statement will meet the maximum skew
value set in the clock tree specification file. Clock grouping inserts delays to balance the
clocks, and attempts to meet clock skew for all clocks.

Note: You can define more than one clock group in the clock tree specification file.

The following is an example of clock group syntax and its graphical representation:

Note: All ClkGroup statements must be specified in lines following macro model line(s), and
before any clock specification.

CTS

SH1/I23/Z1

SH22/I63/Z2

CTS optimizes
skew between tree 1
and tree 2

ClkGroup
+ SH1/I23/Z1
+ SH22/I6/Z2

tree 1

CTS
tree 2
October 2010 607 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Analyzing Hierarchical Clock Trees

EDI System designs clock trees in a two-step, bottom-up fashion.

Within EDI System, the designing of the clock tree is done bottom-up in two steps. After
partitioning the design, you can run CTS on each partition individually. Once the partitions are
synthesized, the top-level partition runs CTS hierarchically. So CTS runs at the top-level
partition, and the partitions’ clock tree results are treated as macro model instances.

To generate the partition macro models, use the Synthesize Clock Tree form (Clock –
Synthesize Clock Tree) or the following command when running CTS for the partition:

ckSynthesis -macromodel fileName

The rise time, fall time, and input capacitance for the clock pins are characterized, and the
fileName output model file is used when creating the top-level partition’s clock tree
specification file. Running CTS for the top-level partition balances the clock phase delay
between the top-level and the partitions.

Important

The macro model specifications for each partition are at the top of the clock tree
specification file.

For example, in a design with three partitions (blockA, blockB and blockC), you should
first synthesize the partitions individually. To run CTS on the partition’s blocks, you should add
the AddDriverCell statement in the clock tree specification file. Use the AddDriverCell
driver_cell_name statement for block-level CTS to place a driver cell name at the
closest possible location to the clock port location. For example:

AutoCTSRootPin blockA/clk
....
...
AddDriverCell CLKBUF8
End
October 2010 608 Product Version 9.1.3

../fetxtcmdref/clockT.html#ckSynthesis

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
CTS adds buffer CLKBUF8 after the input pin, as shown in the following figure:

After running CTS on the blocks, run CTS on the top level of the design. To run top-level CTS,
you must include all the macro models from block-level CTS in the clock tree specification file.

Important

If your top-level design has a large amount of blockage and is limited in routing
resources, you should add the Obstruction Yes statement in the clock-tree
specification file. That statement instructs CTS to run the detail maze router to
detect the obstruction (which increases CTS runtime). Use this statement only when
routing resources are extremely limited, such as in top-level CTS.

The following example shows the Obstruction Yes command in the clock specification
file:

MacroModel port blockA/clk 900ps 800ps 900ps 800ps 17ff
MacroModel port blockB/clk 1100ps 1000ps 1100ps 1000ps 18ff
MacroModel port blockC/clk 500ps 400ps 500ps 400ps 19ff
AutoCTSRootPin clk
....
...
Obstruction Yes
End

blockA

blockB

blockC

blockA/CLK

CLKBUF8

Clock
Tree
October 2010 609 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Module Placement Utilization

Make sure the modules’ placement utilization, which contains the clock nets is set to 5–7
percent less than the desired final chip utilization (placement density). This provides
placement resources for adding clock buffers during CTS.

Clock Designs with Tight Area

For a clock design that is limited to a tight area, use the Specify Cell Padding form
(Place – Specify – Cell Padding) to create placement resources near clocked flip-flop cell
types.

Balancing Pins for Macro Models

CTS can balance a pin of a macro model. These macro models are user specified. CTS
balances the phase delay of all leaf pins in the clock tree, including leaf pins of macro models.

The timing models for macro models are defined in the clock tree specification file
MacroModel statement.

Timing Model Requirement for Cells

Make sure that all cells have a timing model. If a cell does not have a timing model, CTS will
not trace through the gate, and may set the gate’s input pin as a leaf pin.

Delay Variation and OCV

CTS can analyze your design for delay variation and on-chip variation (OCV). CTS identifies
adjacent registers and then calculates the delay, using derating factors that you set with the
specify with the setAnalysisMode and setTimingDerate commands.
October 2010 610 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#setAnalysisMode
../fetxtcmdref/timinganalysisT.html#setTimingDerate

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
The following diagram illustrates how CTS applies wire and cell derating factors to the whole
path in a clock tree, including the common path.

The following diagram illustrates how CTS applies cell and wire derating factors only to the
paths after a branch point—and not to the common path.

Understanding Post-CTS Clock Tree Optimization

Using the ckECO Command for Post-CTS Clock Tree Optimization

Use the ckECO command for post-CTS optimization of clock tree(s) in the same Encounter
session as the ckSynthesis command was run, or in a new session. The sole aim of the
ckECO command is to improve the skew of each clock and clock group, and to resolve
minimum phase delay violations. The ckECO command does not attempt to correct any
design rule violations. However, in trying to improve skew, the ckECO command does not
significantly worsen maximum transition or maximum capacitance violations.
October 2010 611 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
The ckECO command performs resizing and buffer insertion or dummy buffer insertion to
improve skew. In addition, the ckECO command might move gating cells when the ckECO
command runs refinePlace.

Support for Local Skew Optimization

The ckECO command also supports local skew optimization (with the -localSkew
parameter). Local skew optimization considers the skew between adjacent flip-flops that have
data path connection (from a Q-pin of one flip-flop to the D-pin of another flip-flop).

Load the timing constraints into the Encounter session (design import stage) when you want
to perform local skew optimization.

At a minimum, the clock roots need to be defined in the SDC file so the ckECO command can
identify the adjacent register pairs.

Command Modes for the ckECO Command

The ckECO command can be run in three modes:

■ ckECO -preRoute

■ ckECO -clkRouteOnly

■ ckECO -postRoute

It is important to choose the correct mode, based on the state of the design. Otherwise CTS
might use the wrong RC model, which can lead to quality-of-result (QOR) and correlation
problems.

Using a SPEF File with the ckECO Command for RC Estimation

As an alternative to using CTS estimation for RCs it is possible to load a SPEF file.

If you use an external SPEF file (spefIn) you just use the ckECO -postRoute command,
and CTS does not create a clock tree report after the ckECO -postRoute process is done.
You will need to re-extract the RC values for all the wires.

After you create a new SPEF file, load this new file into the Encounter session. Then run
reportClockTree -postRoute. CTS then creates the clock report.

If clock nets are in a routed state you run the ckECO command, any wires that are disturbed
by the ckECO command will automatically be rerouted using NanoRoute in an ECO mode.
October 2010 612 Product Version 9.1.3

../fetxtcmdref/placementT.html#refinePlace
../fetxtcmdref/rcextractionT.html#spefIn

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Running Post-CTS Optimization with the ckECO Command

You must load the clock tree specification file to run the ckECO command. (The clock tree
specification file defines the clocks which you want to optimize.)

Whether the ckECO command performs resizing or ECO routing depends on these clock tree
specification file or setCTSMode settings:

■ RouteClkNet YES | NO

■ setCTSMode -routeClkNet {true | false}

■ PostOpt YES | NO

■ setCTSMode -opt {true | false}t

The following examples show the usage of the ckECO command for two general design
states.

Example 1

If your design has the following characteristics—

■ Clock tree is already inserted

■ Clocks are routed

■ Signal nets are not routed

—use this command sequence:

specifyClockTree

ckECO -clkRouteOnly

Example 2

If your design has the following characteristics—

■ Clock tree is already inserted

■ Clock nets are not routed

■ Signal nets are not routed

—use this command sequence:

specifyClockTree

ckECO
October 2010 613 Product Version 9.1.3

../soceUG/CTS.html#RouteClkNet
../fetxtcmdref/clockT.html#setCTSMode
../soceUG/CTS.html#PostOpt
../fetxtcmdref/clockT.html#setCTSMode

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Note: When you specify the ckECO command without a parameter, you instruct CTS to use
the default mode for the command, which is -preRoute.

Guidelines for Using the ckECO Command

■ If the design contains signal routes routed by Trial Route or NanoRoute, you must specify
ckECO -postRoute; otherwise, the software generates an error message and stops.
When you specify ckECO -postRoute on designs with Trial-Routed nets, the software
removes any Trial-Routed nets before running the command. After the command has
run, the software calls Trial Route to replace the Trial-Routed nets.

Note: The new Trial-Routed nets are not guaranteed to be identical to those before you
ran the ckECO command.

■ By default, the ckECO command inserts a maximum of 50 buffers. The number of buffers
is controlled by the OptAddBufferLimit statement in the clock tree specification file.

■ Often it is possible to make incremental improvements to skew by running the ckECO
command multiple times.

For details on the ckECO command and its parameters, see “Clock Tree Synthesis
Commands” in the Encounter Digital Implementation System Text Command
Reference.
October 2010 614 Product Version 9.1.3

../soceUG/CTS.html#OptAddBufferLimit
../fetxtcmdref/clockT.html#ckECO

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Creating a Clock Tree Specification File

Before you can run CTS, you must create a clock tree specification file by:

■ Using the Create Clock Tree Spec form

■ Using the createClockTreeSpec command

■ Using the specifyClockTree command with the -template parameter

The specifyClockTree command creates the basic clock tree specification file
template file template.ctstch in the directory in which you are running the EDI
System software. Edit the template file with any text editor.

This file contains the following information on the clock or clocks you want to analyze with
CTS:

■ Timing constraint file (optional)

■ Naming attributes (optional)

■ Macro model data (optional)

■ Clock grouping data (optional)

■ Attributes used by NanoRoute™ Ultra SoC routing solution (optional)

■ Requirements for manual CTS or automatic, gated CTS

You can create a clock tree specification file for all the clocks in your design, for a subset of
clocks in your design, or for a single clock.

Important

The general sections of the clock tree specification files must appear in the order
given above. However, the individual statements within each section can appear in
any order.

Using the Automatic Clock Tree Specification File Generator

You can specify setCTSMode -specMultiMode true, to enable the automatic clock tree
specification file generator, which generates clock tree specification files that are more timing
aware than regular specification files.

The auto clock tree specification file generator can be used only with the clockDesign
command, and can be used in two ways:
October 2010 615 Product Version 9.1.3

../fetxtcmdref/clockT.html#createClockTreeSpec
../fetxtcmdref/clockT.html#specifyClockTree
../fetxtcmdref/clockT.html#setCTSMode
../fetxtcmdref/clockT.html#clockDesign

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
■ By specifying clockDesign -genSpecOnly, to only generate the timing aware clock
tree specification file.

■ By specifying clockDesign on its own, to generate the specification file, and then
running clock tree synthesis.

The auto clock tree specification file generator works differently depending on whether the
software is in multi-mode multi-corner (MMMC) analysis mode.

If you specify the following commands when the software is not in MMMC analysis mode:

setCTSMode -specMultiMode true

addCTSCellList “BUFX2 BUFX4 BUFX8”

clockDesign -genSpecOnly

The auto clock tree spec generator determines whether certain groups of flops that form a
clock divider circuit need to be balanced separately. Additionally, it handles case analysis
constraints, disabled timing, and loop breaking in the SDC file.

The auto clock tree spec generator also:

■ Generates a spec file with dynamic macro models to help close on timing issues between
the flops (which function as clock dividers) that are responsible for providing the
generated clock. It adds dynamic macro models when appropriate.

■ Groups clocks that communicate with each other in the spec file (ClkGroup) when
appropriate.

Note: If you run clockDesign without the -genSpecOnly parameter, the automatic clock
spec generator generates the new spec file with dynamic macromodels and grouped clocks,
then runs synthesis.

If you specify the same commands when the software is in MMMC analysis mode, the auto

CLK

AutoCTSRootPin

Reg

RegD Q

Reg

D Q

Dynamic Macro Model

ThroughPin

Flop A Flop B

Generated Clock
October 2010 616 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
clock tree spec generator generates multiple specification files as above, using the naming
convention fileName.modeName.

If you run clockDesign without the -genSpecOnly parameter, it generates the multiple
specification files, and also performs the following CTS functions on all active analysis
views, sequentially:

■ Creates and loads a clock tree specification file for each mode.

■ Runs clock tree synthesis.

■ Determines which instances of the synthesized clock tree to preserve for building the
next clock tree.

■ Removes the clock tree spec file from memory.

After the software runs clock tree synthesis on all of the views, it runs timeDesign.

Example of a Clock Tree Specification File

The following example illustrates the content of a clock tree specification file:
UseSingleDelim YES
NameDelimiter |
MacroModel pin freg/mod004048/CLK 20ps 18ps 20ps 18ps 0.29ff

ClkGroup
+ CGEN_1
+ CGEN_2

UseCTSRouteGuide NO

#Start RouteTypeName section
RouteTypeName CK1
NonDefaultRule rule1
PreferredExtraSpace 1
TopPreferredLayer 5
BottomPreferredLayer 4
Shielding VSS
End
#End RouteTypeName section

#Example of manual CTS specification information
ClockNetName CK
LevelNumber 2
LevelSpec 1 1 BUFX2
October 2010 617 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
LevelSpec 2 2 BUFX2
PostOpt YES
OptAddBuffer YES
End
LeafPinGroup grp1

+ a/b/c/a_reg

+ c/d/e/g_reg
GlobalPowerDomainBuffer
+ pd1 buf1 buf2
+ pd2 buf3 buf4
AutoCTSRootPin cgen/i_5/Y
MaxDelay 5.0ns
MinDelay 0ns
MaxFanout 30
MaxSkew 250ps
SinkMaxTran 550ps
BufMaxTran 550ps
RootInputTran XYZ
NoGating NO
DetailReport YES
Obstruction YES
RouteType CK1
LeafRouteType specialRoute
CellRouteType
+ BUFX2 routeName1
+ BUFX4 routeName2
CellLeafRouteType
+ BUFX8 routeName3
+ BUFX12 routeName4
RouteClkNet YES # Turns on NanoRoute. The default value is NO
PostOpt YES # Turns on optimization. The default value is YES
OptAddBuffer YES
OptAddBufferLimit 100
Buffer BUFX2 BUFX4 BUFX8 BUFX12 INVX1
MaxCap
+ BUFX2 1pf
+ BUFX4 1pf
+ BUFX8 1pf
+ BUFX12 1pf
ForceMaxTran NO
ThroughPin
+ df/mod000446/CK Y
ThroughPort
October 2010 618 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
+ df/mod002300/ax2
LeafPin
+ PCLK66_gate_i/A rising
LeafPort
+ ssfd2s/D rising
KeepPortPolarity
+ MOD1/PORT1
PreservePin
+ cgen/mod000043/A
ExcludedPin
+ freg/mod004048/CLK
ExcludedPort
+ DFF_B/CLK
GatingGrpInstances
+ cg1/an cg1/i_0
+ cg2/an cg2/i_0
+ cg1/an cg3/i_0
+ cg4/an cg4/i_0
GatingGrpModule
+ grp_module1
+ grp_a*
CellHalo
+BUFX411
End

MasterGateTargetFanout32
AutoCTSRootPin clk
MaxDelay 3.1ns
MinDelay 0ns
MaxSkew 100ps
SinkMaxTran 200ps
BufMaxTran 200ps
Buffer CLKBUFX4
NoGating NO
MasterGateInst
+ 7 clk_latch
End

AutoCTSRootPin clk
MaxDelay 3.1ns
MinDelay 0ns
MaxSkew 100ps
SinkMaxTran 200ps
BufMaxTran 200ps
October 2010 619 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Buffer CLKBUFX4
NoGating NO
EquivGateInst
+ G1
+ G2
EquivGateInst
+ clk_and1 clk_neg1
+ clk_and2 clk_neg2
October 2010 620 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Naming Attributes Section

The following table describes the entries for the naming attributes section:

NameDelimiter delimiter

Allows you to customize the name delimiter that CTS uses
when inserting buffers and updating clock root and net names.
There are no restrictions on the type of characters that you
specify for the name delimiters in the clock tree specification
file but you must specify only a single character. For example:

NameDelimiter # creates names with the format
clk##L3#I2, rather than the default format, clk__L3_I2.

Insert the NameDelimiter statement after MacroModel and
ClkGroup statements but before an AutoCTSRootPin
statement.

Note: If you have multiple NameDelimiter statements in the
clock tree specification file, CTS uses only the last
NameDelimiter statement in the file.

Note: The NameDelimiter and UseSingleDelim
statements are independent of each other.

UseSingleDelim YES | NO

Instructs CTS whether to use single name delimiters after the
first element in clock root and net names. For example:

UseSingleDelim YES creates clock and net names with the
format clk_L3_I2, rather than the default format,
clk__L3_I2.

By default, CTS always inserts double (or, in some cases,
multiple) name delimiters after the first element of clock root or
net names. The UseSingleDelim YES statement overrides
this behavior by instructing CTS to use only a single delimiter
after the first element of the name:

Insert the UseSingleDelim statement after MacroModel
and ClkGroup statements but before an AutoCTSRootPin
statement.

Note: The UseSingleDelim and NameDelimiter
statements are independent of each other.
October 2010 621 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
NanoRoute Attribute Section

The following table describes the entries for the section of the clock tree specification file that
deals with attributes that CTS passes to NanoRoute Ultra.

UseCTSRouteGuide YES | NO

Specifies whether NanoRoute should route clock nets with the
routing guide file generated by CTS.

NanoRoute will produce better pre- and postroute correlations,
though at the expense of longer run time.

If you specify UseCTSRouteGuide YES and RouteClkNet
YES, clock nets will be routed based on the route guide file
created by CTS.

If you specify UseCTSRouteGuide YES and RouteClkNet
NO, CTS creates a route guide file. But because you instructed
CTS not to route the clock nets, the guide file is not used. If you
subsequently use the routeClockNetWithGuide
command, CTS generates a new routing guide file that is
based on the synthesized clock structure, and uses it to
automatically route the clocks.

RouteTypeName name Specifies the routing type for which you are defining routing
attributes.

Note: RouteTypeName statements must appear in the clock
tree specification file before their corresponding RouteType
statements.

NonDefaultRule ruleName

Specifies the LEF NONDEFAULTRULE statement that the router
should use.

Default: If you do not use this statement, the router uses the
default routing rule.

PreferredExtraSpace [0-3]

Specifies the spacing attribute, with which to add space around
clock wires.

Default: If you do not use this statement, CTS uses a
preferred extra space value of 1.
October 2010 622 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Important

In all clock tree specification file sections that contain delay values or capacitance
values, you must include the appropriate unit with the values you specify. The unit
designations are case-insensitive. For example, pf, pF, Pf, and PF are all valid unit
designations for picofarads.

Macro Model Data Section

The following table describes the entries for the macro model port data section:

TopPreferredLayer number

Specifies the top-most preferred routing layer.

Default: 4

BottomPreferredLayer number

Specifies the bottom-most preferred routing layer.

Default: 3

Shielding GNetName

Defines the ground net name.

AssumeShielding YES | NO

Instructs CTS to assume that unshielded wires are shielded
when CTS estimates wire loading.

Default: If you omit this statement, CTS behaves as if you had
specified AssumeShielding NO.

End Marks the end of the NanoRoute Ultra attribute section.

MacroModel port cellName_or_portName
delay_and_capacitance_values

Specifies the name of the macro model cell or port.

maxRiseDelay{ns|ps} Specifies the maximum rise delay in nanoseconds or
picoseconds.

minRiseDelay{ns|ps} Specifies the minimum rise delay in nanoseconds or
picoseconds.
October 2010 623 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
The following table describes the entries for the macro model pin data section:

The following table describes the entries for the global directive section.

Important

Global directive statements can not be used between AutoCTSRootPin and End
statements.

maxFallDelay{ns|ps} Specifies the maximum fall delay in nanoseconds or
picoseconds.

minFallDelay{ns|ps} Specifies the minimum fall delay in nanoseconds or
picoseconds.

MacroModel pin pinName delay_and_capacitance_values

Specifies the name of the macro model pin.

maxRiseDelay{ns|ps} Specifies the maximum rise delay in nanoseconds or
picoseconds.

minRiseDelay{ns|ps} Specifies the minimum rise delay in nanoseconds or
picoseconds.

maxFallDelay{ns|ps} Specifies the maximum fall delay in nanoseconds or
picoseconds.

minFallDelay{ns|ps} Specifies the minimum fall delay in nanoseconds or
picoseconds.

GlobalLeafPin
+ pinName rising | falling
+ …

Marks the input pin as a “leaf” pin for non-clock-type instances
globally (throughout the design), stops tracing, and balances
clock skew.

Note: Use the GlobalLeafPin statement only with input
pins. CTS ignores GlobalLeafPin statements that are
associated with output pins.

Choose one of the following:
October 2010 624 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
rising CTS treats the input pin as a rising-edge-
triggered flip-flop clock pin.

falling CTS treats the input pin as a falling-edge-
triggered flip-flop clock pin.

GlobalLeafPort
+ cellType/inputPinName rising | falling
+ …

Marks the pin as a “leaf” pin for cells globally (throughout the
design), stops tracing, and balances clock skew.

Choose one of the following:

rising CTS treats the pin as a rising-edge-triggered
flip-flop clock pin.

falling CTS treats the pin as a falling-edge-
triggered flip-flop clock pin.

GlobalExcludedPin
+ pinName
+ …

Treats the pin as a non-leaf pin globally (throughout the
design), and prevents tracing and skew analysis of the pin.

GlobalExcludedPort
+ cellType/
inputPinName
+ …

Treats the pin of particular cell type as a non-leaf pin globally
(throughout the design), and prevents tracing and skew
analysis of the pin.

GlobalThroughPin
+ pinName [outputPinNames]
+ …

Traces through the pin globally (throughout the design), even if
the pin is a clock pin.

For multi-output cells, you must use outputPinName to
instruct CTS which output pin to trace through.

GlobalPreservePin
+ inputPinName
+ …

Preserves the netlist for the pin and pins below the pin in the
clock tree globally (throughout the design). However, CTS
considers any synchronized pins after the pin when computing
skew.
October 2010 625 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
DontTouchNet
+ netName1
+ netName2
+ …

Specifies a list of nets for which the ckSynthesis and ckEco
commands should not insert buffers. The deleteClockTree
command does not delete buffers if their input or output nets
have the DontTouchNet attribute.

Note: The DontTouchNet statement is not a physical
parameter; any net specified in this statement can still be
routed.

DontTouchFromToPin
+ pinName1 pinName2

Instructs the ckSynthesis and ckEco commands to not
insert buffers for nets that are between the specified start
instance pin and end instance pin. Any nets between these
pins are considered to have the DontTouchNet attribute.

DontAddNewPortModule
+ moduleName1
+ moduleName2
+ …

Does not add a new port to the specified logical modules at
their given hierarchical levels.

Note:

■ The DontAddNewPortModule statement applies only to
the specified modules but not the nested submodules.
When you specify this statement for any given module, only
that module does not have a new port added to it but the
nested submodule still might have a new port added.

■ The DontAddNewPortModule statement might increase
the latency of the clock tree and more buffers could be
added because due to this restriction, the instances of
different modules cannot be shared by the same buffer.
October 2010 626 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Clock Grouping Data Section

The following table describes the entries for the clock grouping data section:

Clock-Tree Topology Section

The clock-tree topology section provides a method for you to manually define buffers at
particular levels. The following table describes the entries for the clock-tree topology section:

ClkGroup
+ clockRootPinName
+ clockRootPinName
…

Specifies two or more clock domains for which you want CTS
to balance the skew.

ClockNetName netName

Specifies the name of the clock net.

LevelNumber totalNumberOfClockTreeLevels

Specifies the total number of clock tree levels.

LevelSpec levelNumber numberOfBuffers bufferType

Provides the specifications for an individual clock level.

Specify all the following information:

levelNumber Sets the level number in the clock tree.

numberOfBuffers

Specifies the total number of buffers CTS should allow on the
specified level of the clock tree.

bufferType Specifies the buffer type (based upon the
LEF file).

End Marks the end of a clock tree topology section.
October 2010 627 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Automatic Gated CTS Section

The following table describes the entries for the automatic gated CTS section:

GlobalPowerDomainBuffer
+PowerDomainNames ListofBuffers

Specifies the power domain names and a list of buffers
associated with the power domain.

AutoCTSRootPin clockRootPinName

Specifies the name of the clock root pin name from
which to start tracing.

MaxDelay number{ns|ps} Specifies the maximum phase delay constraint.

Default: If you do not use this statement, CTS uses a
maximum phase delay constraint of 10 ns.

MinDelay number{ns|ps} Specifies the minimum phase delay constraint.

Default: If you do not use this statement, CTS uses a
minimum phase delay constraint of 0.0 ns.

SinkMaxTran
number{ns|ps}

Specifies the maximum input transition time constraint
for sinks (clock pins). CTS does not allow you to specify
a value greater than 10,000 ns.

Default: If you do not use this statement, CTS uses a
maximum sink transition time constraint of 400 ps.

BufMaxTran
number{ns|ps}

Specifies the maximum input transition time constraint
for buffers. CTS does not allow you to specify a value
greater than 10,000 ns.

Default: If you do not use this statement, CTS uses a
maximum buffer transition time constraint of 400 ps.

MaxGateRatio ratio Specifies the maximum gate ratio for the clock tree.
Gate ratio is defined as:

sum of all cell delay / clock path delay (from clock root to all
registers)

Default: 1
October 2010 628 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
MinGateRatio ratio Specifies the minimum gate ratio for the clock tree.

Gate ratio is defined as:

sum of all cell delay / clock path delay (from clock root to all
registers)

Default: 0

MaxDeltaGateRatio delta_ratio

Specifies the maximum delta gate ratio for the clock
tree. Delta gate ratio is defined as the difference
between fmGateRatio and toGateRatio, where:

■ fmGateRatio is the sum of all cell delay divided by
the clock path delay from the branching point to the
source register.

■ toGateRatio is the sum of all cell delay divided by
the clock path delay from the branching point to the
destination register.

Note: fmGateRatio and toGateRatio are local
measurements: the starting point is at the input pin of the
last buffer of the common clock path.

Default: 1

MinDeltaGateRatio delta_ratio

Specifies the minimum delta gate ratio for the clock tree.
Delta gate ratio is defined as the difference between
fmGateRatio and toGateRatio, where:

■ fmGateRatio is the sum of all cell delay divided by
the clock path delay from the branching point to the
source register.

■ toGateRatio is the sum of all cell delay divided by
the clock path delay from the branching point to the
destination register.

Note: fmGateRatio and toGateRatio are local
measurements: the starting point is at the input pin of the
last buffer of the common clock path.

Default: 1
October 2010 629 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
SrcLatency number{ns} Specifies an external latency value for each clock.

CTS adds this value to the clock tree latency when
grouping and balancing clocks. Consider the following
clock tree specification file extracts:

AutoCTSRootPin clock1

MaxDelay 5.0ns

MinDelay 4.5ns

SrcLatency 2.0ns

MaxSkew 300ps

...

End

AutoCTSRootPin clock2

MaxDelay 2.0ns

MinDelay 1.5ns

SrcLatency 5.0ns

MaxSkew 300ps

...

End

The values for MaxDelay, MinDelay, and
SrcLatency must satisfy the following relationship for
all clocks listed in a clock tree specification file
ClkGroup statement for that ClkGroup statement to
be valid:

SrcLatencyclock1 + MinDelayclock1 =
SrcLatencyclock2 + MinDelayclock2 =
SrcLatencyclockn + MinDelayclockn

SrcLatencyclock1 + MaxDelayclock1 =
SrcLatencyclock2 + MaxDelayclock2 =
SrcLatencyclockn + MaxDelayclockn

Default: 0ns

RootInputTran number{ns|ps}
October 2010 630 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Specifies the input transition time for an input pin or an
input port. Use this statement when you do not want
CTS to use the default Encounter input transition time.

Note: If your SDC file contains a
set_input_transition constraint, the
RootInputTrans statement overrides that constraint.

Important

You cannot use this statement with output pins
or output ports.

MaxSkew number{ns|ps}[viewName]

Specifies the maximum skew between sinks (clock
pins).

You can specify different skew limits to be used for
specific active analysis views (viewName) for multi-
mode CTS.

Default: If you do not use this statement, CTS uses a
maximum skew constraint of 300 ps.

LeafPinGroup groupName

Instructs CTS to balance the group of leaf pins
separately with the main clock tree. By using
LeafPinGroup, the skew for leaf pin groups is
reported separately.

Specify LeafPinGroup for the leaf pins that do not
need to be balanced with main group (that is, default
group) of leaf pins, while the leaf pins under the same
leaf pin group have to be balanced.

DefaultMaxCap integer Specifies the default maximum capacitance value for all
buffers, inverters, and gating cells that do not have a
specific maximum capacitance value specified with the
MaxCap and PinMaxCap statements.
October 2010 631 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
MaxFanout integer Limits the number of clock buffer fanouts to the number
you specify.

If you specify the MaxFanout statement and the
setCTSMode -useLibMaxFanout true parameter,
CTS uses the worst case constraint specified.

CTS does not support a fanout_load that is not equal
to 1.

Note: CTS considers the MaxFanout statement to be a
soft constraint. CTS will try to meet it, but might need to
make adjustments in order to meet physical constraints.

MaxNumLevel number Specifies the maximum number of buffer levels that
CTS builds in a clock tree that has no gating
components.

ClockGatingProb number Specifies the probable amount of time that the clock is
turned on.

The ClockGatingProb value is used for statistical
estimation of power. CTS calculates internal power by
multiplying the activity of the clock net by the
ClockGatingProb value. (The activity of the clock net
is taken from the clock Period statement in the clock
tree specification file.)

If you have a single clock gate at the root, and all of the
buffers are after the clock gating cell, CTS calculates the
activity rate as:

(activity of clock net at gate’s input) x ClockGatingProb

CTS computes the activity rate of a net driven by a buffer
in the clock path as:

(activity of clock net at buffer’s input) x ClockGatingProb

Default: 1 (clock is always on)
October 2010 632 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
LevelBalanced YES | NO Instructs CTS to build a clock tree in which all paths
from the root to the leaves have the same number of
levels. (Equal numbers of levels can be helpful in high-
performance designs, such as designs incorporating
structured ASICs.)

Note: Be aware of the following requirements:

■ This statement does not optimize for skew: It only
builds trees with equal numbers of levels. (If you
want CTS to optimize for skew, specify
LevelBalanced NO after initial CTS.

■ To avoid creating maximum capacitance violations,
include the YES statement in the clock tree
specification file.

Important

You cannot use this statement for gated clocks.

Period value Specifies the clock period of a root pin.

Default: If you omit this parameter, CTS uses a value of
10 ns.

NoGating {rising | falling | NO}

Sets the criteria for tracing through logic gates.

Choose only one of the following:

rising Stops tracing through a gate
(including buffers and inverters) and
treats the gate as a rising-edge-
triggered flip-flop clock pin.

falling Stops tracing through a gate
(including buffers and inverters) and
treats the gate as a falling-edge-
triggered flip-flop clock pin.
October 2010 633 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
NO Allows CTS to trace through clock
gating logic.

Default: This is the default behavior
for gated-clock designs. (If you omit
the NoGating statement, CTS traces
through clock gating logic.

AddDriverCell driver_cell_name

Places a driver cell name at the closest possible location
to the clock port location for block-level CTS.

MaxDepth number Sets the maximum depth of clock tree tracing.

Default: If you do not use this statement, CTS limits the
number of levels of clock tree tracing to 1024.

RouteType routeTypeName Specifies the name of the routing attributes definition.

Note: CTS uses the RouteType statement only if you
specify RouteClkNet YES.

Note: If you use a RouteType statement, you must also
use a corresponding routeTypeName.

LeafRouteType leafRouteTypeName

Specifies the route type name for which you are defining
a routing attribute. Use this statement when you want to
define a particular routing type for nets that connect to
leaf pins.

The LeafRouteType statement applies to that part of
a net that runs from the last non-leaf cell to leaf cell(s).
The LeafRouteType statement is useful for high-
fanout designs.

cellRouteType
+ cellName RouteTypeName
+ ...

Specifies the routing attribute for the output net driven
by the specified cell.

cellLeafRouteType
+ cellName RouteTypeName
+ ...
October 2010 634 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Specifies the routing attribute for the output net driven
by the specified leaf cell. This applies only to the leaf
nets.

DetailReport YES | NO Determines whether CTS provides a detailed report.
The detailed report includes timing information for every
component in the design. The non-detailed report
contains only summary information for the design.

Default: If you do not use this statement, CTS does not
provide a detailed report.

Obstruction YES | NO Specifies whether CTS should take design obstructions
into account during flip-flop clustering.
October 2010 635 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
RouteClkNet YES | NO Specifies whether CTS routes clock nets.

The following combinations of the RouteClkNet
specification file statement and the setCTSMode
-routeGuide true command are possible:

■ If you specify RouteClkNet NO, CTS does not
route clock nets. Timing is based on the pre-routed
design using a steiner model. The RouteClkNet
NO statement is useful for rapid prototyping.

■ If you specify RouteClkNet YES together with the
setCTSMode -routeGuide false command,
CTS routes clocks using NanoRoute but CTS does
not use a routing guide file. This combination of
settings is useful for straightforward designs for
which pre-route–post-route correlation is not an
issue. CTS runs more quickly than when it uses a
guide file. Note that NanoRoute routes the clocks
but does not follow the pattern determined by CTS.
Thus, this method cannot take advantage of the
balanced routing that takes place during CTS.

■ If you specify RouteClkNet YES together with the
setCTSMode -routeGuide true command,
CTS routes the clocks with NanoRoute and the CTS
routing guide file. This method ensures appropriate
pre-route–post-route correlation but at the expense
of longer runtime.

Default: If you do not use this statement, CTS does not
route clock nets. In other words, the default behavior is
as if you had specified RouteClkNet NO.
October 2010 636 Product Version 9.1.3

../fetxtcmdref/clockT.html#setCTSMode

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
PostOpt YES | NO Specifies whether CTS resizes buffers or inverters,
refines placement, and corrects routing for signal and
clock wires.

Default: YES

When used together, the PostOpt and OptAddBuffer
statements try to meet the trigger edge skew constraints
as defined in the clock tree specification file. However,
phase delay, buffer transition time, and sink transition
times are not necessarily improved by using these two
statements.

Note: If you specify PostOpt NO, CTS does not resize
gating components. If you specify PostOpt YES, CTS
attempts to resize gating components, though it may not
do so.

OptAddBuffer {YES | NO} Controls whether CTS adds buffers during optimization.

Important

The OptAddBuffer statement is effective
only if you specify PostOpt YES.

When used together, the PostOpt and OptAddBuffer
statements try to meet the trigger edge skew constraints
as defined in the clock tree specification file. However,
phase delay, buffer transition time, and sink transition
times are not necessarily improved by using these two
statements.

OptAddBufferLimit positive_integer

Specifies the maximum number of buffers that CTS can
add to a clock tree during optimization. The number you
specify can be no smaller than 1. However, the higher
the number you specify, the longer the runtime.

Default: If you do not use this statement, CTS inserts
no more than 50 buffers.

AddSpareFF cellName number
October 2010 637 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Specifies the maximum number of flip-flops to add to
the lowest level of the clock tree.

The inputs of the flip-flops are tied off and the outputs are
left floating.

Adding extra flip-flops during CTS ensures that if a spare
flip-flop needs to be connected at some later time (for
example, by a metal-only ECO change), the existing
clock network will not be disturbed.

cellName Represents the name of the flip-
flop(s) to be inserted in the clock root.

number Represents the maximum number of
flip-flops to insert. You can specify 1
or more flip-flops.

Buffer cell1 cell2 cell3 …

Specifies the names of buffer cells to use during
automatic, gated CTS.

Note: To turn on the buffer insertion mechanism during
the optimization process, you must have these
statements in your clock tree specification file:

■ PostOpt YES

■ OptAddBuffer YES

DummyBuffer cell1 cell2 cell3 …

Specifies the names of dummy buffer cells to use during
the optimization process.

Use this statement if you want CTS to use buffers other
than those specified in the Buffer statement. (Buffers
defined in the Buffer statement might be too large, or
have an input capacitance value that is too small.)

Note: To turn on the buffer insertion mechanism during
the optimization process, you must have these
statements in your clock tree specification file:

■ PostOpt YES

■ OptAddBuffer YES
October 2010 638 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
LeafBuffer buffer_list Specifies a list of one or more buffer cells or inverters for
CTS to use when inserting buffers at the leaf level of the
clock tree.

CTS ignores the LeafBuffer statement if:

■ The netlist has an inverter driving a small group of
flops, and the design rule constraints are not
violated.

■ The gating cells (such as AND gates) are physically
closed to the flops, and have sufficient drive
strength to drive the flops at it fanout zone.

LeafPin
+ pinName rising | falling
+ …

Marks the input pin as a “leaf” pin for non-clock-type
instances, stops tracing, and balances clock skew.

Note: Use the LeafPin statement with an input pin.

Choose one of the following:

rising CTS treats the input pin as a rising-
edge-triggered flip-flop clock pin.

falling CTS treats the input pin as a falling-
edge-triggered flip-flop clock pin.

LeafPort
+ cellType/inputPinName rising | falling
+ …

Marks the pin of a particular cell type as a “leaf” pin for
non-clock-type instances, stops tracing, and balances
clock skew.

Choose one of the following:

rising CTS treats the pin as a rising-edge-
triggered flip-flop clock pin.

falling CTS treats the pin as a falling-edge-
triggered flip-flop clock pin.

ExcludedPin
+ pinName
+ …

Treats the pin as a non-leaf pin, and prevents tracing
and skew analysis of the pin.
October 2010 639 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
ExcludedPort
+ cellType/inputPinName
+ …

Treats the pin of a particular cell type as a non-leaf pin,
and prevents tracing and skew analysis of the pin.

KeepPortPolarity
+ moduleName/portName

Preserves the polarity of specified module ports while
running the deleteClockTree command.

ThroughPin
+ pinName [outputPinNames]
+ …

Traces through the pin, even if the pin is a clock pin.

For multi-output cells, you must use outputPinName
to instruct CTS which output pin to trace through.

ThroughPort
+ cellType/inputPinName
+ …

Traces through the pin of a particular cell type, even if
the pin is a clock pin.

Note: You can specify the cellHalo value for a flip-flop
if the clock pin is specifed as ThroughPin or
ThroughPort.

SetDPinAsSync YES | NO Determines whether CTS automatically treats the Data
pins of flip-flops as synchronous pins, instead of as
excluded pins.

Data pins include:

■ Data pins

■ Enable pins

■ Scan-in pins

■ Scan-enable pins

■ Synchronous set and reset pins

This parameter does not control tristate control pins. By
default, the software treats them as synchronous pins.

Default: If you omit this statement, CTS treats the Data
pins of flip-flops as excluded pins.
October 2010 640 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
SetIoPinAsSync YES | NO Determines whether CTS automatically treats I/O pins
as synchronous pins, instead of as excluded pins.

This parameter does not control tristate control pins. By
default, the software treats them as synchronous pins.

Default: If you omit this statement, CTS treats I/O pins
as excluded pins.

PreservePin
+ inputPinName
+ …

Preserves the netlist for the pin and pins below the pin
in the clock tree. However, CTS considers any
synchronized pins after the pin when computing skew.

PinMaxCap
+ instanceName/pinName1 capValue1 {pf | ff}
+ instanceName/pinName2 capValue2 {pf | ff}
...

Specifies the maximum capacitance value for the
specified pins.

Default: If there is no PinMaxCap statement specified
in the clock tree spec file, but there is a
DefaultMaxCap statement specified, the software
uses the DefaultMaxCap value to constrain pins.

If there are no PinMaxCap or DefaultMaxCap
statements specified in the clock tree spec file, but you
specify setCTSMode -useLibMaxCap true, the
software uses maximum capacitance values in the
timing library.

If there are no PinMaxCap or DefaultMaxCap
statements specified in the clock tree spec file and you
do not specify setCTSMode -useLibMaxCap true,
the software does not apply a maximum capacitance
constraint.

MaxCap
+ bufferName1 capValue1{pf | ff}
+ bufferName2 capValue2{pf | ff}
+ clockGatingCell1 capValue1{pf | ff}
+ clockGatingCell2 capValue2{pf | ff}
+ …
October 2010 641 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Specifies a maximum capacitance value for the
specified buffers, inverters, or gating cells.

Default: If there is no MaxCap statement specified in
the clock tree spec file, but there is a DefaultMaxCap
statement specified, the software uses the
DefaultMaxCap value to constrain buffers, inverters,
or gating cells.

If there are no MaxCap or DefaultMaxCap statements
specified in the clock tree spec file, but you specify
setCTSMode -useLibMaxCap true, the software
uses maximum capacitance values in the timing library.

If there are no MaxCap or DefaultMaxCap statements
specified in the clock tree spec file and you do not
specify setCTSMode -useLibMaxCap true, the
software does not apply a maximum capacitance
constraint.

bufferName Specifies the name of the buffer for
which you specify a maximum
capacitance value.

capValue Specifies the maximum capacitance
for the buffer, in picofarads (pF) or
femtofarads (fF).

ExcludedBuffer cell Specifies the buffer to insert to isolate the clock path
that is excluded during clock tree tracing. The
ExcludedBuffer statement can be used to separate
the normal path to leaf pins and the excluded path to
non-leaf pins.

Note: Excluded pins can be identified by clock tree
tracing, as well as by being specified with the
ExcludedPin statement in the clock tree specification
file.

Default: If you do not specify the ExcludedBuffer
statement, the software chooses a buffer to insert from
the Buffer statement.
October 2010 642 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
ForceMaxTran YES | NO Increases the number of buffers to ensure that the clock
net has no maximum transition violations.

Note: If you specify ForceMaxTran YES and run
ckECO -fixDRVOnly, the software attempts to correct
maximum transition violations.

ForceReconvergent YES |
NO

Controls whether CTS allows or prevents
reconvergence conditions for individual clocks.

■ YES indicates that you want CTS to allow
reconvergence on a particular clock. CTS
synthesizes such clocks.

■ NO indicates that you do not want CTS to allow
reconvergence on a particular clock. When CTS
synthesizes such a clock, the software stops and
issues a warning if a reconvergence condition is
found for the clock.

The following example illustrates how to specify different
reconvergence conditions on clocks clk and clk2:

AutoCTSRootPin clk

…

ForceReconvergent YES

…

END

AutoCTSRootPin clk2

…

ForceReconvergent NO

…

END

Note: You can override any ForceReconvergent
statement by specifying ckSynthesis -
forceReconvergent. In this case, CTS always
synthesizes clocks that have reconvergence conditions.

Default: If you omit this statement from the clock tree
specification file, CTS behaves as if you had specified
ForceReconvergent NO.
October 2010 643 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
GatingGrpInstances
+ instanceName instanceName …
+ instanceName instanceName …
+ …

Instructs CTS to group instances. CTS will not insert
buffers between the instances you specify.

■ Each line that begins with a + represents a group of
instances.

■ Instances that you specify on the same line are in
the same group.

■ Each instance list must include at least one gate
and one latch.

■ You can specify no fewer than two, and no more
than five instances, on each line.

■ Each latch and gate you specify must be connected
together.

GatingGrpModule
+ moduleName
+ moduleName
+ …

Instructs CTS to treat all the instances within a specified
module as if you had included the module’s instances
individually in a GatingGrpInstances statement.

■ Each line that begins with a + represents a module
and its instances.

■ You can specify only one module on each line.

■ You can use the wildcards * and ?.
October 2010 644 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
CellHalo
+ cellName xHalo yHalo

Provides spacing rules between various clock
instances. It can be specified on buffers and inverters
which are used by CTS to build a clock tree. It can also
be specified on the gating cells.

For example, if you specify a xHalo of 3 um for BUFX4
and if there are two BUFX4 instances placed close to
each other, then the x-direction spacing must be equal
to or greater than 3 um.

If you specify 3 um for BUFX4 and 4 um for BUFX6 andif
the two buffers are placed close to each other, then the
spacing between these buffers is 4 um or greater.

Note: CellHalo applies to clock instances. It does not
apply between a clock tree buffer and the instance which
is not a part of the clock tree.

MasterGateInst
+ numClusters1 instance1
+ numClusters2 instance2
+ numClusters3 instance3 instance4
+ …

Controls instance cloning.

Note: To clone gating cells in groups, specify more than
one instance name.

numClusters Indicates how many times each
instance is to be cloned.

instance Represents the instance name.

MasterGateModule
+ numClusters1 module1
+ numClusters2 module2
+ …

Controls module cloning:

numClusters Indicates how many times each
module is to be cloned.

module Represents the module name.

MasterGateTargetFanout number
October 2010 645 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Log File Headings

Given particular settings for the RouteClkNet and PostOpt statements, and for the
reportClockTree command, the encounter.log file reports results in the following
sections of the log file:

Limits the number of cloning cells.

The number of cloning cells is equal to the number of
fanouts divided by the master gate target fanout
number.

Note: ckCloneGate uses this constraint to limit the
number of cloning cells. However, the final fanout of
gating cells might differ depending on the loads the
gating cells drive.

EquivGateInst
+ instance1
+ instance2
+ instance3 instance4
+ …

Specifies the instances to be decloned.
ckDeCloneGate merges the instances you specify into
one instance.

To declone groups of gating cells, specify more than
one instance on one line.

End Marks the end of an automated gated CTS section.

Clock tree
specification file
statements

Example clock tree
text command
sequences

EDI System log file section heading:
Clock clockName plus—

RouteClkNet NO ckSynthesis
globalDetailRoute
reportClkTree -clk
clock

Pre-Route Timing Analysis

RouteClkNet YES ckSynthesis
globalDetailRoute
reportClkTree -clk
clock -clkRouteOnly

Clk-Route-Only Timing Analysis

RouteClkNet YES
PostOpt YES

ckSynthesis
globalDetailRoute
reportClkTree -clk
clock -postRoute

Post-Route Timing Analysis
October 2010 646 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
CTS Report Descriptions
The standard CTS report (top_level_cell.ctsrpt) contains several sections by
default, and several sections that are controlled by the settings of various CTS text
commands.

Note: The report extracts that follow are based on various designs, and should not be
construed as results from a single CTS run.

General Information

The beginning of each CTS report contains the following general information about the clock
tree:

■ Library information

###

Complete Clock Tree Timing Report

#

CLOCK: cgen/i_5/Y

#

Mode: preRoute

#

Library Name : slow

Operating Condition : slow

Process : 1

Voltage : 1.62

Temperature : 125

#

###

■ Clock tree structure information

Nr. of Subtrees : 1

Nr. of Sinks : 343

Nr. of Buffer : 9

Nr. of Level (including gates) : 2

Max trig. edge delay at sink(F): TPRAM/mod166798/CK 477.7(ps)

Min trig. edge delay at sink(R): TPRAM/mod167332/CK 459.6(ps)

■ Delay, skew, and transition information

 (Actual) (Required)

Rise Phase Delay : 459.6~477.7(ps) 0~5000(ps)
October 2010 647 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Fall Phase Delay : 432.8~446.7(ps) 0~5000(ps)

Trig. Edge Skew : 18.1(ps) 250(ps)

Rise Skew : 18.1(ps)

Fall Skew : 13.9(ps)

Max. Rise Buffer Tran : 238.5(ps) 550(ps)

Max. Fall Buffer Tran : 141.4(ps) 550(ps)

Max. Rise Sink Tran : 366.2(ps) 550(ps)

Max. Fall Sink Tran : 204.5(ps) 550(ps)

Min. Rise Buffer Tran : 120(ps) 0(ps)

Min. Fall Buffer Tran : 120(ps) 0(ps)

Min. Rise Sink Tran : 340.6(ps) 0(ps)

Min. Fall Sink Tran : 192(ps) 0(ps)

■ Maximum transition time violations

***** Max Transition Time Violation *****

Pin Name (Actual) (Required)

reg/CK [406 353.5](ps) 400(ps)

reg2/CK [406 353.4](ps) 400(ps)

clk0__L6_I2/A [345.5 288.1](ps) 300(ps)

clk0__L7_I4/A [346.2 296.3](ps) 300(ps)

clk0__L9_I11/A [351.6 299.9](ps) 300(ps)

clk0__L9_I10/A [361.5 305.9](ps) 300(ps)

■ Skew distribution information

cgen/i_5/Y delay[0 0] (CK__L1_I0/A)

********** Skew Distribution **********

LEVEL 1 Buffer:

Input Delay Range Nr of Buffers

[0.6 0.6] 1

(max, min, avg, skew) = (0.6(ps) 0.6(ps) 0.6(ps) 0(ps))

Output Delay Range Nr of Buffers

[195.5 195.5] 1

(max, min, avg, skew) = (195.5(ps) 195.5(ps) 195.5(ps) 0(ps))LEVEL 2 Buffer:

Input Delay Range Nr of Buffers

October 2010 648 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
[212.8 212.8] 1

(max, min, avg, skew) = (212.8(ps) 212.8(ps) 212.8(ps) 0(ps))

Output Delay Range Nr of Buffers

[414.5 414.5] 1

(max, min, avg, skew) = (414.5(ps) 414.5(ps) 414.5(ps) 0(ps))

Macro Model Information

Information on macro models appears in the standard report:

Max trig. edge delay at sink(R): AClk 4971(ps) *Mmodel*

Min trig. edge delay at sink(R): AClk 4671(ps) *Mmodel*

Mmodel Trig. edge delay calculation uses MacroModel for the sink pin.

Power Information

Power information appears at the end of the general section of the CTS report, immediately
after the transition information. The software reports power information only if you specify
setCTSMode -powerAware true and include the Period statement in the clock tree
specification file.

CTS reports the total net switching power, internal clock instances power, internal leaf pin
power, and leakage power for the clock.

CTS calculates internal power by multiplying the activity of the clock net by the
ClockGatingProb statement value. The activity of the clock net is taken from the clock
Period statement in the clock tree specification file. The ClockGatingProb statement
value is specified in the clock tree specification file, and is used for statistical estimation of
power.

For example,

AutoCTSRootPin sysclk

MaxDelay 4ns

MinDelay 0ns

MaxSkew 0.2ns

...

ClockGatingProb 0.1

Period 100ns
October 2010 649 Product Version 9.1.3

../fetxtcmdref/clockT.html#setCTSMode

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
END

If you do not specify a value for the ClockGatingProb statement, CTS uses the default
value of 1.

If you have a single clock gate at the root, and all of the buffers are after the clock gating cell,
CTS calculates the activity rate as:

(activity of clock net at gate’s input) x ClockGatingProb

CTS computes the activity rate of a net driven by a buffer in the clock path as:

(activity of clock net at buffer’s input) x ClockGatingProb

CTS uses the same net activity for calculating the switching power of the net.

NetSwitchPower : 0.000997444(mW)

InstInternalPower : 0.00409096(mW)

InstLeakagePower : 1.9129e-06(mW)

LeafPinInternalPower : 0.0013708(mW)

Total Power : 0.00646111(mW)

AC Current Density Violations

Information on AC current density violations appears in the standard CTS report only if your
LEF file contains an ACCURRENTDENSITY statement.

AC Irms Limit Violation : 0.387332(mA) (17216.7%)

Information on AC current density violations appears in a special violations section:

***** AC Irms Limit Violation *****

Pin Name (Actual) (Required) (Violation)

ClkMux/Y 0.389581(mA) 0.00224974(mA)0.387332(mA)

scanClk/Y 0.156409(mA) 0.00224974(mA)0.154159(mA)
October 2010 650 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Supported SDC Constraints

Clock Tree Synthesis supports only the following SDC timing constraints during tracing
(setCTSMode -traceHonorConstants true):

■ set_logic_one

■ set_logic_zero

■ set_case_analysis

■ set_disable_timing

The createClockTreeSpec command automatically translates certain SDC constraints
into clock tree specification file statements. The following table shows the SDC constraints
that the createClockTreeSpec command automatically translates, and also shows the
default values in those statements if an SDC constraint does not exist:

SDC Constraint Clock Tree Specification File
Statement (default)

create_clock AutoCTSRootPin

set_clock_transition SinkLeafTran and BufMaxTran
(Default: 400 ps)

set_clock_latency value MaxDelay (Default: clock period)
MinDelay (Default: 0)

set_clock_latency -source value SrcLatency value ns

set_clock_uncertainty MaxSkew (Default: 300 ps)

create_generated_clock Add ThroughPin when necessary
October 2010 651 Product Version 9.1.3

../fetxtcmdref/clockT.html#setCTSMode

Encounter Digital Implementation System User Guide
Synthesizing Clock Trees
Clock Tree Analyst

In this release, CTA supports multi-corner display for the MMMC designs.
October 2010 652 Product Version 9.1.3

Encounter Digital Implementation System User Guide
18
Working with Clock Mesh Structures

■ Overview on page 654

■ Clock Meshes Versus Clock Trees on page 654

■ Creating Clock Meshes on page 657

❑ Determining the Mesh Structure on page 657

❍ Supported Mesh Styles on page 657

❍ Clock Mesh Structure Characteristics on page 659

❍ Multilevel Structure of a Mesh on page 661

❑ Implementing the Clock Mesh on page 662

❑ Analyzing the Clock Mesh on page 663

❍ Pre-Route Wire Estimation on page 663

❍ RC Extraction on page 663

❍ Computing Mesh Delays on page 664

❑ Generating Multiple Spice Run Deck For Big Clock-Mesh Networks on page 666
October 2010 653 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
Overview

The Encounter software provides a semi-automatic way to synthesize clock mesh structures
by automating the tasks of netlist update, physical implementation and analysis.

Clock meshes typically provide tighter skew control and limit the impact of process variation
compared to clock trees. However, these advantages might be offset by increased routing
resource usage and increased power dissipation due to larger switching capacitance.

Clock Meshes Versus Clock Trees

There are advantages and drawbacks to using clock meshes instead of clock trees. Consider
the following factors when determining whether a clock mesh is appropriate for a given block
or clock domain.

■ Skew

Clock meshes can often deliver lower skew than a clock tree. By their nature and design,
clock meshes deliver low skew to their leaf inputs. However, if any leaves require different
clock arrival times (such as macro-models with different built-in insertion delays or useful
skew), then clock mesh alone will not deliver a good overall solution. Clock mesh does
not directly support early or late clocks.

Note: It might be possible to implement early and late clocks by hand for a limited
number of leaves.

■ Insertion delay

Because meshes can use multiple buffers driving in parallel, they can potentially fan out
to the clock inputs with fewer stages and lower insertion delay than a tree.

If clock tree synthesis can meet the performance targets (skew and insertion delay),
considering the effects of on-chip and process variation, there might not be a compelling
reason to consider a clock mesh. CTS is currently more highly automated than clock
mesh synthesis, and typically uses less power. However, if CTS cannot meet the skew
or insertion delay constraints, it might be worth considering a clock mesh.

■ Tolerance to variation

Mesh structures are generally less sensitive to on-chip variations (OCV) and process
variations than corresponding trees.

■ Power
October 2010 654 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
Generally meshes can consume somewhat more power than trees, although the amount
of extra power is highly design dependent. In some cases, clock meshes might actually
consume less power than trees. Because most power typically is consumed at the final
(leaf) level, using local distribution can significantly narrow the power gap between mesh
and tree implementations.

■ Gating

Clock mesh structures are not as flexible as clock trees, with respect to gating. Because
the final mesh stage is a single net, gating must be implemented either at the root level,
or the local level.

■ Floorplan limitations

Clock meshes rely on arranging buffers and routing in regular symmetric patterns in
order to achieve good skew. When constructing a mesh, the software tries to adjust
positions of individual trunks and branches slightly in order to avoid conflicts and
violations with existing placement or routing blockages, or pre-routes such as power
stripes. Therefore, clock meshes work best in floorplan areas that are rectangular and
relatively free of obstructions. Highly non-rectangular floorplans, such as L-shaped
areas, or areas with macros or obstructions placed in the middle of the floorplan, can
make it difficult or impossible to implement a mesh. Always evaluate the floorplan to
determine if it looks feasible to insert a mesh.

■ Degree of automation

Clock tree synthesis is usually 100 percent automatic; you specify the constraints, and
the tool does all of the work. Currently, clock mesh is not fully automatic. You must
choose the structure of the clock mesh in terms of style, number of levels, and so on.
Also, depending on the floorplan and obstructions, you might need to experiment with
different implementation parameters in order to find a feasible solution.

■ Available Types of Driver Cells

Although the clock mesh feature is intended to work with arbitrary driver cells, some
buffer or inverter cells are better suited as mesh drivers than others. The ideal situation
is to have specially designed mesh drivers, but if such cells are not available, usually the
best approach is to select from the normal clock buffer cells used for CTS.

There are two primary aspects to consider when designing or selecting a mesh driver
cell: its electrical or timing characteristics, and the geometry of its output pad.

❑ Electrical Characteristics

Clock mesh driver cells have the following electrical characteristics:

❍ Drive strength
October 2010 655 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
Clock mesh nets typically have higher loading than the nets in clock trees. Even
though meshes can arrange many drivers in parallel to drive large loads, it is
usually preferable to have higher strength drivers available for clock meshes. In
addition to simplifying the design, having fewer drivers in parallel often improves
the performance and memory usage of delay calculation and timing analysis.

❍ Multiple row cells

Very strong mesh drivers draw large currents from the power supply rails.
Arranging drivers to span multiple rows can reduce their impact on the power
distribution system.

❍ Decoupling capacitors

Consider including decoupling capacitors inside the mesh driver to help supply
transient current when the driver is switching.

❍ Output via stacks

Consider integrating via stacks up to mesh routing layers within the mesh driver
cell. Including the stack within the cell can help ensure that it has sufficient
current carrying ability and has minimal impact on routing resources.

❍ Balanced rise and fall

As with normal clock buffers, balanced rise and fall characteristics are important
for clock mesh drivers to maintain duty cycle, and so on.

❑ Output Pad Geometry

The geometry of driver output pads is important because the clock mesh relies on
direct driver-trunk connections. It does this by placing the driver underneath the
trunk in such a way that either the wire directly connects to the output pad shape, or
it crosses above it on a higher layer and connects with a stacked via.

Consider the following output pad shape guidelines when choosing (or designing) a
driver cell:

❍ Use a single rectangle pad

Complex pad geometries composed of many shapes usually make it more
difficult to locate and drop a clean via stack onto the pad.

❍ Use pads on the mesh layer

Connections to pads on the trunk or branch routing layers are easier because
they do not require additional via stacks.

❍ Be careful when input pin is on the mesh layer
October 2010 656 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
If the input pin is on the mesh routing layer, it must be possible to connect to the
output without shorting to the input. For example, consider a driver with input
and output both on M2. If the mesh is using a vertical trunk on M2 and the input
and output are aligned vertically, it might not be possible to make the trunk
connection without a short or spacing violation.

Creating Clock Meshes

Creating a clock mesh generally consists of the following tasks:

1. Determining the Mesh Structure on page 657

2. Implementing the Clock Mesh on page 662

3. Analyzing the Clock Mesh on page 663

Determining the Mesh Structure

Similar to clock tree synthesis, the clock mesh feature uses a “specification” to define the
scope of the clock domain, express constraints, and control the structure of the mesh. In
addition to loading and saving specification files, you can also interactively edit the
specification using the Edit Clock Mesh Specification form. This makes it easier to experiment
with different clock mesh structures.

Supported Mesh Styles

There is a wide variety of mesh styles currently in use. The Encounter software can
synthesize the following mesh styles:

■ H-tree + Mesh

This classic style uses a multilevel H-tree pre-drive, followed by a general mesh final
stage. Although the pre-drive is a tree structure, it can still employ multiple drivers on a
single net. The final stage consists of a rectangular grid of final drivers feeding a
rectangular mesh grid of trunks and branches.
October 2010 657 Product Version 9.1.3

../encounter/clockG.html#EditClockMeshSpec

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
Figure 18-1 H-Tree + Mesh Style

The advantage to this style is that the pre-drive is highly symmetrical and can achieve
good skew control for large clock domains with many flip-flops. The drawback is that it
can require higher power than other mesh styles.

■ Fishbone

The final stage of a basic fishbone structure uses multiple drivers feeding a single trunk
(spine) that, in turn, drives a number of orthogonal branches (bones). Pre-drive stages
consist of multi-driven pre-drive trunks placed sufficiently near the next-stage driver
inputs.

Figure 18-2 Single and Double Fishbone Style

Additionally, there is a double-fishbone variant, in which the final stage uses two parallel
trunks. The fishbone style can be a very good style for smaller clock domains.
October 2010 658 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
Clock Mesh Structure Characteristics

There also is a wide variety of meshed clock distribution structures currently in use. The clock
mesh structures synthesized by the Encounter software have the following basic
characteristics:

■ Symmetry

Meshes rely heavily on symmetry of netlist structure and routing pattern to achieve tight
skew control and tolerance to variation.

■ Routing patterns and topologies

A major difference between clock meshes and clock trees are their routing patterns.
Mesh routing commonly has the following characteristics:

❑ Makes heavy use of non-tree routing topologies containing cycles or loops.

❑ Uses wide wires to achieve low resistance and well controlled capacitance. For
example it is not unreasonable for a mesh trunk to be 10 μm wide.

❑ Routing is implemented using a combination of special and regular routes.

■ Parallel drive

Clock meshes typically rely on multiple buffers or inverters working in parallel to drive a
given net in the pre-drive and final-drive stages, whereas clock trees always use exactly
one driver per net. Using multiple parallel drivers makes it possible to drive heavily
loaded nets from multiple points. This allows a mesh to fan out with fewer stages and
better skew control than a tree.

Figure 18-3 Parallel Drive with Cycle Routing Pattern

■ Driver output connections by abutment
October 2010 659 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
The connections between the mesh driver output pins and trunks are made by placing
the trunk wire directly over the output pad, and possibly dropping a stacked via if
required. This method ensures a strong connection that is capable of carrying the current
supplied by the driver.

Figure 18-4 Driver Cell with Large Output Pin for Abutment Connection

■ Input connections completed with regular routing

In contrast to driver output pins, which are connected directly to mesh trunks, input pins,
such as driver inputs and flip-flop inputs in the final stage, are connected to mesh trunks
and branches by regular routes created by the detail router (NanoRoute). Because
individual input connections do not need to carry large currents, minimum width
connections are generally sufficient. Nondefault rules can be used if wider widths or
larger spacings are desired.

■ Drivers placed in core area

Mesh driver cells are placed in the core area in rows like other standard cells, rather than
being specially placed macro block cells. Large drivers can span multiple rows. Because
mesh driver connections are made by abutment, driver cell placement is typically “fixed”
to keep them from being unintentionally moved (and disconnected) during subsequent
operations.

Output pin
October 2010 660 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
Multilevel Structure of a Mesh

Like clock trees, clock meshes typically use a multilevel structure to fan the clock signal out
from the root to all the clock input pins (flip-flops, memories, and so on). The Encounter Digital
Implementation System (EDI System) software creates multilevel meshes that can include
the following sections:

■ Top-level chain

The top-level chain is a cascaded buffer chain from the mesh root to the first level of mesh
pre-drive buffers. Chains can be used either to supply a suitable input transition to the
mesh pre-drive, or to pad the mesh with extra insertion delay.

The routing for mesh chain nets is handled entirely by the NanoRoute router rather than
by using a combination of special and regular routes. If wide routing is required for mesh
chain routes, use LEF nondefault rules. Meshes are not required to include a top-level
chain; the root can connect directly to the first pre-drive stage, if it is suitable.

■ Global mesh

The purpose of the global mesh is to distribute a single clock signal across the entire
clock domain with good insertion delay and skew control. The global mesh consists of
multiple (zero or more) pre-drive stages, followed by a single final-drive stage. While the
pre-drive stages can have multiple nets at a given level (for example in an H-tree), the
final stage always drives a single final global mesh net. This final mesh net can connect
directly to the clock input pins, or there can be an additional level of local distribution.

■ Local distribution

Local distribution is an optional section in which multiple small trees distribute the single
global signal of the final mesh drive net to individual flip-flops or memory inputs. The
simplest form of local distribution consists of multiple small single-buffer “local trees,”
each driving a cluster of flip-flops. NanoRoute handles all of the local-level routing; there
are no special routes.

Using local distribution can have advantages over direct mesh-to-flip-flop connections in
the final stage. For example, local distribution significantly reduces the loading in the final
mesh stage, and can allow for a mesh structure with lower overall power consumption.
Also, for large clock domains with non-uniform flip-flop distributions, adding extra local
buffers can help to balance the load seen by the mesh, and allow for better skew control.
October 2010 661 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
Figure 18-5 Multilevel Mesh Structure

Implementing the Clock Mesh

Implementing a clock mesh involves various tasks, such as inserting drivers into the netlist,
placing and “fixing” the drivers, creating mesh routes, and so on. The EDI System clock mesh
feature includes the following major implementation capabilities:

■ Synthesis

The synthesizeClockMesh command implements the clock mesh according to the
current specification, by inserting and placing buffers, and creating mesh special routes
as needed.

■ Mesh routing

The routeClockMesh command uses the native NanoRoute™ router to complete
detailed routing connections for driver and flip-flop inputs, top-level cascade chains, and
local trees.

■ Wire trimming

After mesh routing is complete, the trimClockMesh command removes unused
portions of the mesh trunks and branches, eliminates antenna violations, and reduces
overall mesh capacitance.
October 2010 662 Product Version 9.1.3

../fetxtcmdref/clockmeshT.html#synthesizeClockMesh
../fetxtcmdref/clockmeshT.html#routeClockMesh
../fetxtcmdref/clockmeshT.html#trimClockMesh

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
Analyzing the Clock Mesh

The Encounter software can analyze clock meshes at different stages of the implementation
process (pre-route or post-route), using default extraction, detail extraction, or externally
supplied RC data, and using either delay calculation technology or a circuit simulator. Various
reports are available. To help visualize mesh quality, delay or transition information can be
displayed graphically using a color scale.

Clock meshes have several characteristics that make them more difficult to analyze than
clock trees:

■ Meshes use a mixture of special routing and regular routing, which makes estimating and
extracting wire RC information more challenging.

■ Nets with multiple drivers need special consideration during delay calculation.

■ A final stage clock mesh net might have thousands of drivers and tens of thousands of
receivers, resulting in tens (or hundreds) of millions of driver-to-receiver timing arcs. This
huge number of arcs can potentially lead to memory or performance problems during
timing analysis.

The following sections describe how the Encounter software addresses some of the unique
challenges to analyzing clock mesh timing.

Pre-Route Wire Estimation

The software’s clock mesh synthesis inserts and places buffers and draws mesh trunks and
branches, but it does not immediately start NanoRoute to complete detail routing connections
for mesh driver inputs and flip-flops; this is handled by a separate command. Therefore, some
wire estimation is needed to complete pre-route clock mesh analysis.

For nets without any special net routing, such as top-chain nets and local distribution nets,
the software uses a simple two-layer Steiner routing estimation based on the routing
preferences given in the clock mesh specification.

For global nets, the software builds an RC network for the existing special net routing and then
estimates nearest connections for each unconnected driver input and flip-flop. For these nets,
nearest point-to-point connections are more appropriate than Steiner routing estimates
because NanoRoute will connect them using “pattern trunk” connections.

RC Extraction

There are several different ways to get RC information for clock mesh analysis:
October 2010 663 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
■ Default extraction

Default extraction is simple 1-D extraction based on per-unit-distance resistance and
capacitance values for mesh routes. Default extraction is most appropriate before full
detailed routing is complete.

Note: Default extraction is the only available method to analyze pre-route clock mesh
nets.

■ Detail extraction

The Encounter software detail extraction can be used when mesh routing is complete.

Note: The clock mesh analysis commands will not automatically start detailed net
extraction; to use this method, you must directly set the extraction mode then run the
extractRC command prior to mesh analysis.

■ External SPEF

To use RC data from an external parasitic extraction tool, load the SPEF prior to clock
mesh analysis.

Computing Mesh Delays

There are two ways of computing mesh delays and transitions times: delay calculation and
circuit simulation.

■ Delay Calculation

The fact that clock meshes rely on multiple buffers driving a single net presents some
challenges for delay calculation. Although not all delay calculators can handle it,
Encounter clock mesh uses delay calculation technology that supports multi-driven nets.
For delay calculation to be accurate, all drivers on a given net must have similar input
waveforms. This restriction is consistent with a well-designed mesh and probably does
not present a major limitation in practice. The software generates warnings when the
skew at multiple driver inputs exceeds a given fraction of their input slew.

■ Circuit Simulation

The software supports simulation with Virtuoso® UltraSim™ fast SPICE simulator as an
alternative to delay calculation for analyzing clock mesh delays and slews. Virtuoso®

UltraSim™ simulator is a fast-SPICE simulator that is well-suited for analyzing clock
meshes, even with post-route RC data. Virtuoso UltraSim simulator is not packaged with
the Encounter software, therefore to use it, you must have the Virtuoso UltraSim
simulator executable in your path, and an appropriate license.
October 2010 664 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#extractRC

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
The software also supports simulation with external SPICE-like simulators, but the flow
is not as convenient as with Virtuoso UltraSim simulator. The steps are as follows:

a. Dump a SPICE netlist for the clock mesh.

b. Manually run the simulator outside of the Encounter software.

c. Backannotate the simulation measurement results. Encounter clock mesh provides
commands to write the spice netlist and backannotate the results.

To simulate clock meshes, either with Virtuoso UltraSim simulator or with an external
simulator, the Encounter software needs to have driver sub-circuit and model information
available. This information must be provided via a plain-text cdB database file.
October 2010 665 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
Generating Multiple Spice Run Deck For Big Clock-Mesh Networks

For some large meshes, simulating the entire structure, from root to mesh receivers, with a
single spice run can be prohibitive in terms of run time. As an alternative, EDI System clock
mesh provides the multi-part spice mechanism, which can break the large spice simulation
into two or more smaller simulations.

Steps to Generate Multi-Part Spice

The following steps describe the process of multi-part spice:

1. Enable multi-part spice simulation with the MultiPartSpice keyword in the Analysis
section of the clock mesh specification file.

2. Choose a level in the mesh structure to partition the spice simulation into L1 (or global)
level, and one or more L2 (or local) level simulation runs. Specify this partition point using
the MultiPartSpicePartitionLevel keyword in the clock mesh specification file.
The final receiver points of L1 will correspond to the initial stimulus points of the L2
simulation runs.

3. Generate spice L1 and L2 run decks.

4. Simulate the L1 spice deck. Measure delays and transitions for all points. Measure
detailed waveforms for lowest level receivers.

5. Use lowest level waveforms from previous step to generate corresponding voltage
sources L2 runs.

6. Simulate L2 spice decks.

7. Use L1 and L2 measurement results to back-annotate complete mesh timing to EDI
System.
October 2010 666 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
EDI System clock mesh provides three different methods, with varying degrees of
automation, to manage the process of multi-part spice. The following table provides a
description of these methods:

Methods Steps

Simulate and back-annotate
automatically with UltraSim

1. Set up multi-part spice simulation in the clock
mesh specification file.

2. Set -preRouteAnalysis or
-postRouteAnalysis mode to UltraSim.

3. Invoke an analysis command, such as
reportClockMesh.

Simulate and back-annotate
automatic with a user-defined
simulation procedure

1. Set up multi-part spice simulation in the clock
mesh specification file.

2. Set -preRouteAnalysis or
-postRouteAnalysis mode to Spice.

3. Define a procedure that can invoke the user-
defined Spice simulator.

4. Set simSpiceProc to name of procedure.

5. Invoke analysis command, such as,
reportClockMesh.
October 2010 667 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
Sample Scripts to Run Spice Simulation

Use the following scripts to run multi-part Spice simulations:

Simulate Automatically With UltraSim
specifyClockMesh –file CLK.spec

setClockMeshMode –postRouteAnalysis UltraSim

reportClockMesh –delay –out CLK_delay.rpt

Simulate with User-Defined Procedure
specifyClockMesh –file CLK.spec

setClockMeshMode –postRouteAnalysis Spice

setClockMeshMode –simSpiceProc runMySpectre

reportClockMesh –delay –out CLK_delay.rpt

The following Tcl procedure handles running the Spectre simulator on a Spice netlist, such
as file.sp and leaves the simulation results in file.print0 and file.meas0:

proc runMySpectre {file} {
regexp {^(\S+).sp$} $file match base
file delete $base.meas0 $base.print0 $base.measure $base.print
exec spectre $file
if [file exists $base.measure] {

file rename –force $base.measure $base.meas0
}

if [file exists $base.print] {

Manual simulation and back
annotation

1. Set up multi-part spice simulation in the clock
mesh specification file.

2. Use the spiceClockMesh command to dump
the L1 and L2 spice decks.

3. Manually simulate L1.

4. Use spiceClockMesh -genL2Sources {} to
create the voltage sources to stimulate the L2
runs.

5. Manually simulate L2.

6. Back-annotate results using spiceClockMesh
-readMapMeas {}.

7. Invoke analysis command, such as
reportClockMesh.
October 2010 668 Product Version 9.1.3

../fetxtcmdref/clockmeshT.html#setClockMeshMode
../fetxtcmdref/clockmeshT.html#setClockMeshMode

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
file rename –force $base.print $base.print0
}

}

Simulate Manually
specifyClockMesh –file CLK.spec

spiceClockMesh

#(simulate CLK_L1.sp)

spiceClockMesh –genL2Sources {CLK_L1.meas CLK_L1.print {CLK_L2_1.sp CLK_L2_2.sp…}}

#(simulate CLK_L2_*.sp)

spiceClockMesh –readMapMeas {CLK.mp CLK_L1.meas0 CLK_L2_1.meas0 CLK_L2_2.meas0…}

reportClockMesh –delay –out CLK_delay.rpt

Note: The setClockMeshMode -simMultiPartSpiceBoundaryReceiverAsInst
parameter controls whether the final receivers in L1 are simple pin capacitance values, or
actual instantiated subcircuits.

Note: The setClockMeshMode -simMultiPartSpiceNrInstThreshold parameter
combines the local portions of a clock network in one or separate SPICE files.
October 2010 669 Product Version 9.1.3

../fetxtcmdref/clockmeshT.html#setClockMeshMode
../fetxtcmdref/clockmeshT.html#setClockMeshMode

Encounter Digital Implementation System User Guide
Working with Clock Mesh Structures
October 2010 670 Product Version 9.1.3

Encounter Digital Implementation System User Guide
19
Editing Wires

■ Overview on page 672

■ Before You Begin on page 673

■ Results on page 673

■ Using Keyboard Shortcuts on page 673

■ Moving Wires on page 676

■ Adding Wires on page 678

■ Deleting Wires on page 676

■ Cutting Shielding Wires on page 683

■ Trimming Antennas on Selected Stripes on page 683

■ Changing Wire Width on page 684

■ Repairing Maximum Wire Width Violations on page 685

■ Duplicating Wires on page 685

■ Stretching Wires on page 686

■ Changing Wire Layers on page 686

■ Splitting and Merging Wires on page 687

■ Adding Vias on page 687

■ Changing Vias on page 688

■ Moving Vias on page 689

■ Reshaping Routes on page 689

■ Controlling Cell Blockage Visibility on page 690
October 2010 671 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Editing Wires
Overview

You can edit the wires and vias in your design manually by using the Edit Route form, the wire
editing commands, and a combination of keyboard shortcuts (bindkeys) and tool widgets.

For signal wires you can perform the following actions:

■ Add wires

■ Cut wires

■ Move wires

■ Change the wire to another layer

■ Delete wires

■ Merge selected wires

■ Force wires to use specified widths

■ Add vias

For power wires, you can perform all of the actions available for signal wires, as well as the
following additional actions:

■ Trim selected wires

■ Split selected wires

■ Duplicate selected wires

■ Change wire width

■ Fix wires wider than the maximum width

■ Force wires associated with special nets to be created as signal wires

■ Change vias
October 2010 672 Product Version 9.1.3

../encounter/editG.html#EditRouteRoute

Encounter Digital Implementation System User Guide
Editing Wires
Before You Begin

Before you can use the wire editing features, load the design into the current Encounter
Digital Implementation System (EDI System) session.

Results

After you use the wire editing features, the EDI System software saves the new and modified
wires and vias in the database.

Using Keyboard Shortcuts

The EDI System software includes keyboard shortcuts for use with the wire editing features.
Type the keyboard shortcuts while the main EDI System window is active and the cursor is in
the design display area. Some of the keyboard shortcuts provide functionality that is not
available through the Edit Route form or the wire editing commands.

Keyboard Shortcuts That Open Forms

Click in the design display area, then use one of the following shortcuts:

Keyboard Shortcuts That Are Equivalent to Tool Widgets

D Opens or closes the Select/Delete/Deselect Route form

E Opens or closes the Edit Route form

A Select

M Move Wire

O Add Via
October 2010 673 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Editing Wires
For more information, see “Tool Widgets” in the EDI System Menu Reference.

Keyboard Shortcuts Used in Auto Query Mode

These keyboard shortcuts work only while you are in auto query mode—they do not work
while you are drawing a wire. For more information, see “Auto Query” in the EDI System
Menu Reference.

Keyboard Shortcuts Used in Edit Wire Mode

Shift+R Move/Resize/Reshape
(non-connectivity-based move)

S Stretch Wire

Shift+X Cut Wire

N Toggles to next object under cursor.

P Toggles to previous object under cursor.

Shift+S Populates the Edit Route form with net name, width, layers, and shape of
highlighted (queried) wire or pin. The Nets field of the Select/Delete
Routes form is also populated.

If the queried object is a pin, the layer and width information is set for both
horizontal and vertical directions. If the queried object is a wire, the width
information is set for both horizontal and vertical directions, but only one of
the layers is set. That is, only the horizontal layer is set for a horizontal
wire and only the vertical layer is set for vertical wires. This keyboard
shortcut does not populate the form with spacing information.

Ctrl+W Deletes the queried segment or via.

d Changes the added wire to the layer below the current layer.

u Changes the added wire to the layer above the current layer.
October 2010 674 Product Version 9.1.3

../encounter/startingG.html#toolwidgets
../encounter/startingG.html#autoquery

Encounter Digital Implementation System User Guide
Editing Wires
Keyboard Shortcuts Used in Stretch Wire Mode

For more information, see “Stretching Wires” on page 686.

Keyboard Shortcuts Used to Change Vias

For more information, see “Changing Vias” on page 688.

Selecting Wires

1. Click the Move Wires widget in the Tool Widgets area of the EDI System main window
or press the M keyboard shortcut while the cursor is in the design display area.

2. Click a wire.

Control-w Deletes the last segment created in the design area. This allows you to
remove one segment of the route at a time.

Esc Removes the entire route.

Number keys Change the added wire to a specific layer number. If you want the wire to
be added to metal layer 1, use the 1 keyboard shortcut, use the 2
keyboard shortcut for metal layer 2, and so forth.

Single-click Ends the segment, allowing you to continue the route in either the same
direction or the orthogonal direction.

Double-click Ends the route.

1 Stretches or reduces horizontal wires from the left and vertical wires from the
bottom.

2 Stretches or reduces horizontal wires from the right and vertical wires from the top.

N Changes the selected via to the next available via.

P Changes the selected via to the previous available via.
October 2010 675 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Editing Wires
Deleting Wires

To delete a wire without deleting the vias connected to it, complete the following steps:

1. Turn on Auto Query.

2. Move the cursor over the wire to delete.

3. Use the N (next) or P (previous) keyboard shortcut to move select the correct wire.

4. Press Ctrl+W or the Delete key.

During post-mask ECO, you can freeze wires and vias by changing their status to COVER. The
EDI System software does not delete wires or vias with status COVER. Type the following
commands to freeze the wires and vias on metal layers 1 and 2:

deselectAll
editselect -layer {M1 M2}
editSelectVia -cut_layers V12
editChangeStatus -to COVER

Tip

You cannot change the wires and vias back to their non-COVER status, so you should
issue the saveSpecialRoute and saveRoute commands before changing the
status.

Moving Wires

You can use the mouse or the keyboard arrow keys (in conjunction with the Shift key) to
move wires in the orthogonal direction.

Using the Mouse to Move Wires

1. Click the Move Wires icon in the Tool Widgets area of the EDI System main window.

The equivalent keyboard shortcut is Shift+R.

2. Click the wire to be moved.

The selected wire is highlighted.

3. Move the cursor slightly within the selected wire.

The cursor changes to a circle shape.
October 2010 676 Product Version 9.1.3

../encounter/startingG.html#autoquery

Encounter Digital Implementation System User Guide
Editing Wires
4. Click and release the mouse.

The wire moves with the cursor in the orthogonal direction (up or down for a horizontal
wire, left or right for a vertical wire). Wires connected to the moved wires stretch to
maintain connectivity.

5. Click the mouse again to place the wire in the new location.

Note: To cancel the move before you click the mouse, press the Esc key. The wire
returns to its original location.

Note: If you select the Snap to Track option, the wire automatically snaps to the appropriate
routing track.

Using Arrow Keys to Move Wires

1. Choose Edit - Wire - Edit from the menu.

The Edit Route form opens.

The equivalent keyboard shortcut is E.

2. Click the Route tab.

3. Specify a value, in microns, in the Arrow increment field.

This value defines the distance that the wire is to move each time you press an arrow key
while holding the Shift key. You can specify either a positive or negative number.

4. Click the Move Wire icon in the Tool Widgets area of the EDI System main window.

The equivalent keyboard shortcut is M.

5. Click the wire to be moved.

The selected wire is highlighted.

6. Hold the Shift key, then press the up or down arrow key for a horizontal wire or the left
or right key for a vertical wire.

The selected wire moves in the direction of the arrow.

Moving Selected Wires or Vias

To copy, paste, and move selected wires or vias, complete the following steps:

1. Select wires or vias.
October 2010 677 Product Version 9.1.3

../encounter/editG.html#EditRouteRoute

Encounter Digital Implementation System User Guide
Editing Wires
2. Type the editDuplicate command (or use the c keyboard shortcut) to copy the
objects.

3. Use the R keyboard shortcut to switch to unconn move mode.

4. Move the mouse over any of the selected objects. A black dot appears.

5. Click once to start moving the selected objects.

6. Click again to place the objects in the desired location.

Note: To cut, paste, paste, and move the wires or vias, skip step 2.

Adding Wires

You can add one or more wires interactively to single or multiple nets. When you add wires,
the flight lines to routed pins are displayed in the pin color (by default, yellow) and flight lines
to unrouted pins are displayed in the wire color (by default, blue).

By default, the routing status for newly added signal wires is FIXED. A FIXED routing status
means that the automated routers do not rip up and reroute preroutes. Signal wires that are
moved, cut, or otherwise changed by wire editing commands maintain the routing status that
was set before the wire editing commands were issued.

Adding a Wire for a Single Net

1. Click the Edit Wire widget.

This places the EDI System software in the Edit Wire mode and the mouse cursor
changes to a pencil. In addition, EDI System is automatically placed in the Auto Query
mode, even if the Q widget below the design display area is not enabled.

The equivalent keyboard shortcut is Shift+A.

2. If pins are not visible, use the Layers tab of the Color Preferences form to make pins
visible.

3. Place the cursor over the pin or wire at the starting point for the wire to be drawn, and
then type Shift+S while the cursor is in the design display window.

This populates the Edit Route form with the net name, layer, and width information that
is used in creating new wires.

Note: If multiple objects exist at a particular point, use the N or P keyboard shortcut to
cycle through the objects.
October 2010 678 Product Version 9.1.3

../encounter/startingG.html#ColorPreference

Encounter Digital Implementation System User Guide
Editing Wires
4. (Optional) Choose Edit - Wire - Edit from the menu or use the E keyboard shortcut.

The Edit Route form opens, and has been automatically populated with the net name,
layers, and widths. The form is not populated with spacing information, which only
applies while editing multiple nets.

5. (Optional) Click the Route tab on the Edit Route form and adjust the values in the Layer
and Width fields.

6. (Optional) Click the Misc tab and select a shape from the pulldown menu.

Note: Shapes are only defined for power wires. This value is ignored for signal wires.

7. Click the startpoint for the wire you want to add, then move the mouse to a new point.

The wire is drawn interactively as you move the mouse.

8. (Optional) Click a new location to change the direction of the wire or continue in the same
direction with a different segment.

Note: If there is a layer change, a via is automatically created.

9. (Optional) Press a number key to change the layer of the wire being added.

When the software is in the Edit Wire mode, number keys can be used as keyboard
shortcuts, with the number indicating the layer number of the wire being drawn. For
example, if you press the number 2, the segment is added to metal layer 2. Alternatively,
you can use the u or d keyboard shortcuts to change the layer of the segment. The u
keyboard shortcut changes the segment to the next higher layer, and the d keyboard
shortcut changes the segment to the next lower layer.

10. (Optional) Press the Backspace key to erase the most recently drawn segment.

You can do this for as many segments as needed.

11. Double-click the mouse.

The wire ends at the location of the cursor.

Note: After double-clicking, you cannot use the Backspace key to erase segments that
you drew. Instead, click the undo widget to remove the entire route, or use the Edit Delete
form.

Adding Wires for Multiple Nets

To add parallel wires to multiple nets at the same time, complete the following steps:

1. Click the Edit Wire widget.
October 2010 679 Product Version 9.1.3

../encounter/editG.html#EditRouteRoute

Encounter Digital Implementation System User Guide
Editing Wires
This places the EDI System software in the Edit Wire mode and changes the mouse
pointer to a pencil.

2. Choose Edit - Wire - Edit from the menu.

The Edit Route form opens.

3. Click the Nets tab on the Edit Route form and enter the net names into the Nets field.

Note: You can also specify a file that contains a list of nets. See “Adding Wires that
Automatically Extend to a Target” on page 681 for more information.

4. (Optional) Click the Route tab, then select horizontal and vertical layer names and
specify width and spacing values.

Note: To use different width or spacing values for different nets, use the Override tab.
See “Using Override to Add Wire Groups with Multiple Widths and Spacing” on page 682
for more information.

5. (Optional) Specify a value in the Drawing wire field.

This specifies which of the nets (specified in the Nets field) corresponds to the mouse
pointer location. By default, this value is 1, meaning the mouse position corresponds to
the position of the left-most or bottom-most net of the group.

For example, if the Nets field contains VSS VDD VDDA VSSA, the VSS net is the bottom-
most net for horizontal segments, and the left-most net for vertical segments. If the value
in the Drawing wire field is set to 1, the mouse location corresponds to wires on the VSS
net.

6. (Optional) Click the Misc tab and select a shape from the pulldown menu.

Note: Shapes are only defined for power wires. This value is ignored for signal wires.

7. Click the startpoint for the wires you want to add, then move the mouse to a new point.

The wires are drawn interactively as you move the mouse.

8. (Optional) Click a new location to change the direction of the wires or to continue in the
same direction with a different segment.

Note: If there is a layer change, a via is automatically created.

9. (Optional) Press the Backspace key to erase the most recently drawn set of segments.

You can do this for as many sets of segments as needed.

10. Double-click the mouse.

The wires end at the location of the cursor.
October 2010 680 Product Version 9.1.3

../encounter/editG.html#EditRouteRoute

Encounter Digital Implementation System User Guide
Editing Wires
Note: After double-clicking, you cannot use the Backspace key to erase segments that
you drew. Instead, click the undo widget to remove the entire route, or use the Edit Delete
form.

Adding Wires that Automatically Extend to a Target

To add wire groups to multiple nets that automatically extend to targets, complete the
following steps:

1. Click the Edit Wire widget.

This places the EDI System software in the Edit Wire mode and changes the mouse
pointer to a pencil.

2. Choose Edit - Wire - Edit Route from the menu.

The Edit Route form opens.

3. Create a text file that contains the names of multiple nets.

Make sure that each line in the file contains the name of one net, and that the nets are
listed in the order in which you want to create the wire group.

4. Click the Nets tab on the Edit Route form.

5. Click the Read button.

This opens the Open form.

6. Select the file you created in step 3, then click OK.

The Nets field now contains the net names in the file.

7. Click the Route tab, then select horizontal and vertical layer names and specify width
and spacing values.

Note: To use different widths or spacing values for different nets, use the Override tab.
See “Using Override to Add Wire Groups with Multiple Widths and Spacing” on page 682
for more information.

8. Click the Misc tab, and select the Extend Start Wires and Extend End Wires options.

These options extend both ends of the wires until they connect to a target.

9. Click the point in the design display area where the left-most or bottom-most wire should
start.

Note: The startpoint does not have to be at a target.
October 2010 681 Product Version 9.1.3

../encounter/editG.html#EditRouteRoute

Encounter Digital Implementation System User Guide
Editing Wires
10. Move the mouse horizontally or vertically.

The wires are drawn interactively.

11. Double-click the mouse.

The startpoint and endpoint of the wire extend until they connected to a target. If no target
is present, the wire does not extend.

Using Override to Add Wire Groups with Multiple Widths and Spacing

To add pairs of power and ground wires, where wires have different widths and spacing,
complete the following steps:

1. Click the Edit Wire widget.

This places the EDI System software in the Edit wire mode and changes the mouse
pointer to a pencil.

2. Choose Edit - Wire - Edit from the menu.

The Edit Route form opens.

3. Click the Nets tab on the Edit Route form and enter the net names into the Nets field.

Note: You can also specify a file that contains a list of nets. See “Adding Wires that
Automatically Extend to a Target” on page 681 for more information.

4. Click the Route tab, then select the horizontal and vertical layer names and specify the
width and spacing values.

5. Click the Override tab and enter a set of width and spacing values for the nets that do
not have default width and spacing values.

For example, if you want wires for the third and fourth nets to have a wider width and
larger spacing, specify the following values:

3 6 4

4 6

The first line indicates the third net (3) has a width of 6 microns and that the spacing
value between the third and fourth net is 4 microns.

The second line indicates that the fourth net (4) has a width of 6 microns.

Note: To specify a value of less than 1, you must include a 0 before the decimal point.
For example, a value of .6 is not valid, and must be expressed as 0.6.

6. Click the point in the design display area where the left most stripe should start.
October 2010 682 Product Version 9.1.3

../encounter/editG.html#EditRouteRoute

Encounter Digital Implementation System User Guide
Editing Wires
Note: The startpoint does not have to be at a target.

7. Double-click the mouse.

The wires end at the location of the cursor.

Cutting Shielding Wires

1. Click the Cut Wire widget.

The cursor changes to the shape of a scissors, indicating that the EDI System software
is in the Cut Wire mode.

2. Click the location at which you want to start cutting the shields.

3. Move the mouse so that the drawn line is touching or overlaps the wire orthogonally.

4. Click to complete the cut.

5. Use the A keyboard shortcut to enter the Select mode.

The cursor changes to an arrow shape.

6. Click the piece of wire to be deleted.

The selected piece of wire is highlighted.

Note: If multiple objects exist at the location of the cursor, press the spacebar to toggle
the selection between them. To select multiple objects, press the Shift key while
clicking.

7. Use the D keyboard shortcut to delete the selected objects.

Note: Wires can only be cut in the orthogonal direction. If you cut multiple wires, including
wires in the same direction as the cut, the cut only affects wires in the orthogonal direction to
the cut. Once cut, signal wire pieces maintain a 1/2 wire width extension, but power wires are
not extended.

Trimming Antennas on Selected Stripes

If your completed power structure contains stripes in a mesh configuration, physical antennas
might remain on some stripes.

1. Use the D keyboard shortcut to display the Select/Delete Routes form.

2. Choose Select from the Action pulldown menu.
October 2010 683 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Editing Wires
3. (Optional) Click Nets, then specify one or more nets for the wires to be trimmed.

4. (Optional) Click Direction, then click H to trim horizontal wires or V to trim vertical wires.

5. Click Shapes, then select STRIPE.

6. Click Apply.

The selected wires are highlighted in the design display area.

7. Use the Shift+T keyboard shortcut to trim the selected wires.

The selected power wires are trimmed back to the last connection point and deselected.

Note: Signal wires cannot be trimmed.

Changing Wire Width

After running power analysis, you might need to increase the width of some power stripes to
alleviate any IR drop or EM issues.

1. Make sure the software is in Select mode (you can use the A keyboard shortcut), then
click the wire segment to be widened.

2. Use the E keyboard shortcut.

This displays the Edit Route form without placing the software in the Edit Wire mode.

3. Click the Route tab on the Edit Route form and enter values in the Width fields.

Specify a width value in the Horizontal section for horizontal wires and a width value in
the Vertical section for vertical wires.

4. Use the Shift+W keyboard shortcut.

This changes the width of the selected wire. Any via connected to that the wire is also
updated based upon the new width.

Note: Widths for signal wires depend on the applicable LEF rule, no matter what value is
populated in the GUI. To specify a wire width that is different from the default wire width value,
select Force Special or a value other than Default from the Rule pull-down menu on the
Nets tab of the Edit Route form.
October 2010 684 Product Version 9.1.3

../encounter/editG.html#EditRouteRoute

Encounter Digital Implementation System User Guide
Editing Wires
Repairing Maximum Wire Width Violations

Violations occur if you specify wires widths greater than the maximum width defined by the
maxWidth rule in the LEF file.

1. Use the E keyboard shortcut.

This displays the Edit Route form without placing the software in the Edit Wire mode.

2. Click the Fix wires wider than max width widget at the bottom of the Edit Route form.

This executes the editFixWideWires command, which finds any wires violating the
maxWidth rule and splits up both the wires and the associated vias as minimally as
possible while maintaining the same footprint.

Duplicating Wires

After running power analysis, you might need to add some power stripes to alleviate any IR
drop or EM issues. Instead of creating new wires interactively, you can duplicate existing
wires.

1. Make sure the software is in the Select mode (you can use the A keyboard shortcut),
then click the wire segment to duplicate.

2. Use the E keyboard shortcut.

This displays the Edit Route form without placing the software in the Edit Wire mode.

3. Click the Route tab on the Edit Route form and specify the vertical and horizontal layers
for the duplicated wires.

Note: The widths of the duplicated wires are always the same as the original wires, but
the layers are the ones specified in the form.

4. Click the Duplicate selected wires widget or use the c keyboard shortcut.

The duplicated wires are automatically selected and placed directly on top of the original
wires.

Note: To duplicate a wire and change the layer, use the editDuplicate command and
specify the layer for the duplicate wire. For more information, see editDuplicate in
the “Wire Edit Commands” chapter of the EDI System Text Command Reference.

5. Use the m keyboard shortcut.
October 2010 685 Product Version 9.1.3

../fetxtcmdref/wireeditT.html#editFixWideWires
../encounter/editG.html#EditRouteRoute
../fetxtcmdref/wireeditT.html#editDuplicate

Encounter Digital Implementation System User Guide
Editing Wires
This places the software in the Move mode, allowing you to use the mouse or the arrow
keys (while holding down the Shift key) to move the newly created wires to the desired
location.

Stretching Wires

1. Click the Select widget in the Tool Widgets area of the EDI System main window.

The cursor shape is an arrow, indicating that EDI System software is in the Select mode.
The equivalent keyboard shortcut is A.

2. Click the wire to stretch.

The selected wire is highlighted.

3. Click the Stretch Wire widget in the Tool Widgets area of the EDI System main window.

The equivalent keyboard shortcut is S.

4. Move the cursor to the end point of the wire to be stretched.

The cursor changes to a T shape.

5. Click the end point, then release the mouse button and move the cursor to a new location
and click again.

The wire stretches to the new location.

Alternatively, you can use the Shift key in conjunction with the arrow keys to stretch or
shrink the wire. When the software is in the Stretch Wire mode, you can use 1 and 2 as
keyboard shortcuts to set the edge of the wire to be stretched. By default, the wire is stretched
from the top or the right. To stretch the wire from the bottom or the left, use the 1 keyboard
shortcut. The Stretch Wire widget reverses so that the outer arrow points to the left. To return
to stretching wires from the top or right, use the 2 keyboard shortcut. The arrows on the
Stretch Wire widget change so that the outer arrow points to the right.

Changing Wire Layers

You may need to change sections of wires to different layers in order to relieve congestion on
a specific layer or to fix process antenna violations.

1. Make sure the software is in the Select mode (you can use the A keyboard shortcut),
then click the wire segment to be updated.

2. Use the E keyboard shortcut.
October 2010 686 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Editing Wires
This displays the Edit Route form without placing the software in the Edit Wire mode.

3. Click the Route tab on the Edit Route form and enter values in the Layer fields.

Specify a layer value in the Horizontal section for horizontal wires and a layer value in
the Vertical section for vertical wires.

4. Use the L keyboard shortcut.

This changes the layer of the selected wire. Any via connected to that wire is also
updated based on the new layer.

Splitting and Merging Wires

Stripes that spread over the entire die may need to be altered in specific locations. In this
case, a stripe that is represented as a single piece of wire must be split into multiple
segments. You can split a wire to cut stripes at each crossover automatically:

1. Make sure the software is in the Select mode (you can use the A keyboard shortcut),
then click the wire segment to be split.

2. Use the Ctrl+S keyboard shortcut.

This automatically splits the single wire segment into multiple segments at points
connected to other wires.

After splitting a wire, you can merge those wire segments that align back into a single
segment.

1. Select a single segment.

2. Use the M keyboard shortcut.

This merges the wire segments into a single segment.

Adding Vias

1. Select the Add Via widget. The equivalent keyboard shortcut is O.

2. Press the F3 key.

This displays the Edit Via form.

3. Select Geometry in the Create Via by field.
October 2010 687 Product Version 9.1.3

../encounter/editG.html#EditRouteRoute

Encounter Digital Implementation System User Guide
Editing Wires
4. Fill all of the fields in the form. For more information, see Edit Via in the EDI System
Menu Reference.

5. Move the cursor to the location to which the via is to be added, then click the mouse.

A via with the exact configuration specified in the Edit Via form is added at that location.

Changing Vias

■ Using the editChangeVia command

You can change one or more vias using this command. For example, to change all
VIA_XX vias of a specified net located within a specified region to VIA_YY vias, type
the following command:

editChangeVia -net netName -area {x1 y1 x2 y2} -from VIA_XX -to VIA_YY

For more information, see editChangeVia in the EDI System Text Command
Reference.

■ Using keyboard shortcuts

You can change one via at a time using keyboard shortcuts.

a. Place the cursor on the via to be changed.

b. Use the N (next) or P (previous) keyboard shortcuts to select the correct via if
multiple vias exist in the same location on different layers.

c. Without moving the mouse, use the N (next) or P (previous) keyboard shortcut to
display a via that has the same LEF rule as the selected via.

❍ If a via is available, the display is updated with the new via when you press the
keyboard shortcut.

❍ If another via is not available, you will hear a warning beep when you press the
keyboard shortcut. This can occur when only one via is defined in the LEF file,
when the currently queried object is not a via, or when no object is currently
queried.

■ Using the Edit Power Vias form

For information, see Edit Power Vias in the EDI System Menu Reference.

Note: You cannot change vias using the Edit Route form.
October 2010 688 Product Version 9.1.3

../encounter/editG.html#EditVia
../fetxtcmdref/wireeditT.html#editChangeVia
../encounter/powerG.html#EditPowerVias

Encounter Digital Implementation System User Guide
Editing Wires
Moving Vias

You move vias the same way you move wires. The EDI System software moves vias without
considering connectivity. For more information, see “Moving Wires” on page 676.

Reshaping Routes

You can reshape routes by specifying that wires at the corner of a route are to be trimmed
after adding wires within an area that makes the existing corner wires obsolete. In addition, if
you add a wire that circumvents an existing path, the existing route is trimmed after the new
wires are added.

1. Click the Edit Wire widget.

This places the EDI System software in the Edit Wire mode and changes the mouse
pointer to a pencil. In addition, it places the software in the Auto Query mode.

The equivalent keyboard shortcut is Shift+A.

2. Select the Edit Route form from the Edit menu and click the Misc tab.

The equivalent keyboard shortcut is E.

3. Select the Reshape option on the form.

4. Add wires to the design, as described in “Adding Wires” on page 678.
October 2010 689 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Editing Wires
The following illustrations show the results of using the Reshape option:

Controlling Cell Blockage Visibility

If you see a spacing violation when adding or editing a via or wire, it might be caused by a cell
blockage that is not currently visible.

Existing wires

Newly added wires

Corner segments removedUnwanted corner segments

Existing wires

Newly added wires

Corner segments removedUnwanted corner segments

Existing wire

Newly added wires

Unwanted segment removedUnwanted segment
October 2010 690 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Editing Wires
To see cell blockages, select the Cell Blkg option on the Routing color control display (click
the slidebar to display this option). Alternatively, you can click the All Colors button to display
the Color Preferences form, then select the Cell Blockage visibility option. In addition,
depending on whether the blockage is outside or inside a cell, you must do one of the
following:

■ Cell blockages outside a cell are visible by default. To control the visibility of these
blockages for particular layers, click the Wire Layers tab of the Color Preferences form.
Use the buttons in the fifth column, Blkg, to deselect the visibility of blockages for
particular layers. By default, all layers are selected.

■ Cell blockages within a cell are not visible by default. To see these cell blockages, click
the Wire Layers tab of the Color Preferences form, then use the buttons in the sixth
column, V Blkg, to select the visibility of blockages for each cut layer that you want to
see. By default, all layers are deselected.
October 2010 691 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Editing Wires
October 2010 692 Product Version 9.1.3

Encounter Digital Implementation System User Guide
20
Using Trial Route for Congestion and
Timing Analysis

■ Overview on page 694

■ Data Preparation on page 694

■ Routing A Flat Design on page 695

■ Routing a Partitioned Design on page 696

■ Routing Two-Metal Layer Designs on page 698

■ Routing Using the NanoRoute Global Router on page 698

■ Loading and Saving Route Data on page 699

■ Analyzing Route Data on page 699

■ Improving Route Congestion on page 708

■ Using Bus Guides on page 709

■ Additional Information on page 710
October 2010 693 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
Overview

Trial Route performs quick global and detailed routing for estimating routing-related
congestion and capacitance values. It also incorporates any changes made during
placement, such as scan reorder.

You can use Trial Route results to estimate and view routing congestion, and to estimate
parasitic values for optimization and timing analysis. When used during prototyping, Trial
Route creates actual wires, so you can get a good representation of RC and coupling for
timing optimization at an early stage in the flow. Trial Route also produces a congestion map
you can view to get early feedback on whether the design is routable.

Trial Route results can also be used for pin assignment when you commit partitions.

Note: Trial Route does not guarantee DRC-clean routing results. Do not perform signal
integrity analysis on a design that has been routed using Trial Route, because the routes are
only used to estimate parasitic values for timing analysis. Route designs with NanoRoute or
WRoute, if you want to perform signal integrity analysis.

You can use Trial Route during virtual prototyping, hierarchical floorplanning, block
implementation, and top-level implementation.

Related Topics

To see where this step fits in the design flow, see Place the Design and Run Pre-CTS
Optimization in the Encounter Digital Implementation System Foundation Flows: Flat
Implementation Flow Guide.

Data Preparation

■ The design must be successfully placed.

Important

If you make any changes after running Trial Route that affect the placement data—
for example, floorplan changes—you must run placement before rerunning Trial
Route.

■ The design must be loaded into the current Encounter Digital Implementation System
(EDI System) session.

The following optional input files are only required as necessary:
October 2010 694 Product Version 9.1.3

../flatImpl/flow.html#PlacetheDesignandRunPre-CTSOptimization
../flatImpl/flow.html#PlacetheDesignandRunPre-CTSOptimization

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
■ DEF file

■ Top Design Format (TDF) file containing routing data

■ Routing guide file

Routing A Flat Design

■ Initial Design Routing

Run Trial Route for the first time to gauge the routability of the design. You can then
examine the congestion map and congestion distribution report to identify congested
areas that might cause routing problems later in the design session.

a. Choose Route – Trial Route.

This opens the Trial Route Form.

b. Select the Prototyping effort level and click OK.

You can also issue the following command:

trialRoute -floorplan

Important

The prototyping (-floorplan) mode runs Trial Route quickly, which is important
when prototyping large designs. However, note that components in your design
might not be routed at legal locations.

■ Post Clock Tree Synthesis Routing

Run Trial Route after clock-tree synthesis to recheck the routing congestion and to
estimate parasitic values for timing analysis.

a. Choose Route – Trial Route.

b. Select the Medium Effort (default) or High Effort effort level on the Trial Route
form.

c. (Optional) Select the Use Routing Guide option, and specify the name of a guide
file in the corresponding field. Trial Route follows the routing regions defined in the
guide file and honors the specified pre-routed nets.

d. Click OK.

Alternatively, you can issue the following command:

trialRoute -highEffort -guide my_chip.rguide
October 2010 695 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
Routing a Partitioned Design

In a flat design, Trial Route can route through guides, regions, and fences, as long as there
are no routing blockages or hard blocks. However, fences are often defined as partitions,
which become blocks after the design becomes hierarchical. Once partitions become blocks,
the routes are no longer allowed, unless they use a proper feedthrough mechanism, such as
inserted buffers or routing feedthroughs.

In channel-based routing designs, all top-level routing use channels to route around
partitions. In a partitioned design in which the partitions have not been committed, you can
use the Trial Route -handlePartition and -handlePartitionComplex parameters to
force the routing into channels, simulating a channel-based design.

➤ Issue one of the following commands:

trialRoute -highEffort -handlePartition

or

trialRoute -highEffort -handlePartitionComplex

Use the -handlePartition parameter to route nets that are only connected within
partitions. Use the -handlePartitionComplex to route nets that belong to more than
one partition, so that the routing does not violate partition boundaries.

When the -handlePartition or -handlePartitionComplex parameter is specified,
Trial Route works in three phases:

■ Phase 1 – Routes the top-level connections

■ Phase 2 – Routes net connections within partitions

■ Phase 3 – Routes net connections between partitions

For example, the design in Figure 20-1 on page 697 has five metal layers, a top-level partition
and four flattened partitions: P1, P2, P3, and P4. P1 reserves the metal1, metal2, and
metal3 layers for partitions, and P2, P3, and P4 reserve layers metal1 through metal5 for
partitions.
October 2010 696 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
Figure 20-1

If you specify -handlePartition or -handlePartitionComplex, Trial Route performs
the following tasks to route the net connections:

1. Trial Route applies all of the metal blockages defined for each partition. The layers
metal1, metal2, and metal3 are blocked for P1, and metal1 through metal5 are
blocked for the other partitions.

2. Trial Route then routes nets connecting only at the top level. No connections to partitions
or cells within the partitions are made.

3. Trial Route blocks all areas outside of the defined partitions on all routing layers. For P1,
Trial Route applies a routing blockage for layers metal4 and metal5.

4. Trial Route routes all nets within P1, P2, P3, and P4 on the available routing layers. This
means that even a cell at the lower-left corner of P2 that connects to a cell at the upper-
right corner of P2 is routed within P2, regardless of any congestion.

5. Trial Route removes the routing blockages and routes the net connections between
partitions.

If an I/O at the top level connects to P2:

❑ If you specify -handlePartition, Trial Route uses all metal layers to route
through P1.

P1

P2

P3 P4

Phase 1 – Route top-level
connections

Phase 2 – Route net connections
within partitions

Phase 3 – Route net connections
between partitions
October 2010 697 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
❑ If you specify -handlePartitionComplex, Trial Route uses only layers metal4
and metal5 to route through P1.

Routing Two-Metal Layer Designs

Trial Route can route designs with only two metal layers defined in the LEF file. Trial Route
automatically detects when a design is M1/M2 only, and uses wires from the M1 and M2
layers for routing.

Trial Route can also perform two-layer routing on designs that have more than two metal
layers defined in the LEF file by setting the trialRoute or setTrialRouteMode
-maxRouteLayer parameter to 2. Trial Route then uses wires from the M1 and M2 layers
for routing.

All pins of the nets to be routed must be on layers M1 and M2.

Routing Using the NanoRoute Global Router

Important

This is a limited-access feature. This feature has been internally qualified at
Cadence but has had only limited customer testing. The limited access features are
enabled by a variable specified through the setLimitedAccessFeature
command. To use this limited access feature, please contact your Cadence
representative to qualify your usage and make sure it meets your needs before
deploying it widely.

Trial Route can route designs using the NanoRoute global router technology in place of the
current trialRoute technology by setting the setTrialRouteMode -useNanoRoute
parameter to true.

When the -useNanoRoute parameter is enabled, the routing correlation between the pre-
route and post-route stage is improved, which results in reduced timing jumps between pre-
route and post-route timing. The resulting congestion analysis report uses the same
formatting and provides the same level of information as the one from global detailed routing
phase. You can check the obstructions and congestions in the design graphically by analyzing
the generated congestion map. For more information, on congestion maps, see Using the
Congestion Map on page 738.

Note: The setTrialRouteMode -useNanoRoute does not support designs with
partitions and blobs. When the router detects partitions in the design, it automatically reverts
to the trialRoute technology to route the design.
October 2010 698 Product Version 9.1.3

../fetxtcmdref/generalT.html#setLimitedAccessFeature
../fetxtcmdref/routeT.html#setTrialRouteMode
../fetxtcmdref/routeT.html#setTrialRouteMode

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
Loading and Saving Route Data

After initially running the Trial Route program, you can load or save Trial Route data at any
time during an Encounter session.

➤ To load route data using the Load Route File form, choose File – Load – Route.

➤ To save route data using the Save Route File form, choose File – Save – Route.

Note: You can also save route data by selecting the Save Routing to option on the Trial
Route form and specifying a filename.

Analyzing Route Data

After running Trial Route, you can analyze the results to check if your design is routable for
back-end detailed routing tools.

1. Visually check the route congestion markers.

The red diamond-shaped congestion markers should not be very dense in a local area.
These markers contain an overflow value to identify the number of tracks required for that
grid, and the actual number of tracks available.

See “Congestion Markers in the Display” on page 699 for more information.

2. In the log file, inspect the Trial Route contents in the congestion distribution table.

See “Congestion Distribution Report” on page 702 for more information.

When these two tests are satisfactory, the design is routable by a detail router.

Congestion Markers in the Display

You can visually check the Trial Route congestion statistics in the design display area of the
main EDI System window to identify the tight clusters of congestion markers. Check the
design display area to make sure there are no markers grouped closely together. These
usually occur around blocks or between large blocks. The indicators are diamond shaped and
October 2010 699 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
red by default. Zoom into the area to display the vertical and horizontal congestion overflow
values, as shown in the following figure.

Congestion markers contain a vertical or horizontal overflow value to identify the number of
tracks required for that grid, and the actual number of tracks available. For example, in the
above illustration, the vertical overflow is 2/0, which indicates that two additional tracks are
required, and 0 tracks are available.

Congestion marker values are based on an integer number of adjacent gcells that are
grouped together to form a “super gcell.” Horizontal congestion super gcells are tall, narrow
boxes that typically have a height of four gcells and a width approximately equal to the height
of a vertical congestion super gcell. Vertical congestion super gcells are short, wide boxes
that typically have a height of one gcell and a width approximately equal to the height of a
horizontal congestion super gcell.

Vertical and horizontal overflow values are calculated separately for better accuracy. The
overflow value is the amount by which the track demand exceeds the track supply. The
required track value is calculated by totalling the number of required tracks in the super
gcell.That is, the value is the sum of the number of required tracks in all of the adjacent gcells
that form the super gcell.The available track value is calculated by totalling the number of
available tracks in the super gcell.

Note: Congestion markers can display different congestion information than that contained
in the default congestion distribution report. The information in the congestion distribution
report is based on the congestion of each gcell instead of the super gcells. To create a
congestion report based on the congestion of the super gcells, use the
describeCongestion command.

Congestion marker Zoom in V: 2/0

Vertical congestion overflow value
October 2010 700 Product Version 9.1.3

../fetxtcmdref/routeT.html#describeCongestion

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
To change the size of super gcells, define the following variable:

set rdaSuperGcellSize n

The value you specify for n must be greater than or equal to 0 and less than or equal to 10.
If you specify a value of 1, a super gcell becomes a regular gcell, and the displayed
congestion marker information matches the congestion information provided in the report. If
you specify a value of 0, the super gcells become square.

Congestion Marker Color Boxes

By specifying the HCongest and or VCongest colors in the Color panel, you can also add
a color box to the congestion marker that indicates the severity of the overflow level (that is,
the number of overflow tracks in a one-unit area). Usually, a one-unit area contains 10 global
cells (gcells) horizontally. If there are 50 vertical tracks available in that area, and Trial Route
requires 51 vertical tracks, the congestion marker color box is blue (by default), indicating a
one-track overflow. If Trial Route requires 52 vertical tracks, the congestion marker color box
is green (by default), indicating a two-track overflow. An example of this is shown in the
following figure.

The following table shows the default congestion marker colors and their corresponding
overflow values:

Level Color Overflow Value

level 1 Blue 1 (One more track required)

level 2 Green 2 (Two more tracks required)

level 3 Yellow 3 (Three more tracks required)

level 4 Red 4 (Four more tracks required)

level 5 Magenta 5 (Five more tracks required)

level 6 and higher Gray to white 6 or greater (Six or more tracks required)

V=52/50 H=26/26

V=51/50 H=26/26
October 2010 701 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
For more information, see “Multicolor Layers.”

Congestion Distribution Report

After Trial Route completes, a congestion distribution report is created in the EDI System log
file. The congestion distribution report provides usage and routing overflow percent values,
as well as gcell overflow information (that is, the internal supply and demand for each gcell).
There are two types of congestion distribution reports that can be generated: a default
congestion distribution report; and a detailed congestion distribution report.

Note: The congestion information contained in the congestion distribution report can differ
from the congestion information displayed in congestion markers in the EDI System window.
For more information, see “Congestion Markers in the Display” on page 699.

Default Congestion Distribution Report

By default, Trial Route generates a congestion distribution report that summarizes congestion
information for the entire chip.

Usage and Routing Overflow

The following example illustrates the section of the congestion distribution report that
summarizes the usage and routing overflow percent values:

Phase 1f route (0:00:02.0 105.9M):

Usage: (24.2%H 35.8%V) = (8.695e+06um 1.314e+07um) = (1734514 486668)

OvInObst: 21 = 21/5777 (0.4% H) + 0/1587 (0.00% V)

Overflow: 192 = 1 (0.0% H) + 191 (0.07% V)

The Usage statement summarizes horizontal and vertical tracks used in gcells. In the above
example, there are 1,734,514 horizontal tracks used in all gcells and 486,668 vertical tracks
used in a gcells. Of the available horizontal tracks, 24.2 percent were used for horizontal
routing (that is, wires), and 35.8 percent were used for vertical routing. The total horizontal
wire length used equals 8.65e+06 μm, and the total vertical wire length used equals
1.314e+07 μm.

The OvInObst statement summarizes obstructed gcell information. In the example, there are
5,777 horizontally obstructed gcells (where there are no available tracks). The approximate
number of wires over horizontally obstructed gcells equals 21/5,777.

The Overflow statement summarizes all overflowed gcells. In the example, there is one
horizontally overflowed gcell, and 191 vertically overflowed gcells.
October 2010 702 Product Version 9.1.3

../encounter/startingG.html#MulticolorLayers

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
Gcell Overflow

The following example illustrates the section of the congestion distribution report that
summarizes gcell overflow information. A gcell has overflow if its demand exceeds its supply.
Supply is the available routing resource, and demand is the amount of routing resource
assigned to the gcell. Typically, the supply is the number of unobstructed tracks crossing the
gcell, and the demand is the number of wires assigned to it.

Remain cntH cntV

-6: 0 0.00% 1 0.00%

-5: 2 0.00% 0 0.00%

-3: 10 0.00% 26 0.00%

-2: 510 0.03% 830 0.05%

-1: 8100 0.47% 17618 1.05%

--

0: 78504 4.59% 178501 10.63%

1: 102934 6.02% 214588 12.78%

2: 76165 4.46% 185168 11.03%

3: 72832 4.26% 179080 10.67%

4: 81555 4.77% 180443 10.75%

5: 92704 5.42% 158498 9.44%

6: 106167 6.21% 137707 8.20%
October 2010 703 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
The following table defines the columns in the congestion report:

The following line from the example shows that there are 8,100 gcells (.47 percent of the total
number of gcells) where the demand exceeds the supply by one track in the horizontal
direction, and 17,618 gcells (1.05 percent of the total number of gcells) where the demand
exceeds the supply by one track in the vertical direction:

-1: 8100 0.47% 17618 1.05%

The following line shows that there are 78,504 gcells where the track supply is equal to the
track demand in the horizontal direction, and 178,501 gcells where the track supply is equal
to the track demand in the vertical direction:

0: 78504 4.59% 178501 10.63%

Detailed Congestion Distribution Report

You can create a detailed congestion distribution report that writes out information about
sections of the chip. These sections can be either fixed quadrants defined by the middle
horizontal and vertical lines, or user-defined sections specified by rows and columns.

To create a report for quadrants, specify trialRoute -printSections or
setTrialRouteMode -printSections true. The report formats the information

Column Definition

Remain The track supply minus the track demand.

cntH When Remain is positive, the number and percentage of gcells where the
horizontal track supply exceeds the horizontal track demand.

When Remain is negative, the number and percentage of gcells where
the horizontal track demand exceeds the horizontal track supply.

When Remain is 0 (zero), the number and percentage of gcells where the
horizontal track demand is equal to the horizontal track supply.

cntV When Remain is positive, the number and percentage of gcells where the
vertical track supply exceeds the vertical track demand.

When Remain is negative, the number and percentage of gcells where
the vertical track demand exceeds the vertical track supply.

When Remain is 0 (zero), the number and percentage of gcells where the
vertical track demand is equal to the vertical track supply.
October 2010 704 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
section-by-section, with each section containing congestion information for each layer in the
section.

To create a report for user-defined sections, define the following two variables before running
trialRoute -printSections or setTrialRouteMode -printSections true:

set trgNrSecRows number

set trgNrSecCols number

These variables define the number of equal-size sections into which to divide the chip when
reporting the congestion information. For example, the following two variable definitions
divide the chip area into 3 x 2 sections of equal size:

set trgNrSecRows 2

set trgNrSecCols 3

The detailed congestion distribution report is divided into six categories of information for
each section of the chip:

■ Virtual (global) wire length

■ Range of tracks in a gcell

■ Number of gcells with remaining tracks, including blocked gcells

■ Number of gcells with remaining tracks, excluding blocked gcells

■ Track usage in gcells

■ Real wire length

These categories are described below.

Virtual (global) wire length

This section summarizes the number of tracks used, the estimated wire length, the
percentage of overflow, and the percentage of blocked gcells for each layer. The following
example illustrates this section of the congestion distribution report:

***Virtual wire length:

M2: tracks used = 17.8% = 7754505/43513490 est wire length = 1.707e+07um
overflow = 0.0% (0.0%) = 369/13471232 blk = 65.5%

M3: tracks used = 19.1% = 4452746/23334471 est wire length = 1.959e+07um
overflow = 0.0% (0.0%) = 515/13471232 blk = 65.1

M4: tracks used = 13.1 % =14991505/114837671 est wire length = 3.298e+07um
overflow = 0.0% (0.0%) = 237/13471232 blk = 0.4%
October 2010 705 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
Range of tracks in a gcell

This section summarizes the range of the number of tracks used in a gcell on each layer, and
the average number of tracks used per gcell on the layer. The following example illustrates
this section of the congestion distribution report:

Range of number of tracks in a Gcell in layer M2: [5:10], avg: 3.2

Range of number of tracks in a Gcell in layer M3: [1:29], avg: 1.7

Range of number of tracks in a Gcell in layer M4: [1:29], avg: 8.5

Range of number of tracks in a Gcell in layer M5: [3:6], avg: 5.0

The first line of this example shows that there are between 5 and 10 tracks used in a gcell on
layer metal2, and that the average number of tracks used in a gcell is 3.2.

Number of gcells with remaining tracks, including blocked gcells

This section summarizes the number of gcells, including blocked gcells, with remaining tracks
(or the internal supply and demand for gcells) for each layer. A gcell has overflow if its demand
exceeds its supply. Supply is the available routing resource and demand is the amount of
routing resource assigned to the gcell. Typically, the supply is the number of unobstructed
tracks crossing the gcell, and the demand is the number of wires assigned to it.

The following example illustrates this section of the congestion distribution report:

Table for number of Gcells with remain tracks (includes blocked Gcells):

Remain M2 M3 M4 M5 ...
--

-6: 0 0.00% 0 0.00% 0 0.00% 0 0.00%

-5: 0 0.00% 0 0.00% 0 0.00% 3 0.00%

-4: 0 0.00% 0 0.00% 0 0.00% 5 0.00%

-3: 0 0.00% 0 0.00% 0 0.00% 37 0.00%

-2: 10 0.00% 28 0.00% 6 0.00% 264 0.00%

-1: 355 0.00% 476 0.00% 229 0.00% 1254 0.01%

0: 8855290 65.73% 8858305 65.76% 70715 0.52% 127176 0.94%

1: 91903 0.68% 269941 2.00% 124321 0.92% 460099 3.42%

2: 166878 1.24% 441388 3.28% 192300 1.43% 1052688 7.81%

3: 250040 1.86% 559047 4.15% 347255 2.58% 1109275 8.23%

4: 319497 2.37% 734307 5.45% 738688 5.48% 2369132 17.59%

The Remain column is the track supply minus the track demand. When this value is a positive
number, it is the number and percentage of gcells where the track supply exceeds the track
demand on each layer. When it is a negative number, it is the number and percentage of
gcells where the track demand exceeds the track supply on each layer. When it is 0 (zero), it
October 2010 706 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
is the number and percentage of gcells where the track demand is equal to the track supply
on each layer.

The following line from the example shows that there are 8,855,290 gcells (65.73 percent of
the total number of gcells) where the track supply is equal to the track demand on layer
metal2, and 8,858,305 gcells (65.76 percent of the total number of gcells) where the track
supply is equal to the track demand on layer metal3.

Remain M2 M3 M4 ...

0: 8855290 65.73% 8858305 65.76% 70715 0.52%

The following line from the example shows that there are 91,903 gcells (.68 percent of the
total number of gcells) where the track supply exceeds the track demand on layer metal2,
and 269,941 gcells where the track supply exceeds the track demand on layer metal3.

Remain M2 M3 M4 ...

1: 91903 0.68% 269941 2.00% 124321 0.92%

Number of gcells with remaining tracks, excluding blocked gcells

This section summarizes the number of gcells, excluding blocked gcells, with remaining
tracks for each layer, and follows the same format as the table that reports the number of
gcells with remaining tracks, including blocked gcells. The following example illustrates this
section of the congestion distribution report:

Table for number of Gcells with remain tracks (excludes blocked Gcells):

Remain M2 M3 M4 M5 ...
--

-6: 0 0.00% 0 0.00% 0 0.00% 0 0.00%

-5: 0 0.00% 0 0.00% 0 0.00% 3 0.00%

-4: 0 0.00% 0 0.00% 0 0.00% 5 0.00%

-3: 0 0.00% 0 0.00% 0 0.00% 37 0.00%

-2: 10 0.00% 28 0.00% 6 0.00% 264 0.00%

-1: 355 0.00% 476 0.00% 229 0.00% 1214 0.01%

0: 34536 0.74% 83715 1.78% 18240 0.14% 101470 0.75%

1: 91903 1.98% 269941 5.75% 124321 0.93% 460099 3.42%

2: 166878 3.59% 441388 9.40% 192300 1.43% 1052688 7.83%

3: 250040 5.38% 559047 11.90% 347255 2.59% 1109275 8.25%
October 2010 707 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
Track usage in gcells

This section summarizes the percentage of tracks used for routing per gcell for each layer. It
also reports the average number of tracks used in a gcell on each layer. The following
example illustrates this section of the congestion distribution report:

Table for track usage in Gcells

Usage(%) All M M2 M3 M4 M5 ...
#Gcells avg trks: 3.2 1.7 8.5 5.0

0%-50% 97.31% 30.20% 29.25% 93.68% 88.09%
13108628 4068834 3940947 1260035 11866924

50%-60% 1.64% 0.33% 3.00% 1.81% 7.37%
 221249 44376 404372 243607 9933345

60%-70% 0.78% 1.81% 0.08% 2.08% 0.16%
 104771 243711 10795 279931 22125

70%-80% 0.24% 1.24% 1.85% 1.20% 3.34%
 32323 166753 249401 161193 450375

80%-90% 0.03% 0.68% 0.05% 0.71% 0.07%
 3796 91903 6908 95516 9724

The fourth line from this example shows that 70 percent to 80 percent of the tracks in 1.24
percent of the gcells (out of a total of 166753 gcells) on layer metal2 are used.

Real wire length

This section summarizes the total real wire length used and number of vias for each layer in
the section. The following example illustrates this section of the congestion distribution report:

***Real Wire Length:

Total: 1.396e+08um, total number of vias: 3547270

M1(V): 9.076e+04um

M2(H): 1.490e+07um, number of M1/M2 vias: 1560437

M3(V): 1.652e+07um, number of M2/M3 vias: 1273925

M4(H): 3.241e+07um, number of M3/M4 vias: 360881

M5(V): 4.233e+07um, number of M4/M5 vias: 242047

M6(H): 2.492e+07um, number of M5/M6 vias: 75288

M7(V): 5.399e+06um, number of M6/M7 vias: 26668

M8(H): 3.013e+06um, number of M7/M8 vias: 8034

Improving Route Congestion

For a module or submodule that has route congestion, complete one of the following actions
to improve congestion, depending on the type and severity of the violation:
October 2010 708 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
1. Change the block pin orientation.

Route congestion usually occurs around blocks that have their pins facing incorrectly.
You can identify these blocks by clicking on them in the design display area to see where
the flight lines terminate. When the block pins are visible, you can rotate or flip the
block(s) to alleviate the congestion.

For information on changing block orientation, see “Flip/Rotate Instances.”

2. Add density screens.

You can use density screens to control standard cell placement density in certain areas
where there is high routing congestion. Use the Add Density Screens tool to create a
screen over the highly congested area.

Congestion is more severe if it spans between two blocked areas, as illustrated in the
following figure.

This figure represents a vertically congested area between two blocks that are placed
close to one another. This routing bottleneck is more severe than local congestion.
Assigning a density screen alleviates this congested area.

For information on adding density screens, see Add Partial Placement Blockage
under in the Floorplan Widgets section of “Tool Widgets.”

Using Bus Guides

Trial Route uses bus guide information created with the bus planning feature to better control
the routing of nets and nets groups. Bus guides can be created to control routing by area,
layer, and net names. Trial Route automatically checks the bus guide information, then routes
nets and net groups based on their defined bus guide constraints. Trial Route with bus guide
routing can be run before or after assigning pins for a hierarchical partition or a black box
design. When you run Trial Route on a design containing a bus guide, all the routing nets
belonging to the specified net group are highlighted.

Bus guide routing enables groups of nets to be routed, through larger areas. This requires the
gcells allowed for the nets to cover a larger area, based on the bus guide width. Nets can go

Congestion Area

Block 1 Block 2
October 2010 709 Product Version 9.1.3

../encounter/floorplanG.html#FlipInstances
../encounter/startingG.html#toolwidgets

Encounter Digital Implementation System User Guide
Using Trial Route for Congestion and Timing Analysis
outside of a specified bus guide, but must be at least partially within the gcells covered by the
bus guide. If the bus guide area is blocked, or too narrow, nets can go completely outside of
the bus guide area. In this case, the EDI System software issues a warning message. To
display warning messages, set setTrialRouteMode -printWiresOutsideBusguide
parameter to true (or specify trialRoute -printWiresOutsideBusguide).

For more information on creating bus guides, see “Bus Planning” chapter in the Encounter
Digital Implementation System User Guide.

The following limitations exist for the Trial Route bus guide feature:

■ Bus bit ordering is not guaranteed; it depends on the pin ordering and topology
requirements.

■ Bus guides must be complete, and must cover the pins of the net they are to guide.

Additional Information

Wire Overlap

In certain situations, wire overlap can occur when using Trial Route.

A wire can overlap a routing blockage boundary if the blockage only partially covers the gcell.
The covered tracks are counted as blocked tracks that are not available during global routing.
However, Trial Route does not record the exact track location, which can result in wires being
placed on a track which is already occupied by a routing blockage.

When using nondefault rules, wire width and space are considered during the global routing
phase for congestion calculation, before track assignment. Because they are not considered
during track assignment, overlapping nondefault wires can occur. However, because spacing
was considered during congestion calculation, the routing congestion information is correct.
October 2010 710 Product Version 9.1.3

../fetxtcmdref/routeT.html#setTrialRouteMode
../fetxtcmdref/routeT.html#trialRoute

Encounter Digital Implementation System User Guide
21
Using the NanoRoute Router

■ About NanoRoute Routing Technology on page 714

■ Routing Phases on page 714

❑ Global Routing on page 714

❑ Detailed Routing on page 715

■ NanoRoute Router in the EDI System Flow on page 716

■ Before You Begin on page 716

❑ Checking Your LEF Files on page 716

❑ Checking for Problems with Cells, Pins, and Vias on page 717

❑ Generating Tracks on page 718

❑ Specifying Routing Layers on page 718

■ Interrupting Routing on page 720

■ Using the routeDesign Supercommand on page 720

■ Results on page 722

■ Running the NanoRoute Router with EDI System Menu Commands and Forms on
page 723

❑ Running the NanoRoute Router with EDI System Menu Commands and Forms on
page 723

❑ Running the NanoRoute Router with EDI System Text Commands on page 723

❑ Running the NanoRoute Router in Standalone Mode on page 724

■ Using NanoRoute Parameters on page 725

❑ Using Attributes and Options Together on page 726

■ Accelerating Routing with Multi-Threading and Superthreading on page 728
October 2010 711 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
❑ When to Accelerate Routing on page 729

❑ Superthreading Log File Excerpts on page 730

■ Following a Basic Routing Strategy on page 732

❑ Using the EDI SystemText Commands on page 732

❑ Using the EDI System GUI on page 733

■ Checking Congestion on page 736

❑ Using the Congestion Analysis Table on page 736

❑ Using the Congestion Map on page 738

■ Resolving Open Nets on page 741

❑ Log File Examples on page 741

❑ Diagnosing Problems Using verifyTracks on page 742

❑ Resolving Additional Open Net Problems on page 742

■ Running Timing-Driven Routing on page 744

❑ Input Files on page 744

❑ Using the CTE and the NanoRoute Router in Native Mode on page 744

❑ Using the CTE and Standalone NanoRoute on page 745

■ Routing Clocks on page 747

❑ Setting Attributes for Clock Nets on page 747

❑ Routing Clock Nets Using the GUI Forms on page 748

❑ Running Postroute Optimization on page 748

■ Preventing and Repairing Crosstalk Problems on page 749

❑ Crosstalk Prevention Options on page 751

■ Running ECO Routing on page 753

❑ ECO Limitations on page 753

❑ ECO Flow on page 754

■ Evaluating Violations on page 755

❑ Violations on Upper Metal Layers on page 759
October 2010 712 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
❑ Violations in Timing-Driven Routing on page 761

❑ Deleting Violated Nets on page 763

❑ Using Additional Strategies to Repair Violations on page 763

■ Concurrent Routing and Multi-Cut Via Insertion on page 763

■ Postroute Via Optimization on page 764

■ Optimizing Vias in Selected Nets on page 765

■ Via Optimization Options on page 765

■ Performing Shielded Routing on page 767

❑ Shielding Option on page 767

❑ Performing Shielded Routing Using the GUI on page 768

❑ Performing Shielded Routing Using Text Commands on page 769

❑ Interpreting the Shielding Report on page 769

■ Routing Wide Wires on page 770

❑ Using Non-Default Rules on page 771

■ Repairing Process Antenna Violations on page 773

❑ Changing Layers on page 774

❑ Using Diodes on page 774

❑ Process Antenna Options on page 775

❑ Examples on page 775

■ Using a Design Flow that Includes Astro or Apollo on page 777

■ Troubleshooting on page 778
October 2010 713 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
About NanoRoute Routing Technology

The NanoRoute® router performs concurrent signal integrity, timing-driven, and
manufacturing aware routing (SMART routing) of cell, block, or mixed cell and block level
designs. The router is optimized for routing designs with the following features:

■ More than 300K instances or nets and at least five routing layers

■ 180 nanometer or smaller process technology

■ Signal integrity critical

■ Timing critical

■ Detailed-model (full-model) abstracts

Note: The WRoute router is also included in the Encounter Digital Implementation System

(EDI System) software. Your routing results might be better with the WRoute router when the
technology is 180 nm or larger, and you have fewer than five routing layers and 300K
instances. For information on using the WRoute router, see the Ultra Router Reference.

Related Topics

To see where routing is used in the design flow, see Route the Design and Run Postroute
Optimization in the Encounter Digital Implementation System Foundation Flows: Flat
Implementation Flow Guide.

Routing Phases

Full routing consists of global and detailed routing. You can repeat detailed routing
incrementally on a routed database. Incremental detailed routing is not the same as ECO
routing. For information, see Global Routing on page 714 and Detailed Routing on page 715.

ECO routing consists of incremental global and detailed routing passes on a routed design.
During ECO routing, the router completes partial routes and makes minimal changes to
existing wire segments. For information, see Running ECO Routing on page 753.

Global Routing

During this phase, the router breaks the routing portion of the design into rectangles called
global routing cells (gcells) and assigns the signal nets to the gcells. The global router
attempts to find the shortest path through the gcells, but does not make actual connections
or assign nets to specific tracks within the gcells. It tries to avoid assigning more nets to a
October 2010 714 Product Version 9.1.3

../wroute/wrouteTOC.html#firstpage
../flatImpl/flow.html#RoutetheDesignandRunPostrouteOptimization
../flatImpl/flow.html#RoutetheDesignandRunPostrouteOptimization

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
gcell than the tracks can accommodate. The detailed router uses the global routing paths as
a routing plan.

The router can generate a map of the gcells, called a congestion map, that you can examine
to see the approximate number of nets assigned to the gcells. The congestion map uses
colors to indicate whether there are too few, too many, or the correct number of nets assigned
to the gcells. If the router assigns too many nets to a gcell, it marks the gcell as over-
congested. You can also read the Congestion Analysis Table in the EDI System log file to
learn the distribution and severity of the congestion after global routing.

Related Topics

■ For more information on gcells, see “GCell Grid” in the “DEF Syntax” chapter of the LEF/
DEF Language Reference.

■ For more information on the congestion map and table, see “Checking Congestion” on
page 736.

Detailed Routing

During this phase, the NanoRoute router follows the global routing plan and lays down actual
wires that connect the pins to their corresponding nets. The detailed router creates shorts or
spacing violations rather than leave unconnected nets.

You can run detailed routing on the entire design, a specified area of the design, or on
selected nets. In addition, you can run incremental detailed routing on a database that has
already been detail routed.

The router runs search-and-repair routing during detailed routing. During search and repair,
it locates shorts and spacing violations and reroutes the affected areas to eliminate as many
of the violations as possible. The primary goal of detailed routing is to complete all of the
required interconnect without leaving shorts or spacing violations.

During detailed routing, the router divides the chip into areas called switch boxes (SBoxes),
which align with the gcell boundaries. The SBoxes can be expressed in terms of gcells; for
example, a 5x5 SBox is an SBox that encompasses 25 gcells. The SBoxes overlap with each
other and their size and amount of overlap might vary during search-and-repair iterations.

The router also runs postroute optimization as part of detailed routing. During postroute
optimization, it runs more rigorous search and repair steps. Detailed routing stops
automatically if it cannot make further progress on routing the design.

The routed data is saved as part of the EDI System database.
October 2010 715 Product Version 9.1.3

../lefdefref/DEFSyntax.html#GCellGrid

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
NanoRoute Router in the EDI System Flow

The NanoRoute router is part of the block implementation and the top-level implementation
stages of the EDI System flow.

Run the router early in the design flow to identify and fix routability problems or avoid them
altogether. You can run the router in non-timing-driven mode after the default parasitic
extraction step to establish a baseline for future steps. If the design is congested or
unroutable, stop and resolve problems before continuing.

Related Topics

■ “Following a Basic Routing Strategy” on page 732

■ Encounter Digital Implementation System Foundation Flows: Flat
Implementation Flow Guide

Before You Begin

The NanoRoute router reads designs directly from EDI System. Before running the router,
ensure your design meeting the following conditions:

■ It is fully placed and the placement is legal, without any overlaps.

Use the checkPlace command to check for overlaps.

■ (Optional) Run the verifyGeometry command and fix and problems. In general it is
easier to fix geometry problems before routing than after routing.

■ Power is routed.

Use the sroute command to route power structures.

Checking Your LEF Files

You can avoid violations and save time if you ensure your LEF files are optimized for routing.
Check the following statements and edit the files with a text editor if necessary:

■ MINSIZE

The router does not support specifying MINSIZE without specifying AREA. MINSIZE
allows a geometry that is smaller than AREA.

■ UNITS
October 2010 716 Product Version 9.1.3

../flatImpl/flatImplTOC.html#firstpage
../fetxtcmdref/powerrouteT.html#sroute
../fetxtcmdref/verificationT.html#verifyGeometry
../fetxtcmdref/placementT.html#checkPlace

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
The router does not support a value of 100 for DATABASE MICRONS in the UNITS
statement. If the LEF file specifies DATABASE MICRONS 100, issue the following
command before you import the design:

setImportMode -minDBUPerMicron 1000

■ MANUFACTURINGGRID

The router requires that you define the manufacturing grid.

■ MACRO

To improve pin access, ensure that all standard cell macros are defined as CLASS CORE.

You must use real shapes—not block-style abstracts—for the shapes on the layers where
you expect the router to connect to pins of standard cell macros.

■ VIA

The TOPOFSTACKONLY keyword is unnecessary if there are LEF LAYER AREA
statements, because the router automatically derives TOPOFSTACKONLY vias based on
the AREA statements. If a default via satisfies the AREA statement, the router tags it
internally as a TOPOFSTACKONLY via.

If there is no AREA statement for a routing layer, the router looks for TOPOFSTACKONLY
vias that go up to the next metal layer. If TOPOFSTACKONLY vias exist, it derives the AREA
rule from those vias—the smallest area of the bottom layer metal of all such vias
becomes the AREA rule. This feature provides backward compatibility with LEF files that
do not have AREA rule support.

Related Topics

■ “Unsupported LEF and DEF Syntax” in the Encounter Digital Implementation
System User Guide

■ “LEF Syntax” chapter of the LEF/DEF Language Reference.

Checking for Problems with Cells, Pins, and Vias

■ Make sure that all power and ground pins in the SPECIALNETS section of the DEF file
are marked + USE POWER or + USE GROUND.

■ Overlapping cells

Overlapping cells make pins short each other and create violations on metal1. Check for
overlaps by using one of the following commands:
October 2010 717 Product Version 9.1.3

../fetxtcmdref/importT.html#setImportMode
../soceUG/dataprep.html#LEFDEFSyntax
../lefdefref/LEFSyntax.html#firstpage

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
❑ verifyGeometry -wireOverlap

❑ checkPlace

■ Pins underneath power routes

Pins that are underneath power routes are inaccessible and cause violations on metal1
and metal2. Check for pins underneath power routes by using the Auto Query feature.

For more information, see “Auto Query” in the Encounter Digital Implementation
System Menu Reference.

■ Lack of rotated vias

Rotated vias help reduce design rule violations by making pins accessible. The router
does not rotate vias automatically and creates violations on metal1 when it cannot
access the pins.

Define rotated vias in the LEF file. For more information, see the Encounter Digital
Implementation System Library Development Guide.

Generating Tracks

In the EDI System environment, the router generates tracks automatically, based on the
routing pitch, layer width and spacing, and minimum via widths.

If you import a DEF file, run the generateTracks command prior to global routing to correct
faulty track definitions and tune the tracks to routing.

Related Topics

■ For more information, see generateTracks in the Encounter Digital
Implementation System Text Command Reference.

■ For information on importing DEF files, see “Import and Export Commands” in the
Encounter Digital Implementation System Text Command Reference.

Specifying Routing Layers

By default, the router uses all possible routing layers for routing wires. In some situations, you
might want to limit routing to a layer range that does not include all routing layers. For
example, you might want to reserve the top layers for power and ground stripes or perform
ECO routing on a few layers only. You can specify hard limits for routing all nets within a layer
range or you can specify soft limits to route specified nets within a layer range.
October 2010 718 Product Version 9.1.3

../fetxtcmdref/verificationT.html#verifyGeometry
../fetxtcmdref/placementT.html#checkPlace
../encounter/startingG.html#autoquery
../socelibdev/socelibdevTOC.html#firstpage
../fetxtcmdref/importT.html#generateTracks
../fetxtcmdref/importT.html#firstpage

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Specifying Hard Layer Limits

When you specify hard layer limits, the router routes all nets within those limits. If there is a
pin outside the limits you specify, the router uses vias, including stacked vias, to access the
pin.

Use the following setNanoRouteMode parameters to specify hard layer limits:

■ -routeBottomRoutingLayer

■ -routeTopRoutingLayer

At times it might not be possible to route the nets within the limits without creating violations.
For example, assume two pins, pin_a is on metal8 and pin_b is on metal7. The pins
overlap in the X and Y direction. If you specify that the top routing layer is metal6, the router
connects to pin_a by using stacked vias, creating a short with pin_b.

Specifying Soft Layer Limits

When you specify soft layer limits, the router attempts to route specific nets within a layer
range, but might route some nets outside the layer range if necessary to complete routing
without creating violations. In addition, you can specify the effort level for staying within the
range. You can also route specific nets within the layer range and others outside the layer
range. For example, you can route critical nets within a narrower layer range than you route
the rest of the nets in order to improve timing.

Use the following setAttribute parameters to specify soft layer limits and set the effort
level toward honoring the limits:

■ -bottom_preferred_routing_layer

■ -top_preferred_routing_layer

■ -preferred_routing_layer_effort

You can also use the PREFERLAYERRANGE property in the DEF file for the design to set soft
layer limits for specific nets. For example, if you want the router to route net_a on metal
layers 4, 5, and 6, add the following property to the net definition:

+ PROPERTY PREFERLAYERRANGE "4:6" ;

In the example above, 4 is the preferred bottom layer. It corresponds to using the following
command:

setAttribute -net net_a -bottom_preferred_routing_layer 4
October 2010 719 Product Version 9.1.3

../fetxtcmdref/routeT.html#setNanoRouteMode
../fetxtcmdref/routeT.html#setAttribute

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Interrupting Routing

To interrupt routing, press Ctrl–C. The routeDesign or globalDetailRoute command
continues to run until the database is in a state where the command can stop safely.

When the software stops, it prompts you to confirm that you want to interrupt the command.

➤ To confirm, type Y.

The software returns you to the EDI System prompt and the command does not continue
to run.

Caution

When you interrupt routing with Ctrl-C, the database will be in a state that
is useful for debugging purposes only, and not one that you should save
and continue to use in the design flow.

➤ To continue running the command, type N.

Using the routeDesign Supercommand

The recommended Cadence design flows use the routeDesign command to run global and
detailed routing and to optimize vias and wirelength after routing.

routeDesign honors the setNanoRouteMode and setAttribute settings and has the
following advantages over using the globalRoute and detailRoute or
globalDetailRoute commands:

■ It runs SMART routing by default; that is, it runs in both timing- and signal integrity-driven
mode by default.

The other routing commands are not timing- or signal-integrity driven by default, but you
can use the following setNanoRouteMode parameters to turn on timing- and signal-
integrity-driven routing for those commands:

❑ -routeWithTimingDriven true

❑ -routeWithSiDriven true

■ It changes the status of clock nets from FIXED to ROUTED so it can modify them during
routing and routes them before routing other nets.

❑ To keep clock nets’ status FIXED, run the following command before running
routeDesign:
October 2010 720 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
setNanoRouteMode -routeDesignFixClockNets true

❑ To stop the router from routing clock nets first, run the following command before
running routeDesign:

setNanoRouteMode -routeDesignRouteClockNetsFirst false

■ It runs a placement check prior to routing to ensure that the placement is clean.

To turn off the placement check, specify the following routeDesign parameter:

-noPlacementCheck

■ It checks for conflicts in setNanoRouteMode settings and issues warning messages
when it detects problems. In some cases, it resets a mode in order to continue
processing. For example, trying to fix postroute lithography problems and optimize vias
concurrently can cause conflicts. If routeDesign detects requests for both types of
operation, it issues a warning, turns off via optimization, and proceeds with fixing
lithography problems.

■ It has parameters that simplify via and wire optimization after routing. In addition, some
setNanoRouteMode parameters work with routeDesign, but not with other routing
commands.

❑ The routeDesign parameters for via and wire optimization are -viaOpt and
-wireOpt.

❑ The setNanoRouteMode parameters that work only with routeDesign are
-routeDesignFixClockNets and -routeDesignRouteClockNetsFirst.

Related Topics

■ To see this step in the design flow, see Route the Design and Run Postroute Optimization
in the Encounter Digital Implementation System Foundation Flows: Flat
Implementation Flow Guide.

■ For more information, see the following commands in the “Route Commands” chapter of
the Encounter Digital Implementation System Text Command Reference:

❑ detailRoute

❑ globalDetailRoute

❑ globalRoute

❑ routeDesign

❑ setAttribute

❑ setNanoRouteMode
October 2010 721 Product Version 9.1.3

../flatImpl/flow.html#RoutetheDesignandRunPostrouteOptimization
../fetxtcmdref/routeT.html#firstpage
../fetxtcmdref/routeT.html#detailRoute
../fetxtcmdref/routeT.html#globalDetailRoute
../fetxtcmdref/routeT.html#globalRoute
../fetxtcmdref/routeT.html#routeDesign
../fetxtcmdref/routeT.html#setAttribute
../fetxtcmdref/routeT.html#setNanoRouteMode

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Results

The NanoRoute router outputs can include the following (depending on the run-time options
you set):

■ Section in the Encounter log file

■ Routed DEF file

■ GDSII file

■ SDF or SPEF file

For information on outputting GDSII and DEF files, see “Importing and Exporting
Designs” on page 133.

For information on outputting an SDF or SPEF file, see “Timing Analysis” on page 985.

■ The following reports:

❑ Routing statistics

For information, see the reportRoute command in “Route Commands” in the
Encounter Digital Implementation System Text Command Reference.

❑ Routing connectivity

For information, see the checkRoute command in “Route Commands” in the
Encounter Digital Implementation System Text Command Reference.

❑ Wire statistics, including wirelength

For information, see the reportWire command in “Route Commands” in the
Encounter Digital Implementation System Text Command Reference.

❑ Shielding statistics

For information, see “Interpreting the Shielding Report” on page 769.

❑ Timing analysis

For information, see “Timing Analysis” on page 985.

❑ Capacitance

For information, see “RC Extraction” on page 947.

❑ Design rule checking (DRC) and layout versus schematic (LVS)
October 2010 722 Product Version 9.1.3

../fetxtcmdref/routeT.html#firstpage
../fetxtcmdref/routeT.html#firstpage
../fetxtcmdref/routeT.html#firstpage

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
❑ Process antenna violations

For information on DRC, LVS, and process antenna reports, see “Verifying
Violations” on page 1233.

❑ Signal integrity

For information on signal integrity reports, see “Analyzing and Repairing Crosstalk”
on page 1185.

Use Models

Running the NanoRoute Router with EDI System Menu Commands and
Forms

Use the following forms to route the design.

■ Mode Setup – NanoRoute

Use this form to specify the run-time options and the global parameters for the
NanoRoute router.

■ NanoRoute/Attributes

Use this form to specify attributes for nets.

■ NanoRoute

Use this form to set routing options.

■ Set Congestion Map Style – NanoRoute

Use this form to customize the congestion map.

Running the NanoRoute Router with EDI System Text Commands

Use the following commands to set NanoRoute attributes and options, generate tracks, LEF
files, and vias that are optimized for the router, route the design, and optimize vias and
wirelength after routing. The text commands include some NanoRoute options that are not
included on the forms.

■ generateTracks

Generates optimized tracks for the router (only necessary if you import a non-native
DEF) file.
October 2010 723 Product Version 9.1.3

../encounter/routeG.html#NanoRouteAttributes
../encounter/routeG.html#NanoRoute
../encounter/routeG.html#NRSetCongestionMapStyle
../encounter/optionsG.html#ModeSetupNanoRoute
../fetxtcmdref/importT.html#generateTracks

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
■ generateLef

Generates an optimized LEF file (only necessary if you import a non-native or non-
current LEF file).

■ generateVias

Generates vias that are optimized for the router (useful if you import an incomplete or
non-current LEF file).

■ getAttribute
setAttribute

Display and set net attributes.

■ getNanoRouteMode
setNanoRouteMode

Display and set run-time options for the router.

■ globalRoute
detailRoute
ecoRoute
globalDetailRoute
routeDesign

Route the design.

The recommended design flows use routeDesign. For more information, see Using
the routeDesign Supercommand on page 720.

Running the NanoRoute Router in Standalone Mode

The commands and options for running the NanoRoute router in standalone mode are not
described in this document. The standalone NanoRoute router has its own GUI and
command syntax. The commands, options, and attributes used by the standalone router are
described in the NanoRoute Technology Reference.

Related Topics

■ NanoRoute Technology Reference.
October 2010 724 Product Version 9.1.3

../fetxtcmdref/routeT.html#globalRoute
../nanorouteref/nanorouterefTOC.html#firstpage
../fetxtcmdref/importT.html#generateLef
../fetxtcmdref/importT.html#generateVias
../fetxtcmdref/routeT.html#getAttribute
../fetxtcmdref/routeT.html#setAttribute
../fetxtcmdref/routeT.html#getNanoRouteMode
../fetxtcmdref/routeT.html#setNanoRouteMode
../fetxtcmdref/routeT.html#detailRoute
../fetxtcmdref/interactive_ecoT.html#ecoRoute
../fetxtcmdref/routeT.html#globalDetailRoute
../fetxtcmdref/routeT.html#routeDesign

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Using NanoRoute Parameters

The NanoRoute router has two kinds of parameters: attributes and options.

■ Attributes assign characteristics to nets.

For example, use attributes to specify nets that have the following attributes: they are
routed first (or last), they are routed on certain layers, they are protected by extra
spacing, they are shielded (or act as shields), and signal integrity violations that affect
them are repaired after routing.

■ Options determine run-time operations.

For example, use options to perform the following run-time operations: run global or
detailed routing, route selected nets only, repair antenna or design-rule violations, run
timing driven or signal integrity driven routing, and specify the number of processors to
use.

The following table lists attribute and option characteristics:

Characteristic Attributes Options

Application Apply locally to a net object Apply globally to a process or
command

Specification ■ NanoRoute/Attributes form

■ setAttribute command

■ Some attributes can only be
specified by setAttribute.

■ NanoRoute form

■ setNanoRouteMode
command

■ Some options can only be
specified by
setNanoRouteMode.

Persistence Saved with the database.
When you set an attribute and
save the database and exit, the
attribute setting is saved. If you
reload the database, the object
retains the attribute setting.

Saved with the database.
When you set an option, save the
database and exit, the option
setting is saved. If you reload the
database, the router retains the
option value.
October 2010 725 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Using Attributes and Options Together

You can use attributes and options together. For example, to run global and detailed routing
and repair signal integrity violations on a specified net during postroute optimization, set the
-si_post_route_fix attribute for the net and route the design with the
-routeWithSiPostRouteFix option set to true.

Using text commands, issue the following commands:

setAttribute -net net1 -si_post_route_fix true
setNanoRouteMode -routeWithSiPostRouteFix true
globalDetailRoute

Format -attribute_name

■ Example:
-avoid_detour

■ Case sensitive (all lower case)

■ Mandatory underscores
separate words

■ Native and standalone
NanoRoute formats are the
same

 -optionName

■ Example:
-drouteAutoStop

■ Case sensitive (mixed case).
Each word starts with an
uppercase letter

■ No underscores.

■ Native and standalone
NanoRoute formats are
different (standalone options
are all lowercase; words are
separated by underscores;
options do not start with a
leading hyphen

See settings for
this run …

Use the getAttribute
command

Use the getNanoRouteMode
command

More information
available at …

 setAttribute in the
Encounter Digital
Implementation System Text
Command Reference

setNanoRouteMode in the
Encounter Digital
Implementation System Text
Command Reference

Characteristic Attributes Options
October 2010 726 Product Version 9.1.3

../fetxtcmdref/routeT.html#getAttribute
../fetxtcmdref/routeT.html#getNanoRouteMode
../fetxtcmdref/routeT.html#setAttribute
../fetxtcmdref/routeT.html#setNanoRouteMode

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Using the GUI, make the following selections:

■ On NanoRoute/Attributes form,

a. Type the name of the net in the NetName(s) text box.

b. Select SI Post Route Fix True.

■ On the NanoRoute form,

a. Select both Global Route and Detail Route.

b. Select Post Route SI.
October 2010 727 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Accelerating Routing with Multi-Threading and
Superthreading

EDI System products accelerate routing by using more than one processor in the same
machine and by distributing routing to multiple machines.

Both signal routers, the NanoRoute router and the WRoute router, can use more than one
processor in the same machine. This is called multi-threading. For more information, see
“Running Multi-Threading” in Accelerating the Design Process By Using Multiple-CPU
Processing.

The NanoRoute detail router accelerates routing even more by distributing detailed routing
across the network to multiple machines. This capability combines multi-threading with
distributed processing, and is called Superthreading. When used with a gigabit Ethernet
connection, Superthreading makes data communication time negligible.

Superthreading has the following features:

■ Uses available EDI System licenses. No special licenses are necessary.

■ Platform independent.

❑ Different operating systems—including Solaris, Linux, and HP-UX—can be used in
the same job.

❑ Different hardware—including Sun, IBM, and HP—can be used in the same job.

❑ 64-bit and 32-bit versions of the NanoRoute router can be used in the same job. For
example, you can start a large job on a 64-bit server and run the job on smaller 32-
bit clients.

■ Can run using the rsh command, and with LSF, Sun Grid, or SSH configurations.

❑ The RSH and SSH method tie multi-threaded jobs together.

❑ The LSF and Sun Grid methods tie single jobs together.

Related Topics

■ Accelerating the Design Process by Using Multiple CPU Processing chapter in the
Encounter Digital Implementation System User Guide

■ Multiple-CPU Commands chapter in the Encounter Digital Implementation System
Text Command Reference
October 2010 728 Product Version 9.1.3

../soceUG/multicpu.html#firstpage
../fetxtcmdref/multicpuT.html#firstpage

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
■ “Multiple CPU Processing” form in the Options Menu chapter of the Encounter Digital
Implementation System Menu Reference

When to Accelerate Routing

Not all designs or network topologies can take advantage of accelerated routing. Consider
the following issues, and use single threading, multi-threading, or Superthreading when
appropriate:

■ Small (10k), simple designs or designs that do not have a lot of violations

Small jobs or designs that are easily routed probably do not need multiple CPUs or
machines.

■ Slow networks

The speed (10 Mb, 100 Mb, or 1,000 Mb) and type (LAN or WAN) of the network affect
Superthreading speed.

■ Loaded networks

Sharing CPU cycles with other processes increases Superthreading run time.

■ Full or pending LSF queues or queues configured for one job

A queue that is set up to run only one job decreases efficiency.

Usage Notes

■ If you use the rsh command for Superthreading, you must be able to run the remote
shell from the server machine to the client machines without a password prompt.

■ The NanoRoute software must be accessible to the server and client machines.

■ Client machines must be able to access the same version of the NanoRoute software.

■ If you run the router in native mode, it will be the server program and the standalone
router will be the client program.

■ Start your routing job on the fastest multi-threaded machine available.

■ Include the host machine as a client, otherwise it will be a server only and will not perform
any routing jobs.

■ If any CPUs crash, your job will not complete.
October 2010 729 Product Version 9.1.3

../encounter/optionsG.html#MultipleCPUProcessing

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
If there is a crash, most likely it will happen during the client routing stage, and the server
will continue to run. The database on the server will be maintained in the state it had prior
to the crash.

Check the messages in the log file to determine the problem and zoom into the area of
the crash to see a graphical representation of the cause of the failure. After you fix the
problem, you can continue routing from the crash point.

■ If your job includes both Sun and Linux clients, include a different path to each executable
in the command script or configuration file.

■ You can run a job that uses both a Sun queue and a Linux queue.

Superthreading Log File Excerpts

The following excerpts from a log file show progress during Superthreading. The software
uses the following definitions to calculate the time:

■ client CPU time is the CPU time on clients only.

■ cpu time is the server CPU time plus the client CPU time

■ elapsed time is the complete run time (the total elapsed time).

The first file fragment shows that the job is running with RSH, with two threads on the same
host. The NanoRoute router pauses as the data on the server is synchronized.

#server my_machine is up on port 123456 waiting for connection
client 2thread 1 from host machine_1
client 2thread 2 from host host_machine_1
Sync client 2 data ...
cpu time = 00:00:03, elapsed time = 00:04:18, memory = 561.87 (Mb)

The second fragment shows that only 86 percent of the client CPU time is being used.
Another process (in addition to the route job) is using CPU resources.

client 3thread 1 from host machine_2
client 3thread 2 from host machine_2
Sync client 3 data ...
cpu time = 00:00:03, elapsed time = 00:04:31, memory = 561.87 (Mb)

#Start Detail Routing.
#Start initial detail routing ...
completing 10% with 0 violations
...
completing 90% with 14 violations
elapsed time = 00:12:29, memory = 606.02 (Mb)
completing 100% with 10 violations
elapsed time = 00:12:53, memory = 567.24 (Mb)
number of violations = 0
client cpu time = 00:03:12, memory 562.70 (Mb), util = 86%
October 2010 730 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
#cpu time = 00:01:21, elapsed time = 00:123:54, memory = 566.24 (Mb)
. ...

The third fragment shows that the job took less elapsed time than cpu time. The
elapsed time is less than the cpu time because two clients are being used to route one
job.

#Total number of violations on LAYER M8 = 4
#Total number of violations on LAYER M9 = 1
#Total number of violations on LAYER M10 = 0
#Client cpu time = 17:38:54
#Client peak memory = 795.22 (Mb)
#Cpu time = 19:18:40
#Elapsed time = 10:15:51

The final fragment shows the time the job completed.

#Increased memory = 92.98 (Mb)
#Total memory = 628.17 (Mb)
#Peak memory = 1019.30 (Mb)
#Complete global_detail_route on Fri Apr 16 10:14:33 2004
October 2010 731 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Following a Basic Routing Strategy

In general, the first time you route a design, you should be able to accept the default values
on the NanoRoute form. You can look at the EDI System log file to see the processes that the
NanoRoute router runs and the problems it encounters. Then you can adjust the net attributes
or run-time options to improve your results.

The strategy presented in this section shows how you can break the routing processes into
steps, so you can analyze and solve problems easily. After each step, check for data problems
and congestion and make repairs. Repeat the step and repair remaining violations. Continue
this process until the design is free of violations before going to the next step.

Using the EDI SystemText Commands

The following commands show the basic routing strategy using the EDI System text
commands.

1. The router globally routes the design:

globalRoute

2. The router does the initial detailed routing (iteration 0 does not include a search-and-
repair step), and saves the design as droute0:

setNanoRouteMode -drouteStartIteration 0
setNanoRouteMode -drouteEndIteration 0
detailRoute
saveDesign droute0

3. The router does the first search-and-repair iteration and saves the design for analysis:

setNanoRouteMode -drouteStartIteration 1
setNanoRouteMode -drouteEndIteration 1
detailRoute
saveDesign droute1

4. The router does the second to nineteenth search-and-repair iterations and saves the
design for analysis. The switch box grows larger as the iteration number increases.

setNanoRouteMode -drouteStartIteration 2
setNanoRouteMode -drouteEndIteration 19
detailRoute
saveDesign droute19

5. The router runs postroute optimization (drouteEndIteration default) and
additional search-and-repair operations and saves the design as droute:

setNanoRouteMode -drouteStartIteration 20
setNanoRouteMode -drouteEndIteration default
detailRoute
saveDesign droute
October 2010 732 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Using the EDI System GUI

The following section describes the basic routing strategy using the GUI.

Run Global Routing

1. Choose Route – NanoRoute – Route.

2. Select Global Route on the NanoRoute form.

3. Click OK.

4. Save as groute.

5. Check the congestion map.

If you see congested areas after global routing, your design is unroutable.

Run Initial Detailed Routing

1. Choose Route – NanoRoute – Route.

2. Set the following options on the NanoRoute form:

❑ Detail Route

❑ Start Iteration 0

❑ End Iteration 0

The router builds the initial detailed routing database, but does not do any search and
repair during this step.

3. Click OK.

4. Save the design as droute0.

5. Check the violations in the log file.

If you have many violations on metal1 and metal2, you probably have pin-access
problems, incorrect track settings, or overlapped cells. Check your LEF file and correct
any problems.

See “Evaluating Violations” on page 755 for an excerpt of a log file from a design with
many violations on metal1 and metal2.

For information on the LEF file, see the LEF/DEF Language Reference or the
Encounter Digital Implementation System Library Development Guide.
October 2010 733 Product Version 9.1.3

../lefdefref/lefdefrefTOC.html#firstpage
../socelibdev/socelibdevTOC.html#firstpage

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Run Search and Repair

Break search and repair into two phases. Check congestion after each phase and repair
violations.

To run the first phase of search and repair, complete the following steps:

1. Choose Route – NanoRoute – Route.

2. Set the following options on the NanoRoute form:

❑ Detail Route

❑ Start Iteration 1

❑ End Iteration 1

During this phase, the router makes local changes to the database. It does not do
detailed or global routing.

3. Click OK.

4. Save the design as droute1.

5. Check the violations in the log file and graphically.

To run the second search-and-repair phase, complete the following steps:

1. Choose Route – NanoRoute – Route.

2. Set the following options on the NanoRoute form:

❑ Detail Route

❑ Start Iteration 2

❑ End Iteration 19

In this phase, the router makes additional search-and-repair passes. It reroutes nets with
violations within a local area (a switch box). In each successive pass, the size of the
switch box size increases, so the router can make the repairs over larger areas.

3. Click OK.

4. Save the design as droute19.

5. Check congestion.

If you still have many violations (more than 1,000) or an unbalanced distribution of
violations, you might still have a problem with the data or a congested design.
October 2010 734 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
For help resolving the violations, see “Evaluating Violations” on page 755.

Run Postroute Optimization

Ensure your data and library are violation-free before you run postroute optimization, or the
router might spend a lot of time trying to repair violations that it cannot repair. Postroute
optimization takes longer than any of the other steps because the router does more rigorous
search and repair during postroute optimization than previous steps.

To run postroute optimization, complete the following steps:

1. Choose Route – NanoRoute – Route.

2. Set the following options on the NanoRoute form:

❑ Detail Route

❑ Start Iteration 20

❑ End Iteration default

Note: In general, do not set Start Iteration or End Iteration higher than 20 because it
does not increase the quality of results.

3. Click OK.

4. Save the design as droute.

During postroute optimization, the router runs both global and detailed routing and
makes global changes to repair violations.
October 2010 735 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Checking Congestion

Check congestion in your design after global routing by using the Congestion Analysis Table
in the EDI System log file and the congestion map in the EDI System main window.

Related Topics

To see where this step fits in the design flow, see Place the Design and Run Pre-CTS
Optimization in the Encounter Digital Implementation System Foundation Flows: Flat
Implementation Flow Guide.

Using the Congestion Analysis Table

The congestion analysis table shows the distribution and severity of congestion in global
routing cells (gcells) on each routing layer.

Note: For information on global routing and on gcells, see “Global Routing” on page 714.

Following is an example of a Congestion Analysis table:

Congestion Analysis:
OverCon OverCon OverCon OverCon
#Gcell #Gcell #Gcell #Gcell %Gcell

Layer (1-2) (3-4) (5-6) (7-12) OverCon

Metal 1 22(0.01%) 10(0.00%) 0(0.00%) 0(0.00%) (0.01%)
Metal 2 5531(2.39%) 1680(0.73%) 370(0.16%) 123(0.05%) (3.33%)
Metal 3 4114(1.78%) 19(0.01%) 0(0.00%) 0(0.00%) (1.79%)
Metal 4 1333(0.58%) 137(0.06%) 0(0.00%) 0(0.00%) (0.64%)
Metal 5 5852(2.53%) 4(0.00%) 0(0.00%) 0(0.00%) (2.53%)
Metal 6 27(0.01%) 0(0.00%) 0(0.00%) 0(0.00%) (0.01%)

Total 16879(1.22%) 1850(0.13%) 370(0.03%) 123(0.01%) (1.39%)

■ The first column, Layer, lists the metal layers that have over-congested gcells. The
NanoRoute router marks a gcells as over-congested if the global router has assigned
more nets to the gcell than the gcell has available tracks.

■ The second through fifth columns, labelled OverCon #Gcell, list the number and
percentage of gcells on each layer that are over-congested.

■ The numbers in parentheses after OverCon #Gcell indicate how many additional
tracks within the gcell are needed to accommodate the global routing assignments. For
example, OverCon #Gcell (1-2) means that one or two additional tracks are needed
to accommodate all the nets that the global router has assigned the gcells listed in the
column. As you move from left to right in the table, congestion increases because the
October 2010 736 Product Version 9.1.3

../flatImpl/flow.html#PlacetheDesignandRunPre-CTSOptimization
../flatImpl/flow.html#PlacetheDesignandRunPre-CTSOptimization

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
difference between the number of nets assigned to the gcell by the global router and
number of available tracks within the gcell increases.

■ The number of columns in the table is determined by the number of additional tracks
needed by the gcells with the worst congestion. For example, if the most over-congested
gcells need only four additional tracks, the table would include columns for 1-2 and 3-4
tracks, but not for 5-6 or more tracks.

■ The NanoRoute router creates only one column for gcells that need seven or more
additional tracks. In the example, all gcells that need seven to 12 additional tracks are
listed in the column labelled OverCon #Gcell (7-12).

■ The NanoRoute router displays the maximum number of tracks needed in the last
OverCon #Gcell column. In the example, the maximum number of tracks needed is
12. If some gcells needed 14 more tracks, the column would be labelled OverCon
#Gcell (7-14). If the maximum number of tracks needed were only eight, the column
would be labelled OverCon #Gcell (7-8).

Within each column, the table does not indicate exactly how many additional tracks are
needed. For example, in the column labelled OverCon #Gcell (7-12), The
NanoRoute router does not distinguish between gcells that need seven, eight, nine, ten,
11, or 12 additional tracks.

■ The last column, %Gcell OverCon, lists the percentage of all gcells on the layer that
are over-congested. In the example, on layer Metal 1, only 0.01% of the gcells are over-
congested.

■ The last row of the table, Total, lists the total number and percentage of over-congested
gcells in each column. In the example, 1,850 gcells in the design, or 0.13% of all gcells,
need three or four more tracks.

■ The last row of the last column displays the overall percentage of over-congested gcells
in the design. In the example, 1.39% of all cells are over-congested.

Interpreting the Table

■ Read the table horizontally to see the distribution and percentage of gcells on each layer
that have a greater demand for tracks than they have supply of tracks.

■ Read the table vertically to see which layers have the most over-congested gcells and
how severe the congestion is.

■ The table does not show how closely the over-congested gcells are clustered. Look at
the congestion map in the GUI to see clusters of congestion and their exact location.
October 2010 737 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
■ There is no “magic number” that determines whether the design is routable. In general,
the more columns, and the more the percentages increase toward the right side of the
table, the worse the congestion.

Using the Congestion Map

Check obstructions and congestion in your design graphically by analyzing a congestion map.
The information in the map is directly extracted from the router after you run global routing.
You choose the layers to display on the map. The Encounter software displays the congestion
map in the main window when you complete the following steps:

1. Globally route the design.

2. Select Physical view in the Views area of the Encounter main window.

3. Click the All Colors button. This displays Color Preferences form.

4. Select the View Only tab.

5. Make Congestion viewable.

6. Select both Horizontal Congest and Vertical Congest.

7. Click Apply.

For more information on selecting the objects and colors, see “The Main Window” in the
Encounter Digital Implementation System Menu Reference.

Interpreting the Congestion Map

In the map, blue or black indicate an acceptable level of congestion; white indicates an
unacceptable level. However, this depends on your design. For example, a design that is
mostly uncongested might have small areas (often called hot spots) that are highly
congested. You must look at the overall congestion graphically to assess routability.

The following table explains the meaning of the default colors in the congestion map:

Color Explanation

Black No congestion: You have at least two tracks that are under-used.

Blue No congestion: You probably have one track that is under-used.

Green No congestion: All the tracks are used.
October 2010 738 Product Version 9.1.3

../encounter/startingG.html#firstpage

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
In the congestion map shown below, there is a congested area (a hot spot) in the lower left
quadrant.

Yellow Low congestion: You probably have one track that is over-used.

Red Some congestion: You probably have two tracks that are over-used.

Magenta Moderate congestion: You probably have three tracks that are over-
used.

White High congestion: You probably have at least four tracks that are over-
used.

Color Explanation

Red and yellow mean
congestion

Green means no congestion
and all tracks are used

Blue means no congestion
and one under-used track

Black means no congestion
and several under-used
tracks
October 2010 739 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
In the congestion map shown below, the design is not congested.
October 2010 740 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Resolving Open Nets

If the router cannot complete the connection of a net during routing, it generates an open net
warning message in the EDI System log file and sets the net status to open. Additionally, the
log file provides a list of open nets in summary format.

■ During detailed routing, problems with pin modelling, routing track definitions,
floorplanning, or conflicts between setNanoRouteMode option settings can cause open
nets.

■ During global routing, missing power or ground routing can cause open nets.

To resolve open net problems, complete the following steps:

1. Run verifyTracks to diagnose a subset of open net problems in standard cells. This
command generates a report in the EDI System log file. Use the report to determine the
specific cause of the open net. For more information, see “Diagnosing Problems Using
verifyTracks” on page 742.

2. Determine the cause of the remaining problems—mostly those caused by option
conflicts or libraries—by manual analysis. For more information, see “Resolving
Additional Open Net Problems” on page 742.

3. Resolve the problems.

4. Re-run global and detailed routing.

Log File Examples

The following examples show sections of an EDI System log file that includes five open net
warning messages generated during detailed routing:

#Start Detail Routing.
#start initial detail routing ...
#WARNING (NR) Fail to route NET example56/cp_aclk_2 in region (302.295 272.894
331.695 306.495) Set net status to open.
#WARNING (NR) Fail to route NET example56/cp_aclk_3 in region (302.295 272.894
331.695 306.495) Set net status to open.
...

#start 1st optimization iteration ...
#WARNING (NR) Fail to route NET example12/cp_bclk_5 in region (402.295 372.894
431.695 406.495) Set net status to open.
#WARNING (NR) Fail to route NET example12/cp_bclk_6 in region (402.295 372.894
431.695 406.495) Set net status to open.
...
#start 2nd optimization iteration ...
#WARNING (NR) Fail to route NET example99/cp_cclk_8 in region (502.295 472.894
531.695 506.495) Set net status to open.
...
October 2010 741 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
The following section of the same log file includes the open net summary:

number of violations = 0
#cpu time = 00:00:01, elapsed time = 00:00:01, memory = 51.15 (Mb)
#Complete Detail Routing.
#WARNING (NR) There are 5 open nets.
#Please refer to Encounter Digital Implementation System User Guide for details of
open net messages and possible root causes.
#After resolving it, please re-run globalDetailRoute command.
#List of open nets :
example56/cp_aclk_2
example56/cp_aclk_3
example12/cp_bclk_5
example12/cp_bclk_6
example99/cp_cclk_8
#
#Total wire length = 340827 um.
#Total half perimeter of net bounding box = 298122 um.

Diagnosing Problems Using verifyTracks

The verifyTracks command reports the following types of problems in the EDI System log
file:

■ Pins that are too far inside a blockage

For more information, see Macro Obstruction Statement syntax and the accompanying
figures in the “LEF Syntax” chapter of the LEF/DEF Language Reference.

■ Pins that are not aligned with routing tracks

Align pins with routing tracks to assure the maximum number of pickup points. For more
information, see the “NanoRoute Ultra Guidelines” chapter in the Encounter Digital
Implementation System Library Development Guide.

■ Pins that are above or underneath power stripes on the adjacent metal layer

The router might not able to access a pin if it is blocked by a power stripe.

For more information, see verifyTracks in the Encounter Digital Implementation
System Text Command Reference.

Resolving Additional Open Net Problems

If the router generates an open net message after you correct the problems reported by
verifyTracks, or if verifyTracks does not report any problems, check for the following
additional problems:

■ Pin modelling or library problems
October 2010 742 Product Version 9.1.3

../lefdefref/LEFSyntax.html#MacroObstructionStatement
../socelibdev/nanoroute.html#firstpage
../fetxtcmdref/routeT.html#verifyTracks

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
❑ Pins without physical geometry

❑ Pins that are less than the minimum width

❑ Minimum-width pins that are placed off the manufacturing grid

❑ Pins that are blocked for planar access, and are not accessible through a via without
violating the adjacent-cut rule

❑ Pins that trigger multiple-cut vias, but no multiple-cut vias are specified in the LEF
file

■ Floorplanning problems

❑ Cell overlaps introduced during placement

Use the checkPlace command to check for cell overlaps. For information, see
checkPlace in the Encounter Digital Implementation System Text Command
Reference.

■ Problems caused by setNanoRouteMode option settings or conflicts between option
settings and library specifications

❑ No via access in pin but -routeWithViaOnlyForStandardCellPin true is
specified

❑ No via access in pin but -routeBottomRoutingLayer is too high or
-routeTopRoutingLayer is too low for the router to connect without using a via

❑ Via stacking is not allowed but -routeBottomRoutingLayer is higher than the
pin layer (or -routeTopRoutingLayer is lower than the pin layer) so via stacking
is required to reach the pin

■ Problems caused by missing power or ground routing

❑ Missing special routes for stripes or followpins to connect tie-high or tie-low nets
causes open power or ground nets during global routing.

The global router issues open net warning messages such as the following:

#WARNING (NR) There is no prerouted stripe wire within routing layer range
1:9 for special net VSS.
#WARNING (NR) Please reroute special net wires before running NR.
October 2010 743 Product Version 9.1.3

../fetxtcmdref/placementT.html#checkPlace

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Running Timing-Driven Routing

In the Encounter environment, during timing-driven routing, the router uses the Common
Timing Engine (CTE) by default. All the related tasks (route estimation for the timing graph,
capacitance extraction, timing analysis, timing graph generation) are executed within the EDI
System environment.

Timing-driven routing might cause longer run time and more violations than nontiming-driven
routing. For information, see “Violations in Timing-Driven Routing” on page 761.

Input Files

To run timing-driven routing you need the following files:

■ Physical libraries in LEF

■ Timing library in .lib format

■ Timing constraints in .sdc format or a timing graph

For information on the timing constraints that are compatible with the EDI System CTE,
see “Data Preparation” on page 103.

■ Extended capacitance table generated by the EDI System software

■ Netlist in DEF or Verilog format

■ Placed design in DEF

Using the CTE and the NanoRoute Router in Native Mode

Figure 21-1 on page 745 shows the design flow for routing with NanoRoute in native mode
using the CTE. In native mode, the router uses the CTE as its default timing engine.

In native mode, the following commands use the CTE:

setNanoRouteMode -routeWithTimingDriven true
globalDetailRoute
October 2010 744 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Figure 21-1

Using the CTE and Standalone NanoRoute

Figure 21-2 on page 746 shows the design flow for standalone NanoRoute using the CTE.
The standalone NanoRoute router is loosely integrated with the CTE.

In standalone mode, the following commands use the CTE:

pdi set_option timing_engine external_timing_graph
pdi set_option route_with_timing_driven true
pdi global_detail_route

The flow is shown in three main steps:

1. Generating a timing graph

To generate a timing graph, load your design into the EDI System software and use the
EDI System writeDesignTiming command.

writeDesignTiming design.tif

2. Routing

When you route the design, type the following commands:

Verilog, .lib, .sdc, .lef, .def
and capacitance table files

Routed database

Extract RC, run
static timing analysis with CTE

Run timing-driven routing

Create floorplan, place design,
run CTS, run IPO

Native NanoRoute-CTE timing-driven routing flow
October 2010 745 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
pdi set_option timingEngine design.tif

3. Extracting capacitance and analyzing timing

Figure 21-2

Verilog, .lib, .sdc, .lef, .def,
and capacitance table files

Routed .def file

Extract RC, run
static timing analysis with CTE

Run NanoRoute timing-driven
routing with external timing graph

Timing graph

Run Trial Route, extract RC, run
static timing analysis with CTE

Create floorplan, place design,
run CTS, run IPO

Timing graph, .lib, .lef, .def
and capacitance table files

Routed .def, .lef, .lib, sdc,
capacitance table files

Standalone NanoRoute-CTE timing-driven routing flow
October 2010 746 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Routing Clocks

Route clock nets before routing the rest of the signal nets. If you are using the routeDesign
supercommand, the NanoRoute router changes the status of clock nets from FIXED to
ROUTED so they can be moved and routes them before routing other nets.

This section gives additional information on you can use to route clocks manually.

Layer assignments for clock nets might not correlate in global and detailed routing. For tight
control over clock timing, run global and detailed routing on clock nets before routing other
nets. Fix the locations of the nets during detailed routing and unfix them during postroute
optimization. Use net weights to ensure priority during search and repair.

Setting Attributes for Clock Nets

If clock nets are marked USE CLOCK in the DEF file or you have defined a clock net in the
Encounter database, the router automatically sets the following values. You can change the
values by setting attributes on the NanoRoute Attributes form. If the clock nets are not
defined, type the name of a clock net in the Net Name(s) text box to set attributes for the net.

■ Weight

The default net weight for clock nets is 10 to give clock nets priority during global routing
(the default net weight for other nets is 2). During global routing, the router goes from
global routing cell to global routing cell within each switch box, and routes the nets with
the highest weight first.

■ Bottom Layer

The default bottom layer for routing clock nets is 3, to ensure that the router has access
to metal1 pins during routing. This attribute sets a soft limit, and the router might route
some nets on lower layers, if necessary to complete the routing.

■ Top Layer

The default top layer for routing clock nets is 4. This attribute sets a soft limit, and the
router might route some nets on lower layers, if necessary to complete the routing.

■ Avoid Detour

Avoid Detour is True for clock nets, so they are routed as straight as possible.
October 2010 747 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Set the following attribute in the EDI System console, using the setAttribute command

■ -preferred_extra_space 1

-preferred_extra_space adds spacing around the clock nets, which improves
coupling capacitance. It is not included on the NanoRoute/Attributes form.

For information on setAttribute -preferred_extra_space, see “Route
Commands” in the Encounter Digital Implementation System Text Command
Reference.

Tip

Select SI Prevention True to set Weight, Avoid Detour and
-preferred_extra_space all at once. SI Prevention True sets Weight to 10,
Avoid Detour to True, and -preferred_extra_space to 1 for clock nets.

Routing Clock Nets Using the GUI Forms

➤ Specify the following options on the NanoRoute form:

■ Selected Nets

Specify Selected Nets to route the clock nets first. Unlike the Weight attribute, which
gives priority to routing nets within a switch box, Selected Nets is a global option that
routes whole nets.

■ Global Route

■ Detail Route

Specify End Iteration 19 to stop routing before the postroute optimization step.

Running Postroute Optimization

To prevent rip-up and rerouting of clock nets during postroute optimization, specify the
following:

■ On the NanoRoute/Attributes form, keep the attributes you have already set, and specify
Skip Routing True.

■ On the NanoRoute form, specify Start Iteration 20 and End Iteration default.
October 2010 748 Product Version 9.1.3

../fetxtcmdref/routeT.html#firstpage
../fetxtcmdref/routeT.html#firstpage

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Related Topics

■ Using the routeDesign Supercommand on page 720

■ routeDesign in the “Route Commands” chapter of the Encounter Digital
Implementation System Text Command Reference.

■ “Synthesizing Clock Trees” on page 593

Preventing and Repairing Crosstalk Problems

During SMART routing, the NanoRoute router automatically prevents crosstalk problems by
wire spacing, net ordering, minimizing the use of long parallel wires, and selecting routing
layers for noise-sensitive nets. The router performs these operations concurrently with other
operations.

In addition to the operations it performs automatically, the router also performs shielded
routing to protect critical wires from crosstalk.

During postroute signal integrity repair, the router performs these same operations.

The following sections describe the crosstalk prevention and repair operations the router
performs, and whether you can set net attributes to control them.

■ Wire spacing

The router automatically adds extra space between critical nets. You can also use the
-preferred_extra_space attribute to add space. For information on this attribute,
see setAttribute in the Encounter Digital Implementation System Text
Command Reference.

■ Net ordering

The router automatically routes critical nets first and avoids detours on those nets so they
are as short as possible.

❑ You can also use the -weight attribute to give priority to critical nets within a switch
box, so they are routed first.
October 2010 749 Product Version 9.1.3

../fetxtcmdref/routeT.html#routeDesign
../fetxtcmdref/routeT.html#setAttribute

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
❑ You can use the -avoid_detour attribute to ensure that critical nets are routed as
short as possible.

■ Minimizing the use of long parallel wires

The router automatically minimizes the use of long parallel wires, based on an internal
algorithm. You cannot set an attribute to control this feature.

■ Selecting routing layers

The router automatically restricts routing layers for critical nets to reduce both coupling
and resistance. It routes clocks on layers 3 and 4.

❑ You can set the -bottom_preferred_routing_layer and
-top_preferred_routing_layer attributes to specify preferred layers for
critical nets.
October 2010 750 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
❑ You can specify how strictly to enforce these attributes by specifying the
-preferred_routing_layer_effort attribute.

■ Shielding

The router can shield critical nets with power or ground wires to protect them from
coupling. Shielding is not an automatic operation—you control it with the -shield_net
attribute.

Related Topics

■ Performing Shielded Routing on page 767.

Crosstalk Prevention Options

To minimize problems caused by crosstalk, set the following NanoRoute options:

setNanoRouteMode -routeWithTimingDriven true
setNanoRouteMode -routeWithSiDriven true

These options specify timing-driven and signal integrity-driven routing.

Optionally, you can also set the following options:

setNanoRouteMode -routeTdrEffort
setNanoRouteMode -routeSiEffort

These options fine-tune the priorities the router assigns to timing, signal integrity, and
congestion. Use these options together to minimize crosstalk. After meeting the timing
requirements of your design, adjust the values and rerun routing, following these guidelines:

■ If your design is congested, use a low timing-driven effort.

■ If your design is not congested, use a high timing-driven effort.
October 2010 751 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Tip

Because designs with severe signal-integrity problems are usually not congested,
use a high timing-driven effort for those designs.

■ If increasing the timing-driven effort creates a jump in the number of timing violations,
decrease the timing-driven effort.

For more information on these options, see setNanoRouteMode in the Encounter Digital
Implementation System Text Command Reference.

For more information, see “Analyzing and Repairing Crosstalk” on page 1185.
October 2010 752 Product Version 9.1.3

../fetxtcmdref/routeT.html#setNanoRouteMode

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Running ECO Routing

The NanoRoute router performs ECO routing by completing partial routes with added logic
while maintaining the existing wire segments as much as possible. ECO routing is useful in
cases such as the following:

■ After the chip is initially routed, the customer or chip owner gives you a new netlist with
minor changes.

■ After the chip is initially routed, buffers were added to repair setup or hold violations or
DRVs during physical optimization.

■ Buffers were added or gates were resized during hand editing of a routed design.

■ Antenna diodes were added interactively after routing to repair process antenna
violations.

■ After metal fill is added to the design.

During ECO routing, the router does the following:

■ Reroutes partial routes and nets without routing.

You can use wire editing commands to partially preroute wires to guide global ECO
routing. The router does not globally reroute nets that are automatically prerouted, such
as clock nets, but it might make minor routing changes to preroutes to increase routability
of the design. Examples of minor routing changes include the following:

❑ Completely moving a preroute

❑ Changing the routing topology within the current routing switch box.

■ Retains fully prerouted nets and pin-to-pin paths.

■ Might use dangling paths in order to complete routes, but removes dangling wires left
after global routing.

■ Keeps connectivity within the bounding box, but does not constrain layers or positions.

ECO Limitations

■ Do not use the globalRoute command in ECO mode. To route in ECO mode, use
globalDetailRoute.

■ If more than 10 percent of the nets are new or partially routed, run full global and detailed
routing instead of ECO routing.
October 2010 753 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
ECO Flow

To perform ECO routing, specify the following commands and options:

setNanoRouteMode -routeWithEco true
globalDetailRoute

Important

The -routeWithEco option constrains changes but might lead to violations or long
run times if it causes the router to move more signals to resolve the routing.

Specifying Nets for ECO Routing

The router automatically identifies the nets that need changes during ECO routing.

To route only a few nets, and skip routing on all the other nets, specify the following
commands:

setAttribute -net @PREROUTED -skip_routing true
setAttribute -net eco_net_name1 -skip_routing false
setAttribute -net eco_net_name2 -skip_routing false

ECO Routing After Multiple-Cut Via Insertion

If your design is already fully routed and multiple-cut vias have been inserted for
manufacturing, specify the following commands for ECO route:

setNanoRouteMode -routeWithEco true
setNanoRouteMode -drouteUseMultiCutViaEffort low
globalDetailRoute

For more information on using EDI System ECO commands and flows, see “Interactive ECO”
on page 1135.
October 2010 754 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Evaluating Violations

After you run several search-and-repair iterations, look at the number and distribution of
violations remaining to determine whether the violations are caused by congestion or by
design or library problems. If you see many violations (more than 1,000) or the number of
violations does not decrease with each search-and-repair iteration, stop search and repair
and check congestion graphically.

Note: Use the Ctrl-C key combination to stop search and repair. For information on using
Ctrl-C, see “Interrupting Routing” on page 720.

The router marks four types of violations:

■ Horizontal

A violation that falls on a horizontal wire is a horizontal violation.

■ Vertical

A violation that falls on a vertical wire is a vertical violation.

■ Via

A violation that falls on a via is a via violation. The router places via violation markers on
the lower layer of the via, even when the violations are on the upper layer. For example,
if the router finds a spacing violation between an M1-M2 via’s metal2 layer and another
metal2 shape, the violation marker on the via will be at metal1 layer. If your routed
design has via violations, the router corrects the violations during search and repair.

■ Minimum area rule

If the AREA rule for the layer has not been satisfied, the router marks a minimum area
rule violation.

For details on the violations, use the verifyGeometry command.

If you import a routed design from standalone mode, the EDI System software imports the
violation markers as well. To delete the violations, rerun detailed routing. The software deletes
the violations during search and repair.

The following excerpt is from a log file from a design after the nineteenth iteration of search
and repair. There are many violations, mostly on layers metal1, metal2, and metal6.

#Total number of DRC violations = 1426
#Total number of violations on LAYER Metal1= 876
#Total number of violations on LAYER Metal2= 275
#Total number of violations on LAYER Metal3= 84
#Total number of violations on LAYER Metal4= 38
#Total number of violations on LAYER Metal5= 18
October 2010 755 Product Version 9.1.3

../fetxtcmdref/verificationT.html#verifyGeometry

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
#Total number of violations on LAYER Metal6= 135
#Total number of violations on LAYER Metal7= 0

Figure 21-3 on page 756 illustrates this stage in the design. Violations on different layers are
shown by different-colored markers.

Figure 21-3

Designs with violations like those in the preceding illustration often have library or design
problems, such as overlapping pins, improperly defined tracks, or an insufficient number of
rotated vias.
October 2010 756 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Use the guidelines in the following table to help evaluate violations:

Violations/Warnings Check for …

Many violations on metal1 ■ Improper setup of routing tracks

■ Overlapping cells

■ Insufficient via rotation, causing
inaccessible pins

For information on fixing these problems,
see the Encounter Digital
Implementation System Library
Development Guide.

Many violations on metal1 and metal2 ■ Offgrid pins

■ Overlapping tracks

■ Overlapping cells

■ Improper X offset, causing offgrid
standard cell pins

■ Pins buried under power routing

For information on fixing these problems,
see the Encounter Digital
Implementation System Library
Development Guide.

Open net warning messages

An open net is one that the router cannot
route because it cannot complete the
connection of a net.

■ Pin modelling, track definition, data,
floorplanning problems

■ Conflicts between option settings or
options and library specifications

For information on fixing these problems,
see “Resolving Open Nets” on page 741.
October 2010 757 Product Version 9.1.3

../socelibdev/socelibdevTOC.html#firstpage
../socelibdev/socelibdevTOC.html#firstpage
../socelibdev/socelibdevTOC.html#firstpage
../socelibdev/socelibdevTOC.html#firstpage

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Violations not decreasing after first iteration
of detailed routing

■ Offgrid pins

■ Overlapping tracks

■ Overlapping cells

■ Improper X offset, causing offgrid
standard cell pins

■ Pins buried under power routing

For information on fixing these problems,
see the Encounter Digital
Implementation System Library
Development Guide.

Violations on upper layers, such as via-to-
wire violations or shorts

■ Improper routing pitch (not line-to-via)

For information, see “Violations on Upper
Metal Layers” on page 759. For more
information on correcting the routing pitch,
see the Encounter Digital
Implementation System Library
Development Guide.

Localized congestion (also called hot spots)
—areas in the congestion map that are red,
magenta, or white. The congestion might be
caused by one of the following:

■ Limited pin access to a block

■ Congestion around the corner of a block
and in the middle of the standard cells

■ Improper placement or floorplanning

For information on placement see
“Placing the Design” on page 553. For
information on floorplanning, see
“Floorplanning the Design” on page 371

Violations/Warnings Check for …
October 2010 758 Product Version 9.1.3

../socelibdev/socelibdevTOC.html#firstpage
../socelibdev/socelibdevTOC.html#firstpage
../socelibdev/socelibdevTOC.html#firstpage
../socelibdev/socelibdevTOC.html#firstpage
../socelibdev/socelibdevTOC.html#firstpage
../fetxtcmdref/routeT.html#firstpage

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Violations on Upper Metal Layers

Upper layers are typically used to route on top of macros where only a few routing layers are
allowed. These upper layers typically have larger vias than lower layers. When the routing
pitch is not set at line-to-via distance, two types of violations are likely to occur:

■ Via-to-wire violations

■ Shorts

Figure 21-4 on page 760, Figure 21-5 on page 760, and the LEF and DEF file excerpts that
follow show a design with many violations on metal6.

False violations ■ Violation markers on the lower metal
layer of a via, even though the actual
violation is on the upper layer.

When it flags a via violation, the router
places the violation marker on the lower
metal layer of the via, whether the actual
violation is due to a problem on the
lower layer or the upper layer. To repair
the violation, rerun detailed routing. The
router finds and repairs the violation,
even when the marker was reported on
the incorrect layer.

Violations/Warnings Check for …
October 2010 759 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Figure 21-4

Figure 21-5

The relevant LEF file excerpt is:

LAYER Metal6
TYPE ROUTING ;
PITCH 0.46 ;
WIDTH 0.2 ;
SPACING 0.21 ‘
DIRECTION VERTICAL ;

END Metal6
LAYER Metal7

Area
expanded in
Figure 21-5
on page 760 to
show
violations

via-to-wire violation

metal6 short
October 2010 760 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
TYPE ROUTING ;
PITCH 0.82 ;
WIDTH 0.4
SPACING 42 ;
DIRECTION HORIZONTAL ;

END Metal7
VIA via6 DEFAULT

LAYER Metal6 ;
RECT -0.19 -0.23 0.19 0.23 ;
LAYER Via6 ;
RECT -0.18 -0.18 0.18 0.18 ;
LAYER Metal7 ;
RECT 0.29 -0.2 0.29 0.2 ;
RESISTANCE 0.68

END via6

The relevant DEF file excerpt is:

TRACKS X -4749270 D0 6324 STEP 460 LAYER Metal6

To repair the shorts and via-to-wire violations, align the tracks as much as possible without
sacrificing them. Change the TRACKS statement in the DEF file to have at least line-to-via
STEP (pitch).

The line-to-via calculation for metal6 is:

Line to via metal6 = 1/2 Width + Spacing + 1/2 Via
= 0.1 + 0.21 + 0.19
= 0.5

Violations in Timing-Driven Routing

Run time and the number of violations often increase during timing-driven routing because
the router restricts the routing of timing-critical nets.

During non-timing-driven routing, the router might detour some nets in order to avoid creating
violations. In timing-driven mode, however, the router does not detour timing-critical nets.
Instead, it forces them to be routed as short as possible, which can create congestion in the
channels. Later, when design-rule checking takes precedence, the router detours timing-
critical nets in overly congested channels.

For information on the timing-driven routing flow, see “Running Timing-Driven Routing” on
page 744.

Figure 21-6 on page 762 and Figure 21-7 on page 762 illustrate non-timing-driven and
timing-driven routing results for the same design.
October 2010 761 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Figure 21-6

Figure 21-7

Non-timing-driven routing detours
some critical paths/nets around the
block to avoid DRVs

Routing channel

Timing-driven routing forces the
same critical paths/nets into the
channel
October 2010 762 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Deleting Violated Nets

To delete violated nets, use the editDeleteViolations command. After deleting the nets,
use ECO routing, detailed routing, or the globalDetailRoute command to re-route the
design.

Related Topics

■ detailRoute

■ ecoRoute

■ globalDetailRoute

■ setNanoRouteMode -routeWithEco

Using Additional Strategies to Repair Violations

Process Antenna Violations

Repair process antenna violations with antenna repair options or the wire editing commands.

■ For information on verifying process antenna violations, see “Verifying Process
Antennas” on page 1247.

■ For information on process antenna options, see Repairing Process Antenna Violations.

■ For information on wire editing, see “Editing Wires” on page 671.

Core Congestion

Ensure that blocks are placed in corners and near boundaries to help ease core congestion.

Concurrent Routing and Multi-Cut Via Insertion

The NanoRoute router can insert multiple-cut vias during detailed routing in order to achieve
a high ratio of multiple-cut to single-cut vias, minimize the number of vias in the design, and
increase yield.

To specify the effort level for inserting multiple-cut vias and route the design concurrently, type
the following commands:
October 2010 763 Product Version 9.1.3

../fetxtcmdref/wireeditT.html#editDeleteViolations
../fetxtcmdref/routeT.html#detailRoute
../fetxtcmdref/interactive_ecoT.html#ecoRoute
../fetxtcmdref/routeT.html#globalDetailRoute
../fetxtcmdref/routeT.html#setNanoRouteMode

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
setNanoRouteMode -drouteUseMultiCutViaEffort {medium | high}
detailRoute

For more information on this parameter, see setNanoRouteMode in the Encounter Digital
Implementation System Text Command Reference.

Postroute Via Optimization

The NanoRoute router can optimize vias on a fully routed design by replacing single-cut vias
with multiple-cut vias or with fat vias (single or multi-cut vias with an extended metal
overhang). The router does not replace multiple-cut vias during this step.

The router replaces vias by substituting vias in the following order:

1. Fat double-cut vias

2. Normal double-cut vias

3. Fat single-cut vias

Ensure the following before replacing the vias:

■ Double-cut vias and fat vias are automatically generated or defined in the LEF file.

Use the generateVias command to generate vias.

■ The design is completely global and detailed routed.

If you delete any wires after routing, reroute the design before replacing the vias.

■ The design is free of all DRC violations.

Complete the following steps:

1. To run postroute via reduction, type the following commands:

setNanoRouteMode -drouteMinSlackForWireOptimization slack
setNanoRouteMode -droutePostRouteMinimizeViaCount true
routeDesign -viaOpt

Note: When you run these commands, the software replaces all multiple-cut vias
with single-cut vias. Use these commands only if no concurrent via optimization was
done.

2. To run postroute single-cut to multiple-cut via swapping, complete one of the following
steps:
October 2010 764 Product Version 9.1.3

../fetxtcmdref/importT.html#generateVias
../fetxtcmdref/routeT.html#setNanoRouteMode

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
a. To run postroute single-cut via to multiple-cut via swapping, type the following
commands:

setNanoRouteMode -drouteMinSlackForWireOptimization slack
setNanoRouteMode -droutePostRouteSwapVia multiCut
routeDesign -viaOpt

b. To run non-timing-driven postroute single-cut via to multiple-cut via swapping, type
the following commands:

setNanoRouteMode -routeWithTimingDriven false
setNanoRouteMode -droutePostRouteSwapVia multiCut
routeDesign -viaOpt

Related Topics

■ Using the routeDesign Supercommand on page 720

■ routeDesign in the “Route Commands” chapter of the Encounter Digital
Implementation System Text Command Reference

Optimizing Vias in Selected Nets

To optimize vias in selected nets, set the -skip_routing attribute to true for all nets,
then set the attribute to false for nets with vias you want to optimize.

setAttribute -net * -skip_routing true
setAttribute -net ... -skip_routing false
globalDetailRoute

Via Optimization Options

■ -droutePostRouteSwapVia

■ -drouteUseBiggerOverhangViaFirst

■ -drouteUseMultiCutViaEffort

■ -droutePostRouteMinimizeViaCount

■ -routeConcurrentMinimizeViaCountEffort

To ensure that the router chooses vias with the largest overhang first, specify the following
option:

setNanoRouteMode -drouteUseBiggerOverhangViaFirst true

To minimize the number of vias, specify the following options:
October 2010 765 Product Version 9.1.3

../fetxtcmdref/routeT.html#routeDesign

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
setNanoRouteMode -droutePostRouteMinimizeViaCount true
setNanoRouteMode -drouteEndIteration default

For more information on these options, see “Route Commands” in the Encounter Digital
Implementation System Text Command Reference.
October 2010 766 Product Version 9.1.3

../fetxtcmdref/routeT.html#firstpage

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Performing Shielded Routing

The NanoRoute router can protect noise-sensitive nets, such as a clock nets, from crosstalk
by shielding them with power or ground wires. You typically route shielded nets before routing
other nets. At the end of routing, the router deletes shielding wires that are not connected to
power or ground wires. NanoRoute automatically generates a shielding statistics report after
routing. For information on the report, see “Interpreting the Shielding Report” on page 769.

Figure 21-8 on page 767 shows a section of a design with a shielded net. In the figure,

■ The signal net is shielded by a power net on one side and a ground net on the other side.

■ Multiple vias can be dropped where a stripe crosses the shielding net at a right angle, if
the stripe is wide enough to accommodate them.

■ A segment of the signal net is not shielded.

■ There are some floating shielding net segments.

Figure 21-8

Shielding Option

Use the following option to control shielding:

■ setNanoRouteMode -routeMinShieldViaSpan

Shielded net

Shielding net

Shielding net

Stripes

No shield

Floating shielding net segment

Floating shielding net segment
October 2010 767 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
This option controls the distance between vias and special nets that are used as shield
wires.

Performing Shielded Routing Using the GUI

1. From the main menu, choose Route – NanoRoute – Specify Attribute.

This opens the NanoRoute/Attributes form.

2. On the NanoRoute/Attributes form, enter the name of the net to shield (this is the
shielded net in the figure) in the Net Name(s) field.

3. Enter the name of the power ground net (or both) in the Shield Net(s) field. These are
the shielding nets in the figure.

❑ To shield both sides with ground wires, enter the name of the ground net.

❑ To shield one side with a ground wire and one side with a power wire, enter both the
ground and the power net names.

4. Click OK or Apply.

5. Use the Encounter selectNet command to specify the net to shield. It must be the
same as the net you specified on the NanoRoute/Attributes form.

6. From the main menu, choose Route – NanoRoute – Route.

This opens the NanoRoute form.

7. On the NanoRoute form, select the following:

a. In the Job Control area, select Selected Nets.

b. In the Mode area select both Global Route and Detail Route.

8. Click OK or Apply.

To route the remaining nets, complete the following steps:

1. On the NanoRoute/Attributes form, set the Skip Routing True for the shielded nets.

Tip

You can also skip routing on prerouted nets by issuing the following command:

setAttribute -net @PREROUTED -skip_routing true

@PREROUTED applies to a net that has any wiring, including partial wiring.
October 2010 768 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
2. On the NanoRoute form, deselect Selected Nets Only.

3. Click OK or Apply to reroute the design.

Performing Shielded Routing Using Text Commands

■ The following commands shield net1 with both power and ground wires, and shield
net2 with a ground wire:

setAttribute -net net1 -shield_net vdd \
-shield_net vss

setAttribute -net2 -shield_net vss
globalDetailRoute

■ The following commands show how to shield two nets (do not shield more than one net
with the same command):

setAttribute -net net1 -shield_net abc_gnd
setAttribute -net net2 -shield_net abc_gnd

Interpreting the Shielding Report

The software generates a shielding report for the NanoRoute router when you run the
reportShield command. You can customize the report to output information on the whole
design or on selected nets, and you can report per-layer statistics.

Following is a section of a report:

Name : Shielded net name
Length : Shielded net length
Shield : Total length of shielding wire
ratio : Average shielding ratio

Name Length Shield Ratio Layer: Length Shield Ratio

netA:

211.5 378.3 0.894
METAL2: 5.0 2.2 0.222
METAL3: 107.4 180.1 0.839
METAL4: 99.1 196.0 0.989

average: 211.5 378.3 0.894
METAL2: 5.0 2.2 0.222
METAL3: 107.4 180.1 0.839
METAL4: 99.1 196.0 0.989
October 2010 769 Product Version 9.1.3

../fetxtcmdref/routeT.html#reportShield

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
To help understand the report, see the following figure, which shows a section of netA:

In the figure,

The software calculates the shielding ratio by using the following formula:

Routing Wide Wires

The NanoRoute router automatically tapers wide wires when connecting to pins, including
input/output pins of standard cells, macro cells, and block output pins. The tapered portion of
a wire uses the minimum-width wire (the default width).

If you do not want tapering at the output pins, specify the following parameter:

setNanoRouteMode -drouteNoTaperOnOutputPin true

A Represents the shielded net.

B, C, and D Represent shielding wires.

A

C

D

B

B C D+ +
A 2×

------------------------=Shielding Ratio
October 2010 770 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Using Non-Default Rules

By default, the NanoRoute router treats non-default rule spacing as a soft option; that is,
when routing resources are available, it honors the non-default rule. If the area is too
congested, and resources are not available, the router might not honor the rule.

If you enable signal-integrity driven routing, the router attempts to minimize overall coupling
capacitance in the design. If you enable timing-driven routing, the router also favors critical
nets when choosing spacing.

You can use up to 254 nondefault rules. Nondefault rules do not necessarily decrease the
routing speed. Routing speed does decrease, however, due to the following factors:

■ The ratio of non-default rule wires to default rule wires increases.

■ The amount of space between wires increases.

■ The number of additional nondefault vias increases, due to the nondefault rules.

In congested areas, the router might violate nondefault spacing rules in order to avoid design-
rule violations and complete the routing. Its flexibility with regard to nondefault spacing
decreases the overall wirelength and benefits timing and signal integrity because it allows
some shorter nets to be more easily tolerated near adjacent nets without causing violations.

Note: You can force the router to honor the nondefault rules by specifying the following
option:

setNanoRouteMode -routeStrictlyHonorNonDefaultRule true

Figure 21-9 on page 772 illustrates nondefault spacing (“soft spacing”) routing.
October 2010 771 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Figure 21-9

With soft spacing, the
router does not need to
detour around these nets.

With soft spacing, some of
the shorter nets that are
close to other nets are
tolerated.
October 2010 772 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Repairing Process Antenna Violations

The NanoRoute router can repair process antenna violations concurrently with DRC
violations during the search-and-repair step. During the postroute optimization step, when
there are no more DRC violations, the router repairs additional process antenna violations.
This two-step methodology allows the router to use more aggressive methods to repair the
process antenna violations early on and saves CPU time.

During postroute optimization, the router repairs antenna violations by changing layers (also
called antenna stapling or layer hopping). It also repairs process antenna violations by
inserting diode cells as close as possible to input gates to discharge current, and deleting and
rerouting nets with violations.

Note: After routing, run the globalNetConnect command to ensure connectivity to power
and ground pins in antenna cells added during process antenna repair. For information, see
globalNetConnect in the Encounter Digital Implementation System Text Command
Reference.

The router supports hierarchical process antenna calculations and repair.

For information on PAE calculations, and the LEF and DEF antenna parameters, see
“Calculating and Fixing Process Antenna Violations” in the LEF/DEF Language
Reference.

Repairing Violations on Multiple-Pin Nets

On multiple-pin nets, the router does the following:

■ On a two-pin net that has one input pin with antenna information and one output pin
without antenna information, the router tries to repair the antenna violation based on
input antenna information only.

■ On a two-pin net that has one input pin without antenna information and one output pin
with antenna information, there is usually no antenna violation on the output pin, so the
router skips antenna repair.

■ On a two pin-net where the router does not have any antenna information on either pin,
the router skips antenna repair.

■ On a three-pin net that has two input pins—one with antenna information and one without
antenna information—and one output pin without antenna information, the router skips
antenna repair.
October 2010 773 Product Version 9.1.3

../fetxtcmdref/fp_special_routeT.html#globalNetConnect
../lefdefref/PAE.html#firstpage

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Changing Layers

The router automatically shortens wires whose area exceeds the gate/wire area ratio set in
the LEF file. This process might not guarantee that it can resolve all antenna violations—if the
routing area is congested, process antenna violations can still occur, just as shorts and
spacing violations can occur.

Using Diodes

The router inserts antenna diode cells or uses preplaced diode cells to repair violations. It
can swap filler cells with antenna diode cells and fill the gap automatically if an antenna
diode cell is not the same size as the filler cell it replaced. A later routing pass does not
remove previously placed diodes.

The antenna diode cells must have the same LEF SITE definition as the standard cells.
Specify the diode cell name using the Diode Cell Name option on the NanoRoute form or
the -routeAntennaCellName option on the text command line.

Deleting and Rerouting Nets with Violations

If the design has more than 100 DRC violations, and you are using LEF 5.4 or later, the router
deletes and reroutes nets with process antenna violations.

Repairing Violations on Cut Layers

The NanoRoute router detects antenna violations on cut layers and repairs them by inserting
diodes. To repair these violations, you must specify a value in your LEF file for the
ANTENNADIFFAREARATIO (or ANTENNACUMDIFFAREARATIO) for the cut layers. For each
cut layer, the value for ANTENNADIFFAREARATIO (or ANTENNACUMDIFFAREARATIO) must
be larger than the value for ANTENNAAREARATIO (or ANTENNACUMAREARATIO).

Important

If you do not use diodes to repair process antenna violations, the router cannot
repair the violations on cut layers.

Tip

To highlight the diodes that the router inserts, use the choose Edit – Select by
Name. To highlight the diodes, type *_antenna_*.
October 2010 774 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
For information on the Select by Name form, see “Edit Menu” in the Encounter Digital
Implementation System Menu Reference.

■ To specify the diode cells, use -routeAntennaCellName.

Tip

To force the router to do more layer changing and skip diode insertion, specify the
following option:

setNanoRouteMode -routeInsertAntennaDiode false

After the router repairs as many violations as possible by layer changing, reset this option
to true and repeat process antenna repair.

Process Antenna Options

Use the following options to repair violations caused by process antennas:

■ setNanoRouteMode options:

❑ -drouteFixAntenna

❑ -routeAntennaCellName

❑ -routeAntennaPinLimit

❑ -routeDeleteAntennaReroute

❑ -routeFixTopLayerAntenna

❑ -routeIgnoreAntennaTopCellPin

❑ -routeInsertAntennaDiode

❑ -routeInsertAntennaInVerticalRow

❑ -routeInsertDiodeForClockNets

■ setAttribute -nets netName -skip_antenna_fix

Examples

■ The following commands shows the basic strategy for repairing process antenna
violations:

setNanoRouteMode -drouteFixAntenna true
setNanoRouteMode -routeAntennaCellName "ANTENNA"
setNanoRouteMode -routeInsertAntennaDiode true
October 2010 775 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
globalDetailRoute
globalNetConnect

The NanoRoute router runs global and detailed routing. After repairing DRC violations,
it repairs as many process antenna violations as it can by layer hopping during postroute
optimization. If any process antenna violations remain, the router repairs them by
inserting antenna diode cells named ANTENNA.

■ The following commands repair process antenna violations by inserting diodes and filler
cells. The filler cells are specified by the setFillerMode -core command. They fill
any gaps that is left when a diode replaces a large filler cell.

setNanoRouteMode -routeInsertAntennaDiode true
globalDetailRoute
globalNetConnect

For information on adding filler cells, see setFillerMode and addFiller in the
“Placement Commands” chapter of the Encounter Digital Implementation System
Text Command Reference.
October 2010 776 Product Version 9.1.3

../fetxtcmdref/placementT.html#firstpage

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Using a Design Flow that Includes Astro or Apollo

The NanoRoute router uses the information in the Milkyway technology file to automatically
map vias and layers in the design to Astro scheme format. The router maps only the routing
data, so it does not map DEF vias or special routing.

To use Astro or Apollo in your design flow, you must have a LEF technology file that contains
layer and via descriptions that match one-to-one with the descriptions in the Milkyway
technology file.

Caution

Check with the foundry before making any changes to the original files.

You can create a rule file to map layers or vias that are not mapped automatically.

In native mode, the following commands are used in this flow:

■ generateLef

Converts Milkyway technology file descriptions, Milkyway CLF files, customized LEF
technology files from customers, and other older syntax and non-optimal LEF files to a
LEF file with target rules and automatically generated vias. Issue this command before
routing.

■ tdfOut

Outputs a routed database based on the mapping results. Issue this command after
routing.

If you are running the router standalone mode, issue the following command:

■ pdi export_design -aef -rule

Finds the technology file and automatically maps the layers and vias from the LEF file to
a format that Astro can read. Optionally, includes user-created rules for additional
mapping. Issue this command after routing.

The following command outputs a file named MyOutputFile, using a rule file named
tfo.map:

pdi export_design -aef -rule tfo.map MyOutputFile

If you do not need any additional mapping, the only line in tfo.map is

techfile apollo.tf
October 2010 777 Product Version 9.1.3

../fetxtcmdref/importT.html#generateLef
../fetxtcmdref/importT.html#tdfOut
../nanorouteref/command_ref.html#firstpage

Encounter Digital Implementation System User Guide
Using the NanoRoute Router
Troubleshooting

If you have problems with your design, try the following troubleshooting tips:

1. Check the log file for errors and warnings. Correct the problems and continue routing or
reroute, as appropriate.

For example, the router might stop routing automatically if it finds too many violations. If
the router stops unexpectedly, check the log file for a message that the router has
reached the maximum number of violations and the set the following
setNanoRouteMode parameter to false to continue routing:

-drouteAutoStop

2. Verify connectivity and geometry before and after routing and compare results.

You can also use the checkRoute command to verify the connectivity. It is faster than
verifyConnectivity, but does not output a report.

3. Save the database after routing and restore it in a new session in the EDI System
software.

Saving and restoring the database clears temporary data structures in memory.

4. Issue the defOut command, then defIn, and reroute.

The defOut command saves all routing information in DEF and restores a clean
database for routing.
October 2010 778 Product Version 9.1.3

../fetxtcmdref/routeT.html#setNanoRouteMode
../fetxtcmdref/routeT.html#checkRoute
../fetxtcmdref/verificationT.html#verifyConnectivity
../fetxtcmdref/importT.html#defOut
../fetxtcmdref/importT.html#defIn

Encounter Digital Implementation System User Guide
22
Using the Encounter Mixed Signal Router

■ Overview on page 780

■ Before You Begin on page 781

■ Results on page 781

■ Specialized Routing Techniques on page 782

❑ Matched Nets on page 782

❑ Differential Pair Nets on page 786

❑ Bus Routes on page 787

❑ Shielded Nets on page 787

■ Using Routing Constraints on page 791

■ Constraint File Format on page 791

■ Specialized Constraints and Keyword Descriptions on page 792

❑ NETS on page 792

❑ MATCH on page 797

❑ DIFFPAIR on page 800

❑ SHIELDING on page 807

■ Creating a Constraint File on page 810

■ Editing a Constraint File on page 818

■ Loading a Constraint File on page 815

■ Sample Constraint File on page 820
October 2010 779 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Overview

You can use the Encounter Digital Implementation System (EDI System) software to design
and implement the following styles of mixed-signal ICs:

■ Analog-on-top (AOT)

In AOT-style designs, the chip is mostly analog, but has some digital blocks. AOT designs
use Virtuoso® software as the cockpit and EDI System software to integrate the digital
blocks.

See the Virtuoso documentation for descriptions of the Virtuoso commands, GUI, and
use model.

■ Digital-on-top (DOT)

In DOT-style designs, the chip is mostly digital, but has some analog blocks. DOT designs
use EDI System software as the cockpit and Virtuoso software to integrate the analog
blocks.

This document provides information on using mixed signal constraints in the DOT flow.

Related Topics

■ Application Notes on SourceLink®

❑ Solution Flow Name: Encounter-Virtuoso Mixed Signal Floorplanning and Physical
Implementation Flow—Big designs with large number of blocks

❑ Solution Flow Name: Virtuoso-Encounter Mixed Signal Physical Design Flow—Sea
of Standard Cells Methodology

■ Encounter Digital Implementation System Text Command Reference

❑ “Mixed Signal Commands” chapter

■ EDI System Menu Reference

❑ “Route Menu” (Mixed Signal Router)

❑ “Tools Menu” (Mixed Signal Constraint Editor)

❑ “Verify Menu” (Verify Mixed Signal Constraints)
October 2010 780 Product Version 9.1.3

../fetxtcmdref/mixedsignalT.html#firstpage
../encounter/routeG.html#firstpage
../encounter/toolsG.html#firstpage
../encounter/verifyG.html#firstpage
http://sourcelink.cadence.com/docs/files/Application_Notes/2008/AppNote_MSFloorplanning.v2.pdf
http://sourcelink.cadence.com/docs/files/Application_Notes/2008/AppNote_MSflow.pdf

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Using the Mixed Signal Router

Use the EDI System mixed signal router to preroute critical signal nets in a mixed signal
design. After routing, the nets are saved as special nets so the NanoRoute® router does not
delete or alter them.

In addition to honoring the LEF rules, the router performs the following types of specialized
routing by observing design rules specified in a routing constraint file:

■ Matched net routing

■ Differential pair routing

■ Bus routing

■ Shielded routing, including coaxial shielded routing, differential pair shielded routing, and
bus shielded routing for bus.

The constraint file can also include design rules for the following net attributes—the router
honors the rules as long as they do not override the rules specified in the LEF file:

■ Minimum number of via cuts

■ Width and maximum width

■ Spacing

■ Routing layers

■ Minimum and maximum resistance

■ Minimum and maximum capacitance

■ Tapering

Before You Begin

Before routing, the design must be fully placed so the router can take congestion from
placement into account.

Results

After routing, the database is ready for verification with the mixed signal verifier and for routing
the remainder of the signal nets with the NanoRoute router.
October 2010 781 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Specialized Routing Techniques

Matched Nets

Matched nets are constrained by resistance, but not by topology. Matched nets are not limited
to two nets. You can specify a tolerance value for the difference in resistance of the nets, so
the router attempts to match the resistance of the nets, but does not create a violation unless
the difference in resistance is greater than the tolerance value.

For the syntax of matched nets constraints, see MATCH on page 797

The following figure shows a pair of matched nets.

Controlling the Width of Serpentine Coils in Matched-Net Routing

In order to match the resistance of wires on which matched-net constraints are applied, the
router might need to lengthen short wires and create jogs that cause the wires to take the
shape of a serpentine coil. If these jogs are too wide, they can block routing resources and
increase coupling.

■ If the coils are orthogonal to the routing, the router creates an accordion shape.

■ If the coils are parallel to the routing, the router creates a trombone shape.

The following figure shows two coils: an accordion and a trombone.

Total net length = 4.5

Total net length = 4.5
October 2010 782 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
The following figure shows matched nets with an accordion:

You can control accordion and trombone shapes by specifying values for the width of the coil
and the spacing between the wires in the coil.

Controlling the Coil Width

To control the width of the coil, use the following variable before you run the mixed signal
router:

msMatchMaxCoilWidth integer

The software multiplies minimum width of the wire that creates the coil by the integer specified
by this variable. The result is the maximum distance from the center line of the coil to an
outside edge of the coil.

If you specify 0, or do not use this variable, the maximum width of the accordion shape is not
constrained. In general, Cadence recommends a value of 5 or 6 for this variable.

TromboneAccordion
Routing
direction

Net A

Net B

Accordion Shape

- The nets are the
same length.

- Router creates
jogs in Net B to
make it the same
length as Net A.
October 2010 783 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
For example, if you type the following command, the maximum distance from the center of
the coil to an outside edge is five times the minimum width of the wire:

set msMatchMaxCoilWidth 5

The following figure shows a pair of matched nets: The top net has an accordion shape. The
distance from the centerline of the accordion to the centerline of a wire segment that forms
the accordion’s outside edge is five times the wire width.

Controlling the Coil Spacing

To control the spacing between the coil wires, use the following variable before you run the
mixed signal router:

msMatchMinCoilSpacing float

The software routes the wires so that the spacing between the wires in the coil is at least the
specified float value. This variable allows you to use a float value to give the software more
flexibility when controlling the spacing.

For example, if you type the following command, the minimum distance between the wires is
1.5 times the wire width:

set msMatchMinCoilSpacing 1.5
October 2010 784 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
The following figure shows how the msMatchMaxCoilWidth and
msMatchMinCoilSpacing variables control the matching style:

TromboneAccordion

msMatchMaxCoilWidth

msMatchMinCoilSpacing

msMatchMaxCoilWidth

msMatchMinCoilSpacing
October 2010 785 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Differential Pair Nets

Differential pair nets are symmetrical nets that are constrained by width and spacing. You can
specify a threshold value for the spacing so the router attempts to meet the spacing, but does
not create a violation unless the spacing varies by more than the threshold value.

The following figure shows differential pair nets.

The spacing
between the
nets is uniform

Both nets have
the same width
October 2010 786 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Bus Routes

Bus routes are bundles of nets that follow the same pattern from the source to the target. The
router can route a maximum of 512 nets in a bus. If it cannot route the entire bus following the
same pattern, it routes the section of the bus that it can route, and issues a warning that gives
the reason it cannot finish routing the bus. You can break down the remaining sections of the
bus into progressively smaller sections until the router can route the entire bus. For example,
if the router is trying to route a 256-net bus, but can route only 64 nets, it routes the first 64
nets and issues a warning. You can then break down the rest of the bus into smaller bundles
and rerun the router.

The following figure shows a routed bus with four nets.

Shielded Nets

Shielded nets are noise-sensitive signal nets that are protected by special nets that are routed
nearby.

Shielded routing has the following characteristics:

■ The noise-sensitive net (the shielded net) is shielded by a special net (the shield net)
on its right and left sides.

■ A noise-sensitive net can also be shielded on the top and bottom (the next higher and
lower routing layers). This type of shielding is called coaxial shielding.

All four nets follow the same path
October 2010 787 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
■ The shield net can be unconnected to the main power or ground supply lines (this is
called a floating shield) or it can be connected. If it is connected, the connection can be
at any point along the shield.

■ The router can shield differential pair nets.

■ By default, parallel shielded nets share a shield net.

The following figures show a net segment that is shielded on the right and left sides. In the
figure on the left, the shield nets are floating. In the figure on the right, the shield nets are
connected to the power supply.

Shield nets are floating

Shielded net

Shield net is connected to
power supply at this end

Power stripe
October 2010 788 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Shared Shield Nets

By default, the router allows parallel nets to share shield nets. The following figures show
segments of two nets that are shielded on the right and left sides. In the figure on the left,
each shielded net has its own shield nets. In the figure on the right, the shielded nets share
the center shield net.

Coaxial Shield Nets

The following figure shows a segment of a net that is shielded on the right, left, top, and
bottom sides. The shield nets are wider than the net that is shielded. The portion of the top
and bottom shield net that is wider than the shielded net is called the overhang.

Shield netsShield nets Shield nets

Shielded net Shielded net Shielded netShielded net

Top shield net

Overhang
October 2010 789 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Shielded Differential Pair Nets

The following figure shows shielded differential pair nets. Differential shielded pair nets can
be shielded on the outside right and left sides.

Shielded Bus Nets

The following figure shows shielded bus nets. Bus nets can be shielded on the outer left and
right sides.

Shield net

Shield net

All four nets follow the same path

Shield net

Shield net
October 2010 790 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Using Routing Constraints

The router honors the LEF rules for the routing layers. It honors the constraints in the routing
constraint file only if they do not conflict with the rules specified in the LEF file for the design.
If there is a conflict, the router generates a message and uses the LEF rule.

You can create a constraint file or edit an existing constraint file by using the Mixed Signal
Constraint Editor in the EDI System GUI or by using a text editor.

For more information, see “Creating a Constraint File” on page 810

Constraint File Format

The constraint file is an ASCII file with the following format:

■ The file does not have a header.

■ Constraint parameters and keywords are specified in uppercase letters.

■ There is no punctuation at the end of the lines.

■ Comments begin with a number sign (#).

■ The number of constraints is not limited.

■ Constraints may be generic or specialized. Generic constraints can be listed separately
from specialized constraints, or they can be included as part of a specialized constraint.

■ Each specialized constraint is one of the following types: NETS, MATCH, DIFFPAIR,
SHIELD, BUS. For more information, see “Specialized Constraints and Keyword
Descriptions” on page 792.

■ Each specialized constraint has the following format:

CONSTRAINT_TYPE
KEYWORD value
KEYWORD value
KEYWORD value
...

constrained_net_name constrained_net_name ...
END CONSTRAINT_TYPE

■ Specialized constraints may be listed in any order, but in practice they are grouped by
type, that is, all the DIFFPAIR constraints are listed, then all the SHIELD constraints, and
so on.
October 2010 791 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Specialized Constraints and Keyword Descriptions

The constraint file can contain the following specialized constraints:

■ NETS on page 792

■ MATCH on page 797

■ DIFFPAIR on page 800

■ SHIELDING on page 807

■ SHIELDING on page 807

Note: Unless otherwise noted, the default value for each keyword in the constraints is the
value in the LEF file.

NETS

Defines a set of rules for constraining the width, resistance, capacitance, spacing, and
number of via cuts of a net or group of nets.

NETS
WIDTH minWidth
MAXRES maxResistance
MAXCAP maxCap
MINRES minResistance
MINCUT minCuts
TAPERING numberTaperSteps taperEndWidth
ROUTELAYERS {bottom_layer_num:top_layer_num | list_of_layer_numbers ...}
SHIELDGAP spacing
SHIELDNET special_net_name
SHIELDWIDTH width
SHIELDLAYERS integer
CONNECTSUPPLY {FLOAT | ANYPOINT}
COAXSHIELDVIAGAP viaGap
CONNECTCOAXSHIELDS {0|1}
OVERHANG width
SPACING spacing
{signal_net_1 | signal_net_2}

END NETS

MAXCAP maxCapacitance

Specifies the maximum capacitance allowed on the constrained
nets, in picofarads.

MAXRES maxResistance

Specifies the maximum resistance allowed on the constrained
nets, in ohms.
October 2010 792 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
MINCAP minCapacitance

Specifies the minimum capacitance allowed on the constrained
nets, in picofarads.

MINCUT minCuts

Specifies the minimum number of via cuts allowed on the
constrained net.

MINRES minResistance

Specifies the minimum resistance allowed on the constrained
nets, in ohms.

ROUTELAYERS {bottom_layer_num:top_layer_num | list_of_layer_numbers}

Specifies the layers on which the constrained nets can be
routed.

SPACING spacing

Specifies the distance between the constrained nets and other
nets, in microns.

TAPERING [[numberTaperSteps] [taperEndWidth]]

Specifies that the router should reduce the width of wide wires
when they connect to a pin and, optionally

■ The width of the wire when it connects

■ The number of steps the router takes to reduce the wire
width. The maximum number of steps supported is 3.

If you do not specify any parameters, the router tapers the wires
to the width of the pin in one step. If you specify only one
parameter, the router assumes it is the number of taper steps.

Note: The width of a wire on a taper step cannot be more than
three times that of the width of the wire on a neighboring step. If
you specify values that do not meet this requirement, the router
adjusts the values to increase the number of steps. If it cannot
meet the requirement by increasing the number of steps, the
router issues a warning and does not taper the wire.

WIDTH minWidth Specifies the minimum width of the constrained nets, in
microns.
October 2010 793 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Note: The constraint file can include constraints based on minimum and maximum
resistance. The router estimates the effective resistance of a net and compares it to the
minimum and maximum resistance in the constraint file. The resistance is measured in ohms.
The router determines the path with the highest resistance, and uses that path as the effective
resistance.

The figure shows a multiple-pin net with four segments: L4, L1, L2, L3, and L4.

Before it routes the nets, the router estimates the effective resistance using the following
formula:

Resistance = (average resistivity of all metal layers) x ((L1 + L2 + L3 + L4) /(average width of all metal layers))

After routing, the router calculates the effective resistance using the following formula:

Resistance =
((Resistivity of L1)*(L1/Width of L1)) +
((Resistivity of L2)*(L2/Width of L2)) +
((Resistivity of L3)*(L3/Width of L3))+
((Resistivity of L4)*(L4/Width of L4))

If the pin on Instance_b is an output pin, valid paths are L1 + L2 + L3 and L1 + L4.

If the pin on Instance_b is a bidirectional pin, valid paths are L1 + L2 + L3, L1 +
L4, and L4 + L2 + L3.

signal_net_name | list_of_signal_nets

Specifies a constrained net or a list of constrained nets.

COAXSHIELDVIAGAP viaGap

L1

L2

L3

L4L4

Instance_a

Instance_b

Instance_c
October 2010 794 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Specifies the gap between the via cuts that connect the top or
bottom shield to the side shield.

CONNECTCOAXSHIELDS {0|1}

Specifies whether the top or bottom shield should connect to
the side shields.

Default: 0

CONNECTSUPPLY {FLOAT | ANYPOINT}

Describes where the router connects the shield nets to the
power supply.

Specify one of the following methods:

FLOAT Does not connect the shield—leaves it float-
ing.

ANYPOINT Connects the shield to the supply at any
point along the wire.

MAXCAP maxCapacitance

Specifies the maximum capacitance allowed on the constrained
nets, in picofarads.

MAXRES maxResistance

Specifies the maximum resistance allowed on the constrained
nets, in ohms.

MINCAP minCapacitance

Specifies the minimum capacitance allowed on the constrained
nets, in picofarads.

MINCUT minCuts

Specifies the minimum number of via cuts allowed on the con-
strained net.

MINRES minRes

Specifies the minimum resistance allowed on the constrained
nets, in ohms.
October 2010 795 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
OVERHANG width Specifies one-half of the difference between the width of the
signal net and the width of the bottom and top shield nets.

ROUTELAYERS {bottom_layer:top_layer | layer_number layer_number
...}

Specifies the layers on which the constrained nets can be
routed.

SHIELDGAP spacing Specifies the distance between the shielded net (the signal net)
and the left and right shield nets (special nets), in microns.

SHIELDLAYERS integer

Indicates which sides of the noise-sensitive net are shielded by
special nets. For coaxial shielding, specify 7.

Specify one of the following values:

1 Shield on the right and left sides only

2 Shield on the bottom only

3 Shield on the bottom, right, and left sides

4 Shield on the top only

5 Shield on the top, right, and left sides only

6 Shield on the top and bottom only

7 Shield on the top, bottom, right, and left
sides

SHIELDNET special_net_name

Specifies a special net to use as a shield net.

SHIELDWIDTH width Specifies the width of the right and left shield nets, in microns.

SPACING spacing Specifies the distance between the constrained nets and other
nets, in microns.

TAPERING [[numberTaperSteps] [taperEndWidth]]
October 2010 796 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
MATCH

Defines a set of rules for constraining nets by resistance. Contains a tolerance value, by which
resistance of the nets may vary without causing a violation. Optionally, contains constraints
on width, capacitance, number of via cuts, routing layers, and spacing.

MATCH
WIDTH minWidth
TOLERANCE value
MAXRES maxResistance
MAXCAP maxCapacitance
MINRES minResistance
MINCAP minCapacitance
MINCUT minCuts
TAPERING numberTaperSteps taperEndWidth
SPACING spacing
MATCHSTYLE {ACCORDION | TROMBONE}
ROUTELAYERS {bottom_layer_num:top_layer_num | list_of_layer_numbers ...}

list_of_signal_nets
END MATCH

Specifies that the router should reduce the width of wide wires
when they connect to a pin and, optionally

The width of the wire when it connects

The number of steps the router takes to reduce the wire width.
The maximum number of steps supported is 3.

If you do not specify any parameters, the router tapers the wires
to the width of the pin in one step. If you specify only one
parameter, the router assumes it is the number of taper steps.

The width of a wire on a taper step cannot be more than three
times that of the width of the wire on a neighboring step. If you
specify values that do not meet this requirement, the router
adjusts the values to increase the number of steps. If it cannot
meet the requirement by increasing the number of steps, the
router issues a warning and does not taper the wire.

WIDTH minWidth Specifies the minimum width of the constrained (signal) nets, in
microns.

signal_net_ | ignal_ne

Specifies a constrained nets to shield.
October 2010 797 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
MATCHSTYLE (ACCORDION | TROMBONE}

Specifies whether the software generates coils orthogonal or
parallel to the router.
Default: ACCORDION

Specify one of the following values:

ACCORDION

Generates coils along the direction that is orthogonal to the
routing.

TROMBONE

Generates coils along the direction that is parallel to the
routing.

MAXCAP maxCapacitance

Specifies the maximum capacitance allowed on the constrained
nets, in picofarads.

MAXRES maxResistance

Specifies the maximum resistance allowed on the constrained
nets, in ohms.

MINCUT minCuts

Specifies the minimum number of via cuts allowed on the
constrained net.

MINRES minResistance

Specifies the minimum resistance allowed on the constrained
nets, in ohms.

ROUTELAYERS {bottom_layer_num:top_layer_num |
list_of_layer_numbers}

Specifies the layers on which the constrained nets can be
routed.

SPACING spacing Specifies the distance between the constrained nets and other
nets, in microns.
October 2010 798 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
TAPERING [[numberTaperSteps] [taperEndWidth]]

Specifies that the router should reduce the width of wide wires
when they connect to a pin and, optionally

■ The width of the wire when it connects

■ The number of steps the router takes to reduce the wire
width. The maximum number of steps supported is 3.

If you do not specify any parameters, the router tapers the wires
to the width of the pin in one step. If you specify only one
parameter, the router assumes it is the number of taper steps.

Note: The width of a wire on a taper step cannot be more than
three times that of the width of the wire on a neighboring step. If
you specify values that do not meet this requirement, the router
adjusts the values to increase the number of steps. If it cannot
meet the requirement by increasing the number of steps, the
router issues a warning and does not taper the wire.

TOLERANCE value Specifies a percentage value for the upper limit of the allowable
difference in resistance of the constrained nets.
Default: 20

For more information, see “Matched Nets” on page 782.

WIDTH minWidth Specifies the minimum width of the constrained nets, in
microns.

list_of_signal_nets

Specifies the list of constrained nets.
October 2010 799 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
DIFFPAIR

Defines a set of rules for constraining symmetrical nets by width and spacing. Contains a
threshold value by which the spacing of the nets may vary without causing a violation.
Optionally, contains constraints on maximum width, resistance, capacitance, routing layers,
minimum number of cuts, and distance from other nets.

DIFFPAIR
WIDTH minWidth
PAIRGAP spacing
THRESHOLD value
MAXRES maxResistance
MAXCAP maxCap
MINRES minResistance
MINCUT minCuts
TAPERING numberTaperSteps taperEndWidth
ROUTELAYERS {bottom_layer_num:top_layer_num | list_of_layer_numbers ...}
SHIELDGAP spacing
SHIELDNET special_net_name
SHIELDWIDTH width
SHIELDLAYERS integer
CONNECTSUPPLY {FLOAT | ANYPOINT}
COAXSHIELDVIAGAP viaGap
CONNECTCOAXSHIELDS {0|1}
OVERHANG width
SPACING spacing
{signal_net_1 | signal_net_2}

END DIFFPAIR

MAXCAP maxCapacitance

Specifies the maximum capacitance allowed on the constrained
nets, in picofarads.

MAXRES maxResistance

Specifies the maximum resistance allowed on the constrained
nets, in ohms.

MINCAP minCapacitance

Specifies the minimum capacitance allowed on the constrained
nets, in picofarads.

MINCUT minCuts

Specifies the minimum number of via cuts allowed on the
constrained net.

MINRES minResistance

Specifies the minimum resistance allowed on the constrained
nets, in ohms.
October 2010 800 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
OVERHANG width

Specifies one-half of the difference between the width of the
signal net and the width of the bottom and top shield nets.

PAIRGAP spacing Specifies the distance between the two differential pair nets, in
microns.

ROUTELAYERS {bottom_layer_num:top_layer_num | list_of_layer_numbers}

Specifies the layers on which the constrained nets can be
routed.

SHIELDLAYERS integer

Indicates which sides of the noise-sensitive net are shielded by
special nets. For coaxial shielding, specify 7.

Specify one of the following values:

■ Shield on the right and left sides only

■ Shield on the bottom only

■ Shield on the bottom, right, and left sides

■ Shield on the top only

■ Shield on the top, right, and left sides only

■ Shield on the top and bottom only

■ Shield on the top, bottom, right, and left sides

SPACING spacing Specifies the distance between the constrained nets and other
nets, in microns.

TAPERING [[numberTaperSteps] [taperEndWidth]]
October 2010 801 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Bus Shielding

Bus shielding uses the following syntax (the shielding statements are included in the BUS
constraint and are shown in bold type below):

BUS
BUSGAP spacing

Specifies that the router should reduce the width of wide wires
when they connect to a pin and, optionally

■ The width of the wire when it connects

■ The number of steps the router takes to reduce the wire
width. The maximum number of steps supported is 3.

If you do not specify any parameters, the router tapers the wires
to the width of the pin in one step. If you specify only one
parameter, the router assumes it is the number of taper steps.

Note: The width of a wire on a taper step cannot be more than
three times that of the width of the wire on a neighboring step. If
you specify values that do not meet this requirement, the router
adjusts the values to increase the number of steps. If it cannot
meet the requirement by increasing the number of steps, the
router issues a warning and does not taper the wire.

THRESHOLD value Specifies a relative tolerance value for the difference between
the longest and the shortest net. Therefore, the router attempts
to match the length of nets in the differential pair nets, unless
the difference varies by more than the threshold.

The threshold is calculated by using the following formula:

where L2 is the length of the longer net and L1 is the length of
shorter net.

For example, if the constrained nets are 24 microns and 20
microns, the threshold is calculated as (24-20)/20 = 0.2 or 20%

WIDTH minWidth Specifies the width of constrained nets, measured in microns.

signal_net_1 | signal_net_2

Specifies the constrained nets.

Threshold L2 L1–
L1

-------------------=
October 2010 802 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
COAXSHIELDVIAGAP viaGap
CONNECTCOAXSHIELDS {0|1}
CONNECTSUPPLY {FLOAT | ANYPOINT}
MAXCAP maxCapacitance
MAXRES maxResistance
MINCAP minCapacitance
MINCUT integer
MINRES minResistance
OVERHANG width
SAMELAYER {0|1}
SHIELDGAP spacing
SHIELDLAYERS integer
SHIELDNET special_net_name
SHIELDWIDTH width
SPACING spacing
TAPERING numberTaperSteps taperEndWidth
WIDTH minWidth

list_of_signal_nets
END BUS

BUSGAP spacing Specifies the spacing between the wires in the bus, in microns.

COAXSHIELDVIAGAP viaGap

Specifies the gap between the via cuts that connect the top or
bottom shield to the side shield.

CONNECTCOAXSHIELDS {0|1}

Specifies whether the top or bottom shield should connect to
the side shields.

CONNECTSUPPLY {FLOAT | ANYPOINT}

Describes where the router connects the shield nets to the
power supply.

Specify one of the following methods:

FLOAT Does not connect the shield—leaves it
floating.

ANYPOINT Connects the shield to the supply at any
point along the wire.

MAXCAP maxCapacitance

Specifies the maximum capacitance allowed on the constrained
nets, in picofarads.

MAXRES maxResistance

Specifies the maximum resistance allowed on the constrained
nets, in ohms.
October 2010 803 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
MINCAP minCapacitance

Specifies the minimum capacitance allowed on the constrained
nets, in picofarads.

MINCUT minCuts

Specifies the minimum number of via cuts allowed on the
constrained net.

MINRES minRes

Specifies the minimum resistance allowed on the constrained
nets, in ohms.

OVERHANG width Specifies one-half of the difference between the width of the
signal net and the width of the bottom and top shield nets. For
an illustration of the overhang, see the figure for “Coaxial Shield
Nets” on page 789.

SAMELAYER {0 | 1} Specifies whether all the nets in the bus must be routed on the
same layer (0) or can be routed on different layers (1).
Default: 0

SHIELDGAP spacing Specifies the distance between the shielded net (the signal net)
and the left and right shield nets (special nets), in microns.

SHIELDLAYERS integer

Indicates which sides of the noise-sensitive net are shielded by
special nets. For coaxial shielding, specify 7.

Specify one of the following values:

1 Shield on the right and left sides only

2 Shield on the bottom only

3 Shield on the bottom, right, and left sides

4 Shield on the top only

5 Shield on the top, right, and left sides only

6 Shield on the top and bottom only

7 Shield on the top, bottom, right, and left
sides

8/9 Shield on the right and left side with
interleave shielding between bus nets
October 2010 804 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
10/11 Shield on bottom, right, and left side with
interleave shielding between bus nets

12/13 Shield on top, right, and left side with
interleave shielding between bus nets

14/15 Shield on top, bottom, right, and left side with
interleave shielding between bus nets

SHIELDNET special_net_name

Specifies the nets in the bus to shield.

SHIELDWIDTH width Specifies the width of the right and left shield nets, in microns.

SPACING spacing Specifies the distance between the constrained nets and other
nets, in microns.

TAPERING [[numberTaperSteps] [taperEndWidth]]

Specifies that the router should reduce the width of wide wires
when they connect to a pin and, optionally

■ The width of the wire when it connects

The number of steps the router takes to reduce the wire width.
The maximum number of steps supported is 3.

If you do not specify any parameters, the router tapers the wires
to the width of the pin in one step. If you specify only one
parameter, the router assumes it is the number of taper steps.

Note: The width of a wire on a taper step cannot be more than
three times that of the width of the wire on a neighboring step. If
you specify values that do not meet this requirement, the router
adjusts the values to increase the number of steps. If it cannot
meet the requirement by increasing the number of steps, the
router issues a warning and does not taper the wire.

WIDTH minWidth Specifies the minimum width of the constrained (signal) nets, in
microns.
October 2010 805 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
list_of_signal_nets

Specifies the nets in the bus to shield. List the nets in
descending or ascending order. You can use the following
syntax:

■ To specify bus bits a[0] through a[15], type a[0:15].

■ To specify bus bits a[0] through a[15] in multiples of 3,
type a[0], a[3], a[6], a[9], a[11], a[14].
October 2010 806 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
SHIELDING

Defines a set of rules for protecting noise-sensitive signal nets by routing special nets nearby.

Simple Shielding

Shielding on right and left sides uses the following syntax:

SHIELDING
CONNECTSUPPLY {FLOAT | ANYPOINT}
MAXCAP maxCapacitance
MAXRES maxResistance
MINCAP minCapacitance
MINCUT minCuts
MINRES minResistance
NOSHARESHIELD {0 | 1}
ROUTELAYERS {bottom_layer_num:top_layer_num | list_of_layer_numbers}
SPACING spacing
SHIELDGAP spacing
SHIELDNET special_net_name
SHIELDWIDTH width
TAPERING numberTaperSteps taperEndWidth
WIDTH minWidth
{signal_net_name | list_of_signal_nets}

END SHIELDING

CONNECTSUPPLY {FLOAT | ANYPOINT}

Describes where the router connects the shield nets to the
power supply.

Specify one of the following methods:

FLOAT Does not connect the shield—leaves it
floating.

ANYPOINT Connects the shield to the supply at any
point along the wire.

MAXCAP maxCapacitance

Specifies the maximum capacitance allowed on the constrained
nets, in picofarads.

MAXRES maxResistance

Specifies the maximum resistance allowed on the constrained
nets, in ohms.
October 2010 807 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
MINCAP minCapacitance

Specifies the minimum capacitance allowed on the constrained
nets, in picofarads.

MINCUT minCuts

Specifies the minimum number of via cuts allowed on the
constrained net.

MINRES minRes

Specifies the minimum resistance allowed on the constrained
nets, in ohms.

NOSHARESHIELD {0 | 1}

Specifies whether shields are shared. By default, the router
shares shields when possible.

Specify 0 if you do not want the router to share shield nets.

Note: Cadence recommends you set the NOSHARESHIELD
attribute by using the Mixed Signal Router form.

ROUTELAYERS {bottom_layer_num:top_layer_num | list_of_layer_numbers}

Specifies the layers on which the constrained nets can be
routed.

SPACING spacing Specifies the distance between the constrained nets and other
nets, in microns.

SHIELDGAP spacing Specifies the distance between the shielded net (the signal net)
and the shield nets (special nets), in microns.

SHIELDNET special_net_name

Specifies a special net to use as a shield net.

SHIELDWIDTH width Specifies the width of the shield nets, in microns.
October 2010 808 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
TAPERING [[numberTaperSteps] [taperEndWidth]]

Specifies that the router should reduce the width of wide wires
when they connect to a pin and, optionally

■ The width of the wire when it connects

■ The number of steps the router takes to reduce the wire
width. The maximum number of steps supported is 3.

If you do not specify any parameters, the router tapers the wires
to the width of the pin in one step. If you specify only one
parameter, the router assumes it is the number of taper steps.

Note: The width of a wire on a taper step cannot be more than
three times that of the width of the wire on a neighboring step. If
you specify values that do not meet this requirement, the router
adjusts the values to increase the number of steps. If it cannot
meet the requirement by increasing the number of steps, the
router issues a warning and does not taper the wire.

WIDTH minWidth

Specifies the minimum width of the constrained nets, in
microns.

signal_net_name | list_of_signal_nets

Specifies a constrained net or a list of constrained nets.
October 2010 809 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Creating a Constraint File

Using the Mixed Signal Constraint Editor

➤ On the main EDI System menu, select Tools – Mixed Signal – Constraints.

The Mixed Signal Constraint Editor form is displayed.

Selecting Nets to Add to a Constraint

1. Select the tab for the type of constraint you want to create: Diff Pairs, Matched Pairs,
Route Nets, or Bus. For information on the types of constraints, see “Specialized
Constraints and Keyword Descriptions” on page 792.
October 2010 810 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
2. Click the hierarchy icon.

The Select Constraint Members form is displayed.

3. Select Net from the drop-down list.

4. Traverse the net hierarchy until you see the name of the net (or nets) you want to
constrain.

5. Select a net and click Add. The net is added to the Constraint Members List.

6. Repeat step 5 until you have added all the nets for the constraint to the Constraint
Members List.
October 2010 811 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
7. Click Apply. The nets are added to the Constraint Members text entry box on the Mixed
Signal Constraint Editor form.

Entering Values for Constraint Parameters

1. Enter values for the appropriate parameters on the Mixed Signal Constraint Editor form.
For example, to constrain the net width to 0.4 microns and the spacing to 0.28 microns,
type.4 in the Width text entry box and.28 in the Spacing text entry box.
October 2010 812 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
2. Click Add/Update. The constraint is added to the Constraint List on the Mixed Signal
Editor form.

3. Repeat the steps in “Selecting Nets to Add to a Constraint” on page 810 and “Entering
Values for Constraint Parameters” on page 812 for each constraint.

4. After creating all the constraints and adding them to the Constraint List, click the Display
button on the Mixed Signal Constraint Editor form to see the Display All form. The form
lists the constraints, including all the parameter values, on one page. You cannot make
any changes to the constraints from the Display All form, but you can see and compare
values to make sure they are correct.
October 2010 813 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
The following figure shows the left-hand portion of the Display All form.

Saving the Constraint to the Constraint File

At this point the constraints are not yet saved in a constraint file. To save the file, complete the
following step:

➤ On the Mixed Signal Constraint Editor form, click the Apply button.

The software saves the constraint file with the name
topLevelCellName.msroutenumber.const.

Every time you click Apply, the software increments number.

Using a Text Editor

Start a text editor and create a constraint file using the syntax described in “Specialized
Constraints and Keyword Descriptions” on page 792.
October 2010 814 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Loading a Constraint File

Using the Mixed Signal Constraint Editor Form

1. On the main EDI System menu, select Tools – Mixed Signal – Constraints.

The Mixed Signal Constraint Editor form is displayed.

2. Click Load.

The Load MS Constraint File form is displayed. Constraint files have a.const extension.

3. On the Load MS Constraint form, select the appropriate constraint file.

4. Click Open.

The software populates the appropriate fields on the Mixed Signal Constraint Editor form
with information from the constraint file you selected.

Using the Mixed Signal Router Form

1. On the main EDI System menu, select Route – Mixed Signal – Route.
October 2010 815 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
The Mixed Signal Router form is displayed.

2. Select the Route Constraint File option.

3. Click the folder icon.

The Mixed Signal Router Constraint File form is displayed. Constraint files have
a.const extension.

4. On the Mixed Signal Router Constraint File form, select the appropriate constraint file.

5. Click Open.

The software populates the Route Constraint File text entry field on the Mixed Signal
Router form with the constraint file you selected.

Complete one of the following steps:

➤ Click Enter/Edit Routing Constraints.

The Mixed Signal Constraint Editor form is displayed, and the appropriate fields are
populated with the information from the constraint file. You can now edit the constraints.
October 2010 816 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
➤ Click Parse Nets from Route Constraint File.

The constraints are saved to the database when they are parsed. The nets are listed in
the Specify Nets text entry box. You can now select and edit the list of nets to route.

Using the routeMixedSignal Command

Type the following command:

routeMixedSignal -constraintFile fileName

For more information, see routeMixedSignal in the EDI System Text Command
Reference.
October 2010 817 Product Version 9.1.3

../fetxtcmdref/mixedsignalT.html#routeMixedSignal

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Editing a Constraint File

Using the Mixed Signal Constraint Editor

1. Load the constraint file using one of the methods described in “Loading a Constraint File”
on page 815.

2. Select Enter/Edit Routing Constraints on the Mixed Signal Router form.

The Mixed Signal Constraint Editor form is displayed, with the constraints listed in the
Constraint List and constrained nets displayed in the Constraint Member text entry
box.

3. Select the appropriate tab for the type of constraint to edit: Diff Pairs, Matched Pairs,
Route Nets, Shield Nets, or Bus.

Editing an Existing Constraint

1. Select a constraint from the Constraint List.

The names of the nets in the constraint are displayed in the Constraint Member List,
and the constraint parameter values are displayed for each option.

You can change any of the parameter values of the selected constraint, you can copy the
constraint and use it as the basis for a new constraint, or you can delete it.

❑ To change the value for a constraint option, highlight the option value, delete it, type
in a new value, and click Add/Update.

❑ To copy a constraint and use it as the basis for a new constraint, highlight a
constraint on the Constraint List, click Copy, delete the net names in the
Constraint Members text entry box, and select other nets to constrain.

❑ To delete a constraint, highlight it on the Constraint List and click Delete.

2. When you finish editing the constraints, click Apply.

Creating a Constraint to Add to the Constraint File

1. Click the Create button to clear the fields on the Mixed Signal Constraint Editor form.

2. Follow the steps in “Selecting Nets to Add to a Constraint” on page 810, “Entering Values
for Constraint Parameters” on page 812, and “Saving the Constraint to the Constraint
File” on page 814.
October 2010 818 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Using a Text Editor

Open the constraint file in a text editor and edit it, following the syntax in “Constraint File
Format” on page 791. Save the file with a.const extension.
October 2010 819 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
Sample Constraint File
DIFFPAIR

WIDTH 0.200000
PAIRGAP 0.100000
THRESHOLD 20
MAXRES 400.000000
MAXCAP 500.000000
MINRES 2.000000
MINCUT 1
SHIELDNET VSS
SHIELDWIDTH 0.200000
SHIELDGAP 0.100000
CONNECTSUPPLY FLOAT
SHIELDLAYERS 2
DTMF_INST/digsynca DTMF_INST/digsyncd

END DIFFPAIR

DIFFPAIR

WIDTH 0.200000
PAIRGAP 0.100000
THRESHOLD 20
MAXRES 400.000000
MAXCAP 500.000000
MINRES 2.000000
MINCUT 1
DTMF_INST/digsyncc DTMF_INST/digsyncb

END DIFFPAIR

MATCH

WIDTH 0.200000
TOLERANCE 20
MINCUT 1
DTMF_INST/digsync1 DTMF_INST/digsync2 DTMF_INST/digsync3 DTMF_INST/digsync44

END MATCH

MATCH

WIDTH 0.200000
TOLERANCE 20
MINCUT 1
DTMF_INST/digsync3 DTMF_INST/digsync4

END MATCH

NETS

WIDTH 0.200000
SPACING 0.200000
MINCUT 2
ROUTELAYERS M2:M5
CONNECTCOAXSHIELDS 1
SHIELDNET xi_rd_ana_top/IBIAS_10U_EXTR_ADC_SHLD[1]
SHIELDWIDTH 0.200000
SHIELDGAP 0.200000
October 2010 820 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
CONNECTSUPPLY FLOAT
SHIELDLAYERS 2
xi_rd_ana_top/IBIAS_10U_EXTR_ADC[1]

END NETS

NETS

WIDTH 0.200000
SPACING 0.200000
MINCUT 2
ROUTELAYERS M2:M5
CONNECTCOAXSHIELDS 1
SHIELDNET xi_rd_ana_top/IBIAS_10U_PRE_SHLD
SHIELDWIDTH 0.200000
SHIELDGAP 0.200000
CONNECTSUPPLY FLOAT
SHIELDLAYERS 2
xi_rd_ana_top/IBIAS_10U_PRE

END NETS

SHIELDING

SHIELDWIDTH 1.000000
MINCUT 1
CONNECTSUPPLY ANYPOINT
SHIELDLAYERS 7
SHIELDNET AVSS
analogE4I analogE3I analogE2I analogE1I

END SHIELDING

SHIELDING

SHIELDWIDTH 1.200000
MINCUT 1
CONNECTSUPPLY ANYPOINT
SHIELDLAYERS 7
SHIELDNET AVSS
analogW4I analogW3I analogW2I analogW1I

END SHIELDING

SHIELDING

SHIELDWIDTH 0.500000
MINCUT 1
CONNECTSUPPLY FLOAT
SHIELDLAYERS 7
SHIELDNET AVSS
analogS4I analogS3I analogS2I analogS1I

END SHIELDING

BUS

WIDTH 0.460000
BUSGAP 0.460000
October 2010 821 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
SPACING 0.460000
MINCUT 1
DTMF_INST/dxout[14] DTMF_INST/dxout[0] DTMF_INST/dxout[1] DTMF_INST/dxout[2]
DTMF_INST/dxout[3] DTMF_INST/dxout[4] DTMF_INST/dxout[5] DTMF_INST/dxout[6]
DTMF_INST/dxout[7] DTMF_INST/dxout[8] DTMF_INST/dxout[9] DTMF_INST/dxout[10]
DTMF_INST/dxout[11] DTMF_INST/dxout[12] DTMF_INST/dxout[13] DTMF_INST/
dxout[15]

END BUS

BUS

WIDTH 0.460000BUSGAP 0.460000
SPACING 0.460000
MINCUT 1
DTMF_INST/dout[15] DTMF_INST/dout[14] DTMF_INST/dout[13] DTMF_INST/dout[12]
DTMF_INST/dout[11] DTMF_INST/dout[10] DTMF_INST/dout[9] DTMF_INST/dout[8]
DTMF_INST/dout[7] DTMF_INST/dout[6] DTMF_INST/dout[5] DTMF_INST/dout[4]
DTMF_INST/dout[3] DTMF_INST/dout[2] DTMF_INST/dout[1] DTMF_INST/dout[0]

END BUS

BUS

WIDTH 0.500000
USGAP 0.500000
SPACING 0.600000
MINCUT 1
DTMF_INST/a[7] DTMF_INST/a[6] DTMF_INST/a[5] DTMF_INST/a[4] DTMF_INST/a[3]
DTMF_INST/a[2] DTMF_INST/a[1] DTMF_INST/a[0]

END BUS

BUS

WIDTH 0.500000
USGAP 0.500000
SPACING 0.600000
MINCUT 1
DTMF_INST/cntrlyo[7] DTMF_INST/cntrlyo[6] DTMF_INST/cntrlyo[5] DTMF_INST/
cntrlyo[4] DTMF_INST/cntrlyo[3] DTMF_INST/cntrlyo[2] DTMF_INST/cntrlyo[1]
DTMF_INST/cntrlyo[0]

BUS

WIDTH 0.5
USGAP 0.5
SPACING 0.6
MINCUT 1
SHIELDNET gnd
SHIELDWIDTH 0.5
SHIELDGAP 0.2
CONNECTSUPPLY ANYPOINT
SHIELDLAYER 1
DTMF_INST/cntrlxo[7] DTMF_INST/cntrlxo[6] DTMF_INST/cntrlxo[5]
DTMF_INST/cntrlxo[4] DTMF_INST/cntrlxo[3] DTMF_INST/cntrlxo[2]
DTMF_INST/cntrlxo[1] DTMF_INST/cntrlxo[0]

END BUS

BUS
October 2010 822 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
WIDTH 0.460000
USGAP 0.460000
SPACING 0.460000
MINCUT 1
DTMF_INST/cntrlxo[15] DTMF_INST/cntrlxo[14] DTMF_INST/cntrlxo[13] DTMF_INST/
cntrlxo[12] DTMF_INST/cntrlxo[11] DTMF_INST/cntrlxo[10] DTMF_INST/cntrlxo[9]
DTMF_INST/cntrlxo[8] DTMF_INST/cntrlxo[7] DTMF_INST/cntrlxo[6] DTMF_INST/
cntrlxo[5] DTMF_INST/cntrlxo[4] DTMF_INST/cntrlxo[3] DTMF_INST/cntrlxo[2]
DTMF_INST/cntrlxo[1] DTMF_INST/cntrlxo[0]

END BUS
October 2010 823 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using the Encounter Mixed Signal Router
October 2010 824 Product Version 9.1.3

Encounter Digital Implementation System User Guide
23
Digital Mixed Signal Flow

■ Overview on page 827

■ Design Data and Technology Data Preparation on page 830

❑ Software Requirements on page 830

❑ Generic Guidelines to Run the DMS Flow on page 830

❑ Technology Library Preparation on page 832

❑ IP Library Preparation on page 843

■ Flow to Convert the EDI System Database to OpenAccess Database on page 845

■ DMS Floorplanning Flow on page 846

❑ DMS Flow Diagram on page 847

❑ Verilog Netlist Creation on page 848

❑ Floorplanning of Verilog Netlist Using Blackboxes on page 849

❑ Generate From Source for Soft Analog Block Layout Using Virtuoso on page 853

❑ Load Physical View to Merge Optimized Pin Locations and Block Boundary on
page 857

❑ Physical Implementation of Soft Analog Blocks Using Virtuoso on page 859

❑ Assembling the Design on page 861

❑ Quick Abstract Inference on page 862

■ Static Timing Analysis for Mixed-Signal Designs on page 867

❑ The FTM Generation Flow Diagram on page 867

❑ Guidelines to Run FTM-Based STA Flow on page 868

❑ Steps to Run Static Timing Analysis on page 869
October 2010 825 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
■ Chip Finishing and ECO Flows on page 874

❑ Virtuoso-Based ECO Flow on page 875

❑ EDI System-Based ECO Flow on page 877
October 2010 826 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Overview

Most of today’s designs are mixed signal, and the mixed-signal implementation remains one
of the biggest design challenges. A typical chip design today is a complete system with
millions of gates that make up large numbers of DSPs, memories and processors, all of which
must interface with the real world through displays, antennas, sensors, and cables. This
requires integration of analog and digital content, without compromising performance or size,
and on a technology scale that dramatically increases vulnerability to process and electrical
variation.

These challenges to mixed-signal design are real. With process technologies moving to 65nm
and below, the cost of design re-spins and increases exponentially. Over 50 percent of design
re-spins at 65nm and below are due to mixed-signal functionality, with an estimated additional
cost and a delay in product rollout. Designers require new implementation methodologies that
will help solve these potential problems.

Currently, the majority of mixed-signal chip implementation planning is done by hand, which
is a slow and laborious process that can lead to design errors and numerous iterations.
During final assembly, the completed blocks are also placed and routed manually without aid
of designrule-correct automation.

Big analog designs with digital blocks starts with schematic design in Virtuoso and then
iterates over the floorplanning steps by manually placing the blocks as per design architecture
and assigning pins for the blocks which could be analog as well as digital. Additionally, in the

S1 S2 S3 S4

Audio

Modem
RF

PLL

SIM

USB

DSP

Image
Proces--
sor

Memory

TV

USB

I/O keypad

LCD
October 2010 827 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
beginning of the design cycle you just have the top-chip floorplan and do not have much
insight into the design implementation details.

Analog-on-Top (AoT) and Digital-on-Top(DoT) are block-based methodologies sufficient for
many designs when functionality can be contained in blocks with few analog-digital interfaces
not critical for design performance. AoT is a methodology used to implement mixed-signal
designs that have a large analog content and a smaller digital (A/d) content. DoT is a
methodology used to implement designs that have a large digital content and a smaller
analog (D/a) content. However, for more complex or higher performance designs, this new
methodology for concurrently optimizing analog and digital parts of design are required.
Using the digital mixed-signal floorplanning flow, you get the capability of handling large
number of uncertainties. The manual-interactive design methodology used for A/d designs
becomes ineffective when the digital content grows. One of the main drivers for DMS flow is
more automated floorplanning, pin assignment, and so on.

Mixed Signal Data and Analysis Management

Models

Extraction

Analysis Digital and
D/MS

Analog and
A/MS

RF and
RF/MS

Full-chip/system specification

Silicon-
Accurate
Analysis

Simulation Physical Design

Behavioral HDL

Caliberated HDL

FastSpice

Transistor

Mixed
Level

Floorplan/
Route

Preliminary
estimate

Pre-layout
abstract

Post-layout
abstract

Mixed
Level

Top-
Down
Speed

Bottom-
Up
Accuracy
October 2010 828 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
The biggest challenge today is getting a complex mixed signal design assembled and fully
validated for tapeout. The architectures are too complex and too many decisions to be taken,
to meet design budgets with anything less than a fully automated, front-to-back mixed signal
design solution. Low power for mixed signal designs, such as wireless applications are
extremely sensitive to power, and the EDI System brings the full force of the digital low power
solution to mixed signal designs.

In the analog mixed-signal designs, the digital logic is placed inside the analog mixed signal
hierarchy and there is a need to accurately analyze the entire digital logic paths during full-
chip Static Timing Analysis (STA).

Generation of dotlib Liberty models of the complete analog mixed-signal block is a challenge
as the dotlib information needs to be manually generated from extraction and Spice
simulation results.

Ignoring the digital paths or stopping the timing analysis at the boundary of analog mixed
signal block, and leaving large design margins has direct impact on design performance. A
solution is required to enable mixed-signal design teams to easily execute comprehensive
top-level STA including the entire digital logic in the chip.

Another challenge is that design methodologies of analog mixed signal blocks follow full-
custom design flow using Virtuoso platform which poses a challenge in extracting a
hierarchical netlist information as well as parasitic information of all the nets. Therefore, it
becomes difficult to understand the embedded digital logic within the analog design hierarchy.

The Full Timing Model (FTM) generation for analog mixed-signal block is the first step towards
enabling accurate static timing analysis and timing-driven physical implementation for mixed
-signal designs.

Cadence is addressing this challenge by introducing a new flow that interfaces the industry
leading Virtuoso and Encounter Digital Implementation System (EDI System) platforms
through industry standard OpenAccess database. In the new floorplanning flow, both analog
and digital blocks can be floorplanned, much earlier in the design cycle when the details of
these blocks are not available and then defined as blackboxes to start the design. The design
is taken from one platform to another to enable all analysis steps, possible in the two
platforms, thereby enabling you to make adjustment and more intelligent tradeoffs. For
example, after the top-level schematic is ready, you can run OpenAccess-based applications
to generate Verilog for the top level, stitch the Verilog of the available modules, import in EDI
System for blackbox-based high capacity, congestion, and (if required) perform timing-driven
floorplanning to enable floorplanning of all the blocks. This helps determine better placement
for blocks, pin locations, routing interface nets, lower routing congestion, and so on. This new
flow reduces number of iterations between analog and digital designs, particularly during
floorplanning, chip integration and early-and-late small/big ECOs.
October 2010 829 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Design Data and Technology Data Preparation

This section contains the following:

■ Software Requirements on page 830

■ Library and Technology Requirements on page 830

■ Generic Guidelines to Run the DMS Flow on page 830

■ Technology Library Preparation on page 832

■ IP Library Preparation on page 843

Software Requirements

The following libraries are required to build the flow:

■ OpenAccess2.2 with Data model 4 support

■ EDI System 9.1 with IC 6.1.3 installation

■ EDI System 9.1.2 with IC 6.1.4 installation

■ Technology and IP data on OpenAccess 2.2 format

■ Liberty timing library for standard cells and all IP blocks and chip level SDC file

■ Extended FE Capacitance table and QRC technology file to support extraction in EDI

Library and Technology Requirements

■ Technology and IP data on OpenAccess 2.2 Data Model 4 format

■ Liberty timing library for standard cells and IP blocks and chip-level SDC file. If you do
not have Liberty files and the chip-level SDC file, then it will not be possible to perform
static timing analysis of the top-level design.

■ Extended FE capacitance table and QRC technology file to support extraction in EDI
System.

■ Power analysis libraries for enabling VoltageStorm analysis in EDI System.

Generic Guidelines to Run the DMS Flow

Consider the following guidelines before running the DMS flow:
October 2010 830 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
■ Designs can have black boxes, full custom analog blocks, custom digital blocks, and all
interoperable custom shapes physically located in the top cell instance. Logical hierarchy
in the design netlist is also supported.

■ While working in Virtuoso, neither copy a library or cell or a view in EDI System nor save
it by changing the cell name. This can cause problems while reading the changed cell
view in EDI System.

■ Always use restoreOaDesign to load a library or cell or a view in EDI System. This
command overrides the library/cell/view related variables specified in the configuration
file which is located inside the library/cell/view.

■ Use the loadConfig and oaIn commands only while creating a new design library or
while importing a design for the first time in EDI System.

■ The routing layer and its corresponding purpose, for example, drawing, pin, and so on
in the OpenAccess database can be interoperated using EDI System. If a pin or net
geometry is found for any routing layer on any other purpose at the top level, it will be
converted to drawing purpose while interoperating the data using EDI System.

Interoperability of Constraint Groups and Non-Default Rules between Virtuoso and EDI
System

EDI System uses the following guidelines while reading constraint groups (the physical DRC
rules) from OpenAccess database for using them as non-default rules within the same EDI
System session:

■ The OpenAccess constraint group should not be a technology-specific constraint group.

■ A constraint group should not have another nested/hierarchical constraint group within it.

■ A constraint group should have all valid routing layers defined in it with minumum routing
width defined for each layer. All the routing layers should have material type as metal.
You can also use polysilicon layer for routing by attaching the following LEF property:

LEF_58PROPERTY “POLY_ROUTING”

■ A constraint group should have valid routing vias defined for each pair of routing layer in
the validVia list.

You can obtain a list of non-default rules using the dbGet head.rules command in EDI
System.

Note: Constraint groups having mixed-signal constraint are identified, if any constraint inside
a constraint group has a name starting ms. EDI System treats it as a mixed-signal constraint
group and it is read as mixed-signal routing rule.
October 2010 831 Product Version 9.1.3

../fetxtcmdref/importT.html#restoreOaDesign
../fetxtcmdref/importT.html#oaIn
../fetxtcmdref/importT.html#loadConfig

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Note: You can confirm the non-default rule by writing the DEF file from an EDI System
session, which has the complete definition of non-default rules and the nets using these non-
default rules.

Example
- CLK (PIN CLK)
+ SHIELDNET VSS
+ NONDEFAULTRULE doublewidth ;

For more information about non-default rules in DEF, see LEF/DEF Language Reference.

Technology Library Preparation

This section provides guidelines on importing a standard cell library and other IPs so that they
can be used in EDI System/Virtuoso design flow enabled with OpenAccess reference and
design libraries.

OpenAccess, using Incremental Technology Database (ITDB) enables you to manage
multiple technology libraries. This simplifies the management of a complex system of libraries
which have few variations in their process definition or routing rules.

In case of Non Default Rules: In EDI System, all the non-default rules on the nets which do
not have parameters, such as width, spacing, and so on, for all the routing and cut layers
defined in the technology database are treated as special objects when imported with
setOaxMode -updateMode true. In addition, the geometries on these nets are marked
fixed and cannot be modified by the automatic routers.

If setOaxMode -updateMode is set to false while reading the database, a warning
message is displayed indicating that routing with the incomplete Non Defaul Rule with
missing parameters for routing and cut layers will be converted to SPECIALNETS and marked
as COVER. The incomplete Non Default Rule (Constraint Group) on the net will be lost during
translation.

ITDB Overview

The fabrication units support multiple variants of a process node. For example, a 90 nm base
process might have additions to address RF, high speed, and low power applications. There
might also be variations on the use of metal layers which can cause variations in the top-layer
definitions. ITDB can be used to separate general process data and design specific
technology data.
October 2010 832 Product Version 9.1.3

../lefdefref/DEFSyntax.html#NondefaultRules

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
To manage these variations, the design libraries might be bound to use an ordered hierarchy.
The technology data is inherited and can override previous definitions given a defined
precedence. This approach minimizes the amount of duplication needed to manage a family
of processes.

The following figure shows how a base PDK contains a full process technology file and device
library while the ITDB PDK inherits the base PDK technology data and defines the additional
technology information specific to the automatic place-and-route flow including the
generation of standard cell library using LEF, which has information such as sites, routing
pitches, and vias:

Simple ITDB Structure

The I/O Library and Memory Library would typically point to the Full Custom PDK unless they
require sites or NDRs declared in the NDR and standard library. If the sites are in the PnR
PDK, then the NDR and Standard cell, I/O, and memory libraries could point to the PnR PDK.
The NDRs could typically be in the PnR PDK or they could be in design-specific libraries,
stored in the design library.

OpenAccess
Full Custom
PDK (lib1)

PnR PDK
(lib2)

NDR and
Standard Cell
Library (lib3)

Design
Library

I/O Library
Memory
Library
October 2010 833 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
ITDB Structure for Multi-Metal Options

For more information about ITDB and ASCII technology file syntax, refer to Virtuoso
Technology Data User Guide.

To import the technology LEF, run the following command:

lefin –lef tech lef file names -lib lib2 -techRefs lib1

To import NDR and standard cell LEF, run the following command:

lefin –lef lef file names -lib lib3 -techRefs lib2

The memory and I/O IP libraries share the ITDB lib3 PDK information while the design
library can have some additional technology data that results from additional design-specific
via definitions or routing-constraint groups.

6-metal designLib
tech.db

7-metal
tech.db

standard cells
tech.db

device_1
tech.db

device_2
tech.db

basic
tech.db

base Full Custom techLib
tech.db

7-metal designLib
tech.db

6-metal
tech.db

Graph followed for 6-metal process Graph followed for 7-metal process

Specific to
7-metal process

Specific to
6-metal process

Shared
October 2010 834 Product Version 9.1.3

http://support.cadence.com/wps/myportal/cos/!ut/p/c5/dY1JloIwAAXP4gH6JUwhLAmjDdFGkQ5sfAEFkUlBQDl92wfw17rqgwS8aflUFvxRdi2vAQMJOgqiYwieDDUoawiKkU2p7BkS1AXw-2-gI_wwHYIYJOrHQiCCqO365v0UAhZlg2IO69myzN0g6cTE_Bza-n1bdKPshtvEeLpPepGt06lF-2teLyqlHi6_0lhTR8JR4OWHYjRfknhjy0LCA5QvjcjYneE4IryJm-si9HY9pbmfKvP00_F5Jz66zHK-N0HlE5SEr5JYFPt9ZhtOBTlTctPR1i-X4hXYuF1zBreqXWysr_4AhOiikg!!/dl3/d3/L2dBISEvZ0FBIS9nQSEh/
http://support.cadence.com/wps/myportal/cos/!ut/p/c5/dY1JloIwAAXP4gH6JUwhLAmjDdFGkQ5sfAEFkUlBQDl92wfw17rqgwS8aflUFvxRdi2vAQMJOgqiYwieDDUoawiKkU2p7BkS1AXw-2-gI_wwHYIYJOrHQiCCqO365v0UAhZlg2IO69myzN0g6cTE_Bza-n1bdKPshtvEeLpPepGt06lF-2teLyqlHi6_0lhTR8JR4OWHYjRfknhjy0LCA5QvjcjYneE4IryJm-si9HY9pbmfKvP00_F5Jz66zHK-N0HlE5SEr5JYFPt9ZhtOBTlTctPR1i-X4hXYuF1zBreqXWysr_4AhOiikg!!/dl3/d3/L2dBISEvZ0FBIS9nQSEh/

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
It is recommended to run the verilogAnnotate command on all the abstract views of the
reference libraries to annotate the bus order on the macro abstract views.

verilogAnnotate –refLibs MacroLibraryNamesList \

-verilog verilog containing empty module definitions \

-refViews view name on which netlist has to be annotated

Important

For the interoperable flow between Virtuoso and Encounter, it is highly
recommended to run the above-mentioned lefin flow steps so that custom vias
get added for the digital router, NanoRoute.

The use of ITDB allows access permissions for the base PDK to differ from libraries defined
using the Reference existing technology libraries option. This allows the base PDK in the
above figure to remain locked while enabling additions and changes to the new library.

When a new library is defined using the Attach to an existing technology library option,
the access permissions for modifying the new library’s technology file are restricted to those
defined for the attached library.

Managing the LEF Technology Data

Before importing LEF, review the LEF technology data and the base PDK ASCII technology
file and ensure that they are in sync. If the libraries are not in sync, the resulting design data
appears distorted due to scaling problems or might have the routing DRCs resulting from
incomplete LEF technology data.

Ensure that all the layers and all the default vias exist in the LEF file which is being used for
creating Incremental Technology OpenAccess Database.

Follow these guidelines while reviewing the LEF technology data and the base PDK
technology file:

Case Sensitivity

OpenAccess is case sensitive. Therefore, the NAMESCASESENSITIVE statement is ignored
in case of LEF version 5.5 and above. Ensure that the layer names in the base PDK
technology file are consistent with those in LEF.
October 2010 835 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Units

Base PDK Technology File:

Dump the base PDK technology file and search for the viewTypeUnits section for the
defined value of maskLayout.

viewTypeUnits(
;(viewType userUnit dbuperuu)
;(-------- -------- --------)
(maskLayout "micron" 1000)
(schematic "inch" 160)
(schematicSymbol "inch" 160)
(netlist "inch" 160)

) ;viewTypeUnits

If maskLayout does not appear, the default value of dbuperuu is 1000.

LEF File:

UNITS
DATABASE MICRONS 2000;

END UNITS

In this example, the LEF statement does not match the base PDK dbuperuu value and you
need to change the value of LEF units to 1000. This change works when there are no LEF
values which make use of the higher resolution.

Note: The units section should be present only in the technology file.

Manufacturing Grid

Base PDK Technology File:

Check for mfgGridResolution in the base PDK technology file. The value of
mfgGridResolution should be consistent with the dbuperuu value specified in the LEF
units statement.

mfgGridResolution(
(0.005)

) ;mfgGridResolution

LEF File:

MANUFACTURINGGRID 0.0005

In this example, the LEF units statement is smaller than the base PDK manufacturing grid
resolution. Therefore, the LEF MANUFACTURINGGRID value must be changed to 0.005. This
change works only when there are no coordinates in the MACRO definitions with values which
make use of smaller manufacturing grid.
October 2010 836 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
LEF Layer-Specific Data

While using ITDB with LEF Import, the LEF technology data such as layer, resistance,
capacitance, edge capacitance, height, and thickness must match the values which are in the
base PDK technology file. If they do not match or are missing in the base PDK technology
file, LEF Import reports these differences as errors. These differences need to be resolved by
modifying the LEF file to match the base PDK technology file or by overwriting the values in
the base PDK technology file. Ensure that you consult your IP and foundry providers while
determining the values.

Atleast one technology library in the technology graph should have a constraint group called
LEFDefaultRouteSpec. The syntax should be as follows:

(“LEFDefaultRouteSpec”

...

)

Guidelines for Defining the LefDefaultRouteSpec Constraint Group

While defining the LEFDefaultRouteSpec constraint group, ensure that:

■ LEFDefaultRouteSpec must be complete while using ITDB.

Important

Partial or incremental LEFDefaultRouteSpec constraint group is not allowed.

■ LEFDefaultRouteSpec constraint group must be defined in atleast one of the
technology libraries in the technology graph.

Note: If multiple definitions of LEFDefaultRouteSpec constraint group exist, the one
which is top-most in the chain is read and others are ignored. This means that a
LEFDefaultRouteSpec constraint must be complete with all validLayers and
validVias in one constraint group.
October 2010 837 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
In the figure below, the LEFDefaultRouteSpec constraint group would be read from
the technology library lib3. If not found in lib3, it is taken from lib2. If not found in
lib2, it is taken from lib1.

■ While starting with the ASCII technology file, if LEFDefaultRouteSpec constraint
group is already defined in any of the previous technology libraries in the ITDB chain, use
the following syntax to redefine this constraint group in the next technology library in the
ITDB graph. For example, in the above figure, if lib1 already contains the
LEFDefaultRouteSpec constraint group, then you can define this constraint group in
lib2 or lib3 following the syntax as below:

;(group [override])
;(----- ----------)
("LEFDefaultRouteSpec_newlibname" nil "LEFDefaultRouteSpec"
….

) ;LEFDefaultRouteSpec_newlibname

Here, newlibname is the new library name being created. For example, lib2 or lib3.
This library must refer to an already existing technology library which contains the
LEFDefaultRouteSpec constraint group.

OpenAccess
Full Custom
PDK (lib1)

PnR PDK
(lib2)

NDR and
Standard
Library (lib3)

Design
Library

I/O Library
Memory
Library
October 2010 838 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Important

The keyword newlibname should be same as the new library name being created
using the ASCII technology file.

Note: Ensure that LEFDefaultRouteSpec constraint is defined in the
constraintGroups section of ASCII technology file. EDI System reads the list of routing
layers from the validLayers list of the LEFDefaultRouteSpec and
LEFSpecialRouteSpec constraintGroups. If there are layers in validLayers
constraint in LEFSpecialRouteSpec, then the top routing layer is set to the highest layer
defined in LEFDefaultRouteSpec. This allows NanoRoute to route using layers from
LEFDefaultRouteSpec constraint group. Other layers in LEFSpecialRouteSpec can be
used by fcroute.

LEF Vias

The base PDK technology file and the library resulting from LEF import contains vias which
are used for the device level and cell-level routing respectively.

For more information about the mapping of LEF via data to the Virtuoso technology file, see
Design Data Translator’s Reference.

LEF Sites

All site definitions used by a design must reside in the library defined with the technology LEF.
Site information is stored in the technology file and not in a cellview. The list of LEF sites is
present in the technology file in the siteDefs section. This is visible when dumping the
technology file.

The syntax for SITE information in LEF is:

SITE coreSite
SYMMETRY y ;
CLASS core ;
SIZE 0.660 BY 5.040 ;
END coreSite

The resulting syntax in the dumped technology file is:

;********************************
; SITEDEFS
;********************************

siteDefs(
scalarSiteDefs(
;(siteDefName type width height symInX symInY symInR90)
;(----------- ---- ----- ------ ------ ------ -------)
(coreSite core 0.66 5.04 nil t nil)
October 2010 839 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
) ;scalarSiteDefs
) ;siteDefs

Important

To get the basic template of ASCII technology file, refer to GPDK libraries.

LEF Macro Data

The standard cell macro data might be in the same file as the technology LEF. If it is present
in the same file, then a single LEF Import is required to generate a library of cells with abstract
views.

While managing IO, memories, or other IP in separate libraries, create each IP library as an
attached library. The attached library is specified in the Target Tech Library Name field on
the Virtuoso LEF In form.

The SITE defined in the IO LEF will be added to the target technology library which is the
same one used to define the standard cell and the technology LEF.

LEF Antenna Data

The standard cell antenna LEF might be imported to the standard cell library without selecting
the Overwrite option on the Virtuoso LEF In form.

LEF Bus Pins

When using EDI System with OpenAccess, the bus pin order must be annotated into the
abstract using the verilogAnnotate utility. This step is done after importing the LEF macro
data and prior to running saveOaDesign in EDI System. Failure to complete this step on
macros with the bus pins causes EDI System to display a warning message.

To prevent this warning, a Verilog stub file is needed for each macro with bus pins. This might
be derived from the symbol view using the Create–Cellview–From Cellview menu
command.

Run verilogAnnotate using the following steps:

$CDSHOME/share/oa/bin/verilogAnnotate \
-refLibs reference_library_name \
-verilog stub.v

where, stub.v contains the module definitions with only port list, input/output direction and
bus definitions of the referenced blocks.
October 2010 840 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
LEF Import

LEF data is split into multiple files to separate technology data from different library
components, such as, multi-VT libraries for low-power applications, memories, I/Os, and so
on. While there are several different approaches for running LEF Import, the recommended
approach is to use ITDB and the Virtuoso LEF Import.

The following is the basic flow:

1. Choose Tools–Technology File Manager to dump the base PDK ASCII technology
file.

2. Compare the base PDK ASCII technology file to the LEF technology data and make
modifications, if they are not in sync.

3. Use the Reference existing technology libraries option to define a new library and
reference the base PDK technology library.

4. Run File–Import–LEF to import:

a. Technology LEF and target the new library.

b. Standard cell library LEF and target the new library.

c. Standard cell LEF with antenna data and target the new library.

LEF Export

After importing technology, macro, and antenna LEF data into OpenAccess database, to
confirm that the resulting OpenAccess database is complete, do the following:

$CDSHOME/lnx86/tools/dfII/bin/lefout –lef Std_cell.lef –lib Std_cell

Review the resulting data in the Std_cell.lef and oa2lef.log file.

Alternatively, you can use File–Export–LEF from the Virtuoso CIW window.

GDSII Import

Locate the layer and font mapping files provided with the library IP. Verify that all layer names
are available in the base PDK technology file. OpenAccess is case sensitive so correct any
case sensitive differences in the mapping file prior to using File–Import–Stream.

For more information, see Design Data Translator’s Reference.
October 2010 841 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
CDL or Spice Import

Symbol views might be created from the schematics generated with SpiceIn. These views are
often provided by the IP library provider and might be copied to your design library using Linux
tar commands.

For a detailed explanation of how CDL or Spice netlists are mapped to an Open Access
database, refer to the Design Data Translator’s Reference.

Inherited Connections

Virtuoso makes use of inherited connections to manage global connections with the use of
properties on schematic, symbol, layout, and abstract views. This methodology requires
modifying the power and ground pins on all of these views using SKILL. Here is an example
of a SKILL function for adding an inherited connection net expression for a VDD pin to a single
library cell:

viewList = list(“abstract” “layout” “schematic”)
foreach(V viewList
cv = dbOpenCellView(“lib” “cell” V "" "a")
T = dbFindTermByName(cv "VDD")
dbCreateTermNetExpr(T "[@VDD:%:VDD!]")
; perform schematic checks
if V==”schematic” then schCheck(cv)
dbSave(cv)
dbPurge(cv)
)

October 2010 842 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
IP Library Preparation

1. For opening a design in EDI System, ensure that the IP library contains the abstract
views of all IP blocks used at the top level in the design.

While opening an already existing OpenAccess design database, EDI System uses
rda_Input(ui_oa_reflib) list and the rda_Input(ui_oa_abstractname)
variable values given in the configuration file to read the already existing abstract view.

2. If the SYMMETRY attribute is not set, then you can set the symmetry of a cell using the
following SKILL commands in the CIW window of Virtuoso-XL:

❑ cv = geGetWindowCellView(hiGetCurrentWindow())

❑ dbSetCellViewSymmetry(cv "XYR90")

❑ dbGetCellViewSymmetry(cv)

3. If you require the analog property, add the analog property oacSigTypeAnalog on
analog nets so that EDI System maintains such nets as dbIsAnalog true. This is an
optional step.

To add the analog property (signal type) in Virtuoso, follow these steps:

a. Right-click the top-most toolbar to invoke the Navigator and the Property Editor.

b. Expand Navigator Nets to view all the nets.

c. Select the net for which you want to change the signal type.

d. Save the design.

4. To generate abstracts for analog IPs which are finally used by EDI System, use the
Virtuoso Abstract Generator . The Virtuoso Abstract Generator preserves the
oacSigTypeAnalog on terminal nets in OpenAccess database.

5. Save OpenAccess database of IP abstracts to be used by the digital toolsets. Use
verilogAnnotate, a standalone UNIX utility to annotate bus terminal list and order to
the distributed terms in the physical abstract. The verilogAnnotate utility can be
found in the Virtuoso installation hierarchy.

Run the following command:

verilogAnnotate –refLibs <> -verilog <>

6. Unset the environment variable OA_HOME. Ensure that OA_HOME environment variable is
not set before running Virtuoso-XL/GXL or EDI System. Source the Virtuoso path setting
file so that you can get Virtuoso-XL/GXL in your PATH environment variable.
October 2010 843 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
7. Follow these steps to open the design with parameterized cell (PCell) in Virtuoso-XL/
GXL:

a. Choose Tools–Express Pcell Manager

b. Enter the details and enable caching of Pcell check box using the Auto Save
option.

c. Click Save Copy to save the PCell layout cache.

This step enables inter-operation of data between EDI System and Virtuoso
platforms. Close the layout window and purge your data from Virtuoso so that the
Virtuoso file lock is released.

For more information, see the Virtuoso-XL/GXL User Guide.
October 2010 844 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Flow to Convert the EDI System Database to OpenAccess
Database

Run the following commands to convert the EDI System database to OpenAccess database:

1. Run restoreDesign fe.enc.dat cellname

2. Run set rda_Input(ui_leffiles) “”

3. Run set rda_Input(ui_oa_reflib) “techLib other OA design
reference libraries”

4. Run set rda_Input(ui_oa_abstractname) “abstract”

5. Run set rda_Input(ui_oa_layoutname) “layout”

6. Run saveOaDesign designLib topCellName viewName

Note: Ensure that the technology LEF used in fe.enc.dat and the technology library
match completely.
October 2010 845 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
DMS Floorplanning Flow

This section contains the following:

■ DMS Flow Diagram on page 847

■ Verilog Netlist Creation on page 848

■ Floorplanning of Verilog Netlist Using Blackboxes on page 849

■ Generate From Source for Soft Analog Block Layout Using Virtuoso on page 853

■ Load Physical View to Merge Optimized Pin Locations and Block Boundary on page 857

■ Physical Implementation of Soft Analog Blocks Using Virtuoso on page 859

■ Physical Implementation of Soft Digital Blocks Using EDI System on page 860

■ Top-level Analog Net and Power Routing on page 860

■ Assembling the Design on page 861

■ Place and Route of Digital Portion at the Top and Early Digital ECO’s on page 861

■ Quick Abstract Inference on page 862
October 2010 846 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
DMS Flow Diagram

Technology Library
and OpenAccess
Data Preparation

Complete Verilog
Netlist Generation
With Stubs of Analog/
Mixed-Signal Blocks

Initial XY dimensions
of analog/mixed-
signal blocks

DESIGN PHYSICAL
IMPLEMENTATION

Floorplan
Optimization Iteration

Pre-CTS Flow

Post-CTS Flow

Routing and Post-
Route Flow

Model
Generation

Timing
Met?

INITIALIZATION
DMS
ASSEMBLY

Fix Virtuoso-Based
Full Custom ECOs

Fix Digital Verilog-
Based ECOs

Layout Finishing in
Virtuoso

Timing
Met?

Signoff

Flat Digital
Foundation Flow

This portion of the flow is same as the
digital foundation flow with all the AMS
blocks defined as black boxes.

No

Yes

No

Yes
October 2010 847 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Verilog Netlist Creation

You can create a top-chip Verilog netlist from top-level schematic using Virtuoso. Save the
Verilog netlist as topCellName.v.

You can use the following steps to generate a complete hierarchical Verilog netlist:

1. Create a configuration view using the File–New–CellView menu command in the CIW
window.

2. Use the Hierarchy Editor to configure and bind the cells within the right cellviews.

3. On the Schematic Editor window, use the Launch–Simulation menu command to select
NC-Verilog or Verilog-XL. Now, use the Commands–Generate Netlist menu command
after initializing the design.

Following is the SKILL equivalent of the NC-Verilog based command:

❑ deInstallApp(getCurrentWindow() "NC-Verilog")

❑ vtoolsIseGNCForm->simSimButton->value= nil

❑ vtoolsIseGNCForm->simElabButton->value= nil

❑ vtoolsIseGNCForm->simCompileButton->value= t

❑ vlogifNCInitDesign()

❑ vlogifNCNetlist()

Verilog Netlisting

The following property can be set on power and ground pins of a symbol view:

Property Name: nlAction
Type: string
Value: ignore

In .simrc, set the following flag: hnlVerilogIgnoreTerm = 't

Top-chip
Schematic
OpenAccess
Database

Virtuoso

Top-level Verilog
Description of
the Design
October 2010 848 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
to ignore the power and ground pins from getting written out in the Verilog netlist by OSS-
based netlister.

Floorplanning of Verilog Netlist Using Blackboxes

In EDI System 9.1, you can use the specifyBlackBox and specifyPartition
commands to create early shapes for the hierarchical blocks where physical hierarchy has to
be maintained. Follow the partition and savePartition command sequence to save
hierarchical black-boxes. You can run congestion and timing aware block and standard cell
placer and EDI System 9.1.

You can use TrialRoute results for block pin optimization. Manual editing might be required for
pin optimization to address grid, side-constraints, and alignment. Power planning, power
routing and early power analysis is possible using sroute and power meter in EDI System.
The full-chip floorplan OpenAccess database is saved from EDI System. Use the
savePartition -oaPtnLib <> -oaPtnView <> command to save hierarchical nested
black boxes and partitions in the OpenAccess database.

Steps to Perform the Floorplanning of Verilog Netlist

1. Set setOaxMode -updateMode to true to ensure complete interoperability. Create a
configuration file within EDI System and use the top-chip Verilog netlist with OpenAccess
reference libraries. Use the following variables while floorplanning a Verilog netlist:

❑ set rda_Input(ui_netlist) "dtmf_chip.v"

❑ set rda_Input(ui_netlisttype) {Verilog}

Verilog
Description of
the
Schematic
Design

EDI System

OpenAccess
database of
hard IPs and
standard cell
library to be
used in the
design.

Black boxes at the
top-level of the
design and used for
for logical to physical
hierarchy nesting

Full-chip Floorplan
OpenAccess Database
from EDI System
October 2010 849 Product Version 9.1.3

../fetxtcmdref/partitionT.html#specifyBlackBox
../fetxtcmdref/partitionT.html#specifyPartition
../fetxtcmdref/partitionT.html#savePartition
../fetxtcmdref/importT.html#setOaxMode

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
❑ set rda_Input(ui_settop) {1}

❑ set rda_Input(ui_topcell) {dtmf_chip}

❑ set rda_Input(ui_oa_reflib) "techlib reflib”

❑ set rda_Input(ui_oa_oa2lefversion) {5.7}

❑ set rda_Input(ui_oa_abstractname) {abstract layout}

❑ set rda_Input(ui_oa_layoutname) {layout}

❑ set rda_Input(ui_pwrnet) {<vdd>}

❑ set rda_Input(ui_gndnet) {<vss>}

Note: No LEF files are required. The library is read by EDI System using the
OpenAccess technology and the standard cell library.

Note: The rda_Input(ui_oa_abstractname) {abstract layout}variable
uses the layout view to infer abstract information directly from the layout view using on-
the-fly quick abstract inference utility within EDI System. This capability is used for fast-
changing layout views of macros and this avoids the need of creating abstracts again.

2. After the design is imported in EDI System, use the Partition–specifyBlackBox menu
command to define a rectangular shape within the logical hierarchy.
October 2010 850 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Use Hierarchy Up/Down browser to reach to the logical hierarchy where you want to
specify a black box. After the dark green box is obtained, you can make the box rectilinear
according to your requirements and adjust it within the floorplan.

3. Use the Partition–specifyPartition or Partition–specifyBlackBox menu command to
define a rectangular shape within the logical hierarchy which is required to have a
separate physical hierarchy. This could be a soft analog block as well as a digital soft IP.
You can use Hierarchy Up/Down browser to reach to the logical hierarchy which you want
October 2010 851 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
to specify as a partition. After the orange box is obtained, you can make the box
rectilinear according to the requirement and fit it into the floorplan.

4. Use standard cell and block placer in EDI System to run timing-driven detailed placement
of hard blocks and standard cells. You can use the placeDesign command to use
default setPlaceMode settings to obtain automatic timing-driven and congestion-driven
placement.

EDI System provides setPlaceMode options to control the local cell density, local
utilization, in-place optimization, timing targets, and so on, to control and guide the
placement optimizer. Iterate this step to get optimal placement of partitions and
blackboxes specified in the design.

5. After completing detailed placement, you can use TrialRoute to get a quick estimate of
the routing required. Using TrialRoute also helps in black box and partition pin
assignment and pin layer and placement optimization.

6. Use the savePartition -oaPtnLib lib_name -oaPtnView
layout_view_name command in the EDI System command prompt to save the
partitions in OpenAccess database. This will create a new library if the library name
specified is a not existing in the lib.def list. Two new views are created for each
partition and black boxes. The view name specified is used for creating layout view which
should be used for detailed physical implementation of the block. The other view which
October 2010 852 Product Version 9.1.3

../fetxtcmdref/placementT.html#placeDesign
../fetxtcmdref/placementT.html#setPlaceMode
../fetxtcmdref/partitionT.html#savePartition

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
is created is layout_view_name_abstract which is used as an abstract view of the
block or partition or blackbox.

Whenever block shape, size or pin position or pin layer is changed, you should update
this _abstract view because at the top level, the abstract view is referenced and used
for detailed implementation. The savePartition -oaPtnLib lib_name
-oaPtnView layout_view_name command will also create a new top level view by
the name layout_view_name provided as input. This top level view should be used
for top level implementation of the chip.

Note: EDI System allows blackboxes with non-R0 orientation to exist in the OpenAccess
database. While reading a cellview which has a black box with non-R0 orientation within
EDI System, EDI System creates a geometrically same as the R0 image of the blackbox
within its virtual memory. While saving the design in the on-disk persistent OpenAccess
database, EDI System will revert the black box instance to its original orientation.

Caution

Do not change the black box orientation during the EDI System session.

Generate From Source for Soft Analog Block Layout Using Virtuoso

Analog Block
Schematic
OpenAccess
Database

Virtuoso-XL

Analog Block
Layout
OpenAccess
Database
October 2010 853 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
1. Run Virtuoso Layout-GXL/XL from the schematic window. The following GUI is
displayed:

Configure Physical Hierarchy (CPH) is a shared interface between VLS-XL and
Floorplanner available in Virtuoso. You can launch Virtuoso Layout-XL to generate layout
view from the given schematic view. This layout view generated for the given schematic
October 2010 854 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
uses CPH information to process the generation of layout information according to the
given constraints.

2. The soft analog block boundary is automatically generated and you can reshape it to
match the design constraints. You can run Virtuoso Block Placer to place bigger blocks
October 2010 855 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
inside the analog design module. The feature of Block Placer and menu details are
shown in the figure below.

3. The layout generation of a given design is an iterative process. As soon as first cut layout
view is ready, save the layout view in OpenAccess database.

For more information, see Virtuoso Layout-XL User Guide.
October 2010 856 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Load Physical View to Merge Optimized Pin Locations and Block
Boundary

1. Open the layout view of the soft analog block generated during the floorplanning of
Verilog netlist and then call Load Physical View (LPV) to merge the optimized pin
locations, layer information, size and updated block boundary generated during
Generate from Source. The LPV form is available in the Virtuoso Layout–XL/GXL

Analog Block
Layout GFS View
OpenAccess
Database

LPV
(Virtuoso-XL/GXL)

Analog Block
Layout
OpenAccess
Database

Analog Block
Layout EDI
System View
OpenAccess
Database
October 2010 857 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
window. In the Choose Source Physical View field, enter the view name generated
during Generate From Source.

2. If Virtuoso driven Analog block is completed 50 percent or greater, then merge using the
following steps:

a. Open analog block in Virtuoso.

b. Set the status of critical pins to fixed.

c. Do Load Physical View from FE generated soft block view.

d. Create abstract to update the abstract view.
October 2010 858 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
If Virtuoso-driven analog block implementation is less than 50 percent done, then layout
view can be merged using the following steps:

a. Open FE generated soft block abstract.

b. Set the status of critical pins to fixed (if needed).

c. Load the physical view from the Virtuoso analog block.

d. Create abstract to update the abstract view for top level usage.

3. Update the abstract view of the soft analog block to avoid EDI System to read the full
detailed layout view of the block.

Physical Implementation of Soft Analog Blocks Using Virtuoso

Since physical implementation of soft analog block is an iterative process, you can continue
with further refinement of the analog block using Virtuoso Layout Editor. Keep the abstract
view updated so that the top-level implementation place-and-route tool can get updated
information about the analog blocks.

Analog Block
Layout EDI View
OpenAccess
Database Virtuoso Layout

Editor

Analog Block Abstract
OpenAccess Database

Is Abstract
Update
needed for
top level?

Yes

No
October 2010 859 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Physical Implementation of Soft Digital Blocks Using EDI System

Physical Implementation of soft digital IPs/blocks can continue in parallel with detailed
standard cells and hard blocks within the soft digital block placement, pre-CTS timing closure,
CTS, post-CTS timing closure, clock net routing, detailed signal routing, SI and voltage
analysis, and so on. This is an iterative process and might take long time. The final delivery
after this step is the DRC and LVS clean layout view with all sign-off checks completed.

If the top-level STA flow requires block SPEFs, then run extraction and save the parasitic data
back into OpenAccess. Keep the abstract view of the soft digital block updated and in-sync
with the layout view to avoid any kind of layout mismatches at the top level-layout integration.
The abstract view is required for the top-level integration because reading the detailed layout
view and using that for place-and-route of the top level results in more run time. So, to avoid
long run times, use the abstract view with boundary pins and metal blockages of the block.

Top-level Analog Net and Power Routing

At this point, you will use the top-level view saved from EDI System by using the
savePartition command which will have the abstract view referenced for the partitions
and blackboxes at the top level of the design. To do this, follow these guidelines:

■ Perform analog net routing. Mark the nets as analog so that applications like EDI System
can understand such instances/nets as analog and avoid optimization of such nets and
instances. To route these nets, use the Mixed Signal Router.

■ You can perform power net routing as required by the design in EDI System. The sroute
power router can be used for detailed power routing and follow-pin connections to the
top-level power grid.

■ VSR is a shape based router available in Virtuoso platform which can be used for top-
level analog net routing for 45nm and below technologies.

Digital Block
Layout EDI View
OpenAccess
Database

EDI System

Digital Block Abstract
OpenAccess Database

Is Abstract
Update
needed for
top level?

Yes

No
October 2010 860 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
■ The top-level critical and analog net routing can be done and pushed down as blockages
into the partitions and blocks using the Virtuoso platform. Power nets can also be pushed
inside the blocks for the blocks to use it for closing the connection with internal power
network of the block.

Similarly, power planning and power routing can be done in EDI System before running
the partition command and then push routing as blockages option can be used to
push power routing and any signal routing or metal blockage as blockages inside the
partitions created by EDI System.

Nanoroute, a digital router, should not be used for connecting the partially routed nets
manually. If the partially routed sections of the net are left in the design and Nanoroute
is run in either ECO or complete mode, multiple hanging routed segments are deleted by
Nanoroute. To keep such partially manually routed sections of the signal routes, mark
such nets as fixed.

■ The saveOaDesign command should be used with setOaxMode -updateMode true
at the start of the session in EDI System to save design data in OpenAccess database.
The setOaxMode command should also be used at the start of the EDI System session.
You cannot change the update mode settings in the middle of the session.

While saving from Virtuoso, do not change the top cell name used in Verilog netlist. EDI
System always refers to the logical top cell name of the module used in the Verilog netlist
for reading and writing the physical database.

Assembling the Design

For more details, see the Restoring the AMS Block Layout on page 869 section.

Place and Route of Digital Portion at the Top and Early Digital ECO’s

For more details, see the Encounter Foundation Flows:Flat Implementation Flow
Guide.
October 2010 861 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/importT.html#saveOaDesign
../fetxtcmdref/importT.html#setOaxMode
../flatImpl/flatImplTOC.html#firstpage
../flatImpl/flatImplTOC.html#firstpage

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Quick Abstract Inference

While reading a design in EDI System 9.1, the abstract information for the cells is taken from
the reference library irrespective of the fact whether these cells are used or not used in the
design. But if these cells are not defined in the reference library, the abstract information
related to these cells is automatically taken by looking at the instance master. This scheme
works well for the abstract views.

If a design contains layout views which are not a part of the reference library, the abstract
information can be inferred from the layout view automatically during design import.

A summary report is printed in the design.oaread.rpt file. This report contains the
summary of all the blocks read by inferring the layout view of the block.

Note: You need not generate abstracts every time you change the layout view of the block.
To generate detailed abstracts after finalizing the block design, use the Virtuoso Abstract
Generator.

Important

For automatic abstract inference, pin shapes and prBoundary must be available in
the layout view.

EDI System 9.1 supports dual views. A dual view is the layout view that contains additional
abstract information such as prBoundary, antenna, site, symmetry, and cell type, in the
same cellview.

Rules for Abstract Inference

The following table describes the behavior of auto-abstract inference when the following data
objects are present in the layout view. To know more about these data objects, refer to
Detailed Description of Data Objects on page 864.

Data objects in the
cell layout view

Behavior of EDI System if
present
in the layout view

Behavior of EDI System if
not present
in the layout view or the
value is null

Pin All the top-level pin shapes
are copied to the abstract
view.

No pins appear in the
abstract view.

Note: Create pins as
required at the top level.
October 2010 862 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Cell type The specified type is
considered.

Note: If the cell type is
none, then the BLOCK cell
type is assigned by default.

The default type BLOCK is
considered.

Cover Obstruction

Virtuoso Commands for applying
obstruction upto metal layer
Metalx:

cv=geGetEditCellView()

dbCreateCoverObstruction(cv~>
prBoundary

techGetLayerMaskNumber(techGe
tTechFile(cv) "Metalx"))

Obstructions are created
only on the routing layers
upto the Metalx routing
layer specified.

The tool automatically
determines the top metal
layer used in the design.

All layers used upto the top
layer are blocked.

prBoundary Exact region as enclosed
by prBoundary is taken.

prBoundary is required
for the cell types CORE and
ENDCAP. An error message
is displayed if prBoundary
is not present for these cell
types.

If you do not specify
prBoundary for cells other
than core, auto-abstract
inference will set its value to
zero. However, while
reading this data, EDI
System tries to auto
compute the box for the cell
from the pin shapes, if
possible.

Data objects in the
cell layout view

Behavior of EDI System if
present
in the layout view

Behavior of EDI System if
not present
in the layout view or the
value is null
October 2010 863 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Detailed Description of Data Objects

The following table describes the data objects that are used for inferring the abstracts:

Symmetry The specified symmetry
option is taken.

Note: If the symmetry value
is none, then the default
value XYR90 is considered.

The default value XYR90 is
taken.

Site The values specified in the
layout are copied without
any changes.

If the SITE value is not
specified for cell types
CORE and ENDCAP, an error
message is displayed.

For other cell types, it is left
blank.

Antenna The values specified in the
layout are copied without
any changes.

A warning message is
displayed. This message
describes the number of
cells and missing antenna
values for SIGNAL, SCAN,
CLOCK, and RESET pins.

Data Object Description

Pin Specifies a physical shape through
which one block connects to other
blocks in a netlist.

Cell type Specifies various cell types such as
CORE, ENDCAP, COVER, RING, BLOCK,
and PAD.

Data objects in the
cell layout view

Behavior of EDI System if
present
in the layout view

Behavior of EDI System if
not present
in the layout view or the
value is null
October 2010 864 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
cv=geGetEditCellView()

dbCreateCoverObstruction(cv~>prBoundary

techGetLayerMaskNumber(techGetTechFile(cv)
"Metal1"))

- Open the layout view

- Specify with
dbCreateCoverObstruction procedure
the top metal layer to be obstructed.

- Remove dbCreateCoverObstruction
using with the following skill
procedure:

dbDeleteObject(cv~>prBoundary~>co
verObstruction)

prBoundary Specifies the block boundary for
place-and-route applications. Any
shape or instance created for the
block should be enclosed within the
prBoundary.

Symmetry Specifies the possible orientation of
the block.

Site Provides placement for the family of
macros, such as I/O, core, block,
analog, digital, short, tall, and so on,
in a design.

Data Object Description
October 2010 865 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Antenna During deep sub-micron wafer
fabrication, gate damage can occur
when excessive static charges
accumulate and discharge, passing
high current through a gate.

If the area of the layer connected
directly to the gate or connected to
the gate through lower layers is large
relative to the area of the gate and the
static charges are discharged through
the gate, the discharge can damage
the oxide that insulates the gate and
cause the chip to fail. This
phenomenon is called the process
antenna effect (PAE).

Run Virtuoso Abstract Generator to
obtain the antenna value.

For more information, see the LEF/
DEF language Reference.

Data Object Description
October 2010 866 Product Version 9.1.3

../lefdefref/lefdefrefTOC.html#firstpage
../lefdefref/lefdefrefTOC.html#firstpage

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Static Timing Analysis for Mixed-Signal Designs

This section contains the following:

■ The FTM Generation Flow Diagram on page 867

■ Guidelines to Run FTM-Based STA Flow on page 868

■ Steps to Run Static Timing Analysis on page 869

The FTM Generation Flow Diagram

Note: For more information about the design, see Design Logical Hierarchy on page 871.

OpenAccess
Database

FTM
Directory

OpenAccess
Top Design A

assembleDesign -top <..B..> -block <..C..>

saveNetlist B.v
rcOut -spef B spef
createILMDataDir -dir B.ilm -cell B
-verilog B.v -spef B.spef

restoreOaDesign A
specifyIlm amsblock.ilm

Standard Timing Analysis/
SI of Timing Paths
October 2010 867 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/importT.html#saveNetlist
../fetxtcmdref/rcextractionT.html#rcOut
../fetxtcmdref/partitionT.html#createILMDataDir
../fetxtcmdref/importT.html#restoreOaDesign
../fetxtcmdref/partitionT.html#specifyIlm

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Guidelines to Run FTM-Based STA Flow

Consider the following guidelines before running the design data flow:

■ The Cadence library for standard cells and noise models for the blocks enables CeltIC-
SI analysis flow. Use this library only if SI analysis is required to be done on the design.

■ The mixed-signal block physical implementation must be done using VLS-XL
connectivity-driven physical implementation methodology using Configure Physical
Hierarchy (CPH) and Generate From Hierarchy (GFH) methodology. Multiple logical
hierarchies in the design netlist are fully supported.

■ While in Virtuoso platform, do not copy a library or cell or view and save it by changing
the cell name. This will cause problems while reading the changed cell name view in EDI
System.

■ The physical database created in EDI System after running assembleDesign on AMS
block should not be used for any physical implementation steps or while exporting GDS.
The physical database is only for analysis.

■ Always use restoreOaDesign to load a library/cell/view in EDI System. This command
overrides the library/cell/view related variables specified in the configuration file which is
located inside the library/cell/view.

■ The config file should be created with the following variables and used when reading the
AMS block for the first time in EDI System:

set rda_Input(ui_oa_designLib) {design_library_name}
set rda_Input(ui_oa_designCell) {top_cell_name}
set rda_Input(ui_oa_designView) {view_name}
set rda_Input(ui_netlisttype) {OA}
set rda_Input(ui_oa_reflib) \
{techLibName list_of_other_reference_libraries}
set rda_Input(ui_oa_abstractname) {abstract}
set rda_Input(ui_oa_layoutname) {layout}

Note: The above-mentioned list of variables is the minimum list that is required. You can add
other valid variables, for example, ui_timelib for specifying timing libraries.

Note: The OpenAccess reference library list is not necessary for assembleDesign and
FTM generation flow.
October 2010 868 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/importT.html#restoreOaDesign

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Steps to Run Static Timing Analysis

You can run static timing analysis on your design using the following steps:

Restoring the AMS Block Layout

You can restore an AMS block using either of the two methods:

■ Run assembleDesign to read the AMS block and in parallel assemble blocks in EDI
System platform to physically flatten the hierarchy for which complete characterized
dotlib Liberty model exists. This method could be useful if lower level blocks which need
to be flattened from timing perspective are not known.

■ Generate the FTM model of the AMS block and run STA using the FTM model of AMS
block at the top level.

You might prefer to run timing analysis or connectivity analysis to decide before physically
flattening the next level of blocks inside the mixed-signal block. Use the following command
sequence if the EDI System 9.1 configuration file does not exist inside the mixed-signal block
view directory:

set rda_Input(ui_oa_designLib) {design_library_name}
set rda_Input(ui_oa_designCell) {top_cell_name}
set rda_Input(ui_oa_designView) {OA_layout_view_name}
set rda_Input(ui_netlistType) {OA}
set rda_Input(ui_setTop) {0}
set rda_Input(ui_topcell) {top_cell_name}

#dotlib Liberty and sdc files required while doing timing analysis

set rda_Input(ui_timelib,max) "slow.lib"
set rda_Input(ui_timelib,min) "fast.lib"
set rda_Input(ui_timelib) "typical.lib"
set rda_Input(ui_timingcon_file) "design.sdc"
set rda_Input(ui_oa_reflib) {Tech_Lib Std_Cell_Lib}
set rda_Input(ui_oa_abstractname) {abstract}
set rda_Input(ui_oa_layoutname) {layout}

Steps to Run Static Timing Analysis

Step Description

1 Restoring the AMS Block Layout

2 Saving the Full AMS Block Verilog Netlist

3 Running Physical Parasitic Extraction

4 Saving FTM on Disk

5 Running the Top-level Static Timing Analysis with FTM of AMS Block
October 2010 869 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assembleDesign

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
#When using default extraction engine within EDI System then below variables are
required

set rda_Input(ui_defcap_scale) {1.0}
set rda_Input(ui_captble_file)
{-typical typ.captble –best best.captble –worst worst.captble}

#When using QRC extraction engine within EDI System then below variables are
required

set rda_Input(ui_qxtechfile) ”cln65lp_1p07m.tch”
set rda_Input(ui_qxlayermap_file) “qrc.map”

#Optionally above two variables can also be replaced with TCL commands =>

#setQRCTechfile & setExtractRCMode –lefTechFileMap fileName in EDI91

#Below variables should be to declared. They in resolving some of power net related
conflicts while restoring the design in EDI System

set rda_Input(ui_pwrnet) {vdd! vdd2!}
set rda_Input(ui_gndnet) {vss! vss2!}

Note: Save all these variables in a configuration file named topCellName.conf inside the
library/cell/view directory.

If the topCellName.conf file is present in the lib/cell/view directory, run the following:

assembleDesign \

–topDesign design_lib B view_name \

-block lib lower_level_cell view …

EDI System is currently limited to performing one-level of flattening per session for AMS
blocks. Therefore multi-level blocks would be flattened using several scripts.

For example, suppose you have a three-level block as shown in the following figure (block D
and C inside block B, and block B inside the AMS block):
October 2010 870 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Design Logical Hierarchy

To write FTM for the AMS blocks, use the following script:

B.conf

#This file needs to have variables as mentioned on page 6 where assembleDesign is
the only

objective. If extraction and other steps are needed to run then please refer to
variable list mentioned on pages 10 and 11

#Copy this file in the directory myLib/B/layout

flattenB.tcl:
assembleDesign -topDesign myLib B layout -block {myLib C layout} -block {myLib D
layout}
saveOaDesign myLib B flat_layout

#Copy the AMS.conf in the directory myLib/E/layout

#flattenAMS.tcl:
assembleDesign -topDesign myLib AMS layout -block {myLib B flat_layout}
saveOaDesign myLib AMS flat_layout

#flattenAMS.csh:

AMS Block D

Digital Top

AMS

Full-
Custom
Digital Cell

AMS Block
Timing Path 1

Digital
Flop

Timing Path 2

Timing Path 3
A

B

C

Physical Implementation as Separate Block

Logical Hierarchy
October 2010 871 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
encounter -init flattenB.tcl
encounter -init flattenAMS.tcl

Saving the Full AMS Block Verilog Netlist

After flattening the physical hierarchy using assembleDesign, run saveNetlist
topCellName.v to save the hierarchical logical Verilog netlist. This enables top-level STA
to traverse through the AMS block logical hierarchy.

Cadence recommends you to save the Verilog netlist by the top cell name of the AMS block
because during FTM directory creation, EDI System uses ILM infrastructure which further
uses top cell name, otherwise the -cell parameter is required while running the
createILMDataDir command.

Running Physical Parasitic Extraction

You can choose the extraction engine inside EDI System platform to get parasitic file saved
in SPEF format.

setExtractRCMode -engine {postRoute} #To choose detailed extraction based on
capacitance table

If routing inside the AMS block was done using any router other than NanoRoute, set the
following to enable special route extraction by the extraction engine inside EDI System
platform.

setExtractRCMode -specialNet true

For accuracy, you can use proper extraction engine setting to use QRC or TurboCCE from
EDI System.

Saving FTM on Disk

Use the following command to save FTM model:

createILMDataDir -dir B.ILM -cell B -verilog B.v –spef B.spef [–si]

For multi-corner case, run the following commands:

createILMDataDir -cts -si -dir B.ILM -cell B -mmmc -incr -spef B.max.spef.gz
-rcCornerName rcMax

createILMDataDir -cts -si -dir B.ILM -cell B -mmmc -incr -spef B.typ.spef.gz
-rcCornerName rcTyp

createILMDataDir -cts -si -dir B.ILM -cell B -mmmc -incr -spef B.min.spef.gz
-rcCornerName rcMin

To perform SDC view setting for MMMC, run the following commands:
October 2010 872 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#setExtractRCMode
../fetxtcmdref/partitionT.html#createILMDataDir

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
createILMDataDir -cts -si -dir B.ILM -cell B -mmmc -incr -sdc funMaxMax.sdc
-viewName funct-devSlowrcMax

createILMDataDir -cts -si -dir B.ILM -cell B -mmmc -incr -sdc funMaxTyp.sdc
-viewName funct-devSlowrcTyp

createILMDataDir -cts -si -dir B.ILM -cell B -mmmc -incr -sdc tstMaxMax.sdc
-viewName test-devSlowrcMax

createILMDataDir -cts -si -dir B.ILM -cell B -mmmc -incr -sdc funMinMin.sdc
-viewName funct-devFastrcMin

createILMDataDir -cts -si -dir B.ILM -cell B -mmmc -incr -sdc tstMinMin.sdc
-viewName test-devFastrcMin

Running the Top-level Static Timing Analysis with FTM of AMS Block

To use AMS block FTM for static timing analysis, run the following commands:

restoreOaDesign design_lib TOP_cell_name view

specifyILM ILM_Name –cell cellName

setExtractRCMode –specialNet true

timeDesign -postRoute
October 2010 873 Product Version 9.1.3

../fetxtcmdref/importT.html#restoreOaDesign

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Chip Finishing and ECO Flows

This section contains the following:

■ Overview on page 874

■ Virtuoso-Based ECO Flow on page 875

■ EDI System-Based ECO Flow on page 877

Overview

Most of the custom design level sign-off analysis is done in Virtuoso. The sign-off timing
analysis of the flat top-level digital portion of the design can be done in EDI System. Flat
VAVO can be run to get IR drop results. The mixed-signal functional simulation gives
functional performance of the design at any stage of the design cycle.

Metal filling, optimization of metal density can be done in EDI System also which can be taken
into account by QRC while extraction so that timing effects due to metal fill can be taken care
of.
October 2010 874 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Virtuoso-Based ECO Flow

Use the following steps to run Virtuoso-based ECO flow:

1. Large ECO: For big ECO changes, for example, when the intent is to use only floorplan,
hard-block placement, reuse of power mesh, and so on, follow these steps

❑ Run verilog2oa

❑ Use Load Physical View in Virtuoso-XL to selectively read the old physical database
and other floorplan data.

Open Design in Virtuoso-XL/GXL

Create New Instance/
Delete Indtance/
Modify Instance Name-Spare Cell Usage

Update the connectivity using propagate
nets, modify parameters, and so on

Save Design with Express Pcell cache

Full
OpenAccess
Databases

Pcell
Cache

Standard Cell
OpenAccess
Librarys

Pcell
Cache

Standard Cell
OpenAccess
Librarys

Full
OpenAccess
Databases

Pcell
Caches

Full OpenAccess
Database with
ECOs

Logical
Connectivity
gets Updated at
this Stage
October 2010 875 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
2. Small ECO: To add/create a hierarchical ECO instance in Virtuoso in case of small
ECOs:

Create an instance, for example, library: tech18_6lm, cell: AND2X1, view: layout with
an instance name M1`A2. A symbol ` indicates module hierarchy present in the design.
Here for example M1`A1 has a module hierarchy present with A1 module inside the
module M1.

Due to ECO changes, if a net gets modified, it needs re-routing using automatic router,
use EDI platform to route using NanoRoute.
October 2010 876 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
EDI System-Based ECO Flow

Overview

The digital ECO flow is a methodology used to integrate the netlist modifications on a given
design with minimal changes in the physical database to minimize the mask costs. This is
only practical if the amount of change is minimal. Changes can also be achieved by modifying
the interconnections of the exisiting netlist.

restoreOaDesign

Write out the Verilog Netlist

Update the connectivity using propagate
nets, modify parameters, and so on

ecoOaDesign

Full
OpenAccess
Databases

Pcell
Cache

Standard Cell
OpenAccess
Librarys

Pcell
Cache

Standard Cell
OpenAccess
Librarys

Full
OpenAccess
Databases

Full OpenAccess
Database with
ECOs
October 2010 877 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
In the post-mask ECO flow, when a design has been taped out and requires logical changes,
the corrections are performed by changing the logic in the Verilog file written from the old
taped-out database. The pre-existing spare cells or the existing logic is used to accomplish
the logical changes expected so that the poly/diffusion and lower layers are not changed, and
only the metal and via layer masks are modified. To save mask cost, you can direct the tool
to perform routing changes only within the specifiied layer range. The expected top-level flow
steps are:

1. Import the new Verilog file and pre-ECO design database into EDI System.

2. Map new cells on spare cells, and map the deleted cells to be available as spare cells.

3. Perform interactive ECOs such as ecoSwapSpareCell, if needed.

4. Run ecoRoute with only few layers getting changed.

To complete the ECO flow, you must provide the following inputs:

■ New Verilog with logical modifications completed.

■ Pre-ECO design database.

■ List of spare cell modules to be used for ECO changes. If spare cells have been specified
in previous EDI System sessions before saving the OpenAccess database, then they
would be restored during ecoOaDesign command.

■ Permitted routing layers during ecoRoute.

Pre-Mask ECO Flow Steps

Follow these steps to run the pre-mask ECO flow:

1. Run restoreOaDesign to load pre-ECO library/cell/view.

2. Run saveNetlist to write old Verilog (with pcells in it, if it exists in the design).

3. Exit the EDI System.

Note: If the old library/cell/view have no pcells, that is, it is a digital-only netlist, then you
can use the standalone utility oa2verilog directly. The EDI System commands
restoreOaDesign and saveNetlist are required if pcells are present in the design.

4. Edit the Verilog netlist manually to implement the digital ECO changes.

5. Start a new EDI session. Run setOaxMode –updateMode true if there are analog
objects like pcells, MPPs, fig-groups, in the old OpenAccess database. If this is a digital-
only design without Virtuoso-specific objects or constraints, you do not need to use the
–updateMode parameter.
October 2010 878 Product Version 9.1.3

../fetxtcmdref/importT.html#saveNetlist
../fetxtcmdref/importT.html#setOaxMode
../fetxtcmdref/importT.html#restoreOaDesign
../fetxtcmdref/interactive_ecoT.html#ecoSwapSpareCell
../fetxtcmdref/interactive_ecoT.html#ecoRoute
../fetxtcmdref/interactive_ecoT.html#ecoOaDesign
../fetxtcmdref/interactive_ecoT.html#ecoRoute

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
6. Run ecoOaDesign to read the new ECO Verilog netlist, which copies all of the
floorplanning, placement, routing and spare bit marking from the pre-ECO OpenAccess
database except those not existing in the new Verilog file. Instances existing only in pre-
ECO library/cell/view would not be added in the new EDI System database.

7. Run the applyGlobalNets command to connect the global net connections for new
instances. In the low-power aware design, you also need to run the loadShifter and
addIsolationCell commands. If you have Common Power Format (CPF) file, use the
loadCPF, commitCPF and repairPowerDomain commands to accomplish the above
tasks.

8. Use addTieHiLo if a new tie-high or tie-low connections are needed.

[-cell "tieHighCellName tieLowCellName"]
[-createHierPort {true|false}]

9. Run ecoPlace to place the new unplaced cells. According to the requirements, the
deleteFiller –prefix FILL and deleteNotchFill commands may be required
to delete the existing filler cells and notch fills before running ecoPlace.

10. Optionally, you can run the selectInst and placeInstance commands to achieve
fine-grain optimization in placement.

11. Use the addFiller –cell {…} command to add filler cells and then run ecoRoute
as required in the flow. After pereforming ECO routing, you need to take care of DRC,
DFM and DFY changes as per requirement. For example, running the addMetalFill,
fillNotch, and trimMetalFill commands.

12. Run saveOaDesign to save the database in the new library/cell/view.

Post-Mask ECO Flow Steps

1. Run restoreOaDesign to load the pre-ECO library/cell/view.

2. Run saveNetlist to write the pre-ECO Verilog file.

3. Exit the EDI System session.

Note: If the pre-ECO library/cell/view has no pcells, that is, it is a digital-only netlist, you
can use the standalone utility oa2verilog directly. The EDI System commands
restoreOaDesign and saveNetlist are required if pcells are present in the design.

4. Edit the Verilog netlist manually to implement the digital ECO changes.

5. Start a new EDI System session. Use setOaxMode –updateMode true if there are
analog objects like pcells, MPPs, fig-groups, in the pre-ECO OpenAccess database. If
this is a digital-only design without full-custom objects or constraints, you do not need to
use the –updateMode parameter.
October 2010 879 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#ecoOaDesign
../fetxtcmdref/fp_special_routeT.html#applyGlobalNets
../fetxtcmdref/placementT.html#addTieHiLo
../fetxtcmdref/interactive_ecoT.html#ecoPlace
../fetxtcmdref/placementT.html#deleteFiller
../fetxtcmdref/interactive_ecoT.html#deleteNotchFill
../fetxtcmdref/msvT.html#loadShifter
../fetxtcmdref/msvT.html#addIsolationCell
../fetxtcmdref/msvT.html#loadCPF
../fetxtcmdref/msvT.html#commitCPF
../fetxtcmdref/msvT.html#repairPowerDomain
../fetxtcmdref/floorplanT.html#selectInst
../fetxtcmdref/placementT.html#placeInstance
../fetxtcmdref/placementT.html#addFiller
../fetxtcmdref/interactive_ecoT.html#fillNotch
../fetxtcmdref/metalfillT.html#trimMetalFill
../fetxtcmdref/importT.html#saveOaDesign
../fetxtcmdref/importT.html#restoreOaDesign
../fetxtcmdref/importT.html#saveNetlist
../fetxtcmdref/importT.html#setOaxMode
../fetxtcmdref/interactive_ecoT.html#ecoRoute

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
6. Run ecoOaDesign to read the new ECO Verilog netlist, which copies all of the
floorplanning, placement, routing and spare bit marking, from the pre-ECO OpenAccess
database.

7. Run the applyGlobalNets command to connect the global net connections for new
instances. Run addTieHiLo if new tie-high or tie-low connections are needed:

[-cell "tieHighCellName tieLowCellName"]

[-createHierPort {true|false}]

-postMask

The loadShifter –infile .vsf parameter or addIsolationCell should be used
before ecoPlace step. During this step in the post-mask mode, no new cells would be
added. Only the already existing cells are used.

If you have Common Power Format (CPF) file, use the loadCPF and
repairPowerDomain commands to accomplish the above tasks.

8. Run ecoPlace –useSpareCells true, as required to map unplaced cells to spare
cells.

9. Run ecoSwapSpareCell if required in the flow, when auto-mapping was not according
to your expectations.

10. Run ecoRoute -modifyOnlyLayers N:M, as required in the flow.

11. Run saveOaDesign to save the database in the new library/cell/view.

Example Post-Mask ECO Scenarios

Pre-ECO Verilog
module spare ();

// Internal wires
wire LTIELO_1_NET;
wire LTIELO_NET;
TIELO LTIELO_1 (.Y(LTIELO_1_NET));
TIELO LTIELO (.Y(LTIELO_NET));
BUFX4 U6 (.A(LTIELO_NET));
BUFX4 U7 (.A(LTIELO_1_NET));

endmodule

module TOP (Z, A);
output Z;
input A;
// Internal wires
wire net_pcell;

inv_pcell I1 (.OUT(Z), .IN(net_pcell));
BUFX8 U1 (.Y(net_pcell), .A(A));
spare SU1 ();

endmodule
October 2010 880 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#ecoOaDesign
../fetxtcmdref/interactive_ecoT.html#ecoPlace
../fetxtcmdref/interactive_ecoT.html#ecoSwapSpareCell
../fetxtcmdref/fp_special_routeT.html#applyGlobalNets
../fetxtcmdref/msvT.html#repairPowerDomain
../fetxtcmdref/interactive_ecoT.html#ecoRoute
../fetxtcmdref/importT.html#saveOaDesign
../fetxtcmdref/msvT.html#loadCPF

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
Note: In the pre-mask ECO flow, the newly added or modified instances will come as
unplaced cells. The old cells (INVXL) are deleted from the database. The net physical
geometries remain unchanged.

Post-ECO Verilog
module spare ();

// Internal wires
wire LTIELO_1_NET;
wire LTIELO_NET;

TIELO LTIELO_1 (.Y(LTIELO_1_NET));
TIELO LTIELO (.Y(LTIELO_NET));
BUFX4 U6 (.A(LTIELO_NET));
BUFX4 U7 (.A(LTIELO_1_NET));

endmodule

module TOP (Z, A);
output Z;
input A;
wire net_pcell, net1;
inv_pcell I1 (.OUT(Z), .IN(net_pcell));
BUFX4 ECO1 (.A(A), .Y(net1));
BUFX4 ECO2 (.A(net1), .Y(net_pcell));
BUFX8 U1 (.A(1'b0));
spare SU1 ();

endmodule

Note: In the post-mask ECO flow, the newly added or modified instances (BUFX2) will come
as unplaced cells. They can be mapped to a spare cell using the
ecoPlace -useSpaceCells parameter. The pre-ECO cell (INVXL) will remain in the
database with placement information same as in the pre-ECO database. The physical
geometries (nets) remain unchanged.

Example Command Sequence
ecoOaDesign designLib TOP layout -ecoVerilogFile eco.v -reportFile eco.rpt –
postMask
applyGlobalNets
addTieHiLo -postMask
ecoPlace -useSpareCells true
ecoRoute -modifyOnlyLayers 1:2
October 2010 881 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#ecoPlace

Encounter Digital Implementation System User Guide
Digital Mixed Signal Flow
October 2010 882 Product Version 9.1.3

Encounter Digital Implementation System User Guide
24
Optimizing Metal Density

■ Overview on page 884

■ Before You Begin on page 885

■ After You Complete Adding Via and Metal Fill on page 885

■ Metal Fill Features on page 886

■ Specifying Metal Fill Parameters on page 893

■ Recommendations for Adding Timing-Aware Metal Fill on page 894

■ Adding Metal Fill Over Macros on page 897

■ Recommendations for Power Strapping Mode on page 898

■ Adding Via Fill on page 898

■ Recommendations for Metal/Via Fill Flow on page 899

■ Achieving Gradient Density with Preferred Density Setting on page 902

■ Trimming Metal Fill on page 904

■ Verifying Metal Density on page 905

■ Adding Metal Fill Using the GUI on page 906

■ Adding Metal Fill with Iteration on page 906
October 2010 883 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Metal Density
Overview

The dielectric layers in chip designs often vary in thickness due to the different patterns of
metal on successive metal layers. The thickness variations reduce yield and impact chip
performance. To minimize the variations, you can add inactive metal segments, called metal
fill, to open areas of the design. The metal fill makes the topology of the metal layers more
uniform, which reduces the variations in metal density.

The additional metal increases cross-coupling capacitance, however, so it is important to
balance the decrease in thickness variations with the increase in capacitance.

■ To simplify the estimation of cross-coupling capacitance added by metal fill, the software
adds metal fill in a staggered pattern. For more information, see “Metal Fill Features” on
page 886.

■ To minimize cross-coupling capacitance within layers, the software adds metal fill in
timing-aware mode. For more information, see “Timing-Aware Metal Fill” on page 891.

In addition to adding metal fill to reduce thickness variations in metal layers, the software can
also add cuts to meet minimum cut density requirements. The added cuts are modelled as
via fill. For more information, see “Adding Via Fill” on page 898.

The chip manufacturer usually specifies a target metal density percentage for the metal layers
and a range of acceptable minimum and maximum metal density. The metal fill commands
help you achieve metal density within the acceptable range and the via fill commands help
you meet the cut density requirements.

The software uses parameters specified in the LEF file or the fill commands to analyze the
density and determine the size and position of the fill. It divides the design into windows and
adds metal or cuts to open areas in each window until the metal and cut density meet the
density requirements.

You can add fill to one or more layers at both the chip and block level.

If you perform additional routing after inserting fill, you can trim away fill that causes DRC
violations.

Related Topics

To see where metal fill fits into the design flow, see Route the Design and Run Postroute
Optimization and Analyze SI, Run Post-SI Optimizatin and Physical Verification and Generate
GDSII Stream File in the Encounter Digital Implementation System Flat
Implementation Flow Guide.
October 2010 884 Product Version 9.1.3

../flatImpl/flow.html#RoutetheDesignandRunPostrouteOptimization
../flatImpl/flow.html#RoutetheDesignandRunPostrouteOptimization
../flatImpl/flow.html#AnalyzeSIRunPost-SIOptimization
../flatImpl/flow.html#AnalyzeSIRunPost-SIOptimization

Encounter Digital Implementation System User Guide
Optimizing Metal Density
Before You Begin

■ Complete detailed routing.

To make sure metal fill is viewable, select the following options in the main window:

■ Floorplan or Physical view

■ Special Net visibility toggle

■ Metal Fill visibility toggle - To view the Metal Fill visibility toggle, click the All Colors
button in the Layer Control window.

For more information on setting object visibility, see “The Main Window” chapter in the
Encounter Digital Implementation System Menu Reference.

Adding Metal Fill in Multiple-CPU Processing Mode

You can add metal fill to the design in multi-threading mode by running the following command
before adding the metal fill:

■ setMultiCpuUsage

For more information on this and other multiple-CPU commands, see the “Multiple-CPU
Processing” commands chapter in the Encounter Digital Implementation System Text
Command Reference.

Alternately, fill in the appropriate parameters on the Options – Set Multiple CPU Usage –
Multiple CPU Processing form. (You can also access this form by clicking the Set Multiple
CPU button on the Route – Metal Fill – Add – Add Metal Fill form.)

For more information, see Accelerating the Design Process by Using Multiple CPU
Processing.

After You Complete Adding Via and Metal Fill

After adding via and metal fill, extract parasitics and run timing and signal-integrity analysis
as needed. The metal fill and verify usage is not normally used as sign-off (although it is
possible with a strict methodology). In practice, you will still run a final sign-off script on the
full-chip to add any fill inside hard-blocks. Alternatively, you might run a sign-off script at
hierarchical boundaries or at the die-boundary. In some cases, you may chose to do another
extraction with QRC including the extra fills from GDS of the sign-off script.
October 2010 885 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#setMultiCpuUsage
../encounter/startingG.html#firstpage
../encounter/optionsG.html#MultipleCPUProcessing
../encounter/optionsG.html#MultipleCPUProcessing
../fetxtcmdref/multicpuT.html#firstpage
../fetxtcmdref/multicpuT.html#firstpage
../fetxtcmdref/multicpuT.html#setMultiCpuUsage

Encounter Digital Implementation System User Guide
Optimizing Metal Density
Metal Fill Features

Metal fill has the following features:

■ It can be square or rectangular shaped.

■ It can be added in a staggered or non-staggered pattern.

■ It can be connected to power or ground (tied-off) or left unconnected (floating).

■ It can be added in timing aware or non-timing aware mode.

■ It can be part of the power and ground structure.

Staggered Metal Fill Pattern

Staggering metal fill spreads out the effects of cross-coupling capacitance because the
staggered pattern ensures that the metal fill does not line up on adjacent layers. The
staggered pattern is most effective on lightly congested layers. By default, the software adds
metal fill that is staggered in the preferred routing direction and not staggered in the non-
preferred direction. The following figures show staggered and non-staggered patterns for
both rectangular and square metal fill.

Staggered rectangular metal fill

Staggered square metal fill Non-staggered square metal fill

Non-staggered rectangular metal fill
October 2010 886 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Metal Density
Metal fill that is staggered in both directions can also be added. This type of metal fill has a
diagonal pattern. It is most apparent when it is added to the upper layers where there is not
a lot of routing. The following figures show metal fill that is staggered diagonally:

Connected and Floating Metal Fill

Metal fill segments can be connected (tied-off) to power or ground shapes on adjacent routing
layers or left unconnected (floating). When it ties off metal fill, the software creates vias that
fit within the area where the metal fill segment overlaps with a power or ground shape on an
adjacent routing layer. It does not create vias that are larger than the overlapped area, or
“cross-vias,” in which the via layer is contained within the same layer as the metal fill segment.

By default, the software creates both connected and floating metal fill. It is difficult to tie off all
metal fill, so usually some shapes are left floating. You can minimize the number of floating
shapes by including the following parameters when you run the setMetalFill command:

-removeFloatingFill
-nets netNameList

If you remove the floating metal fill, however, it is more difficult to reach the preferred density
requirements. In addition, floating metal fill has the following advantages over tied-off metal
fill:

1. Lower cross coupling capacitance, especially if you specify short metal fill segments
(long metal fill segments act like they are really tied off).

2. Easier to trim when there are violations. You can trim floating metal fill that causes DRC
violations with the trimMetalFill command. If you add tied-off metal fill, however, you
must delete it manually to avoid problems with vias.

When tied-off metal fill is trimmed, the vias cause the following problems:

addMetalFill -stagger diag
(horizontal)

addMetalFill -stagger diag
(vertical)
October 2010 887 Product Version 9.1.3

../fetxtcmdref/metalfillT.html#trimMetalFill

Encounter Digital Implementation System User Guide
Optimizing Metal Density
❑ If the vias are not deleted, they cause shorts to new wires.

❑ If the vias are deleted, the following problems might occur:

❍ An isolated piece of previously tied-off metal fill might be left after trimming.

❍ If the new routing was added during an ECO in which some layers were frozen,
the change might affect a layer that should have been left frozen.

For more information, see the figures that follow and “Trimming Metal Fill” on page 904.
October 2010 888 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Metal Density
The following figures show a section of a design with metal fill. In the first figure, all the metal
fill is floating. In the second figure, some of the metal fill is floating and some is tied off. In the
third figure, all of the metal fill is tied off.

Floating metal fill

Tied-off metal fill

Floating and tied-off
metal fill

M4 Vdd M4 Vss M5 Fill M4 Fill M4M5 Via
October 2010 889 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Metal Density
The following figures show the same design after an ECO, in which routing was added on
Metal4 and Metal5.

These figures show what happens when you use floating metal fill. The first figure shows the
design with the added routing. The second figure shows the design after the metal fill is
trimmed. The dotted lines show where the metal fill was trimmed.

New routing on
Metal4 and Metal5

M4 Vdd M4 Vss M5 Fill M4 Fill M4M5 Via
October 2010 890 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Metal Density
These figures show what happens when you use tied-off metal fill. The first figure shows the
design with the added routing. The second figure shows the design after the metal fill is
trimmed. The dotted lines show where the metal fill was trimmed.

Timing-Aware Metal Fill

When it adds timing-aware metal fill, the Encounter Digital Implementation System (EDI
System) software avoids adding the fill near clock and signal nets and adds more fill near
power and ground nets.

The software assigns a high cost to adding metal fill near clock nets, a moderate cost to
adding it near signal nets, and zero cost to adding it near power and ground nets. It adds the
fill, based on the cost, to achieve the preferred metal density with the least effect on timing.

New routing on
Metal4 and Metal5

M4 Vdd M4 Vss M5 Fill M4 Fill M4M5 Via
October 2010 891 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Metal Density
The software adds timing-aware metal fill by default.

■ To add non-timing aware metal fill, type the following command:

addMetalFill -timingAware off

■ To use the EDI System common timing engine (CTE) for static timing analysis (STA),
type the following command:

addMetalfill -timingAware sta -slackThreshold value

If the buildTimingGraph command has already run, the software adjusts the costs as
a function of the slack (nets with the worst slack have the highest cost). For more
information, see “Timing Analysis” on page 985.

When you run the software in STA mode, it assigns costs to four categories of nets:

❑ Clock nets are assigned the highest cost.

❑ Signal nets are assigned a moderate cost.

❑ Non-critical signal nets are assigned a small cost.

❑ Power and ground nets (nets marked + USE POWER or + USE GROUND in the DEF
file) are assigned 0 cost.
October 2010 892 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Metal Density
Specifying Metal Fill Parameters

Some of the metal fill parameters can be specified in the Layer (Routing) section of the LEF
file. All of the parameters can be specified by the EDI System metal fill commands or forms.
The parameters that can be specified in the LEF file are listed in the table below.

If a parameter is specified in the LEF file, use the specified value. If a parameter is not
specified, check the chip manufacturer’s DRC manual for the correct metal fill (or dummy fill)
values and specify them manually with the command or form.

Caution

If not specified properly, metal fill can cause DRC violations and increase
capacitance unnecessarily. Parameters specified by the metal fill
commands override parameters specified in the LEF file only if they are
more restrictive than the LEF parameters.

The following table lists the metal fill parameters that can be specified in the LEF file and
corresponding EDI System metal fill parameters:

Description LEF Statements setMetalFill
Parameter

Setup Metal Fill
Parameter

Minimum distance between
a segment of metal fill and
another type of object in the
design, such as a signal
wire

FILLACTIVESPACING -activeSpacing Active Spacing

Minimum density allowed in
the design

MINIMUMDENSITY -minDensity Metal Density
% Min

Maximum density allowed
in the design

MAXIMUMDENSITY -maxDensity Metal Density
% Max

Area the EDI System
software uses to examine
metal density

DENSITYCHECKWINDOW -windowSize Step Size X
Step Size Y

Distance the window
moves for each metal fill
iteration

DENSITYCHECKSTEP -windowStep Window Size X
Window Size Y
October 2010 893 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Metal Density
The EDI System software maintains the values specified for these parameters until you reset
them or you restart the software.

For more information on LEF, see the LEF/DEF Language Reference.

Recommendations for Adding Timing-Aware Metal Fill

Follow these recommendations for metal fill parameters that specify the preferred density,
metal fill shape, the space between the metal fill segments, and whether to use metal fill that
is connected to special wiring. These parameters are not specified in the LEF file.

■ Specify a preferred metal density between 25 percent and 40 percent.

Metal density within this range minimizes the density variation in design windows as well
as the impact on added capacitance. The reduced variation improves correlation with
early RC estimates, that is, it gives you faster timing convergence, and increases yield.

Determining the appropriate metal density is a process of balancing the decrease in
density variation with the increase in capacitance: A density of 35 percent minimizes
variation and increases the capacitance a moderate amount, a density of 25 percent
adds less capacitance but does not decrease the variation quite as much.

■ Insert rectangular metal fill segments rather than square metal fill segments.

You can achieve the preferred metal density with fewer pieces of rectangular metal fill
than with square metal fill. Adding rectangular segments reduces the number of flashes
on the reticle, minimizes the density variation across the design windows, and
approaches the preferred metal density in more windows.

The following dimensions for rectangular metal fill segments work with most 90 nm and
130 nm process rules:

❑ Length: 1 um to 10 um

❑ Width: Use the width specified in the chip manufacturer’s DRC manual for the
minimum value. Use two to three times that value for the maximum width.

For example, you can specify the following dimensions:

❍ 0.4 um to 1.0 um for thin layers

❍ 0.8 um to 2.0 um for thick layers

Alternatively, for lower capacitance at the expense of more density variation, reduce
the maximum width to the same value as the minimum width.
October 2010 894 Product Version 9.1.3

../lefdefref/lefdefrefTOC.html#firstpage

Encounter Digital Implementation System User Guide
Optimizing Metal Density
■ Follow the chip manufacturer’s DRC manual for the spacing between metal fill shapes.
This is called the gap spacing. The gap spacing is generally one to three times the
minimum metal fill width.

The following dimensions for gap spacing work with most 90 nm and 130 nm process
rules:

❑ 0.4 um for thin layers

❑ 0.8 um for thick layers

Alternatively, for lower capacitance at the expense of more density variation, use values
like 0.8 um for thin layers and 1.6 um for thick layers.

■ Add metal fill to all metal layers or run the verifyMetalDensity command to
determine where metal fill is needed.

■ Use metal fill that is not connected to special wiring.

Unconnected (floating) metal fill adds less capacitance to the design and is easier for
postroute and postmask changes to handle than connected (tied-off) metal fill.

Alternatively, you can use tied-off metal fill whenever possible and floating metal fill when
tied-off metal fill cannot be created. Either method is more likely to meet the preferred-
metal density requirements than using tied-off metal fill throughout the design.

Timing-Aware Examples

The following examples specify conservative values for a 90 nm or 130 nm eight-layer design
where metal layers 1 through 6 are thin metal and metal layers 7 and 8 are thick metal.

The following command sets values for the active spacing, window size, window step,
minimum density, and maximum density for all eight layers:

setMetalFill -layer "1 2 3 4 5 6 7 8" -activeSpacing 0.6 \
-windowSize 100 -windowStep 100 \
-minDensity 20 -maxDensity 70

The following command sets values for the gap spacing, preferred density, minimum and
maximum width, and minimum and maximum length for the thin-metal layers:

setMetalFill -layer "1 2 3 4 5 6"
-preferredDensity 35 -gapSpacing 0.4 \
-minWidth 0.4 -maxWidth 1.0 \
-minLength 1.0 -maxLength 10.0

The following command sets values for the gap spacing, preferred density, minimum and
maximum width, and minimum and maximum length for the thick-metal layers:
October 2010 895 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Metal Density
setMetalFill -layer "7 8"
-preferredDensity 35 -gapSpacing 0.8 \
-minWidth 0.8 -maxWidth 2.0
-minLength 1.0 -maxLength 10.0

The following command adds metal fill to all eight layers:

addMetalFill -layer "1 2 3 4 5 6 7 8"

Specifying the Active Spacing Value

The space between metal fill and nonmetal-fill geometries is called the active spacing, as
shown in the following figure.

The EDI System software uses the FILLACTIVESPACING value in the LEF file for the active
spacing. If FILLACTIVESPACING is not specified, you can set it manually by using one of the
following methods:

■ Specifying a value for setMetalFill -activeSpacing on the text command line

Note: The setMetalFill -activeSpacing settings are used for creating regular
FILLWIRE shapes. For FILLWIREOPC shapes, design rules are used.

■ Specifying a value for Active Spacing on the Setup Metal Fill form

If no value is specified in the LEF file, and you do not specify one manually, the software uses
0.6 microns for thin layers (less than 0.24 microns) and 0.8 microns for thick layers as the
default active spacing value.

The default active spacing value is usually large enough that you can avoid using Optimal
Proximity Correction (OPC) for the metal fill shapes. In addition, the default active spacing
minimizes the increase in cross-coupling capacitance caused by the metal fill, which in turn
reduces the additional timing delay.

metal fill

signal wire

 active spacing

signal wire

 active spacing
October 2010 896 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Metal Density
As you increase the active spacing value, you reduce the space available for metal fill. A large
increase—for example, 2 um to 3 um for a 90 nm or 130 nm process—might prevent you from
meeting the minimum density rule for some windows.

Adding Metal Fill Over Macros

For adding metal fill to macros, the added metal fill is based on the recalculated metal density
for that metal layer. If the added fill is less than the preferred metal density (the default is 35
percent), the software tries to add metal fill shapes on that metal layer to meet the preferred
density goal. Otherwise, it does not add any metal fill shapes.

For better metal density accuracy, use the LEF DENSITY table—a list of rectangles with metal
density numbers. These rectangles cover the entire macro bounding box for that metal layer.
The rectangles are defined in the MACRO section of the LEF file and are honored by the
addMetalFill and verifyMetalDensity commands. To force addMetalFill to place
correct metal fill shapes for a layer, place obstructions on the layer to block areas where metal
fill should not be placed.

The DENSITY rectangles on a layer should not overlap and should cover the entire area of
the macro. Choose the size of the rectangles based on the uniformity of the density of the
block. If the density is uniform, a single rectangle can be used. If the density is not uniform,
the size of the rectangles can be specified to be 10 to 20 percent of the density window size,
so that any error due to non-uniform density inside each rectangle area is small.

For example, if the metal density rule is for a 100um x 100um window, the density rectangles
can be 10um x10um squares. Any non-uniformity will have little impact on the density
calculation accuracy.

If two adjacent rectangles have the same or similar density, they can be merged into one
larger rectangle, with one average density value. The choice between accuracy and
abstraction is left to the abstract generator.

The DENSITY table syntax is:

[DENSITY
{LAYER layerName ;

{RECT x1 y1 x2 y2 densityValue ;} …
} …

END] …

For more information on LEF MACRO DENSITY, see the Macro section of the “LEF Syntax”
chapter in the LEF/DEF Language Reference.
October 2010 897 Product Version 9.1.3

../lefdefref/LEFSyntax.html#Macro

Encounter Digital Implementation System User Guide
Optimizing Metal Density
Recommendations for Power Strapping Mode

In power strapping mode, the software makes mesh connections to power and ground bus
wiring, instead of the tree-type connections used in regular connected mode. This
configuration allows the metal fill shapes to carry current as part of the power and ground
structure. Power strapping uses the maximum possible number of cuts in vias, based on the
intersection area between layers, instead of using the minimum-cut based connections used
in regular connected mode.

To get the best results in power strapping mode, follow these recommendations:

■ Use longer maximum lengths (at least 100 um).

Longer lengths increase the number of times a single metal fill shape intersects with the
existing power/ground mesh.

■ Use higher values for preferred density (40 percent to 50 percent).

Higher preferred density increases the number of metal fill segments retained as
candidates for power strapping.

■ Use wider metal fill

Adding Via Fill

When it adds via fill, the EDI System software does the following:

■ Attempts to add vias that meet cut density requirements

■ Uses metal width and spacing values specified by the setMetalFill command (or Set
Metal Fill form) to determine size and allowed placement locations

■ Adds either tied-off or floating vias until the preferred cut density is met

❑ In tied-off vias, either the top or bottom layer is connected to power or ground.

❑ Floating vias are not connected to power or ground.

Important

To get the best results from via fill, add it before adding metal fill. You can minimize
the need for via fill by inserting multiple-cut vias with the NanoRoute router prior to
adding via fill. For information, see setNanoRouteMode.

Use the fill commands in the following recommended order:
October 2010 898 Product Version 9.1.3

../fetxtcmdref/routeT.html#setNanoRouteMode
../fetxtcmdref/metalfillT.html#setMetalFill

Encounter Digital Implementation System User Guide
Optimizing Metal Density
1. setViaFill

2. setMetalFill

3. addViaFill

4. addMetalFill

Recommendations for Metal/Via Fill Flow

In the recommended flow, the software adds via fill to free space prior to adding other metal
fill shapes. It does not connect via fill to metal fill.

Use the fill commands in the following order:

1. Set via and metal layer parameters.

setViaFill -layer "Via23" -windowSize 50 50 -windowStep 25 25 -minDensity 10
-maxDensity 30 ...

setMetalFill –layer "Metal2 Metal3" –activeSpacing 0.6 –gapSpacing 0.4
-maxWidth 2.0 –maxLength 10 -windowSize 50 50 -windowStep 25 25 -minDensity
20 -maxDensity 80 ...

You also can specify the parameters in the GUI using the Setup Metal Fill Options and
Setup Via Fill Options forms. The addViaFill and addMetalFill commands will honor the
setting to add via and metal fill.

2. Add via fill with specified options.

addViaFill -layer "Via23" –mode floatingOnly –area "2 4 6 8"

This will add via fill in white space to meet the via density requirements according to the
specified rules. Via fill can be connected to power or ground nets (tied off) or
unconnected (floating). Via fill cannot be connected to signal nets.

3. Add metal fill with specified options.

addMetalFill -layer {Metal2 Metal3} -area 100 200 300 400 –stagger on
-timingAware sta -onCells –nets {VDD VSS} -mesh
October 2010 899 Product Version 9.1.3

../fetxtcmdref/metalfillT.html#addViaFill
../fetxtcmdref/metalfillT.html#addMetalFill
../fetxtcmdref/metalfillT.html#setViaFill
../fetxtcmdref/metalfillT.html#setMetalFill

Encounter Digital Implementation System User Guide
Optimizing Metal Density
This will insert inactive metal into white space to achieve the metal density that is
required by a specific manufacturing process. However, the inactive metals do not touch
any other metal fill.

EDI now provides an alternative flow in which the software adds metal fill to free space prior
to adding via fill shapes. It can connect metal fill with special via fill. In this alternative flow,
you:

1. Set metal layer parameters.

setMetalFill –layer "Metal2 Metal3" –activeSpacing 0.6 –gapSpacing 0.4
-maxWidth 2.0 –maxLength 10 -decrement 2 –diagOffset 0.4 0.4 -windowSize 50
50 -windowStep 25 25 -minDensity 20 -maxDensity 80 ...

2. Add metal fill with specified options.
October 2010 900 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Metal Density
addMetalFill -layer {Metal2 Metal3} –excludeVias Dvia –nets {VDD VSS} -area 100
200 300 400 –stagger on –timingAware sta -onCells -mesh

This step inserts inactive metal into a placed and routed design to achieve the required
metal density according to the specified parameters. The software attempts to connect
metal fill to the first net in the list, then the next net, and so on. However, the Dvia should
not be used to connect to special nets. If the metal fill cannot connect to special nets,
keep them floating.

3. Set via layer parameters.

setViaFill -layer "Via23 " -windowSize 50 50 -windowStep 25 25 -minDensity 10
-maxDensity 30 ...

The parameters honor settings in the following order:

a. setViaFill

b. setMetalFill

c. LEF

d. Manufacture process default

4. Add via fill with the specified options.
October 2010 901 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Metal Density
addViaFill -layer "Via23" –area "2 4 6 8" -mode {floating connectToPG
connectBetweenFill} –includeVia Dvia

This will connect the floating metal fill with the special Dvia to meet the via density
requirements.

Achieving Gradient Density with Preferred Density
Setting

To prevent density in neighboring regions from varying too much, the addMetalFill targets
a preferred density. This minimizes the variation in density from window to window . You can
set the parameters as follows:

setMetalFill -layer "Metal1 Metal2 Metal3" -windowSize 50 50 -windowStep 25 25
-minDensity 20 -maxDensity 80 -preferredDensity 35

addMetalFill -layer {Metal1 Metal2 Metal3}

The metal fills are inserted into white space to meet the preferred density. When the metal
density in a window is less than the minimum metal fill density value, addMetalFill adds
metal fill to achieve a density slightly above the preferred density, if possible. If the density is
larger than maximum density after it pre-calculates the window density, no metal fills are
inserted into the design. The metal fills are inserted based on the preferred density in all
windows. This way, the density variation from window to window is minimized.
October 2010 902 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Metal Density
The windowStep parameter can be used to get further global uniformity. With this
parameter, the metal densities in the window are calculated and changed by step as shown
in the diagram.

When add metal commands are applied, the engine calculates the Window_1 density and
tries to insert metal fill until the window density reaches the preferred density target. When
Window_1 is finished, the engine moves to the next window. The window step is specified in
setMetalFill command. Note that half of Window_2 overlaps with Window_1. This means
when Window_2 density is calculated, half of Window_1 is considered in Window_2. In other
words, Window_1 and Window_2 have mutual influence on each other. After Window_2 is
finished, the engine moves to Window_3. Window_3 has half part overlapping with Window_2
and one-fourth part overlapping with Window_1. Metal fill is inserted in the remaining
windows using a similar method.

For each 25*25 window step, the window density is cross-locked with the adjacent window
steps (labeled 1, 2, 3, and 4 in the digaram).
October 2010 903 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Metal Density
The engine calculates the window densities (1, 2, 3, 4 – Size 50*50) and tries to insert metal
fill in it. The window step (size 25*25) is considered in it respectively. This way, sudden
changes in density between adjacent windows are smoothed out.

Trimming Metal Fill

The automatic routers, including the NanoRoute® router, ignore metal fill (FILLWIRE and
FILLWIREOPC) shapes and might create routes that cause shorts or DRC violations.

The following case illustrates the DRC violation after NanoRoute ECO. You can use
trimMetalFill to clean the violations according to user setting, LEF setting, and default
parameters.

trimMetalFill -deleteViols

This command deletes metal fill shapes that cause DRC violations or shorts. After running
the trimMetalFill command, the remaining shapes are still rectangles.

This means you need not delete the metal fill before ECO and then add it again after ECO.
Instead, you can trim metal fill in the window that has been impacted by ECO.
October 2010 904 Product Version 9.1.3

../fetxtcmdref/metalfillT.html#trimMetalFill

Encounter Digital Implementation System User Guide
Optimizing Metal Density
trimMetalFill can minimize the impact caused by the ECO on the timing of other paths
(due to cross-coupling changes) that were not involved in the ECO.

To remove the shorts and violations, complete the following steps:

■ To remove floating metal fill that causes shorts or violations, run the following command:

trimMetalFill [-deleteViols] [-ignoreSpecialNets]

This command repairs violations caused by the metal fill shapes. If the metal density
drops below the target after trimming the metal fill, re-run the addMetalFill command.

The trimMetalFill command trims metal and via fill shapes based on the following
spacing rules:

❑ Between FILLWIRE and FILLWIREOPC shapes, the active spacing value or
minimum spacing based on DRC rules, whichever is larger, is required.

❑ Between FILLWIRE shapes, the gap spacing value or minimum spacing, whichever
is larger, is required.

❑ Between FILLWIREOPC and active shapes, minimum spacing is required.

❑ Between FILLWIREOPC shapes, minimum spacing is required.

For more information, see trimMetalFill.

■ To remove connected metal fill, complete the following steps:

a. Delete all metal fill by running the following command:

deleteMetalFill -shapes {FILLWIRE FILLWIREOPC}

For more information, see deleteMetalFill.

b. Insert new metal fill.

For information on FILLWIRE and FILLWIREOPC, see Shape in the “DEF Syntax” chapter of
the LEF/DEF Language Reference. (FILLWIREOPC is not supported by LEF 5.6.)

Verifying Metal Density

After adding or trimming metal fill, use the Verify Metal Density and Verify Geometry features
to verify that the metal fill has been added correctly.

For more information, see the “Verify Commands” chapter of the Encounter Digital
Implementation System Text Command Reference.
October 2010 905 Product Version 9.1.3

../fetxtcmdref/metalfillT.html#trimMetalFill
../fetxtcmdref/verificationT.html#firstpage
../lefdefref/DEFSyntax.html#SpecialWiringShape
../fetxtcmdref/metalfillT.html#deleteMetalFill

Encounter Digital Implementation System User Guide
Optimizing Metal Density
Adding Metal Fill Using the GUI

1. Determine the minimum and maximum size for metal fill shapes for each layer, then set
these values on the Size & Spacing page of the Setup Metal Fill form.

❑ If you are using rectangular metal fill, use the Rectangle Length and Metal Fill
Width values.

❑ If you are using square metal fill, use the Metal Fill Width and Square Decrement
values.

2. Determine the spacing around metal fill shapes for each layer, then set the value on the
Size & Spacing page of the Setup Metal Fill form. You must set two types of spacing
values:

❑ Spacing between a metal fill shape and an active metal shape. An active metal
shape can be a signal wire, a power wire, a cell, a pin, or any other structure that is
not classified as a fillwire.

❑ Spacing between a metal fill shape and another metal fill shape.

3. Determine the minimum, maximum, preferred, and external metal density for each layer,
then set these values on the Window & Density page of the Setup Metal Fill form.

4. Use the Verify Metal Density form to create a Verify Density report.

5. Locate an area in the design for which metal density is too low, then select that area on
the Add Metal Fill form.

6. Determine whether you want metal fill to be square or rectangular, then choose the
appropriate value on the Add Metal Fill form.

7. Click OK or Apply on the Add Metal Fill form to add metal fill shapes to the area that you
specified.

Adding Metal Fill with Iteration

Metal fill can be added iteratively with different parameter settings. You can specify a name
for a set of values for setMetalFill parameters.

setMetalFill -iterationName file_step1 -layer Metal1 -minDensity 20 -windowSize 100
100 -windowStep 50 50
October 2010 906 Product Version 9.1.3

../fetxtcmdref/metalfillT.html#setMetalFill

Encounter Digital Implementation System User Guide
Optimizing Metal Density
You can also save the iteration file using GUI. To do so, open the Setup Metal Fill Options
form, specify the parameters in the form, key in a file name, such as file_step1, in the
Iteration Name text box, and click OK.

The window size and step must be the same for all iterations of a specific layer. For example,
the following specifications are NOT allowed because the values are not consistent:

setMetalFill -iterationName file_step1 -layer Metal1 -minDensity 20 -windowSize 100
100 -windowStep 50 50

setMetalFill -iterationName file_step2 -layer Metal1 -minDensity 20 -windowSize 50
50 -windowStep 25 25

setMetalFill -iterationName file_step1 file_step2 -layer Metal1

If you want to specify different window size and step when adding metal fill, you need to run
addMetalFill in separate steps. In the following example, the specified values for
-windowSize and -windowStep in step1, step2, and step3 are different:

setMetalFill -iterationName step1 -layer -windowSize 100 100 -windowStep 50 50

setMetalFill -iterationName step2 -layer -windowSize 100 100 -windowStep 50 50

setMetalFill -iterationName step3 -layer -windowSize 50 50 -windowStep 25 25

Here, you can run addMetalFill for the first two steps in a single iteration. However, you
must run step3 in a separate iteration because its window size and step values are different
October 2010 907 Product Version 9.1.3

../fetxtcmdref/metalfillT.html#addMetalFill

Encounter Digital Implementation System User Guide
Optimizing Metal Density
from those of step1 and step2. Use addMetalFill -iterationNameList to add the
metal fill using the stored set of parameters:

addMetalFill -iterationNameList {step1 step2} ...

addMetalFill -iterationNameList step3 ...

addMetalFill -layer {Metal1 Metal2 Metal3} -area 100 200 300 400 -nets {VDD GND}
-iterationName step1 step2

You can also do the same through the GUI by using the Route – Metal Fill – Add command.

Key in the existing file list in Iteration Name List text box in the Add Metal Fill form and
then click OK.

The engine processes the iterations in the order listed and stops when the preferred density
is reached in any iteration.
October 2010 908 Product Version 9.1.3

Encounter Digital Implementation System User Guide
25
Timing Budgeting

■ Overview on page 910

■ Is My Design Ready for Budgeting? on page 912

■ Deriving Timing Budgets on page 913

❑ Budgeting Using the GUI on page 913

❑ Budgeting Using Text Commands on page 913

❑ Top-Level Budgets Derived by Using Active Logic View on page 914

❑ Deriving Preliminary Budgets in Early Design Phase on page 915

■ Budgeting Output Files for MMMC Designs on page 917

■ Constraints Adjustment on page 920

■ Analyzing Timing Budgets on page 922

❑ Resolving Conflicts with Path-Based Exceptions on page 922

❑ Budgeting Clock Latency in Propagated Mode on page 925

■ Budgeting Libraries on page 927

❑ Resolving Conflicts with Path-based Exceptions on page 927

❑ Defining Clocks Inside the Partition on page 930

■ Calculating Timing Budgets on page 932

■ Customizing Budget Generation on page 935

■ Verifying Timing Budgets on page 936

■ Reading the Justify Budget Report on page 937

■ Constraints Support in Budgeting on page 942

■ Warning Report on page 945
October 2010 909 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Overview

In hierarchical design flows, chip-level timing constraints must be mapped correctly to
corresponding block-level constraints. The Encounter Digital Implementation System (EDI
System) software does this automatically to produce predictable timing convergence.

The software apportions budgets to blocks using a path-based method, which might not have
a direct relationship to the size of the blocks themselves. EDI System supports two ways to
perform timing budgeting in hierarchical designs:

■ Without Trial IPO

Timing optimization is not run before generating budgets at the port boundaries.

■ With Boundary Trial lPO (the default)

Timing optimization fixes are done for the top level nets and the interface nets.

MMMC mode is active if you have specified set_analysis_view. In MMMC mode, timing
budgeting is run per-view, and generates view files for partition implementation and top-level
implementation (not chip assembly).
October 2010 910 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#set_analysis_view

Encounter Digital Implementation System User Guide
Timing Budgeting
The following flowchart shows how timing budgeting is performed within the overall design
flow.

Note: You can set the analysis view at any time before performing timing analysis, but could
also be done before reading the constraint file.

Budgeted constraints and
partitions

Read timing constraints

Complete floorplanning

Perform top-level placement

Run trial route

Perform pin assignment

Derive timing budgets

Verify timing budgets

Save timing budgets

Perform partitioning

Set the analysis view
October 2010 911 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Is My Design Ready for Budgeting?

In order to close timing on the hierarchical level, you must be able to close timing on the flat
design first. If the fully flat placement of a design (based on the partition fences, pin
placement, and so on) does not meet timing before partitions are committed, then it is unlikely
that timing will close after the partitions are committed and the budgets generated.

To help you decide whether the design is ready for budgeting, run virtual IPO on the flat
design. This builds a timing graph, which allows you to examine the design for failing inter-
partition paths. When you find these paths, you can use the information to determine why the
problems occur and how you can fix them. In a hierarchical implementation, you might need
to iterate top-level floorplanning and virtual IPO several times before creating a floorplan that
can meet timing.

When you are convinced that the timing will close at this stage of the design process, you can
then run timing budgeting.
October 2010 912 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Deriving Timing Budgets

You can generate timing budget constraint files for each top-level partition using either the
partition graphical user interface (GUI) or the various text commands.

Budgeting Using the GUI

To generate the constraints files using the GUI, complete the following steps:

1. Read in the timing constraint file during design import.

2. Complete the floorplan for the design to partition.

The more complete the floorplanning, the better the timing budgeting results.

3. Run top-level placement and preferably trial route, choosing medium effort for both.

4. (Optional) Use the Assign Partition Pins form (Partition – Assign Pins) to assign the
partition pins.

5. Derive timing budgets. Choose Derive Timing Budget from the Partition menu, and
specify the options you need on the Derive Timing Budget form.

6. (Optional) Save timing budgets. Select Design – Save – Save Timing Budget.

7. Partition the design. Select Partition – Partition.

Use the Save Partition form (Design – Save – Partition) to save the partitions to their
directories. The directories are called topCellName for the top-level and
partitionName for the partitions.

For each partition, this procedure creates a timing constraint file named
partitionName.constr.pt for PrimeTime format. These files are located in each
partition directory. The library model files, partitionName.lib, are created in the
top-level directory. The constraints file top_level.top.constr is created for the top
level.

The result is budgeted constraints and partitions.

Budgeting Using Text Commands

To generate the constraints files using the text commands, complete the following steps:

1. Read the timing constraint file during design import.

2. Complete the floorplan for the design to partition.
October 2010 913 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
The more complete the floorplanning, the better the timing budgeting results.

3. Run top-level placement and preferably trial route.

4. Perform pin assignment.

5. Derive the timing budgets using the deriveTimingBudget command with the -ptn
parameter.

6. (Optional) Save the derived budgets using the saveTimingBudget command with the
-ptn parameter.

7. Partition the design.

The result is budgeted constraints and partitions.

Top-Level Budgets Derived by Using Active Logic View

The software provides a top-level interface timing analysis flow to perform partitioning and
budgeting on a trimmed-down version of the timing graph: a virtual partition. This flow saves
memory usage and provides faster run time on large designs. The results of the flow are
comparable to results of partitioning and budgeting with the full timing graph.

To perform partitioning and budgeting using top-level timing analysis, complete the following
steps:

1. Load the hierarchical design into the database. Specify the partition information in the
database.

source init.enc

2. Run placement.

setPlaceMode -fp true -ignoreScan true
placeDesign

3. Run Trial Route and perform pin assignment.

trialRoute

assignPtnPin

4. Run Trial Route to honor assigned pins.

trialRoute -honorPin

5. Use the createActiveLogicView command to identify interface logic for all the
partitions.

createActiveLogicView -type flatTop
October 2010 914 Product Version 9.1.3

../fetxtcmdref/timingbudgetingT.html#dtb
../fetxtcmdref/timingbudgetingT.html#saveTB

Encounter Digital Implementation System User Guide
Timing Budgeting
This command marks the interface logic in all the partitions in the chip-level design.
When you build the timing graph after this step, the software masks the core logic inside
the partitions and ignores it to reduce the run time and memory usage.

6. Derive timing budgets.

deriveTimingBudget -trialIPO

The command rebuilds the timing graph as part of its operation.

7. (Optional) Evaluate the budgeting results.

justifyBudget -pin pinABC Partition1

8. Save the timing budgets.

saveTimingBudget

9. Clear the virtual partition marking after you save the timing budgets.

clearActiveLogicView

Deriving Preliminary Budgets in Early Design Phase

The software provides a flow for deriving timing budgets in the early stages of the design to
obtain a preliminary estimate of the budgets. The software uses the net delay and net load
that you specify using the setBudgetingMode command. To perform the preliminary
budgeting, you use the -preliminary parameter of the deriveTimingBudget
command. The software does not use trialIPO operations for calculating budgets for this
flow.

The software uses the top-level net delays that you specify using the
-topLevelDelayPerLen and -topLevelMinDelayPerNet parameters of the
setBudgetingMode command. The software calculates the total delay value using the
value of the -topLevelDelayPerLen parameter and the total length of the net. If the total
delay value that the software calculates is less than the -topLevelMinDelayPerNet
parameter, the software uses the value of the -topLevelMinDelayPerNet parameter.
Otherwise the software uses the value of the -topLevelDelayPerLen parameter. The
software assumes the block-level delays are zero.

The software uses the lump capacitance that you specify using the setBudgetingMode
-overrideNetCap command for both top-level and block-level nets. The software uses this
value to calculate the cell delay.

The software assumes all the net delay is on the top-level and does not perform boundary net
adjustments. Therefore, when you run the justifyBudget command after generating the
preliminary budgets, the Adjustment by Net Delay value is zero in the budgeting report.
October 2010 915 Product Version 9.1.3

../fetxtcmdref/timingbudgetingT.html#setBudgetingMode
../fetxtcmdref/timingbudgetingT.html#deriveTimingBudget
../fetxtcmdref/timingbudgetingT.html#setBudgetingMode
../fetxtcmdref/timingbudgetingT.html#setBudgetingMode

Encounter Digital Implementation System User Guide
Timing Budgeting
The software proportions the budget according to the calculated values.If you do not use the
-preliminary parameter in the deriveTimingBudget command, the software adds
three extra buffer delays to the delay of the positively slacked path that has positive slack. If
you use the -preliminary parameter, the software distributes the positive slack equally
between source block, destination block, and top-level. Therefore, the value of following fields
in the budgeting report is zero:

■ Virtual buffering adjustment

■ External buffering adjustment

For negative slack, the software uses the -freezeTopLevelNegPathOnly parameter of
the deriveTimingBudget Command.

To perform preliminary budgeting, complete the following steps:

1. Load the hierarchical design in the database. Specify the partition information in the
database.

source init.enc

2. Run placement.

setPlaceMode -fp -ignoreScan
trialRoute -noDetour -floorplanMode
placeDesign

Note: Steps 1 and 2 are optional. You can source a routed design instead.

3. Set the delay values to be used during budgeting.

setBudgetingMode -topLevelDelayPerLen value
-topLevelMinDelayPerNet value
-overrideNetCap value

4. Derive timing budgets.

deriveTimingBudget -ptn partitionName -preliminary

5. Verify the budgets.

justifyBudget -short -pins pinList partitionname

6. Save the budgets.

saveTimingBudget -dir dirName -pt -rptNegSlackOnPorts value
October 2010 916 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Budgeting Output Files for MMMC Designs

In MMMC mode, timing budgets are derived automatically for per view. Use the following
command:

deriveTimingBudget -justify

This command derives the budgets for all ports of the instances or partitions specified by
-inst or -ptn. Use deriveTimingBudget -justify instead justifyBudget to
generate a report for per view/per partition.

Files are generated per view. The files are generated with the following structure:

budget_justify/Partition1/Partition1_view1.justify
budget_justify/Partition1/Partition1_view2.justify
budget_justify/Partition1/Partition1_view3.justify
budget_justify/Partition2/Partition2_view1.justify
budget_justify/Partition2/Partition2_view2.justify

In cases of setup and hold timing budgeting:

budget_justify/Partition1/Partition1_view1_setup.justify
budget_justify/Partition1/Partition1_view1_hold.justify
budget_justify/Partition1/Partition1_view2_setup.justify
budget_justify/Partition1/Partition1_view2_hold.justify

A view is a combination of a mode (.sdc files) and a corner (libraries). The delay of the timing
arcs through the partition ports may be different in terms of the constraints files (modes) and
the libraries (corners). This means that one mode at the chip level becomes two or more
modes at the partition/ top level. In this case, modes must be cloned. Similarly, one corner
becomes two different corners at the top level because the timing model of a partition is not
the same for the two different views. In this case, corners are cloned.

■ Corner cloning affects only top-level data

■ Mode cloning affects partition and top-level data

Corner Cloning

The following example shows budgeting output for views having the same corner (C1) and
different modes (M1 and M2).

View 1 (M1 C1)

View 2 (M2 C1)

The output data from deriveTimingBudget are for the top level are as follows:

Top_view1.constr

Top_view2.constr

Ptn_view1.lib
October 2010 917 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Ptn_view2.lib

The output data are for the block level are as follows:

Ptn_view1.constr.pt

Ptn_view2.constr.pt

At the top level, for the corners, the view definition file contains the following:

View 1: Corner1 (pointing to corner 1 + Ptn_view1.lib)

View 2: Corner1_budgeting1 (pointing to corner 1 + Ptn_view2.lib

Here, the corner is cloned.

Mode Cloning

The following example shows budgeting output for two views with the same mode (M1), but
different corners (C1 and C2):

View 1 (M1 C1)

View 2 (M1 C2)

The output data from deriveTimingBudget are for the top level are as follows:

Top_view1.constr

Top_view2.constr

Ptn_view1.lib

Ptn_view2.lib

The output data are for the block level are as follows:

Ptn_view1.constr.pt

Prn_view2.constr.pt

At the top level, for modes, the view definition file contains the following:

View 1: Mode 1 (pointing to the Top_view1.constr)

View 2: Mode1_budgeting1 (pointing to the Top_view2.constr)

In this case, the modes are cloned.
October 2010 918 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Setup and View Handling for MMMC Designs

Views can be created for both setup as well as hold analysis. For example, the following
command can set the same view for both setup and hold analysis:

set_analysis_view -setup [view] -hold [view]

The budgeting output constraint file contains setup as well as hold time constraints, but the
.lib files are written separately for setup and hold.

The view definition file libraries for setup and hold are specified as follows:

create_library_set -name name_max -timing [... Ptn_max.lib]

create_library_set -name name_min -timing [... Ptn_min.lib]

create_delay_corner -name corner-name

-late_library_set name_max

-early_library-set name_min
October 2010 919 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Constraints Adjustment

The timing budgeting process produces a .lib file for a partition that will be used during top-
level implementation, and a SDC file for partition implementation. When top-level and block-
level implementations are run in parallel, the timing model and the SDC files must match in
order for chip assembly to succeed.

To ensure that the files match, timing budgeting makes adjustments for the following
constraints:

■ Capacitance

For each partition input pin, the tool produces the following output:

❑ In the .lib file, a specification of the pin’s capacitance.

❑ In the SDC constraint file, a set_max_capacitance constraint.

If a max_capacitance constraint in the SDC file is greater than the capacitance
specified in the .lib file, this could lead to timing violations during the reassembly. The
partition optimization might change the load of a partition input pin to a value such that
the buffer, chosen at the top level with respect to the small capacitance specified in the
.lib file, would not be able to drive the load.

The correlation adjustment done by budgeting ensures that the pin_capacitance
specification in the .lib file and the set_max_capacitance constraint in the partition
SDC to be very nearly the same.

■ Transition

For each partition output pin, the tool produces the following output:

❑ In the .lib file, a lookup table describing the pin transitions with respect to load.

❑ In the SCD constraint file, a set_max_transition constraint.

If the .lib lookup table indicates a range of transition values that are all less than the
set_max_transition value used to constrain partition implementation, it could be
possible for you to perform top-level implementation assuming that the transition will be,
for example, 500 ps, while the partition implementation can pass with a transition of 1 ns
on the same port. This situation could result in problems after reassembly.

The correlation adjustment done by budgeting ensures that the set_max_transition
constraint in the partition SDC is within the lookup table in the partition .lib.

■ Load and max_cap

For each partition output pin, the tool produces the following output:
October 2010 920 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
❑ In the .lib file, a max_capacitance DRV for the pin.

❑ In the SDC constraint file, a set_load constraint.

A max_capacitance constraint in the .lib greater than the set_load constraint in
the SDC can lead to timing violations during reassembly. The top-level optimization might
change the load of the partition output pin to an unrealistic value for the buffer
implemented within the partition, and chosen with respect to the small set_load
constraint.

The correlation adjustment done by budgeting ensures that the max_capacitance in
the .lib file and the set_load constraint in the partition SDC file are nearly the same.
October 2010 921 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Analyzing Timing Budgets

To analyze timing budgets, you must first identify all the boundary pins of the partitions. For
each partition pin, the software generates timing constraints in the form of timing
set_input_delay or set_output_delay if the pin is an input or output pin,
respectively. The software divides the total available budget among all partitions involved,
where their boundary pins constitute part of the path.

A pin might have multiple paths going through it. Multiple paths through the same port are
handled by CTE budgeting. In case of multiple paths related to the same clocks and the same
number of clock cycles, the tool automatically chooses the best path for deriving the budgets.

Resolving Conflicts with Path-Based Exceptions

Budgeting generates one input or output delay assertion for each group of paths controlled
by the same group of path-based exceptions. For set_input_delay generation at a
partition port, the path group is the union of paths originating from the same clock phase that
is controlled by the same group of exceptions at the partition port. For set_output_delay
generation, the path group is the union of paths with the same clock phase at the end point
that is controlled by the same set of exceptions traversing backward at the partition port.

CTS generates a prototype latency file, which is used during budgeting. CTS estimates the
network latency for the top level and partitions. Budgeting then uses these values to generate
latency constraints. The following example shows a command flow:

setBudgetingMode -localLatency
estimatePartition -specFile top.ctstch -noAssignClockPin -keepBufTree
trialRoute
deriveTimingBudget
saveTimingBudget -dir budgets
October 2010 922 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Examples

All of the following examples use the same design:

Case 1

Two virtual clocks will be created for each same group of path-based exceptions during
budgeting.

■ Chip-level exceptions:

set_multicyle_path 2 -setup -from FF1 -to my_partition/FF3/D

■ For single cycles path and clk:

set_input_delay -clock clk_v0 number In1

(based on worst path from FF1)

■ For multicycle path and clk:

set_input_delay -clock clk_v1 number In1

(based on worst path from FF1)

set_multicycle_path 2 -from clk_v1 -through in1 -setup -to FF3/D

my_Partition

FF3

FF4

FF2

FF1 In1

clk1

clk

clk
October 2010 923 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Case 2

Two virtual clocks are created for each same group of path-based exceptions.

■ Chip-level exceptions:

set_multicycle_path 2 -setup -from FF1 -to my_partition/FF4/D

set_false_path -from FF1 -to my_partition/FF3/D

set_multicycle_path 2 -setup -from FF2

■ For multicycle paths from FF1:

set_input_delay -clock clk1_v0 number In1

(based on path from FF1 to my_partition)

set_multicycle_path 2 -setup -from clk1_v0 -through In1 -to FF4/D

■ For false path from FF1:

set_false_path -from clk1_v0 -through in1 -to FF3/D

■ For multicycle path from FF2:

set_input_delay -clock clk2_v0 number In1

(based on worst path from FF2)

set_multicycle_path 2 -from clk2_v0 -through in1 -setup

Case 3

Two virtual clocks are created.

■ Chip-level exceptions:

set_mulicycle_path 3 -setup -from FF1 -to my_partition/FF3/D

set_mulicycle_path 2 -setup -from FF2 -to my_partition/FF4/D

■ For multicycle 3 path and clk:

set_input_delay -clock clk_v0

(based on worst of paths from FF1)

set_multicycle_path 3 -from clk_v0 -through in1 -setup -to FF4/D

■ For multicycle 2 path and clk:

set_input_delay -clock clk_v1 number In1

(Based on worst path form F2)

set_mulicycle_path 2 -from clk_v1 -through in1 -setup -to FF4/D
October 2010 924 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Case 4

Two virtual clocks are created:

■ Chip-level exceptions:

set_mulicycle_path 2 -setup -from FF1 -to my_partition/FF4/D

set_false_path -from FF1 -to my_partition/FF3/D

set_mulicycle_path 2 -setup -from FF2

■ For multicycle 2 path from FF1:

set_input_delay -clock clk1_v0 number In1

(based on path from FF1 to my_partition/FF4)

Set_mulicycle_path 2 -setup -from clk1_v0 -through In1 -to FF4/D

■ For false path from F1:

set_false_path -from clk1_v0 -through in1 -to FF3/D

■ For multicycle 2 path from FF2:

set_input_delay -clock clk2_v0 number In1

(based on worst of paths from FF2)

set_multicycle_path 2 -from clk2_v0 -through in1 -setup

Budgeting Clock Latency in Propagated Mode

EDI System includes clock latency in the constraints generated for clocks in propagated
mode. The clock latency is included in the set_input_delay and set_output_delay
constraints. The clock latency is added to set_input_delay and subtracted from the
set_output_delay. This feature is useful when a clock tree is present in your design.

For multiple paths, both source and propagated clock latency is included in the
set_input_delay and set_output_delay constraints. The software adds the
-source_latency_included and -network_latency_included constraints in the
set_input_delay and set_output_delay constraints for all inputs and outputs related
to clocks in propagated mode. Consider the following figure.
October 2010 925 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
The deriveTimingBudget command result in the following constraints for the Sub
partition:

create_clock -clock subclk -waveform...
set_clock_latency -source (top_source + 0.2 + 0.2 + 0.2) subclk
set_input_delay -clock subclk (Input delay + top_source + 0.2)

-source_latency_included -network_latency_included In1
set_output_delay -clock subclk (output_delay -top_source -0.2)

-source_latency_included -network_latency_included Out1

Where,

top_source = source latency of the clock at the top level

0.2 = delay through each buffer in the clock network

FF0 FF1

FF2

Sub

CLK

Out1A In1

Subclk

comb
October 2010 926 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Budgeting Libraries

To enable design analysis at the top level, budgeting generates black box models of the
partitions in the .lib format.

Resolving Conflicts with Path-based Exceptions

Budgeting generates internal pins and combinational arcs to model the budgets of each
group of paths controlled by the same group of path-based exceptions. For input ports, the
path group is the union of paths with the same clock phase at the end point that is controlled
by the same set of exceptions traversing backwards towards the input port. For output ports,
the path group is the union of paths originating from the same clock phase that is controlled
by the same group of exceptions at the partition port.

Case 1: A single cycle path and a multicycle path through the partition port

■ Chip-level exceptions:

set_multicycle_path 2 -from A1/ck -to my_Partition/B/D

set_multicycle_path 2 -from my_Partition/B/ck -to C1/ck

my_Partition

B

A

A1

In1

clk1

C

C1

Out1

W1

W2

W3

W4

B1
October 2010 927 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
MCP delays are modelled on the combinational arcs between input and output ports, and the
internal pins. In the following .lib representation, MCP delays are modelled on arcs IN ->
int_input_0 and int_output_0 -> Out.

■ Top-level exceptions:

set_multicycle_path 2 -setup -from [list [get_pins {A1/CK}]] -
through [list [get_pins {partition/in}]] -to [list [get_pins
{partition/int_input_0}]]

set_multicycle_path 2 -setup -through [list [get_pins {partition/
int_output_0}]] -through [list [get_pins {partition/out}]] -to
[list [get_pins {C1/D}]]

clk1

int_input_0

Out

int_output_0

IN
October 2010 928 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Case 2: A single cycle path and two different multicycle paths through the partition
port

■ Chip-level exceptions:

set_multicycle_path 2 -from [get_pins {A1/CK}] -to [get_pins
{my_partition/B/D}]

set_multicycle_path 4 -from [get_pins {A/CK}] -to [get_pins
{my_partition/B1/D}]

set_multicycle_path 2 -from [get_pins {my_partition/B/CK}] -to
[get_pins {C1/D}]

set_multicycle_path 4 -from [get_pins {my_partition/B1/CK}] -to
[get_pins {C/D}]

In this case because of two different MCP constraints, budgeting generates two internal pins
to model the effect of multicycle paths, and a normal arc is modelling the effect of the single
cycle path, at both input and output ports.

my_Partition

B

A

A1

In1

clk1

C

C1

Out1

W1

W2

A2
B2

C2

W3

W4

B1
October 2010 929 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
■ Top-level exceptions:

set_multicycle_path 2 -setup -from [list [get_pins {A1/CK}]] -
through [list [get_pins {my_partition/in}]] -to [list [get_pins
{my_partition/int_input_0}]]

set_multicycle_path 2 -setup -through [list [get_pins
{my_partition/int_output_1}]] -through [list [get_pins
{my_partition/out}]] -to [list [get_pins {C1/D}]]

set_multicycle_path 4 -setup -from [list [get_pins {A/CK}]] -
through [list [get_pins {my_partition/in}]] -to [list [get_pins
{my_partition/int_input_1}]]

set_multicycle_path 4 -setup -through [list [get_pins
{my_partition/int_output_0}]] -through [list [get_pins
{my_partition/out}]] -to [list [get_pins {C/D}]]

Defining Clocks Inside the Partition

Budgeting generates additional internal pins to model the effect of the clocks defined inside
the partition at the top level.

clk1

int_input_0

Out

int_output_0

IN

int_input_1

int_output_1
October 2010 930 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
■ Chip-level constraint:

create_clock -name clk -period 10 [get_pins {my_Partition/B/
clk_int}]

For the above constraint, an internal pin is created in the partition. At the top level, a constraint
is generated for this internal pin.

In the following .lib representation, the clk_int pin is created, and sequential and check
arcs are defined with the internal pin.

■ Top-level constraint:

create_clock -name clk -period 10 [get_pins {my_Partition/clk_int}]

A
OUTIN

clk_int
CLK

B

my_Partition

my_Partition

clk_int

IN OUT
October 2010 931 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Calculating Timing Budgets

EDI System proportions timing budget for partitions based on the path segment length, with
a slight difference in calculation when the slack on a path is positive or negative.

For paths with negative slack, the proportioning formula for a setup check (max budgeting) is:

SD/TD * AT = BB(neg)

For paths with negative slack, the proportioning formula for a hold check (min budgeting) is:

SD/TD * (AT + HT)= BB(neg)

Note: If AT + HT is less then zero, the software does not use the proportioned value.
The software uses the timing analysis values for input or output delays.

For paths with positive slack, the proportioning formula for a setup check (max budgeting) is:

SD + SD/TD * PS = BB (pos)

For paths with positive slack, the proportioning formula for a hold check (min budgeting) is:

SD - SD/TD * PS = BB (pos)

where:

■ SD is the delay through a path segment.

■ TD is the total delay of the path.

■ AT is the total available time. This could be the number of clock periods for multicycle
paths, or the clock period minus the fixed delays.

■ HT is the hold time.

Note: For max budgeting, hold time is not same as setup time. Setup time is represented
as an extra delay for the path. On the other hand, hold time is equivalent to required time,
that is the amount of time a signal cannot change.

■ BB is the baseline budget

■ PS is the positive slack

Note: For a positively slacked path, budgeting adds virtual buffer delays to the path. The
software usually adds three virtual buffer delays. In case of abutted designs, budgeting adds
two virtual buffer delays. In case of feedthrough paths, budgeting distributes three buffer delay
through all segments of the path.
October 2010 932 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Example 25-1 Negatively Slacked Path

In this example, block A is connected to block B via top-level net C. The budget of the top-
level net is not fixed. When placed and routed, the path segment through block A needs 3 ns,
path segment through block B needs 2 ns, and net C requires 1 ns. The available time to be
budgeted is 5 ns.

The software calculates the following values:

Budget for block A = 3/6 * 5 = 2.5 ns

Budget for block B = 2/6 * 5 = 1.67

Budget for net C = 0.83

Output delay at A = Budget for block B + Budget for net C

Input delay at B = Budgets for blocks A + Budget for net C

Example 25-2 Positively Slacked Path

In this example, the path segment through blocks A and B, and net C require 1 ns each. The
total delay is 3 ns. The total available budget is 5 ns. Therefore, positive slack is 2 ns.

The software calculates the following budget values:

A = 3

C = 1

B = 2

A = 1

C = 1

B = 1
October 2010 933 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Budget for A, B, and C = 1 + 1/3 * 2 = 1.66 ns
October 2010 934 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Customizing Budget Generation

You can customize budget generation according to the design stage and timing requirements.
To customize budget generation, use the following commands in EDI System:

■ The -freezeTopLevel parameter of the deriveTimingBudget command fixes the
top-level timing budget and proportions the timing budget for the partitions. The
commands consider blocks that are not being budgeted as fixed.
If the top-level design has no buffers or glue logic, using the -freezeTopLevel
parameter might not make much difference in the generated budgets.

■ The deriveTimingBudget [-ignoreDontTouch | -noIgnoreDontTouch]
command is used to consider don’t_touch blocks. The -noIgnoreDontTouch
parameter considers don’t_touch as fixed delay. The -ignoreDontTouch
parameter does not consider don’t_touch as fixed delay. The budgeting results
change based on whether fixed delay is considered during trial IPO.

■ At the top level, you can set the set_input_delay and set_output_delay
constraints on the hierarchical ports (or partition ports). The software generates budgets
for the hierarchical ports based on the set constraints.

■ The setBudgetingMode –topLevel command specifies the minimum percentage
of available allowed time to be set aside for the top. For example, if the clock period is
10ns and this minimum value is set to 0.1, then 10 percent of the clock period is set aside
for top-level. The remaining 9 ns will be proportioned between the partitions.
October 2010 935 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Verifying Timing Budgets

EDI System provides feedback on how the budgets are generated. The feedback is provided
in a budget report file. You can verify the timing budgets by analyzing the results in the report
file. To verify timing budget values, generate the report file by completing the following steps:

1. Derive budgets for partitions. In the command tool (console) window, type the following:

deriveTimingBudget -justify -ptn partitionName

The deriveTimingBudget command generates the timing models and stores them in
the partition directories.

The command creates one justify report per view. The report contains debug data to
justify timing budget for each pin and partition.

Views can be created for both setup and hold analysis, so the command generates
budgets for setup and/or hold analysis type specified with set_analysis_view.

2. (Optional) Obtain a report consisting of headers for the reports generated per view:

justifyBudget -short

When in MMMC mode, -short is the only valid parameter for justifyBudget. If you
want full reports, use deriveTimingBudget -justify.

3. Save the generated budgets by typing the following:

saveTimingBudget -ptn partitionName

The saveTimingBudget command saves time budget files of specified hierarchical
instances to a specified directory. If you specify the -setupHold parameter in the
deriveTimingBudget command, the saveTimingBudget command saves both
setup and hold budgets.
October 2010 936 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Reading the Justify Budget Report

You use the deriveTimingBudget -justify command to generate a budget report per
view containing the debug data to justify the timing budget for a pin. For a negatively slacked
path, the software distributes the total available time (in a simple clock period case)
proportionally between ports of instances along the path. For a positively slacked path, the
software usually adds some buffer delays to the generated delay values (built in positive
slack).

The report generated contains the following fields:

■ Adjustment for budget available time

Derived as follows:

Path Fixed Delay + Fixed Delay For Feedthrough Blocks - Clock Skew + Value of
Constraint for the Receiving Register (HoldTime)

Where, Fixed Delay For Feedthrough Blocks is the two buffer delay distributed between
all feedthrough blocks.

■ Fixed delay adjustment

Specifies the delay that cannot be modified. The fixed delay adjustment includes:
set_input_delay, set_output_delay, all cell delays for the cells marked as
dont_touch if -ignoredonttouch is not used, delays of top level segments if
-freezeTopLevel is used, any snapped delays calculated by using
setBudgetingMode -snapFdBudgetTo or -snapInputBudgetTo or
-snapOutputBudgetRatio. If, during timing analysis, the path segment delay used to
generate a budgeting constraint for the port falls below specified threshold value the
delay segment is snapped to the specified value and is considered as fixed delay during
budget allocation.

■ Virtual clock adjustment

Specifies a special adjustment to map the virtual clock into clocks pertaining to partitions.
This number is generated when you use the saveTimingBudget -noVirtualClock
command.

■ Top Level Adjustment

Specifies the top-level delay value. The top-level delay value cannot be less than the
minimum percentage of total available budget specified using the
-topLevel parameter of the setBudgetingMode command.

■ RC Adjustment (RC)
October 2010 937 Product Version 9.1.3

../fetxtcmdref/timingbudgetingT.html#setBudgetingMode

Encounter Digital Implementation System User Guide
Timing Budgeting
Specifies the input delays. During timing analysis the input delays are adjusted by the
delay due to input port drive cell that was added by budgeting as a set_drive
command in the generated constraint file. The Adjustment by RC number is
subtracted from the delay value in budgeting so that this effect is not counted twice in the
budget.

■ Adjustment by clock latency

Specifies the clock latency of the driving object.

■ Total Delay (totDel)

Specifies the total path delay.

■ Initial Slack

Initial Slack = (Data Required Time - fixed delay) – (Path segment number1 delay + Path
segment number 2 delay).

■ Virtual Buffering Adjustment

Specifies the total extra delays added to the positive slacked path. This number is usually
three extra buffer delays. In case of abutted designs, the number is two extra buffer
delays.

Note: In case of feedthrough paths, three buffer delay is distributed through all segments
of the path.

■ Slack after Virtual Buffering Adjustment (slack)

The software takes out three buffers worth of delay from positive slack to safeguard
minimum partition budget. This adjustment is used only for positive slacks.

■ External Buffering Adjustment

Specifies the extra delay that is external to partition port. This is usually equivalent to two
buffer delays. This is part of the virtual buffering adjustment. This delay is added to the
input delay for the input ports and output delay for the output ports.

■ Budgeted constraint

Budget = Adjustment for budget available time * Delay for path outside the partition /
Absolute total delay + Adjustment by fixed delay + Adjustment by virtual clock +
Adjustment by clock latency - Adjustment by RC + External Buffering Adjustment

■ External segment delay

Delay of the path segment outside of the partition.

■ This block’s segment delay
October 2010 938 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Delay of the path segment inside of the partition.

■ Fixed delay through feedthrough

Amount of extra delay allocated to the path feedthrough segments.

■ External Segment Fixed Delay from Budget Snap

The fixed delay for the path segment external to the partition contributed by using
setBudgetingMode -snapFdBudgetTo or -snapInputBudgetTo or
-snapOutputBudgetRatio.

■ Total External Segment Fixed Delay

Fixed delay of the path segment outside of the partition.

■ External Segment Extra Delay From Budget Snap

The extra delay added to the external path segment when you use setBudgetingMode
-snapOutputBudgetRatio and -snapInputBudgetRatio and if external segment
path delay is below user defined threshold.

■ Fixed Delay Adjustment

The total path fixed delay.

■ Clock Skew

The path clock skew.

Note: The report precision (the number of digits printed after the decimal point) is 3.

Design Example
module Top(in1, clk1, clk2, out);

input in1;
input clk1;
output out;
input clk2;
wire c0, c1, c2;

bfx0 buf0(.A(in1), .Z(c0));

SUB i_sub1(.sub_in(c0),

.sub_clk(clk1),

.sub_out(c1));

bfx0 buf1(.A(c1), .Z(c2));

SUBn i_sub2(.sub_in(c2),

.sub_clk(clk2),

.sub_out(out));

endmodule // TOP
October 2010 939 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
module SUB (sub_in, sub_clk, sub_out);

output sub_out;
input sub_in;
input sub_clk;

df1qx1 sub_FF (.D(sub_in), .CP(sub_clk), .Q(sub_out));

endmodule // SUB

module SUBn (sub_in, sub_clk, sub_out);

output sub_out;
input sub_in;
input sub_clk;

df1qx1 sub_FF (.D(sub_in), .CP(sub_clk), .Q(sub_out));

endmodule // SUBn

SDC Constraints for Design Example
current_design Top
create_clock -name clk1 -period 1 -waveform {0 0.5} [get_ports {clk1}]
set_input_delay 0.2 -clock clk1 [get_ports {in1}]
set_multicycle_path 2 -from [get_pins {i_sub1/sub_FF/CP}] -to [get_pins {i_sub2/
sub_FF/D}]

create_clock -name clk2 -period 1 -waveform {0 0.5} [get_ports {clk2}]
set_output_delay 0.1 -clock clk2 [get_ports {out}]

Generated Report for Design Example

To validate the budgets with positive slack in the design example, “Design Example” on
page 939, type the following command:

justifyBudget -inst i_sub2 -pin sub_in

The following report was generated:

HInstance: i_sub2
Port: sub_in
Budgeted constraint type: set_input_delay(setup rise)
Virtual Clock: clk1_V0
Initial budget available time + clock skew = 2.000

One Buffer Delay for Adjustment(cell bfx2): 0.198
Fixed Delay for Feedthrough Paths(fixFdThru)= 0.000
External Segment Fixed Delay From Budget Snap(snapExtFixedDel) = 0.000
Total External Segment Fixed Delay(extFixDel) = 0.000
This Block’s Segment Fixed Delay from budget snap(snapIntFixedDel) = 0.000
Total This Block’s Segment Fixed Delay(intFixDel) = 0.000
External Segment Extra Delay From Budget Snap (snapExtDelExtra) = 0.000
This Block’s Extra Delay From Budget Snap (snapIntDelExtra) = 0.000
Path Extra Delay From Budget Snap (snapExtraDel) = (0.000 + 0.000) = 0.000
Fixed Delay on the Path(pathFixDel) = (0.000 + 0.000 + 0.000 + 0.000) = 0.000
Fixed Delay Adjustment(fixDel)= 0.000
Clock Skew(clkSkew): 0.000
October 2010 940 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Adjustment for budget available time= -(pathFixDel + fixFdThru - clkSkew +
snapExtraDel)
= -(0.000 + 0.000 - 0.000 + 0.000) = -0.000
Available budget after adjustments(AvailTime)= (2.000 - 0.000) = 2.000

External Segment Delay(extSegDel): 0.638
This Block’s Segment Delay(segDel): 0.273
Total delay(totDel): 0.638 + 0.273 = 0.910
Initial Slack = AvailTime - totDel
Initial Slack = 2.000 - 0.910 = 1.090
Virtual Buffering Adjustment: (3 x 0.198) = 0.594
Slack after Virtual Buffering Adjustment(slack): 1.090 - 0.594 = 0.496

External Virtual Buffering Adjustment(extVirBuf)= 0.396
Top Level Adjustment(topLev): 0.000
Virtual Clock Adjustment(virClk): 0.000
RC Adjustment(RC): 0.009
Budgeted constraint = extSegDel + slack * extSegDel / totDel + extVirBuf + topLev
+ fixDel + virClk + startClkLat - RC
Budgeted constraint = 0.638 + 0.496 * 0.638 / 0.910 + 0.396 + 0.000 + 0.000 + 0.000
+ 0.000 - 0.009 = 1.372

Path 1: MET Setup Check with Pin i_sub2/sub_FF/CP
Endpoint: i_sub2/sub_FF/D (^) checked with rising edge of ’clk2’
Beginpoint: i_sub1/sub_FF/Q (^) triggered by rising edge of ’clk1’
Other End Arrival Time 0.000
- Setup 0.269
+ Phase Shift 1.000
+ Cycle Adjustment 1.000
= Required Time 1.731
- Arrival Time 0.641
= Slack Time 1.090
Clock Rise Edge 0.000
= Beginpoint Arrival Time 0.000

Instance Arc Cell Delay
Time

Arrival
Time

Required Slew Load Instance
Location

--

clk1 ^ 0.000 1.090 0.000 0.007

 i_sub1/
sub_FF

CP ^ -> Q ^ df1qx
1

0.182 0.182 1.272 0.063 0.005 (43.12,
366.80)

buf1 A ^ -> Z ^ bfx0 0.455 0.637 1.727 1.003 0.040 (43.96,
398.16)

i_sub2/
sub_FF

D ^ df1qx
1

0.004 0.641 1.731 1.003 0.040 (43.12,
766.64)

--
October 2010 941 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Constraints Support in Budgeting

■ group_path

This constraint is supported in timing optimization and timing analysis. In budgeting, it is
not pushed-down inside the partition and top-level SDC. This will affect timing budgets,
because the constraint affects chip-level timing analysis.

■ create_clock

If a top-level clock CK is inverted, then while generating the budgets for a partition a new
negative clock CK_B%ENC is created for the partitions connected to the negative clock.
For example, if CK is defined as:

create_clock -name CK -period 7.500 -waveform { 0.000 3.750 } \
[list [get_ports {clk}]]

The negative clock is:

create_clock -name CK_B%ENC -period 7.500 -waveform { 3.750 7.500 } \
[list [get_ports {losdclko_rp}]]

Where, losdclk0_rp is the clock port of the partition.

■ create_generated_clock

■ set_clock_latency

The set_clock_latency constraint is generated when you use the
setAnalysisMode –skew true command. The clock latency is not budgeted
between the partitions. The setAnalysisMode –clockPropagation sdcControl,
along with set_clock_propagation constraint, do not cause the network delay
through the clock tree to be budgeted for the partitions. The same clock latency is
assigned to all the partitions if specified in the top-level clock constraints.

■ set_clock_uncertainty

■ set_input_delay

■ set_output_delay

■ set_input_transition

■ set_load

■ set_drive

■ set_driving_cell

■ set_max_transition

■ set_max_capacitance
October 2010 942 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
■ set_multicycle_path

■ set_false_path

EDI System timing analysis requires that the set_false_path and
set_multicycle_path constraints have valid startpoints and endpoints for the -from
and -to options. This corresponds to the requirement of PrimeTime.

Valid startpoints are:

❑ Input ports

❑ Input part of bidirectional ports

❑ Clock pins of sequential cells

❑ Pins associated with set_input_delay

❑ Pins associated with set_path_delay -from

Valid endpoints are:

❑ Output ports

❑ Output part of bidirectional ports

❑ Data pins of sequential cells

❑ Pins associated with set_output_delay

❑ Pins associated with set_max_delay -to

During budgeting, the software generates valid budgets for partitions based on invalid
constraints at the top. For example, if set_multicycle_path 2 –from SUB/IN1 is
set at the top level, it is ignored during timing analysis, because a hierarchical pin is not
a valid startpoint for set_multicycle_path constraint. However budgeting generates
set_multicycle_path –from IN1 for partition which is valid when the constraints
are sourced for the partition because IN1 is a top-level port for partition and a valid start
point.

■ set_case_analysis

■ set_max_delay

■ set_min_delay

■ set_logic_zero

■ set_logic_one
October 2010 943 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Partition ports could be left unconstrained, which means that there are some ports
missing set_input_delay or set_output_delay constraints in the constraint file.
Several factors can cause a partition I/O being unconstrained. For instance,
set_false_path, set_case_analysis, set_disable_timing in an input
constraint file can effectively cut paths through a port. The Set_input_delay
constraint at the top-level, without a reference clock is another possibility which can
cause some partition ports being unconstrained. Missing timing arcs in cell timing model
can also cut timing paths. If a constant signal (1'b0, 1'b1) is assigned to a net leading
to a partition port in Verilog®, the constant signal can also cause that port to be left
unconstrained.

■ Min and -hold

The following commands are supported:

❑ Set_clock_latency -min

❑ Set_clock_transition -min

❑ Set_clock_uncertainty -hold

❑ Set_drive -min

❑ Set_driving_cell -min

❑ Set_input_delay -min

❑ Set_output_delay -min

❑ Set_false_path -hold

❑ Set_load –min

❑ Set_min_delay

❑ Set_multicycle_path –hold

■ set_timing_derate

This constraint is pushed down to a separate file with the extension .nonsdc.constr
in the push down directory.
October 2010 944 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Warning Report

The saveTimingBudget -ptn command generates a warning report
(partition_or_instance.warn) for the each partition and stores these reports in the
partition subdirectories.

Pin Constraint Values Greater than Available Time

The .warn report contains a section entitled “Pin constraint values greater than available
time.”

The software checks whether generated input_delay/output_delay budgets are less
than a maximum allowed time in the clock period for the delay. The maximum allowed time is
defined as a delay between active edge of the starting clock and the sampling edge of the
sampling clock. This time may vary based on phase shift and multicycle path directives. If
deriveTimingBudget tsConsCheck is specified, budget checking will use more
conservative value for available time:

The tool subtracts clk2q delays from available time when checking output_delay
statements and setup time when checking input_delay statements.

The following command reports all partition ports that have slack less than <value> in
partition_dir/partition_name/partition_name/constr.warn:

savePartition/saveTimingBudget -rptNegSlackOnPorts value

For example:

*.warn file:
....
/* Start Section: Instance ports with slack < 0.020 */
/* End Section: Instance ports with slack < 0.020 */

Warning Report Example

The warning report format is as follows:

/**
* Timing constraint sanity check File
**/

/* Start Section: Pin constraint values greater than available time */
/* End Section: Pin constraint values greater than available time */

/* Start Section: Dropped chip level exceptions */
/* End Section: Dropped chip level exceptions */

/* Start Section: Ports without constraints */
Port: sub1_out1 (setup)
Port: sub1_out2 (setup)
October 2010 945 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Budgeting
Port: sub1_out3 (setup)
Port: sub1_out4 (setup)
Port: sub1_out1 (hold)
Port: sub1_out2 (hold)
Port: sub1_out3 (hold)
Port: sub1_out4 (hold)

/* End Section: Missing constraints due to constant signals at ports */

/* Start Section: Missing constraints due to false path assignments at ports */

/* End Section: Missing constraints due to false path assignments at ports */

/* Start Section: List of ports w/o constraints with added false_path assertions */
Port: sub1_out1 (setup)
Port: sub1_out2 (setup)
Port: sub1_out3 (setup)
Port: sub1_out4 (setup)
Port: sub1_out1 (hold)
Port: sub1_out2 (hold)
Port: sub1_out3 (hold)
Port: sub1_out4 (hold)

/* End Section: List of ports w/o constraints with added false_path assertions */

/* Start Section: Constraints with merged paths */
Constraint: set_input_delay 3.0552 -clock {vclk1_virtual_setuphold_0} -max -rise -
trail \
[find -ports {sub1_in1}]
Constraint: set_input_delay 2.7617 -clock {vclk1_virtual_setuphold_0} -max -fall -
trail \
[find -ports {sub1_in1}]

Merged Path:
Start_clk vclk1 (F) End_clk vclk1 (F)

Constraint: set_input_delay 0.0227 -clock {vclk1_virtual_setuphold_0} -min -rise -
trail \| [find -ports {sub1_in1}]

Constraint: set_input_delay 0.0018 -clock {vclk1_virtual_setuphold_0} -min -fall -
trail \| [find -ports {sub1_in1}]

Merged Path: |
Start_clk vclk1 (F) End_clk vclk2 (R) Corresponding exception: set_min_delay
5.0000

/* End Section: Constraints with merged paths */

/* Start Section: Toplevel constraints applied to ports */

/* End Section: Toplevel constraints applied to ports */

/* Start Section Unconnected Ports */

/* End Section Unconnected Ports */

/* Start Section: Missing constraints due to constant signals at ports */
Port sub1_in1 set to logical ZERO, 6 inversions
Port sub1_in2 set to logical ONE, 0 inversions
Port sub1_out1 set to logical ONE, 9 inversions
Port sub1_out2 set to logical ZERO, 3 inversions
/* End Section: Missing constraints due to constant signals at ports */
October 2010 946 Product Version 9.1.3

Encounter Digital Implementation System User Guide
26
RC Extraction

■ Overview on page 948

■ Before You Begin on page 950

■ Extraction Flow in EDI System on page 951

■ Preroute Extraction on page 952

■ Postroute Extraction on page 952

❑ Native Detailed on page 952

❑ TQRC and IQRC on page 953

❑ Sign-Off Extraction Using QRC on page 957

■ Scale Factor Setting on page 957

■ Generating a Capacitance Table on page 958

❑ Inputs for Generating a Capacitance Table on page 958

❑ Capacitance Table Generation Flow on page 959

❑ Generating Capacitance Table With Specified Scaling Factors on page 964

■ Reading a Capacitance Table on page 965

■ Reading a QRC Techfile on page 966

■ Correlating Native Extraction With Sign-Off Extraction on page 967

❑ Correlating SPEF Files Using the Ostrich Utility on page 968

❑ Comparing SPEF Files Using a Perl Script on page 971

❑ Defining the Scaling Factor on page 974

■ Distributed Processing on page 975
October 2010 947 Product Version 9.1.3

Encounter Digital Implementation System User Guide
RC Extraction
Overview

You can perform two types of extraction in Encounter Digital Implementation System (EDI
System):

■ Preroute Extraction

Provides quick parasitic extraction for design prototyping. For more information, see
“Preroute Extraction” on page 952.

■ Postroute Extraction

Generates more accurate parasitics for cross-coupling and signal integrity analysis,
timing and SI optimization flow, or obtain sign-off quality detailed parasitic extraction. The
postroute extraction engine has four variants that allow selection based on the
performance versus accuracy needs. Following is a list of extraction engines in
increasing order of accuracy:

❑ Native Detailed

❑ Turbo QRC (TQRC)

❑ Integrated QRC (IQRC)

❑ Standalone QRC

For more information, see ““Postroute Extraction” on page 952.

The following table summarizes the types of extraction used during the design process.

Extraction Type When QRC License
Required

Preroute Used during optimization both before
and after clock tree synthesis.
October 2010 948 Product Version 9.1.3

Encounter Digital Implementation System User Guide
RC Extraction
Postroute Native
Detailed

Used during postroute and SI
optimization flow in older technologies.

TQRC Used during postroute and SI
optimization flow in newer technologies.

IQRC Used after ECO and for near signoff.

Standalone
QRC

Used during chip assembly and timing
sign-off processes.

Extraction Type When QRC License
Required
October 2010 949 Product Version 9.1.3

Encounter Digital Implementation System User Guide
RC Extraction
Before You Begin

Before running extraction, you optionally enter the RC scaling factor values in the RC
Extraction page of the Design Import form, or in the Edit RC Corner form for the MMMC
design environment. Scaling values provide better correlation between the EDI System
estimated parasitics and the signoff extraction results by multiplying the extracted resistance
and capacitance. For example, a capacitance scaling factor of 1.1 increases the extracted
values by ten percent.

Use of scale factors is recommended for preroute and native detailed extraction engines, and
is optional for TQRC. The IQRC scale factor also allows for optional fine tuning for optimal
correlation with 3rd party signoff extractor. In addition, all scale factors allow to use simple
scaling for non typical corners as an alternative for the recommended use of corner specific
captables and QRC Techfiles. Scaling for engine with effortLevel set to signoff is not
supported.

The following files are required for Encounter Digital Implementation System (EDI System)
extraction:

■ Capacitance table - Used by preroute and native detailed extraction engines. For more
information, see “Generating a Capacitance Table” on page 958.

■ QRC Techfile(s) - Used by TQRC/IQRC and standalone QRC engines

Note: One captable and a matching QRC Techfile is required per process corner.

Results

■ Binary RC Database (RCDB) is created containing parasitics for each process corner

■ An ASCII SPEF file can be generated from the parasitics database for the specified
process corner, on need basis

Specifying Temporary File Locations

You can specify a temporary file location for TQRC and IQRC extraction.
The temporary file location is chosen based on the following order of precedence:

1. If you specify a directory using the FE_TMPDIR environment variable, the software uses
that directory as the temporary file location.

2. If you specify a directory using the TMPDIR environment variable, the software uses that
directory as the temporary file location.
October 2010 950 Product Version 9.1.3

../encounter/designG.html#DesignImportRCExtract
../encounter/designG.html#DesignImportRCExtract
../encounter/designG.html#EditRCCorner

Encounter Digital Implementation System User Guide
RC Extraction
3. Saves the files to the current directory (if writable).

4. Saves the files to the /tmp directory.

Note: For IQRC/TQRC extraction in the distributed processing mode using different
machines, you must not store the cache or temporary data to the /tmp directory. The
temporary data must be visible on all machines used for distributed processing. You can
either use the current directory, or specify a directory using the TMPDIR or FE_TMPDIR
environment variable.

Extraction Flow in EDI System

The following figure shows the extraction flow.

To perform extraction, complete the following steps:

1. Load the design.

2. Specify the process technology value to automatically set the technology node
dependent parameters, by using the following syntax:

setDesignMode -process processnode

Note: You must use the command setDesignMode -process process_node
command prior to running the extractRC command for maximum accuracy and optimal
automatic threshold setting.

Route*

Read Capacitance Table/ Read QRC
Techfile

Load the Design

readCapTbl/
setQRCTechFile command

extractRC command

Set the Process Node

Extract RC

setDesignMode command

* Trial Route, WRoute, NanoRoute
October 2010 951 Product Version 9.1.3

Encounter Digital Implementation System User Guide
RC Extraction
3. Read in the capacitance table file(s) for extracting interconnect capacitance values with
preroute and postroute -effortLevel low engine choices. For more information, see
“Reading a Capacitance Table” on page 965.

Optionally, when using TQRC, IQRC, or standalone QRC extraction, read in the QRC
Techfile that contains the interconnect models used by these engine choices. For more
information, see “Reading a QRC Techfile” on page 966.

4. Use the setExtractRCMode to set up Extraction parameters and specify the extraction
engine to be used for subsequent extraction.

5. Use the extractRC command to perform extraction. You can also use the RC Extraction
Mode and Extract RC GUI forms to perform the extraction. An RC database is created
containing the extracted parasitics.

6. Optionally, use the rcOut command to retrieve a SPEF file with the parasitics results.
The Timing and SI analysis commands will use the RC database directly.

Preroute Extraction

In preroute extraction mode, the total capacitance for each net is calculated based on the net
geometry and the local wire density. The software does not calculate separate coupling
capacitance in this mode. The preroute mode uses the signal wire geometries provided by
TrialRoute, and the clock net geometries provided by Clock Tree Synthesis.

Note: The preroute mode is only used for static timing analysis (STA).

Postroute Extraction

You can perform postroute extraction using the following postroute engine variants:

Native Detailed

In native detailed mode:

❑ RC values that are generated can be used for both STA (including cross-coupling)
and signal integrity analysis to generate more accurate results for a particular
process technology.

❑ The software calculates the coupling capacitance component for each segment by
considering the actual geometries of neighboring nets on the same metal layer and
the adjacent metal layer when a full capacitance table is provided during design
import.
October 2010 952 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#setExtractRCMode
../fetxtcmdref/rcextractionT.html#extractRC
../encounter/optionsG.html#SpecifyRCExtractionMode
../encounter/optionsG.html#SpecifyRCExtractionMode
../encounter/timingG.html#ExtractRC

Encounter Digital Implementation System User Guide
RC Extraction
TQRC and IQRC

TQRC and IQRC are more accurate extraction engines based on the same technology as the
standalone Cadence signoff extraction tool QRC. TQRC is the recommended engine during
the implementation phase as it is optimized for performance with small trade off for accuracy.
IQRC has near signoff accuracy and is recommended in the ECO flow.

In TQRC and IQRC, there are two modes for RC extraction:

■ Full chip

Forces full extraction on the complete design.

■ Incremental

Enables incremental extraction on the design.
The software recognizes the changes that have taken place since the last extraction, and
if the amount of changes are less than a hardwired threshold, it incrementally extracts
the changed regions of the design, then stitches the new data with the previously
extracted parasitic data.

By default, the incremental mode is enabled.

Note: The performance and accuracy of TQRC falls between native detailed extraction and
IQRC engine. IQRC provides superior accuracy compared to TQRC. Both IQRC and TQRC
support distributed processing.

To invoke IQRC, use the following command:

setExtractRCMode -engine postRoute -effortLevel high

To invoke TQRC, use the following command:

setExtractRCMode -engine postRoute -effortLevel medium

TQRC is more accurate compared to native detailed extraction and does not require a QRC
license.
October 2010 953 Product Version 9.1.3

Encounter Digital Implementation System User Guide
RC Extraction
The following figure shows the IQRC/TQRC RC extraction flow.

Related Topics

■ Flat Implementation Flow chapter in the Encounter Digital Implementation System Flat
Implementation Flow Guide

❑ “Analyze SI, Run Post-SI Optimization and Physical Verification and Generate
GDSII Stream File”

Are the design
changes extensive?

Design Data

Incremental ExtractionFull-Chip Extraction

Restore Design

Full-Chip Extraction

Design Changes

Requires a NanoRoute-routed design.
Note: Incremental extraction is not dependent on
NanoRoute except for the initialization of the internal
extraction database. Running NanoRoute in full-chip or
incremental mode automatically initializes the internal
extraction database.

1. Load the design into EDI System. Refer to the
Importing and Exporting Designs chapter in the
Encounter Digital Implementation System User

2. Run IQRC/TQRC extraction using the extractRC
command. The first extraction that EDI System performs is
always full-chip extraction. EDI System performs all
subsequent extractions in either full-chip or incremental
mode, depending on the amount of changes in the design.

Yes No

3. Perform the logical and physical design changes by
calling the ECO (or other) commands. See Incremental
Extraction Support for Design Changes for more
information.

4. Run IQRC/TQRC extraction using the
extractRC command. The shaded area
specifies the internal operations of the
extractRC command. If the logical and
physical design changes are extensive, EDI
System may choose to perform a full-chip
extraction regardless of whether the
software is in incremental extraction mode.
October 2010 954 Product Version 9.1.3

../soceUG/design.html#firstpage
../flatImpl/flow.html#firstpage
../flatImpl/flow.html#AnalyzeSIRunPost-SIOptimization
../flatImpl/flow.html#AnalyzeSIRunPost-SIOptimization

Encounter Digital Implementation System User Guide
RC Extraction
Incremental Extraction Support for Design Changes

EDI System supports incremental extraction on design changes made with one (or more) of
the following commands:

■ Interactive ECO Commands

After making ECO changes, native sign-off extraction recognizes the changes that have
taken place since the last extraction. It incrementally extracts the changed region of the
design and stitches the new data with the previously extracted parasitic data.

For example:

setExtractRCMode -engine postRoute -effortLevel high

extractRC

ecoAddRepeater -net netName -cell cellName

...

ecoPlace

ecoRoute

extractRC

Refer to the Interactive ECO Commands chapter in the Encounter Digital
Implementation System Text Command Reference for command details.

■ Wire Edit Commands

For example:

setExtractRCMode -engine postRoute -effortLevel high

extractRC

editSelect -area areaValue -net netName

editMove y distance

editDelete -net netName

...

extractRC

Refer to the Wire Edit Commands chapter in the Encounter Digital Implementation
System Text Command Reference for command details.

■ The optDesign -postRoute -si command.

In the postroute optimization cycle, extraction will be called multiple times and after initial
full extraction, the incremental mode will be used automatically if the amount of changes
are below threshold.

For example:

setQRCTechfile techFileName

setExtractRCMode -engine postRoute -effortLevel high -incremental true
October 2010 955 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#firstpage
../fetxtcmdref/wireeditT.html#firstpage
../fetxtcmdref/timing_ipoT.html#optDesign

Encounter Digital Implementation System User Guide
RC Extraction
optDesign -postRoute -si

Related Topics

To see where IQRC/TQRC extraction fits in the design flow, see Analyze SI, Run Post-SI
Optimization and Physical Verification and Generate GDSII Stream File in the Encounter
Digital Implementation System Flat Implementation Flow Guide.
October 2010 956 Product Version 9.1.3

../flatImpl/flow.html#AnalyzeSIRunPost-SIOptimization
../flatImpl/flow.html#AnalyzeSIRunPost-SIOptimization

Encounter Digital Implementation System User Guide
RC Extraction
Sign-Off Extraction Using QRC

QRC standalone extraction is accessible through the EDI System for generating detailed
signoff quality parasitics. You can perform signoff extraction after the detailed routing phase.

Note: QRC standalone extraction requires a separate license and requires installation of the
EXT software package.

QRC can also be used with native extraction to generate an RC scaling factor. For more
information, see “Correlating Native Extraction With Sign-Off Extraction” on page 967.

You can run QRC extraction by using the extractRC command after setting the QRC
extraction mode using the setExtractRCMode command.

Inputs for QRC Sign-Off Extraction

QRC standalone extraction is a DEF-based flow. When you perform sign-off extraction
through the EDI System interface, a routed DEF will automatically be created. The following
inputs are required before you can start sign-off extraction:

■ Design Exchange Format (DEF) file—Contains the design-specific information of a
circuit and is a representation of the design at any point during the layout process.

■ QRC technology file—Contains the process dependent model files and manufacturing
effects used by the extractor to calculate resistance and capacitance.

■ LEF files—Contains the relevant cell content that includes standard cells and macros
from the design import configuration file.

■ QRC command file—Contains commands and variables that define the extraction
environment (technology filename, library name, and so on), specifies the net(s) to
extract and how to extract them, controls the resistance and capacitance extraction, and
specifies the extraction outputs.

Scale Factor Setting

To better correlate native extraction results both in the preroute and postroute stages with
sign-off extraction, the EDI System allows you to set scale factors for total capacitance, cross-
coupling capacitance and resistance. As the accuracy of the different engines varies, engine
dependent scale factors can be entered when using different extraction engines in the flow.
For more information, see “Correlating Native Extraction With Sign-Off Extraction” on
page 967.
October 2010 957 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#extractRC
../fetxtcmdref/rcextractionT.html#setExtractRCMode

Encounter Digital Implementation System User Guide
RC Extraction
Generating a Capacitance Table

A capacitance table is needed for accurate extraction by the preroute and native detailed
extraction engines. It contains three parts:

■ Header: Contains process information and manufacturing effects. The information in the
header is used for resistance extraction and to correct the extracted values for the
specified manufacturing effects.

■ Basic Captable Part: Contains the coefficients used by the preroute capacitance
extraction engine. This part contains the area, fringe, and lateral coupling capacitance
coefficients organized per conductor layer for wires with different width and spacing. The
basic captable part is presented in a readable tabular format.

■ Extended Captable Part: Contains the coefficients used by the postroute -
effortLevel low capacitance extraction engine. This part is much larger compared
to the basic captable part because the coefficients are generated on more complex
profiles, which account for geometries on multiple layers. The extended captable part is
an ASCII dump of the binary stored data.

Each technology requires one capacitance table. To consider process corner variations, you
must generate a capacitance table for each process corner.

Important

The capacitance table must be generated before running extraction.

If the capacitance table is not defined before extraction, EDI System generates a basic
capacitance table using default process parameters and using heuristic equations for
calculation. It is strongly recommended to provide a captable for the technology used in the
design to ensure maximum accuracy. Even if TQRC or IQRC are used as postroute extraction
engines, the captable is still needed for preroute extraction.

Inputs for Generating a Capacitance Table

To generate a capacitance table, you need an ICT file and optionally a technology LEF file.
The technology LEF file provides the capacitance generated with design specify widths and
spacings used in non-default routing rules. In addition, it provides information on the actual
spacing between regular wires as defined by the PITCH statement. The use of a LEF file
increases the simulation points and consequently reduces the need of the extractor to use
interpolation. The LEF file is used for the extended captable part only.

Fabrication process information in the ICT file can consist of the following:
October 2010 958 Product Version 9.1.3

Encounter Digital Implementation System User Guide
RC Extraction
■ The minimum spacing and minimum width of the conductors as specified in the design
rules for the conductor layers.

■ The thicknesses of the conductor layers.

■ The heights of the conductor layers above the substrate (measuring height from the field)
or as a delta from a previously defined lower-level conductor layer.

■ The resistivities of the conductor layers. The ICT file can contain a constant sheet
resistance value, a width-dependent sheet resistance vector, or a resistivity (rho) table.

■ The interlayer planar dielectric constant, its height above the substrate (measuring
height above the field), and its thickness.

■ The names of the top conductor layer of a via, the bottom conductor layer of the via, and
the contact resistance of the via with their associated cut resistance.

For more information on the syntax of the ICT file, see Appendix A “Creating the ICT File”.

Capacitance Table Generation Flow

The following figure shows the flow for generating a process corner specific capacitance
table:

Note: You can also use the scaling factor to convert a typical corner cap table to a different
corner cap table. For more information, see “Generating Capacitance Table With Specified
Scaling Factors” on page 964.

Process Corner
ICT File

Optional Technology LEF
File

Read Capacitance
Table

Generate Capacitance
Table

Process Corner
Capacitance Table
October 2010 959 Product Version 9.1.3

../soceUG/ictfileapp.html#firstpage

Encounter Digital Implementation System User Guide
RC Extraction
To generate a capacitance table, perform the following steps:

1. Generate an ICT file for each process corner. For an example ICT file, see Appendix A
“Creating the ICT File”, in the Encounter Digital Implementation System User
Guide.

2. Generate a capacitance table for each ICT file. Use the generateCapTbl command
within EDI System or the generateCapTbl standalone executable.

Note: Generating a capacitance table is CPU-intensive and can take several hours to
run for newer technologies. The generateCapTbl standalone executable which can be
found in the bin directory of your EDI System hierarchy runs independent of EDI
System; it has the same syntax as the generateCapTbl command.

Capacitance Table Examples

Example 26-1 Capacitance Table
PROCESS_VARIATION ...

LAYER M1

 MinWidth 0.09000

 MinSpace 0.09000

Height 0.54000

 Thickness 0.20260

 TopWidth 0.12100

 BottomWidth 0.09300

 WidthDev 0.00000

 ThermalC1 2.65000e-03

 ThermalC2 -2.64100e-07

 WireEdgeEnlargement

 WeeWidths 0.107 0.127 0.152 0.197 0.287 0.377 0.467 0.557 0.647 0.917
1.017 2.017 3.017 4.517 7.517 12.017

 WeeSpacings 0.073 0.093 0.118 0.163 0.253 0.343 0.433 0.523 0.613 0.883
0.983 1.483 1.983 2.483 2.983 4.983

 WeeAdjustments -0.001 -0.003 -0.003 -0.009 -0.009 -0.01 -0.01 -0.011 -
0.016 -0.018 -0.018 -0.019 -0.019 -0.019 -0.019 -0.019

 0.003 -0.002 -0.003 -0.009 -0.009 -0.01 -0.01 -0.011 -
0.016 -0.018 -0.018 -0.019 -0.019 -0.019 -0.019 -0.019

 0.008 0.003 0 -0.009 -0.009 -0.01 -0.01 -0.011 -0.016 -
0.018 -0.018 -0.019 -0.019 -0.019 -0.019 -0.019

 ...

 0.027 0.019 0.011 -0.009 -0.009 -0.01 -0.01 -0.011 -0.016
-0.018 -0.018 -0.019 -0.019 -0.019 -0.019 -0.019

October 2010 960 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#generateCapTbl
../soceUG/ictfileapp.html#firstpage
../fetxtcmdref/rcextractionT.html#generateCapTbl

Encounter Digital Implementation System User Guide
RC Extraction
 Rho

 RhoWidths 0.09 0.11 0.135 0.18 0.27 0.36 0.45 0.54 0.63 0.9 1 2 3
4.5 7.5 12

 RhoSpacings 0.09 0.11 0.135 0.18 0.27 0.36 0.45 0.54 0.63 0.9 1 1.5 2
2.5 3 5

 RhoValues 0.0301 0.0288 0.0272 0.0257 0.0236 0.0225 0.0218 0.0216
0.0216 0.0216 0.0216 0.0216 0.0216 0.0216 0.0215 0.0215

 0.0294 0.0286 0.0272 0.0257 0.0235 0.0224 0.0218 0.0216
0.0216 0.0216 0.0216 0.0216 0.0216 0.0216 0.0215 0.0215

 0.0286 0.0279 0.0269 0.0257 0.0235 0.0224 0.0218 0.0216
0.0215 0.0216 0.0216 0.0216 0.0216 0.0215 0.0215 0.0215

 ...

 0.0264 0.0262 0.0259 0.0257 0.0235 0.0224 0.0218 0.0216
0.0215 0.0215 0.0215 0.0215 0.0215 0.0214 0.0213 0.0213

 WireThicknessRatio

 WtrMinThicknessRatio 0.914688

 WtrMaxThicknessRatio 1.03875

 WtrTileWidth 100 100

 WtrStepperWindowWidth 50 50

 WtrMaxSpacing 5

 WtrWidthRanges 0.09 0.18 12

 WtrDensityPolynomialOrder 4

 WtrWidthPolynomialOrder 4

 WtrPolynomialCoefficients

 {

 0 7180.07 -3744.08 625.29 -33.3498

 0 -8418.26 4361.73 -720.647 37.5707

 0 3011.8 -1560.96 257.063 -13.1704

 0 -369.306 193.11 -31.9649 1.58144

 0 -2.73935 -0.912962 0.476445 0.0054143

 }

 {

 -0.00355249 0.0134349 -0.377017 2.18449 -1.14899

 0.0086884 0.0669357 0.00360917 -3.62062 1.91715

 -0.0108639 -0.126014 0.84772 1.42329 -0.92238

 0.00784181 0.0469798 -0.580639 0.11264 0.0642999

 -0.00204508 -0.00330229 0.125923 -0.179971 0.100731

 }

END

LAYER M2
October 2010 961 Product Version 9.1.3

Encounter Digital Implementation System User Guide
RC Extraction
...

...

...

VIA VIA1

 TopLayer M2

 BottomLayer M1

 ThermalC1 7.81500e-04

 ThermalC2 -2.57400e-06

 Resistance 3.00000

END

...

END_PROCESS_VARIATION

BASIC_CAP_TABLE ...

M1

width(um) space(um) Ctot(Ff/um) Cc(Ff/um) Carea(Ff/um) Cfrg(Ff/um)

0.090 0.072 0.3549 0.1313 0.0502 0.0123

0.090 0.090 0.3115 0.1248 0.0502 0.0147

0.090 0.270 0.1803 0.0237 0.0502 0.0418

0.090 0.450 0.1728 0.0074 0.0502 0.0541

0.090 0.630 0.1721 0.0023 0.0502 0.0587

0.090 0.810 0.1720 0.0007 0.0502 0.0602

0.090 0.990 0.1720 0.0002 0.0502 0.0607

0.090 1.170 0.1720 0.0001 0.0502 0.0608

0.270 0.072 0.3797 0.1114 0.1267 0.0151

...

9.000 0.990 4.2967 0.0002 4.2226 0.0369

9.000 1.170 4.2967 0.0001 4.2226 0.0370

M2

width(um) space(um) Ctot(Ff/um) Cc(Ff/um) Carea(Ff/um) Cfrg(Ff/um)

0.100 0.080 0.3330 0.1275 0.0458 0.0161

0.100 0.100 0.2659 0.0919 0.0458 0.0182

’’’’’

END_BASIC_CAP_TABLE
October 2010 962 Product Version 9.1.3

Encounter Digital Implementation System User Guide
RC Extraction
EXTENDED_CAP_TABLE ...

SolverExe: coyote

Solver Type: coyote

 1.02 8 8 t 1

 0.5385 0.2046 3.9 0 0

 0.017 0 3 2 1

 3 0

....

END_EXTENDED_CAP_TABLE

Example 26-2 Rho (Resistivity Table) Included in the Capacitance Table
Rho

 RhoWidths 0.14 0.28 10

 RhoSpacings 0.14 0.28 1

 RhoValues 0.0351 0.02 0.0176

 0.0451 0.03 0.01

 0.0702 0.04 0.02

Example 26-3 Wire Edge Enlargement - Resistance Included in the Capacitance Table
WireEdgeEnlargementR

 WeeWidths 0.12 0.16 0.24

 WeeSpacings 0.108 0.17 0.24

 WeeAdjustments 0 0 0.002

 0.011 0.007 0.002

 0.022 0.012 0.002

Example 26-4 Wire Edge Enlargement - Capacitance Included in the Capacitance
Table
WireEdgeEnlargementC

 WeeWidths 0.12 0.16 0.24

 WeeSpacings 0.108 0.17 0.24

 WeeAdjustments 0.01 0.01 0.02

 0.01 0.07 0.02

 0.02 0.02 0.02
October 2010 963 Product Version 9.1.3

Encounter Digital Implementation System User Guide
RC Extraction
Generating Capacitance Table With Specified Scaling Factors

You can specify scaling factors to convert a specific corner capacitance table into another
capacitance table for a different process corner. You use the generateCapTbl command to
input a capacitance table and to specify the scaling factors. You use the following parameters
of the generateCapTbl command:

■ -incaptable fileName

Specifies the name of an existing capacitance table in ASCII format.

■ -cap totalCapFactor

Specifies the capacitance scaling factor.

■ -xcap crossCouplingFactor

Specifies the cross-coupling capacitance scaling factor.

■ -res resistanceFactor

Specifies the resistance scaling factor.
October 2010 964 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#generateCapTbl

Encounter Digital Implementation System User Guide
RC Extraction
Reading a Capacitance Table

In a single process corner design setup, there are two ways to read in the capacitance table:

■ Use the following command in the EDI System configuration file:

set rda_Input(ui_captbl_file) “xxx.capTbl”

■ Use the readCapTable command to read the capacitance table after loading the
design and before running extraction.

readCapTable fileName

Note: When the software is in multi-mode multi-corner (MMMC) analysis mode, the
readCapTable command is disabled and cannot be used.

To consider process corner variations in MMMC design setup, you must read multiple
capacitance tables. For each corner created by the create_rc_corner command, use the
-cap_table parameter to specify the appropriate captable file to be used for that corner.
Information related to the specified corner can be modified using the update_rc_corner
command. This information is saved in the ViewDefinition.cl file which is read in the
subsequent EDI sessions during design import.

For more information, see the Configuring the Setup for Multi-Mode Multi-Corner
Analysis section of the Performing Multi-Mode Multi-Corner Timing Analysis and
Optimization chapter of EDI User Guide.

Examine the command log for any possible error messages. The number of metal layers
specified in the ICT and the LEF file (if used) at the time of capacitance table generation must
match or be higher than the actual number of layers used in your design (current LEF/DEF).

The capacitance table contains standard names for metal layers (M1, M2…), not the names
used in the LEF file.

Note: You must read the capacitance table before specifying the extraction mode.
October 2010 965 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#create_rc_corner
../fetxtcmdref/rcextractionT.html#readCapTable
../fetxtcmdref/timinganalysisT.html#update_rc_corner
../soceUG/multicorner.html#ConfiguringtheSetupforMulti-ModeMulti-CornerAnalysis
../soceUG/multicorner.html#ConfiguringtheSetupforMulti-ModeMulti-CornerAnalysis

Encounter Digital Implementation System User Guide
RC Extraction
Reading a QRC Techfile

QRC Techfiles are required to use the TQRC, IQRC, and signoff QRC extraction engines.

For a single corner design setup, there are two ways to read in the QRC Techfile:

■ Use the following command in the EDI System configuration file:

set rda_Input(ui_qxtech_file) "technology file"

■ Use the setQRCTechFile command to read in the QRC Techfile.

setQRCTechfile tech090_5lm.tech

Note: When the software is in the multi-mode multi-corner analysis mode, the
setQRCTechFile command is disabled and cannot be used.

For an MMMC design setup, use the qx_tech_file parameter of the create_rc_corner
command to specify the appropriate QRC Techfile for each process corner.

create_rc_corner -name rcCornerName -qx_tech_file fileName

This information is saved in the ViewDefinition.cl file which is read in the subsequent
EDI sessions during design import.

For more information, see the Configuring the Setup for Multi-Mode Multi-Corner
Analysis section of the Performing Multi-Mode Multi-Corner Timing Analysis and
Optimization chapter.
October 2010 966 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#setQRCTechfile
../fetxtcmdref/timinganalysisT.html#create_rc_corner
../soceUG/multicorner.html#ConfiguringtheSetupforMulti-ModeMulti-CornerAnalysis
../soceUG/multicorner.html#ConfiguringtheSetupforMulti-ModeMulti-CornerAnalysis

Encounter Digital Implementation System User Guide
RC Extraction
Correlating Native Extraction With Sign-Off Extraction

The software accommodates an extraction flow that uses process-dependent scaling factors
to generate extraction values that are close to the sign-off extraction values. With these
scaling factors, the results generated by the native extraction correlate to the results of sign-
off extraction. The run time for the native extraction flow is much less than for sign-off
extraction.

Complete the following steps to generate the RC scaling factor to correlate native extraction
results with sign-off extraction.

1. From the routed DEF, generate a SPEF file using the extractRC command. For more
information on generating a SPEF file, see “Sign-Off Extraction Using QRC” on page 957.

2. Specify the process technology value to automatically set the technology node
dependent parameters, by using the following syntax:

setDesignMode -process processnode

3. Read in the capacitance table file(s) for extracting interconnect capacitance values with
preroute and postroute -effortLevel low engine choices. For more information, see
“Reading a Capacitance Table” on page 965.

Optionally, when using TQRC, IQRC, or standalone QRC extraction, read in the QRC
Techfile that contains the interconnect models used by these engine choices. For more
information, see “Reading a QRC Techfile” on page 966.

4. Generate a SPEF file using the Timing extractRC and rcOut commands.

For preroute mode, extraction should be run in the preroute design stage and not on the
final routed design. This way the scaling factors to improve correlation will also take into
account the difference between trial routes and final routes.

For postroute mode, extraction should be run on the same routed design that was used
for the signoff extraction SPEF file generation.

5. Compare the SPEF file from native extraction with the SPEF file from sign-off extraction
using the Ostrich parasitics correlation utility. Use the correlation utility to generate RC
factors (scaling factors) for total capacitance, cross-coupling capacitance, and
resistance. For more information, see “Correlating SPEF Files Using the Ostrich Utility”
on page 968.

The extracted values are accurate if the total capacitance scaling factor has a deviation
that is within 20 percent of 1.0 (that is, 0.80 to 1.20).
You can also use the Perl script spefCapCmp.pl to compare the SPEF files, and
generate scaling factor for total capacitance. For more information, see “Comparing
SPEF Files Using a Perl Script” on page 971.
October 2010 967 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#extractRC
../fetxtcmdref/rcextractionT.html#extractRC
../fetxtcmdref/rcextractionT.html#rcOut

Encounter Digital Implementation System User Guide
RC Extraction
6. Specify these scaling factors using setRCFactor before future runs of native extraction.
For more information, see “Defining the Scaling Factor” on page 974.

7. Rerun the extractRC command to generate a new SPEF file. This file contains
capacitance and resistance values that correlate to the values in the QRC sign-off SPEF
file.

The following figure shows the flow for generating RC scaling factors.

Correlating SPEF Files Using the Ostrich Utility

Use Ostrich to correlate the SPEF files generated using native (postroute -effortLevel
low) extraction and sign-off extraction. Ostrich is a standalone utility in EDI System. Ostrich
generates the scaling factors after correlating the SPEF files. You can then set the scaling
factors for the next extraction cycle.

Related Topics

■ Flat Implementation Flow chapter in the Encounter Digital Implementation System
Flat Implementation Flow Guide

Run QRC ExtractionextractRC

setRCFactor

readCapTable

generateCapTbl

QRC technology file

RC Factor

ICT File

SPEF 1 Sign-Off SPEF

Compare SPEFs

Routed
DEF

Native (Detailed)
Extraction

QRC (Sign -Off) Extraction

+/- 20% Correlation

Determine New RC Factors

Set RC Factors
October 2010 968 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#setRCFactor
../fetxtcmdref/rcextractionT.html#extractRC
../flatImpl/flow.html#firstpage

Encounter Digital Implementation System User Guide
RC Extraction
❑ “Results”

To correlate the SPEF files, complete the following steps:

1. Type ostrich at the EDI System prompt. This opens the main Ostrich window.

2. In the Ostrich window, click on File - Import - SPEF. This opens the SPEF Import form.

3. In the SPEF Import form, specify the name of the sign-off SPEF file and a name in the
Data Set Name field. Next, click on the Import button to add the SPEF values in the
Ostrich window. To correlate the resistance values, select the Extract Resistance
option.

4. Similarly, import the native extraction SPEF file using the SPEF Import form.
October 2010 969 Product Version 9.1.3

../flatImpl/flow.html#Results

Encounter Digital Implementation System User Guide
RC Extraction
5. Click on Correlate - Build Plot option in the Ostrich Window. This opens the Build
Correlation Plot window.

6. Select the Golden Setname and Target Setname corresponding to the sign-off SPEF,
and native extraction SPEF respectively.

7. Select Build TCAP plots, Build RES plots, and Build XCAP plots options. Click on
the Build button.
October 2010 970 Product Version 9.1.3

Encounter Digital Implementation System User Guide
RC Extraction
8. Click on the Correlate - draw Plot - plot option in the Ostrich window. This opens the plot
window.

The plot window displays the suggested scale factor.

Comparing SPEF Files Using a Perl Script

Use the Perl script spefCapCmp.pl to compare the SPEF files generated by the
extractRC command. You specify a range of total capacitance on a net to select the nets
for comparison. This script resides in the $ENCOUNTER/bin directory. The Perl script
generates the RC scaling factors for total capacitance.

If the capacitance scaling is outside the range of +/- 20% (0.8-1.2), you need to reevaluate
the flow for possible mistakes during parasitics generation.

To run the Perl script, use the following command at the UNIX prompt:

spefCapCmp.pl -ref signoff_file_name.spef -cmp file_name.spef [-minCap value]
[-maxCap value] [-ex openNetFile]
October 2010 971 Product Version 9.1.3

Encounter Digital Implementation System User Guide
RC Extraction
The Perl script generates the following output:

■ Report file spefCapCmp.rpt, which contains the scaling factors and statistical data for
total capacitance. For more information, see “Report File Example” on page 973.

■ The tcap.plot file, which contains coordinates for plotting the comparison values for
total capacitance.

■ The res.plot file, which contains coordinates for plotting the comparison values for
resistance.

To display a scatter plot of the comparison values, use the following command:

xgraph -P -nl file_name.plot

Note: xgraph is a public domain utility that you can download from the internet.

Related Topics

■ Flat Implementation Flow chapter in the Encounter Digital Implementation System
Flat Implementation Flow Guide

❑ “Results”

-ref signoff_file_name.spef

Specifies the SPEF file generated by the runQRC command.

-cmp file_name.spef

Specifies the SPEF file generated by the extractDetailRC
command.

-minCap value Specifies the minimum value, in picofarads, of the total
capacitance on a net for the comparison script.

Default: 0.01

-maxCap value Specifies the maximum value, in picofarads, of the total
capacitance on a net.

Default: 5.0

-ex openNetFile Specifies the name of the file that contains open nets to be
excluded from the report file.
October 2010 972 Product Version 9.1.3

../flatImpl/flow.html#firstpage
../flatImpl/flow.html#Results

Encounter Digital Implementation System User Guide
RC Extraction
Report File Example

#Ref. Cap file: lambda_aftercrosstalkfix.spef

#Cmp. Cap file: lambda_detailrc.spef

#--#

Total Capacitance Statistics

#--#

#Total Capacitance range considered: 0.0100 - 5.0000 [pF]

#Total number of nets: 418399

#Total number of nets with nonzeoro lumped Cap: 213095

#Total number of nets discarded (small lumped Cap): 152272.00

#Suggested Capacitance Scale Factor 0.9577 <---- (Ref. = FE(Cmp.)* 0.9577)

#Mean (Cap Scalar): 1.04

#Total Sum of residual square: 22.89

#Variance: 0.00

#Standard deviation: 0.02

#Coefficient of variation: 1.90%

#Normal distribution range (sigma): 1.00 to 1.08

--
Correlation results: #of Nets %

--
Nets [..., 0.1]: 0 0.00

Nets [0.1, 0.2]: 0 0.00

Nets [0.2, 0.3]: 0 0.00

Nets [0.3, 0.4]: 0 0.00

Nets [0.4, 0.5]: 0 0.00

Nets [0.5, 0.6]: 0 0.00

Nets [0.6, 0.7]: 0 0.00

Nets [0.7, 0.8]: 0 0.00

Nets [0.8, 0.9]: 800 0.38

Nets [0.9, 1.0]: 20004 9.39

Nets [1.0, 1.1]: 24729 11.60

Nets [1.1, 1.2]: 10048 4.72

Nets [1.2, 1.3]: 3224 1.51

Nets [1.3, 1.4]: 1164 0.55

Nets [1.4, 1.5]: 454 0.21

Nets [1.5, 1.6]: 227 0.11
October 2010 973 Product Version 9.1.3

Encounter Digital Implementation System User Guide
RC Extraction
Defining the Scaling Factor

You can specify the scaling factors in the following three ways:

■ Change the technology file.

You can change the ScaleFactor in the technology file. This scaling is used for each
technology.

■ Store the value in the configuration file by using the following commands:

set rda_Input(ui_preRoute_cap) "NUMBER"

set rda_Input(ui_postRoute_cap) "NUMBER"

set rda_Input(ui_postRoute_xcap) "NUMBER"

set rda_Input(ui_preRoute_res) "NUMBER"

set rda_Input(ui_postRoute_res) "NUMBER"

■ Use the setRCFactor Tcl command.

You can set scale factors for the resistors and capacitors that are extracted in either
preroute or postroute extraction mode. You can set different postroute scale factors for
the postroute engine variants by specifying them as duplets and triplets. The syntax for
duplets and triplets is as follows:

value{ value2{ value3}}

where:

❑ Single value: If you specify one value, the scale factor applies to effort level low.
Scale factor value of 1 is used for medium and high by default.

❑ Duplet: If you specify two values, the first value is used for effort level low and the
second value is used for medium. Scale factor value of 1 is used for high by default.

❑ Triplet: If you specify three values, the first value is used for effort level low, the
second value is used for medium, and the third value is used for high.

No scaling factor is applied to extraction with effortLevel signoff.

Nets [1.6, 1.7]: 90 0.04

Nets [1.7, 1.8]: 54 0.03

Nets [1.8, 1.9]: 11 0.01

Nets [1.9, 2.0]: 10 0.00

Nets [2.0, ...]: 8 0.00

Nets discarded : 152272 71.46
October 2010 974 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#setRCFactor

Encounter Digital Implementation System User Guide
RC Extraction
Example:
setRCFactor -postRoute_xcap {1.1 1.05} -postRoute_cap 1.2 -postRoute_res
1.1 -preRoute_cap 1.3 -preRoute_res 1.4 -preROute_clkcap 1.11

Note: When saving the design with the saveDesign command, the scale factors that
are specified with the setRCFactor command are saved in the configuration file, which
can be later restored.

For information on the setRCFactor command, see setRCFactor in the Encounter
Digital Implementation System Text Command Reference.

The value specified in the Tcl command supersedes the value in the configuration command,
which supersedes the value in the technology file. The default value for all scaling factors,
except clock net scale factors, is 1.0. The default value for all clock net scale factors is a
symbolic value 0. This indicates that the value of the specific clock net scale factor follows the
matching signal net scale factor.

Distributed Processing

Multiple CPUs can be used to improve the overall turn-around time of extraction. The run-time
improvement may vary depending on multi-CPU configuration, design size and type.
Generally, performance improvement will start to diminish beyond 8 CPUs.

Setting-up Distributed Processing

The distributed processing is supported with two modes:

■ Local Mode

In this mode, you can specify the number of CPUs to use on local machine.

setDistributeHost –local
setMultiCpuUsage -localCpu 8

■ Distributed Mode

In this mode, you can specify one or more CPUs to use on network hosts.

setDistributeHost -rsh -add {host1 host2 host3}
setMultiCpuUsage -remoteHost 3

Note: RC Extraction ignores the -cpuPerRemoteHost parameter of the
setMultiCpuUsage command.

You must have rlogin access to remote host machines.
October 2010 975 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#setDistributeHost
../fetxtcmdref/importT.html#saveDesign
../fetxtcmdref/rcextractionT.html#setRCFactor
../fetxtcmdref/multicpuT.html#setDistributeHost
../fetxtcmdref/multicpuT.html#setMultiCpuUsage
../fetxtcmdref/multicpuT.html#setMultiCpuUsage

Encounter Digital Implementation System User Guide
RC Extraction
If you run a job in both local (-localCpu)and distributed mode (-remoteHost), the -remoteHost
parameter takes precedence.

You can specify LSF and SGE queue or custom job submission script for multi-CPU mode.

setDistributeHost

 -lsf [-queue queue_name] [-resource resource_string] [-lsf_args
lsf_arguments] |

 -sge [-queue queueName] |

 -custom [-custom_script script]

Generating a Capacitance Table in Multi-CPU Mode

You can use the multi-cpu processing commands to generate a capacitance table in parallel
mode when you use the generateCapTbl command within EDI System. This functionality
is not available for standalone capacitance table generation.

TCL Script to Run the generateCapTbl Command in the Distributed Mode

To run the generateCapTbl command in the parallel mode on different hosts, specify
the following commands:

setDistributeHost -rsh -add { host1 host2 host3 }

setMultiCpuUsage -remoteHost 3

generateCapTbl -ict sample.ict -output sample.capTbl

TCL Script to Run the generateCapTbl Command in the Local Mode

To run the generateCapTbl command with three CPUs on a local machine, specify
the following commands:

setDistributeHost -local

setMultiCpuUsage -localCpu 3

generateCapTbl -ict sample.ict -output sample.capTbl

Performing IQRC, TQRC, and Standalone QRC Extraction in Multi-CPU
Mode

IQRC, TQRC, and Standalone QRC Extraction engines support distributed processing. You
can use the multi-cpu processing commands to invoke IQRC, TQRC, and Standalone QRC
Extraction in the multi-CPU mode.
October 2010 976 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#firstpage
../fetxtcmdref/rcextractionT.html#generateCapTbl
../fetxtcmdref/multicpuT.html#firstpage

Encounter Digital Implementation System User Guide
RC Extraction
TCL Script for IQRC, TQRC, and Standalone QRC Extraction Invoked in the Distributed
Mode

To run IQRC, TQRC, and Standalone QRC Extraction in the parallel mode on different
hosts, specify the following commands:

setDistributeHost -rsh -add { host1 host2 host3 }

setMultiCpuUsage -remoteHost 3

setExtractRCMode -engine postRoute -effortLevel [medium | high | signoff]

extractRC

TCL Script for IQRC, TQRC, and Standalone QRC Extraction Invoked in the Local Mode

To run IQRC, TQRC, and Standalone QRC Extraction with three CPUs on a local
machine, specify the following commands:

setDistributeHost -local

setMultiCpuUsage -localCpu 3

setExtractRCMode -engine postRoute -effortLevel [medium | high | signoff]

extractRC
October 2010 977 Product Version 9.1.3

Encounter Digital Implementation System User Guide
RC Extraction
October 2010 978 Product Version 9.1.3

Encounter Digital Implementation System User Guide
27
Calculating Delay

■ Overview on page 980

■ Data Preparation on page 981

❑ Operating Conditions on page 981

❑ ECSM Libraries on page 981

■ Delay Calculation Modes and Related Controls on page 982

■ Choosing A Delay Calculation Engine on page 983

■ Running Delay Calculation on page 983

■ Calculating Delay in Multi-Thread Mode on page 983
October 2010 979 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Calculating Delay
Overview

You can perform delay calculation at various stages of the design flow to continuously validate
your timing. Encounter Digital Implementation System (EDI System) provides two delay
calculator engines that you can use:

■ EDI System delay calculator engine

Used to provide quick delay calculation for design prototyping, optimization, and general
timing analysis.

■ SignalStorm® delay calculator

Used to perform final delay calculation and timing analysis. SignalStorm provides better
accuracy, can calculate multi-driver nets, and uses more advanced effective current
source model (ESCM) modeling.
October 2010 980 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Calculating Delay
Data Preparation

In order to perform delay calculation, you must have a placed design loaded in EDI System.

Delay calculation uses information from the following data files:

■ A DSPF-format or SPEF-format netlist that contains the detailed parasitic resistance and
capacitance of the interconnect, and the gates that are used to drive this interconnect.

■ .lib file (Timing information)

■ Timing constraints file

■ LEF file

Delay calculation generates the following information:

■ Optionally, an SDF file, which provides delay information for instances and RC
interconnect.

Operating Conditions

EDI System does not automatically import operating conditions from the SDC constraints.
Therefore, you must ensure that operating conditions are specified before running delay
calculation. Use the setOpCond commands to specify the minimum and maximum libraries,
and operating conditions.

ECSM Libraries

By default, EDI System supports ECSM-based Liberty (.lib) timing libraries for performing
delay calculation.
October 2010 981 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#setOpCond

Encounter Digital Implementation System User Guide
Calculating Delay
Delay Calculation Modes and Related Controls

Delays are calculated differently, depending on the number of terminals (fanouts) a net has
and the Elmore time constant. The following table lists the calculation modes and related
controls used by the software for delay calculation.

Fanouts >= 1,000
1,000 > Fanouts

>= 100

100 > Fanouts
and

Elmore > 5 ps
5 ps > Elmore

Algorithm Uses the default delay
parameters.

Uses simplified
delay calculation
mode.

Uses full RC
delay calculation
mode.

Uses simplified
delay calculation
mode.

Cell Delay Uses lumped C lookup with a
default value of 0.5 pF.

The value is controlled by the
setDefaultNetLoad
command.

Uses lumped C
lookup from total
parasitics on the net.

Uses full RC. Uses lumped C
lookup from total
parasitics on the
net.

Wire Delay Uses the default value of 1 ns.

The value is controlled by the
setDefaultNetDelay
command.

Uses Elmore delay. Uses full RC. Uses Elmore
delay.

Driver Slew
Rates

Uses the default value of 0 ps.

The value is controlled by the
setInputTransitionDelay
command.

Uses lumped C
lookup from total
parasitics on the net.

Uses full RC. Uses lumped C
lookup from total
parasitics on the
net.

Interconnect
Slew
Degradation

None None Uses full RC.

(Slews are
degraded across
interconnect.)

None

Controls Fanout threshold is controlled
by the
setUseDefaultDelayLimit
command. The default value is
1,000 fanouts.

Fanout threshold is
controlled by the
-elmore option in
the
buildTimingGraph
command. The
default value is 100
fanouts.

No control for
minimum Elmore
threshold.
October 2010 982 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Calculating Delay
Choosing A Delay Calculation Engine

1. Choose Options – Set Mode – Specify Delay Calculation Mode.

The Delay Calculation Mode form appears.

2. Select Encounter-DC to use the EDI System delay calculator, or SignalStorm to use
the SignalStorm delay calculator.

Alternatively, you can specify the delay calculation engine by issuing the setDelayCalMode
text command:

■ Issue the following command to specify the EDI System delay calculator:

setDelayCalMode -engine feDc

■ Issue the following command to specify the SignalStorm delay calculator:

setDelayCalMode -engine signalStorm

Note: The default delay calculator is Encounter-DC.

Running Delay Calculation

The delay calculation engine set using the -engine parameter of the setDelayCalMode
command is called automatically during timing analysis. You can choose to write the delays
to a standard delay format (SDF) file using the write_sdf command.

For example, the following command saves the results to the SDF file named
TOPCHIP_SP.sdf:

write_sdf TOPCHIP_SP.sdf

Calculating Delay in Multi-Thread Mode

Multi-threaded delay calculation is automatically enabled when you configure multiple-CPU
processing for an MMMC design wherein full-chip delay calculation has not yet occurred. You
can invoke multi-threaded delay calculation by running any command (for example,
optDesign, timeDesign, report_timing, and so on) that needs timing information.

Use the following method:

Run the following command before running report_timing (any command that requires
timing information):

setMultiCpuUsage
October 2010 983 Product Version 9.1.3

../fetxtcmdref/delaycalcT.html#setDelayCalMode
../fetxtcmdref/timinganalysisT.html#write_sdf

Encounter Digital Implementation System User Guide
Calculating Delay
Example:

setMultiCpuUsage -localCpu 4

report_timing
October 2010 984 Product Version 9.1.3

Encounter Digital Implementation System User Guide
28
Timing Analysis

■ Overview on page 986

■ Timing Analysis Features on page 987

■ Before You Begin on page 988

■ Reading Timing Libraries on page 989

■ Reading Timing Constraints on page 990

■ Timing Analysis Results on page 992

■ Setting Operating Conditions on page 993

■ Calculating Clock Latency on page 994

■ Defining RC Corners on page 995

■ Specifying Timing Analysis Modes on page 997

■ Clock Path Pessimism Removal on page 1013

■ Analyzing Timing Problems on page 1019
October 2010 985 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
Overview

The goal of timing analysis is to verify that a design meets timing requirements under a
specified set of timing constraints, such as arrival and required times, operating conditions,
slew rates, false paths, and path delays. Performing timing analysis lets you determine how
fast a design can run without incurring timing violations. You can use the results of timing
analysis to fine tune and debug the speed-limiting, critical paths in a design.

You can perform timing analysis using Cadence® and Synopsys constraint formats and timing
libraries .lib, and Stamp Models.
October 2010 986 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
Timing Analysis Features

Timing analysis includes the following features and capabilities:

Static Timing Analyzer (STA)

■ Performs setup time analysis, which analyzes violating paths due to timing

■ Performs hold time analysis

■ Performs analysis in ideal and propagated mode

■ Reports asynchronous violating paths

■ Reports violating paths after running pre-clock tree synthesis (CTS) skew

What-If Timing Analysis

Use what-if timing analysis to modify instance cell timing information to reach top level timing
requirements, after which you can manually change the timing model of a standard cell or
modify the timing arcs of blackboxes or blackblobs. Once you have defined the initial timing
model of the blackboxes or blackblobs, you can modify arc definitions and verify the
consequences in timing analysis.

Wireload Model Generation in Hierarchical and Flat Format

The delay information in the technology library applies to the timing arcs from input ports to
output ports of each cell and the corresponding wire delays. The cell delays and the wire
delays are expressed as a function of the physical characteristics of the nets in the design,
such as wire capacitance and wire resistance. A wireload model uses the fanout count of a
net and estimates its capacitance and resistance. The wireload models in the hierarchical
format are generated for cells and instances based on external nets (hierarchical view). The
wireload models in the flat format are generated for cells and instances based on internal nets
(flat view).

Minimum and Maximum Timing Analysis

To read in libraries with multiple operating conditions for minimum and maximum analysis,
you can:

■ Define the libraries in the configuration file or in the Encounter Digital Implementation
System (EDI System) GUI
October 2010 987 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
■ Specify the setOpCond command

■ Specify the setTimingLibrary command (optional)

■ Specify the setAnalysisMode command

Timing Analysis Ideal and Propagated Modes
.

* Both -clockPropagation sdcControl and set_propagated_clock required.

** The closest (set_clock_latency or set_propagated_clock) assertion to the clock
endpoint determines ideal vs. propagated mode.

Before You Begin

Before running timing analysis, read in the timing libraries, timing constraints, and the netlist.

Optionally, you can also set the following conditions:

■ Specify the delay calculation and RC extraction data.

Use the Timing and Power pages in the Design Import form to specify these values. For
more information, see “Design Import – Timing” in the Encounter Digital
Implementation System Menu Reference.

■ Specify the operating conditions to use for timing analysis

Use the operating conditions to specify process, voltage, and temperature (PVT) values.
Operating conditions are defined in the timing library and read into the Encounter session
when you import the design. You can use a single set of operating conditions for setup
and hold analysis, or you can specify minimum and maximum conditions.

For more information, see “Setting Operating Conditions” on page 993.

■ Check and report timing libraries by generating the timing library report.

setAnalysisMode Clock Propagation Clock Latency

-skew false Forced Ideal No Effect

-skew true -clockPropagation
forcedIdeal

Forced Ideal SDCs in Effect

-skew true -clockPropagation
sdcControl

*SDCs in Effect **SDCs in Effect
October 2010 988 Product Version 9.1.3

../encounter/designG.html#DesignImportTiming

Encounter Digital Implementation System User Guide
Timing Analysis
■ Check and report cell footprints by generating the cell footprint report.

■ Define RC corners for extraction. You can set the RC corner as best, typical, or worst.

■ Specify the analysis mode you want to use for timing analysis. There are three types of
analysis modes: single, best-case worst-case (BC-WC), and on-chip variation. For more
information, see “Specifying Timing Analysis Modes” on page 997.

Reading Timing Libraries

The timing library contains the timing models provided by the ASIC or intellectual property
(IP) vendors. You can read in the library files while importing the design using the Design
Import menu command.

You can use the Design – Design Import form to specify the timing libraries. If you enter
information in only one of the MaxTiming Libraries, Min Timing Libraries, or Common
Timing Libraries fields, EDI System runs single value analysis: Both setup and hold analysis
use the libraries entered in that field. If you provide values for both Max Timing Libraries
and Min Timing Libraries, EDI System uses these libraries for both BcWc (default) or OCV
analysis.

If you read in both Min and Max library groups, the software uses Max library delay values for
max path analysis and Min library delay values for min path analysis. To change this behavior,
you can set the -max and -min parameters of the setTimingLibrary command to the
same group.

For example, to run setup and hold analysis using Max Timing Libraries, use the following
command:

setTimingLibrary -max Max -min Max

Resolving Discrepancies in Timing Libraries

By default, the time and capacitance unit values for the design are set using the values
specified in the timing libraries, when the libraries are loaded into the design. If the values in
the timing libraries differ, the software generates warning messages and sets the value to
internal default setting of 1ns for time units and 1pF for capacitance units.

To change the unit definitions being used by the software, use the setLibraryUnit
command or the Design Import - Advanced - Timing form after importing the design.
October 2010 989 Product Version 9.1.3

../encounter/designG.html#DesignImportBasic
../encounter/designG.html#DesignImportBasic
../fetxtcmdref/importT.html#setLibraryUnit
../encounter/designG.html#DesignImportTiming

Encounter Digital Implementation System User Guide
Timing Analysis
Reading Timing Constraints

To ensure that your design meets the timing requirements, you must specify what the
requirements are by setting the constraints. You can use the timing constraints to set:

■ Timing context for constraint assertions.

■ Boundary conditions such as input and output delays.

■ Slew rates

■ Path exceptions such as false paths, path delays and cycle additions.

■ Disable certain paths in the design.

Constraints Quick Reference

The following constraints are supported:

■ add_to_collection

■ all_clocks

■ all_inputs

■ all_outputs

■ all_registers

■ create_clock

■ create_generated_clock

■ current_design

■ find

■ foreach_in_collection

■ get_cells

■ get_clocks

■ get_designs

■ get_lib_cells

■ get_lib_pins

■ get_nets
October 2010 990 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
■ get_libs

■ get_pins

■ get_ports

■ group_path

■ remove_from_collection

■ reset_propagated_clock

■ set_annotated_check

■ set_annotated_delay

■ set_annotated_transition

■ set_case_analysis

■ set_clock_gating_check

■ set_clock_latency

■ set_clock_transition

■ set_clock_uncertainty

■ set_disable_clock_gating_check

■ set_disable_timing

■ set_dont_touch

Use the set_dont_touch constraint to constrain nets, instances, and cells. If the
set_dont_touch constraint in the timing constraints file is overly constrained, running
timing optimization does not correct the timing because timing optimization honors the
constraint.

■ set_dont_touch_network

■ set_dont_use

■ set_drive

■ set_driving_cell

■ set_false_path

■ set_fanout_load

■ set_input_delay
October 2010 991 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
■ set_input_transition

■ set_load

■ set_logic_one

■ set_logic_zero

■ set_max_capacitance

■ set_max_delay

■ set_max_fanout

■ set_max_time_borrow

■ set_max_transition

■ set_min_delay

■ set_min_pulse_width

■ set_multicycle_path

■ set_output_delay

■ set_propagated_clock

■ set_resistance

■ source

Timing Analysis Results

After performing timing analysis, you can identify all timing violations and slacks. You can also
identify all of the critical paths in combinatorial or clocked circuits at both block and chip level.

You can use the timeDesign command to generate timing summary reports at different
stages in the implementation flow. You can also use reporting commands such as
report_timing to perform detailed analysis.
October 2010 992 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#timeDesign
../fetxtcmdref/timinganalysisT.html#report_timing

Encounter Digital Implementation System User Guide
Timing Analysis
Setting Operating Conditions

Integrated circuits display performance differences depending on the fabrication and
environmental process, voltage and temperature (PVT) characteristics. The nominal values
for these parameters and the corresponding delay information are contained in the library.
Each timing library contains one or more operating conditions. Each operating condition is
identified by name and specifies the PVT parameters. This information is used to calculate
accurate cell delays from the nominal cell delays and the derating factors.

You can use a single set of operating conditions for setup and hold analysis, or you can
specify minimum and maximum conditions.

In EDI System, you can specify the operating conditions using the setOpCond command or
the Specify Operating Condition menu command.

Depending on the design requirements, you can use the following parameters of the
setOpCond command:

■ -library

Sets the operating condition from a single library. You can define a single operating
condition from a library, and the software uses the PVT characteristics associated with
that library for every library in the design. When you use this parameter in multiple
setOpCond commands, the software uses the value specified in the last command. For
example, consider the following commands:

setOpCond WCCOM -library wcTestLib
setOpCond BCCOM -library bcTestLib
setOpCond WCCOM -library wcTestLib1
setOpCond BCCOM -library bctestLib1
setOpCond -library wcTestLib2
setOpCond -library bcTestLib2

In this case, the software uses the last value defined (bcTestLib2). Therefore, the
operating conditions in the bcTestLib2 library are used for both setup and hold
analysis.

■ -min minOpCond [-minLibrary minLib]
-max maxOpCond [-maxLibrary maxLib]

Specifies the operating condition used for hold or setup analysis. For example, consider
the following command:

setOpCond -max worst -maxLibrary wcTestLib -min best -minLibrary bcTestLib

In this case, the software uses the worst operating condition defined in wcTestLib for
max path analysis and the best operating condition defined in bcTestLib for min path
analysis.
October 2010 993 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#setOpCond
../encounter/timingG.html#SpecifyOpCondition

Encounter Digital Implementation System User Guide
Timing Analysis
Calculating Clock Latency

The EDI System software calculates clock latency based on the following two settings:

■ Analysis mode set using the setAnalysisMode command.

■ The set_propagated_clock and set_clock_latency constraints values.

Depending on these settings, the clock latency can be equal to either 0.0 or the value of the
set_clock_latency constraint, or the delay computed by propagation along the clock
path.

The EDI System software sets the clock latency for various combinations of analysis mode
settings as follows:

■ setAnalysisMode -skew true -clockPropagation sdcControl (Default
Setting)

❑ Latency is defined by the precedence of set_propagated_clock and
set_clock_latency in the SDC.

❑ If both set_propagated_clock and set_clock_latency are not specified, no
clock latency is reported (ideal mode).

■ setAnalysisMode -skew true -clockPropagation forcedIdeal

❑ If set_clock_latency command is in the timing constraint file, the clock latency
specified in the constraint is used (ideal mode).

❑ If set_clock_latency is not specified, 0ns clock latency is reported (ideal mode).

Note: The -clockPropagation forcedIdeal option forces ideal clock mode, even if
set_propagated_clock is specified in the constraints file.

■ setAnalysisMode -skew false -clockPropagation sdcControl

Or,

setAnalysisMode -skew false -clockPropagation forcedIdeal

❑ No latency is reported (ideal mode).

Note: When you use the -skew false parameter, clock latencies are ignored.
October 2010 994 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
Defining RC Corners

Before performing timing analysis, you can define which process corners (best, worst, or
typical) will be used for min and max path analysis.

The procedure for defining process corners is as follows:

1. Generate an ICT file for each process corner. For an example ICT file, see Appendix A
“Creating the ICT File”, in the Encounter Digital Implementation System User
Guide.

2. Generate three separate capacitance tables. For more information on generating
capacitance tables, see “Capacitance Table Generation Flow”, in the Encounter Digital
Implementation System User Guide.

3. Use the defineRCCorner command to define the process corner for setup and hold
checks. The following example shows the use of the defineRCCorner command:

defineRCCorner -late {best | typical | worst} temp
-early {best | typical | worst} temp

Best, typical, and worst correspond to the ICT files and the capacitance tables generated
with the genCapTbl command.
October 2010 995 Product Version 9.1.3

../soceUG/ictfileapp.html#firstpage
../soceUG/extractRC.html#CapacitanceTableGenerationFlow
../fetxtcmdref/rcextractionT.html#defineRCCorner

Encounter Digital Implementation System User Guide
Timing Analysis
The following figure shows the flow for extracting parasitic and defining RC corners for timing
analysis.

Read Cap Table

defineRCCorner command

 readCapTable command

extractRC command

Read ICT Technology File(s)
(best, typical, worst corners)

Generate Capacitance Table(s)
(best, typical, worst corners) generateCapTbl command

Select RC Corners

Extract RC

Setup/Hold

Timing Analysis
October 2010 996 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
Specifying Timing Analysis Modes

The Encounter software provides different timing analysis modes and performs different
calculations for setup and hold checks for each mode. The timing analysis modes are divided
as follows:

■ Single Timing Analysis Mode on page 999

In single analysis mode, only maximum delay values and -max options of constraints are
used for both min and max analysis.

■ Best-Case Worst-Case (BC-WC) Timing Analysis Mode on page 1003

Minimum delays from BC and max delays from WC should not be used together to
evaluate a timing check because the BC and WC operating conditions or corners are
vastly different.

In BC-WC analysis mode the software uses the maximum delays for all paths during
setup checks and minimum delays for all paths during hold checks.

■ On-Chip Variation (OCV) Timing Analysis Mode on page 1008

OCV is the small difference in the operating parameter value across the chip. Each
timing arc in the design can have an early and a late delay to account for the on-chip
process, voltage and temperature variation. These delays are used together in the
analysis of each check.

In OCV mode, the software calculates clock and data path delays based on minimum and
maximum operating conditions for setup analysis and vice-versa for hold analysis.

Definition of Early and Late Paths

The timing analysis modes described in this section refer to early and late paths and their
usage in slack calculation. The early and late paths are the shortest and the longest paths
respectively.
October 2010 997 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
The following figure shows a setup check with late (shown in solid line) launch clock and early
capture clock (shown in dotted line).

Figure 28-1 Setup Check

The following figure shows hold check with early launch clock (shown in dotted line), and late
capture clock (shown in solid line).

Figure 28-2 Hold Check

D Q D

Capture Clock

Launch Clock

CK GB CK GB

Q

D1

D2 D2

D1

D Q D

Capture Clock

Launch Clock CK GB CK GB

Q

D1 D1

D2 D2
October 2010 998 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
Single Timing Analysis Mode

In this mode, the Encounter software uses a single set of delays (using one library group)
based on one set of process, temperature and voltage conditions. In this mode, you specify
one operating condition using the setOpCond command.

To specify the operating condition with one library group, specify the following command:

setOpcond opcondname –library libname

To set the timing analysis mode as single, use the -analysisType single parameter of
the setAnalysisMode command.

Setup Check in Single Timing Analysis Mode

For setup check, the software checks the late launch clock and late data paths against early
capture clock path.

For zero slack value in a setup check, the following condition should be met:

launch clock late path + data clock late path <= capture clock early path + clock period – setup

Hold Check in Single Timing Analysis Mode

For hold check the software compares the early arriving data against the late arriving clock
at the endpoint.

For zero slack value in a hold check, the following condition should be met:

launch clock early path + data clock early path >= capture clock late path + hold
October 2010 999 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#setAnalysisMode

Encounter Digital Implementation System User Guide
Timing Analysis
Example 28-1 Setup Check in Single Timing Analysis Mode

The following figure shows the setup check on the path from FF1 to FF2.

The software uses a library to scale all delays at WC conditions. For setup check, the software
considers two paths between the two registers, FF1 and FF2. The software considers only
the late path delay to calculate slack during setup check.

The following values are assumed in this example:

Data late path delay = 3.6
Data early path delay = 1.9
Clock source latency = none
Wire delay = 0
Clock period = 4
Clock mode = Propagated clock mode

The software computes the slack as follows:

Launch clock late path delay = 0.8 + 0.6 =1.4

Data late path delay = 3.6

Capture clock early path delay = 0.8 + 0.5 = 1.3

Setup = 0.2

Data arrival time = 1.4 + 3.6 = 5

Data required time = 4 + 1.3 - 0.2 = 5.1

Slack = 5.1 - 5 = 0.1

D Q D

FF1 FF2

Capture clock early path

U2

U1 U3

0.6

0.8 0.5

1.9

3.6

Launch clock late path

Data early path

Data late path

Setup
October 2010 1000 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
Example 28-2 Hold Check in Single Timing Analysis Mode

The following figure shows the hold check on the path from FF1 to FF2.

The software uses a library to scale all delays at BC conditions.

The following values are assumed in this example:

Clock source latency = none
Wire delay = 0
Clock period = 4
Clock Mode = Propagated clock mode

The software computes the slack as follows:

Launch clock early path delay = 0.6 + 0.4 = 1.0

Data early path delay = 1.0

Capture clock late path delay = 0.6 + 0.3 = 0.9

Hold = 0.1

Data arrival time = 1 + 1 = 2

Data Required Time = 0.1 + 0.9 = 1

Slack = 2 – 1 = 1

D Q D

FF1 FF2

Capture clock late path

U2

U1 U3

0.4

0.6 0.3

1.0

2.6

Launch clock early path

Data early path

Data late path

Hold
October 2010 1001 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
Performing Timing Analysis in Single Analysis Mode

1. Load in the library file by sourcing the configuration file with the following line:

set rda_Input(ui_timelib,max) "${libDir}/stdcell.lib”

 You can also load the library using the Import Design menu command.

2. Set the timing libraries to be used during setup or hold.

setTimingLibrary –max Max –min Max

Note: This step is required if you read in more than one library.

3. Set the operating condition for setup analysis.

setOpCond worst –library stdcell

You can also use the library defaults by not specifying any setOpCond or by specifying
setOpCond {}.

4. Set the analysis mode to single, setup and propagated clock mode.

setAnalysisMode -analysisType single -checkType setup –skew true
-clockPropagation sdccontrol

5. Generate the timing reports for setup.

 report_timing

6. Set the operating condition for hold analysis.

setOpCond best –library stdcell

7. Set the analysis mode to hold and propagated clock mode.

setAnalysisMode –checkType hold –skew true –clockPropagation sdcControl

8. Generate the timing reports for hold.

report_timing
October 2010 1002 Product Version 9.1.3

../encounter/designG.html#DesignImportBasic

Encounter Digital Implementation System User Guide
Timing Analysis
Best-Case Worst-Case (BC-WC) Timing Analysis Mode

In BC-WC timing analysis mode, the Encounter software considers two operating conditions.
The software checks both operating conditions in one timing analysis run.

To set the timing analysis mode as BC-WC, use the -analysisType bcWc parameter of
the setAnalysisMode command.

You can use the set_clock_latency constraint to set the source latency for a clock in both
ideal and propagated mode for setup and hold checks. You can also use the constraint to set
the network latency for an ideal clock. The specified source or network latency affects the
early and late clock paths for both capture and launch clocks for both min and max operating
conditions. The software considers the network latency that you set using the
set_clock_latency -max or -min constraint for ideal clocks only.

Setup Check in BC-WC Mode

For setup check, the software calculates delay values from the Max library group for data
arrival time, and network delay of both launch and capture clocks (in propagated mode).

The software scales the delay values using the operating condition that you specify using the
setOpCond -max command. To define the operating condition, use the following command:

setOpCond –max WCopcondname –maxLibrary WClibname

The source latency in both ideal and propagated modes for setup checks is defined in the
constraints used by various clock paths as follows:

The network latency in ideal mode for setup checks is defined in the constraints used by
various clock paths as follows:

Clock Path
(Operating Condition)

Constraint Used

Launch clock late path (max) set_clock_latency -source -late -max value

Capture clock early path (max) set_clock_latency -source -early -max
value

Clock Path (Operating Condition) Constraint Used

Launch clock late path (max) set_clock_latency -max value

Capture clock early path (max) set_clock_latency -max value
October 2010 1003 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#setAnalysisMode

Encounter Digital Implementation System User Guide
Timing Analysis
HOLD Check in BC-WC Mode

For HOLD check, the software uses the delay values from the Min library for the data arrival
time, and network delay of both launch and capture clocks (in propagated mode). The
software scales the delay values using the operating condition that you specify using the
setOpCond -min command. To specify the operating condition, use the following command:

setOpCond –min minopcondname –minLibrray minlibname

The network latency in ideal mode for hold checks is defined in the constraints used by
various clock paths as follows:

Note: You can also use one library containing two operating conditions in this mode.

Example 28-3 Setup Check in BC-WC Timing Analysis Mode

The following shows the setup check on the path from FF1 to FF2.

Clock Path (Operating
Condition)

Constraint Used

Launch clock early path (min) set_clock_latency -source -early -min value

Capture clock late path (min) set_clock_latency –source –late –min value

Clock Path (Operating Condition) Constraint Used

Launch clock early path (min) set_clock_latency -min value

Capture clock late path (min) set_clock_latency -min value

D Q D

FF1 FF2

Capture clock early path

U2

U1 U3

0.6

0.7 0.5

1.9

3.5

Launch clock late path

Data early path

Data late path

Setup
October 2010 1004 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
The software uses the Max library to scale all delays at WC conditions.

The following values are assumed in this example:

Clock source latency = none
Wire delay = 0
Clock period = 4
Clock Mode = Propagated clock mode

The software computes the slack as follows:

Launch clock late path delay = 0.7 + 0.6 = 1.3

Data late path delay = 3.5

Capture clock early path delay = 0.7 + 0.5 = 1.2

Setup = 0.2

Data arrival time = 1.3 + 3.5 = 4.8

Data required time = 4 + 1.2 – 0.2 = 5

Slack = 5 - 4.8 = 0.2

Example 28-4 Hold Check in BC-WC Timing Analysis Mode

The following figure shows the hold check on the path from FF1 to FF2.

The software uses the Min library to scale all delays at BC conditions.

D Q D

FF1 FF2

Capture clock late path

U2

U1 U3

0.4

0.5 0.3

1.0

2.3

Launch clock early path

Data early path

Data late path

Hold
October 2010 1005 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
The following values are assumed in this example:

Clock source latency = none
Wire delay = 0
Clock period = 4
Clock Mode = Propagated clock mode

The software computes the slack as follows:

Launch clock early path delay = 0.5 + 0.4 = 0.9

Data early path delay = 1.0

Capture clock late path delay = 0.3 + 0.5 = 0.8

Hold = 0.1

Data arrival time = 0.9 + 1 = 1.9

Data required time = 0.1 + 0.8 = 0.9

Slack = 1.9 - 0.9 = 1

Performing Timing Analysis in BC-WC Analysis Mode

To perform timing analysis in BC-WC analysis mode, complete the following steps:

1. Read in the min and max libraries by sourcing the configuration file with the following
lines:

set rda_Input(ui_timelib,max) "${libDir}/stdcellwst.lib”

set rda_Input(ui_timelib,min) "${libDir}/stdcellbest.lib”

You can also load the library using the Import Design menu command.

2. Specify BC-WC operating conditions to be used during setup and hold.

setOpCond –max wccom–maxLibrary stdcellwst –min bccom –minLibrary stdcellbest

You can also use the software defaults by not specifying any operating conditions.

3. Set the analysis mode to BC-WC, setup and propagated clock mode.

setAnalysisMode -analysisType bcwc –checkType setup –skew true
-clockPropagation sdcControl

4. Generate the timing reports for setup.

report_timing
October 2010 1006 Product Version 9.1.3

../encounter/designG.html#DesignImportBasic

Encounter Digital Implementation System User Guide
Timing Analysis
5. Set the analysis mode to hold and propagated clock mode.

setAnalysisMode –checkType hold

6. Generate the timing reports for hold.

report_timing
October 2010 1007 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
On-Chip Variation (OCV) Timing Analysis Mode

Related Topics

To see this step in the design flow, see Route the Design and Run Postroute Optimization in
the Encounter Digital Implementation System Foundation Flows: Flat
Implementation Flow Guide.

Setup Check

In OCV mode, setup check the software uses the timing delay values from the Max library
group for the data and the launch clock network delay. The software uses the delay values
from the Min library group for the capturing clock network delay assuming that the clocks are
set in propagated mode.

Note: You can also use one library instead of max and min libraries.

The source latency in both ideal and propagated modes for setup checks is defined in the
constraints used by various clock paths as follows:

The network latency in ideal mode for setup checks is defined in the constraints used by
various clock paths as follows:

Clock Path (Operating
Condition)

Constraint Used

Launch clock late path (max) set_clock_latency -source -late -max value
Or,
set_clock_latency -source -late value

Capture clock early path (min) set_clock_latency -source -early -min value
Or,
set_clock_latency -source -early value

Clock Path (Operating Condition) Constraint Used

Launch clock late path set_clock_latency -max value

Capture clock early path set_clock_latency -min value
October 2010 1008 Product Version 9.1.3

../flatImpl/flow.html#RoutetheDesignandRunPostrouteOptimization

Encounter Digital Implementation System User Guide
Timing Analysis
Hold Check

In OCV hold check, the software uses the timing delay values from the Min library for the data
arrival time and launch clock network delay. The software uses delay values from the Max
library for the capturing clock network delay assuming that the clocks are set in propagated
mode.

The source latency in both ideal and propagated modes for hold checks is defined in the
constraints used by various clock paths as follows:

The network latency in ideal mode for hold checks is defined in the constraints used by
various clock paths as follows:

Clock Path (Operating
Condition)

Constraint Used

Launch clock early path (min) set_clock_latency -source -early -min value
Or,
set_clock_latency -source -early value

Capture clock late path (max) set_clock_latency -source -late -max value
Or,
set_clock_latency -source -late value

Clock Path (Operating Condition) Constraint Used

Launch clock early path set_clock_latency -min value

Capture clock late path set_clock_latency -max value
October 2010 1009 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
Example 28-5 Setup Check in OCV Timing Analysis Mode

The following figure shows the setup check on the path from FF1 to FF2.

The software uses the Max library for all late path delays and Min library for all early path
delays.

The following values are assumed in this example:

Clock source latency = none
Wire delay = 0
Clock period = 4
Clock mode = Propagated clock mode

The software computes the slack as follows:

Launch clock late path delay (max) = 0.7 + 0.6 = 1.3

Data late path delay (max) = 3.5

Capture clock early path delay (min) = 0.5 + 0.3 = 0.8

Setup = 0.2

Data arrival time = 1.3 + 3.5 = 4.8

Data required time = 4 + 0.8 – 0.2 = 4.6

Slack = 4.6- 4.8 = -0.2

D Q D

FF1 FF2

Capture clock early path

U2

U1 U3

0.6/0.4

0.7/0.5 0.5/0.3

1.9/1.2

3.5/3.0

Launch clock late path

Data early path

Data late path

Setup

Delay values shown as:
max/min
October 2010 1010 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
Example 28-6 Hold Check in OCV Timing Analysis Mode

The following figure shows the hold check on the path from FF1 to FF2.

The software uses the Max library to scale all delays at WC conditions and Min library to scale
all delays at BC conditions.

The following values are assumed in this example:

Clock source latency = none
Wire delay = 0
Clock period = 4
Clock mode = Propagated clock mode

The software computes the slack as follows:

Launch clock early path delay (min) = 0.5 + 0.4 = 0.9

Data early path delay (min) = 1.2

Capture clock late path delay (max) = 0.7 + 0.5 = 1.2

Hold = 0.1

Data arrival time = 0.9 + 1.2 = 2.1

Data required time = 0.1 + 1.2= 1.3

Slack = 2.1 - 1.3 = 0.8

D Q D

FF1 FF2

Capture clock early path

U2

U1 U3

0.6/0.4

0.7/0.5 0.5/0.3

1.9/1.2

3.5/3.0

Launch clock late path

Data early path

Data late path

Hold

Delay Values Shown As:
max/min
October 2010 1011 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
Performing Timing Analysis in OCV Mode with Two Libraries And Operating
Conditions

1. Read in the min and max libraries by sourcing the configuration file with the following
lines:

set rda_Input(ui_timelib,max) "${libDir}/slow.lib”

set rda_Input(ui_timelib,min) "${libDir}/fast.lib”

You can also load the library using the Import Design menu command.

2. Specify OCV operating conditions to be used during setup and hold.

setOpCond –min best –max worst –minLibrary fast –maxLibrary slow

3. Set the analysis mode to OCV and propagated clock mode.

setAnalysisMode –analysisType onChipVariation –skew true

–clockProagation sdcControl

4. Generate the timing reports for setup.

report_timing -late

5. Generate the timing reports for hold.

report_timing -early

Using set_timing_derate with OCV Analysis Mode

The set_timing_derate command affect the following paths in OCV mode:

Violations Data Launch Clock Capture Clock

SETUP -late

-data

-late

-clock

-early

-clock

HOLD -early

-data

-early

-clock

-late

-clock
October 2010 1012 Product Version 9.1.3

../encounter/designG.html#DesignImportBasic

Encounter Digital Implementation System User Guide
Timing Analysis
Clock Path Pessimism Removal

Clock Path Pessimism Removal (CPPR) or clock reconvergence pessimism removal (CRPR)
is the process of identifying and removing the pessimism introduced in the slack reports for
clock paths when the clock paths have a segment in common.

You can introduce early or late delay variations by using the setAnalysisMode
-analysisType onChipVariation or by using derating factors in BcWc analysis mode.
In CPPR mode, the difference between late and early delays is removed for common clock
tree segments of the launching and latching devices.

When you use the setAnalysisMode -analysisType BcWc and the
set_timing_derate commands, the software calculates maximum delay value by
multiplying the delay by the scale value that you set using set_timing_derate -late.
Similarly, the software calculates the minimum delay value by multiplying the delay by the
scale value that you set using set_timing_derate -early.

When you use the setAnalysisMode -analysisType onChipVariation command,
the software uses the maximum and minimum operating conditions to calculate the minimum
and maximum delays. In this case also if you specify one operating condition, the software
uses the set_timing_derate command.

As shown in Figure 28-3, the setup check at FF2 compares the maximum delay data at the
D pin against minimum delay clock at the CLK pin. The maximum delay data at FF2/D
consists of a sum of maximum signal delay from FF1/Q to FF2/D, the maximum delay from
CLK_SOURCE to FF1/CLK, and the delay from FF1/CLK to FF1/Q. Similarly, the minimum
delay clock arrival time at FF2/CLK is the minimum delay from CLK_SOURCE to FF2/CLK.

Related Topics

To see this step in the design flow, see Run CTS and Post-CTS Optimization in the
Encounter Digital Implementation System Foundation Flows: Flat Implementation
Flow Guide.
October 2010 1013 Product Version 9.1.3

../flatImpl/flow.html#RunCTSandPost-CTSOptimization

Encounter Digital Implementation System User Guide
Timing Analysis
Figure 28-3 Example Signal Path

The setup check equation for the example in Figure 28-3 with pessimism is as follows:

where,

t1 = Delay value for launch clock late path

t2 = Delay between FF1/CLK and FF1/Q

t3 = Delay between FF1/Q and FF2/D

t2 + t3 = Delay value for late data path

t4 = Delay value for capture clock early path

tpa = Period adjustment

tsu = Setup time

The setup check equation incorrectly implies that the common clock network, B1, can
simultaneously use maximum delay for the launch clock late path (clock source to FF1/CLK)
and minimum delay for the capture clock early path (clock source to FF2/CLK). You use the
CPPR to remove this pessimism.

Setup check equation using CPPR is as follows:

FF1 FF2

B1 B2

B3

DQ

t1 t3t2

t4

CLKCLK

D Q
CLK_SOURCE

Branching Node

t1max t2max t3max+ + t4min tpa tsu–+≤

t1max t2max t3max+ + t4min tpa tsu– tcppr+ +≤
October 2010 1014 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
Where,

tCPPR = Difference in the maximum and minimum delay from the clock source to the
branching node

Similarly, hold check equation using CPPR is as follows:

Where,

t1 = Delay value for launch clock early path

t2 = Delay between FF1/CLK and FF1/Q

t3 = Delay between FF1/Q and FF2/D

t2 + t3 = Delay value for early data path

t4 = Delay value for capture clock late path

tCPPR = Difference in the maximum and minimum delay from the clock source to the
branching node

tH = Hold time

For example, you use the following set_timing_derate command for setup check delays
in Figure 28-3 on page 1014 in scaled on-chip variation analysis methodology:

set_timing_derate -max –late 1 –early 0.9 –clock

With the set_timing_derate command, if the delay through B1 is 1ns, the software
removes the pessimism of 0.1ns. Without CPPR the analysis tool incorrectly assumes that
B1 can have a delay of 1 and 0.9. The common path pessimism time (tCPPR) is calculated as
follows:

B1 * Late Derate - B1 * Early Derate = tCPPR

Therefore,

tCPPR = 1.0ns * 1.0 - 1.0ns * 0.9 = 0.1ns

CPPR and Reconvergent Logic

If a design contains reconvergent logic on the clock path, the timing analysis software might
assume certain pessimism while calculating slack.

t1min t2min t3min tcppr+ + + t4max tH+≤
October 2010 1015 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
The following figure shows a circuit for which timing analysis is done in single analysis mode.

In this case, if set_case_analysis is not set at point S of the multiplexer, the timing
analysis tools assume different delay values for early and late paths. For example, if early
path has delay of 0.5ns, and late path has delay of 1ns, a pessimism equal to 0.5ns is
introduced in the design.

The above pessimism is not specific to single analysis mode only; it also applies to best-case/
worst-case and on chip variation methodology.

Encounter uses a threshold of zero during pessimism removal. That means no pessimism
remains in the analysis.

CPPR Flow

To remove this pessimism, use the -cppr parameter in the setAnalysisMode command.

In Encounter, the following flow supports the CPPR feature:

1. Load the timing constraints.

loadTimingCon top.sdc

2. Set the analysis mode to setup, propagated clock and CPPR.

setAnalysisMode -checkType setup -skew true
-clockPropagation sdcControl -cppr true

3. Set the derating values.

set_timing_derate -late 1 -early 0.9 -clock

4. Generate timing report. You use the report_timing command to remove delay
pessimism from paths that have a portion of the clock network in common.

report_timing

FF1 FF2
U4

DQ

CLKCLK

D Q

CLK

Late Clock Path

Early Clock Path

U2

U3U1

D

S

October 2010 1016 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
Timing Analysis Results Before and After CPPR

The following example shows a timing report generated before CPPR analysis.

Path 1: MET Setup Check with Pin reg_2/CK

Endpoint: reg_2/D (v) checked with leading edge of ’CLK1’

Beginpoint: reg_1/Q (v) triggered by leading edge of ’CLK1’

Other End Arrival Time 0.104

- Setup 0.167

+ Phase Shift 2.000

= Required Time 1.938

- Arrival Time 1.850

= Slack Time 0.088

 Clock Rise Edge 0.000

 = Beginpoint Arrival Time 0.000

Instance Arc Cell Delay Arrival
Time

Required
Time

clk ^ 0.000 0.088

ck_0 A ^ -> Y ^ BUFX2 0.091 0.091 0.178

ck_1 A ^ -> Y ^ BUFX2 0.097 0.188 0.275

ck_2 A ^ -> Y ^ BUFX2 0.094 0.282 0.369

ck_3 A ^ -> Y ^ BUFX2 0.092 0.374 0.462

ck_4 A ^ -> Y ^ CLKAND2X2 0.150 0.524 0.612

reg_1 CK ^ -> Q v DFFRHQX1 0.288 0.812 0.900

t_1 A ^ -> Y ^ BUFX8 0.111 0.923 1.011

t_2 A ^ -> Y ^ BUFX8 0.092 1.015 1.103

t_3 A ^ -> Y ^ BUFX8 0.092 1.107 1.195

t_4 A ^ -> Y ^ BUFX8 0.092 1.199 1.287

t_5 A ^ -> Y ^ BUFX8 0.092 1.291 1.379

t_6 A ^ -> Y ^ BUFX8 0.092 1.383 1.471

t_7 A ^ -> Y ^ BUFX8 0.092 1.475 1.563

t_8 A ^ -> Y ^ BUFX8 0.092 1.567 1.655

t_9 A ^ -> Y ^ BUFX8 0.092 1.660 1.747

t_10 A ^ -> Y ^ BUFX8 0.088 1.747 1.835

t_11 B ^ -> Y ^ NAND2X1 0.066 1.813 1.901

t_12 A ^ -> Y ^ INVX1 0.037 1.850 1.938
October 2010 1017 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
The following example shows a timing report generated after CPPR analysis:

Path 1: MET Setup Check with Pin reg_2/CK

Endpoint: reg_2/D (v) checked with leading edge of ’CLK1’

Beginpoint: reg_1/Q (v) triggered by leading edge of ’CLK1’

Other End Arrival Time 0.104

- Setup 0.167

+ Phase Shift 2.000

+ CPPR Adjustment 0.420

= Required Time 2.358

- Arrival Time 1.850

= Slack Time 0.508

 Clock Rise Edge 0.000

 = Beginpoint Arrival Time 0.000

reg_2 D v DFFRHQX1 0.000 1.850 1.938

Instance Arc Cell Delay Arrival
Time

Required
Time

clk ^ 0.000 0.508

ck_0 A ^ -> Y ^ BUFX2 0.091 0.091 0.598

ck_1 A ^ -> Y ^ BUFX2 0.097 0.188 0.695

ck_2 A ^ -> Y ^ BUFX2 0.094 0.282 0.789

ck_3 A ^ -> Y ^ BUFX2 0.092 0.374 0.882

ck_4 A ^ -> Y ^ CLKAND2X2 0.150 0.524 1.032

reg_1 CK ^ -> Q v DFFRHQX1 0.288 0.812 1.320

t_1 A ^ -> Y ^ BUFX8 0.111 0.923 1.431

t_2 A ^ -> Y ^ BUFX8 0.092 1.015 1.523

t_3 A ^ -> Y ^ BUFX8 0.092 1.107 1.615

t_4 A ^ -> Y ^ BUFX8 0.092 1.199 1.707

t_5 A ^ -> Y ^ BUFX8 0.092 1.291 1.799

t_6 A ^ -> Y ^ BUFX8 0.092 1.383 1.891

t_7 A ^ -> Y ^ BUFX8 0.092 1.475 1.983

t_8 A ^ -> Y ^ BUFX8 0.092 1.567 2.075

t_9 A ^ -> Y ^ BUFX8 0.092 1.660 2.167

t_10 A ^ -> Y ^ BUFX8 0.088 1.747 2.255
October 2010 1018 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
Analyzing Timing Problems

In addition to the detailed timing violation report, the following report commands are helpful
in analyzing timing problems:

■ check_timing

Performs a variety of consistency and completeness checks on the timing constraints
specified for a design. Use the check_timing command after setting all constraints,
but before any timing analysis commands, such as report_timing, to verify that the
timing environment is complete and self-consistent.

■ get_property

Retrieves timing information for the specified pin property on the given pin.

■ report_analysis_coverage

Provides information about the timing checks in the design.

■ report_annotated_check

Reports coverage of annotated timing checks.

■ report_annotations

Reports SDF design annotations coverage.

■ report_case_analysis

Reports ports and pins with set_case_analysis constraint.

■ report_cell_instance_timing

Reports instance pin and delay arc timing information.

■ report_clock_timing

Generates a clock skew report for the current design.

■ report_clocks

Reports clock waveform, clock arrival point and clock uncertainty information.

t_11 B ^ -> Y ^ NAND2X1 0.066 1.813 2.321

t_12 A ^ -> Y ^ INVX1 0.037 1.850 2.358

reg_2 D v DFFRHQX1 0.000 1.850 2.358
October 2010 1019 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#check_timing
../fetxtcmdref/tclscriptingT.html#get_property
../fetxtcmdref/timinganalysisT.html#report_analysis_coverage
../fetxtcmdref/timinganalysisT.html#report_annotated_check
../fetxtcmdref/timinganalysisT.html#report_annotations
../fetxtcmdref/timinganalysisT.html#report_case_analysis
../fetxtcmdref/timinganalysisT.html#report_cell_instance_timing
../fetxtcmdref/timinganalysisT.html#report_clock_timing
../fetxtcmdref/timinganalysisT.html#report_clocks

Encounter Digital Implementation System User Guide
Timing Analysis
■ report_inactive_arcs

Reports all disabled timing arcs and checks.

■ report_path_exceptions

Reports design path exceptions such as set_false_path, set_multicycle_path,
set_max_delay and set_min_delay.

■ report_timing

Generates a timing report that provides information about the various paths in the
design. The report typically contains data on the delay through the entire path. The start
node and the end node of each path is identified.

■ reportAnalysisMode

Reports the current setting for building the timing graph. Use setAnalysisMode to
change the settings.

■ reportCapViolation

Reports the nets that exceed the maximum capacitance constraints set by the timing
library and timing constraints file.

■ reportClockDomains

Reports the clock domain setting for building the timing graph.

■ reportTranViolation

Reports the nets that exceed the maximum transition constraints set by the timing
constraints file.

Resolving Buffer-Related Problems

You may encounter some of the following buffer-related problems when running timing
analysis:

■ The logical cell or buffer equivalence, based on cell functionality not used during timing
optimization, can cause timing optimization to ignore timing violations.

■ If an incorrect buffer footprint name was entered for the set of buffers to run timing
optimization, use the reportFootPrint command to list the current footprint
information.
October 2010 1020 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#report_inactive_arcs
../fetxtcmdref/timinganalysisT.html#report_path_exceptions
../fetxtcmdref/timinganalysisT.html#report_timing
../fetxtcmdref/timinganalysisT.html#reportAnalysisMode
../fetxtcmdref/timing_ipoT.html#reportCapViolation
../fetxtcmdref/timinganalysisT.html#reportClockDomains
../fetxtcmdref/timing_ipoT.html#reportTranViolation
../fetxtcmdref/timing_ipoT.html#reportFootPrint

Encounter Digital Implementation System User Guide
Timing Analysis
■ If the in_place_swap_mode:match_footprint statement is in the timing library,
then timing optimization matches up all the cells with same cell_footprint name,
and logical cell or buffer equivalence will not be used.

■ If the in_place_swap_mode:match_footprint statement does not exist, then
timing optimization derives logical cell equivalence based on matching
function:boolean_eq.

■ If you want the logical cell equivalence based on matching, comment out the
in_place_swap_mode:match_footprint statement in the timing library.
October 2010 1021 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Timing Analysis
October 2010 1022 Product Version 9.1.3

Encounter Digital Implementation System User Guide
29
Debugging Timing Results

■ Timing Debug Flow on page 1025

■ Generating Timing Debug Report on page 1026

■ Displaying Violation Report on page 1026

■ Analyzing Timing Results on page 1027

■ Creating Path Categories on page 1033

■ Using Categories to Analyze Timing Results on page 1042

■ Editing Table Columns on page 1046

■ Cell Coloring on page 1048

■ Viewing Schematics on page 1050

■ Running Timing Debug with Interface Logic Models on page 1051
October 2010 1023 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
Overview

Encounter provides the Global Timing Debug feature for debugging the timing results. The
various Timing Debug forms provide easy visual access to the timing reports and debugging
tools. Encounter provides different timing debug feature depending on the timing mode that
you have selected.

You can group all paths that are failing for the same reason and apply solutions for faster
timing closure. You can cross-probe between the timing paths in the timing report and
Encounter design display area.

Note: If you have a previously saved timing debug report, you can use the timing debug
feature even when the design is not loaded in the Encounter session.
October 2010 1024 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
Timing Debug Flow

You can generate a detailed violation report to list the details of all violating paths. You can
then use the timing debug capability to visually identify problems with critical paths in this
report. After identifying the problems, you group all paths with the same problem under a
single category. You can define several categories to capture all problems related to the
violating paths before fixing the problems and running timing analysis again.

Following is the flow for debugging timing results.

Generate Timing Debug
Report

Display Violation Report

Analyze Timing Results

Create Path Category

Use Categories to Analyze
Timing Results

All Failing Paths
Identified?

Evaluate Solution for Each
Category of Identified Problem

Implement Solution and Run
Timing Analysis

No

Yes
October 2010 1025 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
Generating Timing Debug Report

Encounter uses a machine readable timing report to display timing debug information. The
report is generated in the ASCII format and contains details of all violating paths. By default,
the report has .mtarpt extension.

To generate a violation report, use one of the following options:

■ Use report_timing -machine_readable command

■ Use timeDesign -timingDebugReport command

■ Use the Generate option in the Display/Generate Timing Report form.

You can also generate text-format report from a machine readable report.

To generate the text report, use the following:

■ Use the write_text_timing_report command

■ Use the Write Textual Timing Report form

Displaying Violation Report

To analyze the timing results, you need to load the machine readable timing report in
Encounter.

To display the violation report, use one of the following options:

■ Specify the file name in the Display/Generate Timing Report form.

Note: To select an existing file, deselect the Generate option before clicking on the
directory icon to the right of the Timing Report File field.

By default, the global timing debug engine uses the following command to generate a
machine-readable timing analysis report for the GUI display:

report_timing -machine_readable -max_points 10000 -max_slack 0.75

■ Use the load_timing_debug_report command.

Note: Use the Append to Current Report option in the Display/Generate Timing Report form
to load multiple reports in a single session.
October 2010 1026 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#report_timing
../fetxtcmdref/timinganalysisT.html#timeDesign
../encounter/timingG.html#DisplayGenerateTimingReport
../fetxtcmdref/timingdebugT.html#write_text_timing_report
../encounter/timingG.html#WriteTextReport
../encounter/timingG.html#DisplayGenerateTimingReport
../fetxtcmdref/timingdebugT.html#load_timing_debug_report

Encounter Digital Implementation System User Guide
Debugging Timing Results
Analyzing Timing Results

Encounter provides Timing Debug feature to visually analyze timing problems.

You analyze the following data in the Timing Debug form:

■ Visual display of passing and failing paths as a histogram. Failing paths are represented
in red and passing paths are represented in green color. The goal of timing debug
process is to identify paths that fall in red category.

■ Details of the critical paths in the Path list. You identify a critical path in this list for further
analyses using the Timing Path Analyzer form.

■ Visual display of paths reported in different timing reports. When you load multiple debug
reports in a single timing debug session, the paths are displayed in different colors
corresponding to the report file they are coming from. You can move the cursor over a
path to display the name of the report file.

You analyze the following data in the Timing Path Analyzer form:

■ Slack calculation bars for arrival and required times. You can identify clock skew issues,
latency balancing or large clock uncertainty issues using these bars.

The following examples illustrate the problems that you can identify using the slack
calculation bars in the Timing Path Analyzer form.

Example 29-1

Launch and capture latency components are not aligned. Therefore there can be large clock-
latency mismatch in this path.

Example 29-2

The cycle adjustment bar in the required time indicates presence of multicycle path.
October 2010 1027 Product Version 9.1.3

../encounter/timingG.html#TimingDebug
../encounter/timingG.html#TimingPathAnalyzer

Encounter Digital Implementation System User Guide
Debugging Timing Results
Example 29-3

Large input delay in an I/O path is represented by the blue bar in the arrival time.

Example 29-4

Path Delay bar in the required time indicates a set_max_delay constraint.

■ Path details including launch and capture. This information is provided as tabs in the
Timing Path Analyzer form. You can click on a single path to display it in the design
display area. You can select each element consecutively to trace the entire path in the
design display area. This form has a Status column that indicates the status of the path
as follows:

Flag Description

a Assign net

b Blackbox instance

c Clock net

cr Cover cell

f Preplaced instance

i Ignore net

s Skip route net

t “don’t touch” instance

t “don’t touch” net

u Unplaced cell

x External net
October 2010 1028 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
■ SDC related to the path. The Path SDC tab displays the SDC constraints related to the
selected path. The list contains the name of the SDC file, the line number that indicates
the position of the constraint in the SDC file, and the constraint definition.

The commands that can be displayed in the Path SDC tab are:

❑ create_clock

❑ create_generated_clock

❑ group_path

❑ set_multicycle_path

❑ set_false_path

❑ set_clock_transition

❑ set_max_delay

❑ set_min_delay

❑ set_max_fanout

❑ set_fanout_load

❑ set_min_capacitance

❑ set_max_capacitance

❑ set_min_transition

❑ set_max_transition

❑ set_input_transition

❑ set_capacitance

❑ set_drive

❑ set_driving_cell

❑ set_logic_one

❑ set_logic_zero

❑ set_dont_use

❑ set_dont_touch

❑ set_case_analysis
October 2010 1029 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
❑ set_input_delay

❑ set_output_delay

❑ set_annotated_check

❑ set_clock_uncertainty

❑ set_clock_latency

❑ set_propagated_clock

❑ set_load

❑ set_disable_clock_gating_check

❑ set_clock_gating_check

❑ set_max_time_borrow

❑ set_clock_groups

When you create a constraint on the command line, the Path SDC tab interactively
displays the result of the additional constraint.

Note: MMMC views are not displayed interactively.

Tip

You can create a path category directly from SDC constraints in the Path SDC form.
When you right-click a constraint and view the Create Path Category form, to see
the line number (from the SDC file) and the name of the constraint.

In EDI System you can also ceate a path category based on SDC constraint using the
-sdc parameter of the create_path_category command:

create_path_category -name category_name -sdc {file_name line_number}

where file_name is the name of the constraint file and line_number is the line
number of the SDC constraint.

■ Schematic display of the path. The Schematics tab displays the gate-level schematic
view of the critical path. For more information, see Viewing Schematics on page 1050.

■ Timing interpretation for the path. This feature provides rule-based path analysis help
you discover sources of potential timing problems in a path. By default, the software
performs the following checks the following rules:

❑ Path structure

❍ Transparent Latch in Path
October 2010 1030 Product Version 9.1.3

../fetxtcmdref/timingdebugT.html#create_path_category

Encounter Digital Implementation System User Guide
Debugging Timing Results
❍ Clock Gating

❍ Hard Macros

❍ HVT Cells

❍ Buffering List

❍ Net Fanout

❍ Level Shifters

❍ Isolation Cells

❑ Timing and constraints

❍ Large Skew

❍ Divider in Clock Path

❍ Total SI Delay

❍ SI Delay

❍ External Delay

❑ Floorplan

❍ Fixed Cells

❍ Distance from start to end

❍ Distance of repeater chain

❍ Detour

❍ Multiple power domains

❑ DRVs

❍ Max transitions

❍ Max capacitance

❍ Max fanout

You can customize the type of timing information reported. The Edit Timing
Interpretation GUI lets you add, modify, or delete rules you want the tool to check and
report.

■ Timing bar to analyze delays associated with instances and nets in a path. Use this
information to identify issues related to large instance or net delays, repeater chains,
October 2010 1031 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
paths with large number of buffers, and large macro delays. The small bars
superimposed on net delays or within element delays show incremental (longer or
shorter) delays due to noise effects:

■ Hierarchical representation of the path in the Hierarchy View field. This representation of
the path-delay shows the traversal of a path through the design hierarchy drawn on the
time axis. A longer arrow means that there are more instances on its path. Use this
information to see the module where the path is spending more time or to identify inter-
partition timing problems.

Viewing Power Domain Information

While debugging critical paths on MSV designs, it is useful to be able to identify power
domains and low power cells. The Timing Debug feature displays this information in the
following ways:

■ The level shifters and isolation cells are listed in the Timing Interpretation tab.of the
Timing Path Analyzer.

Level shifters and
Isolation Cells are
displayed in the
Timing
Implementation tab
October 2010 1032 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
■ The delay bar of the Timing Path Analyzer can display the level shifters and isolation
cells. You can also use the Preferences form to specify the colors in which the level
shifters and isolation cells are displayed.

Creating Path Categories

After analyzing the paths in the timing report, you identify problems in various paths. Then
you create a group of paths such that all paths in that group have the same timing problem
and can be fixed at the same time. In timing debug such a group of paths is called a category.
In Encounter, you can either define your own category or use predefined categories to group
your paths. The categories that you define are then displayed in the Timing Debug form . The
form also displays the paths associated with each category.

Creating Predefined Categories

There are following predefined categories:

■ Basic Path Group

The colors for level shifters and
isolation cells can be set in the
Preferences form....

...and are displayed in the delay
bar
October 2010 1033 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
Creates standard path categories according to basic path groups. For more information,
see Path Analysis (Basic Path Groups).

■ Clock Paths

Creates categories according to launch clock - capture clock combinations. For more
information, see Path Analysis (Clock Paths).

■ Hierarchical Floorplan

Creates categories according to the hierarchical characteristics of a path.For more
information, see Path Analysis (Hierarchical Paths).For more information, see

■

■ Creates categories according to the hierarchical characteristics of a path.For more
information, see Path Analysis (Hierarchical Paths).For more information, seeView

Creates categories according to the view for which the path was generated. For more
information, see Path Analysis (View).

■ False Paths

Creates a category with paths defined as False paths. For more information see Path
Analysis (View).

■ Bottleneck

Creates categories based on instances that occur often in critical paths. For more
information, see Timing Debug Preferences – Bottleneck Analysis.

■ DRV Analysis

Generates or loads a DRV report containing capacitance, transition, or fanout violations.
Paths that are affected by the selected DRV types are grouped in a category.

To create or load this report, use the drv analysis type on the Path Analysis GUI.

Creating New Categories

To define a new category, use the Create Path Category form. The Create Path Category form
contains drop-down menus with conditions that you use to define a path category. The
October 2010 1034 Product Version 9.1.3

../encounter/timingG.html#BasicPathGroupAnalysis
../encounter/timingG.html#ClockPathAnalysis
../encounter/timingG.html#HierPathAnalysis
../encounter/timingG.html#HierPathAnalysis
../encounter/timingG.html#viewpathanalysis
../encounter/timingG.html#viewpathanalysis
../encounter/timingG.html#viewpathanalysis
../encounter/timingG.html#TimingDebugPreferencesBottleneckAnalysis
../encounter/timingG.html#CreatePathCategory

Encounter Digital Implementation System User Guide
Debugging Timing Results
conditions are characteristics that a path must have to be added to the named category. You
can define multiple conditions that a path must meet to be added to the category.

The category that you create is added in the Timing Debug form. All paths that meet the
conditions set for this category are grouped under the category name. Paths are separated
automatically according to MMMC views into different categories, for example:

CLOCK1<View_test_mode>
CLOCK2<View_mission_mode>

Double-click on the category name in the Timing Debug form to display the list of paths in the
Path List field.

Note: You can add a comment in the Comment field to record any notes that you would like
to include with the category. The comment appears in the category report file.
October 2010 1035 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
Following figure shows categories created by the Create Path Category form.

Creating Sub-Categories

You can create sub-categories based on existing categories. While analyzing a sub-category,
global timing debug will traverse the paths in the master category instead of all the paths in
the current report.

■ Creating Sub-Categories through the GUI on page 1037

■ Creating Sub-Categories through Command Line on page 1038
October 2010 1036 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
Creating Sub-Categories through the GUI

In the GUI, you can create a sub category as follows:

1. Right-click on a path category, and select Nested Category.

To create a sub-category, right-click on ...and then select Create Nested
October 2010 1037 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
The Create Path Category form is displayed.

2. In the Master category name field, the name of the category you selected previously
is displayed. Create one or more subcategories as explained in Creating Path Categories
on page 1033.

Note: You can create nested sub-categories, that is, you can further create sub-
categories for a sub-category.

You can also use the Category – Create menu command to bring up the Create Path
Category form. In the Master category name field, type the name of the category for which
you want to create the sub-category, and then create one or more subcategories as explained
in Creating Path Categories on page 1033.

Creating Sub-Categories through Command Line

Use the -master parameter of the create_path_category command to create sub-
categories. The category created will be a sub-category of the category name specified with
the -master parameter.

Master category name is displayed in
the Create Path Category form
October 2010 1038 Product Version 9.1.3

../fetxtcmdref/timingdebugT.html#create_path_category

Encounter Digital Implementation System User Guide
Debugging Timing Results
The following other commands also support sub-categories; to run these commands only on
the sub-categories of a particular master category, specify the master category name with the
-master parameter.

■ analyze_paths_by_basic_path_group

■ analyze_paths_by_bottleneck

■ analyze_paths_by_clock_domain

■ analyze_paths_by_critical_false_path

■ analyze_paths_by_drv

■ analyze_paths_by_hierarchy

■ analyze_paths_by_view

Note: If the parent category of a sub-category is deleted, the sub-category cannot be edited
or changed anymore. However, the sub-category is still displayed in case you want to refer to
it.

Viewing Sub-Categories

The subcategories for a master category are displayed in a hierarchically numbered list below
the master category. As an illustration, consider the example shown here:

In this example:
October 2010 1039 Product Version 9.1.3

../fetxtcmdref/timingdebugT.html#analyze_paths_by_basic_path_group
../fetxtcmdref/timingdebugT.html#analyze_paths_by_bottleneck
../fetxtcmdref/timingdebugT.html#analyze_paths_by_clock_domain
../fetxtcmdref/timingdebugT.html#analyze_paths_by_drv
../fetxtcmdref/timingdebugT.html#analyze_paths_by_hierarchy
../fetxtcmdref/timingdebugT.html#analyze_paths_by_view

Encounter Digital Implementation System User Guide
Debugging Timing Results
■ master_category1 is the master category

■ nested_category_1a and nested_category_1b are the sub-categories of
master_category1.

The prefix (1) is displayed with nested_category_1a and nested_category_1b.

■ nested_category_2 is the sub-category of nested_category_1a.

The prefix (2) is shown with nested_category_2.

Hiding path categories

To remove a path category from the histogram display, right-click on a path and select Hide
Category. The category name in the category list is not hidden, but is marked with an “H” as
hidden.

Reporting Path Categories

To generate a report containing information about path categories, use the following options:

■ Use the write_category_summary command

■ Use the Write Category Report File GUI

The text file contains the following information:

■ Category name

■ Total number of paths

■ Number of passing paths

■ Number of failing paths

■ Worst negative slack

■ Total negative slack

■ TNS

Sample report:

Category
name

Total
path

Passing
Path

Failing
path

WNS TNS
October 2010 1040 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
test_clock<view_test_ 3869 768 3101 -5.699 -4802.857

100MHz_1.00V> Clock Domain Analysis

@->test_clock<view_test 484 55 429 -2.292 -378.432

_100MHz_1.00V> Clock Domain Analysis

my_clk-><view_mission 1 2 11 1.931 -1.931

_166MHz_1.08V> Clock Domain Analysis

my_clk_2x<view_mission 156 154 2 -.013 -0.21

_166MHz_1.08V> Clock Domain Analysis

cat1875 77 13 64 -3.524 -100.893

Category of paths that cross i_1875 and
start with test_clock - need to change the
uncertainty value -advised --by Don
October 2010 1041 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
Using Categories to Analyze Timing Results

You can use the categories that you create to group the timing paths in the Timing Debug
form. The Timing Debug form displays the category details in the Path Category field. You can
perform the following tasks in the Timing debug form to analyze the timing results:

■ Double-click on any category to display the details of the paths grouped in that category
in the Path List field.

■ Right-click on the category name and select Add to Histogram option. The paths related
to the selected category are highlighted in a different color in the histogram. This gives
you a visual representation of the number of paths that meet the conditions in that
category and can possibly have the same timing problem.
October 2010 1042 Product Version 9.1.3

../encounter/timingG.html#TimingDebug

Encounter Digital Implementation System User Guide
Debugging Timing Results
For example, in the following figure the SetupCheck category was added to the
histogram.

Analyzing the resulting the Timing Debug form gives you information for fixing problems
related to larger sets of timing paths. After identifying the problems, you can make the
required changes such as modify floorplan, script or SDC files and run timing analysis again
for further analysis.

Analyzing MMMC Categories

Paths are separated automatically according to MMMC views into different categories, for
example, the following figure shows two categories based on MMMC views:
October 2010 1043 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
■ view_mission_140MHz_1.0V

■ view_mission_166MHz_1.8V

1. Right-click on one of view_mission_140MHz_1.0V and choose List Paths.

2. Right-click on one the paths and choose Show Timing Path Analyzer.

The Timing Path Analyzer is displayed.

3. Click on the Path SDC tab to display the SDCs:
October 2010 1044 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
Note that the SDCs relative to mode mission_140MHz that produced the path are
highlighted.
October 2010 1045 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
Manual Slack Correction of Categories

Use the Set Category Slack Correction form to specify the estimated slack correction for the
selected category of paths. A slack correction that you apply to a category modifies all the
paths in that category. If a path belongs to several categories, all the correction from the
categories are added. The worst negative slack and total negative slack values of a category
can be affected by the correction applied to another category.

Once you enable the slack correction, the histogram is updated to reflect the slack correction.
An asterisk (*) is added next to the slack value of paths that belong to this category in the
Path List field in the Timing Debug window. Paths are reordered based on new specified
slack. This allows you to filter out the paths that can be fixed and work on the remaining paths.

To access the Set Category Slack Correction form complete the following steps:

1. Choose Timing – Debug Timing. .

2. Right click on the category name in the Path Category field.

3. Choose the Set Category Slack Correction option.

To disable the set slack correction value:

1. Right click on the category name in the Path Category field.

2. Choose the Deactive Category Slack correction option.

Editing Table Columns

You can customize the dimensions and contents of table columns to suit your needs.

1. Open the Timing Debug or Timing Path Browser form. , then right-click on a path.

A drop-down menu is displayed.

2. Select Edit Table Column.
October 2010 1046 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
The Edit Table Column form is displayed.

3. Choose the timing window that contains the table to want to customize.

4. Choose the table whose columns you want to customize. The selections change
according to the timing window you choose.

5. Choose a column item or specify a command.

For commands, specify the procedure you want to use to determine the information you
want to include in the column. Source the file containing the procedure before you specify
the procedure here.

For example:

Combine fedge (from edge) and tedge (to edge) #information into a single field
proc my_get_edge {id var} {

upvar #0 $var p
if {p(type) == "inst"} {

return “$p(fedge) -> $p(tedge)"
} elseif {$p(type) == "port" } {

return $p(fedge)
} else {

return ""
}

}

6. Build the column list.

❑ Add adds a column to the column list.
October 2010 1047 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
❑ Modify let you modify characteristics. Click on a column in the column list. Edit the
information, then click Modify.

❑ Delete removes a column from the column list.

❑ Move Up moves a column up in the column list. This effectively moves a column to
the left in the table.

❑ Move Down moves a column down in the column list. This effectively moves a
column to the right table.

7. (Optional) Click Load. The opens the GTD (Global Timing Debug) Preferences form.
Specify a file name.

Cell Coloring

Use the Cell Coloring page of the Timing Debug Preferences form to choose colors for
specific cells in the delay bar.

When you assign colors, this same colors will be restored when you start a new session.

In the Cell Name Selection Elements field for each color, you can choose whether you
are providing one of the following:
October 2010 1048 Product Version 9.1.3

../encounter/timingG.html#TimingDebugPreferencesCellColoring

Encounter Digital Implementation System User Guide
Debugging Timing Results
■ Cell name

■ Instance

■ Procedure that you have defined

The procedure is invoked with the full instance name as the argument. You must source the
file containing the procedure before you use this feature.

For example:

Colors when the instance name contains "core/block1"
proc belongs_to_block1 {inst_name} {

if [regexp {core/block1} $inst_name] {
return 1

} else {
return 0

}

}

October 2010 1049 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
Viewing Schematics

The Critical Path Schematic Viewer displays the gate-level schematic view of the critical path
that you select in the Debug Timing - Browser window. To display the Schematic Viewer, click
on the schematics icon in the Timing Debug window. You can display additional paths in the
Schematic Viewer by using the middle mouse button to drag the path from path list to
Schematic Viewer.

On displaying the Schematic Viewer, you can see the power instance colored and the power
domain information displayed in a popup message box as well as in terminal.

You can perform the following tasks in the Module Schematic Viewer:

■ View the Gate-level design elements.

■ Select an element in the schematic.

❑ Click on an object in the schematic to select and highlight it. When you move the
cursor to an object, the object type and name of the object appear in the information
box.

■ Scroll over an object to display the object type and name of the object in the Object field.
October 2010 1050 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Debugging Timing Results
■ Cross-probe between the schematic and design display area.

❑ Drag and drop an object from the schematic to the design display area to zoom in
and highlight the object.

■ Cross-probe between the Schematics window and Path List field.

❑ Select a path and left-click on the Schematics button above the Path List Table. (This
is the button at the far-right side, just above the table).

❑ To show multiple paths, select another path, and drag and drop it to the Schematics
window.

■ Use the menu options provided in the Schematic Viewer. To access the menu options,
you can either click on the menu bar or right-click on an object in the schematic. You can
use the menu options to perform the following tasks:

❑ Manipulate schematic views of fan-in and fan-out cones.

❑ Trace connectivity between drivers, objects, and loads.

❑ Move between different levels of instance views.

Running Timing Debug with Interface Logic Models

You can use the timing debug feature with designs containing Interface Logic Models (ILMs).

■ You must flatten ILMs before creating global timing debug reports. Use the flattenIlm
command first. After loading the report, you can run timing debug in flattened or
unflattened mode. The schematic feature is disabled in unflattened mode.

■ The Timing Path Analyzer – Path SDC form displays ILM SDCs rather than the original
SDCs.
October 2010 1051 Product Version 9.1.3

../fetxtcmdref/partitionT.html#flattenIlm

Encounter Digital Implementation System User Guide
Debugging Timing Results
■ The software highlights the entire ILM module instead of the instances and nets inside
the ILM. The instances and the nets inside the ILMs are greyed out in the Timing Path
Analyzer – Path SDC form.

Instances and nets inside the ILM module are
greyed out in the Timing Path Analyzer – Path
SDC form.

The entire ILM
module is
highlighted
October 2010 1052 Product Version 9.1.3

Encounter Digital Implementation System User Guide
30
Statistical Static Timing Analysis

■ SSTA Overview on page 1054

■ SSTA Inputs on page 1058

■ SSTA Flows on page 1064

■ SSTA Outputs on page 1067

■ SSTA Correlation With Monte-Carlo Analysis on page 1071
October 2010 1053 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
SSTA Overview

A major design challenge in 90nm and below designs are process variations. Process
variations account for deviations in the semiconductor fabrication process. Process variations
are due to variations in the manufacturing conditions such as temperature, pressure and
dopant concentrations. To handle process variations, static timing analysis (STA) provides
multi-corner analysis. However due to modelling of large number of process variation corners,
STA methodology can be very complex and time consuming. Additionally STA can be very
conservative in most cases and can be optimistic in some cases resulting in missed
violations. To effectively handle process variation, you can now use Statistical Static Timing
Analysis (SSTA).

SSTA represents the slack in terms of probability density function (PDF). PDF accounts for
the variability of all process factors being modelled. This methodology targets a specific
percentage yield for timing analysis and optimization.

SSTA removes the pessimism present in corner based STA. This helps in removing extra
margins in the design and therefore improves design cycle time, and chip area. For example,
consider the arrival time of signals on different chips. The arrival time on different chips is
different because process variation delays are not constant. The following figure shows arrival
time probability density function with different arrival times on x axis, and fractional number of
chips on y axis.

In this figure,

Dnom: Arrival time at nominal corner

DBC: Arrival time at best case corner

DWC: Arrival times at worst corner

M + 3*S: Worst arrival time for 99.9% yield. M is the mean value and S is the standard
deviation or sigma value.

99.9%
October 2010 1054 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
In this example, none of the chips have the arrival time of DWC. Therefore use of worst corner
in STA will result in pessimistic delay analysis. SSTA analysis on the other hand considers
complete distribution of arrival times and calculates worst arrival time for 99.9% yield. In this
case, M+3*S delay is much smaller than worst corner arrival time DWC.

SSTA also provides data to trade-off between performance and yield. In STA, if a violation is
reported at worst corner, it is actually violation on the worst chip in a lot. Since STA does not
provide any information on the number of chips affected by the violation, you must fix this
violation. This impacts cycle time and/or chip area. SSTA, on the other hand, provides the
yield number (in terms of fraction of chips that can be affected by this violation) for a given
frequency and vice versa. You can use this information to trade-off between yield and
frequency. The following figure shows probability density function with slack value on X axis
and fractional number of chips on the Y axis.

In this figure, parametric timing yield gives the percentage of chips with positive slack value.
October 2010 1055 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
The following figure shows process variations between different cell instances in a design.

Figure 30-1 Variations between instances in a design

In this figure,

p1, p2 and p3 are process parameters for three different transistors

D is Distance between the cell instances

SSTA accounts for the following process variations:

■ Global or die-to-die variations

SSTA considers perfect correlation between all devices on the chip. Consider the
variations between cell instances shown in Figure 1-1. The following equation shows the
correlation between p1, p2 and p3 for global or die-to-die variations:

Correlation (p1,p2) = Correlation (p1,p3) = Correlation (p2,p3) = 1

■ Random variations

SSTA considers the process variation of all transistors on the chip to be uncorrelated to
each other. Consider the variations between cell instances shown in Figure 1-1. The
following equation shows the correlation between p1, p2 and p3 for random variations:

Correlation (p1,p2) = Correlation (p1,p3) = Correlation (p2,p3)=0

■ Spatial variations
October 2010 1056 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
SSTA considers the process variations inside the cell to be perfectly correlated. It also
considers process variation correlation between transistors in different instances of the
cells as function of distance between instances. Consider the variations between cell
instances shown in Figure 1-1. The following equation shows the correlation between p1,
p2 and p3 for spatial variations:

Correlation (p2,p3) = 1 Correlation (p1,p2) = Correlation (p1,p3) = f (D)

Where, f(D) is a user defined function. The value of function decreases as D increases.

Therefore, the software models the process parameter as follows:

Where,

 = Process parameter

 = Nominal process variation

 = Global process variation

 = Systemic or spatial process variation

 = Random process variation

P Pnom Pglobal Psys Prandom+ + +=

P

Pnom

Pglobal

Psys

Prandom
October 2010 1057 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
SSTA Inputs

SSTA requires specific input files containing sensitivities and distribution besides the inputs
that you need to perform STA, such as a netlist and timing constraints.

The inputs required for SSTA are as follows:

■ Libraries with sensitivities on page 1059

■ Statistical Parameter Distribution Format (SPDF) File on page 1061

■ Sensitivity-Based SPEF (S-SPEF) File on page 1063

■ Timing Constraints

The timing constraints supported for SSTA are the same as those supported for STA. For
a list of supported timing constraints, see the Timing Constraints Commands chapter in
Encounter Digital Implementation System Text Command Reference.

■ Netlist
October 2010 1058 Product Version 9.1.3

../fetxtcmdref/sdcT.html#firstpage

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
Libraries with sensitivities

SSTA requires S-ECSM libraries. These libraries provide sensitivities of delay, slew, and
timing checks (such as setup and hold) to various cell process parameters. The libraries also
contain sensitivities of voltage v/s time waveform. The S-ECSM libraries contain sensitivities
for both global and random variations. Spatial variations are modelled as global parameters
at the library-level.

You can use Encounter Library Characterizer (ELC) or other third party library characterizers
to generate S-ECSM libraries. To generate S-ECSM libraries, the following inputs are
provided to ELC:

■ Spice models: Contains process parameters

■ Spice circuits: Contains extracted spice netlist of library cells

■ Configuration file: Contains variation of process parameters

For random variations, you can optionally combine the parameters in the library file. The
following is a sample of S-ECSM file with sensitivity tables for global parameters, p1 and p4,
and combined random parameter (ecsm_random):

ecsm_timing_sensitivity(){
ecsm_parameter_type : p1 ;
ecsm_parameter_variation : 2.9 ;
fall_transition(delay_template_8x7) {...}
cell_fall(delay_template_8x7) {...}
rise_transition(delay_template_8x7) { ... }
cell_rise(delay_template_8x7) {...}

}

ecsm_timing_sensitivity() {
ecsm_parameter_type : p2;
ecsm_parameter_variation : 2 ;
...

}

ecsm_timing_sensitivity() {
ecsm_parameter_type : p3;
ecsm_parameter_variation : 1.7 ;
...

}

ecsm_timing_sensitivity() {
ecsm_parameter_type : p4;
ecsm_parameter_variation : 1.2 ;
...

}

ecsm_timing_sensitivity() {
ecsm_parameter_type : ecsm_random;
ecsm_parameter_variation : 1 ;
...

}

October 2010 1059 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
For more information on library characterization, see Encounter Library Characterization
User Guide.
October 2010 1060 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
Statistical Parameter Distribution Format (SPDF) File

An SPDF file contains statistics of variation of process parameters. You can specify global,
random and spatial variations in this file. You can create this file using the data provided by
the foundry.

A sample of SPDF file is as follows:

{Standard_Parameter_Format
{SPDF_Version "1.0"}
{PROGRAM "SSTA"}
{PROGRAM_VERSION "1.0"}
{Units

{VOLTAGESCALE 100 mV}
{LENGTHSCALE nm}
{TIMESCALE 1 ns}
{Unit_Distance 1 um}

}
{PARAMETER

{A1, Cell,
{D2D Data}
{WID Data}
{Random Data}

}
}
{PARAMETER

{M1T, Interconnect,
{D2D Data}
{WID Data}
}

}
}

The following sections provide information on the syntax used to specify various variations in
the SPDF file.

Specifying Global or Die-to-Die Variations in SPDF File

To specify the global or die-to-die variations, use the following syntax in the SPDF file:

{PARAMETER {Parameter, Cell/Interconnect
{D2D

{Gaussian, (Mean, Sigma)}
}

}}

Specifying Random Variations in SPDF File

To specify the random variations, use the following syntax in the SPDF file:

{PARAMETER {Parameter, Cell/Interconnect
{Random
October 2010 1061 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
{Gaussian, (Mean, Sigma)}
}

}

Specifying Spatial Variations in SPDF File

To specify the spatial or with-in-die (WID) variation, use the following syntax in the SPDF file:

{PARAMETER {Parameter, Cell
{WID

{Spatial_Function}
{Gaussian}
{Mean_Polynomial, (, q1, q2, q3, q4)}
{Sigma_Polynomial, (, r1, r2, r3, r4)}
{Exponential_Spatial_Correlation, FCD, (k0, k1)}

}
}}

Where,

: mean value

: sigma or standard deviation.

k0, k1: Constant factors that indicates the inverse relationship between correlation and
separation of two devices.

FCD (Full-Correlated Distance): Size of grid for spatial correlation variation.

The values qn, rn, k0 and k1 are supplied by the foundry.

The mean and variation of process parameters can be modeled as the location of the device.

Therefore if mean and sigma values are location independent, you can set qn and rn to 0.
However the values for k0 and k1 should always be specified.

Spatial Correlation between two devices is modeled as function of distance.

μ0
σ0

μ0

σ0

μn μ0 q1nx q2nx
2

q3ny q4ny
2

+ + + +=

σn σ0 r1nx r2nx
2

r3ny r4ny
2

+ + + +=

ρn 1 k0+〈 〉e
k1d

k0–=
October 2010 1062 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
Sensitivity-Based SPEF (S-SPEF) File

The software requires an S-SPEF file to perform sensitivity-based extraction. Sensitivity-
based extraction captures variations in interconnects. In sensitivity based extraction, in
addition to nominal values of resistances and capacitances, the software also extracts the
sensitivities of R and C to different interconnect process parameters.

Sensitivity-based extraction uses the variations in the following parameters:

■ Metal width

■ Metal thickness

■ Dielectric layer thickness

■ Resistivity

■ Via

■ Dielectric constant

The process of generating S-SPEF file is as follows:

1. Prepare a sensitivity techfile using TechGen. For more information, see QRC TechGen
Reference Manual.

2. Set the variable to set sensitivity-based extraction in QRC command file and run
extraction. For more information on running standalone QRC, see QRC Extraction
User Manual.

Loading the S-SPEF File

To load the S-SPEF file for SSTA, complete the following step:

spefIn -sspef SSPEF_file

Note: When you use the S-SPEF file, set the -useNetSens parameter in the
setDelayCalMode command for delay calculation to consider interconnect variations.
October 2010 1063 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
SSTA Flows

You can perform block-based or path-based SSTA. By default the software runs block-based
analysis.

■ Block-based SSTA

In block-based SSTA, the software analyzes the entire design statistically. The software
uses the timing graph in levelized manner and propagates the arrival times from input
ports to all end-points. The reports generated in block-based SSTA are specific to end-
points.

■ Path-based SSTA

In path-based analysis, the software first identifies the potential critical paths using static
analysis and then runs statistical analysis on the selected paths. Path-based SSTA uses
path-based slew propagation, which makes path-based analysis more realistic (by
removing pessimism in worst slew propagation). The reports generated in block-based
SSTA are similar to those generated using STA.
October 2010 1064 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
Running Block-Based SSTA

To run block-based SSTA, complete the following steps:

1. Set the analysis mode to statistical.

2. Load the design.

3. Read the SPEF file. Optionally read in the S-SPEF file to include the interconnect
parasitic information.

4. Read the SPDF file. For more information on SPDF file, see Statistical Parameter
Distribution Format (SPDF) File on page 1061.

5. Generate the timing report for top n endpoints.

Example 30-1 SOC Command File for Running Block-Based SSTA
setAnalysisMode -timingEngine statistical

loadConfig configFile

spefIn spefFile

read_spdf spdfFile

setDelayCalMode -engine signalStorm

report_timing -nworst n > rptFile

report_timing -summary > summaryRptFile
October 2010 1065 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
Running Path-Based SSTA

In path-based analysis, the software first identifies the potential critical paths using static
analysis and then runs statistical analysis on the selected paths. You can then generate path-
based timing reports for your design.

To run path-based SSTA, complete the following steps:

1. Set the analysis mode to statistical.

2. Load the design.

3. Read the SPEF file.

4. Generate the timing report using the -retiming ssta parameter in the
report_timing command.

Example 30-2 SOC Command File for Running Path-Based SSTA
setAnalysisMode -timingEngine statistical

loadConfig configFile

spefIn spefFile

read_spdf spdfFile

setDelayCalMode -engine signalStorm

report_timing -retime ssta -max_path num
October 2010 1066 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#report_timing

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
SSTA Outputs

You can generate timing reports for block-based or path-based SSTA.

Block-Based SSTA Report

In a block-based SSTA report, the software reports data for all end points. An endpoint is an
input to a register (flip-flop, or latch) or a primary output. Example 30-3 on page 1068 shows
a sample block-based report. By default the following data is generated for block-based
analysis:

■ Path-specific information such as slack, arrival time and required time. This information
is generated by default in the report.

■ Process parameter sensitivities such as cell sensitivities

Note: In block-based flow, the arrival times and required times are reported for end points
and not for paths. To report values for a path, use the -from, -from_rise, -from_fall,
-through, -through_rise, or -through_fall parameters in the report_timing
command.

Optionally, you can generate reports for the following data:

■ Joint slack information for all endpoints. Example 30-4 on page 1069 shows a joint PDF
report. To generate joint PDF information, use the -ssta_jpdf parameter in the
report_timing command.

Some other report_timing command parameters that you can use for specific information
in a block-based SSTA report are:

■ -max_paths num_paths

■ -nworst value

■ -max_points value

■ -early | -late

■ -rise | -fall

■ -sort_slack_by {ssta_yield | ssta_violation | ssta_NSigma |
ssta_path_criticality} -max_paths 100
October 2010 1067 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#report_timing

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
Example 30-3 Block-based SSTA Report

Path 1:
Endpoint: IZZ2/DATA v
checked with leading edge of ’CLK2’
triggered by leading edge of ’CLK2’
Other End Arrival Time 0.000 | 0.000
- Setup 0.029 | 0.007
+ Phase Shift 5.000
= Required Time 4.971 | 0.007
- Arrival Time 4.597 | 0.210
= Slack Time 0.374 | 0.214 (VIOLATION)
 Slack Yield 95.981%

 +---+
| Slack Time Report |

 |---|
 | Mean | Std_Dev | Percentile | Pvar_Name | Sens_Value |
 | | | = 99.8650% | | |
 |-------+---------+------------+-----------+------------|
 | 0.374 | 0.214 | -0.267 | | |
 | | | | GXL | -0.080 |
 | | | | random | 0.050 |
 +---+
 +---+
Arrival Time Report
Mean
-------+---------+------------+-----------+------------
4.597
 | | | | GXL | 0.079 |
 | | | | random | 0.049 |
 +---+
 +---+
Required Time Report
Mean
-------+---------+------------+-----------+------------
4.971
 +---+

0 Slack

Yield

Sigma Value

Mean: Mean of path slack
Std_Dev: Standard deviation of path slack
Percentile: 3 sigma value
Pvar_Name: Process parameters. Here random is with-in-die parameters.
Sens_value: Sensitivity of path slack to process parameters

mean Value
October 2010 1068 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
Example 30-4 Joint PDF Report
SSTA Sigma Multiplier (N) (option -ssta_sigma_multiplier) = -3.000
 +--+
Joint Distribution of Slacks
Mean
-------+---------+----------------+--------------+-----------+------------
0.373
 +--+

Path-Based SSTA Report

Path-based SSTA report contains the minimum statistical distribution slack for all selected
paths (JPDF). Each path is reported based on the worst slack. In path-based report, the paths
are sorted based on their criticality probability.

The following example command generates path-based report with specified format:

report_timing -retime ssta -format {instance cell arc retime_delay retime_slew
retime_delay_sensitivity arrival}

Path-Based SSTA Report
Path 1: VIOLATED Setup Check with Pin IZZ2/CLK
Endpoint: IZZ2/DATA (v) checked with leading edge of ’CLK2’
Beginpoint: IN1 (v) triggered by leading edge of ’CLK2’
Other End Arrival Time 0.000 | 0.000
- Setup 0.029 | 0.007
+ Phase Shift 5.000
= Required Time 4.971 | 0.007
- Arrival Time 4.526 | 0.217
= Slack Time 0.445 | 0.220
 Clock Rise Edge 0.000
 + Input Delay 0.000
 = Beginpoint Arrival Time 0.000

+---+
| Instance | Cell | Arc | Retime | Retime | Retime Delay | Arrival |
| | | | Delay | Slew | Sensitivity | Time |
|----------+--------+-------------+--------+--------+----------------+----|
		IN1 v		0.100		0.000
IA1	IVX1L		0.000	0.100		0.000
IA1	IVX1L	A v -> YB ^	0.353	0.463	XL 0.006	0.353
					random 0.014	
...						
...						
IA11	IVX1L		0.000	0.043	XL 0.000	4.436
IA11	IVX1L	A v -> YB ^	0.054	0.045	XL 0.001	4.489
					random 0.002	
IA12	IVX1L		0.000	0.045	XL 0.000	4.489
IA12	IVX1L	A ^ -> YB v	0.037	0.024	XL 0.001	4.526
					random 0.002	

| | | | | | random 0.002 | |
October 2010 1069 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
| IZZ2 | DFX1L | | 0.000 | 0.024 | XL 0.000 | 4.526 |
+---+
 +---+
Slack Time Report
Mean
-------+---------+------------+-----------+------------
0.445
+---+
+---+
Arrival Time Report

Mean
-------+---------+------------+-----------+------------
4.526
+---+
+---+
Required Time Report

Mean
-------+---------+------------+-----------+------------
4.971
 +---+
Path 2: VIOLATED Setup Check with Pin IZZ2/CLK
Endpoint: IZZ2/DATA (v) checked with leading edge of ’CLK2’
Beginpoint: IN4 (v) triggered by leading edge of ’CLK2’
Other End Arrival Time 0.000 | 0.000
October 2010 1070 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
SSTA Correlation With Monte-Carlo Analysis

To ensure the accuracy of your results, you can correlate the SSTA results with the
Monte-Carlo Analysis results. To perform Monte-Carlo analysis, complete the following steps:

1. Generate N sample of process parameters using their distributions.

2. Run Spice for each set of parameters.

3. Calculate delay histogram from N-samples.

Monte-Carlo analysis can be performed in a circuit simulator (e.g. spice, spectre), where each
delay is calculated using spice simulation.
October 2010 1071 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Statistical Static Timing Analysis
October 2010 1072 Product Version 9.1.3

Encounter Digital Implementation System User Guide
31
Extracting Timing Models

■ ETM Overview on page 1074

■ ETM Inputs on page 1078

■ Guidelines for Generating ETMs on page 1079

■ ETM Generation Flow on page 1081

■ ETM Outputs on page 1086
October 2010 1073 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
ETM Overview

Encounter provides a mechanism to generate extracted timing models (ETM) in a hierarchical
design flow. An ETM is the timing context derived for a digital circuit, which can be used in
static timing analysis (STA).

Use of ETM in STA provides the following advantages:

■ Reduces the memory requirements and improves the run time.

■ Provides a mechanism to hide the proprietary implementation details of the block from a
third party.

■ Enables you to share the extracted timing models for blocks with other designers working
on different parts of the design at the same time.

■ Provides faster convergence of timing results for large design databases by providing the
actual timing context of the lower-level module without requiring the software to analyze
the complete logic of the module with each run.

During ETM generation, the software does not use boundary conditions, such as input
transitions, output loads, input delays, output delays or clock periods. Therefore, you do not
need to extract the models again if the boundary conditions change at a later stage in
development. The software does consider the operating conditions, wire load models,
annotated delays or loads, and RC data on internal nets defined for the design during ETM
generation. Therefore, you do need to extract the models again if any of these elements
change during a design phase.

An accurate ETM preserves the worst-case behavior of the original circuit. You can use ETM
to reproduce any timing violation that occurs in the original circuit. An ETM accurately
represents critical paths that change with respect to a change in input slew value. In addition,
an ETM preserves the self-loop timing checks such as minimum period and minimum pulse
width checks.

An ETM provides a timing representation by creating timing arcs for the following interface
paths:

■ Input to the register

■ Input to output

■ Register to output

Note: Register to register paths are ignored because they do not affect the interface path’s
timing.

For example, consider the digital circuit shown in Figure 31-1 on page 1075.
October 2010 1074 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
Figure 31-1 Gate-Level Netlist Representation of a Digital Circuit

The ETM representation of gate-level netlist shown in the figure above is as follows:

Using ETMs in Different Timing Analysis Modes

Use of ETM models for setup or hold analysis depends on the mode of timing analysis -
Single, On-chip variation (OCV), or best-case worst-case (BcWc).

In single mode, the software uses late and early paths from a single corner for setup and hold
analysis. The timing model that you generate in single mode has late and early paths from a
single corner. Therefore, the timing model that you generate for setup is the same as that
generated for hold analysis, and you can use the same model for setup or hold analysis.

CK

D Q

CK

D Q

in0

in1

clk

out0

out1

clkout

in0

in1

clk

out0

out1

clkout

Combinational

Combinational

SequentialSe
tu

p/
H

ol
d

Se
tu

p/
H

ol
d

October 2010 1075 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
In OCV mode, the software uses late paths from max corner and early paths from min corner
for setup and hold analysis to generate the timing model. Therefore, the timing model that you
generate for setup is the same as that generated for hold analysis, and you can use the same
model for setup or hold analysis.

In BcWc mode, the software uses late and early paths from max corner for setup analysis and
late and early paths from min corner for hold analysis. The model generated during setup
analysis can not be used for hold analysis and vice versa because the software performs
setup and hold analysis in different process corners.

Limitation of Timing Models

Timing models have the following limitations:

■ An ETM does not preserve logical behavior of the pins. Therefore they do not contain any
conditional arcs.

■ Slew propagation from side paths may be inaccurate. The software assumes a single
value for the input slew of ports during the extraction process. The software then
propagates the input slews and calculates delays and uses these delays for the
associated timing arc in the extracted model

For example, consider the circuit in the figure below. The software assumes that the input
slews at both inputs of the AND-gate have the same value. Therefore the software
propagates the worst slew value from B->Y transition. However, at the top-level, input
slews can be different. Therefore the usage of worst case value from B->Y transition is
not correct.

■ The check value for the arc is extracted based on the current load. Therefore the output
load dependent check paths do not have the load dependency in the extracted model.

For example, consider the circuit in the figure below. In this circuit, the slew at point D
depends on the loading at port out. Therefore the check arc value depends on the out

in0

in1

out0

out1

out2
October 2010 1076 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
loading. Extracted model do not support the 3D arcs for setup checks. Therefore in this
case, the check arc value is calculated using the current loading at out.

■ The software does not preserve the three state enable or disable arcs in an ETM. The
software evaluates the three state enable or disable expressions and three state arcs
with transitions to and from the high impedance state Z (0->Z, 1->Z, Z->0, or Z->1) are
transformed to combinational arcs with transitions 0->1, 1->0, 1->0, or 0->1, respectively.

CK

D Qin

CLK_BUF

clk

BUF
out

out1
October 2010 1077 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
ETM Inputs

Generation of ETM in Encounter requires the same inputs that you need to perform STA. To
generate ETM, load the following data in Encounter

■ Design netlist

■ Timing libraries

■ Timing constraints

■ RC data of the nets
October 2010 1078 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
Guidelines for Generating ETMs

You can use several parameters in the do_extract_model command and a timing global
to define the characteristics of the ETM.

■ Use the -input_slew, -clock_slew and -output_load parameters to specify
slews at inputs and load at the output pins. If you do not specify these parameters, the
software determines the characterization points from the interface elements of the
design.

The software characterizes all the check arcs for the slew points as follows

❑ Uses the reference slew points from the slew index of the first element after the port
to which related pin is connected.

❑ Uses the signal slew points from the slew index of the first element after the port to
which constrained pin is connected.

The software characterizes all the sequential arcs as follows:

❑ Uses the input slew from the slew index of the first element just after the clock port.

❑ Uses the output load from the load index of the last element just before the output
port.

For example, Figure 31-1 on page 1079 shows a circuit used for generating ETM.

Figure 31-2 Circuit for model extraction

For this circuit, the library file has the characterization points as follows:

Cell (BUF)
{

 timing ()

CK

D Qin

CLK_BUF

clk

BUF
out
October 2010 1079 Product Version 9.1.3

../fetxtcmdref/timingmodelingT.html#do_extract_model

Encounter Digital Implementation System User Guide
Extracting Timing Models
 index_1 ("0.0500, 1.4000, 4.5000");
 index_2 ("1.0500, 6.5000, 10.0000");

}
Cell (CLK_BUF)
{

 timing ()
 index_1 ("1.0500, 2.4000, 3.5000");
 index_2 ("0.0500, 4.5000, 5.0000");

}

If you extract the model, without specifying the -input_slew, -clock_slew and
-output_load parameters, the generated library file has the following characterization
point for check arc between clk and in.

index_1 ("0 0.0500, 1.4000, 4.5000");
index_1 ("0 1.0500, 2.4000, 3.5000");

Similarly the library file has the following characterization points for sequential arcs
between clk and out:

index_1 ("0 1.0500, 2.4000, 3.5000");

index_2 ("0 1.0500, 6.5000, 10.0000");

■ Use the -resolution and -tolerance parameters to set the run time and accuracy
of model extraction. Specifying greater resolution and tolerance results in less accurate
models but improves the run time. The higher the tolerance, the faster is the extraction
time.

For example, you specify three characterization points for input slews and three
characterization points for load values. In this case, the software uses a 3x3 table of slew
and load indexes in the library file. However, if you also specify a range of resolution and
tolerance, the software uses these values to simplify the table of slew and load indexes.
If the middle slew and load values can be interpolated from the boundary values within
the range of tolerance and resolution specified, then the software simplifies the 3x3 table
to a 2x2 table. Therefore the software characterizes lesser number of slew and load
values, thereby improving the run time of model extraction at the cost of accuracy.

■ Use the timing_extract_model_slew_propagation_mode global to specify the
type of slew propagation to use for generating ETM. You can specify worst slew
propagation or path-based slew propagation.

In worst slew propagation mode, the software propagates the worst slew of all the
incoming arcs at a converging point for extracting the arcs. This is the recommended
mode.

In path based slew propagation mode, the software propagates the actual slew for the
path elements for extracting the arcs. This is the default mode.
October 2010 1080 Product Version 9.1.3

../fetxtcmdref/timingglobalsT.html#timing_extract_model_slew_propagation_mode

Encounter Digital Implementation System User Guide
Extracting Timing Models
ETM Generation Flow

Encounter supports two types of model extraction, blackbox and greybox models.

Both blackbox and greybox models preserve the worst-case behavior of the original circuit.
The grey box models in addition retain internal pins in the extracted model. This enables
better handling of constraints and latches.

Graybox models provide visibility into the internal pins in the circuit. Creating internal pins
allows for accurate modeling of latch timing borrowing behavior and path exception handling.
For greybox models, the software also generates a constraint file along with the extracted
model. This constraints file is loaded incrementally when you use the extracted models at the
top-level.

Graybox models have the following advantages:

■ Supports arbitrary assertions.

■ Guarantees that the model size is smaller than original netlist.

■ The graybox model is clock-context independent as it does not adjust any multicycle path
in the model as well it preserve the latch structure. That is, a greybox model is valid for
clock waveforms that are different from the ones used to build the model.

■ In greybox modeling, you do not need to re-extract the model if the path exceptions
change. You can modify the generated constraint file instead. The greybox flow proves
useful in the early stage of design where path exceptions are constantly changing.
October 2010 1081 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
The following figure shows the flow for generating ETMs.

The following procedure shows how to perform model extraction for black-box models:

1. Load the design data including the timing library on which you want to perform model
extraction.

2. Specify the type of slew propagation to use for generating ETM. The worst slew
propagation mode is recommended:

set_global timing_extract_model_slew_propagation_mode worst_slew

3. Perform model extraction:

do_extract_model extracted.lib \
-lib_name extracted_model \
-cell_name extracted_cell \

Design Data and
Block-Level Constraints

Use the do_extract_model command to
generate blackbox or greybox model

Timing Libraries
Constraints Files for greybox models

Validate the extracted model

Are the models
accurate?

Model
Extraction
Complete

Yes

No
October 2010 1082 Product Version 9.1.3

../fetxtcmdref/timingmodelingT.html#do_extract_model

Encounter Digital Implementation System User Guide
Extracting Timing Models
-tolerance 0.0 \
-verilog_shell_file top.v \
-verilog_shell_module test_top

write_model_timing -type arc netlist.rpt

The above steps will generate the following outputs:

■ Extracted timing library (extracted.lib)

■ Verilog wrapper (top.v), which will be used to instantiate the extracted model

■ Interface timing characteristics of the original design (netlist.rpt)

Validating the Generated Model

You can validate the timing models for their accuracy and coverage. An accurate ETM
preserves the worst-case behavior of the original circuit. Encounter provides automated
mechanism for validating the extracted models.

The following commands are used for model validation:

■ write_model_timing

Writes the interface timing characteristics of the design in the specified timing model
report file. The report file contains the following sections:

❑ Worst-Case Arc/Slack: Contains details about the extracted arcs and the slack
or delay across them depending on the argument specified with the -type option.

❑ Transition Time: Contains information about transition time at ports.

❑ Capacitance: Contains the capacitance values for the ports.

❑ Design Rules: Contains the design rules applied to the ports.

■ compare_model_timing

Compares two reports that contain interface timing characteristics generated by the
write_model_timing command.

This command compares the interface timing characteristics report generated by using
the write_model_timing command on the original netlist with the report generated
by using the write_model_timing command on the model extracted by the
do_extract_model command for the same design.

To validate the extracted model, complete the following steps:
October 2010 1083 Product Version 9.1.3

../fetxtcmdref/timingmodelingT.html#write_model_timing
../fetxtcmdref/timingmodelingT.html#compare_model_timing
../fetxtcmdref/timingmodelingT.html#do_extract_model

Encounter Digital Implementation System User Guide
Extracting Timing Models
1. Ensure that the interface timing characteristics report file was generated by using the
original gate-level netlist and constraints using the write_model_timing command.

2. Load the output files generated during model extraction, which include:

❑ Extracted timing model (extracted.lib)

❑ Verilog wrapper (top.v)

❑ Design constraints (needed for greybox models)

Note: In case of greybox models, load the additional constraints file generated during
model extraction by the do_extract_model command.

3. Use the write_model_timing command on the extracted model (timing library) to
generate a model report.

write_model_timing -type arc model.rpt

4. Use the compare_model_timing command to compare reports generated during
model extraction and the report generated in step 4:

compare_model_timing
-ref netlist.rpt \
-compare model.rpt \
-outFile diff.rpt \
-percent_tolerance 2 \
-absolute_tolerance 0.003

Reducing the Size of GreyBox Models

The software uses heuristic techniques to reduce the model size by further preserving some
additional pins in a greybox model. To reduce the model size, use the -gain parameter in the
do_extract_model command. The -gain parameters retains some existing internal pins
in the circuit. These pins are called anchor points. Anchor points, if removed, might lead to an
increase in model size. The software uses the numbers of input or output delay arcs to
estimate the size of the model. The software assumes that all the delay arcs make equal
contribution to the final model size. To select an anchor point, the software aims to minimize
the number of delay arcs. Another criteria for selecting anchor point is the fact that the delay
arcs are characterized with respect to a minimum number of input slew values. Therefore the
software processes the incoming delay arc on each pin before removing them.

The gain value is calculated as follows:

Gain = (Number of incoming delay arcs * Number of outgoing delay arcs) - (Number of
incoming delay arcs with anchor point + Number of outgoing delay arcs with anchor point)

For example, consider the circuit shown in Figure 31-3 on page 1085. If the software does not
preserve an anchor point, the resulting 6 delay arcs are as shown inFigure 31-4 on
October 2010 1084 Product Version 9.1.3

../fetxtcmdref/timingmodelingT.html#do_extract_model

Encounter Digital Implementation System User Guide
Extracting Timing Models
page 1085. However if the software considers the AND gate output pin as an anchor point
and creates an internal pin, the total number of arcs required is 5 as shown in Figure 31-5 on
page 1085. There are 2 incoming arcs and 3 outgoing arcs at AND-gate output pin. Therefore
the gain in this case is 1. Any pin that has gain equal or greater than value that you specify
using the -gain parameter is considered by the software for creating an anchor point.

Figure 31-3 Circuit for generating ETM

Figure 31-4 Extracted Model Without Internal Pin as Anchor Point

Figure 31-5 Extracted Model With One Anchor Point

in0

in1

out0

out1

out2

out0

out1

out2

out0

out1

out2

in0

in1
October 2010 1085 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
ETM Outputs

ETM flow generates the following output:

■ Timing Library File on page 1086

■ Timing Constraints Files on page 1094

Timing Library File

The timing model is generated as a .lib file. The following sections provide information on how
these scenarios are handled in .lib file:

■ Boundary Nets

■ Internal Nets

■ Timing Paths

■ Minimum Pulse Width and Minimum Period

■ Path Exceptions

■ Constants

■ Gating Checks

■ Annotated Delays and Slews

■ Design Rules

■ Generated Clocks

Boundary Nets

Boundary nets are the nets that are directly connected to the input or output ports of the block.
Therefore the RC data for the boundary nets changes if the external context of the block
changes at any point in the design phase. To generate context independent models, you can
exclude the spef or dspef data for boundary nets from delay calculation. You can then stitch
a separate file for spef or dspef data for boundary nets when you instantiate the ETM.

The software, by default, considers the RC data while extracting the timing model. ETS does
not write out a spef file for boundary nets that can be used at top level. To use RC data with
timing models, create the top level spef file for boundary nets or use the default behavior to
consider the boundary nets RC data for model extraction.
October 2010 1086 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
Internal Nets

Internal nets are the nets that drive or are driven by an internal instance pin of the block.
Internal nets are context independent because they are only connected to internal instance
of the block. Therefore the software uses the RC data defined for the internal nets for delay
calculation and adds this information to the extracted paths. If you do not define any RC data
for internal nets, then the software uses the wire load models to calculate the delay. If you use
the set_load or set_resistance command to annotate a load or resistance, then the annotated
value overrides the annotated spef or the wire load model.

If you use the set_annotated_delay command or SDF annotation to annotate the delay on
internal nets, the software uses the annotated delay instead of the calculated delay.

Timing Paths

The following timing paths are included in an ETM:

■ Input to Register Paths

■ Register to Output Paths

■ Register to Output Paths

Note: Register to register paths are ignored because they do not affect the interface path’s
timing.

Input to Register Paths

Input to register paths are the paths from an input port to a register. In an ETM, the input to
register paths are represented by equivalent setup or hold checks. These checks contain the
calculated delay from the input port to the register, the setup or hold value of the library cell
and the delay from a clock source to the clock pin of the register. The delay for the setup or
hold checks is the function of the transition on the input port and the transition at the clock
source

Setup check delay = delay (input to register) + delay (setup value of register) - delay (clock
source to clock pin)

Hold check delay = delay (input to register) - delay (hold value of register) - delay (clock
source to clock pin)

If multiple clocks reach a register, then the software extracts separate setup or hold arc for
each clock source.
October 2010 1087 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
Register to Output Paths

The register to output paths are the path from a register to an output port. These paths are a
combination of a trigger arc of starting register and the combinational delay from sink of
trigger arc to the output port. Therefore the software extracts an equivalent trigger or
sequential arc for register to output paths.

The delay for these arcs is a function of the slew at the clock source and the capacitance at
the output port. The delay of the arc is calculated as follows:

Sequential arc delay = delay (clock source to clock pin of register) + delay (register clock pin
to out port)

The software generates two arcs representing longest and shortest path because the
generated ETM can be used for both max and min analysis. The software generates different
types of arcs for different valid clock edges such as rising_edge or falling_edge.

Input to Output Paths

The input to output paths are the paths from an input port to an output port. These are
combinational paths. Therefore the software generates equivalent combinational arc for
these paths.

The delay for these arcs is a function of the slew at the input port and the capacitance at the
output port. The delay for the arc is calculated as follows:

Combinational arc delay = delay (delay of all elements in the path)

The software generates two combinational arcs representing longest and shortest path
because the generated ETM can be used for both max and min analysis. In case a path does
not exist for a particular transition (rise or fall), the software generates half unate arcs such
as combinational_rise or combinational_fall. The timing sense for the arc
depends on the function of worst (early or late) paths.

Minimum Pulse Width and Minimum Period

During timing model extraction the software transfers the minimum pulse width and minimum
period constraints defined at the clock pin of the registers to the clock source pins. There
might be several types of registers in the fanout of a clock source. Therefore, while
transferring the minimum pulse width to the clock source, the software uses the worst
minimum pulse width constraint value present on the fanout registers.
October 2010 1088 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
The software considers the delay and slew propagation differences of the clock network for
rise and fall transitions while extracting the minimum pulse width. This is needed because
some networks might have a significant difference in the rise and fall delays. So not
considering these differences will cause differences in the minimum pulse width violations.

Path Exceptions

False paths can only be modelled in greybox models. Blackbox models do not support
extraction of false paths. In a greybox model, the software extracts the pins with false path or
multicycle path assertions as internal pins. The software generates a constraint file for all
internal pins that are extracted. You can then use this constraints file with the generated
model to perform analysis.

Note: The software ignores the set_max_delay or set_min_delay constraints during model
extraction. For an output port, the software extracts worst delay paths between two ports.

Constants

The software propagates the case analysis and the constants on the netlist while extracting
the model. The software does not consider the conditional arcs or paths that were disabled
due to constants. If the constant value changes, you need to re-generate the timing model.

Gating Checks

Clock gating checks are modeled as setup and hold checks between a clock pin and its
enabling signal pin. Depending on the type of clock gating situation, setup and hold checks
are inferred as follows:

■ A clock-gating setup check is inferred with respect to the edge of the clock signal that
changes the state of the clock gate from a controlling state to a non-controlling state.

■ A clock gating hold check is inferred with respect to the edge of the clock that changes
from a non-controlling state to a controlling state.

Simple Clock Gating with AND Gate

For a simple AND gate, the setup checks are done with respect to the rising edge of the clock
signal, and hold checks are done with respect to the falling edge of the clock signal.

Figure 31-6 on page 1090 shows a simple clock gating with AND gate.
October 2010 1089 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
Figure 31-6 Simple Clock Gating with AND Gate

After extracting the clock gating check arc, the signal downstream the gate output is not
propagated to the clock pin of the registers.

No Clock Gating Logic

No setup or hold checks are inferred for clock gates with non-unate arcs, such as multiplexers
and XOR gates because a clock signal cannot control the clock gate output.

Figure 31-7 on page 1090 shows an example where there is no clock gating logic:

Figure 31-7 No Clock Gating Logic

Annotated Delays and Slews

Model extraction uses the back annotated delay, slews, and the load information. This
information is reflected in the extracted model.

■ Annotated Delays

The annotated delays calculated using the SDF data or the set_annotated_delay
command override the delay value of the arc, which was calculated using the library or
RC data. The output slew of the arc, however, is calculated using the library or RC data.
In case of incremental delays, the delta delay is added to the calculated arc delay.

CK

D Q
Enable

Clock

CK

D Q
Enable

Clock
October 2010 1090 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
■ Annotated Slews

Slews annotated using the set_annotated_transition command override the slew
value calculated using the library or RC data. As a result, the downstream delay and
slews are calculated using the annotated slew.

■ Annotated Load

The annotated load overrides the pin capacitance defined in the library, and is used for
delay calculation.

Design Rules

Model extraction uses the design rules defined in the timing library. The worst (lowest value
for max design rules and highest value for min design rules) values among all the fanout pins
is used for the input ports and the worst values among all the fanin pins is used for the output
ports.

If the design rule limits are defined at the pin and library level, the design rule is chosen from
the pin level because the pin-level information overrides the cell-level information, which in
turn overrides the library-level information. However, the design rules defined in the SDC file
have the highest priority and override the library values.

Note: The annotated delays are generated with a particular context and remain true for that
context only. Therefore, annotating the delays or slews makes the model context dependent.
To create a context independent model, it is recommended not to annotate the SDF.

Generated Clocks

Generated clocks defined in a hierarchical block are preserved in the generated ETM model.
The following rules are applied for modeling generated clocks in extracted timing models:

■ The pin on which the generated clock is specified is preserved as an internal pin in the
timing model.

■ The name of this internal pin is changed to the generated clock name.

■ A generated_clock construct is written out, which contains the definition of the
create_ generated_clock constraint that created the generated clock in the original
netlist.

For example, if the original netlist contained the following generated clock statement:

create_generated_clock -name gclk -source [get_ports clk] -divide_by 2 [get_pins
buf1/A]
October 2010 1091 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
During extraction, the pin buf1/A will be preserved as an internal pin in the library as gclk.
The extracted model will be generated as follows:

generated_clock (gclk) {

 master_pin: clk;

 divided_by: 2;

 clock_pin: "gclk ";

 }

 pin (gclk) {

 clock: true ;

 direction: internal ;

 }

Handling Multiple Clocks on Same Pin

When multiple generated clocks are defined on a pin in the original netlist, the pin is
preserved as an internal pin in the extracted model. The name of the pin is assigned based
on the generated clock that was last defined on that pin in the original netlist. In the extracted
model, there will be one generated_clock construct for each of the two clocks on that pin.

Consider the following example, which shows the constraints used in the original netlist to
create generated clocks on the pin buf1/A:

create_generated_clock -name gclk1 -source [get_ports clk] -add -master_clock CLK
-divide_by 2 [get_pins buf1/A]

create_generated_clock -name gclk2 -source [get_ports clk] -add -master_clock CLK
-divide_by 2 [get_pins buf1/A]

During extraction, the pin buf1/A will be preserved as an internal pin in the library with a
name gclk2. The extracted model will be generated as follows:

generated_clock (gclk1) {

 master_pin: clk;

 divided_by: 2;

 clock_pin: "gclk2";

 }

generated_clock (gclk2) {

 master_pin: clk;

 divided_by: 2;

 clock_pin: "gclk2";

 }

 pin (gclk2) {

 clock: true ;
October 2010 1092 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
 direction: internal ;

 }

Handling Generated Clock on Multiple Pins

When a generated clock is defined on multiple pins, all those pins are preserved as internal
pins in the extracted model. Pin names of these internal pins are derived as follows:

■ The generated clock name is used as a prefix

■ All the pins on which the generated clock is specified are assigned a number on an
incremental basis

■ The generated clock name and the assigned number are merged using the underscore
“_” character. For example, if the clock name is clk, the corresponding clock pins will be
named as clk_1, clk_2, and so on.

Consider the following example, which shows a netlist with clock definitions on multiple pins:

create_generated_clock -name gclk1 -source [get_ports clk] -add -master_clock CLK
-divide_by 2 [get_pins {buf1/A buf2/A}]

During extraction, the pin buf1/A will be preserved as an internal pin in the library as gclk2.
The extracted model will be generated as follows:

generated_clock (gclk1) {

 master_pin: clk;

 divided_by: 2;

 clock_pin: "gclk1 gclk_1 ";

 }

 pin (gclk1) {

 clock: true;

 direction: internal;

 .

 }

 pin (gclk1_1) {

 clock: true;

 direction: internal;

 ..

 }
October 2010 1093 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
Timing Constraints Files

For greybox models, along with the .lib file, the software generates two constraint files
containing a subset of original constraints. The constraint files contain constraints that are
required for:

■ Standalone model validation. This constraint file contains boundary environment such
input transitions and output loads, along with other constraints.

■ Top level stitching with the extracted timing model. This is the top-level constraints file.

The software extracts the following constraints in the two constraints files:

■ set_false_path and set_multicycle_path constraints on page 1094

■ set_disable_timing and set_case_analysis on page 1094

■ create_clock and create_generated_clock on page 1095

■ set_input_delay and set_output_delay on page 1095

■ Design Rules on page 1095

■ set_load, set_resistance and set_annotated_transition on page 1095

■ set_annotated_delay and set_annotated_check on page 1096

■ set_input_transition and set_driving_cell on page 1096

set_false_path and set_multicycle_path constraints

The arcs that you set using the set_false_path or set_multicycle_path constraints
between ports or clocks are preserved as is and written out in the extracted constraints file.
The software does not change port names or clock names.

The arcs that you set using the set_false_path or set_multicycle_path constraints
from, through or to internal pins are written out with modified pin names. The software
prefixes the pin names with tcl variables. You can use the tcl variables to change the instance
names.

set_disable_timing and set_case_analysis

The set_disable_timing and set_case_analysis constraints are not written out in
the constraints file because the software does not extract the arc that was disables using the
set_disable_timing or set_case_analysis constraints.
October 2010 1094 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
create_clock and create_generated_clock

The software extracts the create_clock constraints that you have defined for pins or ports.
The software prefixes the internal pin names with tcl variables. You can use the tcl variables
to change the instance names.

The software generates the create_generated_clocks constraint as part of the
generated_clock constraint.

set_input_delay and set_output_delay

The software writes out the set_input_delay and set_output_delay constraints that
you define for ports as is. The constraints that you define for internal pins are not required for
timing models and therefore are not written out.

The set_input_delay and set_output_delay constraints are not written out for top-
level constraint file. This is because for an input port the input delay is the delay of path from
top level register or port to input port. Similarly for an output port the delay is relative to top-
level register or port.

Design Rules

The software does not write out any design rule constraints for the timing model. This is
because, design rules are defined in the .lib files.

set_load, set_resistance and set_annotated_transition

The software uses the set_load, set_resistance and set_annotated_transition constraints
defined on the internal pins for delay calculation during extraction.

The software writes out the set_load, set_resistance and set_annotated_transition
constraints defined on the port as is to the constraint file.

The set_load, set_resistance and set_annotated_transition constraints are
not written out for top-level constraint file. This is because the software uses these values
from the top-level environment.
October 2010 1095 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Extracting Timing Models
set_annotated_delay and set_annotated_check

The software uses the set_annotated_delay and set_annotated_check constraints
for delay calculation during model extraction. Therefore the constraints are not written out to
the constraint files.

set_input_transition and set_driving_cell

The software writes the set_input_transition and set_driving_cell constraints as is to the
constraint file.

The set_input_transition and set_driving_cell constraints are not written out for top-level
constraint file.
October 2010 1096 Product Version 9.1.3

Encounter Digital Implementation System User Guide
32
Optimizing Timing

■ Overview on page 1098

■ Before You Begin on page 1098

■ Results on page 1099

■ Interrupting Timing Optimization on page 1101

■ Performing Optimization Before Clock Tree Synthesis on page 1102

■ Performing Post-CTS Optimization on page 1106

■ Performing Postroute Optimization on page 1110

■ Optimizing Power During optDesign on page 1116

■ Using Useful Skew on page 1117

■ Using Active Logic View for Chip-Level Interface Circuit Timing Closure on page 1119

■ Optimizing Timing in On-Chip Variation Analysis Mode on page 1120

■ Using Conformal Constraint Designer During Timing Optimization on page 1123

■ Optimizing Timing Using a Rule File on page 1127

■ Optimizing Timing When the Constraint File Includes the set_case_analysis Constraint
on page 1127

■ Using the Footprintless Flow on page 1127

■ Using Cell Footprints on page 1128

■ AAE-Based SI Optimization on page 1130

■ Viewing Added Buffers, Instances, and Nets on page 1133

■ Default Naming Conventions on page 1133
October 2010 1097 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Timing
Overview

Optimize timing after running trial route and extracting RCs, after clock tree synthesis (CTS),
and after routing. The goals of timing optimization are to correct design rule violations (DRVs)
and signal integrity (SI) violations and meet timing. Timing optimization includes the following
operations, depending on the design stage:

■ Adding buffers

■ Resizing gates

■ Restructuring the netlist

■ Remapping logic

■ Swapping pins

■ Deleting buffers

■ Moving instances

■ Applying useful skew

Use the setOptMode command (or the Options – Set Mode– Mode Setup form) to specify
global timing optimization parameters. Use the optDesign super command (or the
Optimization form) to optimize timing.

Before You Begin

Before you optimize timing for the first time, complete the following steps:

1. Reserve placement space of more than five percent of the targeted final design utilization
so that there is room to add buffers and remap the network to meet timing requirements.

2. If Assign statements exist in the Verilog® netlist, use one of the following procedures,
which are equivalent, to enable optimization to work on Assign nets:

❑ Specify setDoAssign on before loading the design data.

❑ Specify set rda_Input(assign_buffer) {1} in the configuration file.

3. Specify default and detailed extraction scale factors by using the following commands:

❑ generateRCFactor

❑ setRCFactor
October 2010 1098 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#optDesign
../encounter/optimizeG.html#Optimization
../fetxtcmdref/timing_ipoT.html#setOptMode
../encounter/optionsG.html#ModeSetupOptimization

Encounter Digital Implementation System User Guide
Optimizing Timing
For more information, see the “RC Extraction Commands” chapter in the Encounter
Digital Implementation System Text Command Reference.

4. Use one of the following methods to set input transitions for the high fanout nets for delay
calculation:

❑ Set the input transitions in the configuration file.

❑ Run the setInputTransitionDelay command.

For more information, see setInputTransitionDelay in the “Delay Calculation
Commands” chapter of the Encounter Digital Implementation System Text
Command Reference.

5. Create and load footprints. (Optional)

You are not required to specify footprints. For more information, see “Using the
Footprintless Flow” on page 1127.

Results

After optimizing timing, the software appends the log file with the following information:

■ Worst negative slack, total negative slack (TNS), and the number of failing (violating)
paths. The software also reports hold violations if you specify the -hold parameter in
post-CTS or postroute mode. It writes the values to the log file and writes reports to the
working directory.

Note: The overall TNS and number of failing paths of a design might not be equal to the
total of the TNS and failing paths of the individual path groups. This is because the TNS
and number of failing paths are based on the end-point of the path and are not path
based.
October 2010 1099 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#firstpage
../fetxtcmdref/delaycalcT.html#setInputTransitionDelay

Encounter Digital Implementation System User Guide
Optimizing Timing
For example, the following figure has a register with two paths, one from a primary input
with a slack of -0.6ns and other from another register with a slack of -0.3ns.

In this case the overall TNS will be -0.6ns with 1 violating path (end point-based). But
the individual reg2reg TNS will be -0.3ns with 1 violating path and in2reg with a TNS
of -0.6ns with 1 violating path. Therefore, the sum total of individual path group TNS
is not the same as overall TNS.

■ Number of max_tran, max_cap, and max_fanout violations

■ Utilization (density)

If you specify path groups, the software produces a slack file and tarpt report for them. If
you do not specify path groups, the software produces the following four violation reports:

■ Register-to-register

■ Input-to-register

■ Register-to-output

■ Input-to-output

The reports contain information about the following violations for the top 50 critical paths:

■ Setup violations

■ Hold violations

■ DRVs (maximum capacitance, maximum transition, and maximum fanout violations)

The software generates the reports and saves them in the file specified by optDesign
-outDir (or in the timingReports directory if -outDir is not specified).

D Q

CLK

D Q

CLK

CLK

input
WNS: -

WNS: -
October 2010 1100 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Timing
The filenames are

■ designName_preCTS_pathGroup.tarpt

■ designName_postCTS_pathGroup.tarpt

■ designName_postRoute_pathGroup.tarpt

The summary report has the following format:

--
optDesign Final Summary
--

+--------------------+---------+---------+---------+---------+- --------+---------+
| Setup mode | all | reg2reg | in2reg | reg2out | in2out | clkgate |
+--------------------+---------+---------+---------+---------+- --------+---------+
WNS (ns):	-0.491	-0.491	N/A	6.868	N/A	N/A
TNS (ns):	-866.856	-866.856	N/A	0.000	N/A	N/A
Violating Paths:	5273	5273	N/A	0	N/A	N/A
All Paths:	69372	69343	N/A	29	N/A	N/A
+--------------------+---------+---------+---------+---------+- --------+---------+						
+----------------+----------------------+----------------------------+						
	Real	Total				
DRVs +---------+-------------------------------+---------						
	Nr Nets(terms)	Worst Vio	Nr Nets (terms)			
+----------------+---------+------------+----------------------------+						
max_cap	70(70)	-0.004	70(70)			
max_tran	0(0)	.000	0(0)			
max_fanout	0(0)	0	0(0)			
+----------------+---------+------------+----------------------------+

Density: 53.455%
Routing Overflow: 0.00% H and 0.00% V
--

For more information on timing reports, see timeDesign, in the “Timing Analysis (Common
Timing Engine) Commands” chapter of the Encounter Digital Implementation System
Text Command Reference.

Interrupting Timing Optimization

To stop timing optimization use the Control-C key combination. On pressing Control-C, the
Encounter Digital Implementation System (EDI System) software exits at a legal location and
outputs the database in a “reasonable” state; that is, the database will be in a state that is
useful for debugging purposes only, and not one that you should save and continue to use in
the design flow.

For more information, see Interrupting the Software in the “Getting Started” chapter.
October 2010 1101 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#timeDesign

Encounter Digital Implementation System User Guide
Optimizing Timing
Performing Optimization Before Clock Tree Synthesis

■ Correcting Violations in Pre-CTS Mode for the First Time on page 1102

■ Performing Rapid Timing Optimization for Design Prototyping on page 1103

■ Using Additional Pre-CTS Timing Optimization Parameters on page 1103

■ Performing Incremental Pre-CTS Optimization on page 1104

■ Changing Default Settings in Pre-CTS Mode on page 1105

Correcting Violations in Pre-CTS Mode for the First Time

■ Before optimizing timing in pre-CTS mode, you must break all timing loops by disabling
arcs in the constraint file. If you do not disable the arcs, the software cannot make a valid
comparison of WNS between two different runs since it might not break the loops at the
same point each time.

Use the following command:

set_disable_timing

For more information, see set_disable_timing, in the “Timing Constraint
Commands” chapter of the Encounter Digital Implementation System Text
Command Reference.

■ Use the following command to optimize timing:

optDesign -preCTS

■ To repair DRVs only, use the following command:

optDesign -preCTS -drv

Note: By default, the optDesign does not correct fanout violations. To repair fanout
violations, run the following command before optDesign, starting from the first call of
optDesign -preCTS up to the last call of optDesign -postRoute:

setOptMode -fixFanoutLoad true

Related Topics

To see where this step fits in the design flow, see Place the Design and Run Pre-CTS
Optimization in the Encounter Digital Implementation System Foundation Flows: Flat
Implementation Flow Guide.

For more information, see
October 2010 1102 Product Version 9.1.3

../fetxtcmdref/sdcT.html#set_disable_timing
../flatImpl/flow.html#PlacetheDesignandRunPreCTSOptimization
../flatImpl/flow.html#PlacetheDesignandRunPreCTSOptimization

Encounter Digital Implementation System User Guide
Optimizing Timing
■ optDesign, in the “Timing Optimization Commands” chapter of the Encounter Digital
Implementation System Text Command Reference.

Performing Rapid Timing Optimization for Design Prototyping

To optimize timing using low-effort mode for design prototyping, use the following commands:

setOptMode -effort low
optDesign -preCTS

In low-effort mode, optDesign resizes gates and performs global buffer insertion, but does
not restructure the netlist or repair DRVs.

Using Additional Pre-CTS Timing Optimization Parameters

You can use the following optDesign features separately or in combination.

■ To run optimization with useful skew, use the following commands:

setOptMode -usefulSkew true
optDesign -preCTS

■ To run optimization on specific path groups, use the following commands:

clearClockDomains
setClockDomains -fromType sourcePoint -toType destinationPoint
optDesign -preCTS

The following source and destination points are supported for clock domains:

❑ input (source point only)

❑ output (destination point only)

❑ register

❑ all

Note: If you are using the Common Timing Engine (CTE), you cannot use
setClockDomains parameters other than -fromType and -toType.

For example, to run optimization on register-to-register paths, use the following
commands:

clearClockDomains
setClockDomains -fromType register -toType register
optDesign -preCTS

Note: If you specify a path group, optDesign preserves the path group setting. In the
previous example, subsequent commands affect the register-to-register path group only.
To set a new clock domain, specify clearClockDomains, followed by the definition of
October 2010 1103 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#optDesign

Encounter Digital Implementation System User Guide
Optimizing Timing
the clock domain you want to select.

For example, to reset the path group to input-to-register, use the following commands
after you run optDesign:

clearClockDomains
setClockDomains -fromType input -toType register

To specify all path groups, use the following commands:

clearClockDomains
setClockDomains -all

See setClockDomains in the Timing Analysis (Common Timing Engine) Commands
chapter of the Encounter Digital Implementation System Text Command
Reference for a list of supported source and destination points for clock domains.

■ To disable area reclaiming, use the following commands (optDesign reclaims area by
default):

setOptMode -reclaimArea false
optDesign -preCTS

Performing Incremental Pre-CTS Optimization

Optimize timing incrementally to optimize setup times and area on critical paths. You can use
the following features separately or together.

■ To run incremental setup-only optimization, use the following command:

optDesign -preCTS -incr

■ To run incremental optimization with useful skew, use the following commands:

setOptMode -usefulSkew true
optDesign -preCTS -incr

■ To run incremental optimization on specific path groups, use the following commands:

clearClockDomains
setClockDomains -fromType sourcePoint -toType destinationPoint
optDesign -preCTS -incr

For a list of supported source and destination points, see “Using Additional Post-CTS
Timing Optimization Parameters” on page 1107.

Note: If you are using CTE, you cannot use the setClockDomains parameters other
than -fromType and -toType.

For example, to run incremental optimization on register-to-register paths, use the
following commands:

clearClockDomains
setClockDomains -fromType register -toType register
optDesign -preCTS -incr
October 2010 1104 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#setClockDomains

Encounter Digital Implementation System User Guide
Optimizing Timing
■ To disable area reclaiming, use the following commands (optDesign reclaims area by
default):

Changing Default Settings in Pre-CTS Mode

You can change or add parameters for the following commands that optDesign runs
automatically:

setAnalysisMode optDesign sets -clkSrcPath false and
-clockPropagation forcedIdeal by default: You cannot
override these values. You can add other parameters.

setClockDomains optDesign uses the parameters you specify. The default is all
path groups.

setExtractRCMode optDesign sets the extraction mode to default. You cannot
change this mode. Ensure that you set the appropriate
extraction scale factor.
October 2010 1105 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#setAnalysisMode
../fetxtcmdref/timinganalysisT.html#setClockDomains
../fetxtcmdref/rcextractionT.html#setExtractRCMode

Encounter Digital Implementation System User Guide
Optimizing Timing
Performing Post-CTS Optimization

■ Correcting Violations in Post-CTS Mode on page 1106

■ Performing Incremental Post-CTS Optimization on page 1108

■ Changing Default Settings in Post-CTS Mode on page 1109

Correcting Violations in Post-CTS Mode

■ To optimize timing after the clock tree is built, use the following commands:

optDesign -postCTS

setOptMode optDesign sets the following parameters:

■ -drcMargin

If you use setOptMode -drcMargin, the value you
specify is added to a dynamically calculated, internal
margin. For example, if you set a margin of 0.2 (20
percent), this multiplies the max_cap and max_tran SDC
constraints by 0.8. The margin can be positive or negative.
If you set a margin of -0.2, this multiplies the max_cap
and max_tran SDC constraints by 1.20. optDesign
writes the margin value to the log file.

■ -holdTargetSlack

If you use setOptMode -holdTargetSlack, the value
you specify is added to a dynamically calculated, internal
margin. optDesign writes the hold target slack value to
the log file.

■ -setupTargetSlack

If you use setOptMode -setupTargetSlack, the value
you specify is added to a dynamically calculated, internal
margin. The default -setupTargetSlack value is 0.
optDesign writes the setup target slack value to the log
file.

setTrialRouteMode You can add parameters, but you cannot override the default
settings. optDesign sets the -handlePreroute true
parameter.
October 2010 1106 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#setOptMode
../fetxtcmdref/routeT.html#setTrialRouteMode

Encounter Digital Implementation System User Guide
Optimizing Timing
optDesign in postCTS fixes DRVs, reclaims area, and fixes setup violations.

Note: By default, the optDesign does not correct fanout violations. To repair fanout
violations, run the following command before optDesign, starting from the first call of
optDesign -preCTS up to the last call of optDesign -postRoute:

setOptMode -fixFanoutLoad true

■ To repair setup and hold violations, use the following commands:

optDesign -postCTS
optDesign -postCTS -hold

■ To repair design rule violations only, use the following command:

optDesign -postCTS -drv

■ To repair hold violations only, use the following command:

optDesign -postCTS -hold

Skipping Path Groups or Clock Domains During Hold Fixing

You can instruct the EDI System software to exclude path groups or clock domains from hold
fixing by using the setOptMode -ignorePathGroupsForHold command.

This feature is useful, for example, when you want to fix only those hold violations that are in
the core of the design and skip violations on I/O paths. This can be achieved by applying the
following in the clockDomains support mode:

setOptMode -ignorePathGroupsForHold {in2reg reg2out in2out}

Related Topics

To see this step in the design flow, see Run CTS and Post-CTS Optimization in the
Encounter Digital Implementation System Foundation Flows: Flat Implementation
Flow Guide.

Using Additional Post-CTS Timing Optimization Parameters

■ To run optimization on specific path groups, use the following commands:

clearClockDomains
setClockDomains -fromType sourcePoint -toType destinationPoint
optDesign -postCTS

For a list of supported source and destination points, see “Correcting Violations in Pre-
CTS Mode for the First Time” on page 1102.

Note: If you are using the CTE engine, you cannot use setClockDomains parameters
October 2010 1107 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#setOptMode
../flatImpl/flow.html#RunCTSandPost-CTSOptimization

Encounter Digital Implementation System User Guide
Optimizing Timing
other than -fromType and -toType.

For example, to run optimization on register-to-register paths, use the following
commands:

clearClockDomains
setClockDomains -fromType register -toType register
optDesign -postCTS

■ To take advantage of useful skew when optimizing timing in post-CTS mode, use the
following commands:

setOptMode -usefulSkew true
optDesign -postCTS

If you have already performed detailed routing on the clock tree, the EDI System software
performs global and detailed ECO routing automatically using the NanoRoute® router in
post-CTS useful skew mode. If you do not want optDesign to do this, specify the -
noECORoute parameter as follows:

setOptMode -usefulSkew true
optDesign -postCTS -noECORoute

If you specify -noECORoute before running optimization, the EDI System software
performs trial routing to estimate clock delays.

■ To run post-CTS optimization if your design has a clock mesh, use the following
commands:

setOptMode -usefulSkew false
optDesign -postCTS

Performing Incremental Post-CTS Optimization

■ To run optimization on specific path groups, use the following commands:

clearClockDomains
setClockDomains -fromType sourcePoint -toType destinationPoint
optDesign -postCTS -incr

For a list of supported source and destination points, see “Using Additional Pre-CTS
Timing Optimization Parameters” on page 1103.

Note: If you are using the CTE engine, you cannot use setClockDomains parameters
other than -fromType and -toType.

For example, to run incremental optimization on register-to-register paths, use the
following commands:

clearClockDomains
setClockDomains -fromType register -toType register
optDesign -postCTS -incr

■ To optimize setup time incrementally and reduce area, use the following commands:
October 2010 1108 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Timing
setOptMode -reclaimArea true
optDesign -postCTS -incr

■ To take advantage of useful skew when optimizing timing in incremental post-CTS mode,
use the following commands:

setOptMode -usefulSkew true
optDesign -postCTS -incr

If you have already performed detail routing on the clock tree, the software performs
global and detailed ECO routing automatically using the NanoRoute router in post-CTS
useful skew mode. If you do not want the software to do this, specify the -noECORoute
parameter, as follows:

setOptMode -usefulSkew true
optDesign -postCTS -noECORoute -incr

If you specify -noECORoute, optDesign performs trial routing to estimate clock delays.

■ To run incremental post-CTS optimization if your design has a clock mesh, use the
following commands:

setOptMode -usefulSkew false
optDesign -postCTS -incr

Changing Default Settings in Post-CTS Mode

You can change or add parameters for the following commands and parameters that
-optDesign runs automatically:

setAnalysisMode optDesign sets -clockPropagation
autoDetectClockTree and -clkSrcPath true by default:
You cannot override these values. You can add other
parameters.

setClockDomains optDesign uses the parameters you specify. The default is all
path groups.

setExtractRCMode optDesign sets the extraction mode to default. You cannot
change this mode. Ensure that you set the appropriate
extraction scale factor.
October 2010 1109 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#setExtractRCMode
../fetxtcmdref/timinganalysisT.html#setClockDomains
../fetxtcmdref/timinganalysisT.html#setAnalysisMode

Encounter Digital Implementation System User Guide
Optimizing Timing
Performing Postroute Optimization

■ About Postroute Optimization on page 1110

■ Correcting Violations in Postroute Mode on page 1112

■ Correcting Signal Integrity Violations on page 1114

About Postroute Optimization

In postroute mode, the EDI System software corrects setup violations and design rule
violations unless you specify otherwise. It first operates on all path groups, then on register-

setOptMode optDesign sets the following parameters:

■ -drcMargin

If you use setOptMode -drcMargin, this value is added
to a dynamically calculated, internal margin. For example, if
you set a margin of 0.2 (20 percent), this multiplies the
max_cap and max_tran SDC constraints by 0.8. The
margin can be positive or negative. If you set a margin of
-0.2, this multiplies the max_cap and max_tran SDC
constraints by 1.20. optDesign writes the margin value to
the log file.

■ -holdTargetSlack

If you use setOptMode -holdTargetSlack, this value
is added to a dynamically calculated, internal margin.
optDesign writes the hold target slack value to the log
file.

■ -setupTargetSlack

If you use setOptMode -setupTargetSlack, this value
is added to a dynamically calculated, internal margin. The
default -setupTargetSlack value is 0. optDesign
writes the setup target slack value to the log file.

You can override other parameters.

setTrialRouteMode You can add parameters, but never override the default settings.
optDesign sets the -handlePreRoute true parameter.
October 2010 1110 Product Version 9.1.3

../fetxtcmdref/routeT.html#setTrialRouteMode
../fetxtcmdref/timing_ipoT.html#setOptMode

Encounter Digital Implementation System User Guide
Optimizing Timing
to-register paths only. The software performs incremental RC and delay calculation, and runs
the NanoRoute router to perform ECO routing.

If filler cell definitions were provided during design import, optDesign removes or adds them
as needed, following the information given by setFillerMode. For more information on this
command, see setFillerMode in the “Placement Commands” chapter of the Encounter
Digital Implementation System Text Command Reference.

There should be very few timing violations that need correction. The primary sources of these
violations include the following:

■ Inaccurate prediction of the routing topology during pre-route optimization due to
congestion-based detour routing

■ Minor correlation issues between default and detailed RC extraction.

■ Incremental delays due to parasitics coupling

Important

Because the violations at this stage are due to inaccurate modeling of the final route
topology and the attendant parasitics, it is critical not to introduce additional topology
changes beyond those needed to correct the existing violations.

Making unnecessary changes to the routing at this point can lead to a scenario where
fixing one violation leads to the creation of others. This cascading effect creates a
situation where it becomes impossible to close on a final timing solution with no DRVs.

One of the strengths of postroute optimization is its ability to simultaneously cut a wire and
insert buffers, create the new RC graph at the corresponding point, and modify the graph to
estimate the new parasitics for the cut wire without re-doing extraction.

To take even more advantage of this feature, you can provide an external SPEF generated by
a sign-off extraction tool for improved convergence. If you do, you must provide a full SPEF
(reduced SPEF does not work) and one of the following conditions must be met:

■ The SPEF must be generated with node locations using the starN format. The runQRC
command has been enhanced to output this format using the -spefOutput starN
parameter. For example: runQRC -spefOutput starN.

or

■ The resistance values in the LEF file must match those in the technology file used by
signoff extraction to generate the SPEF, which enables the EDI System extraction engine
to match the routes with the SPEF RC graph.
October 2010 1111 Product Version 9.1.3

../fetxtcmdref/placementT.html#setFillerMode

Encounter Digital Implementation System User Guide
Optimizing Timing
Related Topics

To see this step in the design flow, see Route the Design and Run Postroute Optimization in
the Encounter Digital Implementation System Foundation Flows: Flat
Implementation Flow Guide.

Correcting Violations in Postroute Mode

■ To optimize timing after detailed routing, use the following command:

optDesign -postRoute

optDesign corrects DRVs and setup violations, as it does in pre-CTS and post-CTS
modes.

optDesign also performs an additional register-to-register optimization if the worst
negative slack does not occur on a register-to-register path. The command cuts wires
during buffer insertion and resizing. If you do not provide a SPEF file, optDesign
simultaneously cuts the RC graph at the corresponding point to estimate RCs on the cut
wires.

In postroute mode, the software refines placement, then runs the NanoRoute router in
ECO mode to reroute affected wires. The software extracts RCs (except if you provide a
SPEF file) and reports final timing results. After postroute optimization is complete, run
a signoff extractor and compare the results with those generated by the EDI System
software.

Note: By default, the optDesign does not correct fanout violations. To repair fanout
violations, run the following command before optDesign, starting from the first call of
optDesign -preCTS up to the last call of optDesign -postRoute:

setOptMode -fixFanoutLoad true

■ To correct hold violations only, specify the following commands:

optDesign -postRoute -hold

The command first does a setup analysis to store the setup slack on all paths. Then it
analyzes hold violations and tries to repair hold violations without degrading setup. It
does not move any cells that are already in the netlist. If inserting delay cells would
degrade setup, it does not insert the cells. A small amount of setup degradation might
occur if some nets must be rerouted.

Hold repair does not degrade the setup worst slack to less than the original value or the
setupTargetSlack value. You can override the setupTargetSlack value by
specifying setOptMode -setupTargetSlack before you run optDesign. By default,
hold repair is allowed to degrade the setup total negative slack. Therefore, to disable this
feature, set the following:
October 2010 1112 Product Version 9.1.3

../flatImpl/flow.html#RoutetheDesignandRunPostrouteOptimization

Encounter Digital Implementation System User Guide
Optimizing Timing
setOptMode -fixHoldAllowSetupTnsDegrade false

■ To correct setup and hold violations, use the following commands:

optDesign -postRoute
optDesign -postRoute -hold

The setup violations must be fixed first. Hold repair ensures that there is no setup slack
degradation.

■ To take clock reconvergence pessimism removal (CRPR) into consideration when
running timing optimization, use the setAnalysisMode command before you run
optDesign. For example:

setTimingDerate -max -clock -early 0.8 -late 1.2
setTimingDerate -min -clock -early 0.8 -late 1.2
setAnalysisMode -cppr both
optDesign -postRoute

■ To run postroute timing optimization on designs containing Interface Logic Models
(ILMs), use the following command:

optDesign -postRoute -ilm

This command flattens ILMs, optimizes timing, then unflattens the ILMs.

■ To run postroute setup optimization based on an external SPEF file, use the following
commands:

spefIn SPEF_file_name
optDesign -postRoute

■ To run postroute hold optimization based on an external SPEF file, use the following
commands:

spefIn SPEF_file_name
optDesign -postRoute -hold

■ To run postroute hold optimization based on two external SPEF files (one generated in
best case and one in worst case), use the following commands:

defineRCCorner -earlySpef best_case_SPEF_file_name
-lateSpef worst_case_SPEF_file_name

optDesign -postRoute -hold

■ To run postroute setup optimization based on a SDF file, use the following commands:

setOptMode -setupSdfFile setup_SDF_file_name
optDesign -postRoute -useSDF

■ To run postroute hold optimization based on SDF files, use the following commands:

setOptMode -setupSdfFile setup_SDF_file_name
-holdSdfFile hold_SDF_file_name

optDesign -postRoute -hold -useSDF

Note: You must specify a setup SDF file when doing hold fixing.

Note: You can instruct the EDI System software to exclude path groups or clock domains
October 2010 1113 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Timing
from hold fixing. For more information, see Skipping Path Groups or Clock Domains
During Hold Fixing on page 1107.

■ In MMMC environment:

❑ To run postroute setup or hold optmization based on external SPEF files for a design
with four active RC corners (two for setup and two for hold), type the following:

spefIn -rc_corner cornerMax1 rcMax1.spef
spefIn -rc_corner cornerMax2 rcMax2.spef
spefIn -rc_corner cornerMin1 rcMin1.spef
spefIn -rc_corner cornerMin2 rcMin2.spef

optDesign -postRoute

or

optDesign -postRoute -hold

or

optDesign -postRoute -si

Note: You must provide SPEF information for each active rc_corner (setup and
hold). If one corner does not have a SPEF, the tool will run RC extraction for each
corner again.

❑ To run postroute setup optimization based on external SDF files for a design with
two active setup views, type the following:

read_sdf -view viewMax1 sdfMax1.sdf
read_sdf -view viewMax2 sdfMax2.sdf
optDesign -postRoute -useSDF

❑ To run postroute hold optimization based on external SDF files for a design with two
active setup views and two active hold views, type the following:

read_sdf view viewMax1 sdfMax1.sdf
read_sdf view viewMax2 sdfMax2.sdf
read_sdf view viewMin1 sdfMin1.sdf
read_sdf view viewMin2 sdfMin2.sdf
optDesign postRoute hold -useSDF

Correcting Signal Integrity Violations

■ To correct signal integrity violations when optimizing timing in postroute mode, use the
following command:

optDesign -postRoute -si

In addition to the timing violations caused by inaccurate route topology modeling, the
parasitic cross coupling of neighboring nets can cause the following problems that need
to be addressed in high speed designs:
October 2010 1114 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Timing
❑ An increase or decrease in incremental delay on a net due to the coupling of its
neighbors and their switching activity.

❑ Glitches (voltage spikes) that can be caused in one signal route by the switching of
a neighbor resulting in a logic malfunction.

This command has its maximum effect once most other timing-related issues have been
corrected. It uses CeltIC NDC to run the SI analysis and corrects problems found by
using a combination of buffer resizing and routing modifications.

Note: Use the optDesign -postRoute -si command only after using the
optDesign -postRoute command.

■ To run signal integrity-aware setup and hold repair, use the following commands:

optDesign -postRoute -si
optDesign -postRoute -hold -si

Note: Use the optDesign -postRoute -si command only after using the
optDesign -postRoute command.

optDesign performs the following operations sequentially:

❑ Analyzes cross coupling capacitance effects on glitch and noise

❑ Back-annotates delays due to cross coupling capacitance

❑ Reruns timing analysis

❑ Repairs setup violations

❑ Repairs hold violations

■ To input a SPEF file for use during postroute signal integrity optimization, use the
following commands.

spefIn spefFileName
optDesign -postRoute -si

Changing Default Settings in Postroute Mode

You can change or add parameters for the following commands and parameters that
optDesign runs automatically:

setAnalysisMode optDesign sets -clockPropagation
autoDetectClockTree and -clkSrcPath true. You can
override other parameters.
October 2010 1115 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#setAnalysisMode

Encounter Digital Implementation System User Guide
Optimizing Timing
Optimizing Power During optDesign

During timing optimization, the tool is also able to reduce leakage power and dynamic power.

Leakage Power Optimization

To activate leakage power optimization during timing optimization, run the following:

setOptMode -leakagePowerEffort none|low|high

■ When effort is set to none, optDesign will not optimize the leakage power.

This is the default option.

■ When effort is set to low, optDesign will optimize leakage power only in the postroute
stage. The leakage reduction will happen during postroute setup optimization and no
high leakage cells will be inserted during hold fixing.

■ When effort is set to high, optDesign will optimize leakage power in all stages.
Leakage reduction will happen during each setup optimization and no high leakage cells
will be inserted during hold fixing.

Note: To achieve the best leakage power results, load all the different Vth libraries.

Dynamic Power Optimization

To activate dynamic power optimization during timing optimization, run the following:

setOptMode -DynamicPowerEffort none|low|high

■ When effort is set to none, optDesign will not optimize dynamic power.

This is the default option.

■ When the effort is set to low, optDesign will only optimize dynamic power in the
postroute setup optimization phase.

setClockDomains optDesign uses the parameters you specify. The default is all
path groups.

setExtractRCMode optDesign sets the extraction mode to detail. You cannot
change this mode. Ensure that you set the appropriate
extraction scale factor.

setTrialRouteMode You can add parameters, but never override the default settings.
optDesign sets the -handlePreroute true parameter.
October 2010 1116 Product Version 9.1.3

../fetxtcmdref/routeT.html#setTrialRouteMode
../fetxtcmdref/rcextractionT.html#setExtractRCMode
../fetxtcmdref/timinganalysisT.html#setClockDomains

Encounter Digital Implementation System User Guide
Optimizing Timing
■ When the effort is set to high, optDesign will optimize dynamic power in the entire
setup optimization phases.

Note: Cadence recommends that you provide an activity file. If you do not provide an
activity file, EDI System automatically generates a default activity file based on a
propagated toggle rate of 0.2 on each input port.

Using Useful Skew

The useful skew feature in the EDI System software modifies the clock arrival time on
sequential elements in order to improve the datapath timing between sequential elements.

The software provides two approaches to using useful skew, depending on whether you have
run CTS:

■ Pre-CTS mode

Advances the clock signal for critical path start points. The start point must be a
sequential element: No input paths are allowed.

■ Post-CTS mode

Delays the clock signal for critical path end points. The end point must be a sequential
element: No output paths are allowed.

Using Useful Skew in Pre-CTS Mode

To take advantage of useful skew during pre-CTS optimization, use the following commands:

setOptMode -usefulSkew true
optDesign -preCTS

The software determines the sequential instances whose clock signals can be advanced,
then generates the following two files:

■ latency_file.sdc

This latency file models the proposed clock advancement for timing analysis.

■ scheduling_file.cts

This file contains scheduling information for clock tree synthesis. You must specify this
file when you specify the CTS constraints, for example:

specifyClockTree -clkfile scheduling_file.cts
specifyClockTree -clkfile original_constraints.cts
October 2010 1117 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#setOptMode
../fetxtcmdref/timing_ipoT.html#optDesign

Encounter Digital Implementation System User Guide
Optimizing Timing
You can change the names of the latency and scheduling files by using the following
commands:

setLatencyFile fileName
setSchedulingFile fileName

Use the following commands to report the names of the latency and schedule files:

■ getLatencyFile

■ getSchedulingFile

For more information, see “Timing Optimization Commands” in the Encounter Digital
Implementation System Text Command Reference.

Using Useful Skew in Post-CTS Mode

To take advantage of useful skew during post-CTS optimization, use the following commands:

setOptMode -usefulSkew true
optDesign -postCTS

In this case, the clock tree is already in place. The software determines the sequential
instances whose clock signals can be delayed, and adds buffers or inverters to their clock
nets accordingly. If the clock is already detail routed, these commands perform ECO routing
on the clock tree after useful skew optimization.

Controlling Useful Skew Optimization

You can control how the EDI System software employs useful skew, use the following
command:

■ setUsefulSkewMode

If you choose specific cells for clock tree synthesis, use setUsefulSkewMode -useCells
to specify the cells to use for padding the clock nets. If you have no constraint on the type of
cells allowed in the clock tree, you can omit this parameter, and the software selects the best
combination of cells to achieve the required delay.

For example, if you want clock buffers or inverters only, specify the following command:

setUsefulSkewMode -useCells {…}

To advance or delay sequential elements more aggressively than it does by default, without
degrading the worst negative slack, use the following setUsefulSkewMode parameter:

-maxSkew true
October 2010 1118 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#getLatencyFile
../fetxtcmdref/timing_ipoT.html#getSchedulingFile
../fetxtcmdref/timing_ipoT.html#setOptMode
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#setUsefulSkewMode

Encounter Digital Implementation System User Guide
Optimizing Timing
When you specify this parameter, the tool skews other registers as much as possible
regardless of the worst slack on a particular register. This approach can help with difficult
timing closure situations. In post-CTS mode, critical paths probably have been fully optimized,
so further traditional optimization cannot dramatically improve timing.

To close timing, you might need to delay the endpoint clock pins more than the useful skew
feature would do by default, by only padding the clock nets until the data path meets the target
slack. To take advantage of this feature, use the following command:

setUsefulSkewMode -maxSkew true

To exclude boundary sequential cells in useful skew calculations, use the following command:

setUsefulSkewMode -noBoundary true

If you do not specify this parameter, the software takes boundary cells and ordinary
sequential elements into account when calculating useful skew.

To use NanoRoute detailed routing to route nets that are added or changed during useful
skew optimization, use the following command:

setUsefulSkewMode -ecoRoute true

To limit the amount of slack the EDI System software can borrow from neighboring flip-flops
when performing useful skew operations, use the following command:

setUsefulSkewMode -maxAllowedDelay true

The EDI System delay calculation and RC extraction methods might differ from those of sign-
off tools, so other setup violations might occur if the EDI System tool borrows too much slack.
By having control over slack borrowing, you can prevent these setup violations. Limiting
borrowed skew also limits the clock tree skew to avoid large hold violations. If you do not
specify this parameter, the EDI System software automatically borrows the amount of slack
needed (there is no maximum) to reduce setup violations.

To report the current setUsefulSkewMode settings, use the following command:

getUsefulSkewMode

For more information, see “Timing Optimization Commands” in theEncounter Digital
Implementation System Text Command Reference.

Using Active Logic View for Chip-Level Interface Circuit
Timing Closure

The EDI System software provides a top-level interface timing operation flow to perform
partitioning and budgeting on a trimmed-down version of the timing graph: an active logic
view. This flow helps you close the timing issues of the interface top-level paths as your design
October 2010 1119 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Timing
has gone through the hierarchical flow until the postroute stage. This flow also saves the
memory usage and provides faster runtime on large designs.

To perform optimization using an active logic view at the postroute stage, complete the
following steps:

1. Load the hierarchical design in the database that is created by -assembleDesign
using the entire postrouted block partition and the top-level partition. Specify the partition
information in the database.

restoreDesign assembled.enc.dat toplevel_design_name

2. Perform timing analysis on the design to identify the timing of the full-chip design.

timeDesign -postRoute -prefix preOpt

3. Set the optimization mode to use active logic view. If you specify this parameter,
optDesign observes the floorplan fence constraint when moving or adding cells.

setOptMode -virtualPartition true

4. Run optDesign. The optDesign command honors active logic view.

optDesign -postRoute

5. Perform timing analysis again to ensure that there are no timing issues.

timeDesign -postRoute -prefix postOpt

Optimizing Timing in On-Chip Variation Analysis Mode

Optimize timing in on-chip variation (OCV) analysis mode to account for variations in process,
voltage, and temperature (PVT) across the die. When it takes OCV into account, the software
calculates early and late delays, and uses them to evaluate setup and hold timing checks. You
introduce the delays into the analysis by specifying different min/max corner timing libraries
and operating conditions. Early/late variation might also be present due to slew merging
effects of multiple input gates in the clock path.

To enable the software to consider multiple libraries and operating conditions, you must
specify a multi-mode/multi-corner (MMMC) environment. If the MMMC environment is not
specified, and you try to run timing optimization in OCV mode, the optDesign command
exits with an error message.

Related Topics

To see this step in the design flow, see Route the Design and Run Postroute Optimization in
the Encounter Digital Implementation System Foundation Flows: Flat
Implementation Flow Guide.
October 2010 1120 Product Version 9.1.3

../flatImpl/flow.html#RoutetheDesignandRunPostrouteOptimization

Encounter Digital Implementation System User Guide
Optimizing Timing
For more information on OCV and MMMC, see

■ On-Chip Variation (OCV) Timing Analysis Mode on page 1008

■ Performing Multi-Mode Multi-Corner Timing Analysis and Optimization on page 1319

Specifying the MMMC Environment

There are three MMMC scenarios for timing optimization in OCV mode:

■ One library and one operating condition per corner

■ One library and two operating conditions per corner

■ Two worst-case libraries and two best-case libraries per corner

The operating condition specifications you provide to the create_delay_corner
command determine the MMMC scenario for OCV mode. These specifications give the
software the values to use for early and late timing.

The following sections show the specifications necessary for each scenario. The differences
are highlighted in bold-face type.

■ One library and one operating condition per corner

create_library_set -name libs_min -timing [list $bestcase_lib]
create_library_set -name libs_max -timing [list $worstcase_lib]
create_rc_corner -name rc_worst -cap_table CMAX.capTbl
create_rc_corner -name rc_best -cap_table CMIN.capTbl
create_constraint_mode -name postCTS [list xxx.sdc]
create_delay_corner -name delay_corner_max \

-library_set libs_max \
-opcond_library stdcmos90T125 \
-opcond cmos90T125 \
-rc_corner rc_worst

create_delay_corner -name delay_corner_min \
-library_set libs_min \
-opcond_library stdcmos90Tm40 \
-opcond cmos90Tm40 \
-rc_corner rc_best

create_analysis_view -name postCts_max \
-delay_corner delay_corner_max \
-constraint_mode postCTS

create_analysis_view -name postCts_min \
-delay_corner delay_corner_min \
-constraint_mode postCTS

set_analysis_view -setup postCts_max -hold postCts_min

■ One library and two operating conditions per corner

create_library_set -name libs_min -timing [list $bestcase_lib]
create_library_set -name libs_max -timing [list $worstcase_lib]
create_rc_corner -name rc_worst -cap_table CMAX.capTbl
create_rc_corner -name rc_best -cap_table CMIN.capTbl
October 2010 1121 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Timing
create_constraint_mode -name postCTS [list xxx.sdc]
create_delay_corner -name delay_corner_max \

-library_set libs_max \
-late_opcond_library stdcmos90T125 \
-late_opcond cmos90T125_slow \
-early_opcond_library stdcmos90T125 \
-early_opcond cmos90T125 \
-rc_corner rc_worst

create_delay_corner -name delay_corner_min \
-library_set libs_min \
-late_opcond_library stdcmos90Tm40 \
-late_opcond cmos90Tm40 \
-early_opcond_library stdcmos90Tm40 \
-early_opcond cmos90Tm40_fast \
-rc_corner rc_best

create_analysis_view -name postCts_max \
-delay_corner delay_corner_max \
-constraint_mode postCTS

create_analysis_view -name postCts_min \
-delay_corner delay_corner_min \
-constraint_mode postCTS

set_analysis_view -setup postCts_max -hold postCts_min

■ Two worst-case libraries and two best-case libraries per corner

create_library_set -name libs_min_std -timing [list $bestcase_lib_std]
create_library_set -name libs_max_std -timing [list $worstcase_lib_std]
create_library_set -name libs_min_fast -timing [list $bestcase_lib_fast]
create_library_set -name libs_max_fast -timing [list $worstcase_lib_fast]

create_rc_corner -name rc_worst -cap_table CMAX.capTbl
create_rc_corner -name rc_best -cap_table CMIN.capTbl

create_constraint_mode -name postCTS [list xxx.sdc]

create_delay_corner -name delay_corner_max
-late library_set libs_max_std \
-late_opcond_library stdcmos90T125 \
-late_opcond cmos90T125 \
-early library_set libs_max_fast \
-early_opcond_library fastcmos90T125 \
-early_opcond cmos90T125 \
-rc_corner rc_worst

create_delay_corner -name delay_corner_min
-late_library_set libs_min_std \
-late_opcond_library stdccmos90Tm40 \
-late_opcond cmos90Tm40 \
-early_library_set libs_min_fast \
-early_opcond_library fastcmos90Tm40 \
-early_opcond cmos90Tm40 \
-rc_corner rc_best

create_analysis_view -name postCts_max \
-delay_corner delay_corner_max \
-constraint_mode postCTS
create_analysis_view -name postCts_min \
-delay_corner delay_corner_min \
-constraint_mode postCTS

set_analysis_view -setup postCts_max -hold postCts_min
October 2010 1122 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Timing
Optimizing Timing in OCV Mode Using the Default Delay Calculator

After you specify the MMMC environment, use the following commands:

setAnalysisMode -analysisType onChipVariation
optDesign -postRoute [-hold]

For more information, see documentation for the following commands:

■ setAnalysisMode

■ optDesign

Optimizing Timing in OCV Mode Using the Sign-Off Delay Calculator

After you specify the MMMC environment, use the following commands:

setDelayCalMode -engine signalStorm [-signoff]
setAnalysisMode -analysisType onChipVariation
optDesign -postRoute [-hold]

Important

The setDelayCalMode -engine signalStorm command is necessary for full
support of the rise/fall_pin_cap_range construct.

For more information, see documentation for the following commands:

■ setDelayCalMode

■ setAnalysisMode

■ optDesign

Using Conformal Constraint Designer During Timing
Optimization

The EDI System software is tightly linked to the Conformal Constraint Designer (CCD)
software. One of the features CCD provides is the ability to analyze critical false paths based
on EDI System-CTE timing information and constraints. CCD outputs a file that lists a set of
false paths, and the file can be loaded back into the EDI System software. Identifying the false
paths in this way eliminates unnecessary netlist optimizations and improves design area,
power, and timing.

You can use CCD to improve timing optimization in one of the following ways:
October 2010 1123 Product Version 9.1.3

../fetxtcmdref/delaycalcT.html#setDelayCalMode
../fetxtcmdref/timinganalysisT.html#setAnalysisMode
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timinganalysisT.html#setAnalysisMode
../fetxtcmdref/timing_ipoT.html#optDesign

Encounter Digital Implementation System User Guide
Optimizing Timing
■ Post-Processing Approach on page 1124

■ Integrated Approach on page 1124

Post-Processing Approach

Even after optimizing the design, you might not have achieved the frequency target. Usually,
this problem is due to tight timing constraints that are difficult to meet. By using CCD to verify
whether the worst slack paths are valid, you may find that your critical paths are actually
invalid and therefore need not be taken in account.

In this approach, the CCD tool is used post-processing only, and the EDI System timing
closure flow is unchanged.

The following example shows the commands in the post-processing approach. Use these
commands after running timeDesign or optDesign in setup mode.

deriveFalsePathCCD -outputDir . -outputFile trv.sdc
loadTimingCon -incr trv.sdc

The deriveFalsePathCCD command runs CCD in batch mode and generates a list of
critical false paths. The loadTimingCon command reads the list into the EDI System
software.

After running these commands, re-analyze timing by running timeDesign. The slack should
be better because false paths have been removed from consideration.

For more information, see documentation for the following commands:

■ deriveFalsePathCCD

■ loadTimingCon

Integrated Approach

A second approach is to integrate CCD with the EDI System timing optimization flow.
Cadence recommends this method because it gives you the advantage of identifying false
paths that are timing critical earlier in the implementation process. In addition, this method
enables faster timing closure and leads to a better optimized netlist in area/leakage/power.
October 2010 1124 Product Version 9.1.3

../fetxtcmdref/conformalT.html#deriveFalsePathCCD
../fetxtcmdref/timinganalysisT.html#loadTimingCon

Encounter Digital Implementation System User Guide
Optimizing Timing
The following figure shows the recommended flow for this approach:

1. Load the floorplanned design and place standard cells in non-timing driven mode.
Placing the cells in non-timing driven mode speeds up placement. You run placement
again later, in timing-driven mode, in this flow.

For example,

loadConfig myConfigFile.conf
loadFPlan myFloorPlan.fp

Run non-timing
driven placement

Analyze timing
Analyze false

paths with CCD

CCD output
file

Run timing-
driven placement

Run pre-CTS
timing optimization

Save design

Read CCD
output file

Run CTS

no Timing
OK?

yes

Floorplan
file

Configuration
file

Load
conf. file

Load
floorplan file

Review timing
constraints

Adjust
floorplan
October 2010 1125 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Timing
setPlaceMode -timingDriven false
placeDesign

2. Run timeDesign to build a clean timing graph.

For example,

timeDesign -preCTS -outDir timing_place_noTD

3. Analyze and report setup timing violated paths using CCD.

For example,

deriveFalsePathCCD -outputDir . -outputFile trv.postnotdp.sdc

This command runs CCD in batch mode. It outputs an SDC file that lists the false paths.
CCD exits when the command completes.

For more information, see deriveFalsePathCCD in the Encounter Digital
Implementation System Text Command Reference.

4. Read the CCD output file into the EDI System software.

For example,

loadTimingCon -incr trv.postnotdp.sdc

5. Place the design in timing-driven mode and run pre-CTS timing optimization. Save the
design.

For example,

setPlaceMode -timingDriven true
placeDesign
timeDesign -preCTS -outDir timing_place_TD
setOptMode -effort high
optDesign -preCTS -outDir timing_optimized
saveDesign post_opt_prects.enc

If the design meets timing, you can go on to clock tree synthesis; if not, look at the timing
constraints and the floorplan to make sure they are reasonable. If CCD reports too many false
paths, the CPU run time for timing analysis and timng optimization might be affected.

Important

If WNS and TNS do not change when reverting to initial timing constraints, it may be
that the false paths identified by CCD could have met timing easily. This can happen
because the false paths generated by CCD are based on timing post-placement
timing. At this stage no timing optimization has been performed and removing the
false paths does not necessarily uncover violated paths.
October 2010 1126 Product Version 9.1.3

../fetxtcmdref/conformalT.html#deriveFalsePathCCD

Encounter Digital Implementation System User Guide
Optimizing Timing
Optimizing Timing Using a Rule File

In a partitioned design, top-level and leaf partitions are generated. Before implementation, the
leaf partitions’ timing models are not completely accurate. Because accurate timing cannot
be derived without accurate timing models for leaf partitions, rule-based optimization is a
more suitable option than timing analysis-based optimization at this design stage. You can
use a rule file for the top-level design by using the following command:

■ insertRepeater

Optimizing Timing When the Constraint File Includes the
set_case_analysis Constraint

If you include the set_case_analysis constraint in the timing constraint file, the EDI
System software sets a constant value on specified signals before performing timing analysis.
This constant value is then propagated through the path.

If you use the same timing constraint file for timing optimization, the software does not
perform timing optimization on the constant nets because the delays are 0.

To run timing optimization on these nets, you must first specify the following command:

■ setAnalysisMode -caseAnalysis false

Using the Footprintless Flow

By default, the EDI System software creates an internal footprint structure based on cell
functionality. This methodology is referred to as the footprintless flow, and has the following
advantages over a flow that relies on footprint information from the libraries:

■ The libraries do not need to contain footprints, and you do not need to specify a footprint
file.

■ The following commands are not necessary because the software detects the
functionality for inverters and buffers and decides whether a buffer is a delay cell, based
on the cell’s timing characteristic. The commands have no effect if specified in this flow.

❑ setBufFootPrint

❑ setInvFootprint

❑ setDelayFootPrint
October 2010 1127 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#insertRepeater
../fetxtcmdref/timinganalysisT.html#setAnalysisMode

Encounter Digital Implementation System User Guide
Optimizing Timing
■ The software considers cells with the same functionality but different function syntax as
equivalent and allows sizing between such cells.

■ The software prints the list of usable and unusable (“don’t use”) buffers, inverters, and
delay cells to the log file after reading in the libraries, for example:

Total number of combinational cells: 620
Total number of sequential cells: 247
Total number of tristate cells: 42
Total number of level shifter cells: 0
Total number of power gating cells: 0 Total number of isolation cells: 0
List of usable buffers: BFX1 BFX2 BFX3 BFX4
Total number of usable buffers: 4
List of unusable buffers: BFX20 BFX32
Total number of unusable buffers: 2
List of usable inverters: IVX1 IVX2 IVX3 IVX4
Total number of usable inverters: 4
List of unusable inverters:
Total number of unusable inverters: 0
List of identified usable delay cells: DLY2 DLY4 DLY8
Total number of identified usable delay cells: 3
List of identified unusable delay cells:
Total number of identified unusable delay cells: 0

To revert to the behavior in previous releases (that is, to rely on footprint information in the
libraries), use the loadFootPrint command. As in those releases, you must specify
buffers, inverters, and delay cell footprints according to what was loaded in the footprint file.
For more information, see “Using Cell Footprints” on page 1128.

To exclude cells from timing optimization, for example, if the libraries have clock buffers or
clock inverters that should be used during CTS but not during timing optimization, set the
“don’t use” attribute in the timing constraints file, library, or command shell. Timing
optimization can resize a “don’t use” cell, but does not insert it.

Note: This is the default and recommended methodology since all of it is automated.

For more information see setDontUse in the “Timing Optimization Commands” chapter of
the Encounter Digital Implementation System Text Command Reference.

Using Cell Footprints

Timing optimization can use information in a footprint file. For example, the buffering
mechanisms in optDesign add cells only if they are defined in the buffer footprint file.

To disable the footprintless flow (the default timing optimization flow) and load a footprint file,
specify the following command:

loadFootPrint -infile footprint_file_name
October 2010 1128 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#setDontUse

Encounter Digital Implementation System User Guide
Optimizing Timing
For more information, see loadFootPrint in the “Timing Optimization Commands” chapter
of the Encounter Digital Implementation System Text Command Reference.

Define footprints in your library or a footprint file by using the following commands, which are
enabled when you specify loadFootPrint:

■ setBufFootPrint

■ setInvFootPrint

■ setDelayFootPrint

Note: This is not the recommended methodology and should only be used as a workaround.
October 2010 1129 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#loadFootPrint

Encounter Digital Implementation System User Guide
Optimizing Timing
AAE-Based SI Optimization

Important

AAE-Based SI Optimization is a limited-access feature. This feature has been
internally qualified at Cadence but has had only limited customer testing. The limited
access features are enabled by a variable specified through the
setLimitedAccessFeature command. To use this limited access feature,
please contact your Cadence representative to qualify your usage and make sure it
meets your needs before deploying it widely.

EDI System AAE (Advanced Analysis Engine) feature performs fast delay calculation
including SI effect. It is used for both setup and hold fixing during the EDI System postroute
optimization flow. Using this feature, the EDI System postroute timing closure flow is simpler
than the Celtic-based optimization flow, and runtime reduces significantly.

AAE analysis integrated with postroute optimization allows to view the overall delay which
includes both base delay and noise-induced delay.

This allows a single optimization steps to fix the issues of base and SI effects, compared to
the previous flow that had these as two separate steps. Moreover, the AAE analysis engine
is faster than the true signoff analysis, but has the right accuracy to drive optimization. The
end result is that you minimize or in some cases completely eliminate the need for detailed
SI analysis-based postroute optimization in the new flow.

AAE-Based Setup and Hold Fixing

To invoke AAE-based postroute setup and hold fixing in EDI System, run the following
commands at post-route stage:

setAnalysisMode -analysisType onChipVariation -cppr both
setOptMode -postRouteSiAware true
optDesign –postRoute
optDesign –postRoute -hold

Note: The setOptMode -postRouteSiAware parameter already exists in Encounter 8.1
release, which invokes the Celtic-based SI prevention engine.

Note: AAE optimization requires MMMC setting and OCV mode, setAnalysisMode -
analysisType onChipVariation and -cppr both. If MMMC and/or OCV mode are
not set, AAE optimization displays errors for setup and hold fixes. Non-MMMC and non-OCV
does not accurately reflect SI push-out and pull-in. The -cppr both variable reduces
pessimism caused by same clock path.
October 2010 1130 Product Version 9.1.3

../fetxtcmdref/generalT.html#setLimitedAccessFeature

Encounter Digital Implementation System User Guide
Optimizing Timing
For comparison, the timing optimization steps shown below have the following two extra SI-
fixing steps:

optDesign –postRoute
optDesign –postRoute–hold
optDesign –postRoute –si
optDesign –postRoute –si –hold

Alternatively, you can also run the following commands:

optDesign –postRoute
optDesign –postRoute–hold
optDesign –postRoute –si –hold
optDesign –postRoute –si

Due to a few issues in the current EDI System releases, the following settings are
recommended before running optDesign postRoute -si and timeDesign
postRoute -si:

setSIMode -analysisType default

The final timing from AAE-SI based optimization should also show reasonably good
correlation with the timing from timeDesign -postRoute -si.

AAE SI Timing

In EDI System 9.1, you will not be exposed to use AAE SI timing. Instead, the original Celtic
based SI timing is used.

For CeltIC SI-timing signoff, run the following command:

setDelayCalMode -engine signalStorm -signoff true

timeDesign -postRoute -si

Alternatively, run the following command:

timeDesign -postRoute -si

For non-SI timing, run the following command:

timeDesign –postRoute

Sample Flow Scripts

Important

AAE-Based SI Optimization is a limited-access feature. This feature has been
internally qualified at Cadence but has had only limited customer testing. The limited
access features are enabled by a variable specified through the
October 2010 1131 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Optimizing Timing
setLimitedAccessFeature command. To use this limited access feature,
please contact your Cadence representative to qualify your usage and make sure it
meets your needs before deploying it widely.

AAE-Based Flow
Load DB

restoreDesign design.enc.dat designName

Analysis setting

setAnalysisMode -analysisType onChipVariation -cppr both
setSIMode -analysisType default
setDelayCalMode -engine signalStorm –signoff true

Initial SI Time Design

timeDesign -postRoute -si
timeDesign -si -hold -reportOnly
setDelayCalMode -engine feDc

AAE setup fix

setOptMode -postRouteSiAware true
#Please contact Cadence on the limited access feature setting for running AAE-based
SI optimization
optDesign –postRoute
setOptMode -postRouteSiAware false

Setup SI Time Design

setDelayCalMode -engine signalStorm -signoff true
timeDesign -postRoute -si -hold
timeDesign -si –reportOnly
setDelayCalMode -engine feDc

AAE hold fix

setOptMode -postRouteSiAware true
#Please contact Cadence on the limited access feature setting for running AAE-based
SI optimization
optDesign -postRoute –hold
setOptMode -postRouteSiAware false

#Final SI Time Design

setDelayCalMode -engine signalStorm -signoff true
timeDesign -postRoute -si -hold
timeDesign -si –reportOnly

CeltIC-Based Flow
Load DB

restoreDesign <design.enc.dat> <designName>

Analysis setting

setAnalysisMode -analysisType onChipVariation -cppr both
setSIMode -analysisType default
setDelayCalMode -engine signalStorm –signoff true

Initial Time Design
October 2010 1132 Product Version 9.1.3

../fetxtcmdref/generalT.html#setLimitedAccessFeature

Encounter Digital Implementation System User Guide
Optimizing Timing
timeDesign -postRoute -si
timeDesign -si -hold -reportOnly
setDelayCalMode -engine feDc

Setup fix

optDesign –postRoute

Hold fix

optDesign -postRoute –hold

Time Design after base setup/hold fix

setDelayCalMode -engine signalStorm -signoff true
timeDesign -postRoute -si -hold
timeDesign -si -reportOnly
setDelayCalMode -engine feDc

SI setup optimization
optDesign -postRoute -hold –si

SI hold optimization

setSIMode -acceptableWNS same
setOptMode -verbose true
optDesign -postRoute -si

#Final Time Design

setDelayCalMode -engine signalStorm -signoff true
timeDesign -postRoute -si -hold
timeDesign -si –reportOnly

Viewing Added Buffers, Instances, and Nets

After running timing optimization, use the Design Browser to view the added buffers,
instances, and nets. The names of the buffers, instances, and nets added as a result of timing
optimization are annotated with the prefix FE_.

For information on using the Design Browser, see Design Browser in the “Tools Menu”
chapter of the Encounter Digital Implementation System Menu Reference.

Default Naming Conventions

Prefix Description Command

FE_MDBC Instance added by multi-driver net
buffering

optDesign

FE_MDBN Net added by multi-driver net buffering optDesign

FE_OCP_DRV_C Instance added by DRV fixing optDesign

FE_OCP_DRV_N Net added by DRV fixing optDesign
October 2010 1133 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../encounter/toolsG.html#DesignBrowser

Encounter Digital Implementation System User Guide
Optimizing Timing
FE_OCP_RBC Instance added by rebuffering optDesign

FE_OCP_RBN Net added by rebuffering optDesign

FE_OCPC Instance added by critical path
optimization

optDesign

FE_OCPN Net added by critical path optimization optDesign

FE_OFC Buffer instance added by rule-based
buffer insertion

insertRepeater/
optDesign

FE_OFN Buffer net added by rule-based buffer
insertion

insertRepeater/
optDesign

FE_PHC Instance added by hold time repair optDesign

FE_PHN Net added by hold time repair optDesign

FE_PSBC Instance added by buffer insertion in
optDesign -postRoute

optDesign

FE_PSBN Net added by buffer insertion in
optDesign -postRoute

optDesign

FE_PSC Instance added by postroute setup
repair

optDesign

FE_PSN Net added by postroute setup repair optDesign

FE_RC Instance created by netlist restructuring optDesign

FE_RN Net created by netlist restructuring optDesign

FE_USC Instance added during useful skew
optimization

optDesign

Prefix Description Command
October 2010 1134 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#insertRepeater
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#insertRepeater
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign

Encounter Digital Implementation System User Guide
33
Interactive ECO

■ Overview on page 1136

■ Before You Begin on page 1136

■ Results on page 1136

■ Adding Buffers on page 1136

■ Changing the Cell on page 1139

■ Deleting Buffers on page 1141

■ Displaying Buffer Trees on page 1143

■ Running ECO Placement on page 1145

■ Naming Conventions for Interactive ECO on page 1146

■ Comparing Physical Design Data on page 1146
October 2010 1135 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Interactive ECO
Overview

The Interactive ECO feature enables you to run manual incremental updates to the design to
repair timing or transition time violations. You can run Interactive ECO after running
placement, timing optimization, or signal integrity analysis (CeltIC NDC).

If you performed trial route and RC extraction on the design, and the timing graph was built
before running an ECO, then the trial route data, RC extraction data, and timing graph are
incrementally updated.

Before You Begin

Before you can perform interactive ECO, the following conditions must be met:

■ You must place and route the design,

■ You must load the design into the current session.

Results

The following output files are generated:

■ Updated netlist

■ Updated placement

Adding Buffers

You can add one buffer at a time on a net.

1. To open the Interactive ECO form, select Optimize – Interactive ECO from the Encounter
Digital Implementation System (EDI System) menu.
October 2010 1136 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Interactive ECO
This opens the Interactive ECO form. The Add Repeater page is selected.

2. Enter the net name in the Net field.

Type the net name, or click on a displayed net in the design display window and click get
selected.

3. To select the terminals, choose one of the following:

❑ To connect the added buffer to drive all the receivers, specify All Terminals. Use
this to reduce the delay and output transition time of a weak driver driving a large
capacitive load.

❑ To connect the added buffer to drive the listed receivers, specify Listed Terminals.
This provides full flexibility for building an arbitrary buffer connection.
October 2010 1137 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Interactive ECO
❑ Draw Terminal button - Allows you to draw an area covering the terminals to which
you want to add the buffer.

4. In the New Cell field, enter the cell type name of the repeater to add, or click on the arrow
to right of the field and select a buffer from the list.

5. In the Place Mode pane, you can choose one among several options:

❑ Default

The software automatically determines a location and places the new cell.

❑ Don’t Place Cells

Specifies that the inserted cells should not be placed. Only the logical change in
connectivity will be made.

❑ Location

Enter the location for the buffer using one of the following methods:

❍ You can use the automatically assigned locations, enter the locations, or click
on an area in the design display window and click get coord.

❑ Relative Distance to the Sink

Specifies the location of the buffer based on its distance from the sink or the driver
pin. The value is a number between 0 and 1. A low value (0.1) places the buffer near
the sink; a high value (0.9) places the buffer near the driver. The fraction is based on
the length of the wire.

This option works when one term is provided; it does not work if no term or multiple
terms are specified.

❑ Offload

a. To connect the added buffer to drive only noncritical receivers, select By Slack. This
checks the timing graph for noncritical receivers and offloads those from the critical
path, and could improve critical path timing by penalizing noncritical path delays.

b. To add a buffer at a specific location, select By Location and enter the x, y
coordinates.

6. Specify a radius.

❑ Specify the radius in which the added instances are free to move. If no legal location
can be found in the specified radius, the cells would be placed at the specified
location resulting in an overlap with other cells. In that case, you should perform
legalization.
October 2010 1138 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Interactive ECO
7. (Optional) To legalize placement of the ECO changes, click Do Refine Placement.

8. Click Apply.

9. (Optional) Click the Eval button to evaluate the effect on timing if you add a new cell. The
values are not applied in the database.

10. (Optional) Click the Eval All button to evaluate the effect on timing for all the cell types
available for the new cell. The timing report shows the effects of all the cell types, enabling
you to select the best cell for your design. The values are not applied in the database.

Note: You can also add a buffer around the I/O pin of a block using the attachIOBuffer
command.

The following text command and parameters provide equivalent or additional functionality:

■ ecoAddRepeater

For more information, see “Interactive ECO Commands” in the EDI System Text Command
Reference.

Changing the Cell

You can upsize or downsize instances. Upsizing an instance that drives a large load can
improve the driver delay and the transition time at the receivers. You can also downsize an
instance on the noncritical path to reduce the loading of its driver on the critical path.

1. To open the Interactive ECO form, select Optimize – Interactive ECO from the EDI
System menu, and click the Change Cell tab.
October 2010 1139 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#attachIOBuffer
../fetxtcmdref/interactive_ecoT.html#ecoAddRepeater
../fetxtcmdref/interactive_ecoT.html#firstpage

Encounter Digital Implementation System User Guide
Interactive ECO
The Change Cell page is displayed.

2. In the Instance field, enter the hierarchical instance name to be changed.

Type the instance name, or click an instance in the design display window and click get
selected.

3. Select either upsize, downsize, or specified cell. If you select specified cell, enter the
replacement cell name in the adjacent field.

Type the cell name, or use the pull-down menu to select a cell.

4. (Optional) Specify the pin mapping for the new cell based on the old cell.

5. (Optional) Click the Eval button to evaluate the effect on timing if you add a new cell. The
values are not applied in the database.
October 2010 1140 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Interactive ECO
6. (Optional) Click the Eval All button to evaluate the effect on timing for all the cell types
available for the new cell. The timing report shows the effects of all the cell types, enabling
you to select the best cell for your design. The values are not applied in the database.

7. (Optional) To legalize placement of ECO changes, click Do Refine Placement.

8. Click Apply.

The following text command and parameters provide equivalent or additional functionality:

■ ecoChangeCell

For more information, see “Interactive ECO Commands” in the EDI System Text Command
Reference.

Deleting Buffers

You can delete redundant buffers that cause extra delay. Buffers are typically over-added by
synthesis tools based on wireload models.

1. To open the Interactive ECO form, select Optimize – Interactive ECO from the EDI
System menu, and click the Del Repeater tab.
October 2010 1141 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#ecoChangeCell
../fetxtcmdref/interactive_ecoT.html#firstpage

Encounter Digital Implementation System User Guide
Interactive ECO
The Delete Repeater page is displayed.

2. Enter the buffer instance name to be removed in the Instance field.

Type the instance name, or click an instance in the design display window and click get
selected.

3. Select a deletion option: Only This Instance or Whole Buffer Tree.

4. (Optional) Click the Eval button to evaluate the effect on timing if you delete the cell. The
values are not applied in the database.

5. (Optional) To legalize placement of ECO changes, click Do Refine Placement.

6. Click Apply.

The following text command and parameters provide equivalent or additional functionality:
October 2010 1142 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Interactive ECO
■ ecoDeleteRepeater

For more information, see “Interactive ECO Commands” in the EDI System Text Command
Reference.

Displaying Buffer Trees

You can inspect the routing topology of the buffer tree after it is created. If the buffer tree
requires correction, you can rebuild or modify it through the other three pages in the
Interactive ECO form.

1. To open the Interactive ECO form, select Optimize – Interactive ECO from the EDI
System menu, and click the Display Buffer Tree tab.

The Display Buffer Tree page is displayed.

2. To select a buffer tree, enter the net name in the Net field.

You can type the net name, or click a net in the design display window and click get
selected.
October 2010 1143 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#ecoDeleteRepeater
../fetxtcmdref/interactive_ecoT.html#firstpage

Encounter Digital Implementation System User Guide
Interactive ECO
3. (Optional) To legalize placement of ECO changes, click Do Refine Placement.

4. Click Apply.
October 2010 1144 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Interactive ECO
The following text command provides equivalent or additional functionality:

■ displayBufTree

For more information, see “Interactive ECO Commands” in the EDI System Text Command
Reference.

Running ECO Placement

ECO placement updates the placement from a prior EDI System session to reflect the netlist
changes, merging the new netlist changes into the prior netlist’s placement. The modified
netlist can then be imported into an EDI System session so that the result is a new placement
that reflects the changes made in the modified netlist.

You can run either an incremental timing or logic change to the design. You can run ECO after
running placement, although ECO is usually run after analyzing speed or RC data.

To update the placement with the ECO netlist, complete the following steps:

1. Save the pre-ECO netlist placement data.

2. Start a new EDI System session.

3. Import the (ECO) design.

4. Load the floorplan.

5. Run ECO Placement.

This references the pre-ECO netlist placement data. The changes reflected in the new
netlist are ECO’d into the pre-ECO placement. All designs are placed in the resulting
placement.

After running ECO successfully, you can run Trial Route to view the routing congestion and
analyze the design for timing.
October 2010 1145 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#displayBufTree
../fetxtcmdref/interactive_ecoT.html#firstpage

Encounter Digital Implementation System User Guide
Interactive ECO
Naming Conventions for Interactive ECO

After running interactive ECO, you can use the Design Browser to view the newly added
instance names, prefixed with FE_. The interactive ECO operation naming conventions are
described in the following table:

Comparing Physical Design Data

After making changes to a DEF file, you can compare the new file to the information stored
in the EDI System database. You can perform this comparison after you perform ECO.

Use the following command to compare physical design data:

defComp defFile -reportFile fileName

The default filename is defPhyDiff.rpt

The report file includes the following information:

■ VERSION statement

VERSION num

■ UNITS statement

UNITS num

■ ADDINST statement

Name Prefix Description

FE_ECON A net added by interactive ECO

FE_ECOC An instance added by interactive ECO

num Specifies the file version number.

num Specifies the unit for the values such as coordinates, width, and
so on.
October 2010 1146 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Interactive ECO
ADDINST instName cellName x y orientation

Note: The report provides the connectivity of added instances in the NETS section
described below.

■ DELINST statement

DELINST instName cellName x y orientation

The arguments have the same meaning as described in ADDINST statement.

■ CHANGECELL statement

CHANGECELL instName oldCellName newCellName

The master cell of the instance instName is changed from oldCellName to
newCellName. The coordinate, orientation, and connectivity of the instance are not
changed. If a master cell is changed along with any of the coordinates, orientation, or
connectivity of the instance, EDI System considers this change as a deletion and
addition of the instance. Rather than including a CHANGECELL statement, the file
contains one pair of DELINST and ADDINST statements.

■ MOVEINST statement

MOVEINST instName [COORD oldX oldY newX newY] [ORIENT oldOrientation
newOrientation]

The statement contains the COORD phrase if the instance instName has moved, and
the ORIENT phrase if the instance has changed orientation.

■ ADDNET statement

ADDNET netName

■ DELNET statement

instName Specifies the instance name.

cellName Specifies the master cell name of the instance.

x y Specifies the coordinates of the instance.

orientation Specifies the orientation of the instance. The orientation can be
one of the following: N, FN, S, FS, W, FW, E, FE, as used by DEF
file.

netName Specified the name of a added net.
October 2010 1147 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Interactive ECO
DELNET netName

netName Specifies the name of the deleted net.
October 2010 1148 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Interactive ECO
■ ADDPIN statement

ADDPIN netName instName pinName

■ DELPIN statement

DELPIN netName instName pinName

■ CHANGEROUTE and ENDCHANGEROUTE statements

CHANGEROUTE netName

ENDCHANGEROUTE

These statements mark the beginning and end of the CHANGEROUTE section that
contains changes on the routing segment on net netName. The wire change statements
are included between the CHANGEROUTE and ENDCHANGEROUTE statements.

■ POWERROUTE and ENDPOWERROUTE statements

POWERROUTE netName

ENDPOWERROUTE

These two statements mark the beginning and the end of the POWERROUTE section that
contains the power routing differences between two DEF files. The wire change
statements are included between the POWERROUTE and ENDPOWERROUTE statements.

■ Wire change statements

The ADDWIRE, DELWIRE, ADDVIA, and DELVIA statements appear between the
CHANGEROUTE and ENDCHANGEROUTE statements, or POWERROUTE and
ENDPOWERROUTE statements.

❑ ADDWIRE statement

ADDWIRE layerName width x1 y1 x2 y2

netName Specifies the net from which the pin is added.

instName Specifies the instance name of the added pin.

pinName Specifies the name of the added pin.

netName Specifies the net from which the pin is deleted.

instName Specifies the instance name of the deleted pin.

pinName Specifies the name of the deleted pin.
October 2010 1149 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Interactive ECO
❑ DELWIRE statement

DELWIRE layerName width x1 y1 x2 y2

❑ ADDVIA statement

ADDVIA [botLayerName bx1 by1 bx2 by2] topLayerName tx1 ty1 tx2 ty2

Note: For turnvias, EDI System reports topLayerName only.

layerName Specifies the layer name of wire segment added to the net.

width Specifies the width of the wire segment added to the net.

x1 y1 Specifies the left or bottom coordinate of wire segment added to
the net.

x2 y2 Specifies the right or top coordinate of wire segment added to
the net.

layerName Specifies the layer name of wire segment deleted to the net.

width Specifies the width of the wire segment deleted to the net.

x1 y1 Specifies the right or top coordinate of wire segment deleted
from the net.

x2 y2 Specifies the left or bottom coordinate of wire segment deleted
from the net.

botLayerName Specifies the bottom layer name of the via added to the net.

bx1 by1 Specifies the lower-left coordinate of bottom layer of the via
added to the net.

bx2 by2 Specifies the top-right coordinate of bottom layer of the via
added to the net.

topLayerName Specifies the top layer name of via added to the net.

tx1 ty1 Specifies the lower-left coordinate of top layer of the via added
to the net.

tx2 ty2 Specifies the top-right coordinate of top layer of the via added to
the net.
October 2010 1150 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Interactive ECO
❑ DELVIA statement

DELVIA [botLayerName bx1 by1 bx2 by2] topLayerName tx1 ty1 tx2 ty2

Note: For turnvias, EDI System reports topLayerName only.

■ ADDOBS statement

ADDOBS layerName x1 y1 x2 y2

■ DELOBS statement

DELOBS layerName x1 y1 x2 y2

botLayerName Specifies the bottom layer name of via deleted from the net.

bx1 by1 Specifies the lower-left coordinate of bottom layer of the via
deleted from the net.

bx2 by2 Specifies the top-right coordinate of bottom layer of the via
deleted from the net.

topLayerName Specifies the top layer name of via deleted from the net.

tx1 ty1 Specifies the lower-left coordinate of top layer of the via deleted
from the net.

tx2 ty2 Specifies the top-right coordinate of top layer of the via deleted
from the net.

layerName Specifies the layer name for the obstruction added.

x1 y1 Specifies the lower-left coordinate of the obstruction.

x2 y2 Specifies the top-right coordinate of the obstruction.

layerName Specifies the layer name of the deleted obstruction.

x1 y1 Specifies the lower-left coordinates of the obstruction.

x2 y2 Specifies the upper-right coordinates of the obstruction.
October 2010 1151 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Interactive ECO
October 2010 1152 Product Version 9.1.3

Encounter Digital Implementation System User Guide
34
Integration with LPA and CCP

■ Overview on page 1154

■ Before You Begin on page 1154

■ Results on page 1155

■ Running LPA from Encounter on page 1155

■ Running CCP from Encounter on page 1175
October 2010 1153 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
Overview

The integration of Litho Physical Analyzer (LPA) and Cadence CMP Predictor (CCP) with
Encounter Digital Implementation System allows you to perform the foundry-recommended
or mandatory lithography and CMP checks at the block and chip level in your design directly
from the Encounter GUI, much earlier in the development cycle. You can run LPA during the
Routing and Sign-Off phases, and CCP during the Sign-Off phase.

LPA enables you to identify litho hotspots and predict contours across process windows
based on foundry-qualified technology files. It accurately predicts manufacturing variations
associated with lithography and etch. Once detected, you can fix these litho hotspots using
the NanoRoute routing technology.

CCP, on the other hand, allows you to identify the potential yield issues that are due to the
variations in interconnect thickness caused by Chemical and Mechanical Polishing (CMP).
CCP accurately predicts the thickness of the interconnect and dielectric for any design and
any manufacturing process that has been calibrated. The resulting prediction is then used to
minimize performance loss and to identify thickness-related yield issues.

You use the DFM menu of the main Encounter window to configure LPA and CMP runs on
the design. However, the DFM menu might not appear on your Encounter window or one of
its submenu options might be disabled if the prerequisite conditions are not satisfied (See
Before You Begin on page 1154).

Before You Begin

Before you can run LPA and CCP from Encounter, the following conditions must be met:

■ You must have the LPA license to run litho sign-off from Encounter. However, to run LPA
in Routing Layers Only mode, the Encounter_DFM_GXL license is sufficient and no
separate LPA license is required.

■ You must have the CCP license to run CCP from Encounter.

■ You must have either Encounter_Adv_Node_GXL or Encounter_DFM_GXL license.

■ You must be able to launch version 9.2 (or a later version) of LPA and CCP from
Encounter. In other words, the installation path to LPA and CCP must be present in your
path variable.

■ You must have LPA and CCP TechFiles that are compatible with the design technology.

■ You must have TSMC VCMP DDK 1.2 kit or a later version for TSMC CMP checks.
October 2010 1154 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
Results

The output of an LPA or CCP run is an HIF file containing information about all detected
hotspots. You can view this HIF file in the Encounter Violation Browser and fix the reported
hotspots using NanoRoute.

Running LPA from Encounter

The integration of LPA with Encounter allows you to check for litho hotspots and predict
contours across process windows earlier in the development cycle, much before the Sign-Off
phase. The integration is smooth and easy to configure, and does not require any user
intervention to stream out or set up LPA.

You can run LPA from Encounter in two modes:

■ Routing Layers Only Mode on page 1155

■ Sign-Off Mode on page 1164

Routing Layers Only Mode

Routing Layers Only mode is the fast mode of LPA to flag L1 hotspots in a design at the block
level during the Implementation phase. In this mode, LPA runs about 100X faster than Sign-
Off Mode and helps you identify and fix most hotspots as routing is completed.

Note: LPA in Routing Layers Only mode is enabled only when you have the Encounter DFM
GXL Option license.
October 2010 1155 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
The following diagram shows the design flow for running LPA in Routing Layers Only mode.

Running LPA in Routing Layers Only Mode

To run LPA in Routing Layers Only mode, launch Encounter by using the encounter
command and load the design. When Encounter is invoked, it automatically loads all the

Encounter Routed Database

LPA in Routing Layers Only Mode

Set Up Routing Layers Only Mode

Encounter Launches LPA; Setup GUI
Closes; Encounter is Blocked

LPA Output Goes To
Encounter Shell Window

LPA Run Completed; Summary of Hotspots
Displayed in Encounter Shell Window

Load HIF in Violation Browser to
Browse Hotspots

Verify Changed Areas - Run LPA on
Incremental Area Check File or

Run Full LPA Check Again

Nanoroute Incremental Run to Fix Hotspots;
Write Incremental Area Check File (HIF)
October 2010 1156 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
required LPA files from the LPA installation path. Once the Encounter GUI is displayed,
perform the following steps:

1. Choose Tools -> DFM -> Litho -> Verify Litho from the Encounter menu.
October 2010 1157 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
2. This opens the Litho Verify form, with the Routing Layers tab selected by default. In
the LPA TechFile field, specify the path and name of the qualified LPA Mx- technology
file that includes process-specific hotspot checking options and the LPA model.

3. In the Run Directory field, specify the LPA output directory that will contain one
subdirectory for each layer (POLY, M1, etc.) when LPA is run with the configuration file for
that layer.

4. LPA Conf is an optional field. Select this check box and specify the name and path of
the LPA custom configuration file. This file, if specified, controls all run options of LPA.

5. Incr. HIF is also an optional field. Select this check box and specify the name and path
of the HIF file that you want to use for incremental validation. This HIF file includes the
locations that identify the areas affected by each hotspot fix. LPA reads these locations
and performs incremental checking only in these areas. This reduces the time for
validation.

6. By default, LPA uses the LSF settings from Encounter's Multi-CPU Settings GUI.
However, you can change the multi-CPU settings for the LPA run by selecting the Multi
October 2010 1158 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
CPU Settings button and specifying the new settings in the Multiple CPU Processing
form. Note that this will also change the distributed options for all Encounter commands.

7. On the Basic tab of the Multiple CPU Processing form, only the Number of Remote
Machine(s) field has an effect on the LPA run. In this field, specify the number of LSF
machines that you want to use for the LPA run.

8. On the Host Setup tab, select the lsf radio button to set the distribution method as LSF
and specify the LSF arguments in the LSF Arguments field.
October 2010 1159 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
Note: Only the LSF distribution method is supported for the Encounter-LPA integration.

9. Specify the queue and resource string that is needed for the LSF launch in the Queue
and Resource fields.

10. Select the OK button to confirm the multiple CPU settings and close the form.

11. Select the Submit button in the Litho Verify form to launch the LPA run with the
specified settings.

Note: In Routing Layers Only mode, LPA runs in blocking mode. You cannot perform any
operations in the Encounter GUI until the LPA run is completed.
October 2010 1160 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
During the LPA run, the output is sent to the Encounter Shell window. After LPA is
successfully completed, the LPA summary file with hotspot count is presented in the
Encounter Shell window.

Viewing Hotspots

You can load the HIF file (created in the output directory by the LPA run) in the Violation
Browser directly to view the detected litho hotspots. To do this, perform the following set of
steps:

1. Select Tools -> Violation Browser -> Load Violation Report.
October 2010 1161 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
2. This opens the Load Violation Report form. Specify the path and name of the HIF file
in the File Name field.
October 2010 1162 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
3. Select the CDNLitho radio button to specify the HIF format and select the OK button to
view the hotspots in the Violation Browser.

You can also load the hotspots from the Litho Status window (Tools -> DFM-> Litho ->
Check Litho Status) by specifying the results directory name in the Run Directory field and
October 2010 1163 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
selecting the Load HIF button. This will open up the Violation Browser to show the hotspot
details.

Note: You can also specify a different run directory name in the Run Directory field of the
Litho Status window and then click the Update button to check the output of the specified
LPA run.

Sign-Off Mode

You run LPA in Sign-Off mode for Litho sign-off, as mandated by foundries. Unlike Routing
Layers Only mode where no user input is required, Sign-Off mode requires you to provide the
LPA configuration file containing the Techfile and other settings. You must run LPA Sign-Off
mode before handing off the design to the top-level or tape-out.
October 2010 1164 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
The following diagram shows the design flow for running LPA in Sign-Off mode.

Running LPA in Sign-Off Mode

To run LPA in Sign-Off mode, launch Encounter by using the encounter command and load
the design. When Encounter is invoked, it automatically loads all the required LPA files from
the LPA installation path. Once the Encounter GUI is displayed, perform the following steps:

Encounter Routed Database

LPA in Sign-Off Mode

Set Up LPA Sign-Off Mode

Encounter Launches LPA in Non-Blocking Mode;
Setup GUI Closes; Setup Error Messages are
Output in Encounter Environment

Litho Status Window Opens and Provides
Periodically Updated LPA Log and Run Status

LPA Run Completed; Summary of
Hotspots Displayed in Litho Status Window

Load HIF To Browse Hotspots in
Violation Browser

Nanoroute Incremental Run to Fix Hotspots
Write Incremental Area Check File (HIF)

Verify Changed Areas - Run LPA on
Incremental Area Check File or

Run Full LPA Check Again
October 2010 1165 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
1. Choose Tools -> DFM -> Litho -> Verify Litho from the Encounter menu.
October 2010 1166 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
2. This opens the Litho Verify form, with the Routing Layers tab selected by default.
Select the Sign-Off tab.

3. Specify the path and name of the LPA output directory in the Run Directory field. All
output data from the LPA run will be stored under this directory.

4. Specify the name and path of the LPA configuration file in the LPA Conf field. This
configuration file should contain the Techfile location for all layers and any additional LPA
commands that you want to execute during the LPA run.

5. In the Additional CPUs field, specify the number of additional CPUs you want to use for
the current sign-off LPA run. This number is in addition to the total number of CPUs
specified in the Total CPUs field. A higher number of additional CPUs results in
decreased run time.

6. Optionally, you can specify the name and path of the GDS list file and Stream Out Map
file in the GDS List File and Stream Out Map fields, if you want to run Poly, Diffusion,
or Metal1. The GDS list file is a text file containing the list of GDS files for LEF abstracts.
The Stream Out Map file is created by Encounter to map the GDS stream to the layers in
the Encounter database.

By default, LPA runs on the interconnect layers in Sign-Off mode but if the GDS List file
and Stream Out Map file are specified, LPA runs on the potential IP blocks defined in
these files.

7. If you have already run LPA in Sign-Off mode once and are running it again to check if
all detected hotspots have been fixed, specify the name and path of the HIF file that you
want to use for incremental validation in the Incr. HIF field. This HIF file includes the
October 2010 1167 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
locations that identify the areas affected by each hotspot fix. LPA reads these locations
and performs incremental checking only in these areas. This reduces the time for
validation.

8. By default, LPA uses the LSF settings from Encounter's Multi-CPU Settings GUI.
However, you can change the multi-CPU settings for the LPA run by selecting the Multi
CPU Settings button and specifying the new settings in the Multiple CPU Processing
form. Note that this will also change the distributed options for all Encounter commands.

9. On the Basic tab of the Multiple CPU Processing form, only the Number of Remote
Machine(s) field has an effect on the LPA run. In this field, specify the number of LSF
machines that you want to use for the LPA run.

10. On the Host Setup tab, select the lsf radio button to set the distribution method as LSF
and specify the LSF arguments in the LSF Arguments field.
October 2010 1168 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
Note: Only the LSF distribution method is supported for the Encounter-LPA integration.

11. Specify the queue and resource string that is needed for the LSF launch in the Queue
and Resource fields.

12. Select the OK button to confirm the multiple CPU settings and close the form.

13. Select the Submit button in the Litho Verify form to launch the sign-off LPA run with the
specified settings.

Note: In Sign-Off mode, LPA runs in non-blocking mode. You can continue working with
the Encounter GUI and perform design activities in parallel with Litho sign-off. If you exit
Encounter during this period, a warning is displayed informing you that LPA is still running
October 2010 1169 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
and you can load the results later.

On the successful launch of LPA, the Litho Verify form closes and the Litho Status window
is automatically displayed. The Run Directory field of this window is automatically populated
from the Litho Verify form.

The Litho Status window provides updated information about the status of the LPA run. The
Run Status field provides information on the completion percentage and approximate
remaining time of the LPA run. The run status is periodically updated in the Detail Status
October 2010 1170 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
area. You can click the Update button to manually update the status. To terminate the current
LPA run, click the Kill button.
October 2010 1171 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
On completion of the LPA run, the Litho Status window displays the summary of the hotspots
detected by the run. You can close the Litho Status window anytime during the LPA run and
open it again by selecting Tools -> DFM-> Litho -> Check Litho Status.

Note: You can also specify a different run directory name in the Run Directory field of the
Litho Status window and then click the Update button to check the output of the specified
LPA run.

Viewing Hotspots

You can load the HIF file (created in the output directory by the LPA run) in the Violation
Browser directly to view the detected hotspots. To do this, you perform the following set of
steps:

1. Select Tools -> Violation Browser -> Load Violation Report.
October 2010 1172 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
2. This opens the Load Violation Report form. Specify the path and name of the HIF file
in the File Name field.
October 2010 1173 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
3. Select the CDNLitho radio button to specify the HIF format and select the OK button to
view the hotspots in the Violation Browser.

You can also load the HIF file from the Litho Status window (Tools -> DFM-> Litho ->
Check Litho Status) by specifying the results directory name in the Run Directory field and
October 2010 1174 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
selecting the Load HIF button. This will open up the Violation Browser to show the hotspot
details.

Running CCP from Encounter

The integration of CCP with Encounter allows you to check for the potential yield issues that
are caused by variations in interconnect thickness for any design and any manufacturing
process that has been calibrated. You can run CCP to identify L1 hotspots on full chip or on
blocks larger than 1mm x 1mm.

Following are the main advantages of running CCP from within Encounter.

■ Supports manufacturability checks of routed blocks

■ Supports fast check and sign-off verification

■ Eliminates translation and setup hassles

■ Runs with default out-of-the-box setup

Depending on the Fab, you use either the Cadence model flow or the TSMC model flow to
verify your design. The only difference in the procedure to run CCP in both these flows is in
the CMP setup. For the TSMC model flow, you need to additionally set up the VCMP engine
and process file.
October 2010 1175 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
CCP Flow in Encounter

The following diagram shows the design flow for running CCP in Sign-Off mode.

Running CCP in Cadence Model Flow

To run CCP analysis on your design using the Cadence model flow, launch Encounter by
using the encounter command and load the design. When Encounter is invoked, it
automatically loads all the required CCP files from the CCP installation path. Once the
Encounter GUI is displayed, perform the following steps:

Encounter Routed Database

CCP in Sign-Off Mode

Sign-Off Setup

Launch CMP in Batch Mode; Setup GUI Closes

CMP Status Window Provides
Updated CMP Run Status

CMP Run Completed; Summary of
Hotspots Displayed in CMP Status Window

Load Output File (rdb Format) in Violation Browser

Different for
Cadence model
flow and TSMC
model flow

Nanoroute Incremental Run to Fix Hotspots
October 2010 1176 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
1. Choose Tools -> DFM -> CMP -> Verify CMP from the Encounter menu.

2. This opens the CMP Verify form, with the Sign-Off tab selected by default. In the VMP
Files field, specify the name and path of the vmp.xml file to be used for the CMP run.
October 2010 1177 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
The extraction and prediction results of the CMP analysis are based on the specifications
in your vmp file.

3. In the Output Directory field, specify the CMP output directory that will contain the
extraction and prediction results of the CMP run.

4. In the VMP Name field, specify the name of the vmp process calibration from the
vmp.xml file.

5. Optionally, you can specify the name and path of the CMP configuration file in the CCP
Conf field. This file, if specified, controls all run options of the CMP simulation.

6. GDS List File and Stream Out Map fields are also optional. You can specify the name
and path of the GDS list file and Stream Out Map file in these fields. The GDS list file is
a text file containing the list of GDS files for LEF abstracts. The Stream Out Map file is
created by Encounter to map the GDS stream to the layers in the Encounter database.

CMP runs on the interconnect layers by default, but if the GDS List file and Stream Out
Map file are specified, CMP runs on the potential IP blocks defined in these files.

7. By default, CMP uses the multiple CPU settings from Encounter's Multi-CPU Settings
GUI. However, you can change the multi-CPU settings for the CMP run by selecting the
DP Settings button and specifying the new settings in the Multiple CPU Processing
October 2010 1178 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
form. For example, if you enter 8 in the Number of Remote Machine(s) field, eight jobs
will be farmed out to LSF.

Note: If you modify the multi-CPU settings for CMP analysis, this will also change the
distributed options for all Encounter commands.
October 2010 1179 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
8. On the Host Setup tab, select the rsh radio button to set the distribution method as RSH
and add the RSH host name to the Hosts section.

9. Select the OK button to confirm the multiple CPU settings and close the form.

10. Select the Submit button in the CMP Verify form to launch the CMP run with the
specified settings.

Note: CMP runs in non-blocking mode. You can continue working with the Encounter
GUI and perform design activities while the CMP simulation is running. If you exit
Encounter during this period, a warning will be displayed informing you that CMP is still
running and you can load the results later.
October 2010 1180 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
On the successful launch of the CMP simulation, the CMP Verify form closes and the CMP
Status window is automatically displayed. This window provides updated information about
the status of the CMP run.

On completion of the CMP run, the CMP Status window displays the summary of the
hotspots detected by the run and an rdb format output file is generated in the results
directory.

You can close the CMP Status window anytime during the CMP run and open it again by
selecting Tools -> DFM-> CMP -> Check CMP Status.
October 2010 1181 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
Note: You can also specify a different run directory name in the Run Directory field of the
CMP Status window to check the output of another CMP run.

Running CMP Analysis in TSMC Model Flow

The steps to run CMP analysis on your design using the TSMC model flow are similar to the
steps in running CMP using the Cadence flow (Running CCP in Cadence Model Flow on
page 1176). The only difference is in the CMP setup. For the TSMC model flow, you need to
set the following additional fields in the CMP Verify form.

1. Select the TSMC Process check box if you want to use the TSMC model instead of the
Cadence model.

2. In the VCMP Engine field, specify the location and name of the VCMP engine that is to
be used for running CMP.

3. In the Process File field, specify the location and name of the VCMP process file to be
used for the CMP simulation.

The rest of the steps to run CMP analysis using the TSMC model flow are the same as that
in the Cadence model flow.
October 2010 1182 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
Viewing Hotspots

You can load the HIF file (created in the output directory by the CMP run in the rdb format)
in the Violation Browser directly to view the detected hotspots. To read how to load the HIF
file in the Violation Browser, refer to Viewing Hotspots on page 1161.

You can also load the HIF file from the CMP Status window (Tools -> DFM-> CMP ->
Check CMP Status) by specifying the results directory name in the Run Directory field and
selecting the Load HIF button. This will open up the Violation Browser to show the hotspot
details.
October 2010 1183 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Integration with LPA and CCP
October 2010 1184 Product Version 9.1.3

Encounter Digital Implementation System User Guide
35
Analyzing and Repairing Crosstalk

■ Overview on page 1186

■ Inputs and Outputs for SI Analysis on page 1187

■ Setting Up Encounter for SI Analysis on page 1188

❑ RC Extraction Settings on page 1188

❑ Noise Analysis Settings on page 1190

❑ Static Timing Analysis (STA) Settings on page 1193

❑ Advanced Settings for SI Analysis on page 1194

❑ Example of Setting Up Encounter for SI Analysis on page 1198

■ Preventing Crosstalk Violations on page 1199

■ Fixing Crosstalk Violations on page 1200

❑ Data Preparation on page 1200

❑ Using optDesign to Fix Setup Violations with Crosstalk Effects on page 1201

❑ Using optDesign to Fix Hold Violations with Crosstalk Effects on page 1203

❑ Using optDesign to Fix Transition Time Violations with Crosstalk Effects on
page 1205

■ Performing XILM-Based SI Analysis and Fixing on page 1208
October 2010 1185 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
Overview

Crosstalk is the undesired electromagnetic coupling between signal lines that causes
functional failures and delay variation. The effects of crosstalk might slow down or speed up
the delay depending on the transition direction of the two coupling nets.

The Encounter™ software supports signal integrity (SI) operations that include crosstalk
prevention, analysis, and repair. The software uses an advanced crosstalk repair algorithm
which features:

■ Gate sizing

■ Buffer insertion

■ Victim spacing and protection

Note: NanoRoute™ is seamlessly integrated with these tools to perform all crosstalk analysis
and repair operations.

Analyzing and repairing crosstalk is part of the signal integrity closure repair loop, which
reduces both timing and crosstalk violations starting from the prevention stage to the post-
route optimization stage in the design flow.
October 2010 1186 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
Inputs and Outputs for SI Analysis

The following design input files are required in order to repair crosstalk violations:

■ Netlist

■ SDC (timing information)

■ Routed Encounter database or DEF file (placement and routing information)

■ LEF file (physical library)

■ .cdB noise library

■ XILM data

■ Liberty library (.lib)

■ Encounter extended capacitance table file

■ QRC standalone extraction technology file and library (optional)

Note: Before you begin, ensure that your routed design meets all the timing requirements.

When finished, the software produces an Encounter database optimized for crosstalk
violations. The following files are generated:

■ Incremental SDF file

■ Incremental transition time file

■ Timing reports with and without incremental delays

Tip

Use the -detailedReports parameter of the setSIMode command to control
the report files generated during SI analysis. Set this parameter to true if you want
to enable detailed reporting for debugging purposes.
October 2010 1187 Product Version 9.1.3

../fetxtcmdref/celtic_siT.html#setSIMode

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
Setting Up Encounter for SI Analysis

■ RC Extraction Settings

■ Noise Analysis Settings

■ Static Timing Analysis (STA) Settings

■ Advanced Settings for SI Analysis

■ Example of Setting Up Encounter for SI Analysis

RC Extraction Settings

The RC extraction settings for SI analysis include the extraction engine and the extraction
filters.

Extraction Engine

You can use one of the following post-route extraction engines:

■ Detail

■ Turbo QRC (TQRC)

■ Integrated QRC (IQRC)

■ Standalone QRC

For above 65nm technology, EDI System uses detailed extraction for post-route timing and/
or optimization. However, for 65nm and below technology, if appropriate setup is available,
EDI System uses TQRC as the default post-route extraction engine. For superior correlation
with signoff extraction, use of TQRC and IQRC extraction engine is recommended. The
Integrated QRC extraction engine provides the highest accuracy in implementation flow and
is particularly recommended at ECO for incremental extraction.

Note: Integrated QRC extraction requires a separate QRC license.

To use either the TQRC or IQRC extraction engine, use the following command:

setExtractRCMode -engine postRoute -effortLevel [medium | high]

Where:

■ medium invokes the TQRC engine

■ high invokes the IQRC engine
October 2010 1188 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#setExtractRCMode

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
Extraction Filters

Extraction filters enable you to reduce the total number of parasitic capacitors in the design
by grounding some net to net coupling capacitance based on total net capacitance, absolute
coupling capacitance size, or relative coupling capacitance size compared to total
capacitance.

Effect of RC Extraction Settings on SI Analysis

Extraction coupled capacitance filtering has the most significant impact on SI analysis and
run time. EDI System automatically sets the default values for the RC extraction filters based
on the process node specified using the -process parameter of the setDesignMode
command. To set the process node, use the following command:

setDesignMode -process process_node

Note: For more information on the default values assigned to the filtering parameters with
respect to the specified process node, see the setDesignMode command.

If you do not want to use the default filtering values for RC extraction, specify the following
parameters of the setExtractRCMode command to tweak the coupling capacitance filters:

■ -total_c_th: Specifies the threshold value (femtoFarads) that determines when the
extractor lumps a net’s coupling capacitance to ground. The software grounds the
coupling capacitances for nets which have a total capacitance value less than the value
specified with this parameter.

■ -coupling_c_th: Specifies the threshold value that determines when the extractor
lumps a net’s coupling capacitance to ground. The software decouples the coupling
capacitance of nets when the total coupling capacitance between the pair of nets is lower
than the threshold specified with this parameter.

■ -relative_c_th: Sets a ratio threshold value that determines when the extractor
lumps a net’s coupling capacitance to ground. If the total coupling capacitance between
a pair of nets is less than the percentage (specified with this parameter) of the total
capacitance of the net with the smaller total capacitance in the pair, the coupling
capacitance between these two nets will be considered for grounding.

Guidelines for RC Extraction Settings

Use the following guidelines while setting up extraction:

■ Note that the detailed extraction engine (default extraction engine for SI analysis) is
significantly faster compared to TQRC or IQRC. However, it trades off accuracy of the
extraction results for performance. TQRC is about 30% faster than IQRC. TQRC and
October 2010 1189 Product Version 9.1.3

../fetxtcmdref/importT.html#setDesignMode
../fetxtcmdref/importT.html#setDesignMode
../fetxtcmdref/rcextractionT.html#setExtractRCMode

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
IQRC both support distributed processing and their use is strongly recommended to
offset longer runtime. Both TQRC and IQRC can take advantage of incremental
extraction capability in SI optimization flow to reduce runtime in subsequent cycles.

■ Ensure that the filters that you are using in the Encounter software for SI fixing are the
same as the ones used for SI signoff analysis.

■ The default filtering values set by the Encounter software based on the process node
(setDesignMode -process) attempt to capture the most significant effects of
coupling capacitances on SI analysis. It is strongly recommended that you correlate your
RCs using these default filters (set by the Encounter software) with the RCs from your
signoff extractor.

■ While setting the filtering thresholds, ensure that you retain small coupling capacitors
because SI analysis lumps these together into a single virtual attacker model. Multiple
small coupling capacitors can result in a significant virtual attacker.

■ Exercise caution while setting low-value filters because this can increase the run time
significantly.

Noise Analysis Settings

Noise analysis settings include loading the input noise model, configuring the timing windows,
choosing the noise analysis engine, setting the delta delay threshold, and specifying the
virtual attacker mode.

Noise Models

The primary input for noise analysis is a cdB library, which contains characterized noise data.
In the absence of a cdB file, you can use a Liberty library (.lib) file. However, it is strongly
recommended that you use a cdB noise library for SI analysis.

Note: For hierarchical designs, you need XILM data. For more information on XILM-based
SI analysis, see the Using Interface Logic Models in Hierarchical Designs chapter in the
Encounter User Guide.

Timing Windows

Timing windows are used to filter out signals that are not switching simultaneously. The
internal timing engine computes the timing windows and slew rates automatically.
Alternatively, you can load the timing window information by using a timing window format
(TWF) file.
October 2010 1190 Product Version 9.1.3

../soceUG/ilm.html#firstpage
../fetxtcmdref/importT.html#setDesignMode

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
Internally Generated Timing Windows

You can use the following timing window settings based on your requirement:

■ By default, the Encounter software computes the timing windows and uses that
information during noise analysis. The following is the default setting for timing windows:

❑ setSIMode -noiseTwfMode “ “

■ To use a conservative approach for analysis, set the timing windows to infinite switching
mode as shown:

❑ setSIMode -noiseTwfMode “-infSW”

■ To use the timing window files generated by common timing engine (CTE) during SI
analysis, specify the following command:

❑ setSIMode -noiseTwfMode “-useCTE”

Externally Generated Timing Windows

To use an external timing window format (TWF) file, specify the read_twf command to load
the timing window information. The TWF information specified with the read_twf command
is passed to the internal SI engine and is honored by the optDesign and timeDesign
commands.

Consider the following points when loading an external TWF file using the read_twf
command:

■ The -skiptw parameter is passed to the SI engine if you have specified the setSIMode
-noisTwfMode -infSW command.

■ The read_twf command can be used to read multiple TWF files (for each view) in case
of MMMC designs. For example:

read_twf twfFile1 -view view1

read_twf twfFile2 -view view2

optDesign –postRoute –si

■ If you have one TWF file for one of the views of an MMMC design, you can load the
available TWF file for that view and the software will create the timing window information
for all other views internally.

■ Multiple TWF files can be loaded for the same view. In this case, all the loaded files will
be passed on to the SI analysis engine.

■ Only one iteration of SI fixing is performed when using the external TWF file, and the flow
stops after routing. You will need to regenerate the external TWF files for the modified
October 2010 1191 Product Version 9.1.3

../fetxtcmdref/celtic_siT.html#setSIMode

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
design (after timing optimization) and then run the timeDesign command to get the
updated timing numbers.

■ For non-MMMC designs, if you are running hold fixing using the
-fixHoldIncludeXtalkSetup parameter of the setSIMode command, then:

❑ specify the setup TWF file using the -setup parameter of read_twf

❑ specify the hold TWF file using the -hold parameter of read_twf

Noise Analysis Engine

The Encounter software uses native signal integrity analysis to perform crosstalk analysis.
This engine is same as the one used by Encounter Timing System. If you are using Encounter
Timing System as the SI signoff tool, the same settings can be applied in Encounter for
performing noise analysis by using equivalent CeltIC NDC commands.

To use CeltIC NDC commands in Encounter, use the -insCeltICPreTcl and -
insCeltICPostTcl parameters of the setSIMode command, as shown:

setSIMode -insCeltICPreTcl { command_name; }

setSIMode -insCeltICPostTcl { command_name; }

Tip

The Cadence® Encounter® Timing System provides a sign-off timing and signal
integrity solution for a design flow and is shipped with the ETS release.

Delta Delay Threshold

You can set the delta delay threshold for noise-on-delay analysis using the following
command:

■ setSIMode -deltaDelayThreshold value

By default, the Encounter software uses the same default delta delay threshold value that is
used by the internal SI engine, which is 1ps.

Virtual Attacker Mode

To efficiently model the many small attackers on a victim net, the SI analysis engine replaces
them with an imaginary net, called a virtual attacker. The two main characteristics of a virtual
attacker are: coupling capacitance, and the voltage source waveform used as a transition on
the virtual attacker.
October 2010 1192 Product Version 9.1.3

../fetxtcmdref/celtic_siT.html#setSIMode
../fetxtcmdref/celtic_siT.html#setSIMode

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
There are two methods to create and control the characteristics of the virtual attacker.

■ Coupling Capacitance-Based Method

Matches the total coupling capacitance of a virtual attacker with the small attackers that
are being virtualized.

■ Current Matching-Based Method

Models the transitions on virtual attackers using piece-wise linear (PWL) waveforms. The
PWL waveforms are generated in a way that the current induced by the transition
matches the total current induced by all virtual attacker components.

Use the following command to setup the virtual attacker mode:

setSIMode -insCeltICPreTcl { set_virtual_attacker option1 option2 }

Guidelines for Noise Analysis Settings

■ When using a standalone tool for SI analysis such as Encounter Timing System, use the
same noise analysis settings in Encounter for best correlation results.

■ If you are using Encounter Timing System or any other third-party signoff solution, use
the following setting:

❑ setSIMode -analysisType pessimistic

Note: Although these settings will capture most of the noise violations in a pessimistic way,
it is still recommended that you match the settings with the settings of your signoff tool.

Static Timing Analysis (STA) Settings

Static timing analysis settings include the timing analysis engine and the analysis conditions.

Input Timing Library

The primary input for timing analysis is a Liberty (.lib) library.

STA Engine

Encounter uses the native timing analysis engine to perform static timing analysis. This
engine is same as the one used by Encounter Timing System. You can choose to use the
built-in timing analysis engine or a third-party tool for performing timing analysis.
October 2010 1193 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
Analysis Conditions

The important analysis conditions for running SI analysis include:

■ Setting Up the Analysis Mode

Encounter software provides different timing analysis modes and performs different
calculations for setup and hold checks for each mode. For SI analysis, set the analysis
mode to On-Chip Variation using the setAnalysisMode command:

setAnalysisMode -analysisType onChipVariation

OCV mode assumes that capture clock, launch clock, and data path can have maximum
or minimum delays in setup and hold analysis. This is the recommended analysis mode
for noise analysis.

Important

To specify the OCV analysis mode, you must use the multi-mode multi-corner
(MMMC) framework regardless of whether your design is an MMMC design. For
more information on setting up Multi-Mode Multi-Corner, see Performing Multi-
Mode Multi-Corner Timing Analysis and Optimization.

■ Removing Common Path Pessimism

To remove the common path pessimism, use the following command:

setAnalysisMode -cppr true

The -cppr parameter removes pessimism from clock paths that have a portion of the
clock network in common between the clock source and clock destination paths. The
pessimism is introduced when the timing analysis tools assume that the common path
has different delay values for two different paths in case of on-chip variation.

■ Enabling Accurate CPPR Analysis When Incremental Delays are Present

To enable accurate CPPR analysis in the presence of incremental delays, set the
following variable:

set_global timing_enable_si_cppr true

When this variable is set to true, the incremental delay is not included in the CPPR
calculation during setup analysis, but is included in the CPPR calculation during hold
analysis.

Advanced Settings for SI Analysis

■ Multi-CPU Processing Settings
October 2010 1194 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#setAnalysisMode
../soceUG/multicorner.html#firstpage
../soceUG/multicorner.html#firstpage

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
■ Path Group Settings for SI Optimization

Multi-CPU Processing Settings

Encounter supports multi-threaded, distributed, and super-threaded noise analysis for
MMMC designs, and multi-threaded and distributed noise analysis for non-MMMC designs.
Multi-CPU processing support, in general, reduces the noise analysis run time significantly.

The following command considers the multi-CPU processing settings during noise analysis:

■ optDesign -postRoute -si

■ timeDesign -postRoute -si

Tip

For information on multi-CPU processing, see Accelerating the Design Process by
Multiple-CPU Processing.

Setting Up Multi-Threading for Noise Analysis

Multi-threading enables you to run noise analysis on multiple CPUs of a single host. The host
machine could be the one on which you are running Encounter or a different host.

■ To setup multi-threaded noise analysis for non-MMMC designs on the same host, use
the following command:

setMultiCpuUsage -localCpu number

optDesign -postRoute -si

■ To setup multi-threaded noise analysis for on a different host, use the following set of
commands:

setDistributeHost -rsh -add { remote_hostname }

setMultiCpuUsage -remoteHost 1 -cpuPerRemoteHost number

optDesign -postRoute -si

Setting Up Distributed Processing for Noise Analysis

Distributed processing enables you to divide a noise analysis job between two or more
networked computers running concurrently.

■ To setup distributed processing using RSH, specify the following commands:

setDistributeHost -rsh -add { host1 host2 host3 host4 ... hostN }

setMultiCpuUsage -remoteHost number
October 2010 1195 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timinganalysisT.html#timeDesign

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
optDesign -postRoute -si

■ To setup distributed processing using LSF, specify the following commands:

setDistributeHost -lsf -queue myLSFqueue

setMultiCpuUsage -remoteHost number

optDesign -postRoute -si

Important

When setting up distributed processing for MMMC designs, ensure that there is a
corresponding host computer for each view definition. For example, if your MMMC
design has four view definitions, divide these between four host computers.

Setting Up Super-Threaded Noise Analysis for MMMC Designs

Super-threading enables you to run a noise analysis job on both distributed processing and
multi-threaded modes; that is, two or more networked computers, each with multiple
processors, can be called to concurrently run noise analysis. The super-threaded mode is
supported for MMMC designs only.

Enable super-threaded noise analysis for MMMC designs:

■ To setup super-threading using RSH, use the following commands:

setDistributeHost -rsh -add {host1 host2 host3 hostN}

setMultiCpuUsage -remoteHost number \

 -cpuPerRemoteHost number

optDesign -postRoute -si

■ To setup super-threading using LSF, use the following commands:

setDistributeHost -lsf -queue myLSFqueue

setMultiCpuUsage -remoteHost number \

 -cpuPerRemoteHost number

optDesign -postRoute -si

Examples of Setting Up Multi-CPU Processing

■ The following distributed host settings distribute one view each on host1 and host2
machines for a two-view MMMC design using RSH:

setDistributeHost -rsh -add { host1 host2 }

setMultiCpuUsage -remoteHost 2

optDesign -postRoute -si
October 2010 1196 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
■ The following multi-threading settings run each view (in eight threads) for a two-view
MMMC design sequentially:

setMultiCpuUsage -localCpu 8

optDesign -postRoute -si

■ The following settings distribute one view each on the specified host machines for a five-
view MMMC design using RSH:

setDistributeHost -rsh -add { host1 host2 host3 host4 host5 }

setMultiCpuUsage -remoteHost 5 -localCpu 4

optDesign -postRoute -si

Note: When used together, the -remoteHost parameter is given preference over the
-localCpu parameter if the number of remote hosts specified is more than the number
of CPUs specified with the -localCpu parameter. The -localCpu parameter is given
preference if the number of CPUs specified with the parameter is higher than the number
of remote hosts. In this case, the -localCpu parameter is ignored. If you intend to use
multiple hosts and multiple threads at the same time during SI optimization, use the -
remoteHost and -cpuPerRemoteHost parameters instead.

■ The following super-threading settings distribute one view each on host1 and host2
machines for a two-view MMMC design using RSH, and run each view divided between
eight threads each:

setDistributeHost -rsh -add { host1 host2 }

setMultiCpuUsage -remoteHost 2 \

 -cpuPerRemoteHost 8

optDesign -postRoute -si

Note: In this case, a total of 16 CPUs will be used.

Path Group Settings for SI Optimization

The SI optimization flow accounts for the SDC path groups. To enable path groups, use the
following command:

■ setAnalysisMode -honorClockDomains false

When you specify this command, the software disables the use of standard and user-defined
clock domains during optimization and uses path groups for timing and SI optimization
instead. This enables you to take advantage of the path group effort level during SI
optimization. In other words, optimization is run on path groups for which the effort level is set
to high (setPathGroupOptions -effortLevel high).

In addition, you can use:
October 2010 1197 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#setAnalysisMode
../fetxtcmdref/timing_ipoT.html#setPathGroupOptions

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
■ The -slackAdjustment parameter of the setPathGroupOptions command for the
slack adjustment value.

■ The -acceptableWNS parameter of the setSIMode command for the target slack
value.

The path group settings provide you the flexibility to run optimization on selective paths that
belong to critical parts of the design.

The following command accounts for path groups:

■ optDesign -postroute -si

Tip

To create, modify, and report path groups, use the following commands:

❑ group_path

❑ reset_path_group

❑ report_path_groups

❑ createBasicPathGroups

❑ setPathGroupOptions

❑ resetPathGroupOptions

❑ reportPathGroupOptions

Example of Setting Up Encounter for SI Analysis

The following example provides a summary of the settings that are required for performing SI
analysis:

Extraction Settings

setDesignMode -process 65

setExtractRCMode -engine postRoute -effortLevel high \

-capFilterMode relAndCoup

SI Settings

setSIMode -noiseTwfMode "-infSW" \
October 2010 1198 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#setPathGroupOptions
../fetxtcmdref/celtic_siT.html#setSIMode
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/sdcT.html#group_path
../fetxtcmdref/sdcT.html#reset_path_group
../fetxtcmdref/timinganalysisT.html#report_path_groups
../fetxtcmdref/timing_ipoT.html#createBasicPathGroups
../fetxtcmdref/timing_ipoT.html#setPathGroupOptions
../fetxtcmdref/timing_ipoT.html#resetPathGroupOptions
../fetxtcmdref/timing_ipoT.html#reportPathGroupOptions

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
-insCeltICPreTcl { set_virtual_attacker -gtol 0.025 -mode current; }

STA settings

Make sure MMMC/SMSC is used

setAnalysisMode -analysisType onChipVariation -cppr true

CPPR Removal

set_global timing_enable_si_cppr true

Preventing Crosstalk Violations

The following steps enable you to prevent crosstalk violations:

1. Place and optimize your design. Set reasonable max transition thresholds.

2. Fix transition time violations on the Clock tree aggressively.

3. Run timing and signal integrity driven routing using the setNanoRouteMode
-routeSiEffort command.

Note: To enable the reduction of SI effects while fixing the base timing during post-route
optimization, set the -postRouteSiAware parameter of the setOptMode command to
true. When you set this parameter to true, the software reduces the SI violations which
results in faster timing closure at the signoff stage.
October 2010 1199 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#setOptMode
../fetxtcmdref/routeT.html#setNanoRouteMode

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
Fixing Crosstalk Violations

■ Data Preparation

■ Using optDesign to Fix Setup Violations with Crosstalk Effects

■ Using optDesign to Fix Hold Violations with Crosstalk Effects

■ Using optDesign to Fix Transition Time Violations with Crosstalk Effects

Data Preparation

In order to analyze and repair crosstalk violations properly, you must prepare you data
correctly.

1. Read in signal integrity related data and libraries.

a. Generate the noise library.

Use the make_cdb utility to create the characterized noise library. For blocks, you
can save a block-level cdB in Encounter if the block will be represented as a black-
box on the timing side.

The make_cdb utility can be run in interactive mode or in batch mode. For
information on how to use the make_cdb utility, see the make_cdB Noise
Characterizer User Guide.

2. Check that the data and libraries are correct and that there are no timing violations.

a. Check your congestion map and resolve any highly congested areas using the
following command:

congOpt

b. Correct transition time violations.
October 2010 1200 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
c. Perform RC Extraction and Correlation

You can use native detailed extraction, Turbo QRC, Integrated QRC, or standalone
QRC sign-off extraction to extract the routed design. To correlate native extraction
results with QRC sign-off extraction, you compare SPEF files from basic and sign-
off extraction to generate the new scaling factors for total capacitance, cross-
coupling capacitance, and resistance. Using these scaling factors, the native
extraction results are closer to the sign-off extraction results, while only taking a
fraction of the run time required for sign-off extraction. For more information, see
“Correlating Native Extraction With Sign-Off Extraction”.

3. Read in a placed and routed database.

restoreDesign your_design.dat your_topCell

Using optDesign to Fix Setup Violations with Crosstalk Effects

Use the optDesign command with the -postRoute and -si parameters to correct glitch
and setup violations caused by incremental delays, which occur due to coupling capacitance.
The optDesign command fixes additional setup time violations caused by incremental delay
up to a target slack equaling the worst negative slack without incremental delays. It is
recommended that a design be optimized to the worst negative slack without incremental
delays before performing SI fixing. The optDesign command avoids the degradation of the
worst negative slack without incremental delays while fixing the setup time violations with
incremental delays.

The setup time violations are fixed before glitch violations. By default, two iterations are done
for SI fixing. However you can use the -maxNrIter parameter of the setSIMode command
to specify a different number for the iterations to be performed.

Important

For best results, setup Encounter SI analysis to match SI sign-off analysis before
using the optDesign command.

Using RC Data Generated by an External Tool for SI Fixing

You can load the RC data generated by an external tool by using the spefIn command in
Encounter to do SI fixing. When RC data from an external tool is used, SI fixing is limited to
one iteration. RC data needs to be regenerated using the third-party tool to perform SI
analysis and generate reports after fixing.
October 2010 1201 Product Version 9.1.3

../soceUG/extractRC.html#CorrelatingNativeExtractionWithSignOffExtraction
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/celtic_siT.html#setSIMode
../fetxtcmdref/rcextractionT.html#spefIn

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
Important

For MMMC designs, ensure that you use the spefIn command to load the parasitic
data for each corner.

Using SDF Data Generated by an External Tool for SI Fixing

You can use SDF data generated by an external tool in Encounter to do limited SI fixing. When
SDF data from an external tool is used, SI fixing is limited to one iteration of fixing. SDF data
needs to be regenerated with the external tool to perform SI analysis and generate reports
after fixing.

Fixing Setup Violations Using External SDF for Non-MMMC Designs

For non-MMMC designs, the SDF file specified with the -setupSdfFile parameter of the
setOptMode command is used for fixing setup violations.

■ Use the following command to specify the SDF file for SI fixing in non-MMMC designs:

setOptMode -setupSdfFile filename

The other requirements for using the external SDF file for SI setup fixing flow are:

■ Specify the target slack using the -acceptableWNS parameter of the setSIMode
command:

setSIMode -acceptableWNS value

Note: This is a mandatory setting.

■ Enable the external SDF based SI fixing flow:

optDesign -postRoute -si -useSDF

Fixing Setup Violations Using External SDF for MMMC Designs

For MMMC designs, use the read_sdf command to load an SDF file for each view.

■ Use the following commands to load separate SDF files for two different views:

read_sdf -view viewname1 filename1

read_sdf -view viewname2 filename2

■ Enable the external SDF based SI setup fixing flow:

optDesign -postRoute -si -useSDF
October 2010 1202 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#read_sdf
../fetxtcmdref/rcextractionT.html#spefIn
../fetxtcmdref/timing_ipoT.html#setOptMode
../fetxtcmdref/celtic_siT.html#setSIMode

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
Using optDesign to Fix Hold Violations with Crosstalk Effects

Use the optDesign command with the -postRoute, -hold, and -si parameters to
correct hold violations caused by incremental delays, which occur due to coupling
capacitance. The optDesign command corrects additional hold violations caused by
incremental delays up to a target slack equaling the hold worst negative slack without
incremental delays. It is assumed that a design has been optimized to the best hold worst
negative slack without incremental delays before performing SI fixing. The optDesign
command does not degrade the hold worst negative slack (without incremental delays) and
setup worst negative slack (without incremental delays) while fixing the hold violations with
incremental delays.

Important

By default, setup SI analysis is not performed. However, you can choose to enable
setup SI analysis while performing SI hold fixing. In this case, the optDesign
command will try not to degrade setup violations with incremental delays while fixing
hold violations with incremental delays. To account for crosstalk setup timing
information while performing SI hold fixing, use the following setting:

setSIMode -fixHoldIncludeXtalkSetup true

Using RC Data Generated by an External Tool for SI Hold Fixing

You can load the RC data generated by an external tool by using the spefIn command in
Encounter to do limited SI hold fixing. When RC data from an external tool is used, SI hold
fixing is limited to one iteration. RC data needs to be regenerated with the external tool to
perform SI analysis and generate reports after fixing.

Important

For MMMC designs, ensure that you use the spefIn command to load the parasitic
data for each corner.

Using SDF Data Generated by an External Tool for SI Hold Fixing

You can also use SDF data generated by an external tool in Encounter to do limited SI hold
fixing. When SDF data from an external tool is used, SI hold fixing is limited to one iteration.
SDF data needs to be regenerated with the external tool to perform SI analysis and generate
reports after fixing.
October 2010 1203 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/celtic_siT.html#setSIMode
../fetxtcmdref/rcextractionT.html#spefIn
../fetxtcmdref/rcextractionT.html#spefIn

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
Fixing Hold Violations Using External SDF for Non-MMMC Designs

For non-MMMC designs, the SDF file specified with the -holdSdfFile parameter of the
setOptMode command is used for SI hold fixing.

■ Use the following command to specify the SDF file for both setup and hold fixing:

setOptMode -setupSdfFile filename -holdSdfFile filename

The other requirements for using the external SDF file for SI fixing flow are:

■ Specify the target slack using the -acceptableWNS parameter of the setSIMode
command:

setSIMode -acceptableWNS value

Note: This is a mandatory setting.

■ Enable the external SDF based SI hold fixing flow:

#When you are performing setup and hold fixing in the same flow.

setOptMode -setupSdfFile filename -holdSdfFile filename

optDesign -postRoute -si -hold -useSDF

Fixing Hold Violations Using External SDF for MMMC Designs

For MMMC designs, use the read_sdf command to load an SDF file for each view.

■ Use the following commands to load separate SDF files for two different views:

read_sdf -view viewname1 filename1

read_sdf -view viewname2 filename2

■ Enable the external SDF based SI fixing flow:

optDesign -postRoute -si -hold -useSDF
October 2010 1204 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#read_sdf
../fetxtcmdref/timing_ipoT.html#setOptMode
../fetxtcmdref/celtic_siT.html#setSIMode

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
Using optDesign to Fix Transition Time Violations with Crosstalk Effects

You can now fix SI induced maximum transition violations in Encounter by using:

■ A transition file generated during noise analysis

■ External transition file(s) generated by third-party tools.

SI Transition Violation Fixing

In the default flow, use the -fixDRC parameter of the setSIMode command to perform
maximum transition violation fixing. After setting this parameter to true, run the optDesign
-postRoute -si command to perform maximum transition violation fixing using transition
information obtained from the transition file (celtic.slew) generated during noise analysis.

Note: The transition values will be used for maximum transition violation fixing only and will
not affect the timing calculation in Encounter’s timing engine. This is because the transition
effect is considered by the internal SI engine during delay pushout calculation.

The following commands support the -fixDRC parameter of the setSIMode command, and
report the transition violations in the Timing Summary report.

■ timeDesign -postRoute -si

■ timeDesign -signoff -si

■ timeDesign -reportOnly -si

Transition Violation Fixing Using Transition File Generated During Noise Analysis
Without Glitch or Noise-On-Delay Fixing

Use the -drv parameter of the optDesign command to perform DRV fixing only:

optDesign -postRoute -si -drv

In this flow, the software does not perform glitch and noise-on-delay fixing.

Important

The -hold parameter cannot be specified when using the -drv parameter with the
-si parameter.
October 2010 1205 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#timeDesign
../fetxtcmdref/celtic_siT.html#setSIMode
../fetxtcmdref/celtic_siT.html#setSIMode
../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timinganalysisT.html#timeDesign
../fetxtcmdref/timinganalysisT.html#timeDesign

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
Transition Violation Fixing Using External Transition File(s)

Use the readTransitionFile command to read the external transition file before
performing maximum transition violation fixing. The transition file should contain the transition
values in the following format:

setTranTime [-add] [-maxR slewValue | -maxF slewValue] { pinName }

Important

The transition values specified in the transition file must be in nanoseconds (ns).

Where:

■ Specify the following command for reading an external transition file for non-MMMC
designs:

readTransitionFile -file fileName

■ Specify the following command for reading an external transition file for MMMC designs:

readTransitionFile -view viewName -file fileName

Note: Ensure that you specify the transition files for all setup views.

After you read in the transition file, specify the following command to fix the maximum
transition violations:

optDesign -postRoute -si -useTransitionFiles -drv

To fix the maximum transition violations for selected nets, use the -selectedNets
parameter of the optDesign command.

Option Description

-add Specifies that the transition value is incremental.

-maxR | -maxF Specifies the maximum rise or fall transition.

pinName Specifies the pin name for which the transition value is specified.

To specify multiple pin names, use separate setTranTime
statements as follows:

setTranTime -add -maxR 3.5 inst/A

setTranTime -add -maxR 3.5 pinB

Note: Minimum transition values will be ignored while performing
transition violation fixing.
October 2010 1206 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/celtic_siT.html#readTransitionFile

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
Note: In this flow, the software will exit after the ecoRoute command.

Tip

Use the following command to report the maximum transition violations when
specifying external transition files:

timeDesign -postRoute -si -useTransitionFiles

External Transition and SDF Files Used for Transition Violation and Delay Fixing

To perform maximum transition violation fixing along with delay pushout fixing, you will need
to specify the external transition file as well as the external SDF file.

■ Use the following commands for non-MMMC designs:

setOptMode -setupSdfFile fileName

setSIMode -acceptableWNS value #This is a mandatory setting.

readTransitionFile -file fileName

optDesign -postRoute -si -useSDF -useTransitionFiles

Note: To perform transition violation fixing using an external transition file, use the
-selectedNets parameter of the optDesign command. This parameter works with
the -useTransitionFiles parameter but not with the -useSDF parameter.

■ Use the following commands for MMMC designs:

read_sdf -view viewName1 fileName1

read_sdf -view viewName2 fileName2

readTransitionFile -view viewName1 -file fileName1

readTransitionFile -view viewName2 -file fileName2

setSIMode -acceptableWNS value #This is a mandatory setting.

optDesign -postRoute -si -useSDF -useTransitionFiles

Note: To perform maximum transition violation fixing on selected nets, use the
-selectedNets parameter of the optDesign command. This parameter is valid with
the external transition file flow only.
October 2010 1207 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timing_ipoT.html#optDesign

Encounter Digital Implementation System User Guide
Analyzing and Repairing Crosstalk
Performing XILM-Based SI Analysis and Fixing

The model-based flow in Encounter involves generating timing accurate interface logic
models (ILMs) for hierarchical blocks. To perform SI analysis, the model data generation
process should account for the characterized noise library of the blocks, the timing window
information of non-ILM timing path nets inside the blocks, and cross-coupling information.
This data, which is an extension to ILMs, is called eXtended Interface Logic Model (XILM).
An XILM is built with:

■ Cells and RC network (including cross-coupling data) connected from each I/O pin to and
from the first latch or flip-flop.

■ eXtended Timing Window Format (XTWF) file that contains timing window and slew
information of non-ILM timing paths inside the block, which might be aggressors to the
nets on the ILM timing path or the top-level nets.

Note: For more information on XILM-based SI analysis, see the Using Interface Logic Models
in Hierarchical Designs chapter of the Encounter User Guide.
October 2010 1208 Product Version 9.1.3

../soceUG/ilm.html#firstpage
../soceUG/ilm.html#firstpage

Encounter Digital Implementation System User Guide
36
Power and Rail Analysis

Encounter Power System (EPS) sign-off power and rail analysis engines are fully integrated
in Encounter Digital Implementation System (EDI System). The TCL and GUI use-models are
identical in stand-alone EPS and its integration in EDI System. The power and rail analysis in
EDI System is available under the Power menu (EPS is under Power & Rail menu). These
menus are arranged differently between the two products (See EDI System and EPS menu
differences). The Early Rail Analysis (ERA) feature is available through EDI System and is
not available in Encounter Power System (EPS).

■ Early Rail Analysis

■ Signoff-Rail Analysis

■ EDI System and EPS menu differences
October 2010 1209 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
Early Rail Analysis

ERA uses EPS power and rail analysis engines and can be used during power-grid
prototypes to analyze power, IRdrop and power-grid integrity.

■ Early Rail Analysis Key Features

■ Prior to Running Early Rail Analysis

■ Setting up and Running Early Rail Analysis

■ Running Early Rail Analysis in Unplaced Mode

■ Viewing Early Rail Analysis Results

Early Rail Analysis Key Features

■ Static and Dynamic Rail analysis during the floorplanning stage using grid based
interactive current specification use-model. Dynamic Rail Analysis requires EPS-XL
license. Static Rail Analysis can be run using EDI license.

■ Power and rail analysis during placement stage using virtual power-grid connectivity to
the instance power pin

■ Power and rail analysis on placed and routed database

■ No requirement for extraction tech file or power-grid cell libraries. Optionally, power-grid
libraries can be used for the placed macros to achieve better accuracy. Usage of power-
grid libraries (.cl extension) requires EPS licenses.

■ Flexible power-constraints specification including:

❑ Total power and current regions

❑ Calculating power for placed instances and specify current regions for unplaced
regions

❑ Instance current and current region files for macros

■ Package and pad location optimization based on IRdrop analysis

■ Early power-switch analysis to refine power-switch placement

❑ Support for static instance power file in the ASCII format

❑ Support for power-grid electro-migration analysis

❑ Support for power-grid optimization guidance using sensitivity analysis
October 2010 1210 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
❑ Support for net-based and domain-based rail analysis

❑ Decap analysis and optimization during dynamic rail analysis

❑ Support for multi-CPU in static rail analysis, and static and dynamic power and rail
analysis. For information on how to set up multi-CPU analysis, see the “Distributed
Processing” chapter of the Encounter® Power System User Guide.

❑ Two-port and n-port die-model generation during dynamic rail analysis. The early
die-model for the chip can be used with package to perform resonance and
impedance analysis of the system.

❑ Support for peak current mode for the entire design during dynamic rail analysis

❑ Support for unplaced flow during static and dynamic analysis

■ What-if analysis to guide power-grid optimization

Prior to Running Early Rail Analysis

Prior to running Early Rail Analysis it is recommended to check the power rail and vias for
problems. This can be done with the verifyGeometry, verifyConnectivity, and
verifyPowerVia commands described in the Encounter Digital Implementation
System Text Command Reference. You can find additional information in the Design
Sanity Checks chapter of the Encounter Power System User Guide.

If there are missing power vias, you can use the Power - Power Planning - Edit Power Via
form shown in Figure 36-1 on page 1212, to correct the problem. This form can be used for
adding, removing, and sizing the power vias.

The design must be loaded into EDI System. Early Rail Analysis (ERA) has the ability to
analyze power grid integrity early in the floorplanning state, after placement, as well as post
routing. ERA helps fix power-grid problems early in the flow, rather than waiting for when the
layout is mostly done and the problems are much more difficult to correct. ERA will take
whatever blocks, macros, standard cells, and routing that is available to help improve the
accuracy of early rail analysis.
October 2010 1211 Product Version 9.1.3

../fetxtcmdref/verificationT.html#verifyConnectivity
../fetxtcmdref/verificationT.html#verifyPowerVia

Encounter Digital Implementation System User Guide
Power and Rail Analysis
Figure 36-1 Edit Power Vias

Setting up and Running Early Rail Analysis

After the design is loaded, use the following steps to set up and run Early Rail Analysis:

■ Select Power -> Rail Analysis - Early Rail Analysis menu. The form shown in
Figure 36-2 on page 1213 will appear with the tab set to Method by default. Select the
Static or Dynamic method, and specify the Net Based or Domain Based analysis
type. In domain based analysis, power and ground nets in the domain are analyzed
together. While in static analysis, the IR drop results do not change whether you choose
October 2010 1212 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
Net Based or Domain Based analysis. In dynamic analysis, the domain based analysis
uses coupled capacitance between power and ground net which can give better
accuracy as compared to net based analysis which uses decoupled capacitance.

Figure 36-2 Early Analysis - Static Method Form
October 2010 1213 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
Figure 36-3 Early Analysis - Dynamic Method Form

Note that the content of the form changes depending on selection of the analysis method.

■ Next the locations of the power rail voltage sources (VDD, VSS ...) need to be specified
and placed in a text file. This can be done automatically by selecting the Create button.
The form in Figure 36-4 on page 1215 will appear. By entering one of the power or
ground net names, such as VSS, in the Net field and selecting the Auto Fetch button,
the VSS Pad Location List will automatically be filled in with location and layer values
based on the VSS pins in the DEF. Repeat the process for all of the other power and
ground sources that you are interested in analyzing.
October 2010 1214 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
■ You can select the Snap option to snap voltage sources defined in I/O pads to the core.
If this option is selected, ERA performs autofetch with snapping. You can also specify
distance of snapping distance constraint from I/O pad pins, and a layer that should not
be lower than the lowest layer snap constraint.

■ Next the Power Location List must be saved to a file. This file can be saved in either
the Encounter (ENC) or VoltageStorm (VS) format. After specifying the Save File
Format select the Save button.

Figure 36-4 Edit Pad Location
October 2010 1215 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
■ Looking back at Figure 36-2 on page 1213, select the Net Name that you want to
analyze from the menu selection. The Voltage, Limit, and Bias fields will be automatically
filled in.

❑ Voltage

Specifies the voltage of the power or ground net that you will be analyzing

❑ Limit

Specifies the IR drop constraint for analysis. All power grid elements operating
below this limit (or above if is a ground net) will be flagged as a violation and can be
seen in the violation browser.

❑ Bias

Specifies a bias voltage (supply range) for power and ground nets. This voltage is
used to compute current based on power specification. For the power net, the net
voltage is used by default. For the ground net, the rail analysis does not know how
to convert the specified power into current or at what voltage power was computed.
The bias voltage will be needed to be specified in this case.

Note: Bias is only used when you specify Total Current. It is not used if Calculate
Static Power is selected.

■ Next one must specify what method you will be using for defining Power (Current)
information:

❑ Calculate Static Power or Calculate Dynamic Power

Select this if you want Power Calculator to calculate the power for each instance in
the design. This requires that your design is placed.

❑ Total Current/ Specify PWL Current Regions

If your design is not placed, you can specify a total static current in mA or PWL
dynamic current regions for the design.

❑ Instance Current File

You can also specify an instance current file from a previous power run. The power
calculator generates binary static and dynamic current files for each power net with
the extension .ptiavg.

❑ Instance ASCII Power File

Optionally, you can also supply an external instance ASCII power file during static
rail analysis. This file must have a two-column format with instance name and power
in Watt. This option only applies to static rail analysis.
October 2010 1216 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
❑ Peak Current

Optionally, you can also supply a single peak current value in mA for the entire
design. This option only applies to dynamic rail analysis.

■ Next, specify the Pad Location File that was created earlier.

■ If you select Display IR, then at the end of early rail analysis, the ir (voltage) results
display will automatically be loaded in the layout window.

■ You can select the Regions tab, and will see the fields shown in Figure 36-5 on
page 1221.

Selecting Current Region, provides the ability to:

❑ Point to Static Current Region File or Dynamic Current Region File - The file
format is as follows:

##

#Format: LABEL name AREA x1 y1 x2 y2 LAYER layername <CURRENT value | PWL
(...)> INTRINSIC_CAP value LOADING_CAP value

#Unit: current mA, cap pf, time ns, coordinate um

##

e.g. dynamic current region file,

label REGION1 area 44.932 643.848 613.073 1252.7025 layer M1 pwl (0ns 0mA
1ns 0mA 1.9ns 0mA 2ns 5mA 3ns 0mA 4ns 0mA 5ns 0mA) intrinsic_cap 7.38504
loading_cap 49.2336

❑ Draw Current Regions to create a Current Region List.

Use this when you have an area that has not been placed, but you would like to have
its power consumption influence the overall grid.

Specifies the coordinates of the region, the layer, and the current. The Add button
can be selected to add the region to the Current Region List. The Delete button
will delete a selected item on the list.

x1, y1, x2, and y2 specifies a rectangular region that the current will be distributed
within.

Rectilinear specifies the rectilinear current region that the current will be distributed
within.

Note: In the static mode, ERA splits the rectilinear region into several rectangular
regions and distributes current to the rectangular regions based on the area.

Current in rectangular region = Area of the rectangle / Area
of the rectilinear

Layer specifies the metal layer that the current sink will be placed on.
October 2010 1217 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
If you select Draw, then select a box in main window, the coordinate of this box will
be automatically populated in x1 y1 x2 y2. Use the left mouse button to draw the box
in EDI System.

If you select View after selecting an item in the list, the selected region will be
displayed in the main window.

label specifies a name for the region. If not specified, EDI System will provide a
name (region1, region2...)

You can also specify a rectilinear box to add a current region. The rectilinear box
enables you to specify multiple x,y points to add current regions in the areas that are
not rectangular in shape. To draw the rectilinear box in EDI System, use the left
mouse button and select multiple points. Use the ‘Esc’ key to the last point of the
rectilinear box to finish and capture the box co-ordinates.

Note: The tool will connect the region through a “virtual” power connection to the
power pin, since there is no power routing.

For dynamic current regions, the PWL waveform is specified in time (ns) and current (mA)
pairs. In addition to the dynamic current, you should specify loading capacitance and cell
intrinsic capacitance which impacts dynamic IRdrop. If this information is not available for the
region, you can choose to select the Estimate button, which will populate these values
automatically. These capacitance values are derived by calculating loading capacitance of
the design using wire-load models and using percentage ratio of loading capacitance to
estimate cell intrinsic capacitance in the region.

Some of the advanced early analysis features are available through the Advanced tab.

■ You can select the Advanced tab, and will see the fields shown in Figure 36-7 on
page 1223.

Selecting Current Region, provides the ability to:

❑ Specify a Macro Power File

This is a text file with a list of macros and the power (current) that they consume.
This is only available in static rail analysis.

An example macro file is shown below:

RAM1 0.1

RAM2 0.2

INVX1 0.001

❑ Specify Power (Currents) or scale power for design hierarchy.
October 2010 1218 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
❑ Specify a power-grid library for macros to view IRdrop inside macros and its impact
on global grid. Optional.

This is for characterized cells that have been placed. See Power and Rail Analysis
on page 1209

❑ Specify a power-gate file to analyze nets which are power-gated

The power-gate file syntax is as follows:

CELL cellname SUPPLY supplypin SWITCHED switchedpin
RON val IDSAT val ILEAK val

If this is specified it is expected that the power-switches are fully connnected to the
appropriate alwaysOn and Switched power nets. ERA will extract the power-grid and
perform steady state IRdrop analysis.

For information about power gate analysis, see “Power Gate (Switch) Analysis“ in
the Encounter® Power System User Guide.

See Power and Rail Analysis on page 1209 in this manual for details.

❑ Specify a temperature

❑ Specify EM models. Optional. The electro-migration analysis is only supported in
static rail analysis, which includes:

❍ Support for LEF layer names in the EM model with/without power-grid libraries

❍ Support for technology layer names in the EM model only with power-grid
libraries

For information about EM models, see “Overview of Static IRDrop and EM analysis“
in the Encounter® Power System User Guide.

❑ Specify package models and mapping file. Optional. The package model is in the
SPICE format and contains R,L,C and K parameters for package wires. The
mapping file maps package terminals to chip power pad terminals. These files can
be generated using package designer software like Allegro.

For information about the file format and analysis, see “Package Analysis“ in the
Encounter® Power System User Guide.

❑ If package information is provided during dynamic rail analysis, you can choose to
generate two-port or n-port die-models.

For information about package analysis, see “Package Analysis“ in the Encounter®
Power System User Guide.
October 2010 1219 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
❑ Enable sensitivity analysis when performing static early rail analysis. Sensitivity
analysis highlights power-grid segments that can be optimized to achieve better
overall IRdrop profile for the design. The sensitivity analysis plot is available through
view_analysis_results (fig 34-6) under plot “rs”.

❑ Save instance based voltage waveform files in the state directory of analyzed net(s)
to feed to SPICE critical path analysis and Substrate Noise Analysis. You can select
the Save Voltage Waveform Files option only in the dynamic mode.

❑ Specify the transient time step size for a current waveform. You can specify this
parameter only in the dynamic mode.

❑ Skip the steps in constructing an R network (PGDB), while the software continues
to generate other files for early rail analysis.

❑ Generate dynamic IRdrop and tap current movies during early rail analysis. You can
specify this parameter only in the dynamic mode.

❑ Perform what-if anlaysis to guide power-grid optimization. This analysis is used
primarily to change electrical parameters of the power-grid to estimate eventual
optimization efforts to satisfy IRdrop and ElectroMigration limits.

The following power-grid what-if analysis features are available in ERA:

❍ Scaling Resistance of the Power-Grid

❍ Scaling Static and Dynamic Currents

❍ Scaling Capacitance

What-if analysis is also available through the following TCL command parameters:

❍ -scale_what_if_resistance fileName

❍ -scale_what_if_capacitance fileName

❍ -scale_what_if_current fileName

For information about what-if analysis, see “What-If Rail Analysis” in the
Encounter® Power System User Guide.

See analyze_early_rail command for details on these and other options.

■ Select OK or Apply and the early rail analysis will be run.
October 2010 1220 Product Version 9.1.3

../fetxtcmdref/railanalysisT.html#analyze_early_rail

Encounter Digital Implementation System User Guide
Power and Rail Analysis
Figure 36-5 Early Analysis - Static Regions Form
October 2010 1221 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
Figure 36-6 Early Analysis - Dynamic Regions Form
October 2010 1222 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
Figure 36-7 Early Rail Analysis - Advanced Form
October 2010 1223 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
Running Early Rail Analysis in Unplaced Mode

You can run ERA in unplaced mode, i.e., run the ERA flow without any placed instances. ERA
now allows an empty netlist (with no instance inside) with the unplaced flow.

To run ERA in unplaced flow:

■ static analysis - specify -total_current and -current_region_file (specify a
current region file that covers the whole design)

■ dynamic analysis - specify -current_region_file (specify a current region file that
covers the whole design)

The -instance_current_file, -instance_ascii_power_file, -
calculate_power, and -macro_power_file parameters are not allowed in an unplaced
flow. Also, the pad cell file format is not allowed for the pad location file in an unplaced flow,
as it does not have location information for unplaced IO pads.

The TCL command syntax is as follows:
analyze_early_rail

[-help]

[-method {static | dynamic}]

-bias_voltage voltage

[-create_die_model {two_port | n_port}]

[-domain_ground_nets {netName1 netName2 ...}]

[-domain_name name]

[-domain_power_nets {netName1 netName2 ...}]

[-domain_voltage voltage]

[-em_models_file filename]

-net_voltage voltage

-volt_limit voltage

[-temperature value_in_celcius]

[-macro_power_file filename]

[-current_region_file filename]

-pad_location_file {{fileName1 netName1} {fileName2 netName2} ...}

[-package_model_file fileName]

[-package_mapping_file fileName]

[-power_gate_file filename]

[-power_grid_library cell_library_directories]

[-display_IR]

-net {netName +}

[-instance_current_file filename]
October 2010 1224 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
[-skip_virtual_via_on_layers [{{layer1 layer2} {layer3 layer4} ...} | all]]

[-calculate_power]

[-total_current current_in_Amp]

[-type {net_based | domain_based}]

[-scale_heirarchy_current { {hier_name [scale|current] value} +]

[-instance_ascii_power_file {filename +}]

[-enable_sensitivity_analysis]

[-peak_current]

[-scale_what_if_resistance filename]

[-scale_what_if_capacitance filename]

[-scale_what_if_current filename]

[-save_voltage_waveforms]

[-step_size stepsize]

[-skip_extraction]

Viewing Early Rail Analysis Results

Selecting the Power - Report - Power & Rail results will bring up the form shown in Power &
Rail Results on page 1226.
October 2010 1225 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
Figure 36-8 Power & Rail Results

The State Directory will automatically be filled in with the location of the most recent analysis
that was run. You can also specify values for previous runs. All of the ERA runs will be located
in a FE2VSEarlyRA directory.
October 2010 1226 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
You can specify the type of plot (Rail Analysis, Power Analysis, or Capacitance) and then
select the specific plot type. An instance power (ip), load capacitance (load), and irDrop (ir)
plot are shown in Instance Power Plot on page 1227, Load Capacitance Plot on page 1228,
and irDrop Plot on page 1229respectively.

For Early Rail Analysis the viewing of Power & Rail Results is the same as that used for Sign-
off Analysis. For additional information on viewing the plots, see Power and Rail Analysis on
page 1209.

Figure 36-9 Instance Power Plot
October 2010 1227 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
Figure 36-10 Load Capacitance Plot
October 2010 1228 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
Figure 36-11 irDrop Plot
October 2010 1229 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
Signoff-Rail Analysis

For details on running Signoff Power and Rail Analysis within EDI System, see Encounter
Power System User Guide chapters 5-12.

The EDI System Power and Rail Analysis commands and forms are identical to those in
Encounter Power System, but the menus are organized differently. The forms are accessed
in different places in the pull-down menus for each of the two products. This is shown on the
next page.:
October 2010 1230 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
EDI System and EPS menu differences

Form EDI System Menu EPS Menu

Set Power Analysis
Mode

Power - Power Analysis Power & Rail Analysis

Run Power Analysis Power - Power Analysis Power & Rail Analysis

Early Rail Analysis Power - Rail Analysis not part of EPS

Set Power Library
Mode

Power - Rail Analysis -
PowerGrid Library

Power & Rail Analysis -
PowerGrid LIbrary

Create PowerGrid
Library

Power - Rail Analysis -
PowerGrid Library

Power & Rail Analysis -
PowerGrid Library

Set Rail Analysis Mode Power - Rail Analysis Power & Rail Analysis

Run Rail Analysis Power - Rail Analysis Power & Rail Analysis

Create Hierarchical
View

Power - Rail Analysis Power & Rail Analysis

PowerGrid Library
Report

Power - Report Power & Rail Analysis-
Report

Power Report Power - Report Power & Rail Analysis-
Report

Power Histograms Power - Report Power & Rail Analysis-
Report

Power & Rail Results Power - Report Power & Rail Analysis-
Report

Dynamic Movies Power - Report Power & Rail Analysis-
Report

Dynamic Waveforms Power - Report Power & Rail Analysis-
Report
October 2010 1231 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Power and Rail Analysis
October 2010 1232 Product Version 9.1.3

Encounter Digital Implementation System User Guide
37

Verifying Violations

■ Overview on page 1234

■ Interrupting Verification on page 1237

■ Verifying Connectivity on page 1238

■ Verifying Metal Density on page 1240

■ Verifying Geometry on page 1242

■ Verifying Process Antennas on page 1247

■ Verifying Maximum Floating Area Violations on page 1250

■ Verifying AC Limit on page 1251

■ Viewing Violations With the Violation Browser on page 1252

■ Clearing Violations on page 1255
October 2010 1233 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Verifying Violations
Overview

The verification commands in the Encounter Digital Implementation System (EDI System)
check and report on the following types of violations:

■ Connectivity

Checks for opens, unconnected wires (geometrical antennas), loops, and partial routing.

Verify the connectivity of the design after the following design step:

❑ Detailed routing

For more information, see

❑ Verifying Connectivity on page 1238

❑ verifyConnectivity in the “Verify Commands” chapter of the Encounter
Digital Implementation System Text Command Reference

■ Metal density

Checks that the metal density of the metal layers is within the minimum and maximum
metal density values specified by the LEF file or the setMetalFill command. Also
checks the density of the cut layers.

Verify the metal density after the following design step:

❑ Inserting metal fill

For more information, see verifyMetalDensity and verifyCutDensity in the
“Verify Commands” chapter of the Encounter Digital Implementation System Text
Command Reference.

■ Geometry

Checks the physical layout of the design, including width, length, spacing, area, overlap,
enclosure, wire extension, and via stacking violations. If you modify or edit any part of the
design, run verifyGeometry to make sure the design is still DRC clean.

Verify the geometry of the design after the following design steps:

❑ Placement

❑ Power routing

❑ Detailed routing

❑ Wire editing
October 2010 1234 Product Version 9.1.3

../fetxtcmdref/verificationT.html#verifyConnectivity
../fetxtcmdref/verificationT.html#verifyMetalDensity
../fetxtcmdref/verificationT.html#verifyCutDensity

Encounter Digital Implementation System User Guide
Verifying Violations
For more information, see

❑ Verifying Geometry on page 1242

❑ verifyGeometry in the “Verify Commands” chapter of the Encounter Digital
Implementation System Text Command Reference.

■ Process antennas and unconnected metal segments (floating areas)

Checks the charge that builds up on pins caused by routing that does not have a
discharge path to a gate. The verifyProcessAntenna command checks for pin
routing that violates the maximum antenna charge for the pins, and reports violations on
pins that have an antenna ratio larger than the maximum allowed antenna ratio specified
for the routing layer.

The verifyProcessAntenna command also checks for unconnected metal segments
that violate the maximum area specified in the LEF file. An unconnected (floating) metal
segment is a segment that is not connected to diffusion (or a polysilicon gate) through
the same layer or a lower layer.

Verify process antenna and maximum floating area violations after the following design
step:

❑ Detailed routing

For more information, see verifyProcessAntenna in the “Verify Commands” chapter
of the Encounter Digital Implementation System Text Command Reference.

■ AC limit

Checks for AC current violations on signal nets.

Verify the AC limit after the following design step:

❑ Detailed routing

For more information, see verifyACLimit in the “Verify Commands” chapter of the
Encounter Digital Implementation System Text Command Reference.

■ Lithography hotspots

The software can interpret hotspot interchange format (HIF) files. For more information,
see loadViolationReport in the “Verify Commands” chapter of the Encounter
Digital Implementation System Text Command Reference.

■ Placement
October 2010 1235 Product Version 9.1.3

../fetxtcmdref/verificationT.html#verifyGeometry
../fetxtcmdref/verificationT.html#verifyProcessAntenna
../fetxtcmdref/verificationT.html#verifyACLimit
../fetxtcmdref/verificationT.html#loadViolationReport

Encounter Digital Implementation System User Guide
Verifying Violations
For more information on the types of violations, see checkPlace in the “Placement
Commands” chapter of the Encounter Digital Implementation System Text
Command Reference.

■ Violation markers

You can use text commands or GUI forms to check the violations and create the reports.

You create violation markers with the EDI System commands, or import markers from
another verification tool, such as Assura™ or Calibre, and view the markers with the
Violation Browser. The EDI System software saves the markers with the database.

For more information, see “Viewing Violations With the Violation Browser” on page 1252.

Test
October 2010 1236 Product Version 9.1.3

../fetxtcmdref/placementT.html#checkPlace

Encounter Digital Implementation System User Guide
Verifying Violations
Interrupting Verification

The following verification commands support "Interrupt" (Ctrl-c):

■ verifyACLimit

■ verifyConnectivity

■ verifyGeometry

■ verifyMetalDensity

■ verifyPowerVia

■ verifyProcessAntenna

If you press Ctrl-c while one of the above verification commands is being executed, the
verification process stops and asks you for a confirmation. If you choose "N", the commands
will continue to execute, and if you choose "Y", the verification process stops and the
database is cleaned. You can then change the settings and run the verification process again,
as required.
October 2010 1237 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Verifying Violations
Verifying Connectivity

Verify the connectivity of your design to detect and report conditions such as opens,
unconnected pins, dangling wires, loops, and partial routing. You can use the command to
create violation markers in the design window and generate a violation report. There is no
database impact from using this command unless you save the design, which saves the
violation markers.

For regular wires, the EDI System software checks connectivity by using the center line of the
wire segments and center of the vias. For special wires, the command checks the whole
geometry. If a via or wire is slightly offset from where it should be, the software reports an
error.

The software also detects connectivity loops based on the end points of a regular wire
segment center line or the center of a via. It reports geometry loop violations.

Note: The Verify Connectivity feature now uses setMultiCpuUsage and other multi-CPU
commands for multi-threading.

For more information, see the Multiple-CPU Processing Commands chapter in the
Encounter Digital Implementation System Text Command Reference.

Before You Begin

Before you verify connectivity, the following conditions must be met:

■ The design must be routed.

■ The design must be loaded into the current EDI System session.

Types of Connectivity Violations Reported

■ Antennas (Dangling wires)

Unconnected wires (dangling wires). For more information, see “Types of Antenna
Violations Reported” on page 1244.

■ Opens

Parts of nets, such as wires or pins, that are connected to each other but are missing a
connection to the net as a whole. Marks each part of a net that is missing a connection
as an open and displays a violation marker between the parts.
October 2010 1238 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#firstpage
../fetxtcmdref/multicpuT.html#setMultiCpuUsage

Encounter Digital Implementation System User Guide
Verifying Violations
Violation markers for opens are displayed as polygons that include all wires, pins, and
vias that connect to an island.

By default, verifyConnectivity checks the connectivity on masterslice layers. If the
-noSoftPGConnect option is specified, connectivity on these layers is ignored and
checking of soft Power/Ground connects is disabled.

■ Loops

■ Unconnected pins

Pins that are not connected to any other objects

Note: In releases prior to 7.1, verifyConnectivity marked nets with connected pins, but
without any wiring, as unrouted nets. verifyConnectivity no longer marks these nets as
unrouted, so they do not cause violations.

Results

After verifying connectivity, you can use information in the violation report to repair
connectivity violations. You can use the Violation Browser for interactive viewing and
highlighting of violation markers.

You can see incremental results in the Violation Browser. For more information, see Verify
Connectivity in the “Verify Menu” chapter of Encounter Digital Implementation System
Menu Reference.
October 2010 1239 Product Version 9.1.3

../encounter/verifyG.html#VerifyConnectivity
../encounter/verifyG.html#VerifyConnectivity

Encounter Digital Implementation System User Guide
Verifying Violations
Verifying Metal Density

Verify the metal density of the design for each routing layer, to ensure that it is within the
minimum and maximum density values specified in the LEF file or by the setMetalFill
command.

Before You Begin

Before you verify metal density, the following conditions must be met:

■ Metal density values must be specified in the LEF file or by the setMetalFill
command.

■ The design must be detail routed.

■ The design must be loaded into the current EDI System session.

Metal Density Statements in the LEF File

The following statements in the Layer (Routing) section of the LEF file define the minimum
and maximum metal density and how to analyze the density.

■ MINIMUMDENSITY

■ MAXIMUMDENSITY

■ DENSITYCHECKWINDOW

■ DENSITYCHECKSTEP

■ FILLACTIVESPACING

For more information, see the “LEF Syntax” chapter in the LEF/DEF Language Reference.

Results

The verification process generates a report file containing information about the metal density
that is not within the minimum and maximum density range.
October 2010 1240 Product Version 9.1.3

../lefdefref/LEFSyntax.html#firstpage

Encounter Digital Implementation System User Guide
Verifying Violations
Verifying Metal Density in Multi-Thread Mode

You can accelerate metal density checking by running the software in multi-thread mode. To
do so, run the setMultiCpuUsage command before running verifyMetalDensity. For
example:

setMultiCpuUsage -localCPU 4
verifyMetalDensity

Related Topics

■ Accelerating the Design Process by Using Multiple-CPU Processing

■ Multiple-CPU Processing Commands chapter in the Encounter Digital
Implementation System Text Command Reference
October 2010 1241 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#setMultiCpuUsage
../fetxtcmdref/multicpuT.html#firstpage

Encounter Digital Implementation System User Guide
Verifying Violations
Verifying Geometry

Verify the physical layout of the design by checking the width, spacing, internal geometry, and
other characteristics of objects. Use the verifyGeometry command to specify the checks
to perform, disable checking, and set limits for errors and warnings to report.

The disable feature is useful when false violations arise because of discrepancies in the way
mask-level data is presented. For example, cell internal obstructions and pins might be
represented in a way that causes the verifier to report design rule violations that do not exist
in the mask-level layout.

Verify geometry at the following stages in the design flow:

■ After placing the design.

■ After adding power stripes and rings and running power routing.

■ After running detailed routing.

Before You Begin

■ Ensure the following LEF statements are specified:

❑ CLEARANCEMEASURE

❑ USEMINSPACING statements for obstructions and pins

For more information, see the “LEF Syntax” chapter in the LEF/DEF Language
Reference.

■ If you plan to run verifyGeometry in multiple-CPU processing mode, use the EDI
System multiple-CPU commands or select the appropriate options on the Multiple CPU
Processing form. For more information, see “Verifying Geometry in Multi-Thread Mode.”

■ Route the design.

Verify Geometry Statements in the LEF File

The following statements in the LEF file can be used to define how to verify geometry.

■ CUTCLASS SPACINGTABLE

■ ENCLOSURE

■ ENCLOSUREEDGE
October 2010 1242 Product Version 9.1.3

../lefdefref/LEFSyntax.html#firstpage

Encounter Digital Implementation System User Guide
Verifying Violations
■ EXCEPTRECTANGLE

■ JOGTOJOGSPACING

■ MINSTEP

■ MINWIDTH

■ PARALLELWITHIN

■ SPACING

■ WIDTH

For more information, see the “LEF Syntax” chapter in the LEF/DEF Language Reference.

Verifying Geometry in Multi-Thread Mode

You can accelerate geometry checking by running the software in multi-thread mode. Use one
of the following methods:

■ On the text command line:

Run the following command before running verifyGeometry:

setMultiCpuUsage

For example,

setMultiCpuUsage -localCPU 4
verifyGeometry

■ In the GUI:

a. On the Verify Geometry – Advanced page, click the Set Multiple CPU button to
open the Multiple CPU Processing form.

b. On the Multiple CPU Processing form, specify the number of local CPUs.

c. Optionally, select Release License.

d. Click OK to close the Multiple CPU Processing form and return to the Verify
Geometry form.

When you return to the Verify Geometry form, the Number of Local CPU(s) option
in this form is updated with the value you specified on the Multiple CPU Processing
form.

e. Run Verify Geometry.
October 2010 1243 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#setMultiCpuUsage
../lefdefref/LEFSyntax.html#firstpage

Encounter Digital Implementation System User Guide
Verifying Violations
Related Topics

■ Accelerating the Design Process by Using Multiple-CPU Processing

■ Multiple-CPU Processing Commands chapter in the Encounter Digital
Implementation System Text Command Reference

■ Verify Geometry – Advanced in the Encounter Digital Implementation System Menu
Reference

Spacing Violation Checks

■ verifyGeometry uses the minimum dimension of an object to check for spacing
violations. The minimum dimension is the width of the object.

■ The command does not detect objects with width greater than WIDTH and length greater
than LENGTH that exist within a distance (WITHIN) greater than 10 μm for the
MINIMUMCUT check in the LEF file.

■ The command categorizes spacing violations as SameNet, NonDefault, and
ParallelRun violations. If it finds a violation caused by a blockage between two
instances of different cells, it treats the violation as a SameNet violation because it does
not belong to a net.

■ The command considers OBS CUT layer shapes as within the same metal if they are
within the same OBS ROUTING layer shape (the layer above or below). This avoids
-sameCellViols flags on SPACING violations inside the cells.

■ To check implant layers for violations, specify an implant rule in the LEF file. To skip
implant layer checking, specify the verifyGeometry -noImplantCheck parameter.

■ To check spacing between cut layers and metal layers, specify a cut-metal spacing rule
in the LEF file. For example, the following rule triggers a check of the spacing between
CUTG1 and MET5 layers:

LAYER CUTG1 TYPE CUT ;
SPACING 0.42 ;
SPACING 0.28 LAYER MET5 ;

END CUT G1

For more information, see the “LEF Syntax” chapter of the LEF/DEF Language Reference.

Types of Antenna Violations Reported

verifyGeometry flags an antenna violation when it finds an unconnected wire.
October 2010 1244 Product Version 9.1.3

../lefdefref/LEFSyntax.html#firstpage
../encounter/verifyG.html#VerifyGeometryAdv
../fetxtcmdref/multicpuT.html#firstpage

Encounter Digital Implementation System User Guide
Verifying Violations
Important

In the context of verifyGeometry and verifyConnectivity, antenna
violations are different from process antenna violations. The
verifyProcessAntenna command checks for process antenna violations, which
are caused by pins whose process antenna ratio is larger than the maximum allowed
ratio specified in the LEF file for the routing layer. For more information, see
verifyProcessAntenna in the “Verify Commands” chapter of the Encounter
Digital Implementation System Text Command Reference.

To avoid antenna violations, wires and nets must meet the following conditions:

■ Regular wires

❑ Must terminate on a pin or the center of a via.

❑ If a vertical wire intersects a horizontal wire along its axis, the end of the vertical wire
must be covered by the horizontal wire.

❑ If the ends of a vertical wire and horizontal wire meet, they must meet at their end
points.

■ Regular net vias

❑ Must be covered by a pin.

❑ The center of the via must be the start or end point of a wire.

❑ The center point of stacked vias must be coincident.

■ Special wires

❑ A point that is one-quarter of a wire width from the center of the ending edge of the
special wire must be covered by a via, pin, or another wire on the same layer.

■ Special net vias

❑ The metal rectangle of the special net via must overlap with a special wire or via of
the same net.

Support for Via Rules

verifyGeometry uses the rules defined in the VIARULE section of the LEF file to check for
violations caused by vias.

■ The command checks the master via only, and flags violations on only one instance of
the via.
October 2010 1245 Product Version 9.1.3

../fetxtcmdref/verificationT.html#verifyProcessAntenna

Encounter Digital Implementation System User Guide
Verifying Violations
■ The command considers the content of the via during verification when checking for
spacing violations.

Results

verifyGeometry creates markers corresponding to geometry violations in the database.
Use the Violation Browser to see the markers.
October 2010 1246 Product Version 9.1.3

../encounter/toolsG.html#ViolationBrowser

Encounter Digital Implementation System User Guide
Verifying Violations
Verifying Process Antennas

Verify process antenna violations by checking for routing that violates the maximum charge
caused by the process antenna effect (PAE) on pins. The software finds violations when a
pin’s process antenna ratio is larger than the maximum ratio specified in the LEF file for the
routing layer.

The report file lists all the violated nets and includes process antenna information. Optionally,
it can also report all other nets.

Before You Begin

Before performing process antenna verification, complete the following tasks:

■ Perform signal routing.

■ Ensure the antenna keywords are specified in the LEF file; for example,

❑ ANTENNAAREARATIO for LEF layers

❑ ANTENNAGATEAREA and ANTENNADIFFAREA for macro pins

For more information, see the “LEF Syntax” chapter in the LEF/DEF Language
Reference.

Verifying PAE

Checks for pin routing that violates the maximum antenna charge for the pins and reports
violations on pins that have an antenna ratio larger than the maximum allowed antenna ratio
specified for the routing layer. Handles PAE violations on any metal layer on flat or hierarchical
designs. Uses a geometry-based approach and does not double count metal areas for vias
or wires. Provides a detailed process antenna report including the metal area, diffusion area,
and target ratio for each pin. The report file lists all violated nets with process antenna
information. Optionally, it can also report all other nets. For more information on PAE, see the
“Calculating and Fixing Process Antenna Violations” appendix in the LEF/DEF Language
Reference.

Results

After verifying process antenna violations, you can use information in the violation report to
repair process antenna violations. You can use the Tools – Violation Browser command for
interactive viewing and highlighting of violation markers.
October 2010 1247 Product Version 9.1.3

../lefdefref/LEFSyntax.html#firstpage
../lefdefref/PAE.html#firstpage

Encounter Digital Implementation System User Guide
Verifying Violations
Sample Process Antenna Report

The following example shows section of a detailed process antenna report file:

The report uses the following terms:

D1 (2)

U0 (BUF) A

[1] MET: Area: 1.10 S.Area: 2.10 G.Area: 100.00 D.Area: 0.00

Fact: 0.90 PAR: 0.01 Ratio: 0.10 (Area)

Fact: 1.00 PAR: 0.02 Ratio: 0.10 (S.Area)

CAR: 0.01 Ratio: 0.00 (C.Area)

CAR: 0.02 Ratio: 0.00 (C.S.Area)

[1] THO: Area: 0.20 S.Area: 0.00 G.Area: 100.00 D.Area: 0.00

Fact: 1.00 PAR: 0.00 Ratio: 0.00 (Area)

CAR: 0.00 Ratio: 0.00 (C.Area)

[1] WMET: Area: 13.27 S.Area: 51.20 G.Area: 100.00 D.Area: 300.00

Fact: 1.10 PAR: 0.15 Ratio: 2.50 (Area)

Fact: 0.90 PAR: 0.46 Ratio: 0.00 (S.Area)

CAR: 0.16 Ratio: 0.00 (C.Area)

CAR: 0.48 Ratio: 0.00 (C.S.Area)

Area: Metal area

S.Area: Metal side area

G.Area: Gate area

D.Area: Diffusion area

Fact: Metal (side) area adjusted factor

PAR: Partial antenna ratio

CAR: Cumulated antenna ratio

Ratio: Target antenna ratio

(Area) Metal area

(S.Area) Metal side area
October 2010 1248 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Verifying Violations
(C.Area) Cumulated metal area

(C.S.Area) Cumulated metal side area
October 2010 1249 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Verifying Violations
Verifying Maximum Floating Area Violations

Verify maximum floating area violations (unconnected metal segments whose area is greater
than the maximum area specified in the LEF file) by using the verifyProcessAntenna
command. The EDI System software checks for maximum floating area violations by default
when you run this command. For more information, see verifyProcessAntenna in the
Encounter Digital Implementation System Text Command Reference.

The LEF 5.6 property MAXFLOATINGAREA specifies the maximum area. The following
global properties are also associated with this property:

■ GATEISGROUND

Does not check metal layer connected to a polysilicon gate.

■ CONNECTED

Checks the sum of areas on the same metal that are connected through a lower metal
layer.

For more information, see “Defining Routing Layer Properties to Create 45 nm and 65 nm
Rules” in the “LEF Syntax” chapter of the LEF/DEF Language Reference.

Note: To skip maximum floating area violation verification, but run process antenna
verification, type the following command:

verifyProcessAntenna -noMaxFloatingArea
October 2010 1250 Product Version 9.1.3

../fetxtcmdref/verificationT.html#verifyProcessAntenna
../lefdefref/LEFSyntax.html#DefineRouteLayerProps
../lefdefref/LEFSyntax.html#DefineRouteLayerProps

Encounter Digital Implementation System User Guide
Verifying Violations
Verifying AC Limit

Verify AC current violations on signal nets by using the verifyACLimit command. This
command calculates the root mean square current (Irms) at the driver output and compares
it to the ACCURRENTDENSITY tables in the LEF file that contain the Irms limits for routing
layers. It generates an error and attaches a violation marker to a net if the calculated Irms for
a net exceeds the ACCURRENTDENSITY Irms limit for a routing layer or width used by the net.

Computes the Irms from the slew rates of the signal, the capacitance of the net, and the
toggle-rate frequency as computed by timing analysis commands like buildTimingGraph
and check_timing (and the values can be written out with the -report parameter). If there
is more than one timing view in use, uses the default setup view (controlled by
set_default_view -setup viewName command).

The software checks the ACCURRENTDENSITY tables for the following conditions and takes
the following actions:

■ If there is no table for a routing layer, the software gives a warning and assumes an
infinite limit for the layer.

■ If PEAK and AVERAGE tables are present, the software ignores them.

Note: This command reports the AC current density in mA. The LEF file specifies it in mA/
micron. To convert the LEF specification, the verifyACLimit command reads the value
in mA/micron and multiplies it by the wire width.

For more information, see the "LEF Syntax" chapter of the LEF/DEF Language Reference.

Before You Begin

Before verifying AC limit, complete the following tasks:

■ Perform RC extraction.

■ Perform timing analysis.

Results

After verifying AC limit violations, you can use information in the violation report to repair AC
current limit violations. Use the fixACLimitViolation command to repair the violations.
You can use the Tools – Violation Browser command for interactive viewing and
highlighting of violation markers generated after you use this command.
October 2010 1251 Product Version 9.1.3

../fetxtcmdref/celtic_siT.html#fixACLimitViolation
../lefdefref/LEFSyntax.html#firstpage

Encounter Digital Implementation System User Guide
Verifying Violations
Viewing Violations With the Violation Browser

Use the Violation Browser form or the violationBrowser text command to view and
highlight violation and lithography hotspot markers interactively.

Viewing Geometry or Metal Density Violations

The Violation Browser updates violation markers generated by the verifyGeometry and
verifyMetalDensity commands incrementally in an EDI System session—that is, it
displays the markers generated the first time you run either of these commands and adds new
markers, or deletes markers, from subsequent runs during the same session. If the software
finds violations during a subsequent run that were already found previously, the browser
display does not change, as there is no incremental update.

The browser can make the incremental changes because verifyGeometry and
verifyMetalDensity can check a small area of the design and update the database. As
a result of this behavior, the EDI System software saves the information from the first
verification run.

Viewing Connectivity, Process Antenna, or AC Limit Violations

The Violation Browser overwrites violation markers from the verifyConnectivity,
verifyProcessAntenna, and verifyACLimit commands if they are run more than once
during an EDI System session. These commands are net-based, not area-based, so the
browser does not make incremental updates for connectivity, process antennas, or AC limit.
As a result of this behavior, the software does not keep the information from the first
verification run.

Viewing Violation Markers From Assura or Calibre

To view violation markers from Assura or Calibre with the Violation Browser, use the following
commands or forms:

■ createMarker

This command creates markers from data imported from Assura or Calibre. For more
information, see createMarker in the Encounter Digital Implementation System
Text Command Reference.

■ loadViolationReport (Tools – Violation Browser – Load Violation Report)
October 2010 1252 Product Version 9.1.3

../fetxtcmdref/verificationT.html#createMarker

Encounter Digital Implementation System User Guide
Verifying Violations
This command loads a report file from Assura or Calibre and converts it to a format that
the EDI System software can interpret. For more information, see
loadViolationReport in the Encounter Digital Implementation System Text
Command Reference.

■ violationBrowser (Tools – Violation Browser)

This command displays the markers in the Violation Browser. For more information, see
violationBrowser in the Encounter Digital Implementation System Text
Command Reference.

Violation Browser Features

■ Click a violation on the violation list on the form to see a description of the violation. The
description includes actual and target values for AC limit violations, process antenna
violations, and geometry spacing violations.

❑ An actual value is the current value

❑ A target value is the value defined in the LEF file.

■ Click the + or - sign to collapse or expand the listings of each violation type.

■ Use the First, Previous, Next, Last, Up, and Down buttons to navigate through the list
of violations.

■ The browser displays the violations in the following hierarchical order:

+ tool
+ type

+ subtype
Description

where the tool, type, and subtype value correspond to the value you specify using
the createMarker command.

■ Use cross probing between the design display area and the Violation Browser.

To display the details of a violation in the Violation Browser form, double-click the
violation marker in the design display area.

■ If there are violation markers for overlapped objects, select the top-most marker in the
design display area and press the space bar on your keyboard to navigate through the
other markers. The type and name of the selected violation is displayed in the lower-left
corner of the EDI System main window. Use the q keyboard shortcut key to select a
violation and highlight it in the Violation Browser form.

■ Use the Zoom buttons to change the magnification level of a violation.
October 2010 1253 Product Version 9.1.3

../fetxtcmdref/verificationT.html#loadViolationReport
../fetxtcmdref/verificationT.html#violationBrowser
../fetxtcmdref/verificationT.html#createMarker

Encounter Digital Implementation System User Guide
Verifying Violations
■ Use any of the following buttons to change the display for a selected violation:

❑ Highlight Color

❑ Highlight Violations

❑ De-Highlight Violations

❑ Delete Violations

❑ Mark Violations as False

❑ Mark Violations as True

■ Generate a report file by clicking the Save button.

The report file includes information on the violations shown in the violation browser.

■ Limit the number of violations to display by using the Show Types panel in the Settings
page of the form.

■ Limit the area to display by using the Show Area panel in the Settings page of the form.

■ Filter the violations to display by using the Other Filters panel in the Settings page of
the form.
October 2010 1254 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Verifying Violations
Clearing Violations

Choose the Tools – Violation Broswer menu item and then click the Clear Violation button
to clear the violation markers in your design.
October 2010 1255 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Verifying Violations
October 2010 1256 Product Version 9.1.3

Encounter Digital Implementation System User Guide
38
Analyzing Yield

■ Overview on page 1258

■ What Effects Does reportYield Consider? on page 1258

■ Calculating Failure Probabilities on page 1259

❑ Critical Area Analysis on page 1260

❑ Defect Data and Cumulative Defect Data Functions on page 1261

■ Before You Begin on page 1261

■ Results on page 1261

■ Interrupting Yield Analysis on page 1262

■ Interpreting the Yield Map on page 1263

❑ Displaying the Yield Map on page 1263

■ Interpreting the Yield Report on page 1266

❑ Yield Report on page 1266

❑ Detailed Report on page 1270

■ Understanding the Yield Technology File on page 1272

❑ File Format on page 1272

❑ File Sections and Keyword Statement Descriptions on page 1274

❑ Yield Technology File Example on page 1285

■ Formulas and Calculations on page 1288

❑ Calculating the Probability of Failure for a Metal Layer on page 1288

❑ Calculating Defect and Cumulative Defect Data on page 1288

❑ Cost Formulas on page 1291
October 2010 1257 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Overview

This chapter describes how the Encounter Digital Implementation System (EDI System)
software analyzes the costs and benefits of different design-for-yield techniques. The
reportYield command uses a yield technology file with data models for cell, via, and wire
defects to calculate certain effects that impact yield. The command then generates a yield
map and yield report based on its calculations. You use the data in the report and map as a
basis to optimize your design to improve the yield.

Note: The software supports yield analysis of 45-degree shapes, using a stair-step
approximation during critical area analysis. This feature is suitable for wide-wire routes,
as would occur for redistribution layer routing connected to bumps (RDL routing), but not
for X-routing, where there are many minimum-width routes.

What Effects Does reportYield Consider?

The reportYield command calculates the probability of yield loss due to the following
effects:

■ Cell failures

■ Via failures

■ Wire opens

■ Wire shorts

These effects are caused by random particles that land on the die during fabrication, causing
defects. Yield loss caused by the defects is called defect-limited yield loss. The
reportYield command reports statistics for the defect-limited yield (DLY).

Defect-limited yield loss accounts for only a portion of actual yield loss. For example, a chip
with no defect-limited yield loss might have parametric yield loss due to RC variation or
systematic yield loss due to lithography problems, and an actual yield much less than
reportYield calculates.
October 2010 1258 Product Version 9.1.3

../fetxtcmdref/yieldT.html#reportYield

Encounter Digital Implementation System User Guide
Analyzing Yield
As you optimize your design for defect-limited yield, you increase the actual yield, as shown
by the following table:

An increase of 1 percent in DLY gives an increase of 1/DLY in good die per wafer.

The report generated by reportYield gives you the defect-limited yield for the design and
includes an estimation of the probability of cell failures, via failures, wire shorts, and wire
opens. You use this information to understand the impact of cell yield optimization and routing
yield optimization choices.

Calculating Failure Probabilities

The reportYield command uses cell and via failure rates from data supplied by the fab or
library vendor. It also uses fab or library vendor-supplied data to determine the probabilities
of wire shorts and opens. The data is included in the yield technology file.

■ Via failure rates

The reportYield command calculates failure rates for single-cut vias, double-cut vias,
and all other vias. For more information, see “Via Probability” on page 1279.

■ Cell failure rates

The reportYield command calculates failure rates for a particular instance of a cell
and for any instances of a cell. For more information, see “Cell Probability” on page 1282.

■ Wire failures caused by shorts or opens

The reportYield command calculates failure rates for wires by performing critical area
analysis. Critical area analysis uses the size and shape of the particles that land on the
die and the width and spacing of the wires to calculate the probability that the particles

DLY Yield based on
other effects Actual yield

Actual yield if
DLY increases
1 percentage
point

Increase in
good die per
wafer

90% 90% 81% 81.9% 1.11%

90% 50% 45% 45.5% 1.11%

50% 90% 45% 45.9% 2.0%

50% 50% 25% 25.5% 2.0%
October 2010 1259 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
will create opens or shorts. For more information, see “Critical Area Analysis” on
page 1260, “Open Point Defect” on page 1274, and “Short Point Defect” on page 1278.

Critical Area Analysis

The critical area is the area where the center of a particle must land to cause a short or an
open. The size and shape of the critical area are dependent on the size and geometry of the
particle and the wire width and spacing on the die.

The following figure shows four particles of the same size that have fallen on a die.

■ The two particles on the left cause missing metal defects, but only one causes an open.

■ The two particles on the right cause extra metal defects, but only one causes a short.

The following figure shows six particles of the same size that have fallen on a die. The critical
area is outlined by dashed lines.

■ The particles on the left side of the figure cause shorts. The centers of these particles
are in the critical area.

■ The particles on the right side of the figure do not cause shorts. The centers of these
particles are not in the critical area.

Extra metal defect does
not cause a short

Extra metal defect
causes a short

Missing metal defect
causes an open

Missing metal defect
does not cause an
open

Critical area

These particles do not cause shortsThese particles cause shorts
October 2010 1260 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Note: In reality, defects are not circles. The reportYield command uses a square defect
model, which is a commonly used approximation in critical area analysis literature that makes
calculations faster with little impact on accuracy.

For information on calculating failure probabilities based on critical area analysis, see
“Formulas and Calculations” on page 1288.

Defect Data and Cumulative Defect Data Functions

The EDI System software can perform critical area analysis calculations based on defects of
a specific size or based on a range of defect sizes. In many cases the fabs supply data based
on size ranges.

■ Direct measurements are called defect data, and the associated function is the defect
data function.

■ Size range measurements are called cumulative defect data, and the associated
function is the cumulative defect data function.

The functions are defined by one or more values in a table in the yield technology file and can
be derived from each other. The reportYield command supports both functions.

For more information, see “Calculating Defect and Cumulative Defect Data” on page 1288.

Before You Begin

■ Load the yield technology file by running loadConfig or loadYieldTechFile.

■ To report yield statistics on cells, the design must be placed.

■ To report yield statistics on vias and wires, the design must be routed.

Results

■ Yield report

Reports the impact on the yield from using different cells, vias, and wire spacing. Also
reports a final yield result. The detailed report includes details for each metal and via
layer, for different wire widths and spacing, and for each cell.

For more information, see “Interpreting the Yield Report” on page 1266

■ Yield map
October 2010 1261 Product Version 9.1.3

../fetxtcmdref/importT.html#loadConfig
../fetxtcmdref/yieldT.html#loadYieldTechFile

Encounter Digital Implementation System User Guide
Analyzing Yield
Displays a map of the design in the main window, using up to ten colors to represent
different levels of yield loss.

For more information, see “Interpreting the Yield Map” on page 1263.

Interrupting Yield Analysis

To interrupt yield analysis, press Ctrl–C. The reportYield command continues to run
until the database is in a state where the command can stop safely.

When the software stops, it prompts you to confirm that you want to interrupt the command.

➤ To confirm, type Y.

The software returns you to the EDI System prompt (encounter >) and the command
stops running.

Caution

When you interrupt routing with Ctrl-C, the database will be in a state that
is useful for debugging purposes only, and not one that you should save
and continue to use in the design flow.

➤ To continue running the command, type N.
October 2010 1262 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Interpreting the Yield Map

After you run the reportYield command, the EDI System software can display a yield map,
similar to a congestion map, that represents yield graphically. The software uses different
colors to indicate ten different levels of yield. The levels are relative; that is, level 0 represents
the lowest yield, level 1 represents the next lowest yield, and so on, to level 9. In general,
cooler colors (for example, blue) indicate higher yield levels.

The sections that follow describe how to perform the following actions:

■ Display the yield map

■ Change the size of the grid

■ Change the objects on which the display is based (cells, vias, or wires)

■ Change the colors

Displaying the Yield Map

1. Run the reportYield command or select File – Report – Yield from the main menu
and click OK on the Report Yield form.

2. Select the following options in the main window:

❑ Physical view

❑ Yield Map visibility toggle

To see the Yield Map visibility toggle, select Floorplan view from the drop-down in
the Layer Control window.

3. Turn off visibility for the following options in the main window so you can see the yield
map clearly:

❑ Instance

❑ Net

❑ Special Net
October 2010 1263 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Tip

You can also select the layers to display in the map and control the display of yield
cells by selecting options on the Display page of the Options – Set Preference –
Preferences form. For more information, see Yield Map Mode in the “Options
Menu” chapter of the Encounter Digital Implementation System Menu
Reference.

The following figure shows the main window with a yield map in the design display area.

Changing the Bin Size

The default grid size is 50 microns in each direction. To change it, complete the following
steps:

1. Select Display Options in the Report Yield form.

2. Change the value for one or both of the following options:

❑ Display Grid Size X

❑ Display Grid Size Y

Yield Map
visibility toggle

Physical view

Instance, Net,
and Special Net
visibility toggles
October 2010 1264 Product Version 9.1.3

../encounter/optionsG.html#YieldMapMode

Encounter Digital Implementation System User Guide
Analyzing Yield
3. Click OK or Apply.

Changing the Object Types

By default, the map shows yield for instances, wires, and vias. To display yield for one or two
types of objects, instead of all three types, complete the following steps:

1. Select Options – Set Preference – Preferences from the menu bar.

2. Select the Display tab in the Preferences form.

3. Select one or more of the following Yield Map Mode options:

❑ Instance

❑ Wire

❑ Via

4. Click OK or Apply.

Changing the Yield Map Colors

The yield map displays ten relative yield levels, with each level a different color. To change a
color, complete the following steps:

1. Click the All Colors button in the main window.

2. On the View-Only tab, click the Yield Map button.

3. Double-click the color button next to Yield Map to open the Yield Map Color Selection
form.

4. On the Yield Map Color Selection form, click the color button next to a level and change
the value for Red, Green, or Blue.

5. Click OK and close the form.

6. To save the new colors, click the Save button at the bottom of the Color Preferences form
and give the preferences file a name in the Save Color Preference form.
October 2010 1265 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Interpreting the Yield Report

The reportYield command generates reports that provide yield data as probabilities and
as costs. Data for the chip overall, and for specific features (cells, vias, and routes), are
reported.

■ Probabilities

Yield probabilities are expressed as percentages. The higher the probability, the greater
the yield.

You multiply yield probabilities for the features to see yield probability data for the chip:

Cell Yield % x Via Yield % x Route Yield % = Chip Yield %

Note: The Summary section, which appears in the text command window and at the end
of the report, also includes values for Yield Loss. The Yield Loss is the difference
between 100 percent and Yield. The total Yield Loss for the chip is the difference
between 100 percent and the total chip yield percent.

■ Costs

Yield costs are derived from the yield probabilities. Costs make yield calculations more
convenient than probabilities because they can be added or subtracted rather than
multiplied. The formula for the cost of a feature is

Ci = -ln(1-Pi)

where
Ci = cost of feature i
Pi = probability of failure of failure of feature i

The costs are expressed as floating-point numbers. The greater the cost, the lower the
yield.

You add the costs for the features to see the total yield cost for the chip:

Cell Cost + Via Cost + Routing Cost = Total Cost

For more information, see “Cost Formulas” on page 1291.

Yield Report

Following are sections from yield report for a design named test. The report is saved in the
working directory as test.yield.rpt. The report has the following sections:

■ Header on page 1267
October 2010 1266 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
■ Cell on page 1267

■ Via on page 1267

■ Routing on page 1268

■ Summary on page 1270

Header

Displays the software name and build, the operating system and host name, the date the
report was generated, and the command used to generate the report. In addition, the header
includes a title for the report, the design name and dimension.

###

Generated by: Cadence Encounter 09.10-b050_1
OS: Linux i686(Host ID icdlnx08s)
Generated on: Fri Aug 28 11:08:58 2009
Command: reportYield
###

Encounter Defect Limited Yield and Cost Report

Title : Created by SOC Encounter with generic values
Design : test
Dimension : 465.000um x 460.000um
Shrink Factor: 0.999

Cell

Gives yield and cost data for each type of cell (core, pad, blocks, and other), and total cell
yield data.

Cost Yield %
Core Cells: 5.0682e-03 99.494
Pad Cells : 0.0000e+00 100.000
Blocks : 0.0000e+00 100.000
Other : 0.0000e+00 100.000

Total : 5.0682e-03 99.494

Via

Gives yield and cost data for single-cut vias, double-cut vias, and array vias (vias with more
than two cuts) for each via layer and for all via layers, the total via cost per via layer, and the
total via yield.
October 2010 1267 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Layer | Number of Vias | Cost | Total
| 1-cut 2-cut Array | 1-cut 2-cut Array | Cost

via12 | 2.0791e+05 0.0000e+00 0.0000e+00 | 2.0791e-04 0.0000e+00 0.0000e+00 | 2.0791e-04
via23 | 7.0367e+04 0.0000e+00 0.0000e+00 | 3.0763e-04 0.0000e+00 0.0000e+00 | 3.0763e-04
via34 | 1.6723e+04 0.0000e+00 0.0000e+00 | 2.2463e-04 0.0000e+00 0.0000e+00 | 2.2463e-04
via45 | 1.4420e+03 0.0000e+00 0.0000e+00 | 7.1809e-05 0.0000e+00 0.0000e+00 | 7.1809e-05
via56	0.0000e+00 0.0000e+00 0.0000e+00	1.6723e-05 0.0000e+00 0.0000e+00	1.6723e-05
total | 2.9644e+05 0.0000e+00 0.0000e+00 | 8.2870e-04 0.0000e+00 0.0000e+00 | 8.2870e-04

Total via yield: 99.917%

Routing

Gives the following data:

■ Routing costs and yield loss for the following:

❑ Opens, shorts, and vias on each metal layer

❑ Totals per metal layer

❑ Totals for opens, shorts and vias

■ Total routing yield percent

■ Combined horizontal and vertical wire width and spacing data

■ Critical area for shorts and opens, per layer

Costs of various design features, per layer

 Layer | opens shorts via | total

 METAL1 | 0.0002 0.0000 0.0000 | 0.0003

 METAL2 | 0.0009 0.0004 0.0000 | 0.0013

 METAL3 | 0.0012 0.0007 0.0000 | 0.0018

 METAL4 | 0.0009 0.0005 0.0000 | 0.0014

 METAL5 | 0.0004 0.0002 0.0000 | 0.0006

 METAL6 | 0.0001 0.0000 0.0000 | 0.0001

 | -------------------- |

 Total | 0.0038 0.0018 0.0000 | 0.0056

 Yield losses in percent. [Same data presented differently.]

 Layer | opens shorts via | total

 METAL1 | 0.0245 0.0026 0.0000 | 0.0271

 METAL2 | 0.0915 0.0412 0.0000 | 0.1327

 METAL3 | 0.1165 0.0664 0.0000 | 0.1828
October 2010 1268 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
 METAL4 | 0.0904 0.0495 0.0000 | 0.1398

 METAL5 | 0.0437 0.0180 0.0000 | 0.0616

 METAL6 | 0.0084 0.0025 0.0000 | 0.0109

 | -------------------- |

 Total | 0.3744 0.1801 0.0000 | 0.5538

 Total routing yield 99.4462%

 Combined horizontal and vertical wires for layer METAL1

 wire widths (nm) length(m) approximate cost

 0.0 < x <= 200.0, 0.077785720 0.00006870

 200.0 < x <= 300.0, 0.106160940 0.00008057

 300.0 < x <= 400.0, 0.000000000 0.00000000

 400.0 < x <= 500.0, 0.000820480 0.00000030

 500.0 < x <= 1200.0, 0.008865920 0.00000252

 1200.0 < x <= 2000.0, 0.001695840 0.00000010

 2000.0 < x <= 4000.0, 0.001165920 0.00000002

 Combined horizontal and vertical spaces for layer METAL1

 spacing (nm) length(m) approximate cost

 0.0 < x <= 200.0, 0.004468480 0.00000377

 200.0 < x <= 300.0, 0.005448040 0.00000413

 300.0 < x <= 400.0, 0.000499400 0.00000033

 400.0 < x <= 500.0, 0.000133120 0.00000006

 500.0 < x <= 1200.0, 0.020538250 0.00000400

 1200.0 < x <= 2000.0, 0.019310920 0.00000094

 2000.0 < x <= 4000.0, 0.036233835 0.00000055

Critical area for shorts, layer METAL1

 Diameter(nm) Radius(nm) Crit area(cm^2)

 0.0 0.0 0.000000e+00

 200.0 100.0 4.575570e-07

 300.0 150.0 7.698167e-06

 400.0 200.0 1.808128e-05

 500.0 250.0 2.861692e-05

 1200.0 600.0 1.797329e-04

 2000.0 1000.0 4.704228e-04

 4000.0 2000.0 1.575977e-03

Critical area for opens, layer METAL1
October 2010 1269 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
 Diameter(nm) Radius(nm) Crit area(cm^2)

 0.0 0.0 0.000000e+00

 200.0 100.0 3.111429e-05

 300.0 150.0 1.648091e-04

 400.0 200.0 3.487557e-04

 500.0 250.0 5.327854e-04

 1200.0 600.0 1.801876e-03

 2000.0 1000.0 3.131847e-03

 4000.0 2000.0 5.871899e-03

...

Data for additional metal layers follows the data for METAL1.

Summary

Gives summary cost, yield, and yield loss for cells, vias, and routing, total yield percent, and
yield loss percent.

Cost Yield % Yield Loss %
Cell : 5.0682E-03 99.494 0.506
Via : 8.2870E-04 99.917 0.083
Routing: 5.5536E-03 99.446 0.554
Total : 1.1450E-02 98.861 1.139

Detailed Report

The detailed report contains all the statistics in the non-detailed report, plus the following
additional detailed sections:

■ Vias on page 1270

■ Cells on page 1271

■ Subareas on page 1271

Vias

The via section includes statistics for each via. Following is a via detail section for layer via12:

Layer Number Number Approx Via Name
Via12 Cuts Vias Cost

1 5.4287e+04 1.0857e-04 Via2tsl
1 1.5245e+05 3.0490e-04 Via2
October 2010 1270 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
1 5.7500e+02 1.1500e-06 Via2tsls
1 5.8900e+02 1.1780e-06 Via2tsh
1 7.0000e+00 1.4000e-08 Via2tshs

-----------------|--------------------------------|-----------------------------|
2.0791e+05 4.1582e-04

Cells

The cell section includes statistics for each cell. The cells are listed in the order they appear
in the EDI System database. Following are entries for several cells:

name number cost
SPN_OR3_4 22 1.5716e-06
SPN_OR3_2 28 1.5483e-06
SPN_OR3_1 14 6.7594e-07
SPN_OR2_12 0 0.0000e+00
SPN_OR2_8 0 0.0000e+00
SPN_OR2_6 0 0.0000e+00
SPN_OR2_4 183 1.1356e-05
SPN_OR2_3 0 0.0000e+00
SPN_OR2_2 89 4.0853e-06
SPN_OR2_1 196 7.5502e-06

Subareas

The last section includes yield statistics by subarea. Subareas correspond to the bin size in
reportYield.

SubArea Location (um) Yield Cost
x1 y1 x2 y2 Cell Via Routing
==
0, 17 [816, 0] [864, 48] 0.000000, 0.000000, 0.000000
0, 18 [864, 0] [913, 48] 0.000002, 0.000000, 0.000007
0, 19 [913, 0] [961, 48] 0.000010, 0.000002, 0.000008
0, 20 [961, 0] [1009, 48] 0.000010, 0.000002, 0.000010
0, 21 [1009, 0] [1057, 48] 0.000011, 0.000002, 0.000010
0, 22 [1057, 0] [1105, 48] 0.000010, 0.000002, 0.000011
0, 23 [1105, 0] [1153, 48] 0.000010, 0.000002, 0.000000
...
total cost: cell 0.005068, via 0.000829, routing 0.005554
October 2010 1271 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Understanding the Yield Technology File

The yield technology file contains models for cell and via defects, and for open and short
defects in routing. The EDI System software integrates the models with critical area analysis
to calculate how much the yield is affected by using different cells, vias, wire spacing and wire
widening.

The yield technology file is typically supplied by the fab or the library vendor. However, if the
fab or library vendor does not supply the file, the software generates a template file from
generic values computed from the minimum width, minimum spacing, vias, and cells
specified in the LEF file. The generic values come from public sources such as the
International Technology Roadmap for Semiconductors (ITRS), so users without access to
fab data can have a approximate estimate of yield impacts from different yield optimization
choices. You can use the template file to experiment with reportYield.

Important

Cadence recommends that you use real yield coefficients from the fab or library
vendor in order to get accurate yield estimates.

The following commands load the yield file automatically during design import:

■ loadConfig

■ loadYieldTechFile

The following commands require that the yield technology file is loaded:

■ reportYield

■ optCellYield

File Format

The file uses XML syntax with the following basic XML format:

■ Statements

❑ XML statements have the following format:

<keyword> … </keyword>

For example,

<layers> METAL1 METAL2 METAL3 </layers>

❑ Unrecognized keyword statements are ignored.
October 2010 1272 Product Version 9.1.3

../fetxtcmdref/importT.html#loadConfig
../fetxtcmdref/yieldT.html#loadYieldTechFile
../fetxtcmdref/yieldT.html#reportYield
../fetxtcmdref/timing_ipoT.html#optCellYield

Encounter Digital Implementation System User Guide
Analyzing Yield
❑ Statements can be nested inside other statements.

■ Comments

❑ XML comments are included between <!-- and --> delimiters. For example,

<!-- This is an XML comment.-->

For more information on XML, see http://www.w3c.org or any other XML reference.

Conventions

■ Layer names

The yield technology file uses the layer names from the LEF technology file. The names
are case-sensitive.

■ Distance units values

In the yield technology file, many values are specified in distance units. Supported
distance units include the following:

❑ nanometer (nm)

1 nm = 1e-9 meters

❑ micron (um)

1 um = 1e-6 meters

❑ centimeter (cm)

1 cm = 1e-2 meters

In some cases, a squared or cubed unit value, such as cm2, is required. This value is
written in the file as cm^2. A value like 5.0 defects per cm2 is written as 5.0/cm^2.

■ Probabilities of failure

Probabilities of failure are expressed as floating point numbers between 0.0 and 1.0.

■ File sections

Each section of the file has a a separate keyword.
October 2010 1273 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
File Sections and Keyword Statement Descriptions

The yield technology file contains the following sections:

■ Header on page 1274

■ Open Point Defect on page 1274

■ Short Point Defect on page 1278

■ Via Probability on page 1279

■ Cell Probability on page 1282

Header
<yield_file>

[<title> title]
…
</yield_file>

Declares that the file is a yield file and contains the entire file. For example:

<yield_file>
<title> 90nm Standard Process Version 1.21</title>

…
</yield_file>

Keyword Statements

Open Point Defect
<open_point_defect>

<layers> layer1 [layer2 ...] </layers>
<defect_width_range> minDefectWidth maxDefectWidth </defect_width_range>
<reporting_widths> width1 [width2 ...] </reporting_widths>
{<cumulative_defect_width_and_density> defectWidth defectsPerArea
</cumulative_defect_width_and_density>
|<defect_width_and_density> defectWidth defectDensity
</defect_width_and_density>}

</open_point_defect>

<yield_file> The first statement in the yield file. Statements outside of
(before or after) the yield_file statement are ignored.

<title> The title is optional. The title is written to the report file.
October 2010 1274 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Describes the density of defects that cause opens. A defect that lands on a metal wire and
creates a hole in the metal causes an open. The file can have more than one open point
defect table.

An open point defect table can include defect data statements, which describe the defect size
distribution directly, or cumulative defect data statements, which aggregate the data from
defects up to a specified size. The following example includes cumulative defect data
statements.

<open_point_defect>
<layers> METAL1 METAL2 METAL3 </layers>
<defect_width_range> 100nm 2000nm </defect_width_range>
<reporting_widths> 100nm 150nm 200nm 300nm 400nm 1000nm 2000nm

</reporting_widths>
<cumulative_defect_width_and_density> 100nm 1.00/cm^2

</cumulative_defect_width_and_density>
<cumulative_defect_width_and_density> 200nm 0.25/cm^2

</cumulative_defect_width_and_density>
</open_point_defect>

Keyword Statements

<layers> layer1 [layer2 …] </layers>

Specifies the layers to which this table applies. You must specify
at least one layer.

<defect_width_range> minDefectWidth maxDefectWidth
</defect_width_range>

Specifies the minimum and maximum width of defects to
consider.

Typically, minDefectWidth is the same as the minimum
width for the layer and maxDefectWidth is the largest defect
that matters. Since the defect size normally falls off as 1/size3, a
value of 10 or 20 times minimum width is sufficient.

A distance units value is required for both minDefectWidth
and maxDefectWidth.

<reporting_widths> width1 [width2 …] </reporting_widths>
October 2010 1275 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Important

Each open point defect table must contain either defect width or cumulative defect
width and density keyword statements. It cannot contain both types of statements.

Specifies the widths for the detailed report file that is output by
the reportYield command. The detailed report includes total
length of each width, critical area analysis for each width, and
additional statistics.

Typically, width1 is the minimum width for the layer and the
last width is the maximum width for the layer. You must specify a
value for at least one width. A distance units value is required
for each width.

<defect_width_and_density> defectWidth defectDensity
</defect_width_and_density>

The defect width is the diameter of the defect. The defect
density of a defect of width defectWidth is
defectDensity.

■ defectWidth is specified in distance units, typically nm.

■ defectDensity is specified in units of 1/distance3,
either 1/cm2/nm or 1/nm3 (1/cm2/nm means there are
defectDensity defects per cm2 between
defectWidth and defectWidth + 1 nm in size).

<defect_width_and_density> values are used to define
the DSD(x) function. For more information, see “Defect Data
Function” on page 1288.

The table can have one or more defect data statements.

■ If only one defect data statement is specified, the defect
density is assumed to fall off as 1/width3.

■ If more than one defect data statement is specified,
intermediate data points are interpolated by using a log
scale which assumes cumulative defects fall off as
1/widthp.
October 2010 1276 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Examples

■ Using data measured as total defects greater than or equal to x size (cumulative data
statements)

In the following example, the fab measured defects on METAL1 and METAL2 with a
minimum width of 0.10 um. The density was:

0.1 defects/cm2 >= 100nm defect size
0.025 defects/cm2 >= 200nm defect size

The <cumulative_defect_width_and_density> statements for these values are:

<open_point_defect>
<layers> METAL1 METAL2 </layers>
<cumulative_defect_width_and_density> 100nm

0.1/cm^2 </cumulative_defect_width_and_density>
<cumulative_defect_width_and_density> 200nm

0.025/cm^2 </cumulative_defect_width_and_density>
</open_point_defect>

■ Converting defect bin size data to defect data statements

<cumulative_defect_width_and_density> defectWidth defectsPerArea
</cumulative_defect_width_and_density>

There are defectsPerArea with a width (diameter) that is
greater than or equal to defectWidth.

■ defectWidth is specified in distance units, typically nm.

■ defectsPerArea is specified in units of 1/distance2.

<cumulative_defect_width_and_density> values are
used to define the CDSD(x) function. For more information, see
“Cumulative Defect Data Function” on page 1289.

An open point defect table can have one or more cumulative
defect data statements.

■ If only one cumulative defect data statement is specified,
the cumulative defect density is assumed to fall off as
1/width2.

■ If more than one cumulative defect data statement is
specified, intermediate data points are interpolated. For
more information, see “Converting defect bin size data to
defect data statements” on page 1277.
October 2010 1277 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
In the following example, the fab measured the total number of defects for various defect
size bins and made the following measurements for METAL1 and METAL2:

Assume an exponent of 3 for the distribution within a given bin range. Then, for a given
bin, from x1 to x2 with a measured number of defects/cm2 = D for the bin, the formula is:

CD = 2 * D/[(1/x1)2 - (1/x2)2]

At any point x inside the bin, the number of defects of size x is

CD * (1 / x)3

Solving for the midpoint of the bins, the two bins (scaling the 1/cm2 to1/nm2 with 1e-14),
results in the following values:

For Bin 1, the data means that the number of defects between 125 nm and 126 nm wide
is

~9.22e-18/nm3 * 1nm = 9.22e-18/nm2 = 9.22e-4/cm2

The <defect_width_and_density> statements for these values are:

<open_point_defect>
<layers> METAL1 METAL2 </layers>
<defect_width_and_density> 125nm 9.22e-18/nm^3 </defect_width_and_density>
<defect_width_and_density> 175nm 3.84e-18/nm^3 </defect_width_and_density>

</open_point_defect>

Short Point Defect
<short_point_defect>

<layers> layer1 [layer2 ...] </layers>
<defect_width_range> minDefectWidth maxDefectWidth </defect_width_range>
<reporting_spacings> spacing1 [spacing2 ...] </reporting_spacing>
<cumulative_defect_width_and_density> defectWidth defectsPerArea

Bin 1 Defect width between 100 nm and 150 nm = 0.05 defects/cm2

Bin 2 Defect width between 150 nm and 200 nm = 0.02 defects/cm2

Bin 1 CD = 2 * 0.05 x 1e-14 / [(1/100)
2 – (1/150)2] = 0.1e-14 * 1.8e4 =

1.8e-11 DSD(125) = CD * (1/125)
3 = 1.8e-11 * (1/125)3 =

9.22e-18/nm3 at 125nm

Bin 2 CD = 2 * 0.02 x 1e-14 / [(1/150)
2 – (1/200)2] = 0.04e-14 * 5.15e4 =

2.06e-11 DSD(175) = CD * (1/175nm)
3 = 2.06e-11 * (1/175)3 =

3.84e-18/nm3 at 150nm
October 2010 1278 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
</cumulative_defect_width_and_density>
</short_point_defect>

Describes the density of defects that cause shorts. A defect that lands between two metal
wires, adding extra metal, causes a short. The file can have more than one short point defect
table.

A short point defect table can include cumulative defect data, as in the following example, or
defect data.

<short_point_defect>
<layers> METAL1 METAL2 METAL3 </layers>
<defect_width_range> 100nm 2000nm </defect_width_range>
<reporting_spacings> 100nm 150nm 200nm 300nm 400nm 1000nm 2000nm

</reporting_spacings>
<cumulative_defect_width_and_density> 100nm 1.00/cm^2

</cumulative_defect_width_and_density>
<cumulative_defect_width_and_density> 200nm 0.25/cm^2

</cumulative_defect_width_and_density>
</short_point_defect>

Keyword Statements

The syntax of the short point defect table is identical to that of the open point defect table,
except that reporting spacings are used, instead of reporting widths:

Via Probability
<via_probability>
<layers> bottomLayer cutLayer topLayer </layers>
<via> probability_of_failure
<cuts> number_of_cuts
<lower_along> lowerAlong1 lowerAlong2 </lower_along>
<lower_across> lowerAcross1 lowerAcross2 </lower_across>
<upper_along> upperAlong1 upperAlong2 </upper_along>
<upper_across> upperAcross1 upperAcross2 </upper_across>

</via>
</via_probability>

Describes the probability of failure for different types of vias, where a via is defined as a
combination of metal below, via cuts, and metal above. Each via probability table has one or
more layers statements and one or more via statements.

<reporting_spacings> spacing1 [spacing2 …]</reporting_spacings>

Specifies the spacing ranges to use when reporting wire
statistics. The first value is typically the minimum spacing for the
layer and the last value is the largest spacing of interest.
October 2010 1279 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
<via_probability>
<layers> METAL1 VIA12 METAL2 </layers>
<layers> METAL2 VIA23 METAL3 </layers>
<via> 1.0e-9
<cuts> 1 </cuts>
<lower_along> 50nm 50nm </lower_along>
<lower_across> 5nm 5nm </lower_across>
<upper_along> 50nm 50nm </upper_along>
<upper_across> 5nm 5nm </upper_across>

</via>
</via_probability>

Keyword Statements

<layers> metalLayerBelow viaLayer metalLayerAbove </layers>

Each layers statement specifies the following three layers:

■ Metal layer below the via layer

■ Via layer itself

■ Metal layer above the via layer

<via> probFailure
<cuts> numCuts </cuts>
<lower_along> lowerAlong1 lowerAlong2 </lower_along>
<lower_across> lowerAcross1 lowerAcross2 </lower_across>
<upper_along> upperAlong1 upperAlong2 </upper_along>
<upper_across> upperAcross1 upperAcross2 </upper_across>

</via>

Each <via> statement specifies the following:

■ probFailure

The probability of failure for this via

■ <cuts>

The number of cuts in this via

■ <lower_along> <lower_across> <upper_along>
<upper_across>

Overhang values for upper and lower layers, specified in
distance units.
October 2010 1280 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Examples

■ Single-cut via

In the following example, the first <via> statement below says a single-cut via with
overhangs of 50 nm along and 5 nm across for both metal layers has a probability of
failure of 1.0e-9.

<via_probability>
<layers> METAL1 VIA12 METAL2 </layers>
<layers> METAL2 VIA23 METAL3 </layers>
<via> 1.0e-9
<cuts> 1 </cuts>
<lower_along> 50nm 50nm </lower_along>
<lower_across> 5nm 5nm </lower_across>
<upper_along> 50nm 50nm </upper_along>
<upper_across> 5nm 5nm </upper_across>

</via>
<via> 0.8e-9

<cuts> 1 </cuts>
 <lower_along> 80nm 80nm </lower_along>
<lower_across> 5nm 5nm </lower_across>
<upper_along> 80nm 80nm </upper_along>
<upper_across> 5nm 5nm </upper_across>

</via>
<via> 0.7e-9
<cuts> 1 </cuts>
<lower_along> 30nm 30nm </lower_along>
<lower_across> 30nm 30nm </lower_across>
<upper_along> 30nm 30nm </upper_along>
<upper_across> 30nm 30nm </upper_across>

</via>
</via_probability>

If a via with different metal overhangs than given in the example is encountered, it has
the probability of failure of the via in the table with the lowest failure rate, as long as it
meets all the overhang values for that via.

In the example above,

❑ A via with 60 nm along and 5 nm across on both metal layers only meets the 50
nm/5 nm overhang of the first <via> statement above, so it uses that data (1.0e-9).

❑ A via with 90 nm along and 5 nm across on both metal layers meets the 80 nm/5 nm
overhang of the second <via> statement, so it uses that data (0.8e-9).

❑ If a via cannot meet all the overhangs of any of the <via_probability>
statements, it uses the data for the via with the highest probability of failure for a via
with the same number of cuts (the first <via> statement’s value of 1.0e-9).

■ Double-cut via

Double-cut vias typically do not vary much by overhang, so normally only one entry is
necessary in the table.
October 2010 1281 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
<via_probability>
<layers> METAL1 VIA12 METAL2 </layers>
<layers> METAL2 VIA23 METAL3 </layers>

<via> 0.05e-9
<cuts> 2 </cuts>
<lower_along> 50nm 50nm </lower_along>
<lower_across> 5nm 5nm </lower_across>
<upper_along> 50nm 50nm </upper_along>
<upper_across> 5nm 5nm </upper_across>

</via>
</via_probability>

■ Via with more than two cuts

By default, the yield technology file reports failure rates for three types of vias: single-cut
vias, double-cut vias, and array vias (vias with more than two cuts).

To report failure probabilities for array vias, define <via_probability> statements
with a probability of failure for vias with <cuts> 3 </cuts> and add a statement like
the following for triple-cut vias:

<via_probability>
<layers> METAL1 VIA12 METAL2 </layers>
<layers> METAL2 VIA23 METAL3 </layers>
<!-- vias with > 2 cuts might have 0 probability of failure -->
<via> 0.0
<cuts> 3 </cuts>
<lower_along> 0nm 0nm </lower_along>
<lower_across> 0nm 0nm </lower_across>
<upper_along> 0nm 0nm </upper_along>
<upper_across> 0nm 0nm </upper_across>

</via>
</via_probability>

If no array-cut via probability is given, array vias use the probability of failure for the via
with two cuts with the lowest probability of failure.

Cell Probability
<cell_probability>
<cell> cell_name </cell>

<instance> probInstFail </instance>
<systematic> probSystematicFail </systematic>

</cell>
<cell_probability>

Describes the probability of failure for different types of cells, including the probability that a
particular instance of a cell will fail and the probability that one or more instances of a cell will
fail.

<cell_probability>
<cell> and2_1x

<instance> 1.2e-8 </instance>
<systematic> 1.0e-7 </systematic>

</cell>
<cell> and2_2x
October 2010 1282 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
<instance> 1.6e-8 </instance>
<systematic> 1.2e-7 </systematic>

</cell>
</cell_probability>

Keyword Statements

Example

In the following example, the and2_1x cell has a 1.2e-8 probability of failure for each instance
of and2_1x. In addition, there is a systematic probability of failure of 1.0e-7 if any and2_1x
cells are used.

Therefore, a design that has five and2_1x instances, would have a defect-limited yield equal
to (1 – 1.2e-8)5 * (1 – 1.0e-7) from the usage of and2_1x cells.

The cell probability statement for these values is

<cell_probability>
<cell> and2_1x

<instance> 1.2e-8 </instance >

<cell> cellName
[<instance> probInstFail </instance>]
[<systematic> probSystematicFail </systematic>]

</cell>

<cell> cellName

Specifies a cell in the .lib or LEF file. The
cellName is case sensitive. Each cell
probability section has zero or more
<cell> statements.

<instance> probInstanceFail

Specifies the probability that one instance of
the cell will fail. The probability is specified
as a floating point number between 0.0 and
1.0.

<systematic> probSystematicFail

Specifies the probability of a systematic
failure of the cell, independent of the number
of instances. The probability is specified as a
floating point number between 0.0 and 1.0.
October 2010 1283 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
<systematic> 1.0e-7 </systematic>
</cell>
...
</cell_probability>
October 2010 1284 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Yield Technology File Example

The following yield technology file is for a technology with three thin metal layers and two thick
layers (twice the minimum width).

<?xml version="1.0"?>

<yield_file>
<title> 65nm Standard Process Version 1.21 </title>
<!-- This is an XML comment -->

<!-- This section describes the density of defects-->
<!-- of the kind that removes metal (cause opens).-->
<open_point_defect>
<layers> METAL1 METAL2 METAL3 </layers>
<!-- Widths of defects to do critical area analysis -->
<defect_width_range> 100nm 2000nm </defect_width_range>
<!-- Width-ranges to use when reporting wire statistics. -->
<!-- The first value is typically min-width. -->
<reporting_widths> 100nm 150nm 200nm 300nm 400nm 1000nm 2000nm
</reporting_widths>
<!-- Defect width and the number of defects/area >= width -->
<cumulative_defect_width_and_density> 100nm 1.00/cm^2

</cumulative_defect_width_and_density>
<cumulative_defect_width_and_density> 200nm 0.25/cm^2

</cumulative_defect_width_and_density>
</open_point_defect>
<open_point_defect>
<!-- 2x metal layers -->
<layers> METAL4 METAL5 </layers>
<!-- Widths of defects to do critical area analysis -->
<defect_width_range> 200nm 2000nm </defect_width_range>
<!-- Width-ranges to use when reporting wire statistics. -->
<!-- The first value is typically min-width. -->
<reporting_widths> 200nm 300nm 400nm 500nm 1000nm 2000nm </reporting_widths>
<!-- Defect width and the number of defects/area >= width -->
<cumulative_defect_width_and_density> 200nm 1.00/cm^2

</cumulative_defect_width_and_density> <cumulative_defect_width_and_density>
400nm 0.25/cm^2 </cumulative_defect_width_and_density>
</open_point_defect>

<!-- This section describes the density of defects-->
<!-- of the kind that add extra metal (causes shorts).-->
<short_point_defect>
<layers> METAL1 METAL2 METAL3 </layers>
<!-- Widths of defects to do critical area analysis -->
<defect_width_range> 100nm 2000nm </defect_width_range>
<!-- Spacing-ranges to use when reporting wire statistics. -->
<!-- The first value is typically min-spacing. -->
<reporting_spacings> 100nm 150nm 200nm 300nm 400nm 1000nm 2000nm

</reporting_spacings>
<!-- Defect width and the number of defects/area >= width -->
<cumulative_defect_width_and_density> 100nm 1.00/cm^2

</cumulative_defect_width_and_density> <cumulative_defect_width_and_density>
200nm 0.25/cm^2 </cumulative_defect_width_and_density>
</short_point_defect>
<short_point_defect>
<!-- 2x metal layers -->
<layers> METAL4 METAL5 </layers>
<!-- Widths of defects to do critical area analysis -->
<defect_width_range> 200nm 2000nm </defect_width_range>
October 2010 1285 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
<!-- Spacing-ranges to use when reporting wire statistics. -->
<!-- The first value is typically min-spacing. -->
<reporting_spacings> 200nm 300nm 400nm 500nm 1000nm 2000nm

</reporting_spacings>
<!-- Defect width and the number of defects/area >= width -->
<cumulative_defect_width_and_density> 200nm 1.00/cm^2

</cumulative_defect_width_and_density>
<cumulative_defect_width_and_density> 400nm 0.25/cm^2

</cumulative_defect_width_and_density>
</short_point_defect>

<!-- This section describes different via’s probability of failure -->
<via_probability>
<!--the layers for these vias-->
<layers> METAL1 VIA12 METAL2 </layers>
<layers> METAL2 VIA23 METAL3 </layers>
<!-- Probability of failure for a given via. Each via has -->

<!-- the number of cuts, and various overhang values for the -->
<!-- metal layers below and above the via layer. -->
<via> 1.0e-9 <!-- min-overhang -->

<cuts> 1 </cuts>
<lower_along> 50nm 50nm </lower_along>
<lower_across> 5nm 5nm </lower_across>
<upper_along> 50nm 50nm </upper_along>
<upper_across> 5nm 5nm </upper_across>

</via>
<via> 0.8e-9 <!-- extra-overhang -->

<cuts> 1 </cuts>
<lower_along> 80nm 80nm </lower_along>
<lower_across> 5nm 5nm </lower_across>
<upper_along> 80nm 80nm </upper_along>
<upper_across> 5nm 5nm </upper_across>

</via>
<via> 0.7e-9 <!-- equal overhang -->

<cuts> 1 </cuts>
<lower_along> 30nm 30nm </lower_along>
<lower_across> 30nm 30nm </lower_across>
<upper_along> 30nm 30nm </upper_along>
<upper_across> 30nm 30nm </upper_across>

</via>
<!-- double-cut vias typically don’t vary much by overhang -->
<!-- so only one entry is necessary. -->

<via> 0.05e-9
<cuts> 2 </cuts>
<lower_along> 50nm 50nm </lower_along>
<lower_across> 5nm 5nm </lower_across>
<upper_along> 50nm 50nm </upper_along>
<upper_across> 5nm 5nm </upper_across>

</via>
<!-- vias with > 2 cuts have 0 probability of failure -->

<via> 0.0
<cuts> 3 </cuts>
<lower_along> 50nm 50nm </lower_along>
<lower_across> 5nm 5nm </lower_across>
<upper_along> 50nm 50nm </upper_along>
<upper_across> 5nm 5nm </upper_across>

</via>
</via_probability>
<via_probability>
<layers> METAL3 VIA34 METAL4 </layers>
<layers> METAL4 VIA45 METAL5 </layers>
October 2010 1286 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
<via> 1.0e-9 <!-- min-overhang -->
<cuts> 1 </cuts>
<lower_along> 60nm 60nm </lower_along>
<lower_across> 10nm 10nm </lower_across>
<upper_along> 60nm 60nm </upper_along>
<upper_across> 10nm 10nm </upper_across>

</via> <via> 0.8e-9 <!-- extra-overhang -->
<cuts> 1 </cuts>
<lower_along> 90nm 90nm </lower_along>
<lower_across> 10nm 10nm </lower_across>
<upper_along> 90nm 90nm </upper_along>
<upper_across> 10nm 10nm </upper_across>

</via> <!-- double-cut via -->
<via> 0.05e-9
<cuts> 2 </cuts>
<lower_along> 60nm 60nm </lower_along>
<lower_across> 10nm 10nm </lower_across>
<upper_along> 60nm 60nm </upper_along>
<upper_across> 10nm 10nm </upper_across>

</via>
<!-- vias with > 2 cuts have 0 probability of failure -->

<via> 0.0
<cuts> 3 </cuts>
<lower_along> 60nm 60nm </lower_along>
<lower_across> 10nm 10nm </lower_across>
<upper_along> 60nm 60nm </upper_along>
<upper_across> 10nm 10nm </upper_across>

</via>
</via_probability>

<!-- This section has the probability of failure for each cell -->
<!-- <instance> is the probability of failure for each -->
<!-- instance of the cell. <systematic> is the probability -->
<!-- of failure is 1 or more instances of the cell are used (e.g. -->
<!-- the failure rate is independent of the number of instances) -->
<cell_probability>
<cell> and2_1x

<instance> 1.2e-8 </instance>
<systematic> 1.0e-7 </systematic>

</cell>
<cell> and2_2x

<instance> 1.6e-8 </instance>
<systematic> 1.2e-7 </systematic>

</cell>
...
</cell_probability>

</yield_file>
October 2010 1287 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Formulas and Calculations

Calculating the Probability of Failure for a Metal Layer

The formula for calculating the probability of failure of a metal layer for each defect width is:

where

λ is the expected number of failures for one die (defects that cause a failure).

CA(x) is the critical area for a particle of width x.

x0 is the reference defect width, which is the smallest defect width of interest. It is typically
less than or equal to the minimum width for a given layer.

DSD(x) is the number of defects equal to size x.

Y = the yield per die, which is the probability of 0 failures for a die that has λ expected failures.
This can be computed using Poisson’s formula like:

Y= e−λ

Calculating Defect and Cumulative Defect Data

Defect Data Function

The defect data function is described as:

where

λ CA x()DSD x() xd

x0

∞

∫=

DSD(x) = CD * 1/xp for x >=x0
October 2010 1288 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
CD is a constant related to the total number of defects per cm2.

p is typically 3, which means the number of defects for a given size x falls off as 1/x3.

The units of DSD(x) are most naturally expressed as defects per cm2 per nm of defect size.

Note: Units are converted to defects per nm2 per nm or defects/nm3 in the data below
and in the defect data table entries.

The following graph shows a typical DSD(x) function:

You can derive the complete function by giving various DSD(x) values for different x values in
the yield technology file.

Cumulative Defect Data Function

The cumulative defect data function is described as:

where

CDSD(x) is the total number of defects greater than or equal to x.

∞
CDSD(x) = ∫ DSD(x) dx

x

October 2010 1289 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Deriving the Functions from Each Other

The DSD(x) and CDSD(x) functions can be derived from each other if you know the
exponent p. You can estimate p from the data in the yield technology file. Solving the integral
give the following formula:

The exponent p is derived from the slope of the log of the values shown in the figure below:

If only one value is given in the table, an exponent of 3 is assumed for the defect data function
and an exponent of 2 is assumed for the cumulative defect data function.

The following graph shows the relationship between the defect size, defect density, the critical
area, and the chip failure rate.

CDSD(x) = (1/(p-1)) * CD * 1/x(p-1) = 0.5 * CD * 1/x2 for p = 3

Use the slope to derive the exponent p
for DSD(x) = CD * (1/xp)

D
ef

ec
t d

en
si

ty
 (

1/
cm

2)

C
rit

ic
al

 a
re

a
(c

m
2)

Defect size
October 2010 1290 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
Cost Formulas

Yield costs are determined using the following formulas, where

For N features on the chip:

Y = (1-P1)*(1-P2)*...*(1-PN)

Taking the ln of both sides gives:

ln(Y)=ln((1-P1)*(1-P2)*...*(1-PN))=∑ln(1-Pi)=-∑Ci=-CT

so

and

Yield loss = 1-Y

For values of Pi <<1, which is true for these types of probability values, it is useful to
remember the following approximation:

-ln(1-Pi)≈Pi

Y = the probability the chip works (the yield)

Pi = the probability of failure of one feature i (for example, a cell, a via, a 10 μ minimum-
width wire)

Ci = -ln(1-Pi) = the cost of feature i (higher costs have worse yield)

CT = total cost = ∑Ci

Y e
CT–

=

October 2010 1291 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Analyzing Yield
October 2010 1292 Product Version 9.1.3

Encounter Digital Implementation System User Guide
39
Creating An Initial Floorplan Using
Automatic Floorplan Synthesis

■ Overview on page 1294

■ Automatic Floorplan Synthesis Flow on page 1295

■ Data Preparation on page 1297

❑ Selecting Seeds on page 1297

■ Importing the Design on page 1303

■ Setting Automatic Floorplan Synthesis Global Parameters on page 1304

■ Creating an Initial Floorplan on page 1304

■ Creating Floorplan for Hierarchical Design on page 1305

❑ Macro placement on page 1306

❑ Full-chip Floorplan on page 1307

❑ Power-Domain Aware Floorplan on page 1308

■ Creating Multiple Alternative Floorplans on page 1310

■ Analyzing the Floorplan on page 1311

■ Adjusting Macro Placement on page 1312

❑ Manual Macro Adjustment on page 1313

❑ Automatic Floorplan Synthesis Macro Adjustment on page 1313

❑ Marking Refinement Steps on page 1317

❑ Restoring Refinement Steps on page 1318

■ Saving the Floorplan on page 1318
October 2010 1293 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
Overview

Automatic Floorplan Synthesis (previously called Masterplan) is a set of natively-integrated
automatic floorplan capabilities that can create a quick, prototype floorplan. Given a gate-
level netlist and design physical boundary, Automatic Floorplan Synthesis can analyze the
signal flow and generate a floorplan that includes automatic module and macro placement for
large chips.

By default, Automatic Floorplan Synthesis takes timing constraints into account during
floorplan generation. The advantage of using Automatic Floorplan Synthesis is that you can
quickly create multiple alternative floorplans. You can then test the floorplans to find the one
that gives you the best placement and routing results, and use it as a starting point for making
the final floorplan.

Ideal designs for use with Automatic Floorplan Synthesis are:

■ Designs with hierarchical logical netlists

■ Large designs that contain more than 50 hard macros

■ Designs in which no more than 50 percent of the chip area is made up of hard macros
October 2010 1294 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
Automatic Floorplan Synthesis Flow

Figure 39-1 on page 1296 shows the typical task flow for using Automatic Floorplan
Synthesis to create an initial floorplan:
October 2010 1295 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
Figure 39-1 Automatic Floorplan Synthesis Flow

LEF / *.lib / *.sdc File Gate-Level Netlist Input Floorplan

Import Design

Analyze Floorplan
(analyzeFloorplan)

Is macro placement,
module guide,

congestion, and timing
acceptable?

Refine Macros
(refineMacro)

or
Adjust Manually

Save Floorplan

No

Yes

Constraint File (Optional)
Common Power Format
(Optional)

Die Size, I/O’s, Preplaced
Cells, Blockages, ...

Set Global Parameters
(setPlanDesignMode)
and
Create Initial Floorplan
(planDesign)

Floorplan

Adjust Parameters
October 2010 1296 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#analyzeFloorplan
../fetxtcmdref/floorplanT.html#refineMacro
../fetxtcmdref/floorplanT.html#setPlanDesignMode
../fetxtcmdref/floorplanT.html#planDesign

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
Data Preparation

The Automatic Floorplan Synthesis uses the following input files when creating floorplans:

■ Gate-level netlist

■ LEF file that contains models for standard cells, hard macros, I/O pads

■ Floorplan file (or DEF file) that defines:

❑ Die size and core area

❑ Fixed I/O pad and pin locations

❑ Any preplaced hard macros or placement blockages

❑ Power stripes and rings (optional)

Note: Cells with direct I/O connections should be preplaced around the chip boundary
before running the Automatic Floorplan Synthesis feature. These include Jtag cells,
boundary scan cells, and I/O interface logic cells. Automatic Floorplan Synthesis
automatically ignores high fanout global nets, such as clock, reset, scan, and enable.
Use the following commands to preplace Jtag and boundary scan cells:

specifyJtag

placeJtag

■ Constraint file (optional)

Selecting Seeds

Seeds are typically design blocks that represent functional units. For example, USB
controllers, PCI controllers, Cache sub blocks, and FPUs make good seed candidates. For
most designs, hierarchical modules make good seed candidates if they represent the
functional units in the design. Hierarchical modules (soft seeds) are not the only candidates
for seeds; a seed can also be a hard macro (hard seed) or an instance group made up of
strongly connected instances.

Automatic Floorplan Synthesis analyzes the data flow between seeds (design blocks) based
on their connectivity and their location. It then places the seeds in the core area in a way that
minimizes wire length and congestion. You should select seeds that identify the data flow in
the design so that when planDesign is run, Automatic Floorplan Synthesis can optimize
your data flow to reduce overall interconnect and placement.
October 2010 1297 Product Version 9.1.3

../fetxtcmdref/placementT.html#specifyJtag
../fetxtcmdref/placementT.html#placeJtag

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
Seed selection and seed location also influence how Automatic Floorplan Synthesis places
hard macros. Seeds eventually become module guides in the Automatic Floorplan Synthesis
generated floorplan.

There are two methods for selecting seeds:

■ Automatic seed selection

■ User-Specified seed selection

Automatic Seed Selection

By default, Automatic Floorplan Synthesis selects seeds using the following methods in the
specified order:

1. Chooses modules that fit an internally calculated size range

2. Chooses large hard macros as seeds

3. Groups small modules or single standard cells to fit an internally calculated size range

However, you can force automatic seed selection to favor a certain constraint during the seed
selection process by specifying one of the following setPlanDesignMode parameters:
-setSeedHierLevel, -numSeed, or -seedSize.

For example, some designs might not require the Automatic Floorplan Synthesis feature to
look through their entire hierarchies to select seeds. Going down two to three levels from the
top in the hierarchy might be enough to select good seeds. In this case, you can force
Automatic Floorplan Synthesis to favor logic level when selecting seeds by typing the
following commands:

setPlanDesignMode -setSeedHierLevel 3

planDesign

Note: After automatic seed selection, Automatic Floorplan Synthesis writes out a seed file
called MP_seed under the current directory.

User-Specified Seed Selection

You can provide your own choice of seeds to influence the macro placement and module
guide generation of Automatic Floorplan Synthesis. You can select seeds based on a
module’s function, size, connectivity, or any combination of the three.

For most designs, the optimal number of seeds to select is between 20 to 50. You should not
select fewer than 10 seeds, or more than 100. You do not have to provide a complete list of
seeds for the design. Automatic Floorplan Synthesis will select the remainder of the seeds
October 2010 1298 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#setPlanDesignMode

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
required for the design size, and will attempt to select seeds that match the size of the ones
you selected.

To provide Automatic Floorplan Synthesis with your choice of seeds, you must create a seed
section in the constraint text file. This seed section lists the names of the hierarchical
modules, hard macros, and instance groups that you picked as seeds. You also can specify
utilization values for individual modules or instance groups.

You can specify a seed section using the following format:

BEGIN SEED

seed_name [utilization_value]

END SEED

Where:

For example:

BEGIN SEED

Module-A/A1/abc 0.75

Module-B/B2/xyz

...

HM2

Module-C/C1/HM2

...

instGrp-1 0.85

instGrp-2

...

END SEED

Creating a Seed Section In the Constraint File

The purpose of creating a seed section in the constraint file is to select seeds that will identify
the data flow of your design so as to generate better floorplan results. The following steps
show you one way to determine which modules in your design to select as seeds.

1. Import your design.

seed_name Specifies the name of the hierarchical module, hard macro, or
instance group that you want to choose as a seed.

utilization_value Specifies the utilization value for the specified module or
instance group.
October 2010 1299 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
2. Open the Design Browser and examine the design hierarchy.

Consider the following points when examining the modules:

❑ The relationship between modules

Look at the relationships between modules to find which modules best identify the
data flow in your design. The block diagram for your design can give you a good idea
as to which modules these are.

❑ The size and area of modules

❍ Do not select seeds that differ widely in size. The size of a seed is based on an
area estimate. The size difference between the largest seed and the smallest
seed in the design should be no more than10x.

❍ Select large hard macros with sizes greater than 1/4 of the core area as seeds,
except if they are marked as FIXED.

❍ Only select small modules or single standard cells as seeds if you know they
are important to the global signal flow. At the end of the seed selection process,
the Automatic Floorplan Synthesis feature groups small modules and individual

Module with majority of
macros

Module with large macro

Module with analog macro
October 2010 1300 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
standard cells into instance group seeds based on existing seed size and
connectivity.

❍ Do not select I/O modules that include pad cells as seeds because I/O pads
should already be pre-placed.

❑ The number of macros in a module

If your design hierarchy includes a single module that contains almost all of the
macros in the design, do not select it as a seed. Instead, examine its sub modules
for seed candidates (step 3).

❑ Any special modules in the design

For example, look for modules that include a very large macro, or an analog macro.

3. Examine the sub modules of a module for seed candidates.

In Figure 39-2 on page 1301, you should select the modules at this level as seeds
because it will produce better grouping for macro placement.

Figure 39-2

In Figure 39-3 on page 1302, you should select this macro as a seed because it is larger
than 1/4 of the core area.

Select these modules
as seeds
October 2010 1301 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
Figure 39-3 Large Macro

4. Create a seed section.

For example, Figure 39-4 on page 1302 shows the block diagram for the design.

Figure 39-4 Design Block Diagram

Based on this diagram:

Very large macro in the design

MEMS

M1

M3

M5

M1

M4

M6

MMU

CORE

U
N

IT
1

U
N

IT
2

U
N

IT
3

DIN

CACHE

SIFU1

CTRL SIFU2 DOUT Dout

P1

Din

P2
October 2010 1302 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
1. Examine the module mems because it contains the majority of the macros in the design.
Select seeds from its sub modules in order to get better macro placement (Figure 39-2
on page 1301).

2. Examine the module cache, and select the macro bigmacro because it is very large
(Figure 39-3 on page 1302).

3. Do not select the modules named mod_k and mod_n as seeds because they are so small
that they do not show up in the block diagram.

4. Do not select the module named io because it includes I/O pad cells that have already
been pre-placed.

The resulting seed section is as follows:

core #Hinst: good for data flow

unit1 #Hinst: good for data flow

unit2 #Hinst: good for data flow

unit3 #Hinst: good for data flow

mmu #Hinst: good for data flow

din #Hinst: good for data flow

dout #Hinst: good for data flow

ctrl #Hinst: good for data flow

sifu1 #Hinst: good for data flow

sifu2 #Hinst: good for data flow

mems/m1 #Hinst: good for data flow and macro grouping

mems/m2 #Hinst: good for data flow and macro grouping

mems/m3 #Hinst: good for data flow and macro grouping

mems/m4 #Hinst: good for data flow and macro grouping

mems/m5 #Hinst: good for data flow and macro grouping

mems/m6 #Hinst: good for data flow and macro grouping

pll #Hinst: maintain for analog macro

cache/bigmacro #Inst: maintain for big macro

Importing the Design

1. To import a design, type the following command:

loadConfig design_name.conf 1

2. To load a floorplan file, type the following command:

loadFPlan design_name.fp
October 2010 1303 Product Version 9.1.3

../fetxtcmdref/importT.html#loadConfig
../fetxtcmdref/floorplanT.html#loadFPlan

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
Setting Automatic Floorplan Synthesis Global
Parameters

Use the setPlanDesignMode command to specify the global parameters of the Automatic
Floorplan Synthesis feature. These parameters are used by the planDesign command
every time you call it to create a floorplan.

You can set the following parameters:

■ The method to use for selecting seeds (See Automatic Seed Selection on page 1298)

■ Hard macro spacing

■ Target utilization for floorplan guides

■ Place macros close to the chip boundary

■ Control macro placement status and color

■ Flow control options

Creating an Initial Floorplan

➤ Type the following command to generate an initial floorplan:

planDesign [-constraints constraint_file]

In general, you use the Automatic Floorplan Synthesis feature to create multiple
alternative floorplans, which you can then compare. Run the planDesign command the
first time using automatic seed selection, and analyze the results. For each subsequent
run, modify the seed section of the constraint file that was created automatically
(MP_seed) with several different seed options. Then specify the modified constraint file
when you run planDesign to produce different results.

By default, Automatic Floorplan Synthesis takes timing constraints into account during
floorplan generation, if timing libraries (.lib) and SDC constraint files are loaded in the
design. It will not perform timing aware floorplanning if either the timing library or
constraint file is not loaded.

When specified, Automatic Floorplan Synthesis performs the following internal functions in
order:

■ Selects the floorplan objects (seeds) to be placed

Automatic Floorplan Synthesis performs seed selection either automatically, or using the
seed section of the specified constraint file, then clusters the netlist.
October 2010 1304 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#setPlanDesignMode
../fetxtcmdref/floorplanT.html#planDesign
../fetxtcmdref/floorplanT.html#planDesign

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
■ Places the seeds

Automatic Floorplan Synthesis calls the placer to place the seeds of zero size in order to
find the best relative locations for the seeds. Automatic Floorplan Synthesis gives I/O
nets a higher weight (100), and ignores high fanout nets (0 weight).

■ Refines the seeds

Automatic Floorplan Synthesis adjusts seed size, location, and aspect ratio to reflect real
module and macro size, and to reduce seed-to-seed overlap area. The tool preserves
the relative location of seeds throughout refinement.

■ Places the macros

Automatic Floorplan Synthesis firsts groups and packs hard macros from the same seed
that are of the same type, or are similar in size and aspect ratio. Macro packs furthest
from the center of the core area are moderately pushed out toward the chip or block
boundary.

Automatic Floorplan Synthesis determines a macro’s location and orientation based on
a combination of many factors, including parent seed location, size, aspect ratio, chip or
core aspect ratio, wire length and congestion optimization, macro pin layer, and the
preferred routing layer direction of the layer. Automatic Floorplan Synthesis calculates
the space between adjacent macros based on pin density, track estimation, and metal
layer pitch. You can also specify a spacing value for the tool to use instead.

After placement, macros are marked PLACED in the database.

Creating Floorplan for Hierarchical Design

Given a hierarchical top-level floorplan that contains fences or power domains that represent
predefined partitions (Figure 39-5 on page 1306), Automatic Floorplan Synthesis can be
used for:

■ Macro placement

Places the macros within the predefined partition fences.

If no predefined fences or power domains are present in hierarchical top-level floorplan,
Automatic Floorplan Synthesis can be used for:

■ Full-chip Floorplan

Creates fences and places macros at chip level.

■ Power-Domain Aware Floorplan
October 2010 1305 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
Reads CPF, creates power domains, and places macros.

Macro placement

Automatic Floorplan Synthesis places hard macros, and generates guides for the sub
modules within the fence boundary and also on the top level (Figure 39-6 on page 1307),
considering the global connectivity.

Figure 39-5 Hierarchical Top-Level Floorplan

F1 F2

F3 F4 F5

Fence (Partition or
power domain)
October 2010 1306 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
Figure 39-6 Automatic Floorplan Synthesis Result

Note the following guidelines when performing hierarchical floorplanning:

■ If you specify a seed section in a constraint file (-constraints), the fence module
should not be specified in it as a seed, because Automatic Floorplan Synthesis does not
touch any fences in the floorplan.

■ The macro placer looks at nets globally, but does not see hierarchical ports on partition
boundaries because the ports have not been assigned yet.

■ In order for the macro placer to produce good results, you must set appropriate fence
utilization and aspect ratio values in the input floorplan by manually stretching or
reshaping them.

Full-chip Floorplan

Floorplanning a top-level hierarchical design or creating power domain physical boundary for
a MSV design requires rectilinear module fence generation. Automatic Floorplan Synthesis
generates a quick top-level initial floorplan for such designs.

For Automatic Floorplan Synthesis to create fences and place macros at chip level, you must
specify the fence module(s) in the constraint file using the planDesign command.

■ planDesign -constraints constraint_file

Guide inside
fence

Macro inside
fence
October 2010 1307 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#planDesign

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
Specify a single-module fence in the Seed Section and multiple-modules fence in the
Relative Constraint Section.

The results of the planDesign command is as follows:

Power-Domain Aware Floorplan

The planDesign command is power-domain aware and supports placement of power
domains. If your design uses the Common Power Format (CPF) flow, you can run the
planDesign command to automatically create fences around the power domains and place
the power domains along with other hard blocks in the design, without having to create any
seed definitions in the constraint file. The planDesign command honors power domain
attributes, such as the minimum gap (modifyPowerDomainAttr -minGaps) if they are
defined before running the command. You can also perform congestion aware power-domain
placement by specifying setPlanDesignMode -congAware true, which is also
applicable for standard cell placement.

Use Flow

1. Load the configuration file.

loadConfig design_name.conf 1

2. Load the floorplan.

loadFPlan design_name.fp

3. Specify the floorplan dimensions.

floorPlan -site core

Initial Floorplan planDesign -constraints fence.cns
October 2010 1308 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#planDesign
../fetxtcmdref/msvT.html#modifyPowerDomainAttr
../soceUG/msmv.html#SupportfortheCommonPowerFormat
../fetxtcmdref/floorplanT.html#setPlanDesignMode

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
4. Load the Common Power Format file. To read-in the CPF that contains CPF commands,
use the following command:

loadCPF design.cpf

This command reads the file and performs lint, parsing, and semantics checking. This
command does not execute any of the command within the CPF file.

5. Commit the CPF file.

commitCPF

This command executes the CPF commands loaded by loadCPF. Running this
command does the following:

❑ Creates power domains

❑ Creates logical power/ground net connections

❑ Specifies timing libraries for power domains

❑ Inserts shifter cells and isolation cells

❑ Replaces regular registers with state-retention (SRPG) registers

6. Modify the power domain attributes.

modifyPowerDomainAttr -minGaps T B L R

The minimum gaps attribute, -minGaps, defines the distance, in microns, that must be
reserved outside the power domain boundary edges for power routing.

7. Specify congestion aware placement of power domains.

setPlanDesignMode -congAware true

8. Place power domains and macros.

planDesign
October 2010 1309 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
The following example describes the output of the planDesign command which has
automatically placed 8 power domains and hard macros in the design:

Creating Multiple Alternative Floorplans

Use the multiPlanDesign command to create multiple alternative floorplans by running
different variations of the setPlanDesignMode and planDesign commands. The
Automatic Floorplan Synthesis feature then analyzes the resulting floorplans, and ranks their
usability using estimated wire length, congestion, and timing criteria.

The multiPlanDesign command generates floorplans based on the parameter settings
you specify. For some parameters, you can instruct Automatic Floorplan Synthesis to always

Automatically placed power domains defined in CPF file

Macro
placement

Automatic placement of power domains and hard macros for a sample design with 8 power domains
October 2010 1310 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#multiPlanDesign
../fetxtcmdref/floorplanT.html#setPlanDesignMode
../fetxtcmdref/floorplanT.html#planDesign

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
perform the functionality (on), or to perform or not perform the functionality on floorplans in a
predefined order (on_off).

You can run planDesign jobs sequentially on one machine, or in parallel on multiple host
machines. To run multiPlanDesign in parallel, you must first use the
setDistributeHost and setMultiCpuUsage commands to set up the configuration for
the distributed processing. For example:

setDistributeHost {-local | -rsh -add {machine1 machine2}}

setMultiCpuUsage -remoteHost 2

multiPlanDesign -autoTrials 2

Floorplan rankings are automatically displayed in a separate results form after all of the
planDesign jobs are completed. Additionally, Automatic Floorplan Synthesis saves a text
report of the ranking results to a user-specified file.

If you run this command on a master instance blackbox with non-R0 orientation, it
automatically converts the new orientation to R0. For more information, see Handling of
Blackboxes with Non-R0 Orientation in the “Partitioning the Design” chapter of the
Encounter Digital Implementation System User Guide.

Analyzing the Floorplan

After generating a floorplan, analyze the results in order to assess whether improvements are
needed:

■ Run the analyzeFloorplan command to analyze the floorplan, and report basic
design information.

■ Visually check the floorplan for macro placement issues, such as:

❑ Macros placed far away from their related modules or connected I/Os.

❑ Too many wire cross-overs among modules, macros, and I/Os.

❑ Too many macro-to-macro, or module-to-module, overlaps.

❑ Too many dead areas in the design (that is, holes in the middle of placed macros).

❑ Inadequate macro orientation or spacing.

Note: Use the Preferences form and the display control panel on the Encounter Digital
Implementation System (EDI System) main window to control the information displayed
when visually checking the floorplan.

■ Read the log file to see the intermediate results of Automatic Floorplan Synthesis, and
error and warning messages that might indicate to more serious issues.
October 2010 1311 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#analyzeFloorplan
../fetxtcmdref/multicpuT.html#setDistributeHost
../fetxtcmdref/multicpuT.html#setMultiCpuUsage
../soceUG/partitioning.html#NonR0Blackboxes
../soceUG/partitioning.html#NonR0Blackboxes

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
Check the following items in the log file:

❑ Seed Report

❍ Do the selected seeds match those specified in the seed section of the
constraint file?

❍ How many seeds exist in the design after clustering? Are there too many seeds,
or too few?

The following example shows a typical seed report in the log file:

-------- Clustering summary --------

*** Clustered Preplaced Objects ***

of preplaced io is: 0

of preplaced hard macro is: 1

of preplaced standard cell is: 0

*** Clustered FPlan Seeds ***

of hard macro seeds is: 1

of standard cell seeds is: 0

of soft module seeds is: 9

of instance group seeds is: 1

*** Normal Netlist Clustering ***

of clustered instances is: 0

-------- End of Clustering summary --------

❑ Macro Placement

❍ Read the options reported back by the macro placer.

❍ Are there any reported overlaps between PLACED macros?

❍ What total wire length did the macro placer report?

Adjusting Macro Placement

Typically after generating a floorplan, macro adjustment is required to improve the layout.
There are two ways you can refine the macro placement:

■ Manually adjust the macros using interactive commands

■ Use refineMacro to adjust the macro locations
October 2010 1312 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
Manual Macro Adjustment

The EDI System main window includes widgets that allow you to interactively adjust macro
placement. Actions you can perform include move, align, flip, rotate, redo, and undo. For more
information on the toolbar and tool widgets, see “Toolbar Widgets” and “Tool Widgets” in the
Encounter Digital Implementation System Menu Reference.

You can also use the Edit Floorplan submenu on the Floorplan menu to perform many of the
same actions. For more information, see “Edit Floorplan” in the Encounter Digital
Implementation System Menu Reference.

Automatic Floorplan Synthesis Macro Adjustment

You can also use the refineMacro command to adjust the placement of macros in the
floorplan. By default, the command performs global incremental macro adjustment. You can
also adjust the placement of specific macro packs, or all of the macros in a specific area of
the design.

Adjusting the Placement of a Specific Macro Pack

1. Select the macro pack you want to adjust in the main window. A macro pack is a set of
macros from the same seed that have similar sizes and aspect ratios and have been
grouped together. You can select one macro to select the entire pack.
October 2010 1313 Product Version 9.1.3

../encounter/startingG.html#ToolbarWidgets
../encounter/startingG.html#toolwidgets
../encounter/floorplanG.html#EditFloorplan
../fetxtcmdref/floorplanT.html#refineMacro

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
Important

Macro pack information is stored temporarily in the data base. If you quit the EDI
System session, the information is lost.

2. Type the following command:

refineMacro -permutePack

Automatic Floorplan Synthesis adjusts the macros’ locations to reduce empty area
between them.
October 2010 1314 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
Adjusting Macro Placement Within a Specified Area

1. Choose Floorplan – Automatic Floorplan – Refine Macro Placement.

2. Select the Window Refine option.

3. Click the Draw button to enable drawing mode.

4. Hold down the left mouse button and drag the cursor to draw a box around the area of
the design in which you want to adjust macro placement.
October 2010 1315 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
5. Click Apply to perform the adjustment.

You can also move selected macros to a specified area and adjust them along with any
macros already within the area.

1. Select the macros you want to move in the main window.

2. Open the Refine Macro Placement form, then select Include Selected Macro.
October 2010 1316 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
3. Click the Draw button and draw a box around the area of the design to which you want
to move the selected macros.

Alternatively, if you know the coordinates of the area to which you want to move the
macros, you can perform one of the following steps:

❑ Specify the coordinates in the Path1 and Path2 X/Y text fields on the Refine Macro
Placement form and click Apply.

❑ Type the following command:

refineMacro -selected -area llx lly urx ury

4. Click Apply to perform the adjustment.

Marking Refinement Steps

Automatic Floorplan Synthesis considers each adjustment that you make to the floorplan a
step. By default, Automatic Floorplan Synthesis saves all incremental steps done with the
October 2010 1317 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating An Initial Floorplan Using Automatic Floorplan Synthesis
refineMacro command and lists them in the log file with a number. The tool can store up
to 1,000 steps in the database before overwriting them. Automatic Floorplan Synthesis does
not save steps done through manual refinement (such as move, rotate, and flip).

➤ To mark manual refinement steps (or any other important step that you want to save),
type the following command:

refineMacro -markStep

Automatic Floorplan Synthesis assigns a number to the mark (as well as a step number)
and stores the step in the database. It saves up to 20 marks before overwriting them.

Restoring Refinement Steps

You can also restore the design to a previous state during the refinement process.

➤ To return the design to the state it was in after the specified intermediate non-marked
step, type the following command:

refineMacro -restoreStep step_number

➤ To return the design to the state it was in after the specified marked step, type the
following command:

refineMacro -restoreMark mark_number

➤ To return the design to the state it was in after the previous adjustment, type the following
command:

refineMacro -restoreStep -1

You can find the mark and step numbers listed in the log file.

Saving the Floorplan

➤ To save the floorplan, type the following command:

saveFPlan fileName.fp
October 2010 1318 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#saveFPlan

Encounter Digital Implementation System User Guide
40
Performing Multi-Mode Multi-Corner
Timing Analysis and Optimization

■ Overview on page 1321

❑ Multi-Mode Multi-Corner Licensing on page 1321

❑ Multi-Mode Multi-Corner Flow Support on page 1321

■ Configuring the Setup for Multi-Mode Multi-Corner Analysis on page 1322

❑ Creating Library Sets on page 1323

❍ Editing A Library Set on page 1324

❑ Creating Virtual Operating Conditions on page 1324

❍ Editing A Virtual Operating Condition on page 1325

❑ Creating RC Corner Objects on page 1325

❍ Editing An RC Corner Object on page 1326

❑ Creating Delay Calculation Corner Objects on page 1326

❍ Editing A Delay Corner Object on page 1327

❑ Adding A Power Domain Definition To A Delay Calculation Corner on page 1328

❍ Editing A Power Domain Definition on page 1328

❑ Creating Constraint Mode Objects on page 1329

❍ Editing A Constraint Mode Object on page 1330

❍ Entering Constraints Interactively on page 1330

❍ Constraint Support in Multi-Mode and Multi-Mode Multi-Corner Analysis on
page 1331

❑ Creating Analysis Views on page 1333
October 2010 1319 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
❍ Editing An Analysis View Object on page 1333

❑ Setting Active Analysis Views on page 1334

❍ Guidelines For Setting Active Analysis Views on page 1334

❍ Changing the Default Active Analysis View on page 1335

❑ Checking the Multi-Mode Multi-Corner Configuration on page 1335

❍ Changing How the MMMC Browser Displays Configuration Information on
page 1335

❑ Saving Multi-Mode Multi-Corner Configurations on page 1336

■ Controlling Multi-Mode Multi-Corner Analysis Through the Flow on page 1336

■ Performing Timing Analysis on page 1338

■ Generating Timing Reports on page 1339
October 2010 1320 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
Overview

As feature sizes decrease, it becomes more difficult to determine the worst-case
combinations of device corners (timing libraries and PVT operating conditions), RC corners,
and constraint modes at which to validate timing requirements for a design. Multi-mode multi-
corner analysis and optimization provides the ability to configure the software to support
multiple combinations of modes and corners, and to evaluate them concurrently.

To analyze multiple combinations of modes and corners concurrently, a significant amount of
data typically imported for a single analysis run must be replicated and expressed in a way
that is easy to define and manage throughout the flow. Multi-mode multi-corner analysis uses
a tiered approach for defining the required data. It allows top-level definitions (analysis views)
that share common information to be specified by referencing the same lower-level objects.
The active analysis views defined in the software represent the different design variations that
will be analyzed.

Multi-mode multi-corner analysis also provides a methodology that allows multi-mode multi-
corner optimization on a select set of analysis views, and timing signoff on a potentially large
set of text criteria.

Note: To see this step in the design flow, see Route the Design and Run Postroute
Optimization in the Encounter Flat Implementation Flow Guide.

Multi-Mode Multi-Corner Licensing

Multi-corner analysis and optimization requires an XL or GXL license. Multi-mode analysis
does not require an XL or GXL license, and is limited to only one delay calculation corner for
setup analysis, and one delay calculation corner for hold analysis.

Multi-Mode Multi-Corner Flow Support

Multi-mode multi-corner analysis can be used with flat implementation flows.

In a flat, block implementation flow, Encounter applications support multi-mode multi-corner
analysis to different degrees. For information, see “Controlling Multi-Mode Multi-Corner
Analysis Through the Flow” on page 1336.
October 2010 1321 Product Version 9.1.3

../flatImpl/flow.html#RoutetheDesignandRunPostrouteOptimization
../flatImpl/flow.html#RoutetheDesignandRunPostrouteOptimization

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
Configuring the Setup for Multi-Mode Multi-Corner
Analysis

Multi-mode multi-corner analysis uses a tiered approach to assemble the information
necessary for timing analysis and optimization. Each top-level definition (called an analysis
view) is composed of a delay calculation corner and a constraint mode. The active analysis
views defined in the software represent the different design variations that will be analyzed.

Note: Some Encounter min/max mode commands do not operate under multi-mode multi-
corner analysis mode because they conflict with the multi-mode multi-corner use model.
These commands include setTimingLibrary, setOpCond, defineRCCorner,
setRCFactor, loadTimingCon, and unloadTimingCon.

Figure 40-1 Hierarchical Analysis View Configuration

Analysis View
(create_analysis_view)

Delay Calculation Corner
(create_delay_corner)

Constraint Mode
(create_constraint_mode)

RC Corner
(create_rc_corner)

Power Domain
Definition

(update_delay_corner)

Library Set
(create_library_set)

Operating Condition
(create_op_cond)
October 2010 1322 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
Creating Library Sets

Complex designs can require the specification of multiple library files to define all of the
standard cells, memory devices, pads, and so forth, included in the design. Different library
sets can be defined to provide uniquely characterized libraries for each delay corner or power
domain.

Library sets allow a group of library files to be treated as a single entity so that higher-level
descriptions (delay calculation corners) can simply refer to the library configuration by name.
A library set can consist of just timing libraries, or it also can include cdB libraries to keep
timing and signal integrity libraries in sync throughout a multi-corner flow.

The same library set can be referenced multiple times by different delay calculation corners.

Important

You must specify a set of timing libraries in the configuration file as part of the design
initialization. Create your multi-mode multi-corner library sets as needed, to support
all the delay calculation corners that will be included in the multi-mode multi-corner
analysis.

The order in which you define timing libraries is important. The software considers the
first library you specify in the list as the master library, with each successive library having
a lower priority.

➤ To create a library set, use the following command:

create_library_set

The following figure shows the creation of a library set that associates timing libraries and cdB
libraries with a nominal voltage of 1 volt with the library name IsCOM-1V:

create_library_set

-name isCOM-1V

-timing [list stdcell_F_1V.lib ram_F.lib pad.lib]

-si [list stdcell_F_2.cdb ram_F.cdb pad.cdb]
Timing .libs for
1-volt domains

.cdB libraries
for PVT 1
October 2010 1323 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#create_library_set

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
Editing A Library Set

To change the timing and cdB library files for an existing library set, use the following
command:

update_library_set

You also can make changes to a library set using the Edit Library Set form:

➤ Choose Design – Import Design, click the Advanced tab, select MMMC, click the
MMMC Browse button, and double click on the name of the library set you want to edit.

or:

➤ Choose Timing – Configure MMMC, and double click on the name of the library set
you want to edit.

Important

You can use the update_library_set command or the Edit Library Set form
before multi-mode multi-corner view definitions are loaded into the design, or after.
However, after the software is in multi-mode multi-corner analysis mode, any
changes to an existing object results in the timing, delay calculation, and RC data
being reset for all analysis views.

Creating Virtual Operating Conditions

Generally in most user environments, the process, voltage, and temperature (PVT) point is
specified by referring to a predefined operating condition definition in a specific timing library.
The library operating condition provides the system with values for P,V, and T, and these then
are used to calculate derating parameters and other aspects of the analysis. However, there
are situations when there are no predefined operating conditions in the user timing libraries,
or the pre-existing operating conditions are not consistent with the user’s operating
environment.

Instead of actually modifying the timing libraries to add or adjust operating condition
definitions, you can create a set of virtual operating conditions for a library, to define a PVT
operating point. These virtual operating conditions can then be referenced by a delay corner
as if they actually existed in the library.

➤ To create a virtual operating condition for a library, use the following command:

create_op_cond

For example, the following command creates a virtual operating condition called PVT1
for the library IsCOM-1V:
October 2010 1324 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#update_library_set
../fetxtcmdref/timinganalysisT.html#create_op_cond

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
create_op_cond -name PVT1

-library_file IsCOM-1V.lib

-P 1.0

-V 1.2

-T 120

Editing A Virtual Operating Condition

You can add, delete, or change attributes for a defined virtual operating condition using the
Edit Operating Condition form.

Important

You can edit a virtual operating condition before multi-mode multi-corner view
definitions are loaded into the design, or after. However, after the software is in multi-
mode multi-corner analysis mode, any changes to an existing object results in the
timing, delay calculation, and RC data being reset for all analysis views.

➤ Choose Design – Import Design, click the Advanced tab, select MMMC, click the
MMMC Browse button, and double click on the name of the operating condition you
want to edit.

or:

➤ Choose Timing – Configure MMMC, and double click on the name of the operating
condition you want to edit.

Creating RC Corner Objects

An RC corner object provides the software with all of the information necessary to properly
extract, annotate, and use the RCs for delay calculation. RC corner objects also control the
attributes for running sign-0ff extraction sequentially on each RC corner.

For each active RC corner in the design, the software extracts and stores a unique set of
parasitics. You must use the RC corner attributes to control RC scaling when running the
software in multi-mode multi-corner analysis mode. Scaling factors set using the
setRCFactor command are ignored in this mode.

RC corner objects are referenced when creating delay calculation corner objects.

➤ To create an RC corner, use the following command:

create_rc_corner
October 2010 1325 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#create_rc_corner
../fetxtcmdref/rcextractionT.html#setRCFactor

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
For example, the following command creates an RC corner called rc-typ that uses the
capacitance table myTech_nc.CapTbl, and derates the resistance values based on the
temperature of 50 Celsius:

create_rc_corner -name rc-typ -cap_table myTech_nc.CapTbl -T 50

Editing An RC Corner Object

To add or change attribute values for an existing RC corner object, use the following
command:

update_rc_corner

You also can make changes to an RC corner object using the Edit RC Corner form:

➤ Choose Design – Import Design, click the Advanced tab, select MMMC, click the
MMMC Browse button, and double click on the name of the RC corner object you want
to edit.

or:

➤ Choose Timing – Configure MMMC, and double click on the name of the RC corner
object you want to edit.

Important

You can use the update_rc_corner command or the Edit RC Corner form before
multi-mode multi-corner view definitions are loaded into the design, or after.
However, after the software is in multi-mode multi-corner analysis mode, any
changes to an existing object results in the timing, delay calculation, and RC data
being reset for all analysis views.

Creating Delay Calculation Corner Objects

A delay calculation corner provides all of the information necessary to control delay
calculation for a specific analysis view. Each corner contains information on the libraries to
use, the operating conditions with which the libraries should be accessed, and the RC
extraction parameters to use for calculating parasitic data. Delay corner objects can be
shared by multiple top-level analysis views.

➤ To create a delay calculation corner, use the following command:

create_delay_corner

❑ Use separate delay calculation corners to define major PVT operating points (for
example, Best-Case and Worst-Case).
October 2010 1326 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#create_delay_corner
../fetxtcmdref/timinganalysisT.html#update_rc_corner

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
❑ Use the -early_* and -late_* parameters within a single delay calculation
corner to control on-chip variation.

The following figure shows the creation of a delay calculation corner called dcWCCOM.This
corner uses the libraries from IsCOM-1V, sets the operating condition to WCCOM, as defined
in the stdcell_1V timing library, and uses the rc-cworst RC corner:

Editing A Delay Corner Object

To add or change attribute values of an existing delay calculation corner object, use the
following command:

update_delay_corner

You also can make changes to a delay calculation corner object using the Edit Delay Corner
form:

➤ Choose Design – Import Design, click the Advanced tab, select MMMC, click the
MMMC Browse button, and double click on the name of the delay calculation corner you
want to edit.

or:

➤ Choose Timing – Configure MMMC, and double click on the name of the delay
calculation corner you want to edit.

Delay Calculation Corner

create_delay_corner

-name dcWCCOM

-library_set IsCOM-1V

-opcond_library stdcell_1V

-opcond WCCOM

-rc_corner rc-cworst

Library Set

create_library_set

-name IsCOM-1V

-timing [list ...]

-si [list ...]

RC Corner

create_rc_corner

-name rc-worst

-cap_table myTech_wc.CapTbl

-T 50
October 2010 1327 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#update_delay_corner

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
Important

You can use the update_delay_corner command or the Edit Delay Corner form
before multi-mode multi-corner view definitions are loaded into the design, or after.
However, after the software is in multi-mode multi-corner analysis mode, any
changes to an existing object results in the timing, delay calculation, and RC data
being reset for all analysis views.

Adding A Power Domain Definition To A Delay Calculation Corner

A single delay calculation corner object specifies the delay calculation rules for the entire
design. If a design includes power domains, the delay calculation corner can contain domain-
specific subsections that specify the required operating condition information, and any
necessary timing library rebinding for the power domain.

Important

You must use the same power domain names that you intend to specify when using
the createPowerDomain command to define the physical aspects of the domain.

➤ To create a power domain definition for a delay calculation corner, use the following
command:

update_delay_corner

For example, the following command adds a definitions for the power domain domain-
3V to the dcWCCOM delay calculation corner:

update_delay_corner -name dcWCCOM

-power_domain domain-3V

-library_set libs-3volt

-opcond_library delayvolt_3V

-opcond slow_3V

Note: When the Encounter software is not in multi-mode multi-corner mode, the binding of
timing libraries and operating conditions to power domains are specified using
createPowerDomain -minTimingLib and -maxTimingLib, and setOpCond
-powerDomain parameters. When the software is in multi-mode multi-corner mode, this use
model is disabled.

Editing A Power Domain Definition

To add or change attribute values for an existing power domain definition, use the following
command:
October 2010 1328 Product Version 9.1.3

../fetxtcmdref/msvT.html#createPowerDomain
../fetxtcmdref/timinganalysisT.html#update_delay_corner
../fetxtcmdref/msvT.html#createPowerDomain
../fetxtcmdref/timinganalysisT.html#setOpCond

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
update_delay_corner

You also can make changes to a power domain definition using the Edit Power Domain form:

➤ Choose Design – Import Design, click the Advanced tab, select MMMC, click the
MMMC Browse button, click the + next to Delay Corners to list the available delay
corners, click the + next to the delay corner to which the power domain definition belongs,
and double click on the name of the power domain definition.

or

➤ Choose Timing – Configure MMMC, click the + next to Delay Corners to list the
available delay corners, click the + next to the delay corner to which the power domain
definition belongs, and double click on the name of the power domain definition.

Important

You can use the update_delay_corner command or the Edit Power Domain
form before multi-mode multi-corner view definitions are loaded into the design, or
after. However, after the software is in multi-mode multi-corner analysis mode, any
changes to an existing object results in the timing, delay calculation, and RC data
being reset for all analysis views.

Creating Constraint Mode Objects

A constraint mode object defines one of possibly many different functional, test, or Dynamic
Voltage and Frequency Scaling (DVFS) modes of a design. It consists of a list of SDC
constraint files that contain timing analysis information, such as the clock specifications, case
analysis constraints, I/O timings, and path exceptions that make each mode unique. SDC files
can be shared by many different constraint modes, and the same constraint mode can be
associated with multiple analysis views.

➤ To create a constraint mode object, use the following command:

create_constraint_mode
October 2010 1329 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#update_delay_corner
../fetxtcmdref/timinganalysisT.html#create_constraint_mode

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
The following figure shows the grouping of the SDC files io.sdc, mission1-clks.sdc,
and mission1-except.sdc to create a mode object named missionSetup:

Editing A Constraint Mode Object

To change the SDC constraint file information for an existing constraint mode object, use the
following command:

update_constraint_mode

You also can make changes to a constraint mode object using the Edit Constraint Mode form:

➤ Choose Design – Import Design, click the Advanced tab, select MMMC, click the
MMMC Browse button, and double click on the name of the constraint mode object you
want to edit.

or:

➤ Choose Timing – Configure MMMC, and double click on the name of the constraint
mode object you want to edit.

Important

You can use the update_constraint_mode command or the Edit Constraint
Mode form before multi-mode multi-corner view definitions are loaded into the
design, or after. However, after the software is in multi-mode multi-corner analysis
mode, any changes to an existing object results in the timing, delay calculation, and
RC data being reset for all analysis views.

Entering Constraints Interactively

You can use the set_interactive_constraint_modes command to update assertions
for a multi-mode multi-corner constraint mode object, and have those changes take
immediate effect.

create_constraint_mode

-name missionSetup

-sdc_files [list io.sdc mission1-clks.sdc mission1-

SDC files
October 2010 1330 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#update_constraint_mode
../fetxtcmdref/timinganalysisT.html#set_interactive_constraint_modes

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
Specifying set_interactive_constraint_modes puts the software into interactive
constraint entry mode for the specified constraint mode objects. Any constraints that you
specify after this command will take effect immediately on all active analysis views that are
associated with these constraint modes. By default, no constraint modes are considered
active.

For example, the following commands put the software into interactive constraint entry mode,
and apply the set_propagated_clock assertion on all views in the current session that
are associated with the constraint mode func1:

set_interactive_constraint_modes func1

set_propagated_clock [all_clocks]

The software stays in interactive mode until you exit it by specifying the
set_interactive_constraint_modes command with an empty list:

set_interactive_constraint_modes { }

All new assertions are saved in the SDC file for the specified constraint mode when you save
the design (saveDesign).

The all_constraint_modes command can be used to generate a list of constraint modes
as the argument for this command.

For example, the following commands put the software into interactive constraint entry mode,
and apply the set_propagated_clock assertion on all active analysis views in the current
session.

set_interactive_constraint_modes [all_constraint_modes -active]

set_propagated_clock [all_clocks]

Use the get_interactive_constraint_modes command to return a list of the
constraint mode objects in interactive constraint entry mode.

Note: Interactive constraint mode only works when the software is in multi-mode multi-corner
timing analysis mode. In min/max analysis mode, constraints are always accepted
interactively.

Constraint Support in Multi-Mode and Multi-Mode Multi-Corner Analysis

The Encounter software isolates the following SDC constraints from conflicting with each
other, in both multi-mode and multi-mode multi-corner analysis modes:

■ create_clock

■ create_generated_clock

■ set_annotated_check
October 2010 1331 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#all_constraint_modes
../fetxtcmdref/timinganalysisT.html#get_interactive_constraint_modes

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
■ set_annotated_delay

■ set_annotated_transition

■ set_case_analysis

■ set_clock_gating_check

■ set_clock_groups

■ set_clock_latency

■ set_clock_sense

■ set_clock_transition

■ set_clock_uncertainty

■ set_disable_timing

■ set_drive

■ set_driving_cell

■ set_false_path

■ set_fanout_load

■ set_input_delay

■ set_input_transition

■ set_load

■ set_max_delay

■ set_max_time_borrow

■ set_max_transition

■ set_min_delay

■ set_min_pulse_width

■ set_multicycle_path

■ set_output_delay

■ set_propagated_clock

■ set_resistance
October 2010 1332 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
Note: Path groups defined with group_path are considered to be global definitions across
all analysis views.

Creating Analysis Views

An analysis view object provides all of the information necessary to control a given multi-
mode multi-corner analysis. It consists of a delay calculation corner and a constraint mode.

➤ To create an analysis view, use the following command:

create_analysis_view

The following figure shows the creation of the analysis view missionSetup:

Editing An Analysis View Object

To change the attribute values for an existing analysis view, use the following command:

update_analysis_view

You also can make changes to an analysis view using the Edit Analysis View form:

➤ Choose Design – Import Design, click the Advanced tab, select MMMC, click the
MMMC Browse button, and double click on the name of the analysis view you want to
edit.

or:

Analysis View

create_analysis_view

-name missionSlow

-delay_corner dcWCCOM

-constraint_mode missionSetup

Delay Calculation Corner

create_delay_corner

-name dcWCCOM

-library_set IsCOM-1V

-opcond_library stdcell_1V

-opcond WCCOM

-rc_corner rc-cworst

Constraint Mode

create_constraint_mode

-name missionSetup

-sdc_files[list io.sdc ...]
October 2010 1333 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#create_analysis_view
../fetxtcmdref/timinganalysisT.html#update_analysis_view

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
➤ Choose Timing – Configure MMMC, and double click on the name of the analysis view
you want to edit.

➤

Important

You can use the update_analysis_view command or the Edit Analysis View
form before multi-mode multi-corner view definitions are loaded into the design, or
after. However, after the software is in multi-mode multi-corner analysis mode, any
changes to an existing object results in the timing, delay calculation, and RC data
being reset for all analysis views.

Setting Active Analysis Views

After creating analysis views, you must set which views the software should use for setup and
hold analysis and optimization. These “active” views represent the different design variations
that will be analyzed. Active views can be changed throughout the flow to utilize different
subsets of views. Encounter applications can handle the views concurrently or sequentially,
depending on their individual capabilities. Libraries and data are loaded into the system, as
required to support the selected set of active views.

➤ To set active analysis views, use the following command:

set_analysis_view

Note: You must define at least one setup and one hold analysis view.

For example, the following command sets missionSlow and mission2Slow as the
active views for setup analysis, and missionFast and testFast as the active views
for hold analysis:

set_analysis_view

-setup {missionSlow mission2Slow}

-hold {missionFast testFast}

Guidelines For Setting Active Analysis Views

■ The order in which you specify views using the set_analysis_view command is
important. By default, the first views defined in the -setup and -hold lists are the
default views. Certain Encounter applications that do not support multi-mode multi-
corner can only process the data defined for a single view. These applications use the
information defined for the default view.

■ Concurrent analysis of views for timing optimization costs memory and CPU.
October 2010 1334 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#set_analysis_view

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
Changing the Default Active Analysis View

Some Encounter applications can function only on a single analysis view at a time. By default,
these single-view applications use the default analysis view. If an application or flow step does
not provide a native option for specifying which view to use, you can use the
set_default_view command to temporarily change the default view to a different active
view that is better suited to that flow step.

For example, if the analysis view missionSlow is currently the default active setup view in
the design, the following command temporarily changes the default view to mission2Slow:

set_default_view -setup mission2Slow

Note: Using the set_default_view command does not affect software performance
because it only uses views that are already active in the design. If you use the
set_analysis_view command to change the default views, the existing timing, delay
calculation, and RC data is reset.

Checking the Multi-Mode Multi-Corner Configuration

➤ Use the following command to generate a hierarchical report of your current multi-mode
multi-corner configuration:

report_analysis_views

You can customize the report to show only the active setup or hold analysis views, all of
the active views, or all of the defined views in the design, including those that are
currently inactive.

Changing How the MMMC Browser Displays Configuration Information

By default, the MMMC Browser displays configuration information in two columns: one
displays the different existing analysis views, and the other displays the different existing
multi-mode multi-corner objects.

You can change how the MMMC Browser displays configuration information using the MMMC
Preferences form. You can use this form to change the number of columns displayed, and
rename the titles of the columns.

You also can use this form (and the Add Object form) to add and delete objects from columns,
and rearrange the order in which the objects are listed, by clicking and holding the left mouse
button on an object name, and dragging it to a different position in the list.

➤ Choose Design – Import Design, click the Advanced tab, select MMMC, click the
MMMC Browse button, and click the Preferences button.
October 2010 1335 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#set_default_view
../fetxtcmdref/timinganalysisT.html#set_analysis_view
../fetxtcmdref/timinganalysisT.html#report_analysis_views

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
or:

➤ Choose Timing – Configure MMMC, and click the Preferences button.

Saving Multi-Mode Multi-Corner Configurations

The software stores the multi-mode multi-corner configuration as Tcl commands in a view
definition file. The view definition file contains all of the library set, RC corner, delay
calculation corner, constraint mode, and analysis view definitions that you created. When you
specify the saveDesign command, the software saves the file to the save directory, and
updates the configuration file with a pointer to the file. This multi-mode multi-corner
configuration will be reloaded automatically by the subsequent use of the restoreDesign
command.

Updated SDC files for each mode are saved to the save directory, if ECO changes were made
that affect pins that have constraint assertions.

Controlling Multi-Mode Multi-Corner Analysis Through
the Flow

The following levels of support for multi-mode multi-corner analysis exist for Encounter
applications:

■ Does not support multi-mode multi-corner

Applications that do not support multi-mode multi-corner analysis use the timing, delay,
and RC information in the default active analysis views. Use the set_analysis_view
and set_default_view commands to select the appropriate analysis view for the
specific flow step.

■ Supports single view analysis

Applications that support single view multi-mode multi-corner analysis generally use the
default active analysis view, but provide controls that allow you to select specific views to
use. You can also use scripting to iterate through the active views.

■ Supports sequential

Applications that support sequential view multi-mode multi-corner analysis work on only
one analysis view at a time, but provide their own automation to iterate through the active
views. These applications can cycle through the views one at a time.

■ Supports concurrent view analysis
October 2010 1336 Product Version 9.1.3

../fetxtcmdref/importT.html#saveDesign
../fetxtcmdref/importT.html#restoreDesign

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
Applications that support concurrent view multi-mode multi-corner analysis work on all
active analysis views at the same time.

The following table describes how Encounter applications behave in multi-mode multi-corner
analysis mode throughout the flow:

Table 40-1 Application Behavior in Multi-Mode Multi-Corner Analysis Mode

Flow Step Commands Application Behavior

Placement

setPlaceMode
-timingDriven true

placeDesign

Uses data from all active analysis views
concurrently.

setPlaceDesign
-inPlaceOpt

placeDesign

Runs optDesign -preCTS on all active
analysis views.

Pre-CTS Timing
Optimization

optDesign -preCTS Optimizes all active analysis views
concurrently.

timeDesign -preCTS Analyzes all active analysis views
concurrently.

Clock Tree
Synthesis

CTS is in MMMC mode by default.

specifyClockTree Reports the RC information for each active
analysis view, including the estimated
capacitance, resistance, and via resistance
for each view.

ckSynthesis

ckECO

Attempts to balance the skew and transition
for all active setup and hold analysis views.
For other constraints, such as capacitance,
and delay, CTS attempts to meet the
requirements for the default analysis view,
or the specified analysis view.

reportClockTree
-view view

Reports the trigger slew for all active
analysis views in the design, or for a
specified view (-view). Also reports other
analysis information, such as the phase
delay and transition values, for the default
analysis view.
October 2010 1337 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
Performing Timing Analysis

The software performs multi-mode multi-corner timing analysis concurrently on all active
analysis views in the design. To run multi-mode multi-corner timing analysis, use one of the
following commands:

Post-CTS Timing
Optimization

optDesign -postCTS Optimizes all active analysis views
concurrently.

timeDesign -postCTS Analyzes all active analysis views
concurrently.

NanoRoute setNanoRouteMode
-routeWithTimingDriven

true

CTE passes a timing graph file that
contains the worst-case slack values across
all active setup analysis views.

Metal Fill addMetalFill
-timingAware sta

Uses the timing slack values from the
default active analysis view.

Post-Route
Timing
Optimization

optDesign -postRoute Optimizes all active analysis views
concurrently.

timeDesign -postRoute Analyzes all active analysis views
concurrently.

Leakage Power
Optimization

optLeakagePower Optimizes all active setup analysis views
concurrently.

Signal Integrity
Repair

optDesign
-postRoute
-si

Merges glitch and noise violations across
all views; corrects the violations in all active
views concurrently.

Timing Signoff

timeDesign -signoff Calls runQRC iteratively to generate and
annotate SPEF files for RC corners.

timeDesign
-signoff
-si

Analyzes all active analysis views
concurrently. Currently, does not correct
crosstalk violations.

Power Analysis

setPowerAnalysisLibrary
-view viewName

| -internalPowerView
view

-leakagePowerView view

updatePower

Uses the same timing library groups from
the specified view for both internal and
leakage power (-view), or uses different
timing library groups from the specified
views for internal and leakage power.

Flow Step Commands Application Behavior
October 2010 1338 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
■ report_timing

By default, the report_timing command analyzes all active analysis views in the
design concurrently. Information in the timing report indicates which view was
responsible for the path. By default, the tool returns only one path per end point.

If you have a large number of views, you can use report_timing -sequential to
have the software process the active analysis views one at a time. The software stores
results for each view, as well as an aggregated report, in machine-readable timing report
files (.mtarpt). You can view the results graphically in the Encounter Timing Debug
environment. Use this procedure to help determine which critical view subset should be
used to drive the implementation flow.

■ timeDesign

The timeDesign command reports an aggregated summary. You can use the
-expandedViews parameter to generate a per view summary report.

Generating Timing Reports

In multi-mode multi-corner analysis mode, the software can generate various reports that
contain timing information for each active analysis view. For more information, see the
report_* commands in the Timing Analysis Commandschapter of the Encounter Text
Command Reference.

Performing Timing Optimization

The software performs multi-mode multi-corner timing optimization concurrently on all active
analysis views in the design. To run multi-mode multi-corner timing optimization, use the
following command:

■ optDesign

By default, the optDesign command optimizes timing for all active analysis views in the
design concurrently. It automatically prunes the views that are not relevant for timing
optimization, in order to reduce turn around time.

The timing closure flow in multi-mode multi-corner mode using optDesign is the same
one as in Min-Max mode.

For hold optimization, it is important to specify all hold views for which timing violations
must be corrected, and all setup views in which the setup timing must be maintained. Do
not reduce the active setup view list when performing hold optimization.
October 2010 1339 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#report_timing
../fetxtcmdref/timinganalysisT.html#firstpage
../fetxtcmdref/timinganalysisT.html#timeDesign

Encounter Digital Implementation System User Guide
Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
The optDesign command reports results in an aggregated summary. Use the
timeDesign command to see an expanded timing per view report.
October 2010 1340 Product Version 9.1.3

../fetxtcmdref/timinganalysisT.html#timeDesign

Encounter Digital Implementation System User Guide
41
Creating the ICT File

The first step involved in modeling the parasitic interconnect capacitance and resistance of
your design is to specify the fabrication process information in an Interconnect technology
(ICT) file by using the syntax defined in this section. You can use any text editor to enter this
information.

Note: Although there are no file-naming restrictions for ICT files, you should name your ICT
file by using the process name with the .ict file extension, as follows:

process_name.ict (ICT file)

Fabrication process information consists of the following requirements:

■ Minimum spacing and minimum width of the conductors as specified in the design rules
for the conductor layers

■ Thicknesses of the conductor layers

■ Heights of the conductor layers above the substrate (measuring height from the field) or
as a delta from a previously defined lower-level conductor layer

■ Resistivities of the conductor layers

■ Interlayer planar dielectric constant, its height above the substrate (measuring height
above the field), and its thickness

■ Names of the top conductor layer of a via, the bottom conductor or diffusion layer of the
via, and the contact resistance of the via

■ Names of the wells

The rest of this section describes the syntax and format of the ICT file containing the process
information for your design.

For more information on generating the ICT files, see the QRC TechGen manual.
October 2010 1341 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
Format

Lines in the ICT file are in the following general format:

command name {argument_list}

where argument_list is a list of field-value pairs. The fields in this syntax are separated
by white space. ViewICT, IceCaps, and RCgen ignore blank lines.

Note: A backslash (\) is generally required for line continuation, but it is not required if you
are using braces ({}) to define a list.

Data

All data entered into the ICT file should be the actual physical fabrication process information,
not the drawn data.

Comments

A pound-sign character (#) at the beginning of a line indicates text that ViewICT, IceCaps, and
RCgen are treated as comments.

Case Sensitivity

All keywords in the ICT file are case-insensitive. However, the arguments are case-sensitive.
Keywords consist of all command and field names.

Warnings and Errors

The ViewICT utility displays all errors, warnings, and informational messages on screen and
writes them in a log file. Warnings and errors include the corresponding line number.

Invalid Layer Names

The “NX” string is an invalid layer name.

Commands

This section describes the commands available in the ICT file.
October 2010 1342 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
All command fields are enclosed in braces ({}).

Process

The process command specifies the background dielectric constant. Use it only once in the
ICT file.

Syntax

process name {background_dielectric_constant value}

or

process name {

background_dielectric_constant value

}

This syntax contains the following parameters:

■ name

Specifies the name of the process.

■ background_dielectric_constant value

Specifies the dielectric constant for the region above the top passivation layer or last
dielectric layer. This field is required.

Example

process “Process_Example” {

background_dielectric_constant 1.0

}

Well

The well command which defines the well layers is an optional command that you can use
to differentiate capacitance to a well from capacitance to the substrate.

Syntax

well name { }
October 2010 1343 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
Name specifies the name of the well layer.

Anything placed in the brackets is ignored.

Example
well nwell { }

well pwell { }

Conductor

The conductor command defines conductor layers.

You can specify the height of a conductor layer in three ways:

■ Height (absolute)

■ Delta height (relative)

■ Upto (maximum top down)

You can use more than one of these methods per conductor definition, as long as the
numbers are valid.

All measurements are in microns, unless otherwise specified.

Syntax

conductor name {field1 value1 ... fieldN valueN}

or

conductor name {

field1 value1

...

fieldN valueN

}

You can specify the field-value pairs in any order.

This syntax contains the following parameters:

■ name

Specifies the name of the conductor layer.
October 2010 1344 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
■ min_spacing value

Specifies the minimum spacing permitted by the technology between two conductors
(wires) on a layer.

■ min_width value

Specifies the minimum width of a conductor.

■ height value

Specifies the layer’s height above the substrate.

■ delta_height value

Specifies the layer’s height relative to the top of another layer. This parameter must be
used with delta_layer.

■ delta_layer layer_name

Specifies the reference layer for delta_height. It must be a layer that has already
been defined. The reference layer must be a conducting layer, a dielectric layer, or a
passivation layer. This parameter must be used with delta_height.

■ thickness value

Specifies the layer’s thickness.

■ upto value

Specifies the layer’s top surface height above the substrate. This value is equal to the
height plus the thickness. You only need to specify two of the three or four parameters
(height, {delta_height, delta_layer}, thickness, upto) to complete the
geometrical definition of a conductor layer.

■ resistivity value|[value width]+

Specifies the layer’s sheet resistance, in ohms per square. You can enter the resistivity
value as a constant, or you can enter value-width pairs as a piecewise linear function.
You may want to use the value-width pairs to account for width-dependent resistivity.

If you enter value-width pairs, the syntax is as follows:

resistivity value1 width1 value2 width2 ... valuen widthn

If the width of the wire is less than the minimum width, width1, use the minimum value,
value1. If the width of the wire is greater than the maximum width, widthn, use the
maximum value, valuen. For widths between value-width pairs, the resistivity value
through linear interpolation.

Note: The width in the value-width pair refers to the silicon width of the wire.
October 2010 1345 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
■ rho

❑ rho_widths W1 ... Wn

❑ rho_spacings S1 ... Sm

❑ rho_values R11 R1n
....
Rm1 ... Rmn

This parameter is for specifying resistivity as a function of both width and spacing. For
values that fall between specified points, linear interpolation is applied. When values are
outside of the boundary values, it uses the boundary values.

■ gate_forming_layer [true|false]

Specifies that this layer forms the gate. The polycide or polysilicon layer is a typical gate-
forming conducting layer.

■ field_poly_diffusion_spacing value

Specifies the lateral spacing between field polycide and diffusion for transistor-level
parasitic extraction. There is no lateral separation between gate polycide and diffusion.

■ PnR_widths [value]+, PnR_spacings [value]+

Allows you to provide design widths and spacings used in the layout to the technology
file generation program. These are not necessary for accurate extraction of parasitics if
the design widths and spacings are within small perturbations of the minimum process
widths and spacings. However, if the design widths and spacings are routinely different
from the specified process parameters, it is recommended that you provide these values
to the technology file generator.

■ capacitor_only_layer_to layer_name

Specifies that the current layer be used solely to create high capacitance values in the
design and that it is located a few angstroms above or below the layer_name layer.
Layers having the capacitor_only_layer_to keyword set are not extracted.

■ wire_top_enlargement_c Etop

wire_top_enlargement_r Etop

Specifies the enlargement, either positive or negative, of the top edge of the wire. Specify
values for both R and C to account for different bias values for R and C. See Figure 41-
1 on page 1347.

■ wire_bottom_enlargement_c Ebottom
October 2010 1346 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
wire_bottom_enlargement_r Ebottom

Specifies the enlargement, either positive or negative, of the bottom edge of the wire.
Specify values for both R and C to account for different bias values for R and C. See
Figure 41-1 on page 1347.

Figure 41-1 Trapezoidal Wire Shape Resulting from Manufacturing Processes

■ wire_edge_enlargement | wire_edge_enlargement_[r|c]

wee_widths W1 ... Wn

wee_spacings S1 ... Sm

wee_adjustments E11 ... E1n

.

.

.

Em1 ... Emn

Models the effect of wire-edge enlargement, if the wire_edge_enlargement,
wee_width, wee_spacings, and wee_adjustments keywords are specified. The
wee_adjustments table describes the amount of enlargement applied when certain
spacings and widths are observed. For example, the wire is enlarged by Eij for spacing
Si and width Wj. Positive enlargements oversize and negative enlargement undersize
the wire. A piecewise constant interpolation is used to obtain enlargements for
intermediate spacings and widths. For width/spacings outside of the boundary width/
spacing points, the boundary values are used.

Wire_edge_enlargement_r and wire_edge_enlargement_c can be used if one
wants to specify different values for resistance and capacitance.

❑ wee_widths W1 ... Wn

Etop

Ebottom
October 2010 1347 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
Specifies the widths of the wires in the design. Typically, variation is only seen for
widths less than 1.5 microns.

❑ wee_spacings S1 ... Sm

Specifies the spacings of the wires in the design. Typically, variation is only seen for
spacings less than 1.5 microns.

❑ wee_adjustments E11...E1n ... Em1...Emn

Specifies the enlargement, either positive or negative, of the wire edge.

See “Wire-Width Values” on page 1349 for information on the wire-width values to use.

Required Conductor Command Fields

The required fields in this syntax are min_spacing, min_width, resistivity,
gate_forming_layer, min_net_fill_spacing, X_fill_fill_spacing,
Y_fill_fill_spacing, unit_fill_region, and two of the following three parameters:

■ height (or delta_height and delta_layer)

■ thickness

■ upto

Figure 41-2 on page 1348 illustrates these parameters.

Figure 41-2 Geometric Fields in a Conducting Layer

POLYCIDE

Substrate

M1 M1
Thickness of M1

Height of M1 “Upto” of M1
October 2010 1348 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
Wire-Width Values

You can use the wire_edge_enlargement statement with the wire_top_enlargement
statement or the wire_bottom_enlargement statement, or both in the ICT file. If you use
the wire_edge_enlargement statement with either or both of these statements, the width
of the wires defined by wee_widths must be biased as follows:

drawn_width + ((top + bottom) / 2)

When calculating resistivity as a function of width, you must use the
wire_top_enlargement and wire_bottom_enlargement values to correct the
resistance-width pairs. If a table of wire-edge enlargement values is available, the RC
extractor uses the wire widths in the table, which always include biasing and wire-edge
enlargement. If this table is not available, the resistance is calculated as follows:

rho* L / (drawn_width + (top + bottom) / 2 + (top + bottom) / 2)

where rho is the sheet resistivity.

Wire-width values are used in the following order:

1. Drawn width

2. Biased width

3. Edge-enlarged width

4. Resistivity as a function of width

Figure 41-3 on page 1350 illustrates the defining of the conductor layer.
October 2010 1349 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
Figure 41-3 Example Conductor Definition

Example File for Conductor Definition
conductor “POLYCIDE” {

min_spacing 0.25

min_width 0.16

height 0.35

upto 0.55

resistivity 8.6

gate_forming_layer true

}

conductor “M1” {

min_spacing 0.30

min_width 0.30

delta_layer POLYCIDE

delta_height 0.30

thickness 0.25

resistivity 8.0

gate_forming_layer false

wire_top_enlargement 0.01

wire_bottom_enlargement -0.01

wire_edge_enlargement {

wee_widths 0.18 0.00 0.26 0.30 0.34

wee_spacings 0.18 0.00 0.26 0.30 0.34 0.38

wee_adjustments 0.00 0.00 -0.10 -0.10 -0.20

conductor “POLYCIDE” {

min_width 0.16
height 0.35
thickness 0.20

min_spacing 0.25

...

resistivity 8.6
gate_forming_layer true

}
conductor “M1” {

min_spacing 0.30
min_width 0.30
height 0.85
thickness 0.25
resistivity 8.0
gate_forming_layer false

}

... Substrate

POLYCIDE

M1

0.25 μm

0.35 μm

0.2 μm

0.16 μm

0.3 μm

0.3 μm

0.25 μm

0.85 μm
October 2010 1350 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
 0.00 0.00 0.00 -0.10 -0.20

0.10 0.00 0.00 0.00 -0.10

0.10 0.10 0.00 0.00 0.00

0.20 0.20 0.10 0.00 0.00

0.30 0.20 0.20 0.10 0.00

}

}

Dielectric

The dielectric command defines dielectric layers.

All measurements are in microns unless otherwise specified.

Syntax

dielectric name {conformal value field1 value1 ... fieldN valueN}

or

dielectric name {

conformal value

field1 value1

...

fieldN valueN

}

You can specify the field-value pairs in any order.

The syntax for planar dielectrics contains the following parameters:

■ name

Specifies the name of the dielectric layer.

■ conformal false

Specifies that the dielectric is planar. This field is required.

■ height value

Specifies the layer’s height above the substrate.

■ thickness value
October 2010 1351 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
Specifies the layer’s thickness.

■ dielectric_constant value

Specifies the dielectric constant for this material.

■ delta_height value

Specifies the layer’s height relative to the top of another layer.

■ delta_layer layer_name

Specifies the reference layer for delta_height. It must be a layer that has already
been defined. A reference layer can be a conducting layer or a dielectric layer.

■ upto value

Specifies the layer’s top surface height above the substrate. This value is equal to the
height plus the thickness. You only need to specify two of the three parameters (height
(or {delta_height, delta_layer}), thickness, upto) to complete the geometrical
definition of a dielectric layer.

The required fields in the specification for planar dielectrics are conformal,
dielectric_constant, and two of the following three parameters:

■ height (or {delta_height and delta_layer})

■ thickness

■ upto

Figure 41-4 on page 1352 illustrates the planar dielectric syntax.

Figure 41-4 Planar Dielectric Syntax

dielectric “diel_M1_H” {

 height 1.10
 thickness 0.30
 dielectric_constant 4.00
}

 conformal FALSE

dielectric “diel_M1_L” {

 height 1.00
 thickness 0.10
 dielectric_constant 7.00
}

 conformal FALSE

...

...
...

Substrate

M1

0.30 μm

0.10 μm

height
(1.00 μm)

diel_M1_H

diel_M1_L
October 2010 1352 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
Passivation

The passivation command defines passivation layers. The passivation layers are usually
placed on top of the last metal layer and should be placed higher than the dielectric layers.

Syntax

The syntax of this command is the same as that of the dielectric command, except that
name specifies the name of the passivation layer. See “Dielectric” on page 1351 for
information on this syntax. The passivation layers are usually placed on top of the last metal
layer and should be placed higher than the dielectric layers.

Figure 41-5 on page 1353 illustrates the defining of the passivation layer.

Figure 41-5 Passivation Syntax

Example

passivation “NonuniformConformalPass1” {

conformal TRUE

expandedFrom METAL_6

height 7.70

thickness 0.30

topThickness 0.20

sideExpand 0.20

dielectric_constant 5.70

}

passivation “NonuniformConformalPass1” {

 height 7.70
 thickness 0.30

 dielectric_constant 5.70
}

 conformal TRUE

...
...

 expandedFrom METAL_6

 topThickness 0.20
 sideExpand 0.20

Substrate

topThickness (0.2 μm)

sideExpand (0.20 μm)
Metal_6

Height
(0.77 μm)

0.3 μm
October 2010 1353 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
Via

The via command defines vias or contacts.

Syntax

via name {top_layer value bottom_layer value contact_resistance value}

This syntax contains the following parameters:

■ top_layer value

Specifies the name of the top conductor.

■ bottom_layer value

Specifies the name of the bottom conductor or diffusion layer.

■ contact_resistance value

Specifies the contact resistance of the via, in ohms.

Example
via “V A1” {

top_layer METAL_2

bottom_layer METAL_1

contact_resistance 7.9

}

Following is a sample specification of a local interconnect via layer. The name of the
conductor and the name of the via are the same.

conductor “LI” {

min_spacing 0.3

min_width 0.35

height 0.55

thickness 0.60

resistivity 0.40

gate_forming_layer FALSE

}

via “LI” {

top_layer LI

bottom_layer POLYCIDE

contact_resistance 2.000
October 2010 1354 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
}

Note: Local interconnect is a layer, usually thicker than the polysilicon layer, that can be
deposited after polysilicon and can connect to source-drain regions on the polysilicon layer.

Sample ICT File
#

Copyright (c) 2003 Cadence Design Systems, Inc.

#

###

Process declaration.

###

process “DIFFERENT_KINDS_OF_DIELECTRIC” {

background_dielectric_constant 1.0

}

###

Well declarations.

###

well nwell {}

well pwell {}

###

Diffusion declarations.

###

diffusion “N_SOURCE_DRAIN” {

Tox is (height of POLYCIDE - thickness of diffusion) = (0.35 - 0.3455) = 0.0045um

thickness 0.3455

resistivity 7.7

}

diffusion “P_SOURCE_DRAIN” {

thickness 0.3455

resistivity 8.3

}

###
October 2010 1355 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
Conducting layer declarations.

###

conductor “POLYCIDE” {

min_spacing 0.25

min_width 0.16

height 0.35

thickness 0.20

resistivity 8.6

gate_forming_layer true

}

conductor “METAL_1” {

min_spacing 0.23

min_width 0.23

height 1.05

thickness 0.53

resistivity 0.086

gate_forming_layer false

}

conductor “METAL_2” {

min_spacing 0.28

min_width 0.28

height 2.38

thickness 0.53

resistivity 0.086

The key words TRUE and FALSE are not case sensitive.

gate_forming_layer FALSE

}

conductor “METAL_3” {

min_spacing 0.28

min_width 0.28

height 3.71

thickness 0.53

resistivity 0.086

gate_forming_layer false

}

conductor “METAL_4” {

min_spacing 0.28

min_width 0.28

delta_height + delta_layer is an alternative to height.

delta_height 0.80
October 2010 1356 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
delta_layer METAL_3

“height” is then redundant but it’s okay to specify.

height 5.04

thickness 0.53

resistivity 0.086

gate_forming_layer false

}

conductor “METAL_5” {

min_spacing 0.28

min_width 0.28

height 6.37

thickness 0.53

resistivity 0.086

gate_forming_layer false

}

conductor “METAL_6” {

min_spacing 0.46

min_width 0.44

height 7.70

thickness 0.99

resistivity 0.035

gate_forming_layer false

}

###

Dielectric and passivation layer declarations.

###

###

Base dielectric from substrate...

###

dielectric “First_dielectric” {

Starts at height zero.

conformal FALSE

height 0.00

thickness 0.35

dielectric_constant 3.90

}

Simple planar dielectric starts at the bottom of POLYCIDE
October 2010 1357 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
and ends at 1.08um which is 0.03um above the bottom of M1.

dielectric “SimplePlanar1” {

Starts at height of Poly

conformal FALSE

height 0.35

thickness 0.73

dielectric_constant 4.00

}

###

M1 level...

###

Now a planar intra-metal (M1) dielectric starts 0.03um above from the

bottom of M1.

dielectric “PlanarIntraMetal1” {

conformal FALSE

#

Starts at height of M1

height 1.08

Laterally intersect with M1

thickness 0.03

dielectric_constant 7.00

}

The second intra-metal dielectric across M1

and on top of “PlanarIntraMetal1”.

dielectric “PlanarIntraMetal2” {

Yet another intra-metal planar dielectric layer.

conformal FALSE

height 1.11

upto 1.15

OR

thickness 0.04

dielectric_constant 3.00

}

A conformal dielectric.
October 2010 1358 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
When specifying a conformal dielectric (whether it is uniform or

non-uniform, we must use “conformal TRUE”, “expandedFrom”, “sideExpand”,

and “topThickness” together.

#

1. “conformal” must be set to TRUE.

2. “expandedFrom” can be a metal layer or a dielectric/passivation layer.

The conformal dielectric layer must be expanded from its immediate

lower (metal/dielectric/passivation) layer. It cannot be expanded

from a planar dielectric layer.

3. “thickness” is the bottom dielectric thickness.

4. “sideExpand” specifies the side thickness.

5. “topThickness” is the thickness of the dielectric above the

top of the “expandedFrom” layer.

dielectric “conformalAtTopOFM1” {

Conformal above M1

conformal TRUE

expandedFrom METAL_1

and starts from the top of “PlanarIntraMetal2”

height 1.15

Base/Bottom thickness of the conformal dielectric.

thickness 0.43

The thickness of the dielectric above the “expandedFrom” object, i.e. M1.

topThickness 0.43

This is the side thickness of the dielectric.

sideExpand 0.43

dielectric_constant 4.10

}

dielectric “SimplePlanar2” {

From top of M1 to bottom of M2

conformal FALSE

height 1.58

thickness 0.80

dielectric_constant 4.00

}

October 2010 1359 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
###

M2 level...

###

An uniform conformal dielectric starting from the bottom of M2.

dielectric “UniformConformal1” {

conformal TRUE

expandedFrom METAL_2

Height of M2

delta_height 0.00

delta_layer SimplePlanar2

height 2.38

thickness 0.50

topThickness 0.50

sideExpand 0.50

dielectric_constant 3.00

}

A nonuniform conformal dielectric is one when any one of “thickness”,

“sideExpand”, and “topThickness” are different.

dielectric “NonuniformConformal1” {

conformal TRUE

height 2.88

thickness 0.10

expandedFrom UniformConformal1

sideExpand 0.03

topThickness 0.05

dielectric_constant 7.00

}

dielectric “SimplePlanar3” {

conformal FALSE

height 2.98

thickness 0.73

dielectric_constant 4.10

}

###
October 2010 1360 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
M3 level...

###

A special case of conformal dielectric.

dielectric “NonuniformConformal2” {

Humps over M3 with side and top thicknesses equal to 0.17 um and 0.50 um,
respectively.

conformal TRUE

expandedFrom METAL_3

height 3.71

Note that the bottom thickness is thicker than M3!

thickness 0.90

 topThickness 0.50

 sideExpand 0.17

dielectric_constant 4.10

}

dielectric “SimplePlanar5” {

conformal FALSE

height 4.61

Upto the bottom of M4.

upto 5.04

dielectric_constant 3.00

}

###

M4 level...

###

dielectric “NonuniformConformal3” {

conformal TRUE

expandedFrom METAL_4

Height of M4

height 5.04

thickness 0.30

topThickness 0.30

sideExpand 0.10

Special case. See SimplePlanar6.

dielectric_constant 4.10

}

dielectric “PlanarIntraMetal3” {
October 2010 1361 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
Planar intrametal dielectric.

conformal FALSE

height 5.34

upto 5.44

dielectric_constant 3.10

}

dielectric “PlanarIntraMetal4” {

Top off the top of NonuniformConformal3.

height 5.44

upto 5.87

dielectric_constant 3.00

}

dielectric “SimplePlanar6” {

conformal FALSE

height 5.87

Upto the bottom of M5.

upto 6.37

NOTE that it has the same dielectric constant as NonuniformConformal3.

This makes “NonuniformConformal3” a special case.

dielectric_constant 4.10

}

###

M5 level...

###

dielectric “UniformConformal3” {

conformal TRUE

expandedFrom METAL_5

height 6.37

thickness 0.10

topThickness 0.10

sideExpand 0.10

dielectric_constant 7.20

}

dielectric “PlanarIntraMetal5” {

Special planar dielectric which intersects “UniformConformal3”

conformal FALSE

height 6.47

thickness 0.40

dielectric_constant 3.00
October 2010 1362 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
}

dielectric “PlanarIntraMetal6” {

Another special planar dielectric which intersects “UniformConformal3”

conformal FALSE

height 6.87

thickness 0.10

dielectric_constant 4.00

}

dielectric “PlanarIntraMetal7” {

Yet another special planar dielectric which intersects “UniformConformal3”

conformal FALSE

height 6.97

thickness 0.03

dielectric_constant 7.00

}

###

passivation “PlanarPass1” {

From top of M5 to bottom of M6.

conformal FALSE

height 7.00

thickness 0.70

dielectric_constant 4.00

}

###

M6 level...

###

passivation “NonuniformConformalPass1” {

conformal TRUE

expandedFrom METAL_6

height 7.70

thickness 0.30

topThickness 0.20

sideExpand 0.20

dielectric_constant 5.70

}

passivation “PlanarPass2” {

conformal FALSE
October 2010 1363 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
height 8.00

upto 8.89

dielectric_constant 4.30

}

###

passivation “PlanarPass3” {

conformal FALSE

 height 8.89

thickness 1.00

dielectric_constant 3.00

}

###

Contacts and Via declarations.

###

via “CONT” {

top_layer METAL_1

bottom_layer POLYCIDE

contact_resistance 7.8

}

via “CONT” {

top_layer METAL_1

bottom_layer N_SOURCE_DRAIN

contact_resistance 11

}

via “CONT” {

top_layer METAL_1

bottom_layer P_SOURCE_DRAIN

contact_resistance 10

}

via “VA1” {

top_layer METAL_2

bottom_layer METAL_1

contact_resistance 7.9

}

via “VA2” {

top_layer METAL_3

bottom_layer METAL_2

contact_resistance 8.2
October 2010 1364 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
}

via “VA3” {

top_layer METAL_4

bottom_layer METAL_3

contact_resistance 8.1

}

via “VA4” {

top_layer METAL_5

bottom_layer METAL_4

contact_resistance 8.0

}

via “VA5” {

top_layer METAL_6

bottom_layer METAL_5

contact_resistance 4.0

}

October 2010 1365 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Creating the ICT File
October 2010 1366 Product Version 9.1.3

Encounter Digital Implementation System User Guide
42
ECO Flows

This appendix summarizes the variety of Engineering Change Order (ECO) flows possible
with Encounter, and outlines the current approach for each flow.

■ Overview on page 1368

■ Pre-Mask ECO Changes from a New Verilog File on page 1370

■ Pre-Mask ECO Changes from a New DEF File on page 1374

■ Pre-Mask ECO Changes from an ECO File on page 1378

■ Post-Mask ECO Changes from a New Verilog Netlist on page 1382

■ Post-Mask Gate Array Style ECO from a New Verilog Netlist on page 1388
October 2010 1367 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Flows
Overview

Many types of ECO flows are possible. The ones outlined in this appendix cover the most
common cases. You can use these flows directly, or you can modify them for your design.

For an example ECO file, see the “ECO Directives” chapter in the Encounter User Guide.

Assumptions

The ECO flows in this appendix assume the following:

■ The old Verilog netlist and the new Verilog netlist have already been uniquified so that no
Verilog module is instantiated more than once.

■ Your design uses an existing floorplan.

■ Your old placement, special routing, and routing information is saved in one of the
Encounter formats, DEF, and so forth.

Flows

This appendix describes various types of ECO flows:

■ Pre-Mask ECO Changes from a New Verilog File on page 1370

If you make changes to the netlist, use this flow to use to load the new netlist and restore
all the physical data from the previously saved design.

■ Pre-Mask ECO Changes from a New DEF File on page 1374

Allows you to make external changes that include new cell placements from a DEF file,
while preserving your previous placement, optimization, and optionally, previous routing
information; for example, a clock tree with placements and specialized buffer insertion
with placements.

■ Pre-Mask ECO Changes from an ECO File on page 1378

Allows you to use an ECO file to make changes to the netlist.

■ Post-Mask ECO Changes from a New Verilog Netlist on page 1382

Allows you to make late logic changes after the masks are made. This flow uses pre-
existing spare cells, so no poly/diffusion changes are allowed, and only the routing is
modified. You can direct the software to make routing changes only on specific layers.
October 2010 1368 Product Version 9.1.3

../soceUG/ECODirectives.html#ExampleECOFile

Encounter Digital Implementation System User Guide
ECO Flows
■ Post-Mask Gate Array Style ECO from a New Verilog Netlist on page 1388

Allows you to make late logic changes after the masks are made. This flow uses pre-
existing gate array style filler cells to create new cells. No poly/diffusion changes are
allowed, and only the routing is modified.
October 2010 1369 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Flows
Pre-Mask ECO Changes from a New Verilog File

In this flow, your design is placed and possibly routed, and you want to make a few changes.
The changes are done before the masks are made, so it is a pre-mask ECO flow and there
is no need to keep the original poly/diffusion patterns.

Preparation

Before starting the flow steps, you should have the following files available:

■ oldchip.conf

Create this file by using the saveConfig command, which creates data for libraries,
timing constraints, global power connections, and so on.

■ oldchip.fp
oldchip.fp.spr

Create these files (floorplan, special routing, placement, and routing) by using the
saveFPlan command.

or

■ oldchip.def

Create this file (DEF formats for floorplan, placement, special routing, optionally routing)
by using the defOut command.

■ newchip.v

The new Verilog file is typically created by manually editing the old Verilog netlist.

Note: If you want to preserve routing, your existing design must contain the antenna
diode cells that were added during the previous routing.

Flow

1. Read the new netlist

2. Load old floorplan/placement/routing data

3. Remove filler cells and notches (optional)

4. Perform incremental placement

5. Add filler cells (optional)
October 2010 1370 Product Version 9.1.3

../fetxtcmdref/importT.html#saveConfig
../fetxtcmdref/floorplanT.html#saveFPlan
../fetxtcmdref/importT.html#defOut

Encounter Digital Implementation System User Guide
ECO Flows
6. Perform incremental or final route

7. Add notches

8. Trim metal fill

Or,

1. Use the ecoDesign command to perform the pre-mask ECO operations.

Steps

1. Read the new netlist.

loadConfig newchip.conf # same as oldchip.conf except use newchip.v

or

loadConfig oldchip.conf 0

set rda_Input(ui_netlist) “newchip.v”

commitConfig

The netlist Includes old libraries, global power connections, and so forth. It typically uses
old timing constraints, however new timing constraints can be used.

2. Read the old floorplan, special routes, placements and routing from the old netlist files.

loadFPlan oldchip.fp

ecoDefIn -reportFile ecoDefIn.rpt oldchip.def

applyGlobalNets

During this step,

❑ Matching instances receive old placements.

Soft matching happens when a DEF net name does not have an equivalent name
and another net is found in memory, that has the same connections as described in
the DEF.

The most common case for soft matching is when nets have multiple aliases in a
hierarchical design “net1” = “inst1/net2” = “inst1/inst2/net3” and so
on. Any of these net names can be used in the DEF and can have the same
connections.

Without soft matching, net ‘a’, for example, is removed and net ‘b’ is created in it’s
place, resulting in ripping of the wire.

❑ Instances existing only in the oldchip.def file are ignored, so they are not added
to the current netlist.
October 2010 1371 Product Version 9.1.3

../fetxtcmdref/importT.html#loadConfig
../fetxtcmdref/importT.html#commitConfig
../fetxtcmdref/floorplanT.html#loadFPlan
../fetxtcmdref/interactive_ecoT.html#ecoDefIn
../fetxtcmdref/fp_special_routeT.html#applyGlobalNets
../fetxtcmdref/interactive_ecoT.html#ecoDesign

Encounter Digital Implementation System User Guide
ECO Flows
❑ Changed instances (new cell) are assigned a new cell and are left unplaced.

❑ Physical-only cells in the old netlist (marked with +SOURCE DIST in the DEF) get
added (for example, well taps, end caps, and filler cells).

❑ Instances that are only in the new netlist are left unplaced.

❑ Routing for existing or modified nets is restored (possibly with opens or shorts).

❑ Routing for deleted nets is removed.

3. (Optional) Add level shifter or isolation cell for low power design.

loadShifter -infile oldchip.vsf

or

addIsolationCell

During this step, level shifters or isolation cells will be added to new ECO nets that cross
the power domain. The newly added cells will be unplaced. The ecoPlace command
will place them in their respective power domain boundaries.

4. Remove filler cells or notch fill (if present).

deleteFiller -prefix FILL

deleteNotchFill

5. Perform incremental placement.

ecoPlace

Unplaced instances are placed, previously placed cells are not moved, and routing is
unaffected. You can manually preplace critical cells before using the ecoPlace
command by placing the cell in the bottom, left corner, selecting it, and then moving it
graphically.

placeInstance i1/i2/i3 0 0

selectInst i1/i2/i3

6. Add filler cells back into the rows.

addFiller -cell FILL4 -prefix FILL -fillBoundary

addFiller -cell FILL2 -prefix FILL -fillBoundary

addFiller -cell FILL1 -prefix FILL -fillBoundary

Global power connections are performed automatically based on rules loaded from the
configuration or floorplan file earlier.

7. Perform incremental or final route.

ecoRoute

NanoRoute automatically detects modified and new nets, and incrementally routes any
nets that are incomplete or have violations.
October 2010 1372 Product Version 9.1.3

../fetxtcmdref/msvT.html#loadShifter
../fetxtcmdref/msvT.html#addIsolationCell
../fetxtcmdref/placementT.html#deleteFiller
../fetxtcmdref/interactive_ecoT.html#deleteNotchFill
../fetxtcmdref/interactive_ecoT.html#ecoPlace
../fetxtcmdref/placementT.html#placeInstance
../fetxtcmdref/floorplanT.html#selectInst
../fetxtcmdref/placementT.html#addFiller
../fetxtcmdref/interactive_ecoT.html#ecoRoute

Encounter Digital Implementation System User Guide
ECO Flows
8. (Optional) Add notches.

fillNotch

9. (Optional) If the original design contained metal fill, trim the metal fill:

trimMetalFill

Cadence recommends that you use this command to trim metal fill during the ECO
process instead of deleting and adding the metal fill again.

Or,

1. Use the ecoDesign command to perform ECO operations. For example, the following
command performs a pre-mask ECO:

ecoDesign original.enc.dat top_cell newchip.v
October 2010 1373 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#fillNotch
../fetxtcmdref/metalfillT.html#trimMetalFill
../fetxtcmdref/interactive_ecoT.html#ecoDesign

Encounter Digital Implementation System User Guide
ECO Flows
Pre-Mask ECO Changes from a New DEF File

In this flow, your design is placed and possibly routed, and you want to make a few changes
with known cell placements from a new DEF file.

Examples of this flow include:

■ Bringing in an external clock tree after placement

■ Bringing in external optimizations such as new buffers or cell resizing

■ Bringing in external post-route fixes such as new buffers or cell resizing

Preparation

Before starting the flow steps, you should have the following files available:

■ oldchip.enc
oldchip.enc.dat/

Create these files by using the saveDesign command after the previous placement,
optimization, and routing steps.

or

■ oldchip.conf
oldchip.v
oldchip.def

Create these files by using the saveConfig, saveNetlist, and defOut commands
after the previous placement, optimization and routing steps.

■ newchip.def

The new DEF file is typically created by an external tool, or possibly done manually to fix
a few critical post-route violations with specific placements required. Any necessary
physical cells (+SOURCE DIST) are expected to also be in the new DEF.

You must start with the old Verilog and update the Verilog modules with new ports and
nets as required to match the new DEF netlist. You need to make sure the DEF instance
names match the expected Verilog names (for example, a new buffer added to the output
of instance /i1/i2/i3 should have a name such as /i1/i2/mynewbuf_i100),
otherwise spurious Verilog ports will be created.
October 2010 1374 Product Version 9.1.3

../fetxtcmdref/importT.html#saveDesign
../fetxtcmdref/importT.html#saveConfig
../fetxtcmdref/importT.html#saveNetlist
../fetxtcmdref/importT.html#defOut

Encounter Digital Implementation System User Guide
ECO Flows
Flow

1. Read the old floorplan/netlist

2. Compare the old netlist to DEF

3. Load the ECO file

4. Write the modified netlist (optional)

5. Read the new placement data

6. Perform incremental or final routing

7. Trim metal fill

Steps

1. Read the old Verilog netlist, floorplan, and placement information into Encounter by
doing one of the following:

restoreDesign oldchip.enc

or

loadConfig oldchip.conf

defIn oldchip.def

This step reads in the following information:

❑ Old libraries and global power connections

❑ Old timing constraints (could be new constraints if necessary)

❑ Special routing, placements and optionally old routing

❑ Old filler cells, end caps, well taps, and other cell information

2. Compare the current old netlist to the new DEF netlist to create an ECO file.

ecoCompareNetlist -def newchip.def -outFile oldchip.eco

The ECO file has all the changes required to make the current netlist match the new
netlist. Physical-only cells are ignored (for example, +SOURCE DIST cells such as filler,
end caps, and well taps). Examine the ECO file to ensure it is correct.

3. Load the ECO file to incrementally update the current netlist to match the new netlist.

loadECO oldchip.eco

During this step,
October 2010 1375 Product Version 9.1.3

../fetxtcmdref/importT.html#restoreDesign
../fetxtcmdref/importT.html#loadConfig
../fetxtcmdref/importT.html#defIn
../fetxtcmdref/interactive_ecoT.html#ecoCompareNetlist
../fetxtcmdref/interactive_ecoT.html#loadECO

Encounter Digital Implementation System User Guide
ECO Flows
❑ Instances and nets that are only in the old Verilog are deleted (for example, an old
clock tree). Some Verilog ports may now be unconnected due to deleted nets.

❑ New instances are still unplaced.

❑ New ports and nets are created in Verilog modules as needed to connect instances
in different Verilog modules.

❑ If any nets are deleted, then any routing attached to the net is also deleted.

❑ If any nets are modified, then any routing on those nets is left unchanged for later
repair.

❑ Global power connections are done automatically based on the rules from the
configuration file or floorplan file loaded earlier.

4. (Optional) Write out the modified Verilog netlist.

saveNetlist oldchip_after_eco.v

The oldchip_after_eco.v file should be the same netlist as newchip.def,
although it is possible for the net names to be different (any new DEF net names that
connect across multiple Verilog modules may be renamed). If you need a DEF file that
has exactly the same net names, you can use the defOut command.

5. Read in the new placements.

defIn newchip.def

During this step,

❑ All instance placements are updated, including unplaced instances. Typically any
existing old instances are not moved, but nothing prevents them from moving if the
new DEF moved them.

❑ Remove the deleteFiller command before using defIn if the new DEF
contains different fill, end cap, or well tap cells (+SOURCE DIST). If the filler cells
are not changed, the deleteFiller command is not necessary. If the new DEF
does not have any filler cells, the filler cells (if any) from the old DEF are left in place.

❑ If any instances are still unplaced, the ecoPlace command can be used to place
them after removing any notch-fill or metal-fill wiring using the editDelete
command.

❑ If only legalization of the placement is needed, the refinePlace command can be
used.

❑ If routing is in the new DEF file (typically from the routing done on the old netlist), the
routing will also be read in, and it will replace the routing on existing nets.
October 2010 1376 Product Version 9.1.3

../fetxtcmdref/importT.html#saveNetlist
../fetxtcmdref/importT.html#defOut
../fetxtcmdref/importT.html#defIn
../fetxtcmdref/placementT.html#deleteFiller
../fetxtcmdref/importT.html#defIn
../fetxtcmdref/placementT.html#deleteFiller
../fetxtcmdref/interactive_ecoT.html#ecoPlace
../fetxtcmdref/wireeditT.html#editDelete
../fetxtcmdref/placementT.html#refinePlace

Encounter Digital Implementation System User Guide
ECO Flows
6. Perform incremental or final routing.

ecoRoute

ecoRoute automatically detects opens and shorts, and incrementally routes any nets
that are incomplete or have violations.

7. (Optional) If the original design contained metal fill, trim the metal fill:

trimMetalFill

Cadence recommends that you use this command to trim metal fill during the ECO
process instead of deleting and adding the metal fill again.

8. Continue with the normal post-routing flow (analysis, repair, notch-fill, metal-fill, verify,
sign-off, and so forth).
October 2010 1377 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#ecoRoute
../fetxtcmdref/metalfillT.html#trimMetalFill

Encounter Digital Implementation System User Guide
ECO Flows
Pre-Mask ECO Changes from an ECO File

In this flow, your design is placed and possibly routed, and you want to make a small number
of changes using an ECO file methodology. The changes are done before the masks are
made so it is a pre-mask ECO flow, and there is no need to keep the original poly/diffusion
patterns.

For example, you might want to apply a small number of late logical changes, but you want to
keep as much of the previous placement, optimization, clock tree, and routing to avoid
disturbing previous timing/SI optimization and repair.

Preparation

Before starting the flow steps, you should have the following files available:

■ oldchip.enc
oldchip.enc.dat/

Create these files by using the saveDesign command after the previous placement,
optimization, and routing steps.

or

■ oldchip.conf
oldchip.v
oldchip.def

Create the first three files by using the saveConfig, saveNetlist, and defOut
commands after the previous placement, optimization and routing steps. The new Verilog
file (newchip.v) is typically created by manually editing the old Verilog netlist.

Note: If you want to preserve routing, your existing design must contain the antenna
diode cells that were added during the previous routing.

or

■ oldchip.eco

This file contains the list of changes to be applied to the old netlist. The changes required
(see the loadECO command syntax) are typically created manually. You might be able
to create an ECO file more easily by using ADDINST and DELETEINST rather than
creating a new Verilog file.
October 2010 1378 Product Version 9.1.3

../fetxtcmdref/importT.html#saveDesign
../fetxtcmdref/importT.html#saveConfig
../fetxtcmdref/importT.html#saveNetlist
../fetxtcmdref/importT.html#defOut
../fetxtcmdref/interactive_ecoT.html#loadECO

Encounter Digital Implementation System User Guide
ECO Flows
Flow

■ Read the old netlist

■ Compare netlists

■ Load the ECO file

■ Write the new netlist (optional)

■ Remove filler cells

■ Perform incremental placement

■ Add filler cells

■ Perform incremental or final routing

■ Trim metal fill

Steps

1. Read the old Verilog netlist, floorplan, and placement information into Encounter.

restoreDesign oldchip.enc

or

loadConfig oldchip.conf

defIn oldchip.def

This step reads in the following information:

❑ Old libraries and global power connections

❑ Old timing constraints or new constraints, if necessary

❑ Special routing, placement, and optionally, old routing information

❑ Old filler cells, end caps, well taps, and other cell information

2. Load the ECO file to incrementally update the current netlist to match the new netlist.

loadECO oldchip.eco

During this step,

❑ Instances and nets that are only in the old Verilog are deleted (for example, an old
clock tree). Some Verilog ports may now be unconnected due to deleted nets.

❑ New instances are still unplaced.
October 2010 1379 Product Version 9.1.3

../fetxtcmdref/importT.html#restoreDesign
../fetxtcmdref/importT.html#loadConfig
../fetxtcmdref/importT.html#defIn
../fetxtcmdref/interactive_ecoT.html#loadECO

Encounter Digital Implementation System User Guide
ECO Flows
❑ New ports and nets are created in Verilog modules as needed to connect instances
in different Verilog modules.

❑ If any nets are deleted, the routing attached to the net is also deleted.

❑ If any nets are modified, the routing on those nets is left unchanged for later repair.

❑ Global power connections are done automatically based on the rules from the
configuration file or floorplan file loaded earlier.

3. (Optional) Write out new Verilog netlist.

saveNetlist oldchip_after_eco.v

The oldchip_after_eco.v and newchip.v netlists should be identical, with one
exception: the newly-created Verilog module ports and nets might have different names
because they are automatically generated whenever a new connection is made between
separate Verilog modules.

4. Remove filler cells or notch fill (if present).

deleteFiller -prefix FILL

deleteNotchFill

5. Perform incremental placement.

ecoPlace

Unplaced instances are placed; however, previously placed cells are not moved and
routing is unaffected.

Note: You can manually preplace critical cells before using the ecoPlace command by
placing the cell in the bottom, left corner, selecting it, and then moving it graphically. For
example:

placeInstance i1/i2/i3 0 0

selectInst i1/i2/i3

6. Add filler cells back into the rows.

addFiller -cell FILL4 -prefix FILL -fillBoundary

addFiller -cell FILL2 -prefix FILL -fillBoundary

addFiller -cell FILL1 -prefix FILL -fillBoundary

Global power connections are done automatically based on rules loaded from the
configuration or floorplan file earlier.

7. Incremental or final route.

setNanoRouteMode routeWithEco true # set for incremental routing

globalDetailRoute
October 2010 1380 Product Version 9.1.3

../fetxtcmdref/importT.html#saveNetlist
../fetxtcmdref/placementT.html#deleteFiller
../fetxtcmdref/interactive_ecoT.html#deleteNotchFill
../fetxtcmdref/interactive_ecoT.html#ecoPlace
../fetxtcmdref/interactive_ecoT.html#ecoPlace
../fetxtcmdref/placementT.html#placeInstance
../fetxtcmdref/floorplanT.html#selectInst
../fetxtcmdref/placementT.html#addFiller
../fetxtcmdref/placementT.html#addFiller
../fetxtcmdref/placementT.html#addFiller
../fetxtcmdref/routeT.html#setNanoRouteMode
../fetxtcmdref/routeT.html#globalDetailRoute

Encounter Digital Implementation System User Guide
ECO Flows
NanoRoute automatically detects opens and shorts, and incrementally routes any nets
that are incomplete or have violations.

Or,

You can instead use the ecoRoute command to perform incremental or final routing

8. (Optional) Add notches.

fillNotch

9. (Optional) If the original design contained metal fill, trim the metal fill:

trimMetalFill

Cadence recommends that you use this command to trim metal fill during the ECO
process instead of deleting and adding the metal fill again.

10. Continue with the normal post-routing flow (analysis, repair, add metal fill, notch fill,
verify, sign-off, and so forth).
October 2010 1381 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#fillNotch
../fetxtcmdref/metalfillT.html#trimMetalFill
../fetxtcmdref/interactive_ecoT.html#ecoRoute

Encounter Digital Implementation System User Guide
ECO Flows
Post-Mask ECO Changes from a New Verilog Netlist

In this flow, the design is taped out and has errors. There is a new Verilog file that only has a
few logical changes from the old Verilog file. You want to use pre-existing spare cells so the
poly/diffusion and lower layers are not changed, and only the metal and via layer masks need
to be modified. To save mask cost, you can direct the software to perform routing changes
only on specific layers.

Preparation

Before starting the flow steps, you must have the following files:

■ oldchip.enc
oldchip.enc.dat/

Create these files by using the saveDesign command after the previous placement,
optimization, and routing steps.

or

oldchip.conf
oldchip.v
oldchip.def

Create these files by using the saveConfig, saveNetlist, and defOut commands
after the previous placement, optimization and routing steps.

The old Verilog already has spare cells in it. They are typically added to the original
Verilog by creating spare cells at the top-level or inside a Verilog module(s) just to hold
the spare cells. For example, a Verilog module named mySpareCells is added with as
many spare cells as required inside this Verilog module.

You can identify the spare cells before the original placement by using the following
command:

specifySpareGate -inst mySpareCells

The placer spreads the spare cells evenly throughout the design. If the design is
hierarchical, you can add more spare cells inside modules that are likely to change. If the
cells are at the top-level with a naming convention such as SPARE_1, SPARE_2, and so
forth, then you can identify them with the following command:

specifySpareGate -inst SPARE*.

If you cannot avoid making changes on all layers, you can add spare cells after reading
the original Verilog. Create an ECO file containing a list of ADDINST commands to create
spare cells and ADDHIERINST commands to create new Verilog modules. Read the
October 2010 1382 Product Version 9.1.3

../fetxtcmdref/importT.html#saveDesign
../fetxtcmdref/importT.html#saveConfig
../fetxtcmdref/importT.html#saveNetlist
../fetxtcmdref/importT.html#defOut
../fetxtcmdref/placementT.html#specifySpareGate

Encounter Digital Implementation System User Guide
ECO Flows
ECO file with the loadECO command and identify the spare cells by using the
specifySpareGate command before placement.

■ oldchip.fp (Optional)

You can either save the floorplan in the DEF file or in the floorplan file. If your DEF file
does not contain the required floorplan information, you must use saveFPlan to
generate oldchip.fp.

■ newchip.v

The new Verilog file is identical to the old Verilog file (including antenna diode cells
created during routing) except for a small number of manual fixes for logic errors.

Flow

1. Read the new netlist

2. Load old floorplan/placement/routing data

3. Specify spare cells

4. Remove notches

5. Perform incremental placement

6. Save the modified design

7. Perform incremental or final route

8. Add notches

9. Trim metal fill

Or,

1. Use the ecoDesign command to perform post-mask ECO operations.

Steps

1. Read the new netlist.

loadConfig newchip.conf # same as oldchip.conf except use newchip.v

or

loadConfig oldchip.conf 0

set rda_Input(ui_netlist) “newchip.v”

commitConfig
October 2010 1383 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#loadECO
../fetxtcmdref/placementT.html#specifySpareGate
../fetxtcmdref/importT.html#loadConfig
../fetxtcmdref/importT.html#commitConfig
../fetxtcmdref/interactive_ecoT.html#ecoDesign

Encounter Digital Implementation System User Guide
ECO Flows
The netlist Includes old libraries, global power connections, and so forth. It typically uses
old timing constraints, however new timing constraints can be used.

2. Read the old floorplan, special routes, placements and routing from the old netlist files.

loadFPlan oldchip.fp #optional

ecoDefIn -postMask -suffix _spare -reportFile ecoDefIn.rpt oldchip.def

applyGlobalNets

Note: You do not need to use the loadFPlan command if all floorplan information
already exists in the oldchip.def file; however, you must use loadFPlan if
oldchip.def contains only placement and routing information.

During this step,

❑ The -postMask option ensures that deleted items are also restored.

❑ Matching instances get old placements.

Soft matching happens when a DEF net name does not have an equivalent name
and another net is found in memory, that has the same connections as described in
the DEF.

The most common case for soft matching is when nets have multiple aliases in a
hierarchical design “net1” = “inst1/net2” = “inst1/inst2/net3” and so
on. Any of these net names can be used in the DEF and can have the same
connections.

Without soft matching, net ‘a’, for example, is removed and net ‘b’ is created in it’s
place, resulting in ripping of the wire.

❑ Any instance existing only in the oldchip.def file (deleted cells) is kept in the
design, and its name is appended with the string specified by -suffix.

For example, if you specify -suffix _spare, instance i1/i2/i3 is changed to
i1/i2/i3_spare.

❑ Changed instances (new cell) are assigned a new cell and are left unplaced.

❑ Physical-only cells in the oldchip.def file (marked with +SOURCE DIST in the
DEF) are added; for example, well taps, end caps, and filler cells.

❑ Instances that are only in the new netlist are left unplaced.

❑ Routing for existing or modified nets is restored (possibly with opens or shorts).

❑ Routing for deleted nets is also restored. The ecoRoute command removes the
nets according to the -modifyOnlyLayer option.

❑ All unplaced cells are mapped to spare cells during ECO placement in a later step.
October 2010 1384 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#loadFPlan
../fetxtcmdref/interactive_ecoT.html#ecoDefIn
../fetxtcmdref/fp_special_routeT.html#applyGlobalNets

Encounter Digital Implementation System User Guide
ECO Flows
3. (Optional) Make tie connections.

addTieHiLo [-cell "tieHighCellName tieLowCellName"] [-createHierPort {true
| false}] [-postMask]

During this step, the software reuses the existing tie cells to tie off a newly created spare
instance in the design, instead of adding or deleting tie cells.

4. (Optional) Add level shifter or isolation cell for low power design.

loadShifter -infile oldchip.vsf

or

addIsolationCell

During this step, level shifters or isolation cells are added to new ECO nets that cross the
power domain. The newly added cells will be unplaced. The ecoPlace command will
map them to spare cells.

5. Specify the spare cell list.

specifySpareGate -inst SPARE*

6. Remove notch fill (if present).

deleteNotchFill

Note: Do not do this step if you plan to freeze metal layers, because this command
modifies all layers.

7. Perform incremental placement.

ecoRemap

❑ The ecoRemap command only works for unplaced cells.

❑ The ecoRemap command needs a timing library so that it can compute DRCs and
timing slack.

❑ The ecoRemap command might map the unplaced cell to a combination of other cell
types to achieve a similar function and yield better DRC and timing results.

ecoPlace -useSpareCells true

❑ In the post-mask flow, you must specify -useSpareCells to ensure that
ecoPlace is switched to mapping mode. In this mode, ecoPlace maps all
unplaced cells to spare cells.

❑ The ecoPlace command automatically chooses a spare cell that is identical to the
cell being mapped.

8. (Optional) Swap spare cells.

ecoSwapSpareCell i_9649 spare1
October 2010 1385 Product Version 9.1.3

../fetxtcmdref/msvT.html#loadShifter
../fetxtcmdref/msvT.html#addIsolationCell
../fetxtcmdref/placementT.html#specifySpareGate
../fetxtcmdref/interactive_ecoT.html#deleteNotchFill
../fetxtcmdref/interactive_ecoT.html#ecoRemap
../fetxtcmdref/interactive_ecoT.html#ecoPlace
../fetxtcmdref/placementT.html#addTieHiLo

Encounter Digital Implementation System User Guide
ECO Flows
❑ At this step of the flow, all the newly-added cells should be mapped. In this step, you
can use the ecoSwapSpareCell command to manually change the mapping.

❑ i_9649 is the instance name of the placed cell that ecoSwapSpareCell swaps
with spare cell spare1.

❑ spare1 must be a spare cell specified in the previous step. Use the
specifySpareGate command if necessary.

9. (Optional) Save the modified design.

saveDesign design.eco.enc

Saving the design before you run ecoRoute allows you to explore different
modifyOnlyLayers ranges without repeating all of the previous steps.

10. Perform incremental or final routing.

ecoRoute -modifyOnlyLayers 2:3

❑ You can use the -modifyOnlyLayers option to restrict the modifications to a
specified range of metal layers.

❑ If the -modifyOnlyLayers range begins with layer 2, and the spare cell pins are
only available from metal 1, then the ecoRoute command automatically drops a
VIA12 via. This behavior is not available if the -modifyOnlyLayers range does
not begin with 2.

❑ The ecoRoute command might not be successful if the specified layer range is not
sufficient to meet the changes required. You must restore the design from the
previous step, then use a different range, such as 2:4, 1:3, and so on.

❑ The unused routing segments of deleted and modified nets will appear in the
SPECIALNETS section of the DEF file.

11. (Optional) Add notches.

fillNotch

Note: Skip this step if you specify freeze metal layers, because this command modifies
all layers.

12. (Optional) If the original design contained metal fill, trim the metal fill:

trimMetalFill

Cadence recommends that you use this command to trim metal fill during the ECO
process instead of deleting and adding the metal fill again.

Or,
October 2010 1386 Product Version 9.1.3

../fetxtcmdref/importT.html#saveDesign
../fetxtcmdref/interactive_ecoT.html#ecoRoute
../fetxtcmdref/interactive_ecoT.html#fillNotch
../fetxtcmdref/metalfillT.html#trimMetalFill

Encounter Digital Implementation System User Guide
ECO Flows
1. Use the ecoDesign command to perform post-mask ECO operations. The following
command and options are used to implement a post-mask ECO:

ecoDesign -postMask -modifyOnlyLayers 2:3 -spareCells *spare* original.enc.dat
top_cell newchip.v
October 2010 1387 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#ecoDesign

Encounter Digital Implementation System User Guide
ECO Flows
Post-Mask Gate Array Style ECO from a New Verilog
Netlist

The design is taped out and has a small number errors. There is a new Verilog netlist that has
a few logical changes from the old Verilog netlist. You want to use pre-existing gate array style
filler cells that can be programmed with metal layers so the poly/diffusion and lower layers are
not changed, and only the metal and via layer masks need to be modified. The new netlist is
typically created manually by modifying the old netlist, and any new instances are chosen
from cells with a GACORE site.

Preparation

Before starting the flow steps, do the following:

■ Create a library of GACORE cells as follows:

❑ All cells have a common transistor pattern.

❑ The cells are a fixed number of CORE sites wide. For example, the width of a
GACORE site might be four times the width of a CORE site.

❑ The logical cells are programmed by metal1 for various AND and OR type gates.

❑ Filler cells use the same transistor pattern (for example, GAfiller).

■ Pre-place the GACORE filler cells before the final routing in the old design:

❑ Encounter requires an overlayed row pattern for the GACORE cells. Before the final
routing (pre-mask), commands such as the following are used:

defIn garows.def

addFiller -cell GAfiller -prefix GAFILL -fillBoundary

addFiller -cell fill2 -prefix FILL -fillBoundary

addFiller -cell fill1 -prefix FILL -fillBoundary

■ Follow these rules for the Verilog netlist:

❑ Any new instance is only chosen from the GACORE cells.

❑ Any instance can be deleted (it will be left in the netlist as a sparecell).
October 2010 1388 Product Version 9.1.3

../fetxtcmdref/importT.html#defIn
../fetxtcmdref/placementT.html#addFiller

Encounter Digital Implementation System User Guide
ECO Flows
Before starting the flow steps, you must have the following files:

■ oldchip.enc
oldchip.enc.dat/

Create these files by using the saveDesign command after the previous placement,
optimization, and routing steps.

or

oldchip.conf
oldchip.v
oldchip.def

Create these files by using the saveConfig, saveNetlist, and defOut commands
after the previous placement, optimization and routing steps.

The old Verilog already has spare cells in it. They are typically added to the original
Verilog by creating spare cells at the top-level or inside a Verilog module(s) just to hold
the spare cells. For example, a Verilog module named mySpareCells is added with as
many spare cells as required inside this Verilog module.

You can identify the spare cells before the original placement by using the following
command:

specifySpareGate -inst mySpareCells

The placer spreads the spare cells evenly throughout the design. If the design is
hierarchical, you can add more spare cells inside modules that are likely to change. If the
cells are at the top-level with a naming convention such as SPARE_1, SPARE_2, and so
forth, then you can identify them with the following command:

specifySpareGate -inst SPARE*.

If you cannot avoid making changes on all layers, you can add spare cells after reading
the original Verilog. Create an ECO file containing a list of ADDINST commands to create
spare cells and ADDHIERINST commands to create new Verilog modules. Read the
ECO file with the loadECO command and identify the spare cells by using the
specifySpareGate command before placement.

■ oldchip.fp

You can either save the floorplan in the DEF file or in the floorplan file. If your DEF file
does not contain the required floorplan information, you must use saveFPlan to
generate oldchip.fp.

■ newchip.v

The new Verilog file is identical to the old Verilog file (including antenna diode cells
created during routing) except for a small number of manual fixes for logic errors.
October 2010 1389 Product Version 9.1.3

../fetxtcmdref/importT.html#saveDesign
../fetxtcmdref/importT.html#saveConfig
../fetxtcmdref/importT.html#saveNetlist
../fetxtcmdref/importT.html#defOut
../fetxtcmdref/placementT.html#specifySpareGate
../fetxtcmdref/placementT.html#specifySpareGate
../fetxtcmdref/interactive_ecoT.html#loadECO
../fetxtcmdref/placementT.html#specifySpareGate

Encounter Digital Implementation System User Guide
ECO Flows
Steps

1. Read the new netlist.

loadConfig newchip.conf # same as oldchip.conf except use newchip.v

or

loadConfig oldchip.conf 0

set rda_Input(ui_netlist) “newchip.v”

commitConfig

The netlist Includes old libraries, global power connections, and so forth. It typically uses
old timing constraints, however new timing constraints can be used.

This procedure reads in the following information:

❑ The new netlist

❑ Old libraries and global power connections

❑ Old timing constraints (could be new constraints if necessary)

2. Read the old floorplan, special routes, placements, and routing from the old netlist files.

loadFPlan oldchip.fp

ecoDefIn -useGACells GACORE -suffix _spare -reportFile ecoDefIn.rpt
oldchip.def

applyGlobalNets

❑ The -useGACells GACORE option implies -useSpareCells.

❑ This procedure reads in the following information:

❍ Special routing, placements, and old routing

❍ Old filler cells, end caps, well taps, and other cell information

❑ Deleted GACORE cells that are only in the old DEF are deleted (they will be added
back by GACORE site filler cells later in the flow).

❑ Regular standard cells that are only in the old DEF file are implicitly deleted by
leaving them in place and changing the name from i1/i2/i3 to
i1/i2/i3_SPARE. The input pins of these new spare cells are tied to the ground
net or tie-low cell.

❑ New GACORE instances are left unplaced.

❑ Global power connections are made automatically based on the rules from the
configuration file or floorplan file loaded earlier.
October 2010 1390 Product Version 9.1.3

../fetxtcmdref/importT.html#loadConfig
../fetxtcmdref/importT.html#loadConfig
../fetxtcmdref/importT.html#commitConfig
../fetxtcmdref/floorplanT.html#loadFPlan
../fetxtcmdref/interactive_ecoT.html#ecoDefIn
../fetxtcmdref/fp_special_routeT.html#applyGlobalNets

Encounter Digital Implementation System User Guide
ECO Flows
Any GACORE rows in the old design are restored; normal CORE rows are also restored.
GACORE rows could optionally come from a separate DEF file if they are not saved with
the old design.

3. Specify the spare cell list.

specifySpareGate -inst SPARE*

4. Remove notch fill (if present).

deleteNotchFill

Note: Do not do this step if you plan to freeze metal layers, because this command
modifies all layers.

5. Perform incremental placement.

deleteFiller -prefix GAFILL
ecoPlace -useGACells GACORE
addFiller -cell -GAFiller -prefix GAFILL -fillBoundary

This procedure does the following:

❑ Removes GACORE filler cells to leave gaps for the ecoPlace command. The
ecoPlace command snaps GACORE cells to the GACORE row sites. Routing is
unaffected.

❑ Puts back the GACORE filler cells in any leftover gaps.

❑ ecoPlace maps cells not matching the GACORE to the available spare cells.

❑ ecoPlace places the GACORE cells in a legal placement location.

6. (Optional) Swap spare cells.

ecoSwapSpareCell i_9649 spare1

❑ At this step of the flow, all the newly-added cells should be mapped. In this step, you
can use the ecoSwapSpareCell command to manually change the mapping.

❑ i_9649 is the instance name of the placed cell that ecoSwapSpareCell swaps
with spare cell spare1.

❑ spare1 must be a spare cell specified in the previous step. Use the
specifySpareGate command if necessary.

7. (Optional) Save the modified design.

saveDesign design.eco.enc

Saving the design before you run ecoRoute allows you to explore different
modifyOnlyLayers ranges without repeating all of the previous steps.
October 2010 1391 Product Version 9.1.3

../fetxtcmdref/placementT.html#specifySpareGate
../fetxtcmdref/interactive_ecoT.html#deleteNotchFill
../fetxtcmdref/placementT.html#deleteFiller
../fetxtcmdref/interactive_ecoT.html#ecoPlace
../fetxtcmdref/placementT.html#addFiller
../fetxtcmdref/importT.html#saveDesign

Encounter Digital Implementation System User Guide
ECO Flows
8. Perform incremental or final route.

setNanoRouteMode -routeinsertantennadiode false
ecoRoute -modifyOnlyLayers 2:3

During this step,

❑ NanoRoute automatically detects opens and shorts, and incrementally routes any
nets that are incomplete or have violations.

❑ Disable insertion of antenna diode cells. The poly/diffusion layers cannot be
modified, so only layer-hopping can be used to avoid process antenna violations.

❑ You can use the -modifyOnlyLayers option to restrict the modifications to a
specified range of metal layers.

❑ If the -modifyOnlyLayers range begins with layer 2, and the spare cell pins are
only available from metal 1, then the ecoRoute command automatically drops a
VIA12 via. This behavior is not available if the -modifyOnlyLayers range does
not begin with 2.

❑ The ecoRoute command might not be successful if the specified layer range is not
sufficient to meet the changes required. You must restore the design from the
previous step, then use a different range, such as 2:4, 1:3, and so on.

❑ The unused routing segments of deleted and modified nets will appear in the
SPECIALNETS section of the DEF file.

9. (Optional) Add notches.

fillNotch

Note: Skip this step if you specify freeze metal layers, because this command modifies
all layers.

10. (Optional) If the original design contained metal fill, trim the metal fill:

trimMetalFill

Cadence recommends that you use this command to trim metal fill during the ECO
process instead of deleting and adding the metal fill again.

Or,

1. Use ecoDesign for post-mask flow.

The following command and options are used to implement a post-mask ECO:

ecoDesign -postMask -modifyOnlyLayers 2:3 -spareCells *spare* original.enc.dat
myDesign myDesign.new.v
October 2010 1392 Product Version 9.1.3

../fetxtcmdref/routeT.html#setNanoRouteMode
../fetxtcmdref/interactive_ecoT.html#ecoRoute
../fetxtcmdref/interactive_ecoT.html#fillNotch
../fetxtcmdref/metalfillT.html#trimMetalFill

Encounter Digital Implementation System User Guide
43
ECO Directives

This appendix describes the directives that you specify in an ECO directives file. After you
complete the file, you can then read it into the Encounter™ software by using the loadECO
command on the Encounter command line. The following command loads
myDirectivesFile:

loadECO myDirectivesFile

Important

These are ECO directives, not Encounter Tcl commands.

■ You can use these directives only in an ECO directives file.

■ You cannot use these directives on the Encounter command line.

■ You cannot source this file to run the directives.

■ You must use the loadECO command to read the file.

The names of the directives appear in this appendix in uppercase characters to distinguish
them from interactive Encounter commands with the same names; however, the software is
case-insensitive.

The ECO File directives do not support Verilog® escape name syntax. For directives that
modify or delete existing objects, you cannot specify the name of the object using Verilog
escape name syntax.

File format requirements are shown in the section Example ECO File on page 1413.

The directives are presented in alphabetical order.

■ ADDHIERINST on page 1395

■ ADDINST on page 1396

■ ADDMODULEPORT on page 1398

■ ADDNET on page 1399
October 2010 1393 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
■ ATTACHMODULEPORT on page 1400

■ ATTACHTERM on page 1401

■ DELETEBUFFER on page 1403

■ DELETEINST on page 1405

■ DELETEMODULEPORT on page 1406

■ DELETENET on page 1407

■ DETACHMODULEPORT on page 1408

■ DETACHTERM on page 1409

■ INSERTBUFFER on page 1410

■ Example ECO File on page 1413
October 2010 1394 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
ADDHIERINST

ADDHIERINST
instName
moduleName

Creates an instance of a new hierarchical module. You can later use the ADDINST directive
to add spare cells inside the new hierarchical instance. The software automatically creates
new ports for the hierarchical module when you run the ATTACHTERM directive. Currently,
there are no directives available that allow you to manually create new ports for the new
hierarchical module.

Parameters

Example

■ The following directive creates a new hierarchical cell, sparecell, and an instance of
sparecell named i1/i2/i3/spare1:

ADDHIERINST i1/i2/i3/spare1 sparecell

If the instance i1/i2/i3 does not exist, or instance i1/i2/i3/spare1 already exists,
the directive stops and the software displays an error message.

instName Specifies the name of the new hierarchical instance. If the
instance already exists, or if the module containing the
instance does not exist, the directive stops and the software
displays an error message.

moduleName Specifies the name of the new hierarchical module. If the
module already exists, the software uses the module definition
and creates a new hierarchy.
October 2010 1395 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
ADDINST

ADDINST
[-moduleBased moduleName]
cellName instName

Adds an instance.

When instanceName is specified, the new instance is bound with the correct cell in the
power domain.

Note: If nrTerm is greater than zero, then you specify nrTerm lines of INSTTERM... after
the line ADDINST...nrTerm.

If ADDINST is module based, the syntax is:

ADDINST -moduleBased moduleName cellName instName

If ADDINST is not module-based, the syntax is:

ADDINST instName cellName nrTerm
INSTTERM termName netName

Parameters

cellName

Specifies the master of the instance.

instName

Specifies the name of the instance to add and place.

-moduleBased moduleName

Adds the new instance to the specified verilog module.

netName

Specifies the net name.

termName

Specifies the terminal name.

nrTerm

Number of terminals of an instance.
October 2010 1396 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
Example

■ The following directive adds an instance BUF1 having two terminals A and Y connecting
to nets net_a and net_b:

ADDINST BUF1 BUF 2

INSTTERM A net_a

INSTTERM Y net_b
October 2010 1397 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
ADDMODULEPORT

ADDMODULEPORT
moduleName | ‘-’
portName
{input | output | bidi}
[-bus n1:n2]

Adds a port or a bussed port to a module.

Parameters

Examples

■ The following directive creates an input port p1 on instance i1/i2/i3. The port p1 must
be a new port name in instance i1/i2/i3. Instance i1/i2/i3 contains no nets name
p1:

ADDMODULEPORT i1/i2/i3 p1 input

■ The following set of directives adds a hierarchical block and then adds a bussed port to
the block.

ADDHIERINST -cell i_block1 -hinst i_block1
ADDMODULEPORT i_block data output -bus 31:0

-bus n1:n2

Adds a bussed port to the module. Specify the bus range (the
beginning and end of the bus). Use integers to specify the
range.

moduleName | ‘-’

Specifies the module to which you want to attach the port. To
specify the top module, enter ‘-’.

portName Specifies the name of the port to be added.

The specified portName can be a new port name or any of the
existing net names to which you want to add the port.

The new port name can be the same as the existing net name.
This port is attached directly to the existing net name if you
specify the port direction (scalar port).

input | output | bidi

Specifies whether the port is input, output, or bidirectional.
October 2010 1398 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
ADDNET

ADDNET
[-moduleBased verilogModule]
netName
[-physical]
[-bus startID:endID]

Adds a net to the design. The net can be logical or physical.

Parameters

Example

■ The following directive adds net i1/i2/net26 to the netlist:

ADDNET i1/i2/net26

If the module i1/i2 does not exist, or if the net i1/i2/net26 already exists, the
software displays an error message and the directive stops.

-bus startID:endID

Creates a bussed Verilog net. The startID and endID
indicate the first and last bits on the bus. You must separate the
start and end IDs with a colon (:).

-moduleBased verilogModule

Adds the new net to the specified verilog module.

netName Specifies the name of the net to add. If the module containing
the net does not exist, or if the net already exists, the software
displays an error message and the directive stops.

-physical Adds a physical net.
October 2010 1399 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
ATTACHMODULEPORT

ATTACHMODULEPORT
{moduleName | ‘-’}
portName
netName

Attaches a port in the specified instance (or top level) to a net.

Parameters

Examples

■ The following directives create a port p1 on instance i1/i2/i3 and a net i1/i2/n1.
The ATTACHMODULEPORT directive then connects the created port p1 on instance i1/
i2/i3 to the net i1/i2/n1:

ADDMODULEPORT i1/i2/i3 p1
ADDNET i1/i2/n1
ATTACHMODULEPORT i1/i2/i3 p1 i1/i2/n1

■ The following directive attaches port in on the top module to net123:

ATTACHMODULEPORT - in net123

moduleName | ‘-’ Specifies the module to which you want to attach the port. To
specify the top module, enter ‘-’.

netName Specifies the net to which you want to create to attach to the
port.

portName Specifies the port you want to create on the module.
October 2010 1400 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
ATTACHTERM

ATTACHTERM
[-moduleBased verilogModule]
[-noNewPort]
instName
termName
netName
[-port portName | -pin refInstName refPinName]

Attaches a terminal to a net. If the terminal already connects to the net, the software first
detaches the terminal from the current net, then attaches it to the new net.

Parameters

instName Specifies the instance containing the terminal. If the instance
name does not exist, the software displays an error message
and the directive stops.

-moduleBased verilogModule

Attaches the terminal to the specified verilog module.

netName Specifies the name of the net to attach to the terminal. If the net
name does not exist, Encounter displays an error message and
the directive stops.

-noNewPort Prohibits Encounter from creating hierarchical ports when it
attaches a terminal. If the terminal cannot connect to the net
through existing ports, Encounter displays an error message
and the directive stops.
Default: If you do not specify this parameter, Encounter
creates hierarchical ports as needed.

-pin refInstName refPinName

Specifies the pin refPinName on instance refInstName
connected to the net that Encounter connects to the terminal.
You cannot specify the -port parameter if you use this
parameter.
October 2010 1401 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
Examples

■ The following directive attaches terminal in1 of instance i1/i2/i3 to net i1/i2/
net26:

ATTACHTERM i1/i2/i3 in1 i1/i2/net26

If i1/i2/i3 does not exist, or if in1 is not a terminal of i1/i2/i3, or if i1/i2/net26
does not exist, the software displays an error message and the directive stops.

■ The following directive attaches terminal in1 of instance i1/i2/i3 to net net27, using
hierarchical port myPort:

ATTACHTERM i1/i2/i3 in2 net27 myPort

The myPort port must exist in the module definition for i1/i2, and myPort must
already connect to net27. If this is not the case, the software displays an error message
and the directive stops.

■ The following directive attaches terminal in3 on instance i1/i2/i3 through existing
ports to net28:

ATTACHTERM -noNewPorts i1/i2/i3 in3 net28

If ports do not exist, the software displays an error message and the directive stops.

■ The following directive attaches terminal Y of instance testInst to the verilog module
hier_t3 using the port testPort:

ATTACHTERM -moduleBased hier_t3 testInst Y testPort

-port portName

Specifies the hierarchical port used to connect the terminal
with the net. If you specify this parameter, the hierarchical port
must exist in the module that contains the instance. The
hierarchical port must connect to the net. This parameter lets
you use a specific port to maintain the same netlist topology,
which simplifies equivalence checking later in the design flow.
You cannot specify the -pin parameter if you use this
parameter.
Default: If you do not specify this parameter, Encounter uses
existing ports or creates new hierarchical ports as necessary
to connect the terminal to the net.

termName Specifies the name of the terminal that Encounter connects to
the specified net. If the terminal name does not exist, Encounter
displays an error message and the directive stops.
October 2010 1402 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
DELETEBUFFER

DELETEBUFFER
instName
keepNetName
[deleteNetName]

Deletes a buffer instance after merging the nets on both sides of the buffer into one net.

Important

This directive has been replaced by ecoDeleteRepeater command.

Parameters

Example

■ The following directive deletes buffer i1/i2/i3 and merges the nets from the buffer’s
two terminals into net net26:

DELETEBUFFER i1/i2/i3 net26 i1/net25

deleteNetName Specifies the name of the net connected to the terminal on
instName opposite to the terminal that connects to
keepNetName. If deleteNetName is not connected to the
terminal on instName opposite to the terminal that connects
to netName, the software displays an error message and the
directive stops. For example, if keepNetName connects to
the input of instName, deleteNetName specifies the
name of the net connecting to the output. The software uses
the deleteNetName for error checking only. When the
DELETEBUFFER directive merges the nets, it might detach
connections to hierarchical ports, but does not change the
direction of hierarchical ports.

instName Specifies the name of the buffer instance that the
DELETEBUFFER directive deletes. The instance must have
exactly one input terminal and one output terminal, and one of
the terminals must connect to keepNetName.

keepNetName Specifies the name of the existing net into which the nets from
both of the instance’s terminals are merged. The
keepNetName net must connect to one of the instance’s
terminals.
October 2010 1403 Product Version 9.1.3

../fetxtcmdref/interactive_ecoT.html#ecoDeleteRepeater

Encounter Digital Implementation System User Guide
ECO Directives
Net net26 already connects to one of the instance’s terminals. Net i1/net25 connects
to the terminal opposite the terminal that connects to net net26. If buffer i1/i2/i3
does not exist, or if net net26 and net i1/net25 are not already attached to two
terminals of buffer i1/i2/i3, the software displays an error message and the directive
stops.
October 2010 1404 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
DELETEINST

DELETEINST
instanceName
[-moduleBased verilogModule]

Deletes an instance after deleting all the instance terminal connections to nets.

Parameters

Example

■ The following directive deletes instance i1/i2/i3:

DELETEINST i1/i2/i3

If instance i1/i2/i3 does not exist, the software displays an error message and the
directive stops.

■ The following directive deletes the instance insta from the verilog module HIER_2:

DELETEINST -moduleBased HIER_2 insta

instName Specifies the name of the instance to delete. If the specified
instance does not exist, the software displays an error message
and the directive stops.

-moduleBased verilogModule

Deletes the instance from the specified verilog module.
October 2010 1405 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
DELETEMODULEPORT

DELETEMODULEPORT
moduleName | ‘-’
portName
netName

Disconnects the specified portname from its net and deletes the port.

You can use wildcards (*?) to specify the nets you want Encounter to delete.

Parameters

Example

■ The following directive deletes port1 from the top-level module:

DELETEMODULEPORT - port1

moduleName | ‘-’ Specifies the module from which you want to delete the port.
To specify the top module, enter ‘-’.

netName Specifies the name of the net from which you want to delete
the port.

portName Specifies the name of the port to be deleted
October 2010 1406 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
DELETENET

DELETENET
netName
[-moduleBased verilogModule]

Deletes a net after deleting all the instance terminal connections to the net. If routing is
connected to the net, the routing is deleted.

You can use wildcards (*?) to specify the nets you want Encounter to delete.

Parameters

Example

■ The following directive deletes net i1/i2/net26:

DELETENET i1/i2/net26

If net i1/i2/net26 does not exist, the software displays an error message and the
directive stops.

-moduleBased verilogModule

 Deletes the net from the specified verilog module.

netName Specifies the name of the net to delete.
October 2010 1407 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
DETACHMODULEPORT

DETACHMODULEPORT
moduleName
portName

Detaches the net connected to the specified port on the specified instance.

Parameters

Example

■ The following directive detaches port p1 from moduleA:

DETACHMODULEPORT moduleA p1

moduleName Specifies the module from which you want to detach the net.
To specify the top module, enter ‘-’.

portName Specifies the port on the module.
October 2010 1408 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
DETACHTERM

DETACHTERM
[-moduleBased verilogModule]
instName
termName
[netName]

Disconnects a terminal from a net.

Note: Detaching a terminal that drives an output terminal of a module produces a Verilog
violation at the output terminal if you use DETACHTERM. Instead, use ATTACHTERM to attach
the terminal to a new net. The ATTACHTERM directive automatically detaches the terminal
from the net connecting to the output terminal, then attaches the terminal to the net you
specify.

Parameters

Example

■ The following directive disconnects terminal in1 of instance i1/i2/i3:

DETACHTERM i1/i2/i3 in1 i1/i2/net26

If instance i1/i2/i3 does not exist, or terminal in1 is not a terminal of i1/i2/i3, the
software displays an error message and the directive stops. The net i1/i2/net26 is
specified, so if net i1/i2/net26 does not exist, or if the terminal is not already
connected to net i1/i2/net26, the software displays an error message and the
directive stops.

instName Specifies the instance that contains the terminal you want to
detach.

-moduleBased verilogModule

Detaches the terminal from the verilog module.

netName Specifies the net that is already connected to the terminal. If the
terminal does not connect to the specified net, or if the net does
not exist, the software displays an error message and the
directive stops. The software uses this parameter for error
checking only.

termName Specifies the terminal to disconnect. If the terminal does not
exist on the specified instance, the software displays an error
message and the directive stops.
October 2010 1409 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
INSERTBUFFER

INSERTBUFFER
[-noNewPorts]
netName
nrNetTerm
nrBuffer

INST instName cellName nrInstTerm

INSTTERM termName netName [portName]

…

NETTERM instName termName netName

…

Inserts a buffer on a net.

Important

This directive has been replaced by insertRepeater command.

Note: You must specify the INST, INSTTERM, and NETTERM directives in the order given in
the syntax. You must enter each of these directives on its own line, at the beginning of that
line. You can add these directives only after you have specified the [-noNewPorts]
netName nrNetTerm nrBuffer parameters.

Parameters

netName Specifies the name of the net on which to insert the buffer. You
must specify this parameter.

-noNewPorts Specifies that Encounter must not add new ports when
inserting the buffer. If you try to insert a buffer that needs a new
port, Encounter issues an error message and does not insert
the buffer.

nrBuffer Specifies the number of buffers attached to the net.

nrNetTerm Specifies the original number of terminals attached to the net.

INST Specifies a buffer instance. You must specify the INST directive
for each buffer you want to add.

instName Specifies the name of the buffer instance to
insert.
October 2010 1410 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#insertRepeater

Encounter Digital Implementation System User Guide
ECO Directives
Example

■ The following directives insert three buffers, b1, b2, and b3, on net0, which originally
connects terminal out on instance i0 to receivers i1, i2, and i3. After the three buffers
are added, terminal out drives one terminal: b1/in.

INSERTBUFFER net0 4 3

INST b1 buffer 2

 INSTTERM in net0

 INSTTERM out net1

INST b2 buffer 2

 INSTTERM in net1

 INSTTERM out net2

INST b3 buffer 2

 INSTTERM in net1

 INSTTERM out net3

NETTERM i0 out net0

cellName Specifies the cell master for the buffer
instance.

nrInstTerm Specifies the number of instance terminals
contained in the buffer. Buffers have one
input and one output terminal, so specify 2.

INSTTERM Specifies a terminal on a buffer instance. The termName and
netName parameters are required. you must specify the
INSTTERM directive for each buffer you want to add.

termName Specifies the name of the terminal on the
buffer.

netName Specifies the net to connect with the
terminal.

portName Specifies the physical port corresponding to
the terminal.

NETTERM Specifies the net connection between a driver terminal and the
added buffer.

instName Specifies the instance containing the
terminal.

netName Specifies the net connected to the terminal.

termName Specifies the terminal connected to the net.
October 2010 1411 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
NETTERM i1 in net2

NETTERM i2 in net1

NETTERM i3 in net3

❑ Buffer b1 has terminal in, connected to net0 and out, connected to net1. Buffer
b1 drives buffers b2 and b3, and connects to receiver i2.

❑ Buffer b2 has terminal in, connected to b1 through net1, and out, connected to
receiver i1 through net2.

❑ Buffer b3 has terminal in, connected to b1 through net1, and out, connected to
receiver i3 through net3.
October 2010 1412 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
Example ECO File

The file format consists of directives, each ending with a newline. The keywords are case
insensitive.

Comments must begin with a pound symbol (#) as the leading, non–white space character,
and end with a newline.

Important

The first directive in the file must be FORMATVERSION 2.

#

FORMATVERSION

#

FORMATVERSION 2

#

ADDINST: Add at top level, no connectivity

#

ADDINST eco_inst_19 BUFX1

#

ADDINST: Add at block level, no connectivity

#

ADDINST DTMF_INST/TDSP_CORE_INST/eco_inst_1 BUFX1

#

ADDINST: Add at top level, with connectivity

#

ADDINST eco_inst_2341 BUFX1 2

INSTTERM A test_mode

INSTTERM Y reset

#

ADDINST: Add at block level, with connectivity

#

ADDINST DTMF_INST/TDSP_CORE_INST/eco_inst_3 BUFX1 2

INSTTERM A scan_en

INSTTERM Y reset

#

October 2010 1413 Product Version 9.1.3

Encounter Digital Implementation System User Guide
ECO Directives
DELETEINST: Delete block level instance

#

DELETEINST DTMF_INST/m_clk__L6_I6

#

ADDNET: Add new top level net

#

ADDNET eco_new_top_net

#

ADDNET: Add new block level net

#

ADDNET DTMF_INST/eco_new_block_net

#

DELETENET: Delete top level net

#

DELETENET n_7875

#

DELETENET: Delete block level net

#

DELETENET DTMF_INST/TDSP_CORE_INST/ALU_32_INST/n_1496

#

ATTACHTERM: Attach block level inst term to existing net

#

ATTACHTERM DTMF_INST/TDSP_CORE_INST/ACCUM_STAT_INST/i_9529 A DTMF_INST/
TDSP_CORE_INST/ACCUM_STAT_INST/n_73

#

DETACHTERM: Detach block level inst term

#

DETACHTERM DTMF_INST/TDSP_CORE_INST/ACCUM_STAT_INST/i_9529 A

#

ADDHIERINST: create a new module + inst

#

ADDHIERINST DTMF_INST/ECO_NEW_HIER_INST ECO_NEW_HIER

#

October 2010 1414 Product Version 9.1.3

Encounter Digital Implementation System User Guide
44
Clock Mesh Specification File

■ Overview on page 1415

■ Routing Type Definitions on page 1416

■ Cutout Definitions on page 1416

■ Clock Mesh Definitions on page 1417

■ Clock Mesh Specification File Example on page 1439

Overview

Before running clock mesh synthesis, you must create a clock mesh specification file. The
clock mesh specification file defines the clock meshes to be created for the design.

A clock mesh specification file contains the following main sections:

■ Routing Type Definitions on page 1416

■ Cutout Definitions on page 1416

■ Clock Mesh Definitions on page 1417

You can specify the following units in a clock mesh specification file:

■ Distance unit: um

■ Time unit: ps, ns

■ Voltage unit: v, mv

■ Power unit: w, mw

If you do not specify units in the file, the clock mesh tool generates warning messages.
October 2010 1415 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Routing Type Definitions

The routing type definition is a set of routing properties to be used during clock mesh
implementation. You must define at least two routing types: one for vertical and one for
horizontal mesh trunks or branches. The routing types are then referenced in the clock mesh
definition.

The following table describes the entries for the routing type definition:

Note: ShieldWidth and ShieldSpacing are optional settings.

Cutout Definitions

The cutout definition section specifies areas that should not be covered by the clock mesh.
When you specify a cutout area, the clock mesh tool must stop mesh routing at the cut out
boundary. If you want to completely avoid an area, use a placement or routing blockage.

RouteTypeDef typeName

Specifies the routing type for which you are defining
routing attributes. This attribute denotes the beginning of
the RouteTypeDef section.

Layer layerName Specifies the metal layer to be used. The name you
specify must be a layer name defined in the LEF file.

Width distance Specifies the width of the metal layer to be used.

Spacing distance Specifies the spacing to all other wires in the design.

Default: Uses the minimum spacing values specified in
the LEF file

ShieldWidth distance Specifies the width of the shield wire.

Default: The tool gets the width requirement from a LEF
file.

ShieldSpacing distance Specifies the spacing between the shield wire and the
neighboring wire.

Default: The tool gets the spacing requirement from a
LEF file.

End Denotes the end of the RouteTypeDef section.
October 2010 1416 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
The Cutout definition section is optional.

You can define a cutout area in one of the following ways:

■ X Y coordinates

You can specify a set of upper-right and lower-left X and Y coordinates to define the
cutout area. For example:

Cutout

+ 0um 0um 400um 280um

■ Instance names

You can specify an instance name on which to base the cutout area. The cutout area then
covers the area of the instance. For example:

Cutout

+ INST1/C1

+ INST2/C1

■ Instance names with instance halos

You can define a cutout area by specifying the distance in microns for which to increase
the size of instance-based cutouts from the instance-cell boundary. For example:

Cutout

+ INST1/C1 HALO 50um

Note: You also can use the createClockMeshCutout command to create cutout areas.

Clock Mesh Definitions

Each clock mesh definition defines a single clock mesh to be synthesized. A clock mesh
specification file can contain multiple clock mesh definitions.

A clock mesh definition can contain the following information sections:

ClockMesh meshName

Specifies the name of the clock mesh to be synthesized. Each
clock mesh definition in the clock mesh specification file must
start with a ClockMesh statement.

End Marks the end of a clock mesh definition. Each clock mesh
definition in the clock mesh specification file must close with an
End statement.
October 2010 1417 Product Version 9.1.3

../fetxtcmdref/clockmeshT.html#createClockMeshCutout

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
■ Timing and Power Constraints Section (required)

■ Tracing and Analysis Scope Section (required)

■ Mesh Structure Section (required)

■ Global Mesh Section(required)

■ Top Chain Section (optional)

■ Local Tree Section (optional)

Timing and Power Constraints Section

This section defines timing and power constraints for the clock mesh.

The following table describes the entries for the timing and power constraints section:

Period timeValue Specifies the clock period (in picoseconds) for the mesh.

Default: 0 (frequency also will default to 0)

MaxPower timeValue Specifies the maximum power value (in milliwatts) for the mesh.

Note: Currently, the clock mesh tool does not use this value
when implementing the mesh.

Default: 0

RootTrans timeValue

Specifies the transition time (in picoseconds) at the root pin.

Default: 0

MinDelay timeValue Specifies the minimum phase delay (in picoseconds).

Note: Currently, the clock mesh tool does not use this value
when implementing the mesh.

Default: 0

MaxDelay timeValue Specifies the maximum phase delay (in picoseconds).

Note: Currently, the clock mesh tool does not use this value
when implementing the mesh.

Default: Largest possible number, based on the machine
October 2010 1418 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Tracing and Analysis Scope Section

This section specifies the logical extent of the clock domain, from the root through any mesh
drivers to the leaves. Scope is determined by tracing the netlist from the clock root.

The following table describes the entries for the tracing and analysis scope section:

MaxSkew timeValue Specifies the maximum skew between sink pins (in
picoseconds).

Note: Currently, the clock mesh tool does not use this value
when implementing the mesh.

Default: 0

MaxBufferTrans timeValue

Specifies the maximum input transition time for buffers (in
picoseconds).

Note: Currently, the clock mesh tool does not use this value
when implementing the mesh.

Default: 0

MaxLeafTrans timeValue

Specifies the maximum input transition time for leaf pins (in
picoseconds).

Note: Currently, the clock mesh tool does not use this value
when implementing the mesh.

Default: 0

RootPin instanceName/pinName

Specifies the complete name of the clock root pin from which
the tracing starts.

LeafPin + instanceName/pinName {rising | falling}
October 2010 1419 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Mesh Structure Section

This section defines the overall logical attributes of the clock mesh structure.

The following table describes the entries for the mesh structure section:

Defines the specified input pin as a leaf pin for non-clock type
instances. The clock mesh tool will stop tracing at this pin, and
skew is analyzed only to this pin. This statement also defines
the rising or falling trigger edge for the inputs.

For example:

LeafPin

+ corem/sync1/reg_3/D rising

+ corem/sync1/reg_4/D rising

LeafCellPin + cellType/pinName {rising | falling}

Defines the specified input pin as a leaf pin for non-clock type
cells. The clock mesh tool will stop tracing at this pin, and skew
is analyzed only to this pin. This statement also defines the
rising or falling trigger edge for the inputs.

For example:

LeafCellPin

+ AND2X/A rising

DefaultTrigger {rising | falling}

Specifies the default trigger edge value for leaves that do not
have a specified trigger edge value.

AllowGating {true | false}

Specifies whether the clock mesh tool traces through gates. If
you specify true, the tool traces until it finds leaf pins. If you
specify false, the tool stops at gate inputs.

Default: false

UseMeshModule [true | false]
October 2010 1420 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Global Mesh Section

This section defines physical attributes of the global clock mesh structure.

The following table describes the entries for the global mesh section:

Specifies whether the clock mesh tool should create a separate
module for the mesh buffers. If you specify true, the tool
creates a module at the level of the root net. If you specify
false, the tool inserts buffers (flat) at the level of the root net.

Default: true

MeshModule moduleName

Specifies the module name to be used when synthesizing the
clock mesh.

Note: The UseMeshModule statement must be set to true in
order for this statement to apply.

Default: The clock mesh tool creates a name based on the
mesh name.

LoadCell + cellName1 [+ cellName2] ...

Defines the specified cell as a loading cell that can be inserted
into the final stage global mesh net, to minimize skew for the
global mesh. You can specify buffers, inverters, or single input
cells that do not have an output pin.

For example:

LoadCell

+ T2BUFCLXR

+ CLKBUFX16

MeshArea llx lly
urx ury

Specifies a set of upper-right and lower-left X and Y coordinates
to define the initial choice of mesh area for the tool to consider
when synthesizing global clock mesh.

GlobalMesh Denotes the beginning of the global mesh definition. The global
mesh definition must begin with a GlobalMesh statement, and
close with an End statement.

MeshDrivePoint {Center | Root | x,y}
October 2010 1421 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Specifies the position of the first-stage pre-drivers.

If you do not specify this statement, the software positions the
first-stage pre-drivers as follows:

■ For HTreeMesh and Fishbone meshes, positions the pre-
drivers near the center of the clock mesh structure
(Center)

■ For CTS-generated pre-drive structures, positions the pre-
drivers based on whether there is a TopChain section
specified in the clock mesh specification file. If there is a
TopChain section in the spec file, the drive point will be the
center of the mesh structure (Center). If there is no
TopChain section defined, the drive point will be the clock
root pin (Root).

Center Positions the pre-drivers near the center of
the clock mesh structure.

Root Positions the pre-drivers near the clock root
pin.

x,y Positions the pre-drivers at the specified
location.

MeshType {Fishbone | HTreeMesh}

Specifies the type of mesh structure to be synthesized.

Note: You must specify the MeshType statement if you want to
synthesize a clock mesh. If you only want to generate a report,
the statement is optional.

PatternTrunkClusterTargetSize n

Selects the routing pattern for clock nets between the final level
mesh drivers and receivers (either flops or local tree instance).

■ If n is 0, the pattern is Steiner.

■ If n is 1, the pattern is Trunk.

■ If n is greater than 1, the trunk pattern has a target cluster
size.

Default: 1

TrunkOrientation [Horizontal | Vertical]
October 2010 1422 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Specifies the trunk orientation.

Note: You must specify the TrunkOrientation statement if
you want to synthesize a clock mesh. If you only want to
generate a report, the statement is optional.

TrunkPlacement {UniformPitch | LoadWeighted}

Specifies how trunks are placed if pre-defined target locations
are not specified using the TargetTrunkLocs statement in
the mesh stage section.

UniformPitch Places the trunks uniformly according to
trunk pitch.

LoadWeighted Places each trunk so that it drives a similar
load.

HTreePattern pattern

Specifies the order for building horizontal (H) and vertical (V)
structures for an HTree + Mesh clock mesh.

You can use H and V in any pattern to specify the order.
Specifying an asterisk (*) causes the tool to repeat alternating
structures. For example, specifying H* is equivalent to
specifying HVHV; it is not equivalent to specifying HHHH.

Note: You only can use this statement when you specify
MeshType HTreeMesh.

TrunkDriveDist {StrictAttach | Uniform | LoadWeighted
| LoadWeightedMatch}

Specifies how buffers are placed along driving trunks in the final
global mesh stage.

Default: StrictAttach

StrictAttach Places the buffers according to the specified
BranchAttachFrequency value.

Uniform Places the buffers in an even, uniform
distribution along the trunk.

Note: If you specify Uniform, the clock
mesh tool ignores the
BranchAttachFrequency value.
October 2010 1423 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
LoadWeighted Places the buffers according to load
distribution. The
BranchAttachFrequency value limits
how closely the buffers can be placed to
each other.

LoadWeightedMatch

Places the drivers according to load
distribution, and applies the same pattern to
all trunks. The BranchAttachFrequency
value limits how closely the buffers can be
placed to each other.

PreDriveCTS Denotes the beginning of the CTS-generated pre-drive
structure definition. The pre-drive structure definition must
begin with a PreDriveCTS statement, and close with an End
statement.

Enabled [true | false]

Enables the implementation of the pre-drive structure.

When you specify true, the clock mesh tool calls CTS to
synthesize the clock tree using the last stage of the global mesh
drivers as the leaf pin.

The position of the first-level driver in the CTS pre-drive structure
is determined by the MeshDrivePoint statement in the clock
mesh spec file. If the MeshDrivePoint statement in not
defined, the position depends on whether a TopChain section
is specified. If there is a TopChain section in the spec file, the
drive point will be the center of the mesh structure; if there is no
TopChain section defined, the drive point will be the clock root
pin.

By default, the clock mesh tool decides the number of levels for
the pre-drive structure.

Default: false

DriveCells + cellName1 + cellName2...
October 2010 1424 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Specifies the types of drive cells to use for the pre-drive
structure. You must specify at least one cell choice. Multiple
drive cells can be specified.

For example:

DriveCells

+ CLKBUFX20

+ CLKBUFX16

NonDefaultRule ruleName

Specifies the LEF NONDEFAULTRULE statement for the router
to use when routing the nets in the pre-drive structure.

Default: The router uses the default routing rule.

TopPreferlayer layerName

Specifies the top preferred metal layer to use for routing the pre-
drive structure. The name you specify must be a layer defined in
the LEF file.

BottomPrefLayer layerName

Specifies the bottom preferred metal layer to use for routing the
pre-drive structure. The name you specify must be a layer
defined in the LEF file.

DummyBuffer + cellName1 + cellName2

Specifies the cells for dummy load insertion while performing
pre-drive CTS.

optAddBuffer {true | false}

Specifies whether the buffer insertion is permitted or not while
performing pre-drive CTS.

Default: true

optAddBufferLimit n

Specifies the maximum number of buffers to be inserted while
performing pre-drive CTS.

By default, it uses a dynamic number (1/2 the number of mesh
drivers).

TargetInputSkewSlewRatio ratio
October 2010 1425 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Fixes the maximum transition time of the mesh driver input to
meet the skew to slew ratio. Here, the skew and slew is the
maximum skew or slew of all the mesh drivers.

If ratio is zero, do not fix the transition time. If ratio is not
specified in the clock mesh specification file, then the default
value is 0.

PreferredExtraSpace [0-3]

Specifies the extra space to add around clock wires when
routing the pre-drive structure.

Default: 1

End Denotes the end the pre-drive structure definition. The pre-drive
structure definition must begin with a PreDriveCTS statement,
and close with an End statement.

HTreeSplitDrive [true | false]
October 2010 1426 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Splits branches at the driving point. Splitting a branch can
increase the drive strength without creating a multi-drive net. To
split a branch, you must have an even number of drivers at the
branching point (for example, 2, 4, 6).

For example, if you define the following in the clock mesh spec
file:

ClockMesh Clk

...

GlobalMesh

HTreeSplitDrive true

Stage

NumDriver 1

End

Stage

NumDriver 4

X2

End

Stage

NumDriver 4

End

...

The software splits the branches as follows:

BB

B
B

B

B B

BB
October 2010 1427 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Stage Denotes the beginning of a particular stage definition. This
section defines stage-specific parameters for the global mesh,
including driver cells, route types, and trunk and branch
information.

Each stage definition must begin with a Stage statement, and
close with an End statement.

Note: You must define an even number of stage definitions if
you use an inverter for the drive cell (DriveCell).

NumDriver number Specifies the number of drivers that should be inserted at the
current stage.

X number Specifies a grouping factor that controls the number of drivers
at each node or endpoint at the current stage of an HTree clock
mesh structure. If you use the X grouping factor, you can
increase the drive at any given level of the tree.

Note: This statement only can be used when you are defining
an HTree + Mesh structure.

Default: Uses a single driver at the end of each node.

In the following illustration, the diagram on the left shows two
drivers in stage 2, where X = 1, and the diagram on the right
shows four drivers in stage 2, where X=2.

DriveCell cellName Specifies the type of driver to be used for the stage being
defined.

RouteTypePair type1 type2

Specifies the routing types to be used for the stage. Routing
types are defined using the RouteTypeDef statement.
October 2010 1428 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
NumTrunk number Specifies the number of trunks to create for a particular stage.
You can specify this statement for any stage in the clock mesh
structure, but it only is useful for the final construction stage.

A Fishbone mesh structure can have one or two trunks (that is,
you can specify single or double Fishbone mesh structures).
The number of trunks for the second-to-last stage will be 1 or 3,
depending on whether the mesh structure is a single of double
Fishbone. For all other stages, the number of trunks is 1.

For an HTree + Mesh structure, this statement is relevant only
to the last stage. If you do not specify this statement for an
HTree + Mesh structure, the clock mesh tool computes a
suitable value automatically. If you specify a value that is less
than the minimum number of trunks required to implement the
structure, the clock mesh tool displays an error message.

TrunkPitch distance

Specifies the pitch for the trunk for a particular stage.

Note: The clock mesh tool considers the TrunkPitch
statement to be a soft constraint that applies to the final mesh
stage. The tool might need to adjust the specified pitch in order
to meet physical constraints.

TrunkAttachFrequency number
October 2010 1429 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Specifies the frequency with which buffers are attached to the
trunks. You must specify a number that is greater than or equal
to 1.

Default: 1

In the following illustration, assume the design has eight drivers,
and the trunk orientation is horizontal.

If TrunkAttachmentFrequency is 1, the minimum number of
horizontal trunks is 2, as shown in the diagram on the left (each
trunk must have a driver attached to it).

If TrunkAttachmentFrequency is 2, the minimum number of
trunks is 3, as shown in the diagram on the right (the middle
trunk must not have a driver attached to it). The clock mesh tool
generates an error if the specified number of branches does not
meet the minimum number of branches.

NumBranch number Specifies the number of branches.

Default: The clock mesh tools computes a suitable value
automatically.

BranchPitch distanceValue

Specifies the pitch for the branches for a particular stage.

Note: The clock mesh tool considers the BranchPitch
statement to be a soft constraint that applies to the final mesh
stage. The tool might need to make adjustments to the specified
pitch in order to meet physical constraints.

TargetBranchOrigin coordinate_in_um
October 2010 1430 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Specifies the absolute location, in microns, of the first branch for
a clock mesh.

Note: The TargetBranchOrigin statement changes the
branch origin only. It does not affect the number of branches or
the branch pitch.

For a horizontal trunk, coordinate_in_um is the x-axis
coordinate for the left-most branch, as shown in the following
illustration:

For a vertical trunk, coordinate_in_um is the y-axis
coordinate for the bottom branch, as shown in the following
illustration:

BranchAttachFrequency number

BranchPitch 400μm

TargetBranchOrigin 100μm

Horizontal Trunk

BranchPitch
400μm

TargetBranchOrigin 50μm

Vertical Trunk
October 2010 1431 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Controls the frequency with which buffers are attached to
branches. You can specify a positive or negative whole number
for number.

Note: The clock mesh tool honors the
BranchAttachFrequency statement depending on the
setting of the TrunkDriveDist statement. If you specify
TrunkDriveDist Uniform, the clock mesh tool ignores the
BranchAttachFrequency value.

In the following illustration, if BranchAttachFrequency is 1,
each branch must have a driver attached to it, as shown in the
diagram on the left. If BranchAttachFrequency is 2, there
must be one branch between each driver that does not have a
driver attached to it, as shown in the middle diagram. If
BranchAttachFrequency is -2, there are drivers between
the branches that are not attached to branches, as shown in the
diagram on the right.

TargetTrunkLocs + trunkLocation...

Positions the trunks at the specified locations.

For example:

TargetTrunkLocs

+ 100um

+ 200um

+ 300um

+ 550um

You are not required to specify target trunk locations for every
stage; however, if you specify a stage, you must list all trunks for
that stage.

Note: The clock mesh tool considers the TargetTrunkLocs
statement a soft constraint; it attempts to position the trunks at
the specified locations, but might deviate a small distance to find
a solution.

Branch Branch Branch
October 2010 1432 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
NonDefaultRule ruleName

Specifies the LEF NONDEFAULTRULE statement for the router
to use when routing the nets for a particular stage of the global
mesh structure.

Default: The router uses the default routing rule.

TopPreferLayer layerName

Specifies the top preferred metal layer to use for routing for a
particular stage of the global mesh structure. The name you
specify must be a layer defined in the LEF file.

BottomPreferLayer layerName

Specifies the bottom preferred metal layer to use for routing for
a particular stage of the global mesh structure. The name you
specify must be a layer defined in the LEF file.

PreferredExtraSpace [0-3]

Specifies the extra space to add around clock wires, when
routing the nets in the clockmesh stage.

Default: 0

End Denotes the end of a particular stage definition. Each stage
definition must begin with a Stage statement, and close with an
End statement.

End Denotes the end of the global mesh definition. The global mesh
definition must begin with a GlobalMesh statement, and close
with an End statement.

ShieldNet netname

Specifies the shielding net name for the global mesh.

Default: No shielding

Note: Shield nets using special wires for shielding global mesh
nets are created during synthesizeClockMesh.

Note: Shield nets using regular wires for shielding top chain and
local tree nets are created during routeClockMesh.
October 2010 1433 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Analysis Section

This section defines how to generate spice run deck.

The following table describes entries for the Analysis section:

Top Chain Section

This section defines how the top chain is to be synthesized. A top-level chain is a cascaded
driver chain from the mesh root to the first level of mesh pre-driver drivers.

The following table describes the entries for the top chain section:

Analysis Denotes the beginning of generating spice run deck
specification section.

MultiPartSpice {true | false}

Enables the implementation of multiple spice run deck
generation.

Default: false

MultiPartSpicePartitionLevel num | Global [+|- num]

Specifies the partition level between global and local portions of
the clock network. The partition levels can be relative to the root
or to the final global mesh drive(lowest level with a single multi-
drive net).

End Denotes the end of generating spice run deck specification
section.

TopChain Denotes the beginning of the top chain definition. The top chain
definition must begin with a TopChain statement, and close
with an End statement.

Enabled [true | false]

Enables the implementation of the top chain.

Default: false

DriveCell cellName Specifies the type of buffer to be used for constructing the top-
level chain. Only one cell type can be used for the chain.
October 2010 1434 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
NumLevel number Specifies the number of levels in the chain structure (which is
equal to the number of buffers).

You must specify an even number of levels if you use an inverter
for the drive cell (DriveCell).

TargetLocs + driverLocationX driverLocationY...

Positions the top chain drivers at the specified locations.

For example:

TargetLocs

+ 250um 100um

+ 500um 500um

The number of locations you specify must match the number of
levels. If they do not match, the clock mesh tool ignores them.

Note: The clock mesh tool considers the TargetLocs
statement to be a soft constraint; it attempts to place the drivers
at the specified locations, but might deviate a small distance in
order to find a solution.

NonDefaultRule ruleName

Specifies the LEF NONDEFAULTRULE statement for the router
to use when routing the nets in the top-level chain.

Default: The router uses the default routing rule.

TopPreferLayer layerName

Specifies the top preferred metal layer to use for routing the top-
level chain buffers. The name you specify must be a layer
defined in the LEF file.

BottomPreferLayer layerName

Specifies the bottom preferred metal layer to use for routing the
top-level chain buffers. The name you specify must be a layer
defined in the LEF file.

PreferredExtraSpace [0-3]

Specifies the extra space to add around clock wires, when
routing the nets in the top-level chain.

Default: 0
October 2010 1435 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Local Tree Section

This section defines how the local tree is to be synthesized.

The following table describes the entries for the local tree section:

End Denotes the end of the top chain definition. The top chain
definition must begin with a TopChain statement, and close
with an End statement.

ShieldNet netname

Specifies the shielding net name for top chain.

Default: No shielding

Note: Shield nets using special wires for shielding global mesh
nets are created during synthesizeClockMesh.

Note: Shield nets using regular wires for shielding top chain and
local tree nets are created during routeClockMesh.

LocalTree Denotes the beginning of the local tree definition. The local tree
definition must begin with a LocalTree statement, and close
with an End statement.

Enabled [true | false]

Enables the implementation of the local tree.

Default: false

RootPos {ClusterCenter | OnMesh | NearMeshInCluster}

Specifies how to place the buffers.

Default: ClusterCenter

ClusterCenter

Places buffers at the cluster center of gravity.

OnMesh Places buffers on or along the nearest mesh
trunk or branch. Buffer placement can
extend beyond the bounding box of the
cluster.

NearMeshInCluster
October 2010 1436 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Places the buffers as close as possible to a
mesh trunk or branch without going outside
the bounding box of leaves driven by the
local root.

DriveCells + cellName1 + cellName2...

Specifies the types of drive cells to use in the local tree. Multiple
drive cells can be specified.

You must specify at least one buffer choice to drive non-gated
leaves; the clock mesh tool does not automatically choose a
buffer if none is specified.

For gated domains, the clock mesh tool chooses an appropriate
cell from the list (that is, an LEQ cell to the original gating
element). If no LEQ cells are specified, the tool attempts to find
choices from the footprint of the original gating cell. If no
footprint exists, the tool uses the original gating cell.

NonDefaultRule ruleName

Specifies the LEF NONDEFAULTRULE statement for the router
to use when routing the local tree.

Default: The router uses the default routing rule.

TopPreferLayer layerName

Specifies the top preferred metal layer to use for routing the
local tree. The name you specify must be a layer defined in the
LEF file.

BottomPreferLayer layerName

Specifies the bottom preferred metal layer to use for routing the
local tree. The name you specify must be a layer defined in the
LEF file.

PreferredExtraSpace [0-3]

Specifies the extra space to add around clock wires when
routing the local tree.

Default: 0
October 2010 1437 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Cluster Denotes the beginning of a cluster subsection within the local
tree definition.

By default, the clock mesh tool performs automatic clustering
during the local tree synthesis. You can use a cluster
subsection to manually specify how a certain group of leaves
can be driven by a driver or a clock gating cell. You can specify
multiple clusters, as needed.

The cluster subsection must begin with a Cluster statement,
and close with an End statement.

DriveCell cellName Specifies the type of cell to use to drive the cluster. If you do not
specify a cell type, the clock mesh tool automatically chooses
one. If you specify a cell type, the cell must be consistent with
the leaves of the cluster. For example, you cannot change the
logic by specifying an AND gate for leaves that are originally
ungated.

TargetLoc driverLocationX driverLocationY...

Positions the drivers at the specified locations.

Note: The clock mesh tool considers the TargetLoc statement
to be a soft constraint; it attempts to place the drivers at the
specified locations, but might deviate a small distance in order to
find a solution.

Default: The clock mesh tool automatically chooses the local
root location.

LeafPin + instanceName/pinName

Specifies the instance pins to use to form a cluster. The set of
leaf pins must be consistent (that is, they must all be from the
same original domain). Additionally, the same leaf cannot
appear in multiple clusters.

End Denotes the end of the cluster subsection. The cluster
subsection must begin with a Cluster statement, and close
with an End statement.

End Denotes the end of the local tree definition. The local tree
definition must begin with a LocalTree statement, and close
with an End statement.

ShieldNet netname
October 2010 1438 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
Clock Mesh Specification File Example
#Comments in the clock mesh spec file should be preceded with the # character.

#Routing Type definition

#At least two routing types must be specified.

RouteTypeDef RT1

Layer M5

Width 2

Spacing 0.5

ShieldWidth 0.4

ShieldSpacing 0.4

End

RouteTypeDef RT2

Layer M6

Width 2

Spacing 0.5

ShieldWidth 0.4

ShieldSpacing 0.4

End

MeshArea 0um 0um 500um 500um

#Cutout definition

#All target locations are absolute values.

Cutout

+ 480um 400um 860um 560um

+ Inst/RAM1/ HALO 30um

#Clock Mesh definition

Specifies the shielding net name for local tree.

Default: No shielding

Note: Shield nets using special wires for shielding global mesh
nets are created during synthesizeClockMesh.

Note: Shield nets using regular wires for shielding top chain and
local tree nets are created during routeClockMesh.
October 2010 1439 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
ClockMesh clk

#Timing and Power Constraints definition

Period 1000

SupplyVoltage 1.0

MaxPower 0

RootTrans 400

MinDelay 1000

MaxDelay 1020

MaxSkew 10

MaxBufTrans 400

MaxLeafTrans 400

#Analysis Section

Analysis

MultiPartSpice true

MultiPartSpicePartitionLevel 6

End

#Tracing and Analysis Scope definition

RootPin clk

#LeafPins can be rising or falling.

LeafPin

+ U1/A rising

#LeafCellPins can be rising or falling.

LeafCellPin

+ NAND/A rising

#DefaultTrigger can be rising or falling.

DefaultTrigger rising

#Set AllowGating to true to handle gated clock.

AllowGating true

#Mesh Structure definition

#UseMeshModule can be true or false

UseMeshModule true

MeshModule mesh_module

#GlobalMesh definition

GlobalMesh

#MeshDrivePoint can be Center, Root, or X,Y.
October 2010 1440 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
MeshDrivePoint Center

#MeshType can be Fishbone or HTreeMesh

MeshType HTreeMesh

#TrunkOrientation can be Horizontal or Vertical

TrunkOrientation Horizontal

#Use H and V for HTreePattern. H* means HVHVHV (alternating pattern).

HTreePattern H*

#TrunkPlacement can be UniformPitch or LoadWeighted

TrunkPlacement UniformPitch

#TrunkDriveDist can be StrictAttach, Uniform, LoadWeighted, or

#LoadWeightedMatch.

TrunkDriveDist StrictAttach

PatternTrunkClusterTargetSize 1

#CTS pre-drive structure definition

PreDriveCTS

#Set Enabled to true to implement top chain.

Enabled true

DriveCells

+ CLKBUFX20

+ CLKBUFX16

NonDefaultRule NDR1

TargetInputSkewSlewRatio 0.5

optAddBuffer true

optAddBufferLimit 100

DummyBuffer + cell1 + cell2

TopPreferlayer M5

BottomPreferLayer M4

PreferredExtraSpace 1

#Markes the end of the CTS pre-drive structure definition

End

#Definition for mesh Stage 1

Stage

NumDriver 1
October 2010 1441 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
X 4

DriveCell CLKBUFX20

RouteTypePair RT1 RT2

ShieldNet VSS

End

#Definition for mesh Stage 2

Stage

NumDriver 4

X 2

DriveCell CLKBUFX20

RouteTypePair RT1 RT2

ShieldNet VSS

End

#Definition for mesh Stage 3 (final stage)

Stage

NumDriver 8

X 2

DriveCell CLKBUFX20

RouteTypePair RT1 RT2

NumTrunk 2

NumBranch 4

#TrunkPitch 50

#BranchPitch 20

#TrunkAttachFrequency 2

#BranchAttachFrequency 2

#All target locations in clock mesh spec file are absolute values.

#TargetTrunkLocs

#+ 500um

#+ 1200um

ShieldNet VSS

End

End

#Top Chain definition (this section is optional)

TopChain

#Set Enabled to true to implement top chain.

Enabled true

DriveCell CLKBUFX20

NumLevel 2
October 2010 1442 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
#NonDefaultRule NDR1

#TargetLocs

TopPreferlayer M5

BottomPreferLayer M4

PreferredExtraSpace 1

ShieldNet VSS

#Marks the end of the Top Chain definition.

End

#Local Tree definition (this section is optional)

LocalTree

#Set Enabled to true to implement local tree synthesis

Enabled true

#RootPos can be ClusterCenter, OnMesh, or NearMeshInCluster.

RootPos ClusterCenter

DriveCells

+ CLKBUFX20

+ CLKBUFX16

+ CLKBUFX12

#NonDefaultRule NDR2

TopPreferLayer M4

BottomPreferlayer M3

PrefferedExtraSpace 1

#Manual Cluster definition (this subsection is optional)

Cluster

#DriveCell can be buffer or gated cell.

DriveCell BUFX16

#TargetLoc 300um 600um

LeafPin

+ FF1/CK

+ FF2/CK

+ FF9/CK

#Marks the end of the cluster definition

End

#Marks the end of the local tree definition

End

#Marks the end of the clock mesh defintion

End
October 2010 1443 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Clock Mesh Specification File
October 2010 1444 Product Version 9.1.3

Encounter Digital Implementation System User Guide
45
Supported CPF 1.0 Commands

Note: The following commands are supported unless otherwise noted.

Command Name Option Notes

N/A = not available in
this release

create_analysis_view

-name

-mode

-domain_corners

create_bias_net

-net

-driver N/A

-user_attributes Accessible by
getCPFUserAttr

-peak_ir_drop_limit N/A

-average_ir_drop_limit N/A

create_global_connection

-net

-pins

-domain

-instances

create_ground_nets

-nets
October 2010 1445 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0 Commands
-voltage N/A

-internal N/A

-user_attributes Accessible by
getCPFUserAttr

-peak_ir_drop_limit N/A

-average_ir_drop_limit N/A

create_isolation_rule

-name

-isolation_condition

-pins

-from

-to

-isolation_target N/A

-isolation_output

-exclude

create_level_shifter_rule

-name

-pins

-from

-to

-exclude

create_mode_transition N/A

create_nominal_condition

-name

-voltage

-pmos_bias_voltage N/A

-nmos_bias_voltage N/A

Command Name Option Notes
October 2010 1446 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0 Commands
create_operating_corner

-name

-voltage

-process

-temperature

-library_set

create_power_domain

-name

-default

-instances

-boundary_ports

-shutoff_condition

-default_restore_edge

-default_save_edge

-power_up_states N/A

create_power_mode

-name

-domain_conditions

-default

create_power_nets

-nets

-voltage

-external_shutoff_condition

-internal

-user_attributes Accessible by
getCPFUserAttr

-peak_ir_drop_limit N/A

-average_ir_drop_limit N/A

Command Name Option Notes
October 2010 1447 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0 Commands
create_power_switch_rule

-name

-domain

-external_power_net

-external_ground_net

create_state_retention_rule

-name

-domain

-instances

-restore_edge

-save_edge

define_always_on_cell N/A

define_isolation_cell

-cells

-library_set

-always_on_pin

-power_switchable

-ground_switchable

-power

-ground

-valid_location

-non_dedicated N/A

-enable

define_level_shifter_cell

-cells

-library_set

-always_on_pin N/A

-input_voltage_range

Command Name Option Notes
October 2010 1448 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0 Commands
-output_volage_range

-direction

-output_voltage_input_pin N/A

-input_power_pin

-output_power_pin

-ground

-valid_location

define_open_source_input_pin

-cells

-pin

-library_set

define_power_clamp_cell N/A

define_power_switch_cell

-cells

-library_set

-stage_1_enable

-stage_1_output

-stage_2_enable

-stage_2_output

-type

-power_switchable

-power

-ground

-ground_switchable

-on_resistance Accessible by
::CPF::getCpfPsoCell

-stage_1_saturation_current Accessible by
::CPF::getCpfPsoCell

Command Name Option Notes
October 2010 1449 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0 Commands
-stage_2_saturation_current Accessible by
::CPF::getCpfPsoCell

-leakage_current Accessible by
::CPF::getCpfPsoCell

define_state_retention_cell

-cells

-library_set

-always_on_pin N/A

-clock_pin N/A

-restore_function

-restore_check N/A

-save_function

-save_check N/A

-power_switchable

-ground_switchable

-power

-ground

define_library_set

-name

-libraries

end_design

identify_always_on_driver N/A

identify_power_logic

-type

-instances

set_array_naming_style

set_cpf_version

Command Name Option Notes
October 2010 1450 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0 Commands
set_design

-ports

set_hierarchy_separator

set_instance

-port_mapping

-merge_default_domains

set_power_target N/A

set_power_unit N/A

set_register_naming_style

set_switching_activity

-all

-pins

-instances

-hierarchical

-probability

-toggle_rate

-clock_pins N/A

-toggle_percentage N/A

-mode N/A

set_time_unit

update_isolation_rules

-names ‘

-location

-cells

-library_set

-prefix

-combine_level_shifting N/A

-open_source_pins_only

Command Name Option Notes
October 2010 1451 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0 Commands
-update_level_shifter_rules

-names

-location

-cells

-library_set

-prefix

update_nominal_condition

-name

-library_set

update_power_domain

-name

-internal_power_net

-internal_ground_net

-min_power_up_time N/A

-max_power_up_time N/A

-pmos_bias_net N/A

-nmos_bias_net N/A

-user_attributes Accessible by
::CPF::getCpfUserAttr

-rail_mapping N/A

-library_set

update_power_mode

-name

-activity_file N/A

-activity_file_weight N/A

-sdc_files

-peak_ir_drop_limit N/A

-average_ir_dropt_limit N/A

Command Name Option Notes
October 2010 1452 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0 Commands
-leakage_power_limit N/A

-dynamic_power_limit N/A

update_power_switch_rule

-name

-enable_condition_1

-enable_condition_2

-acknowledge_receiver

-cells

-library_set

-prefix

-pead_ir_drop_limit Accessible by
::CPF::getCpfUserAttr

-average_ir_drop_limit Accessible by
::CPF::getCpfUserAttr

update_state_retention_rule

-name

-cell_type

-cell

-library_set

Command Name Option Notes
October 2010 1453 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0 Commands
October 2010 1454 Product Version 9.1.3

Encounter Digital Implementation System User Guide
46
Supported CPF 1.0e Commands

Note: The following commands and options are supported unless otherwise noted.

Command Name Option Notes

create_always_on_rule

-name

-isolation_condition

-no_condition

-pins

-from

-to

-exclude

-isolation_target

-isolation_output

-secondary_domain

create_analysis_view

-name

-mode

-domain_corners

-group_views

create_assertion_control

-name Unsupported

-assertions Unsupported
October 2010 1455 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0e Commands
-domains Unsupported

-shutoff_condition Unsupported

-type Unsupported

create_bias_net

-net

-driver

-user_attributes Supported: query
getCPFUserAttributes

-peak_ir_drop_limit

-average_ir_drop_limit

create_global_connection

-net

-pins

-domain

-instances

create_power_domain

-name

-instances

-boundary_ports

-default

-shutoff_condition

-external_controlled_shutoff

-default_isolation_condition

-default_restore_edge

-default_save_edge

-default_restore_level Supported

-default_save_level Supported

-power_up_states Unsupported

Command Name Option Notes
October 2010 1456 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0e Commands
-active_state_condition Unsupported

-secondary_domains

create_ground_nets

-nets

-voltage

-external_shutoff_condition

-user_attributes Supported: query
getCPFUserAttributes

-peak_ir_drop_limit

-average_ir_drop_limit

create_isolation_rule

-name

-isolation_condition

-no_condition Unsupported

-pins

-from

-to

-exclude

-isolation_target

-isolation_output

-secondary_domain

create_level_shifter_rule

-name

-pins

-from

-to

-exclude

create_mode_transition

Command Name Option Notes
October 2010 1457 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0e Commands
-name

-from

-to

-state_condition

-end_condition

-cycles

-clock_pin

-latency

create_nominal_condition

-name

-voltage

-ground_voltage

-state Unsupported

-pmos_bias_voltage Unsupported

-nmos_bias_voltage Unsupported

create_operating_corner

-name

-voltage

-ground_voltage Unsupported

-pmos_bias_voltage Unsupported

-nmos_bias_voltage Unsupported

-processes

-temperature

-library_set

create_power_mode

-name

-default

-domain_conditions

Command Name Option Notes
October 2010 1458 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0e Commands
-group_modes

-domain_conditions

create_power_nets

-nets

-voltage

-external_shutoff_condition

-user_attributes Supported: query
getCPFUserAttributes

-peak_ir_drop_limit

-average_ir_drop_limit

create_power_switch_rule

-name

-domain

-external_power_net

-external_ground_net

create_state_retention_rule

-name

-domain

-instances

-exclude

-restore_edge

-save_edge

-restore_precondition

-save_precondition

-target_type

-secondary_domain

define_always_on_cell

-cells

Command Name Option Notes
October 2010 1459 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0e Commands
-library_set

-power_switchable

-ground_switchable

-power

-ground

define_isolation_cell

-cells

-library_set

-always_on_pins

-power_switchable

-ground_switchable

-power

-ground

-valid_location

-enable

-no_enable Unsupported

-non_dedicated

define_level_shifter_cell

-cells

-library_set

-always_on_pins

-input_voltage_range

-output_voltage_range

-
ground_output_voltage_range

Unsupported

-
groung_output_voltage_range

-direction

Command Name Option Notes
October 2010 1460 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0e Commands
-input_power_pin

-output_power_pin

-input_ground_pin Unsupported

-output_ground_pin Unsupported

-ground

-power Unsupported

-enable

-valid_location

define_library_set

-name

-libraries

-user_attributes

define_power_clamp_cell

-cells Unsupported

-location Unsupported

-within_hierarchy Unsupported

-cells Unsupported

-prefix Unsupported

define_power_switch_cell

-cells

-library_set

-stage_1_enable

-stage_1_output

-stage_2_enable

-stage_2_output

-type

-enable_pin_bias Unsupported

Command Name Option Notes
October 2010 1461 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0e Commands
-gate_bias_pin Unsupported

-power_switchable

-power

-ground_switchable

-ground

-on_resistance Supported (for use with
addPowerSwitch)

-stage_1_saturation_current Supported (for use with
addPowerSwitch)

-stage_2_saturation_current Supported (for use with
addPowerSwitch)

-leakage_current Supported (for use with
addPowerSwitch)

define_state_retention_cell

-cells

-library_set

-cell_type

-always_on_pins

-clock_pin

-restore_function

-save_function

-restore_check

-save_check

-always_on_components Unsupported

-power_switchable

-ground_switchable

-power

-ground

end_macro_model

Command Name Option Notes
October 2010 1462 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0e Commands
end_power_mode_control_group

get_parameter

include

identify_secondary_on_driver

-secondary_domain

-instances

-cells

-domain

-from

-to

identify_power_logic

-type Only “isolation” is
supported for the -type

-instances Supported

-module Supported

set_array_naming_style

set_cpf_version

set_hierarchy_separator

set_design

-ports

-
honor_boundary_port_domai
n

-parameters

-end_design

set_equivalent_control_pins

-master Unsupported

-pins Unsupported

-domain Unsupported

Command Name Option Notes
October 2010 1463 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0e Commands
-from Unsupported

-to Unsupported

set_floating_ports Unsupported

set_input_voltage_tolerance

-ports Unsupported

-bias Unsupported

set_instance

-design

-model

-of_macro

-port_mapping

-domain_mapping

-parameter_mapping

set_macro_model

set_power_mode_control_group

-name

-domains

-groups Unsupported

-domains

set_power_target

-leakage Unsupported

-dynamic Unsupported

set_power_unit

set_register_naming_style

set_switching_activity

-all Supported

-pins Supported

-instances Supported

Command Name Option Notes
October 2010 1464 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0e Commands
-hierarchical Supported

-probability Supported

-toggle_rate Supported

-clock_pins Unsupported

-toggle_percentage Unsupported

-mode Supported

set_time_unit

set_wire_feedthrough_ports

update_isolation_rules

-names

-location

-within_hierarchy

-cells

-prefix

-open_source_pins_only Supported

update_level_shifter_rules

-names

-location

-within_hierarchy

-cells

-prefix

update_power_domain

-name

-primary_power_net

-primary_ground_net

-pmos_bias_net Unsupported

-nmos_bias_net Unsupported

Command Name Option Notes
October 2010 1465 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0e Commands
-user_attributes Supported: query
getCPFUserAttributes

-transition_slope Unsupported

-transition_latency Unsupported

-transition_cycles Unsupported

update_power_mode

-name

-activity_file Unsupported

-activity_file_weight Unsupported

-sdc_files

-peak_ir_drop_limit

-average_ir_drop_limit

-leakage_power_limit Unsupported

-dynamic_power_limit Unsupported

update_power_switch_rule

-name

-enable_condition_1

-enable_condition_2

-acknowledge_receiver

-cells

-gate_bias_net Unsupported

-prefix

-peak_ir_drop

-average_ir_drop_limit

update_state_retention_rules

-names

-cell_type

Command Name Option Notes
October 2010 1466 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0e Commands
-cells

-set_rest_condition Unsupported

Command Name Option Notes
October 2010 1467 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.0e Commands
October 2010 1468 Product Version 9.1.3

Encounter Digital Implementation System User Guide
47
Supported CPF 1.1 Commands

Note: The following commands and options are supported unless otherwise noted.

Command Name Option Notes

asset_illegal_domain_configurati
ons

-domain_conditions

-group_modes

create_always_on_rule

-exclude

-from

-isolation_condition

-isolation_output

-isolation_target

-name

-no_condition

-pins

-secondary_domain

-to

create_analysis_view

-domain_corners

-group_views

-mode
October 2010 1469 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.1 Commands
-name

create_assertion_control

-assertions Unsupported

-domains Unsupported

-exclude

-name Unsupported

-shutoff_condition Unsupported

-type Unsupported

create_bias_net

-average_ir_drop_limit

-driver

-net

-peak_ir_drop_limit

-user_attributes Supported: query
getCPFUserAttributes

create_global_connection

-domain

-instances

-net

-pins

create_ground_nets

-average_ir_drop_limit

-external_shutoff_condition

-nets

-peak_ir_drop_limit

-user_attributes Supported: query
getCPFUserAttributes

-voltage

Command Name Option Notes
October 2010 1470 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.1 Commands
create_isolation_rule

-exclude

-from

-isolation_condition

-isolation_output

-isolation_target

-name

-no_condition Unsupported

-pins

-secondary_domain

-to

create_level_shifter_rule

-exclude

-from

-name

-pins

-to

create_mode_transition

-clock_pin

-cycles

-end_condition

-from

-latency

-name

-state_condition

-to

create_nominal_condition

-ground_voltage

Command Name Option Notes
October 2010 1471 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.1 Commands
-name

-nmos_bias_voltage Unsupported

-pmos_bias_voltage Unsupported

-state Unsupported

-voltage

create_operating_corner

-ground_voltage Unsupported

-library_set

-name

-nmos_bias_voltage Unsupported

-pmos_bias_voltage Unsupported

-processes

-temperature

-voltage

create_power_domain

-active_state_condition Unsupported

-base_domains

-boundary_ports

-default

-default_isolation_condition

-default_restore_edge

-default_restore_level Supported

-default_save_edge

-default_save_level Supported

-external_controlled_shutoff

-instances

-name

-power_up_states Unsupported

Command Name Option Notes
October 2010 1472 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.1 Commands
-shutoff_condition

create_power_mode

-default

-domain_conditions

-domain_conditions

-group_modes

-name

create_power_nets

-average_ir_drop_limit

-external_shutoff_condition

-nets

-peak_ir_drop_limit

-user_attributes Supported: query
getCPFUserAttributes

-voltage

create_power_switch_rule

-domain

-external_ground_net

-external_power_net

-name

create_state_retention_rule

-domain

-exclude

-instances

-name

-restore_edge

-restore_precondition

-save_edge

Command Name Option Notes
October 2010 1473 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.1 Commands
-save_precondition

-secondary_domain

-target_type

define_always_on_cell

-cells

-ground

-ground_switchable

-library_set

-power

-power_switchable

define_isolation_cell

-always_on_pins

-cells

-enable

-ground

-ground_switchable

-library_set

-no_enable Unsupported

-non_dedicated

-power

-power_switchable

-valid_location

define_level_shifter_cell

-always_on_pins

-cells

-direction

-enable

-ground

Command Name Option Notes
October 2010 1474 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.1 Commands
-ground_input_voltage_range

-
ground_output_voltage_range

-input_ground_pin

-input_power_pin

-input_voltage_range

-library_set

-output_ground_pin

-output_power_pin

-output_voltage_range

-power

-valid_location

define_library_set

-libraries

-name

-user_attributes

define_power_clamp_cell

-cells Unsupported

-cells Unsupported

-location Unsupported

-prefix Unsupported

-within_hierarchy Unsupported

define_power_switch_cell

-cells

-enable_pin_bias Unsupported

-gate_bias_pin Unsupported

-ground

-ground_switchable

Command Name Option Notes
October 2010 1475 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.1 Commands
-leakage_current Supported (for use with
addPowerSwitch)

-library_set

-power

-power_switchable

-stage_1_on_resistance

-stage_2_on_resistance

-stage_1_enable

-stage_1_output

-stage_1_saturation_current Supported (for use with
addPowerSwitch)

-stage_2_enable

-stage_2_output

-stage_2_saturation_current Supported (for use with
addPowerSwitch)

-type

define_state_retention_cell

-always_on_components Unsupported

-always_on_pins

-cell_type

-cells

-clock_pin

-ground

-ground_switchable

-library_set

-power

-power_switchable

-restore_check

-restore_function

Command Name Option Notes
October 2010 1476 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.1 Commands
-save_check

-save_function

end_design

end_macro_model

end_power_mode_control_group

get_parameter

include

identify_secondary_on_driver

-cells

-domain

-from

-instances

-secondary_domain

-to

identify_power_logic

-instances Supported

-module Supported

-type Only “isolation” is
supported for the -type

set_array_naming_style

set_cpf_version

set_hierarchy_separator

set_design

-end_design

-
honor_boundary_port_domai
n

-parameters

-ports

Command Name Option Notes
October 2010 1477 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.1 Commands
set_equivalent_control_pins

-domain Unsupported

-from Unsupported

-master Unsupported

-pins Unsupported

-to Unsupported

set_floating_ports Unsupported

set_input_voltage_tolerance

-bias Unsupported

-ports Unsupported

set_instance

-design

-domain_mapping

-model

-of_macro

-parameter_mapping

-port_mapping

set_macro_model

set_power_mode_control_group

-domains

-domains

-groups Unsupported

-name

set_power_target

-dynamic Unsupported

-leakage Unsupported

set_power_unit

set_register_naming_style

Command Name Option Notes
October 2010 1478 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.1 Commands
set_switching_activity

-all Supported

-clock_pins Unsupported

-hierarchical Supported

-instances Supported

-mode Supported

-pins Supported

-probability Supported

-toggle_percentage Unsupported

-toggle_rate Supported

set_time_unit

set_wire_feedthrough_ports

update_isolation_rules

-cells

-location

-names

-open_source_pins_only Supported

-prefix

-within_hierarchy

update_level_shifter_rules

-cells

-location

-names

-prefix

-within_hierarchy

update_power_domain

-equivalent_ground_nets

-equivalent_power_nets

Command Name Option Notes
October 2010 1479 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.1 Commands
-name

-nmos_bias_net Unsupported

-pmos_bias_net Unsupported

-primary_ground_net

-primary_power_net

-transition_cycles Unsupported

-transition_latency Unsupported

-transition_slope Unsupported

-user_attributes Supported: query
getCPFUserAttributes

update_power_mode

-activity_file Unsupported

-activity_file_weight Unsupported

-average_ir_drop_limit

-dynamic_power_limit Unsupported

-leakage_power_limit Unsupported

-name

-peak_ir_drop_limit

-sdc_files

update_power_switch_rule

-acknowledge_reciever_1

-acknowledge_reciever_2

-average_ir_drop_limit

-cells

-enable_condition_1

-enable_condition_2

-gate_bias_net Unsupported

-name

Command Name Option Notes
October 2010 1480 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.1 Commands
-peak_ir_drop

-prefix

update_state_retention_rules

-cell_type

-cells

-names

-set_rest_condition Unsupported

Command Name Option Notes
October 2010 1481 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Supported CPF 1.1 Commands
October 2010 1482 Product Version 9.1.3

Encounter Digital Implementation System User Guide
48
CPF 1.0 Script Example

The following section contains an example of the CPF 1.0 file using a sample design and
library.

For list of supported CPF commands and options within Encounter product family, see
Appendix 45, “Supported CPF 1.0 Commands.”

set_cpf_version 1.0

##

#

Technology portion of the CPF:

Defining the special cells for low-power designs

#

##

################################

High-to-Low level shifters

################################

define_level_shifter_cell -cells LVLH2L* \

 -input_voltage_range 0.8:1.0:0.1 \

 -output_voltage_range 0.8:1.0:0.1 \

 -direction down \

 -output_power_pin VDD \

 -ground VSS \

 -valid_location to

##

Always-on High-to-low level shifters

##
October 2010 1483 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0 Script Example
define_level_shifter_cell -cells AOLVLH2L* \

 -input_voltage_range 0.8:1.0:0.1 \

 -output_voltage_range 0.8:1.0:0.1 \

 -direction down \

 -output_power_pin TVDD \

 -ground VSS \

 -valid_location to

################################

Low-to-High Level Shifters

################################

define_level_shifter_cell -cells LVLL2H* \

 -input_voltage_range 0.8:1.0:0.1 \

 -output_voltage_range 0.8:1.0:0.1 \

 -input_power_pin VDDI \

 -output_power_pin VDD \

 -direction up \

 -ground VSS \

 -valid_location to

##

Low-to-High level shifting plus isolation combo cells

##

define_level_shifter_cell -cells LVLCIL2H* \

 -input_voltage_range 0.8:1.0:0.1 \

 -output_voltage_range 0.8:1.0:0.1 \

 -output_voltage_input_pin ISO \

 -input_power_pin VDDI \

 -output_power_pin VDD \

 -direction up \

 -ground VSS \

 -valid_location to

####################

Isolation cells

####################

define_isolation_cell -cells LVLCIL2H* \

 -power VDD \

 -ground VSS \
October 2010 1484 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0 Script Example
 -enable ISO \

 -valid_location to

#################################

Power switch cells: headers

#################################

define_power_switch_cell -cells {HEADERHVT HEADERAOPHVT} \

 -power_switchable VDD -power TVDD \

 -stage_1_enable !ISOIN1 \

 -stage_1_output ISOOUT1 \

 -stage_2_enable !ISOIN2 \

 -stage_2_output ISOOUT2 \

 -type header

#################

SRPG cells

#################

define_state_retention_cell -cells { SRPG2Y } \

 -clock_pin CLK \

 -power TVDD \

 -power_switchable VDD \

 -ground VSS \

 -save_function "SAVE" \

 -restore_function "!NRESTORE"

##

Always-on cells: buffers and level shifters

##

define_always_on_cell -cells {AOBUFF2Y AOLVLH2L*} \

 -power_switchable VDD -power TVDD -ground VSS

###

#

Design part of the CPF

#

###

set_design top
October 2010 1485 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0 Script Example
set_hierarchy_separator "/"

set constraintDir ../CONSTRAINTS

set libdir ../LIBS

##

create the power and ground nets in this design

##

VDD will connect the power follow-pin of the instances in the always-on
#power domain

VDD_core_SW will connect the power follow-pin of the instances in the

#switchable power domain and is the power net that can be shut-off

VDD_core_AO is the always-on power net for the switchable power domain

create_power_nets -nets VDD -voltage {0.8:1.0:0.1}

create_power_nets -nets VDD_core_AO -voltage 0.8

create_power_nets -nets VDD_core_SW -internal -voltage 0.8

create_power_nets -nets AVDD -voltage 1.0

create_ground_nets -nets VSS

create_ground_nets -nets AVSS

###

Creating three power domains:

AO is the default always-on power domain

CORE is the switchable power domain

PLL is another always-on power domain

Also specifying the power net-pin connection in each power domain

##

#########################

For power domain "AO"

#########################

create_power_domain -name AO -default

update_power_domain -name AO -internal_power_net VDD

create_global_connection -domain AO -net VDD -pins VDD

create_global_connection -domain AO -net VSS -pins VSS
October 2010 1486 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0 Script Example
create_global_connection -domain AO -net VDD_core_SW -pins VDDI

###########################

For power domain "CORE"

###########################

create_power_domain -name core -instances CORE_INST \

 -shutoff_condition {PWR_CONTROL/power_switch_enable}

update_power_domain -name core -internal_power_net VDD_core_SW

create_global_connection -domain CORE -net VSS -pins VSS

create_global_connection -domain CORE -net VDD_core_AO -pins TVDD

create_global_connection -domain CORE -net VDD_core_SW -pins VDD

###########################

For power domain "PLL"

###########################

PLL conatins a single PLL macro and five top-level boundary ports which
#connect to the PLL macro directly

create_power_domain -name PLL -instances PLLCLK_INST -boundary_ports \
{refclk vcom vcop ibias pllrst}

update_power_domain -name PLL -internal_power_net AVDD

create_global_connection -domain PLL -net AVDD -pins avdd!

create_global_connection -domain PLL -net AVSS -pins agnd!

create_global_connection -domain PLL -net VDD -pins VDDI

create_global_connection -domain PLL -net AVDD -pins VDD

create_global_connection -domain PLL -net AVSS -pins VSS

##

##

set lib_1p1_wc "$libdir/technology45_std_1p1.lib"

set lib_1p3_bc "$libdir/technology45_std_1p3.lib"

set lib_1p0_bc "$libdir/technology45_std_1p0.lib"

set lib_0p8_wc "$libdir/technology45_std_0p8.lib"

set lib_ao_wc_extra "\
October 2010 1487 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0 Script Example
 $libdir/technology45_lvll2h_1p1.lib \

"

set lib_ao_bc_extra "\

 $libdir/technology45_lvll2h_1p3.lib \

"

set lib_core_wc_extra "\

 $libdir/technology45_lvlh2l_0p8.lib \

 $libdir/technology45_headers_0p8.lib \

 $libdir/technology45_sprg_ao_0p8.lib \

"

set lib_core_bc_extra "\

 $libdir/technology45_lvlh2l_1p0.lib \

 $libdir/technology45_headers_1p0.lib \

 $libdir/technology45_srpg_ao_1p0.lib \

"

set lib_pll_wc "\

 $libdir/pll_slow.lib \

 $libdir/ram_256x16_slow.lib \

 $libdir/rom_512x16_slow.lib \

"

set lib_pll_bc "\

 $libdir/pll_fast.lib \

 $libdir/ram_256x16_fast.lib \

 $libdir/rom_512x16_fast.lib \

"

########################

Define library sets

########################

define_library_set -name ao_wc_0p8 -libraries "$lib_0p8_wc $lib_ao_wc_extra"

define_library_set -name ao_bc_1p0 -libraries "$lib_1p0_bc $lib_ao_bc_extra"

define_library_set -name ao_wc_1p1 -libraries "$lib_1p1_wc_base $lib_ao_wc_extra"

define_library_set -name ao_bc_1p3 -libraries "$lib_1p3_bc_base $lib_ao_bc_extra"

define_library_set -name core_wc_0p8 -libraries "$lib_0p8_wc $lib_core_wc_extra"

define_library_set -name core_bc_1p0 -libraries "$lib_1p0_bc $lib_core_bc_extra"

define_library_set -name pll_wc_1p1 -libraries "$lib_pll_wc"

define_library_set -name pll_bc_1p3 -libraries "$lib_pll_bc"
October 2010 1488 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0 Script Example
#############################

Create operating corners

#############################

create_operating_corner -name BC_PVT_AO_L \

 -process 1 -temperature 0 -voltage 1.0 \

 -library_set ao_bc_1p0

create_operating_corner -name WC_PVT_AO_L \

 -process 1 -temperature 125 -voltage 0.8 \

 -library_set ao_wc_0p8

create_operating_corner -name BC_PVT_AO_H \

 -process 1 -temperature 0 -voltage 1.3 \

 -library_set ao_bc_1p3

create_operating_corner -name WC_PVT_AO_H \

 -process 1 -temperature 125 -voltage 1.1 \

 -library_set ao_wc_1p1

create_operating_corner -name BC_PVT_CORE \

 -process 1 -temperature 0 -voltage 1.0 \

 -library_set core_bc_1p0

create_operating_corner -name WC_PVT_CORE \

 -process 1 -temperature 125 -voltage 0.8 \

 -library_set tdsp_wc_0p8

create_operating_corner -name BC_PVT_PLL \

 -process 1 -temperature 0 -voltage 1.3 \

 -library_set core_bc_1p3

create_operating_corner -name WC_PVT_PLL \

 -process 1 -temperature 125 -voltage 1.1 \

 -library_set tdsp_wc_1p1

###

Create and update nominal conditions

###
October 2010 1489 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0 Script Example
create_nominal_condition -name high_ao -voltage 1.1

update_nominal_condition -name high_ao -library_set ao_wc_1p1

create_nominal_condition -name low_ao -voltage 0.8

update_nominal_condition -name low_ao -library_set ao_wc_0p8

create_nominal_condition -name low_core -voltage 0.8

update_nominal_condition -name low_core -library_set core_wc_0p8

create_nominal_condition -name high_pll -voltage 1.1

update_nominal_condition -name high_pll -library_set pll_wc_1p1

create_nominal_condition -name off -voltage 0

######################################

Create and upDate four power modes

######################################

create_power_mode -name PM_HL_FUNC \

 -domain_conditions {AO@high_ao CORE@low_core PLL@high_pll} \

 -default

update_power_mode -name PM_HL_FUNC -sdc_files ${constraintDir}/top_func.sdc

create_power_mode -name PM_HL_TEST \

 -domain_conditions {AO@high_ao CORE@low_core PLL@high_pll}

update_power_mode -name PM_HL_TEST -sdc_files ${constraintDir}/top_test.sdc

create_power_mode -name PM_HO_FUNC \

 -domain_conditions {AO@high_ao CORE@off PLL@high_pll}

update_power_mode -name PM_HO_FUNC -sdc_files ${constraintDir}/top_func.sdc

create_power_mode -name PM_LO_FUNC \

 -domain_conditions {AO@low_ao CORE@off PLL@high_pll}

update_power_mode -name PM_LO_FUNC -sdc_files ${constraintDir}/top_slow.sdc

#################################

Creating ten analysis views

#################################

create_analysis_view -name AV_HL_FUNC_MIN_RC1 -mode PM_HL_FUNC \
October 2010 1490 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0 Script Example
 -domain_corners {AO@BC_PVT_AO_H CORE@BC_PVT_CORE PLL@BC_PVT_PLL}

create_analysis_view -name AV_HL_FUNC_MIN_RC2 -mode PM_HL_FUNC \

 -domain_corners {AO@BC_PVT_AO_H CORE@BC_PVT_CORE PLL@BC_PVT_PLL}

create_analysis_view -name AV_HL_FUNC_MAX_RC1 -mode PM_HL_FUNC \

 -domain_corners {AO@WC_PVT_AO_H CORE@WC_PVT_CORE PLL@WC_PVT_PLL}

create_analysis_view -name AV_HL_FUNC_MAX_RC2 -mode PM_HL_FUNC \

 -domain_corners {AO@WC_PVT_AO_H CORE@WC_PVT_CORE PLL@WC_PVT_PLL}

create_analysis_view -name AV_HL_SCAN_MIN_RC1 -mode PM_HL_TEST \

 -domain_corners {AO@BC_PVT_AO_H CORE@BC_PVT_CORE PLL@BC_PVT_PLL}

create_analysis_view -name AV_HL_SCAN_MAX_RC1 -mode PM_HL_TEST \

 -domain_corners {AO@WC_PVT_AO_H CORE@WC_PVT_CORE PLL@WC_PVT_PLL}

create_analysis_view -name AV_HO_FUNC_MIN_RC1 -mode PM_HO_FUNC \

 -domain_corners {AO@BC_PVT_AO_H CORE@BC_PVT_CORE PLL@BC_PVT_PLL}

create_analysis_view -name AV_HO_FUNC_MAX_RC1 -mode PM_HO_FUNC \

 -domain_corners {AO@WC_PVT_AO_H CORE@WC_PVT_CORE PLL@WC_PVT_PLL}

create_analysis_view -name AV_LO_FUNC_MIN_RC1 -mode PM_LO_FUNC \

 -domain_corners {AO@BC_PVT_AO_L CORE@BC_PVT_CORE PLL@BC_PVT_PLL}

create_analysis_view -name AV_LO_FUNC_MAX_RC1 -mode PM_LO_FUNC \

 -domain_corners {AO@WC_PVT_AO_L CORE@WC_PVT_CORE PLL@WC_PVT_PLL}

###

Creating and updating the rules for the insertion

of power switch, level shifter, isolation cell

###

###########################

One power switch rule

###########################

create_power_switch_rule -name PWRSW_CORE -domain CORE \

-external_power_net VDD_core_AO

update_power_switch_rule -name PWRSW_CORE \

 -cells HEADERHVT \

 -prefix CDN_SW_ \

 -acknowledge_receiver SIWTCH_ENOUT

###
October 2010 1491 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0 Script Example
One isolation rule using level-shifting and isolation combo cells

###

create_isolation_rule -name ISORULE -from CORE \

-isolation_condition "!PWR_CONTROL/isolation_enable" \

-isolation_output high

update_isolation_rules -names ISORULE -location to -cells LVLCIL2H2Y

################################

Three level shifting rules

################################

For signals from AO to CORE

create_level_shifter_rule -name LSRULE_H2L -from AO -to CORE \

 -exclude {PWR_CONTROL/power_switch_enable PWR_CONTROL \

/state_retention_enable PWR_CONTROL/state_retention_restore}

update_level_shifter_rules -names LSRULE_H2L -cells LVLH2L2Y -location to

Only for the control signals from AO to CORE

create_level_shifter_rule -name LSRULE_H2L_AO -from AO -to CORE \

 -pins {PWR_CONTROL/power_switch_enable PWR_CONTROL/state_retention_enable\
PWR_CONTROL/state_retention_restore}

update_level_shifter_rules -names LSRULE_H2L_AO -cells AOLVLH2L2Y -location to

For signals from PLL to AO

create_level_shifter_rule -name LSRULE_H2L_PLL -from PLL -to AO

update_level_shifter_rules -names LSRULE_H2L_PLL -cells LVLH2L2Y -location to

####################

One SRPG rule

####################

create_state_retention_rule -name SRPG_CORE \

 -domain CORE \

 -restore_edge {!PWR_CONTROL/state_retention_restore} \

 -save_edge {PWR_CONTROL/state_retention_enable}
October 2010 1492 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0 Script Example
update_state_retention_rules -names SRPG_CORE \

 -cell SRPG2Y \

 -library_set tdsp_wc_0v792

end_design
October 2010 1493 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0 Script Example
October 2010 1494 Product Version 9.1.3

Encounter Digital Implementation System User Guide
49
CPF 1.0e Script Example

The following section contains an example of the CPF 1.0e file using a sample design and
library.

For list of supported CPF commands and options within Encounter product family, see
Appendix 46, “Supported CPF 1.0e Commands.”

#--
setting
#---
set_cpf_version 1.0e
set_hierarchy_separator /

#---
define library_set/cells
#---
define_library_set -name wc_0v81 -libraries { \
 ../LIBS/timing/library_wc_0v81.lib }
define_library_set -name bc_0v81 -libraries { \
 ../LIBS/timing/library_bc_0v81.lib }
define_library_set -name wc_0v72 -libraries { \
 ../LIBS/timing/library_wc_0v72.lib }
define_library_set -name bc_0v72 -libraries { \
 ../LIBS/timing/library_bc_0v72.lib }

define_always_on_cell -cells {PTLVLHLD* AOBUFF*} -power_switchable \
 VDD -power TVDD -ground VSS

define_isolation_cell -cells { LVLLH* } -power VDD -ground VSS -enable \
 NSLEEP -valid_location to
define_isolation_cell -cells { ISOHID* ISOLOD* } -power VDD -ground VSS \
 -enable ISO -valid_location to

define_level_shifter_cell -cells { LVLHLD* } -input_voltage_range \
 0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 -direction down \
 -output_power_pin VDD -ground VSS -valid_location to
define_level_shifter_cell -cells { PTLVLHLD* } -input_voltage_range \
 0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 -direction down \
 -output_power_pin TVDD -ground VSS -valid_location to
define_level_shifter_cell -cells { LVLLHCD* } -input_voltage_range \
October 2010 1495 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0e Script Example
 0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 \
 -output_voltage_input_pin NSLEEP -direction up -input_power_pin VDDL \
 -output_power_pin VDD -ground VSS -valid_location to
define_level_shifter_cell -cells { LVLLHD* } -input_voltage_range \
 0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 -direction up \
 -input_power_pin VDDL -output_power_pin VDD -ground VSS -valid_location to

define_power_switch_cell -cells { HEADERHVT1 HEADERHVT2 } \
 -stage_1_enable NSLEEPIN1 -stage_1_output NSLEEPOUT1 -stage_2_enable \
 NSLEEPIN2 -stage_2_output NSLEEPOUT2 -type header -power_switchable VDD \
 -power TVDD

define_state_retention_cell -cells { MSSRPG* } -cell_type \
 master_slave -clock_pin CP -restore_check !CP -save_function !CP \
 -always_on_components { DFF_inst } -power_switchable VDD -power TVDD \
 -ground VSS
define_state_retention_cell -cells { BLSRPG* } -cell_type ballon_latch \
 -clock_pin CP -restore_function !NRESTORE -save_function SAVE \
 -always_on_components { save_data } -power_switchable VDD -power TVDD \
 -ground VSS

#---
macro models
#---

#---
top design
#---
set_design top

create_operating_corner -name PMdvfs2_bc -voltage 0.88 -process 1 -temperature \
 0 -library_set bc_0v72
create_operating_corner -name PMdvfs1_bc -voltage 0.99 -process 1 -temperature \
 0 -library_set bc_0v81
create_operating_corner -name PMdvfs1_wc -voltage 0.81 -process 1 -temperature \
 125 -library_set wc_0v81
create_operating_corner -name PMdvfs2_wc -voltage 0.72 -process 1 -temperature \
 125 -library_set wc_0v72

create_power_nets -nets VDD -voltage { 0.72:0.81:0.09 } -peak_ir_drop_limit 0 \
 -average_ir_drop_limit 0
create_power_nets -nets VDD_sw -voltage { 0.72:0.81:0.09 } -internal \
 -peak_ir_drop_limit 0 -average_ir_drop_limit 0
create_power_nets -nets VDDL -voltage 0.72 -peak_ir_drop_limit 0 \
 -average_ir_drop_limit 0
create_power_nets -nets VDDL_sw -voltage 0.72 -internal -peak_ir_drop_limit 0 \
 -average_ir_drop_limit 0
create_power_nets -nets Avdd -voltage 0.81 -peak_ir_drop_limit 0 \
 -average_ir_drop_limit 0
create_power_nets -nets VDD_IO -voltage { 0.72:0.81:0.09 } \
 -external_shutoff_condition { io_shutoff_ack } -peak_ir_drop_limit 0 \
October 2010 1496 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0e Script Example
 -average_ir_drop_limit 0

create_ground_nets -nets Avss -voltage 0.00 -peak_ir_drop_limit 0 \
 -average_ir_drop_limit 0
create_ground_nets -nets VSS -voltage 0.00 -peak_ir_drop_limit 0 \
 -average_ir_drop_limit 0

create_nominal_condition -name nom_0v81 -voltage 0.81
create_nominal_condition -name nom_0v72 -voltage 0.72

#---
create power domains
#---
create_power_domain -name PDdefault -default
create_power_domain -name PDshutoff_io -instances { IOPADS_INST/Pspifsip \
 IOPADS_INST/Pspidip } -boundary_ports { spi_fs spi_data } \
 -external_controlled_shutoff -shutoff_condition io_shutoff_ack
create_power_domain -name PDpll -instances { INST/PLLCLK_INST \
 IOPADS_INST/Pibiasip IOPADS_INST/Ppllrstip IOPADS_INST/Prefclkip \
 IOPADS_INST/Presetip IOPADS_INST/Pvcomop IOPADS_INST/Pvcopop } -
boundary_ports { ibias reset \
 refclk vcom vcop pllrst }
create_power_domain -name PDram_virtual
create_power_domain -name PDram -instances { INST/RAM_128x16_TEST_INST } \
 -shutoff_condition !INST/PM_INST/power_switch_enable \
 -secondary_domains { PDram_virtual }
create_power_domain -name PDtdsp -instances { INST/RAM_128x16_TEST_INST1 \
 INST/DSP_CORE_INST0 INST/DSP_CORE_INST1 } -shutoff_condition \
 !INST/PM_INST/power_switch_enable -secondary_domains { PDdefault }

#---
set instances
#---
set_instance INST/RAM_128x16_TEST_INST1/RAM_128x16_INST -domain_mapping \
 { {RAM_DEFAULT PDtdsp} }

set_macro_model ram_256x16A

create_power_domain -name RAM_DEFAULT -boundary_ports { A* D* CLK CEN WEN Q* } \
 -default -external_controlled_shutoff

create_state_retention_rule -name RAM_ret -instances { mem* } -save_edge !CLK

update_power_domain -name RAM_DEFAULT -primary_power_net VDD \
 -primary_ground_net VSS

end_macro_model

#---
create power modes
#---
October 2010 1497 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0e Script Example
create_power_mode -name PMdvfs1 -default -domain_conditions { PDpll@nom_0v81 \
 PDdefault@nom_0v81 PDtdsp@nom_0v81 PDram@nom_0v72 PDshutoff_io@nom_0v81 \
 PDram_virtual@nom_0v72 }
create_power_mode -name PMdvfs1_off -domain_conditions { PDpll@nom_0v81 \
 PDdefault@nom_0v81 PDshutoff_io@nom_0v81 PDram_virtual@nom_0v72 }
create_power_mode -name PMdvfs1_shutoffio_off -domain_conditions { \
 PDpll@nom_0v81 PDdefault@nom_0v81 PDram_virtual@nom_0v72 }
create_power_mode -name PMdvfs2 -domain_conditions { PDpll@nom_0v81 \
 PDdefault@nom_0v72 PDtdsp@nom_0v72 PDram@nom_0v72 PDshutoff_io@nom_0v72 \
 PDram_virtual@nom_0v72 }
create_power_mode -name PMdvfs2_off -domain_conditions { PDpll@nom_0v81 \
 PDdefault@nom_0v72 PDshutoff_io@nom_0v72 PDram_virtual@nom_0v72 }
create_power_mode -name PMdvfs2_shutoffio_off -domain_conditions { \
 PDpll@nom_0v81 PDdefault@nom_0v72 PDram_virtual@nom_0v72 }
create_power_mode -name PMscan -domain_conditions { PDpll@nom_0v81 \
 PDdefault@nom_0v81 PDtdsp@nom_0v81 PDram@nom_0v72 PDshutoff_io@nom_0v81 \
 PDram_virtual@nom_0v72 }

create_analysis_view -name AV_dvfs1_BC -mode PMdvfs1 -domain_corners { \
 PDpll@PMdvfs1_bc PDdefault@PMdvfs1_bc PDtdsp@PMdvfs1_bc PDram@PMdvfs2_bc \
 PDshutoff_io@PMdvfs1_bc }
create_analysis_view -name AV_dvfs1_WC -mode PMdvfs1 -domain_corners { \
 PDpll@PMdvfs1_wc PDdefault@PMdvfs1_wc PDtdsp@PMdvfs1_wc PDram@PMdvfs2_wc \
 PDshutoff_io@PMdvfs1_wc }
create_analysis_view -name AV_dvfs1_off_BC -mode PMdvfs1_off -domain_corners { \
 PDpll@PMdvfs1_bc PDdefault@PMdvfs1_bc PDshutoff_io@PMdvfs1_bc }
create_analysis_view -name AV_dvfs1_off_WC -mode PMdvfs1_off -domain_corners { \
 PDpll@PMdvfs1_wc PDdefault@PMdvfs1_wc PDshutoff_io@PMdvfs1_wc }
create_analysis_view -name AV_dvfs1_shutoffio_off_BC -mode \
 PMdvfs1_shutoffio_off -domain_corners { PDpll@PMdvfs1_bc \
 PDdefault@PMdvfs1_bc }
create_analysis_view -name AV_dvfs1_shutoffio_off_WC -mode \
 PMdvfs1_shutoffio_off -domain_corners { PDpll@PMdvfs1_wc \
 PDdefault@PMdvfs1_wc }
create_analysis_view -name AV_dvfs2_BC -mode PMdvfs2 -domain_corners { \
 PDpll@PMdvfs1_bc PDdefault@PMdvfs2_bc PDtdsp@PMdvfs2_bc PDram@PMdvfs2_bc \
 PDshutoff_io@PMdvfs2_bc }
create_analysis_view -name AV_dvfs2_WC -mode PMdvfs2 -domain_corners { \
 PDpll@PMdvfs1_wc PDdefault@PMdvfs2_wc PDtdsp@PMdvfs2_wc PDram@PMdvfs2_wc \
 PDshutoff_io@PMdvfs2_wc }
create_analysis_view -name AV_PMdvfs2_off_BC -mode PMdvfs2_off -domain_corners \
 { PDpll@PMdvfs1_bc PDdefault@PMdvfs2_bc PDshutoff_io@PMdvfs2_bc }
create_analysis_view -name AV_PMdvfs2_off_WC -mode PMdvfs2_off -domain_corners \
 { PDpll@PMdvfs1_wc PDdefault@PMdvfs2_wc PDshutoff_io@PMdvfs2_wc }
create_analysis_view -name AV_dvfs2_shutoffio_off_BC -mode \
 PMdvfs2_shutoffio_off -domain_corners { PDpll@PMdvfs1_bc \
 PDdefault@PMdvfs2_bc }
create_analysis_view -name AV_dvfs2_shutoffio_off_WC -mode \
 PMdvfs2_shutoffio_off -domain_corners { PDpll@PMdvfs1_wc \
 PDdefault@PMdvfs2_wc }
create_analysis_view -name AV_scan_BC -mode PMscan -domain_corners { \
October 2010 1498 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0e Script Example
 PDpll@PMdvfs1_bc PDdefault@PMdvfs1_bc PDtdsp@PMdvfs1_bc PDram@PMdvfs2_bc \
 PDshutoff_io@PMdvfs1_bc }
create_analysis_view -name AV_scan_WC -mode PMscan -domain_corners { \
 PDpll@PMdvfs1_wc PDdefault@PMdvfs1_wc PDtdsp@PMdvfs1_wc PDram@PMdvfs2_wc \
 PDshutoff_io@PMdvfs1_wc }

#---
create rules
#---
create_power_switch_rule -name PDram_SW -domain PDram -external_power_net VDDL
create_power_switch_rule -name PDtdsp_SW -domain PDtdsp -external_power_net \
 VDD

create_isolation_rule -name ISORULE1 -isolation_condition { \
 !INST/PM_INST/isolation_enable } -from { PDtdsp } -to { PDdefault } \
 -isolation_target from -isolation_output high
create_isolation_rule -name ISORULE3 -isolation_condition { \
 !INST/PM_INST/isolation_enable } -from { PDram } -to { PDdefault } \
 -isolation_target from -isolation_output high
create_isolation_rule -name ISORULE4 -isolation_condition { \
 !INST/PM_INST/spi_ip_isolate } -from { PDshutoff_io } \
 -isolation_target from -isolation_output low

create_level_shifter_rule -name LSRULE_H2L3 -from { PDdefault } -to { PDram } \
 -exclude { INST/PM_INST/power_switch_enable }
create_level_shifter_rule -name LSRULE_H2L_PLL -from { PDpll }
create_level_shifter_rule -name LSRULE_L2H2 -from { PDram } -to { PDdefault }

create_state_retention_rule -name \
 INST/DSP_CORE_INST0/PDtdsp_retention_rule -instances { \
 INST/DSP_CORE_INST0 } -save_edge !INST/DSP_CORE_INST0/clk
create_state_retention_rule -name \
 INST/DSP_CORE_INST1/PDtdsp_retention_rule -instances { \
 INST/DSP_CORE_INST1 } -restore_edge \
 !INST/PM_INST/state_retention_restore -save_edge \
 INST/PM_INST/state_retention_save

#---
update domains/modes
#---
update_nominal_condition -name nom_0v81 -library_set wc_0v81
update_nominal_condition -name nom_0v72 -library_set wc_0v72

update_power_domain -name PDdefault -primary_power_net VDD -primary_ground_net \
 VSS
update_power_domain -name PDshutoff_io -primary_power_net VDD_IO \
 -primary_ground_net VSS
update_power_domain -name PDpll -primary_power_net Avdd -primary_ground_net \
 Avss
update_power_domain -name PDram_virtual -primary_power_net VDDL \
 -primary_ground_net VSS
October 2010 1499 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.0e Script Example
update_power_domain -name PDram -primary_power_net VDDL_sw -primary_ground_net \
 VSS
update_power_domain -name PDtdsp -primary_power_net VDD_sw -primary_ground_net \
 VSS

update_power_mode -name PMdvfs1 -sdc_files ../RELEASE/mmmc/dvfs1.sdc
update_power_mode -name PMdvfs1_off -sdc_files ../RELEASE/mmmc/dvfs1.sdc
update_power_mode -name PMdvfs1_shutoffio_off -sdc_files \
 ../RELEASE/mmmc/dvfs1.sdc
update_power_mode -name PMdvfs2 -sdc_files ../RELEASE/mmmc/dvfs2.sdc
update_power_mode -name PMdvfs2_off -sdc_files ../RELEASE/mmmc/dvfs2.sdc
update_power_mode -name PMdvfs2_shutoffio_off -sdc_files \
 ../RELEASE/mmmc/dvfs2.sdc
update_power_mode -name PMscan -sdc_files ../RELEASE/mmmc/scan.sdc

#---
update rules
#---
update_power_switch_rule -name PDram_SW -cells { HEADERHVT1 } -prefix \
 CDN_SW_RAM -peak_ir_drop_limit 0 -average_ir_drop_limit 0
update_power_switch_rule -name PDtdsp_SW -cells { HEADERHVT2 } -prefix \
 CDN_SW_TDSP -peak_ir_drop_limit 0 -average_ir_drop_limit 0

update_isolation_rules -names ISORULE1 -location to -prefix CPF_ISO_
update_isolation_rules -names ISORULE3 -location to -prefix CPF_ISO_
update_isolation_rules -names ISORULE4 -location to -prefix CPF_ISO_

update_level_shifter_rules -names LSRULE_H2L3 -location to -cells { LVLHLD* \
 } -prefix CPF_LS_
update_level_shifter_rules -names LSRULE_H2L_PLL -location to -prefix CPF_LS_
update_level_shifter_rules -names LSRULE_L2H2 -location to -prefix CPF_LS_

update_state_retention_rules -names \
 INST/DSP_CORE_INST0/PDtdsp_retention_rule -cell_type master_slave
update_state_retention_rules -names \
 INST/DSP_CORE_INST1/PDtdsp_retention_rule -cell_type ballon_latch

#---
end
#---
end_design
October 2010 1500 Product Version 9.1.3

Encounter Digital Implementation System User Guide
50
CPF 1.1 Script Example

The following section contains an example of the CPF 1.1 file using a sample design and
library.

For list of supported CPF commands and options within Encounter product family, see
Appendix 47, “Supported CPF 1.1 Commands.”

#--
setting
#---
set_cpf_version 1.1
set_hierarchy_separator /

#---
define library_set/cells
#---
define_library_set -name wc_0v81 -libraries { \
 ../LIBS/timing/library_wc_0v81.lib }
define_library_set -name bc_0v81 -libraries { \
 ../LIBS/timing/library_bc_0v81.lib }
define_library_set -name wc_0v72 -libraries { \
 ../LIBS/timing/library_wc_0v72.lib }
define_library_set -name bc_0v72 -libraries { \
 ../LIBS/timing/library_bc_0v72.lib }

define_always_on_cell -cells {PTLVLHLD* AOBUFF*} -power_switchable \
 VDD -power TVDD -ground VSS

define_isolation_cell -cells { LVLLH* } -power VDD -ground VSS -enable \
 NSLEEP -valid_location to
define_isolation_cell -cells { ISOHID* ISOLOD* } -power VDD -ground VSS \
 -enable ISO -valid_location to

define_level_shifter_cell -cells { LVLHLD* } -input_voltage_range \
 0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 -direction down \
 -output_power_pin VDD -ground VSS -valid_location to
define_level_shifter_cell -cells { PTLVLHLD* } -input_voltage_range \
 0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 -direction down \
 -output_power_pin TVDD -ground VSS -valid_location to
define_level_shifter_cell -cells { LVLLHCD* } -input_voltage_range \
October 2010 1501 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.1 Script Example
 0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 \
 -output_voltage_input_pin NSLEEP -direction up -input_power_pin VDDL \
 -output_power_pin VDD -ground VSS -valid_location to
define_level_shifter_cell -cells { LVLLHD* } -input_voltage_range \
 0.72:0.81:0.09 -output_voltage_range 0.72:0.81:0.09 -direction up \
 -input_power_pin VDDL -output_power_pin VDD -ground VSS -valid_location to

define_power_switch_cell -cells { HEADERHVT1 HEADERHVT2 } \
 -stage_1_enable NSLEEPIN1 -stage_1_output NSLEEPOUT1 -stage_2_enable \
 NSLEEPIN2 -stage_2_output NSLEEPOUT2 -type header -power_switchable VDD \
 -power TVDD -stage_1_on_resistance 10 - stage_2_on_resistance 10

define_state_retention_cell -cells { MSSRPG* } -cell_type \
 master_slave -clock_pin CP -restore_check !CP -save_function !CP \
 -always_on_components { DFF_inst } -power_switchable VDD -power TVDD \
 -ground VSS
define_state_retention_cell -cells { BLSRPG* } -cell_type ballon_latch \
 -clock_pin CP -restore_function !NRESTORE -save_function SAVE \
 -always_on_components { save_data } -power_switchable VDD -power TVDD \
 -ground VSS

#---
macro models
#---

#---
top design
#---
set_design top

create_operating_corner -name PMdvfs2_bc -voltage 0.88 -process 1 -temperature \
 0 -library_set bc_0v72
create_operating_corner -name PMdvfs1_bc -voltage 0.99 -process 1 -temperature \
 0 -library_set bc_0v81
create_operating_corner -name PMdvfs1_wc -voltage 0.81 -process 1 -temperature \
 125 -library_set wc_0v81
create_operating_corner -name PMdvfs2_wc -voltage 0.72 -process 1 -temperature \
 125 -library_set wc_0v72

create_power_nets -nets VDD -voltage { 0.72:0.81:0.09 } -peak_ir_drop_limit 0 \
 -average_ir_drop_limit 0
create_power_nets -nets VDD_EQ -voltage { 0.72:0.81:0.09 } -peak_ir_drop_limit 0\
 -average_ir_drop_limit 0
create_power_nets -nets VDD_sw -voltage { 0.72:0.81:0.09 } -internal \
 -peak_ir_drop_limit 0 -average_ir_drop_limit 0
create_power_nets -nets VDDL -voltage 0.72 -peak_ir_drop_limit 0 \
 -average_ir_drop_limit 0
create_power_nets -nets VDDL_sw -voltage 0.72 -internal -peak_ir_drop_limit 0 \
 -average_ir_drop_limit 0
create_power_nets -nets Avdd -voltage 0.81 -peak_ir_drop_limit 0 \
 -average_ir_drop_limit 0
October 2010 1502 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.1 Script Example
create_power_nets -nets VDD_IO -voltage { 0.72:0.81:0.09 } \
 -external_shutoff_condition { io_shutoff_ack } -peak_ir_drop_limit 0 \
 -average_ir_drop_limit 0

create_ground_nets -nets Avss -voltage 0.00 -peak_ir_drop_limit 0 \
 -average_ir_drop_limit 0
create_ground_nets -nets VSS -voltage 0.00 -peak_ir_drop_limit 0 \
 -average_ir_drop_limit 0

create_nominal_condition -name nom_0v81 -voltage 0.81
create_nominal_condition -name nom_0v72 -voltage 0.72

#---
create power domains
#---
create_power_domain -name PDdefault -default
create_power_domain -name PDshutoff_io -instances { IOPADS_INST/Pspifsip \
 IOPADS_INST/Pspidip } -boundary_ports { spi_fs spi_data } \
 -external_controlled_shutoff -shutoff_condition io_shutoff_ack
create_power_domain -name PDpll -instances { INST/PLLCLK_INST \
 IOPADS_INST/Pibiasip IOPADS_INST/Ppllrstip IOPADS_INST/Prefclkip \
 IOPADS_INST/Presetip IOPADS_INST/Pvcomop IOPADS_INST/Pvcopop } -
boundary_ports { ibias reset \
 refclk vcom vcop pllrst }
create_power_domain -name PDram_virtual
create_power_domain -name PDram -instances { INST/RAM_128x16_TEST_INST } \
 -shutoff_condition !INST/PM_INST/power_switch_enable \
 -base_domains { PDram_virtual }
create_power_domain -name PDtdsp -instances { INST/RAM_128x16_TEST_INST1 \
 INST/DSP_CORE_INST0 INST/DSP_CORE_INST1 } -shutoff_condition \
 !INST/PM_INST/power_switch_enable -base_domains { PDdefault }

#---
set instances
#---
set_instance INST/RAM_128x16_TEST_INST1/RAM_128x16_INST -domain_mapping \
 { {RAM_DEFAULT PDtdsp} }

set_macro_model ram_256x16A

create_power_domain -name RAM_DEFAULT -boundary_ports { A* D* CLK CEN WEN Q* } \
 -default -external_controlled_shutoff

create_state_retention_rule -name RAM_ret -instances { mem* } -save_edge !CLK

update_power_domain -name RAM_DEFAULT -primary_power_net VDD \
 -primary_ground_net VSS

end_macro_model ram 256x16A

#---
October 2010 1503 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.1 Script Example
create power modes
#---
create_power_mode -name PMdvfs1 -default -domain_conditions { PDpll@nom_0v81 \
 PDdefault@nom_0v81 PDtdsp@nom_0v81 PDram@nom_0v72 PDshutoff_io@nom_0v81 \
 PDram_virtual@nom_0v72 }
create_power_mode -name PMdvfs1_off -domain_conditions { PDpll@nom_0v81 \
 PDdefault@nom_0v81 PDshutoff_io@nom_0v81 PDram_virtual@nom_0v72 }
create_power_mode -name PMdvfs1_shutoffio_off -domain_conditions { \
 PDpll@nom_0v81 PDdefault@nom_0v81 PDram_virtual@nom_0v72 }
create_power_mode -name PMdvfs2 -domain_conditions { PDpll@nom_0v81 \
 PDdefault@nom_0v72 PDtdsp@nom_0v72 PDram@nom_0v72 PDshutoff_io@nom_0v72 \
 PDram_virtual@nom_0v72 }
create_power_mode -name PMdvfs2_off -domain_conditions { PDpll@nom_0v81 \
 PDdefault@nom_0v72 PDshutoff_io@nom_0v72 PDram_virtual@nom_0v72 }
create_power_mode -name PMdvfs2_shutoffio_off -domain_conditions { \
 PDpll@nom_0v81 PDdefault@nom_0v72 PDram_virtual@nom_0v72 }
create_power_mode -name PMscan -domain_conditions { PDpll@nom_0v81 \
 PDdefault@nom_0v81 PDtdsp@nom_0v81 PDram@nom_0v72 PDshutoff_io@nom_0v81 \
 PDram_virtual@nom_0v72 }

create_analysis_view -name AV_dvfs1_BC -mode PMdvfs1 -domain_corners { \
 PDpll@PMdvfs1_bc PDdefault@PMdvfs1_bc PDtdsp@PMdvfs1_bc PDram@PMdvfs2_bc \
 PDshutoff_io@PMdvfs1_bc }
create_analysis_view -name AV_dvfs1_WC -mode PMdvfs1 -domain_corners { \
 PDpll@PMdvfs1_wc PDdefault@PMdvfs1_wc PDtdsp@PMdvfs1_wc PDram@PMdvfs2_wc \
 PDshutoff_io@PMdvfs1_wc }
create_analysis_view -name AV_dvfs1_off_BC -mode PMdvfs1_off -domain_corners { \
 PDpll@PMdvfs1_bc PDdefault@PMdvfs1_bc PDshutoff_io@PMdvfs1_bc }
create_analysis_view -name AV_dvfs1_off_WC -mode PMdvfs1_off -domain_corners { \
 PDpll@PMdvfs1_wc PDdefault@PMdvfs1_wc PDshutoff_io@PMdvfs1_wc }
create_analysis_view -name AV_dvfs1_shutoffio_off_BC -mode \
 PMdvfs1_shutoffio_off -domain_corners { PDpll@PMdvfs1_bc \
 PDdefault@PMdvfs1_bc }
create_analysis_view -name AV_dvfs1_shutoffio_off_WC -mode \
 PMdvfs1_shutoffio_off -domain_corners { PDpll@PMdvfs1_wc \
 PDdefault@PMdvfs1_wc }
create_analysis_view -name AV_dvfs2_BC -mode PMdvfs2 -domain_corners { \
 PDpll@PMdvfs1_bc PDdefault@PMdvfs2_bc PDtdsp@PMdvfs2_bc PDram@PMdvfs2_bc \
 PDshutoff_io@PMdvfs2_bc }
create_analysis_view -name AV_dvfs2_WC -mode PMdvfs2 -domain_corners { \
 PDpll@PMdvfs1_wc PDdefault@PMdvfs2_wc PDtdsp@PMdvfs2_wc PDram@PMdvfs2_wc \
 PDshutoff_io@PMdvfs2_wc }
create_analysis_view -name AV_PMdvfs2_off_BC -mode PMdvfs2_off -domain_corners \
 { PDpll@PMdvfs1_bc PDdefault@PMdvfs2_bc PDshutoff_io@PMdvfs2_bc }
create_analysis_view -name AV_PMdvfs2_off_WC -mode PMdvfs2_off -domain_corners \
 { PDpll@PMdvfs1_wc PDdefault@PMdvfs2_wc PDshutoff_io@PMdvfs2_wc }
create_analysis_view -name AV_dvfs2_shutoffio_off_BC -mode \
 PMdvfs2_shutoffio_off -domain_corners { PDpll@PMdvfs1_bc \
 PDdefault@PMdvfs2_bc }
create_analysis_view -name AV_dvfs2_shutoffio_off_WC -mode \
 PMdvfs2_shutoffio_off -domain_corners { PDpll@PMdvfs1_wc \
October 2010 1504 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.1 Script Example
 PDdefault@PMdvfs2_wc }
create_analysis_view -name AV_scan_BC -mode PMscan -domain_corners { \
 PDpll@PMdvfs1_bc PDdefault@PMdvfs1_bc PDtdsp@PMdvfs1_bc PDram@PMdvfs2_bc \
 PDshutoff_io@PMdvfs1_bc }
create_analysis_view -name AV_scan_WC -mode PMscan -domain_corners { \
 PDpll@PMdvfs1_wc PDdefault@PMdvfs1_wc PDtdsp@PMdvfs1_wc PDram@PMdvfs2_wc \
 PDshutoff_io@PMdvfs1_wc }

#---
create rules
#---
create_power_switch_rule -name PDram_SW -domain PDram -external_power_net VDDL
create_power_switch_rule -name PDtdsp_SW -domain PDtdsp -external_power_net \
 VDD

create_isolation_rule -name ISORULE1 -isolation_condition { \
 !INST/PM_INST/isolation_enable } -from { PDtdsp } -to { PDdefault } \
 -isolation_target from -isolation_output high
create_isolation_rule -name ISORULE3 -isolation_condition { \
 !INST/PM_INST/isolation_enable } -from { PDram } -to { PDdefault } \
 -isolation_target from -isolation_output high
create_isolation_rule -name ISORULE4 -isolation_condition { \
 !INST/PM_INST/spi_ip_isolate } -from { PDshutoff_io } \
 -isolation_target from -isolation_output low

create_level_shifter_rule -name LSRULE_H2L3 -from { PDdefault } -to { PDram } \
 -exclude { INST/PM_INST/power_switch_enable }
create_level_shifter_rule -name LSRULE_H2L_PLL -from { PDpll }
create_level_shifter_rule -name LSRULE_L2H2 -from { PDram } -to { PDdefault }

create_state_retention_rule -name \
 INST/DSP_CORE_INST0/PDtdsp_retention_rule -instances { \
 INST/DSP_CORE_INST0 } -save_edge !INST/DSP_CORE_INST0/clk
create_state_retention_rule -name \
 INST/DSP_CORE_INST1/PDtdsp_retention_rule -instances { \
 INST/DSP_CORE_INST1 } -restore_edge \
 !INST/PM_INST/state_retention_restore -save_edge \
 INST/PM_INST/state_retention_save

#---
update domains/modes
#---
update_nominal_condition -name nom_0v81 -library_set wc_0v81
update_nominal_condition -name nom_0v72 -library_set wc_0v72

update_power_domain -name PDdefault -primary_power_net VDD -primary_ground_net \
 VSS -equivalent_power_nets VDD_EQ
update_power_domain -name PDshutoff_io -primary_power_net VDD_IO \
 -primary_ground_net VSS
update_power_domain -name PDpll -primary_power_net Avdd -primary_ground_net \
 Avss
October 2010 1505 Product Version 9.1.3

Encounter Digital Implementation System User Guide
CPF 1.1 Script Example
update_power_domain -name PDram_virtual -primary_power_net VDDL \
 -primary_ground_net VSS
update_power_domain -name PDram -primary_power_net VDDL_sw -primary_ground_net \
 VSS
update_power_domain -name PDtdsp -primary_power_net VDD_sw -primary_ground_net \
 VSS

update_power_mode -name PMdvfs1 -sdc_files ../RELEASE/mmmc/dvfs1.sdc
update_power_mode -name PMdvfs1_off -sdc_files ../RELEASE/mmmc/dvfs1.sdc
update_power_mode -name PMdvfs1_shutoffio_off -sdc_files \
 ../RELEASE/mmmc/dvfs1.sdc
update_power_mode -name PMdvfs2 -sdc_files ../RELEASE/mmmc/dvfs2.sdc
update_power_mode -name PMdvfs2_off -sdc_files ../RELEASE/mmmc/dvfs2.sdc
update_power_mode -name PMdvfs2_shutoffio_off -sdc_files \
 ../RELEASE/mmmc/dvfs2.sdc
update_power_mode -name PMscan -sdc_files ../RELEASE/mmmc/scan.sdc

#---
update rules
#---
update_power_switch_rule -name PDram_SW -cells { HEADERHVT1 } -prefix \
 CDN_SW_RAM -peak_ir_drop_limit 0 -average_ir_drop_limit 0
update_power_switch_rule -name PDtdsp_SW -cells { HEADERHVT2 } -prefix \
 CDN_SW_TDSP -peak_ir_drop_limit 0 -average_ir_drop_limit 0

update_isolation_rules -names ISORULE1 -location to -prefix CPF_ISO_
update_isolation_rules -names ISORULE3 -location to -prefix CPF_ISO_
update_isolation_rules -names ISORULE4 -location to -prefix CPF_ISO_

update_level_shifter_rules -names LSRULE_H2L3 -location to -cells { LVLHLD* \
 } -prefix CPF_LS_
update_level_shifter_rules -names LSRULE_H2L_PLL -location to -prefix CPF_LS_
update_level_shifter_rules -names LSRULE_L2H2 -location to -prefix CPF_LS_

update_state_retention_rules -names \
 INST/DSP_CORE_INST0/PDtdsp_retention_rule -cell_type master_slave
update_state_retention_rules -names \
 INST/DSP_CORE_INST1/PDtdsp_retention_rule -cell_type ballon_latch

#---
end
#---
end_design
October 2010 1506 Product Version 9.1.3

Encounter Digital Implementation System User Guide
51
Cadence-Specific Liberty Extensions

This appendix describes Cadence-specific extensions to the Synopsys Liberty (.lib) library
file. These extensions allow the storage of the data required by SignalStorm® nanometer
delay calculator’s effective current source model (ECSM) voltage and current profiles.

This appendix contains information on the following topics:

■ Overview on page 1507

■ Guidelines For Adding ECSM Extensions on page 1508

■ Representing ECSM Information in a Library on page 1508

■ Defining ECSM Extensions in a Library on page 1509

❑ ecsm_waveform Group on page 1511

❑ ecsm_waveform_set Group on page 1514

❑ ecsm_capacitance Group on page 1516

■ Example on page 1520

Overview

SignalStorm nanometer delay calculator uses an advanced cell driver model to represent the
effect of non-linear switching waveforms on cell-based interconnect delay calculation and
signal integrity. This ECSM model provides an efficient mechanism for storing output current
or voltage profiles during active transitions on the circuit.

ECSM models are typically generated by the Encounter Library Characterizer, and stored
directly in a SignalStorm database. However, you can also derive ECSM information from a
generic characterization flow and store it in a traditional library file using the extensions
described in this appendix. These extensions allow the contents of ECSM models to be
stored in library files in a way that is compatible with existing data and with other new signal
integrity constructs.
October 2010 1507 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
Note: The presence of ECSM data does not interfere with other uses of the library file.

Guidelines For Adding ECSM Extensions

■ Extensions must be compatible with existing or new library model constructs. They
cannot be stored as comments, which could potentially be stripped out by internal or
commercial tools that read the library models.

■ Extensions must resemble similar library constructs.

■ Extensions must use the same context as the equivalent library construct. For example,
units must be consistent. If an extension uses a current value and the current unit is
defined as 1 milliampere, the values placed in the attribute must be in milliamperes.

■ Syntactically correct extensions added to the libraries models must pass through the
Synopsys Library Compiler, and should not cause any change in behavior in any tool that
uses the compiled models.

■ Extensions should be easily extracted by tools that correctly parse library models.

■ Storage of the waveforms must be efficient. Appropriate reduction must be performed on
the waveforms to a user-specified level of accuracy. The controls provided to adjust the
accuracy should enable you to achieve a compromise between the accuracy of the
analysis and the size of the model.

Representing ECSM Information in a Library

ECSM information is stored in the form of output voltage waveforms, which enables the library
to include more information about the transition, and to improve the driver model accuracy.
Given that the library transition table is based on two types of indexes (input slew rate and
output loading capacitance), and the delay model uses a lumped capacitance to represent
the observed loading, the following equation computes the output current (I out):

You can use this equation to convert the output voltage waveform to ECSM. To support
multiple supply voltage corners, normalize the output voltage numbers from 0.0 to 1.0 of the
supply voltage. The effective current should also be normalized to the supply voltage.

ECSM t1 t2(,)
Iout t() td

t1

t2∫
t2 t1–

----------------------------- Cload

Vout t2() Vout t1()–()

t2 t1–
---×==
October 2010 1508 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
Using the output voltage waveform approach, an ECSM extension becomes a table
containing voltage over transition times for every input slew and output loading capacitance
index combination. Add this table to the output transition table group using the following
format:

rise_transition (template_of_slew_load) { // fall_transition
(template_of_slew_load) {

index_1 : // redefine of slew rate index

index_2 : // redefine of loading index

ecsm_waveform(name0) {

index_1 : "..."; // output voltage sample points

values : "..."; // output voltage sample times

}

ecsm_waveform(name1) {

index_1 : "..."; // output voltage sample points

values : "..." ; // output voltage sample times

...

}

}

Defining ECSM Extensions in a Library

Three user-defined groups can be added to a library to define an ECSM extension:

■ ecsm_waveform

■ ecsm_waveform_set

■ ecsm_capacitance

The ecsm_waveform and ecsm_waveform_set groups are alternative ways of describing
the output rise or fall voltage waveform during a transition. These groups allow the creation
of output voltage waveforms as a function of time. The ecsm_capacitance group describes
the input capacitance during the rise or fall transition. The input capacitance can be specified
as a function of input transition and output load.

Note: In accordance with ECSM specification version 1.2, the ecsm_capacitance group
also allows you to represent the input pin capacitance as a function of input transition and
output load.

All three groups are defined within the rise_transition or fall_transition group
within a timing group for regular delay arcs, and within the retain_rise_slew or
retain_fall_slew group within a timing group for retain delay arcs. The
October 2010 1509 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
rise_transition, fall_transition, retain_rise_slew, and retain_fall_slew
groups specify the output slew or transition time as a function of the input net transition and
total output capacitance.

1. To include these groups in a library, add the following define_group statements to the
library.

define_group(ecsm_waveform, rise_transition);

define_group(ecsm_waveform, fall_transition);

define_group(ecsm_waveform_set, rise_transition);

define_group(ecsm_waveform_set, fall_transition);

define_group(ecsm_capacitance, rise_transition);

define_group(ecsm_capacitance, fall_transition);

define_group(ecsm_capacitance, pin);

or:

define_group(ecsm_waveform, retain_rise_slew);

define_group(ecsm_waveform, retain_fall_slew);

define_group(ecsm_waveform_set, retain_rise_slew);

define_group(ecsm_waveform_set, retain_fall_slew);

define_group(ecsm_capacitance, retain_rise_slew);

define_group(ecsm_capacitance, retain_fall_slew);

define_group(ecsm_capacitance, pin);

2. Add the following define statements to the library to define attributes for the groups:

define(index_1, ecsm_waveform, string);

define(values, ecsm_waveform, string);

define(values, ecsm_waveform_set, string);

define(values, ecsm_capacitance, string);

Note: The ecsm_waveform_set group must be named using a reference to a lookup table
template defined with the ecsm_lut_template construct. Add the following
define_group and define statements to the library to describe the lookup template table:

define_group(ecsm_lut_template, library);

define(variable_1, ecsm_lut_template, string);

define(index_1, ecsm_lut_template, string);

You must also include a version statement to enable the exact processing of ECSM
constructs. Add the following version statement in the library:

define(ecsm_version, library, float);

The current version is 1.2.
October 2010 1510 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
ecsm_waveform Group

The ecsm_waveform group enables the output voltage waveforms to be specified separately
for each index permutation suggested by the slew and load indexes. It also enables each
waveform to be sampled at different points so that waveforms that are predominantly linear,
can be represented with fewer sample points. The number of ecsm_waveform groups must
match the number of entries in the values attribute of the rise_transition,
fall_transition, retain_rise_slew or retain_fall_slew group.

The name of the ecsm_waveform group must be an integer enclosed within quotation
marks. The minimum value of the integer must be 0, and the maximum value must be a
number that is one less than the number of entries in the values attribute of the
rise_transition, fall_transition, retain_rise_slew or retain_fall_slew
group.

Including the ecsm_waveform group in the rise_transition, fall_transition,
retain_rise_slew or retain_fall_slew group specifies that all information related to
the transition arc also applies to the ecsm_waveform group. If not explicitly specified, the
lookup template name and the index overrides are inherited from the rise_transition,
fall_transition, retain_rise_slew or retain_fall_slew group. Attributes
associated with the timing group in which the rise_transition, fall_transition,
retain_rise_slew or retain_fall_slew group resides are also associated with the
ecsm_waveform group, including related_pin, timing_sense, and timing_type.

Figure 51-1 on page 1512 shows four sampled output voltage waveforms that begin a
transition at 1 nanosecond. The following example represents an ecsm_waveform group (for
a regular delay arc) that specifies the points on each waveform shown in the figure:

rise_transition(temp__1x4) {

index_1 : "0.1n";

index_2 : "0.1p 0.2p 0.3p 0.4p";

values ("0.01n, 0.02n, 0.026n, 0.45n) ;

ecsm_waveform("0") {

index_1 : "0.1, .3, .7,.9";

values : "1.005n, 1.012n, 1.018n, 1.02n";

}

ecsm_waveform("1") {

index_1 : "0.1, .48, .7,.9";

values : "1.011n, 1.02n, 1.027n, 1.032n";

}

ecsm_waveform("2") {

index_1 : "0.1, .2, .4, .7,.9";
October 2010 1511 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
values : "1.015n, 1.02n, 1.028n, 1.035n, 1.07n";

}

ecsm_waveform("3") {

index_1 : "0.1, .2, .45, .7,.9";

values : "1.021n, 1.029n, 1.04n, 1.06n, 1.07n";

}

}

Figure 51-1 Sampled Waveform

The following example represents an ecsm_waveform group for a retain delay arc:

retain_rise_slew(delay_template_6x6) {

index_1 ("0.001, 0.0105, 0.02, 0.039, 0.077, 0.152");

index_2 ("0.012007, 0.09354, 0.189187, 0.373938, 0.757224, 1.50616");

values (\

 "0.026141, 0.027748, 0.031751, 0.038769, 0.051329, 0.070025", \

 "0.136231, 0.135178, 0.137198, 0.137161, 0.145185, 0.160992", \

 "0.247332, 0.247016, 0.244592, 0.244943, 0.251245, 0.260942", \

 "0.469122, 0.469234, 0.463448, 0.467459, 0.464259, 0.478051", \

 "0.912834, 0.903097, 0.907181, 0.907186, 0.907485, 0.902419", \

 "1.78894, 1.77071, 1.78538, 1.78471, 1.76567, 1.781");
October 2010 1512 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
ecsm_waveform("0") {

index_1 : "0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98" ;

values : "0.100926, 0.104628, 0.108441, 0.112042, 0.11568, 0.119465,
0.12354, 0.128418, 0.134582, 0.144439, 0.160979" ;

}

ecsm_waveform("1") {

index_1 : "0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98" ;

values : "0.101614, 0.108072, 0.113352, 0.117633, 0.121708, 0.125782,
0.129998, 0.13488, 0.141099, 0.15062, 0.164307" ;

}

ecsm_waveform("2") {

index_1 : "0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98" ;

values : "0.1019, 0.109498, 0.116861, 0.122593, 0.127486, 0.132252,
0.136939, 0.142209, 0.148612, 0.158116, 0.178427" ;

}

ecsm_waveform("3") {

index_1 : "0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98" ;

values : "0.103866, 0.119331, 0.129292, 0.137018, 0.143679, 0.149411,
0.155144, 0.161135, 0.168061, 0.178948, 0.198529" ;

}

...

ecsm_waveform("35") {

index_1 : "0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98" ;

values : "0.148963, 0.344816, 0.57925, 0.813683, 1.0576, 1.3144, 1.59557,
1.93059, 2.36025, 2.98918, 4.13212" ;

}

}

ecsm_waveform Attributes

Two simple attributes are allowed in an ecsm_waveform group:

■ index_1

The index_1 attribute is a comma-separated list of floating-point numbers representing
normalized output voltage sample points. These values are normalized and must be
between 0.0 and 1.0.

■ values

The values attribute is a comma-separated list of floating-point numbers representing
the times at which the output voltages are sampled. The number of floating-point
numbers must be equal to the number of entries in the rise_transition,
October 2010 1513 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
fall_transition, retain_rise_slew or retain_fall_slew table multiplied by
the number of entries in the index_1 attribute. The time entries in this attribute must
monotonically increase, but it is not necessary to start from a time reference of 0.

Each value represents the time at which the corresponding sampled point in the
index_1 list is crossed for the first time. The index_1 and values attributes must have
the same number of floating-point entries. Each ecsm_waveform group can have a
different number of entries for this attribute; however, the number of entries for a group
must match the number of points in the corresponding index_1 attribute. The time units
for this attribute use the value of the library-level time_unit attribute.

Waveform Order and Size

It is not necessary for ecsm_waveform groups to appear in order. However, the integer
number of ecsm_waveform groups must correspond exactly to the number of entries in the
values attribute of the rise_transition or fall_transition group. The parser uses
the integer number to determine the value of index_1 and index_2.

The ecsm_waveform group provides more accurate voltage waveforms using a smaller
number of sampling points. You can use any kind of waveform reduction method to obtain the
minimum number of points, and linear interpolation to eliminate those points between two
voltage points. Set the interpolation error to less than 0.001.

ecsm_waveform_set Group

The ecsm_waveform_set group enables output voltage waveforms for all index
permutations to be stored in the same group. It creates more compact tables; however, each
waveform must use the same sampling voltages.

For example, the following ecsm_waveform_set group uses five sampling voltages to
describe the waveforms in Figure 51-1 on page 1512:

rise_transition(temp_1X4) {

index_1 : "0.1n";

index_2 : "0.1p 0.2p 0.3p 0.4p";

ecsm_waveform_set(template_5_ecsm_table) {

index_1 : "0.1, 0.3, 0.5, 0.7, 0.9"

values : "1.005n, 1.012n, 1.014n, 1.017n, 1.02n, \

1.011n, 1.017n, 1.021n, 1.027n, 1.033n, \

1.017n, 1.023n, 1.03n, 1.035n, 1.042n, \

1.021n, 1.033n, 1.041n, 1.05n, 1.06n"

}

October 2010 1514 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
}

The name of the ecsm_waveform_set group must be the name of a lookup table template
defined with the ecsm_lut_template construct. The ecsm_lut_template table defines
the points at which the output voltage is sampled. The sample points can be overridden within
the ecsm_waveform_set group, if required.

Attributes associated with the timing group in which the rise_transition,
fall_transition, retain_rise_slew or retain_fall_slew group resides are also
associated with the ecsm_waveform_set group, including related_pin,
timing_sense, and timing_type.

Including the ecsm_waveform_set group in the rise_transition, fall_transition,
retain_rise_slew or retain_fall_slew group specifies that all information related to
the transition arc also applies to the ecsm_waveform_set group. If not explicitly specified,
the lookup table template name and the index overrides are inherited from the
rise_transition, fall_transition, retain_rise_slew or retain_fall_slew
group.

ecsm_waveform_set Attributes

Two simple attributes are allowed in an ecsm_waveform_set group:

■ index_1

The index_1 attribute is a comma-separated list of floating-point numbers representing
normalized output voltage sample points. These values are normalized and must be
between 0.0 and 1.0.

■ values

The values attribute is a comma-separated list of floating-point numbers representing
the times at which the output voltages are sampled. All waveforms corresponding to the
entries in the values attribute within the rise_transition, fall_transition,
retain_rise_slew or retain_fall_slew group are compactly represented. The
number of floating-point numbers must be equal to the number of entries in the
rise_transition, fall_transition, retain_rise_slew or
retain_fall_slew table multiplied by the number of entries in the index_1 attribute.
The time entries in this attribute must monotonically increase, but it is not necessary to
start from a time reference of 0.

Each value represents the time at which the corresponding sampled point in the
index_1 list is crossed for the first time. The time units for this attribute use the value of
the library-level time_unit attribute.
October 2010 1515 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
Waveform Order and Size

Waveforms are processed in an ecsm_waveform_set group in the order specified by the
rules used to analyze the values within a rise_transition, fall_transition,
retain_rise_slew or retain_fall_slew group. The indexes are assumed to change
outwardly from the innermost row. The sample points specified in the index_1 attribute
within the ecsm_waveform_set, or in the referenced template, are assumed to be in the
innermost loop.

The ecsm_waveform_set group outputs the most compact table, although you can have
more points for waveforms that switch very fast. You should have at least five points to
represent the waveform. You usually need to add more points after the 50 percent period.

➤ Use the following eight sampling voltage points for rising transition time:

0.05, 0.1, 0.3, 0.5, 0.6, 0.8, 0.9, 0.95

➤ Use the following eight points for a falling transition:

0.95, 0.9, 0.7, 0.5, 0.4, 0.2, 0.1, 0.05

You can add sampling points to obtain more accurate models.

ecsm_capacitance Group

The ecsm_capacitance group describes the input capacitance during the rise or fall
transition. It specifies the input capacitance for each input transition and capacitive load
defined by the specified lu_table_template or index_1 and index_2 overrides. The
indexes are inherited from the specified lu_table_template or index_1 and index_2
overrides within the rise_transition, fall_transition, retain_rise_slew or
retain_fall_slew group, and cannot be overridden. The ecsm_capacitance group
requires the name rise or fall, and must match the transition direction of the parent group.

Including the ecsm_capacitance group in the rise_transition, fall_transition,
retain_rise_slew or retain_fall_slew group specifies that the capacitance values
are processed in the order specified by the rules used to analyze the values within a
rise_transition, fall_transition, retain_rise_slew or retain_fall_slew
group.

The following example represents an ecsm_capacitance group in a library for a regular
delay arc:

rise_transition(temp_1x4) {

index_1 : “0.1n”;

index_2 : “0.1p 0.2p 0.3p 0.4p”;

values (“0.01n, 0.02n, 0.026n, 0.45n”);
October 2010 1516 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
ecsm_capacitance(rise) {

values : “0.01, 0.02, 0.03, 0.04”;

}

}

The following example represents an ecsm_capacitance group in a library for a retain
delay arc:

retain_rise_slew(delay_template_6x6) {

index_1 ("0.001, 0.0105, 0.02, 0.039, 0.077, 0.152");

index_2 ("0.012007, 0.09354, 0.189187, 0.373938, 0.757224, 1.50616");

values (\

 "0.026141, 0.027748, 0.031751, 0.038769, 0.051329, 0.070025", \

 "0.136231, 0.135178, 0.137198, 0.137161, 0.145185, 0.160992", \

 "0.247332, 0.247016, 0.244592, 0.244943, 0.251245, 0.260942", \

 "0.469122, 0.469234, 0.463448, 0.467459, 0.464259, 0.478051", \

 "0.912834, 0.903097, 0.907181, 0.907186, 0.907485, 0.902419", \

 "1.78894, 1.77071, 1.78538, 1.78471, 1.76567, 1.781");

ecsm_capacitance(rise) {

values : "0.000967, 0.001051, 0.001088, 0.001122, 0.001151, 0.001176, \

0.000967, 0.001051, 0.001088, 0.001122, 0.001151, 0.001176, \

0.000967, 0.001051, 0.001088, 0.001122, 0.001151, 0.001176, \

0.000967, 0.001051, 0.001088, 0.001122, 0.001151, 0.001176, \

0.000967, 0.001051, 0.001088, 0.001122, 0.001151, 0.001176, \

0.000967, 0.001051, 0.001088, 0.001122, 0.001151, 0.001176" ;

}

}

October 2010 1517 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
Including the ecsm_capacitance group in the pin group allows you to represent the input
pin capacitance as a function of input transition and output load. For example:

cell (cellname) {

pin (pinname) {

ecsm_capacitance(rise) {

index_1 : "0.1n 0.2n";

values : "0.01, 0.02";

}

ecsm_capacitance(fall) {

index_1 : "0.1n 0.2n";

values : "0.01, 0.02 ";

}

}

}

Attributes associated with the timing group in which the pin group resides are also
associated with the ecsm_capacitance group, including timing_sense, and
timing_type.

ecsm_capacitance Attributes

One simple attribute is allowed in an ecsm_capacitance group:

■ values

The values attribute is a comma-separated list of floating-point numbers representing
the input capacitance at each specified index point. The values for index_1 and
index_2 cannot be overridden and are inherited from the rise_transition,
fall_transition, retain_rise_slew or retain_fall_slew group. The number
of floating point numbers must be equal to the number of entries in the values attribute
in the rise_transition, fall_transition, retain_rise_slew or
retain_fall_slew group. The capacitive units for this attribute use the same value as
the library-level capacitive_load_unit attribute.

Figure 51-2 on page 1519 shows four sampled output voltage waveforms that begin a
transition at 1 nanosecond.
October 2010 1518 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
Figure 51-2 Sampled Waveform
October 2010 1519 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
Example

The following example of a Liberty library includes ECSM extensions:

library (typ) {

delay_model : table_lookup ;

date : "Tue Mar 25 14:54:48 CST 2003" ;

time_unit : 1ns ;

voltage_unit : 1V ;

current_unit : 1mA ;

capacitive_load_unit(1, pf);

pulling_resistance_unit : 1kohm ;

leakage_power_unit : 1mW ;

input_threshold_pct_fall : 50.0 ;

input_threshold_pct_rise : 50.0 ;

output_threshold_pct_fall : 50.0 ;

output_threshold_pct_rise : 50.0 ;

slew_lower_threshold_pct_fall : 10.0 ;

slew_lower_threshold_pct_rise : 10.0 ;

slew_upper_threshold_pct_fall : 90.0 ;

slew_upper_threshold_pct_rise : 90.0 ;

nom_process : 1.0 ;

nom_temperature : 25 ;

nom_voltage : 1.5 ;

default_cell_leakage_power : 0.0 ;

default_fanout_load : 1.0 ;

default_inout_pin_cap : 1.0 ;

default_input_pin_cap : 1.0 ;

default_leakage_power_density : 0.0 ;

default_output_pin_cap : 0.0 ;

define_group(ecsm_lut_template, library);

define_group(ecsm_waveform_set, rise_transition);

define_group(ecsm_waveform_set, fall_transition);

define_group(ecsm_waveform, rise_transition);

define_group(ecsm_waveform, fall_transition);

define_group(ecsm_capacitance, rise_transition);

define_group(ecsm_capacitance, fall_transition);

define(ecsm_version, library, float)

define(variable_1, ecsm_lut_template, string);

define(index_1, ecsm_lut_template, string);

define(index_1, ecsm_waveform_set, string);
October 2010 1520 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
define(values, ecsm_waveform_set, string);

define(index_1, ecsm_waveform, string);

define(values, ecsm_waveform, string);

define(index_1, ecsm_capacitance, string);

ecsm_version : 1.2

input_voltage(default) {

vil : 0.0 ;

vih : 1.5 ;

vimin : 0.0 ;

vimax : 1.5 ;

}

operating_conditions(typ) {

process : 1.0 ;

temperature : 25 ;

voltage : 1.5 ;

}

output_voltage(default) {

vol : 0.0 ;

voh : 1.5 ;

vomin : 0.0 ;

vomax : 1.5 ;

}

lu_table_template(tmg_ntin_oload_5x5) {

variable_1 : input_net_transition ;

variable_2 : total_output_net_capacitance ;

index_1("1.0, 2.0, 3.0, 4.0, 5.0");

index_2("1.0, 2.0, 3.0, 4.0, 5.0");

}

power_lut_template(pwr_tin_oload_3x3) {

variable_1 : input_transition_time ;

variable_2 : total_output_net_capacitance ;

index_1("1.0, 2.0, 3.0");

index_2("1.0, 2.0, 3.0");

}

ecsm_lut_template(ecsm_nvolt_5) {
October 2010 1521 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
variable_1 : normalized_voltage;

index_1 : "1.0, 2.0, 3.0, 4.0, 5.0";

}

cell(INV1) {

area : 1.0 ;

cell_leakage_power : 4.467483e-06 ;

pin(A) {

capacitance : 0.00230301522 ;

direction : input ;

}

pin(Z) {

direction : output ;

function : "!A" ;

internal_power()

related_pin : "A" ;

power(pwr_tin_oload_3x3) {

index_1("0.074822, 0.249940, 0.828130");

index_2("0.000010, 0.051277, 0.412740");

values("1.673300, 1.478500, 1.323100", \

"1.746800, 1.541300, 1.372000", \

"2.187000, 1.934600, 1.669400");

}

}

timing() {

related_pin : "A" ;

timing_sense : negative_unate ;

timing_type : combinational ;

cell_fall(tmg_ntin_oload_5x5) {

index_1("0.01, 0.06494796, 0.2578274, 0.6261584, 1.2");

index_2("0.01, 0.030465, 0.1023016, 0.239484, 0.4532074");

values("0.0176577, 0.0450122, 0.1403913, 0.3230411, 0.6076288", \

"0.0273645, 0.055584, 0.1511069, 0.3335839, 0.6181163", \

"0.0310345, 0.0807605, 0.1886131, 0.3696548, 0.6535805", \

"0.0133436, 0.0864669, 0.2438067, 0.4415566, 0.7228604", \
October 2010 1522 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
"0.000844, 0.0666426, 0.2756392, 0.5369333, 0.8356729");

}

cell_rise(tmg_ntin_oload_5x5) {

index_1("0.01, 0.06494796, 0.2578274, 0.6261584, 1.2");

index_2("0.01, 0.01745396, 0.043619, 0.09358491, 0.1714293");

values("0.0403989, 0.0630895, 0.1434606, 0.2971998, 0.5368189", \

"0.0520428, 0.0741513, 0.1547805, 0.3085111, 0.5480488", \

"0.0903201, 0.1192166, 0.2002351, 0.3506313, 0.5883372", \

"0.1425557, 0.1785485, 0.2836617, 0.4403199, 0.6725487", \

"0.2117557, 0.2558067, 0.379942, 0.5725538, 0.8146103");

}

fall_transition(tmg_ntin_oload_5x5) {

index_1("0.01, 0.06494796, 0.2578274, 0.6261584, 1.2");

index_2("0.01, 0.030465, 0.1023016, 0.239484, 0.4532074");

values("0.0331679, 0.0861214, 0.2739402, 0.6353564, 1.198358", \

"0.0484462, 0.095128, 0.274244, 0.6354434, 1.198372", \

"0.1031723, 0.1519032, 0.3070776, 0.6442821, 1.198351", \

"0.1955602, 0.2593558, 0.4179065, 0.7180122, 1.235083", \

"0.3278351, 0.4087576, 0.6007222, 0.8868572, 1.358997");

ecsm_waveform("0") {

index_1 : "0.1, 0.3, 0.5, 0.7, 0.9" ;

values : "0.0, 0.02, 0.025, 0.45, 0.85" ;

}

ecsm_waveform("1") {

index_1 : "0.1, 0.3, 0.5, 0.7, 0.9" ;

values : "0.0, 0.02, 0.025, 0.45, 0.85" ;

}

ecsm_capacitance(fall) {

values : "0.00, 0.01, 0.02, 0.03, 0.04, \

0.05, 0.06, 0.07, 0.08, 0.09, \

0.10, 1.11, 0.12, 0.13, 0.14, \

0.15, 0.16, 0.17, 0.18, 0.19, \

0.20, 0.21, 0.22, 0.23, 0.24" ;

}

}

October 2010 1523 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
rise_transition(tmg_ntin_oload_5x5) {

index_1("0.01, 0.06494796, 0.2578274, 0.6261584, 1.2");

index_2("0.01, 0.01745396, 0.043619, 0.09358491, 0.1714293");

values("0.0802415, 0.132298, 0.3133739, 0.6588676, 1.197433", \

"0.0894187, 0.1360771, 0.3130822, 0.6588872, 1.197413", \

"0.1337757, 0.1777775, 0.3401834, 0.6683502, 1.197639", \

"0.2099556, 0.261308, 0.4215237, 0.7312425, 1.236211", \

"0.3291244, 0.3794321, 0.5553791, 0.8574848, 1.341265");

ecsm_waveform("1") {

index_1 : "0.1, 0.3, 0.5, 0.7, 0.9" ;

values : "0.0, 0.02, 0.025, 0.45, 0.85" ;

}

ecsm_waveform("0") {

index_1 : "0.1, 0.3, 0.5, 0.7, 0.9" ;

values : "0.0, 0.02, 0.025, 0.45, 0.85" ;

}

ecsm_capacitance(rise) {

values : "0.00, 0.01, 0.02, 0.03, 0.04, \

0.05, 0.06, 0.07, 0.08, 0.09, \

0.10, 0.11, 0.12, 0.13, 0.14, \

0.15, 0.16, 0.17, 0.18, 0.19, \

0.20, 0.21, 0.22, 0.23, 0.24" ;

}

}

}

}

}

cell(INV2) {

area : 1.0 ;

cell_leakage_power : 4.467483e-06 ;

pin(A) {

capacitance : 0.00230301522 ;

direction : input ;

}

pin(z) {
October 2010 1524 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
direction : output ;

function : "!A" ;

internal_power() {

related_pin : "A" ;

power(pwr_tin_oload_3x3) {

index_1("0.074822, 0.249940, 0.828130") ;

index_2("0.000010, 0.051277, 0.412740");

values("1.673300, 1.478500, 1.323100", \

"1.746800, 1.541300, 1.372000", \

"2.187000, 1.934600, 1.669400");

}

}

timing() {

related_pin : "A" ;

timing_sense : negative_unate ;

timing_type : combinational ;

cell_fall(tmg_ntin_oload_5x5) {

index_1("0.01, 0.06494796, 0.2578274, 0.6261584, 1.2");

index_2("0.01, 0.030465, 0.1023016, 0.239484, 0.4532074");

values("0.0176577, 0.0450122, 0.1403913, 0.3230411, 0.6076288", \

"0.0273645, 0.055584, 0.1511069, 0.3335839, 0.6181163", \

"0.0310345, 0.0807605, 0.1886131, 0.3696548, 0.6535805", \

"0.0133436, 0.0864669, 0.2438067, 0.4415566, 0.7228604", \

"0.000844, 0.0666426, 0.2756392, 0.5369333, 0.8356729");

}

cell_rise(tmg_ntin_oload_5x5) {

index_1("0.01, 0.06494796, 0.2578274, 0.6261584, 1.2");

index_2("0.01, 0.01745396, 0.043619, 0.09358491, 0.1714293");

values("0.0403989, 0.0630895, 0.1434606, 0.2971998, 0.5368189", \

"0.0520428, 0.0741513, 0.1547805, 0.3085111, 0.5480488", \

"0.0903201, 0.1192166, 0.2002351, 0.3506313, 0.5883372", \

"0.1425557, 0.1785485, 0.2836617, 0.4403199, 0.6725487", \

"0.2117557, 0.2558067, 0.379942, 0.5725538, 0.8146103");

}

fall_transition(tmg_ntin_oload_5x5) {
October 2010 1525 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
index_1("0.01, 0.06494796, 0.2578274, 0.6261584, 1.2");

index_2("0.01, 0.030465, 0.1023016, 0.239484, 0.4532074");

values("0.0331679, 0.0861214, 0.2739402, 0.6353564, 1.198358", \

"0.0484462, 0.095128, 0.274244, 0.6354434, 1.198372", \

"0.1031723, 0.1519032, 0.3070776, 0.6442821, 1.198351", \

"0.1955602, 0.2593558, 0.4179065, 0.7180122, 1.235083", \

"0.3278351, 0.4087576, 0.6007222, 0.8868572, 1.358997");

ecsm_waveform_set(ecsm_nvolt_5) {

index_1 : "0.1, 0.3, 0.5, 0.7, 0.9" ;

values : "0.000, 0.02, 0.025, 0.45, 0.85, \

"0.001, 0.02, 0.025, 0.45, 0.85, \

"0.002, 0.02, 0.025, 0.45, 0.85, \

"0.003, 0.02, 0.025, 0.45, 0.85, \

"0.004, 0.02, 0.025, 0.45, 0.85, \

"0.005, 0.02, 0.025, 0.45, 0.85, \

"0.006, 0.02, 0.025, 0.45, 0.85, \

"0.007, 0.02, 0.025, 0.45, 0.85, \

"0.008, 0.02, 0.025, 0.45, 0.85, \

"0.009, 0.02, 0.025, 0.45, 0.85, \

"0.010, 0.02, 0.025, 0.45, 0.85, \

"0.011, 0.02, 0.025, 0.45, 0.85, \

"0.012, 0.02, 0.025, 0.45, 0.85, \

"0.013, 0.02, 0.025, 0.45, 0.85, \

"0.014, 0.02, 0.025, 0.45, 0.85, \

"0.015, 0.02, 0.025, 0.45, 0.85, \

"0.016, 0.02, 0.025, 0.45, 0.85, \

"0.017, 0.02, 0.025, 0.45, 0.85, \

"0.018, 0.02, 0.025, 0.45, 0.85, \

"0.019, 0.02, 0.025, 0.45, 0.85, \

"0.020, 0.03, 0.035, 0.45, 0.85, \

"0.021, 0.03, 0.035, 0.45, 0.85, \

"0.022, 0.03, 0.035, 0.45, 0.85, \

"0.023, 0.03, 0.035, 0.45, 0.85, \

"0.024, 0.03, 0.035, 0.45, 0.85" ;

}

ecsm_capacitance(fall) {

values : "0.00, 0.01, 0.02, 0.03, 0.04, \

0.05, 0.06, 0.07, 0.08, 0.09, \

0.10, 1.11, 0.12, 0.13, 0.14, \
October 2010 1526 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
0.15, 0.16, 0.17, 0.18, 0.19, \

0.20, 0.21, 0.22, 0.23, 0.24" ;

}

}

rise_transition(tmg_ntin_oload_5x5) {

index_1("0.01, 0.06494796, 0.2578274, 0.6261584, 1.2");

index_2("0.01, 0.01745396, 0.043619, 0.09358491, 0.1714293");

values("0.0802415, 0.132298, 0.3133739, 0.6588676, 1.197433", \

"0.0894187, 0.1360771, 0.3130822, 0.6588872, 1.197413", \

"0.1337757, 0.1777775, 0.3401834, 0.6683502, 1.197639", \

"0.2099556, 0.261308, 0.4215237, 0.7312425, 1.236211", \

"0.3291244, 0.3794321, 0.5553791, 0.8574848, 1.341265");

ecsm_waveform_set(ecsm_nvolt_5) {

index_1 : "0.0, 0.2, 0.4, 0.6, 0.8" ;

values : "0.000, 0.02, 0.025, 0.45, 0.85, \

"0.001, 0.02, 0.025, 0.45, 0.85, \

"0.002, 0.02, 0.025, 0.45, 0.85, \

"0.003, 0.02, 0.025, 0.45, 0.85, \

"0.004, 0.02, 0.025, 0.45, 0.85, \

"0.005, 0.02, 0.025, 0.45, 0.85, \

"0.006, 0.02, 0.025, 0.45, 0.85, \

"0.007, 0.02, 0.025, 0.45, 0.85, \

"0.008, 0.02, 0.025, 0.45, 0.85, \

"0.009, 0.02, 0.025, 0.45, 0.85, \

"0.010, 0.02, 0.025, 0.45, 0.85, \

"0.011, 0.02, 0.025, 0.45, 0.85, \

"0.012, 0.02, 0.025, 0.45, 0.85, \

"0.013, 0.02, 0.025, 0.45, 0.85, \

"0.014, 0.02, 0.025, 0.45, 0.85, \

"0.015, 0.02, 0.025, 0.45, 0.85, \

"0.016, 0.02, 0.025, 0.45, 0.85, \

"0.017, 0.02, 0.025, 0.45, 0.85, \

"0.018, 0.02, 0.025, 0.45, 0.85, \

"0.019, 0.02, 0.025, 0.45, 0.85, \

"0.020, 0.03, 0.035, 0.45, 0.85, \

"0.021, 0.03, 0.035, 0.45, 0.85, \

"0.022, 0.03, 0.035, 0.45, 0.85, \

"0.023, 0.03, 0.035, 0.45, 0.85, \

"0.024, 0.03, 0.035, 0.45, 0.85" ;
October 2010 1527 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Cadence-Specific Liberty Extensions
}

ecsm_capacitance(rise) {

values : "0.00, 0.01, 0.02, 0.03, 0.04, \

0.05, 0.06, 0.07, 0.08, 0.09, \

0.10, 1.11, 0.12, 0.13, 0.14, \

0.15, 0.16, 0.17, 0.18, 0.19, \

0.20, 0.21, 0.22, 0.23, 0.24" ;

}

}

}

}

}

}

October 2010 1528 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Index
Symbols
.enc files 64

Numerics
32-bit mode, availability of 58
64-bit mode, starting 58, 71

A
AC current violations, checking 1251
AC limit

verifying 1251
actual value, in Violation Browser 1253
ADDHIERINST 1395
Adding logical hierarchy without creating

additional hierarchy 385
ADDINST 1396
ADDNET 1399
Amoeba view

using during placement 575
antenna cells

ensuring connectivity after inserting with
NanoRoute router 773

highlighting after inserting with
NanoRoute router 774

See also process antenna
antenna violations

as distinguised from process antenna
violations by verifyConnectivity
and verifyGeometry 1245

antennas
types of connectivity and geometry

violations reported 1244
antennas, trimming 683
area I/O

See also flip chip
placement, and I/O assignment

files 120
array vias

in yield report, definition of 1267
in yield technology file 1282

assign nets, removing from Verilog

netlist 144
Astro or Apollo, using with NanoRoute

router 777
ATTACHTERM 1401
attributes

NanoRoute router 725
persistency of 725

Automatic Floorplan Synthesis
adjusting macro placement

adjusting a specific macro
pack 1313

adjusting within a specified
area 1315

interactive commands, using 1313
constraint file

creating a seed section 1299
seed section, definition of 1299

data preparation 1297
examing modules for seed

selecion 1300
floorplan analysis

checking macro placement 1312
checking the seed report 1312
visual check 1311

generating an initial floorplan 1304
guidelines for hierarchical

floorplanning 1307
ideal designs for use with 1294
input files for 1297
macro pack, definition of 1313
marking refinement steps 1317
overview 1294
preplacing cells with I/O

connections 1297
restoring design to previous state during

refinement 1318
seed selection

automatic selection 1298
definition 1297
how seeds are used 1297
optimal seed number 1298
user defined selection 1298

setting global parameters for 1304
task flow 1295
use model 1304

automatic mode of CTS 596
October 2010 1529 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Automatic Power Planning (APP),
described 459

B
back-end designer, and approach to basic

floorplanning 373
base license, definition of 52
bindkeys, for wire editing 673
Blackbox Timing Analysis, described 239
blackboxes

deleting 280
flows 278
pins 287
R0 transformation 282
specifying, methods of 277

block pins
orientation of, changing, to resolve route

congestion 709
block rings

creating 454
specifying coordinates with 455

block-level partitions, creating 349
blocks

changing module status from fence 348
bounding box, defining 384
buffer trees, inspecting routing topology of in

interactive ECO 1143
buffers

added during timing optimization,
viewing 1133

attaching to I/O pins in interactive
ECO 1139

hole punch 341
inserting 342

problems with, in timing analysis 1020
bump arrays 170
bumps

assigning 174
I/O assignment files and 120
routing 175
viewing flight lines 175, 181, 202

bus names, and partition pin guides 292
bus routing

description of 787

C
CAA. See critical area analysis

Cadence Help, launching 77
capacitance calculations of the mixed signal

router 794
capacitance comparison, graph and

report 972
capacitance table

generating 958
reading 965

CDS_AUTO_64BIT environment variable,
setting 59, 71

cell blockage visibility, controlling 690
cell delay specification, and CTS 603
cell padding

and clock buffers 566
and highly localized clocks 566
and placement space 566

cell probability, section in yield technology
file 1282

cell timing model, and CTS 610
cells

placing 570
channel estimation, reporting

example 347
channelless designs, and

feedthroughs 324
clock buffers, and cell padding 566
clock fanout buffers, limiting 632
clock grouping, and CTS 607
clock mesh 1109
clock nets

routing guide file in CTS for
NanoRoute 622

routing with NanoRoute router 747,
748, 755

setting attributes for with NanoRoute
router 747

clock tree specification file
automatic gated CTS section 628
clock grouping data section 627
clock tree topology section 627
contents 615
creating 615 to 646
example 617
global directive section 624
macro model data section 623
and maximum skew value 607
NanoRoute attribute section 622
order of items in 615

clock tree synthesis. See CTS
clones, orientation of, in partitions 283
command names, completion 60
October 2010 1530 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Common Timing Engine. See CTE
configuration files

loading 139
congestion

checking with NanoRoute router 736
resolving with density screens 709
resolving by reorienting block pins 709

congestion analysis table, generated by
NanoRoute router 736

congestion distribution report
in Trial Route 702
usage and routing overflow percentage

values in 702
congestion distribution table

acceptable values in 699
valued described 704

congestion map
used by NanoRoute router 715, 738

congestion markers, in Trial Route,
described 699

connectivity
loops, detecting 1238
types of violations reported 1238
verifying 1238

console, Encounter, described 60
constraint file

creating for mixed signal router 810
editing for mixed signal router 818
format for mixed signal router 791
loading for mixed signal router 815
sample of mixed signal router 820

constraint files, with timing budgets for
partitions 913

constraints
differential pair 800
keywords used by mixed signal

router 792
matched nets 797
nets 792
shielding 807

control characters, using 61
conventions, syntax and typographic 42
coordinates, using to specify block rings or

core rings 455
core dimensions

margin, described 376
size, described 376

core rings
creating 454
specifying coordinates with 455

core size, determining 381

core-to-I/O distance, specifying in
partitioning 285

costs
definition of yield costs 1266
formulas for yield costs 1291

CPF
block-level 503
bottom-up hierarchical flow 510
top-down hierarchical flow 495
top-level 506

creating sub-categories 1036
critical area analysis

definition of 1259
cross-probing, in Violation Browser 1253
crosstalk

correcting violations with NanoRoute
router 749

effect on incremental delay 1186
overview 1186
preventing violations with NanoRoute

router 749
CTE

using for timing-driven routing with
NanoRoute router 744

Ctrl-C
using 72, 720, 755, 1101, 1262

CTS
automatic mode 596

and gated clocks 597
and nets 596

and cell delay specification 603
cell timing model requirement 610
clock buffers, and cell padding 566
clock designs with tight areas 610
clock grouping and automatic

mode 607
clock tree specification file

automatic gated CTS section 628
clock grouping data section 627
clock tree topology section 627
contents 615
creating 615 to 646
example 617
global directive section 624
macro model data section 623
NanoRoute attribute section 622
order of items in 615

files required for 594
hierarchical CTS analysis 608
highly localized clock, and cell

padding 566
October 2010 1531 Product Version 9.1.3

Encounter Digital Implementation System User Guide
and INSERTION_DELAY
statement 603

log file headings 646
macro model delay specification 603
manual mode 595
modes 595
and module placement utilization 610
and pin balancing for macro

models 610
and pin instance delay

specification 603
and port delay specification 603
preparatory procedure 594
and recommended placement

utilization 567
tracing clock trees 597

cumulative defect data function
described 1261, 1289

custom macros
utilizing pre-defined feedthroughs 335

cut areas, and rectilinear partitions 284
cut layers, using NanoRoute router to repair

PAE violations on 774
cuts

creating for power domains 480
cutting shielding wires 683

D
data

checking before importing a design 134
exporting 146
importing 146

database
saving, with NanoRoute router 715

database units (DBU), adjusting the value of
for NanoRoute router 717

DBU. See database units
debugging

NanoRoute router 778
Debugging Timing Results 1024
decoupling capacitance

adding 578
defining cell candidates for 578
removing 579

DEF files
comparing with database 1146
comparison file format 1146

DEF syntax, unsupported 105
defect data function

described 1261, 1288
defect-limited yield

definition of 1258
DELETEBUFFER 1403
DELETEINST 1405
DELETENET 1407
demand, defined in Trial Route 703
density screens, using to resolve route

congestion 709
density, calculating 381
design

checking 130
checking data before importing 134
display area, described 374
importing 135
saving files 145

DETACHTERM 1409
detailed routing

description of 715
running in NanoRoute router 733
violations, troubleshooting 733, 778

die size
described 376

dielectric layer
syntax 1351

differential pair routing
constraint for 800
description of 786
shielding 790

differential signal routing 203, 467
diodes

 See also antenna cells, process
antennas

diodes, highlighting after inserting with
NanoRoute router 774

disambiguating command names 60
display area, for floorplanning 374
distributed processing

definition of 96
features that support 97
running 99

distributing jobs 370
DLY. See defect-limited yield
documentation, accessing 77
documents, related, list of 43
DRC violations

recognized by NanoRoute router 755
dynamic licenses

definition of 52
October 2010 1532 Product Version 9.1.3

Encounter Digital Implementation System User Guide
E
ECO

naming conventions, table of 1146
netlist, updating 1145
placement 1145

general principles 1145
ECO File

ADDHIERINST 1395
ADDINST 1396
ADDNET 1399
ATTACHTERM 1401
DELETEBUFFER 1403
DELETEINST 1405
DELETENET 1407
DETACHTERM 1409
Example 1413
INSERTBUFFER 1410

ECO flows
alternative pre-mask 1370
description 1368
GACORE cells 1388
post-mask from new netlist 1382
post-mask gate-array 1388
pre-mask 1378
pre-mask from new DEF 1374

Edit Route form
populating 674

editing wires. See wire editing, wires
effective resistance, description of 794
effective utilization (EU value) 380
electrostatic discharge cells 170
encounter command, syntax of 67
Encounter console, described 60
Encounter Digital Implementation System,

description of products in 48
Encounter software

interrupting 72
starting 66
stopping 72

encrypting libraries 128
end-cap cells

placing 558
removing 559

environment, run-time, setting 58
escape sequences, using 62
EU value 380
exporting

GDSII Stream or OASIS files 149
extraction

and capacitance comparison graph and
report 972

capacitance table
generating 958
reading 965

overview 948

F
fabrication process information 1341
fanouts, clock buffer, limiting 632
fat via, definition of 764
feedback buffer 324
feedthrough insertion, and partitioning 324
feedthroughs 322 to 343

buffers vs. routing 322
and channelless designs 324
channel-type 342
inserting 322, 323
pre-defined 335
replicating across ECO netlists 331
routing 341

fences
changing module status to block 348
constraints 377
module constraint types 377
restrictions 377

file selection, general description 141
files

required for CTS 594
routing blockage, generating 276
timing constraints 913
updating during a session 165
updating incrementally 165

filler cells
adding to MSV designs 576
implant layers 576
placing 576
placing gate-array style cells in

ECO 577
removing 577
replacing during process antenna repair

with NanoRoute router 774
Flight 375
flight lines

colors used by wire editor 678
definition 375
for bumps 175, 181, 202

flip chip
defined 170
October 2010 1533 Product Version 9.1.3

Encounter Digital Implementation System User Guide
flows
bump flow 177

methodology 170
routing bumps to I/O driver cells 180
testing package routing feasibility 178

floorplan
data, types 146, 148
display, described 374
loading 442
saving 442

floorplan files, containing routing blockage
data 276

floorplan objects
and partition feedthroughs 341

floorplanning
overview 372
relative 439 to 442
row spacing 382
sequence 373
specifying spare cells during 560
steps 373

footprint
using in timing optimization 1128

footprintless flow, using for timing
optimization 1127

form help, using 79
formula

used for yield costs 1291
used to calculate the probability of

failure 1288
used to derive defect data and

cumulative defect data functions
from each other 1290

front-end designer, and approach to basic
floorplanning 373

G
GACORE cells

ECO flows 1388
gated clocks, and CTS automatic

mode 597
gcells

definition of 714
gcells, obstructed and overflowed,

summarized in Trial Route congestion
distribution report 702

GDSII
and FOREIGN statements 150
exporting files to 149

map file format 156
merging files in 151
renaming LEF vias in 150
specifying floating fill in 161
specifying layers for nets in 162
specifying voltage levels in 162
support for GZIP format 149
suppressing text labels in 158

generic parameters, using 71
geometry

spacing violation checks during
verification of 1244

verifying 1242
global net connections 455
global routing

description of 714
running in NanoRoute router 733

Global Timing Debug 1024, 1036
guide constraints 377
guides, module constraint types 377

H
hard blocks

placing 555
hard blocks, changing status of partition

from 348
Help menu, using 78
help, command-line, using 79
help, GUI, using 79
help, launching Cadence Help 77
hierarchical clock tree analysis, and

CTS 608 to 609
hierarchical designs

timing budgeting, methods for 910
hierarchy icon, picture of 811
hole punch buffers, inserting 342
horizontal and vertical tracks, summarized in

Trial Route congestion distribution
report 702

I
I/O assignment files

multiple I/O rows in 119
ICT file

case sensitivity 1342
commands 1342
contents 1341
October 2010 1534 Product Version 9.1.3

Encounter Digital Implementation System User Guide
example 1355
format 1342

ILM 226
Creating 227
Interactive Uses 235
SI Support 235
Specifying ILM Directories 231

implant layers, for filler cells 576
implementation

block-level 271
top-level 273

incremental delay
crosstalk effect on 1186

initialization files 64
insert 322
INSERTBUFFER 1410
INSERTION_DELAY statement, and macro

models in CTS 603
inserts 323
instance groups

adding an instance to 383
deleting 383
saving to netlist 384
specifying 380

interactive ECO
naming conventions, table of 1146
overview 1136

interconnect capacitance modeling
creating ICT file 1341 to 1365

interrupting
batch script 73
Encounter software 72
NanoRoute 720, 1262
optDesign 1101

I/O assignment files
and area I/O placement 120
bumps and 120
creating 109
described 108
examples of I/O pads in 121
module pins in 123
rule-based, creating 120

I/O pads
core dimension size 376
and I/O assignment files 121

I/O pins, adding buffers to, in interactive
ECO 1139

island, and routing feedthroughs 342

J
JTAG cells

placing 580

K
keyboard shortcuts, for wire editing 673
keywords

mixed signal router constraint 792

L
layers

changing during wire editing 686
routing, checking metal density of 1240

LEF files
checking for availability before

importing 134
checking for compatibility with

NanoRoute router 716
LEF statements

for metal density 1240
for process antenna calculations 1247
for verifying geometry 1242
for VG 1242

LEF statements for 1242
LEF syntax, unsupported 105
libraries

checking for availability before
importing 134

timing 128
licenses

base license, definition of 52
checking out 53
dynamic license, definition of 52
finding more information on multi-

CPU 101
limiting search order of multi-CPU 101
multi-CPU license, definition of 53
releasing multi-CPU 101
strings (keys), table of Encounter 52

log file, congestion analysis table in 736
log files, viewing 75
Logical hierarchy manipulation 386
October 2010 1535 Product Version 9.1.3

Encounter Digital Implementation System User Guide
M
macro model delay, and CTS 603
macro models, pin banancing for 610
MACRO, creating cells in GDSII Stream or

OASIS format from 150
macros

placing 555
man command, using 80
manual mode of CTS 595
map file format, GDSII or OASIS,

described 156
master partitions, defined 282
matched net routing

constraint for 797
description of 782

maximum fanouts, limiting for clock
buffers 632

maximum floating area, verifying 1250
maximum skew value, and clock tree

specification file 607
maximum wire width, repairing violations

of 685
merging GDSII or OASIS files 151
metal density

LEF statements for 1240
verifying 1240

metal fill
adding over macros 897
connected, definition of 887
cross-vias not used in 887
definition of 884
floating 895
LEF statements for 893
macro density considerations of 897
power strapping recommendations

for 898
preparatory procedure 885
recommendations for 894
setting parameters for 893
staggering 886
tied-off 895
tied-off, definition of 887
timing aware 891
trimming 904

problems caused by vias 887
visibility of 885

Milkyway technology file 777
minimum cut violations, fixing 457
minimum spacing violations, fixing 457

mixed signal router
capacitance calculations of 797
constraint file

creating 810
editing 818
format of 791
keywords used in 792
loading 815
sample of 820

constraints
diffpair 800
matched nets 797
nets 792
shielding 807

specialized routing performed by 781
MMMC

specifying for timing optimization 1121
mode

standalone mode, NanoRoute
router 724

modes
auto query 674
CTS, automatic 596
CTS, manual 595
timing-aware metal fill 891

module constraint types
described 377
fence 377
guide 377
and physical design size 378
region 378
soft guide 378

module fences, restrictions 377
module guides 377
module pins, and I/O assignment files 123
module placement utilization, and CTS 610
module status, changing from fence to

block 348
-modulePlan

limitations of 555, 570
-modulePadding and 568
multi-threading and 571

modules
placement utilization and CTS 610

MSV (multiple supply voltage)
power analysis 493

MSV designs
adding end-cap cells to 559
adding filler cells to 576
adding well-tap cells to 558

multi-CPU ilcenses, definition of 53
October 2010 1536 Product Version 9.1.3

Encounter Digital Implementation System User Guide
multi-CPU processing
features that support 97

multi-cut vias, using 764
multiple I/O rows, specifying in I/O

assignment file 119
multiple supply voltage

flat flow 475
multiple-CPU processing

features that support using 96
placement 571

multi-threading
definition of 96
features that support 97
placement 571
running 99

N
naming conventions

for ECO 1146
for timing optimization 1133

NanoRoute router
773

adjusting the database units (DBU) value
for 717

Astro or Apollo, using with the
router 777

attributes
characteristics of 725
compared with options 725
listed. See setAttribute in the

Encounter Text Command
Reference.

clock nets
routing 748
setting attributes for 747

commands to run within Encounter
environment 723

congestion analysis table, using 736
congestion map 715, 738
congestion, checking 736
connectivity, power and ground

pins 773
crosstalk

correcting violations 749
preventing violations 749

CTE, using 744
database, saving 715
debugging 778
detailed routing 733

evaluating violations in 755
generating tracks for 718
global routing 733
hard spacing, forcing 771
LEF files, checking for problems in 716
nets, shielding 768
nondefault rule routing 771
nondefault spacing in 771
open net messages, meaning of 757
options

compared with attributes 725
crosstalk prevention 751
listed. See setNanoRouteMode in

the Encounter Text
Command Reference.

process antenna repair 775
via optimization 765

output files from 722
overlapping cells, checking for 717
overview 714
pin access, improving 717
pins, checking for under power

routes 718
postroute optimization in 735
preparatory procedure 716
prerouted nets, skipping during

routing 754, 768
routing

accelerating 728
clock nets 747, 755
detailed 715
distributed 728
ECO 753
global 714
shielded 767
signal-integrity driven 751
standalone mode 724
statistics report 722
strategy 732
wide wires 770

shielded routing 767, 768
signal integrity, preventing problems

with 749
soft spacing 771
soft spacing routing 771
table of violations 757
tapering wires in 770
timing graph, using with standalone

NanoRoute router 745
timing-driven routing 761
troubleshooting design problems 778
October 2010 1537 Product Version 9.1.3

Encounter Digital Implementation System User Guide
vias
checking for rotated 718
defining TOPOFSTACKONLY 717
fat, definition of 764
mapping Astro scheme format

of 777
minimizing the number of 765
optimizing 764
optimizing in selected nets 765
using multi-cut 764

violations
on upper layers 759
horizontal 755
marker placement for 755
process antenna, repairing 773
table for evaluating 757
types of 755
vertical 755
via 755

native extraction
detailed mode 951

net attributes
characteristics of in NanoRoute

router 725
net group names, and partition pin

guides 292
net names, and partition pin guides 292
netlists

ECO, replicating feedthrough
insertions 331

ECO, updating 1145
and feedthroughs 322
preparing 134
saving instance groups to 384
Verilog, concatenating for a partitioned

design 366
Verilog, removing Assign nets from 144

nets
and CTS automatic mode 597
deleting violated nets 763
names, and partition pin guides 292
shielding, with NanoRoute router 768

nets routing constraint 792
nondefault rule routing, NanoRoute

router 771
nonrectangular partitions 284

O
OASIS

and FOREIGN statements 150
exporting files to 149
map file format 156
merging files in 151
renaming LEF vias in 150
specifying floating fill in 161
specifying layers for nets in 162
specifying voltage levels in 162
support for GZIP format 149
suppressing text labels in 158

obstructed gcell information, summarized in
Trial Route congestion distribution
report 702

OCV 1008
on-chip variation 1008, 1120
open net messages, generated by

NanoRoute router 757
open point defect, section in yield technology

file 1274
OpenAccess

restoring a design 143
saving a design 143

OpenAccess, configuring 59
optimizing timing. See timing optimization
optimizing vias 764
options

NanoRoute router
characteristics and persistency

of 725
compared with attributes 725
crosstalk prevention 751
process antenna 775
via optimization 765

orientation, of blocks, changing 709
orientation key 439
Ostrich

parasitics correlation utility 968
OverCon #Gcell, definition of 736
overflow percentage values, in Trial Route

congestion distribution report 702
overflowed gcells, summarized in Trial

Route congestion distribution
report 702

overlapped objects
navigating in Violation Browser 1253

overlapping cells, checking for with
NanoRoute router 717

overlapping objects
selecting 678
October 2010 1538 Product Version 9.1.3

Encounter Digital Implementation System User Guide
P
package routing feasibility

testing, using APD 178
padding

placing 561
parallel job runs 370
partition feedthroughs, defining 341
partition pin guides

and bus names 292
and net group names 292

partition pinS
guide objects 277

partition pins
guide names, changing 292
guides, adding 292
ranges 320
snapping 320

partitioning
block-level 349
channel estimates, reporting

example 347
concatenating netlists of 366
core-to-I/O distance, specifying 285
feedthrough insertion 324
loading 367
overview 266
restoring 367
running 348
saving 367

partitions
adding cut areas to rectilinear 285
changing status from hard block 348
master, defined 282
multiple instantiations 282
nonrectangular 284
pin assignments for 289
pin blockage 297
pins 287
rectilinear 318

creating 284
repeated 282
specifying 275
and timing budgets for 913

passivation layer
example 1353

path groups 1108
peripheral I/O, and flip chip 170
physical design size, and module constraint

types 378

physical layout, verifying 1242
physical libraries

creating 104
pin access, improving for NanoRoute

router 717
pin alignment, illustrated 319
pin assignments

rectilinear 318
and rectilinear edges 285

pin balancing, and macro models 610
pin blockage 297
pin guides

location 292
pin instance delay specification, and

CTS 603
pins

blackbox
assigning 287

partition
assigning 287
preventing creation of 276
when created in absence of partition

pin guide objects 277
underneath power routes, checking for

with NanoRoute router 718
visibility of 678

placement
blockages

assigning attributes to 555
creating 555
hard, description of 556
partial

behavior of 556
description of 556

soft
description of 556

types of 555
checking 574
clock buffers, reserving space for 567
files required for 554
multi-threading and 571
overview of 554
padding

adding 566
preparing for 554
preroute treatment during 556
saving data from 580
tuning 570

placing
end-cap cells 558
filler cells 576
October 2010 1539 Product Version 9.1.3

Encounter Digital Implementation System User Guide
gate-array style filler cells 577
hard blocks 555
hierarchical spare cells 563
JTAG cells 580
padding 561
scan cells 581
spare cells 560
spare modules 561
standard cells 570
tie-off cells 579
well-tap cells 557

planar dielectric
syntax 1351

Point-To-Point Routing 198
port delay specification, and CTS 603
post-CTS optimization 1106
postroute optimization 1110
postroute optimization, in NanoRoute

router 735
power analysis

for MSV designs 493
power domain as a partition 277
power domains

adding power stripes to 457
adding stripes to 483
creating cuts 480
creating rings around 483
timing libraries 493

power plan template
block rings 462
creating 461
design 462
IP blocks 461
power analysis data 464
stripes 462

power planning, overview 452
power routing, overview 453
power structures, creating, preparatory

procedure 452
pre-CTS optimization 1102
pre-defined feedthroughs 335
preferences

initialization files for 63
session, setting 63

prerouted nets, skipping routing on 754,
768

PrimeTime
format, and timing constraint file

creation 913
process antenna violations

verifying 1247

process antennas
ensuring antenna cell connectivity 773
methods NanoRoute router uses to

repair violations from 773
NanoRoute router options for repairing

violations from 775
repairing by changing routing

layers 774
repairing by diode insertion 774
violations, repairing on nets with multiple

pins 773
product numbers, listed 49

R
R0 transformation 282
RC extraction. See extraction, native

extraction, sign-off extraction
RC scaling factors

generating 967
methods for specifying 974

README file, where to find 58
reclaiming area 1108
rectilinear boundaries, identification of 318
rectilinear pin assignments 318
rectilinear power domains 480
rectilinear shape, defining 384
rectilinear shapes, and pin

assignments 318
redundant vias, using 764
regions, module constraint types 378
related documents, list of 43
relative floorplanning 439

orientation
Encounter 439

overview 439
saving commands for 442

relative floorplans
loading 442
reshaping 440, 441, ?? to 441
restoring 442

repeated partitions. See partitions
reports

capacitance comparison 973
NanoRoute router 722
routing statistics 722
used by NanoRoute router 722
verification 1234
wire length 722

reportYield
October 2010 1540 Product Version 9.1.3

Encounter Digital Implementation System User Guide
yield effects considered by 1258
Resizing Rectilinear Blocks in the

Floorplan 408
restoring

OpenAccess designs 143
rings

around power domains 483
rotated vias, checking for with NanoRoute

router 718
route congestion, resolving

by inserting density screens 709
by reorienting block pins 709

routers
choosing NanoRoute or WRoute 714

routes
removing while editing 675
reshaping 689

routing
See also NanoRoute router
choosing NanoRoute router or WRoute

router 714
clock nets with NanoRoute router 747,

755
differential 203, 467
feedthroughs 341

routing blockage file, generating 276
routing bumps to I/O driver cells 180
routing feedthroughs, inserting 342
routing guide file, from CTS 622
routing layers, checking metal density

of 1240
routing resources, and channelless

designs 324
routing strategy, NanoRoute router 732
row configurations, types supported 382
row spacing, standard 382
rule-based I/O assignment files,

creating 120
run parallel 370
run-time environment, setting 58

S
Sbox. See switch box
scaling factors, RC

specifying, methods for 974
scan cells

placing 581
scan chains

reordering 582

flows 583, 584
native approach 582, 583 to 587
scanDEF approach 583, 588 to 592

scan files
loading 592
saving 592

scan functionality, principles of 581
scan nets, reordering 582
scheme format, mapping LEF vias and

layers to 777
search and repair

phases of, in NanoRoute router 734
seed, definition of 1297
selecting wire shapes 679
session preferences, setting 63
set_dont_touch constraint, implications of for

timing analysis 991
setLicenseCheck command, using 53
shielded net routing

coaxial, description of 789
constraint for 807
description of 787
differential pairs in 790
shared shields in 789

shielded routing
with NanoRoute router 767, 768

shielding wires
cutting 683

short point defect, section in yield technology
file 1278

SI. See signal integrity
signal integrity

crosstalk effect on incremental
delay 1186

NanoRoute router, using to prevent
problems 749

preventing problems using NanoRoute
router 749

setting NanoRoute router options
for 751

signal routers
choosing NanoRoute or WRoute 714

See also extraction, native extraction
sign-off extraction

described 957
requirements 957

slot. See routing feedthrough
soft guides, module constraint types 378
spare cells

distribution of 561
placing 560
October 2010 1541 Product Version 9.1.3

Encounter Digital Implementation System User Guide
placing when hierarchy is an issue 563
specifying during floorplanning

session 560
spare modules

placing 561
special route

loading 454
saving 454

specification file, for CTS. See clock tree
specification file

SPEF files
comparing files from runQX and

extractDetailRC commands 971
SRoute

overview 453
Stamp models

defined 129
preparing 129

standalone NanoRoute router
using a timing graph with 745

standard cell density, calculating 381
standard cells

placing 174, 570
starting

Encounter software 66
stopping

batch script 73
Encounter software 72, 74
NanoRoute 720, 1262
optDesign 1101

stripes
adding to power domains 483

stripes, adding to power domains 457
Superthreading

definition of 96
features that support 97
running 100

superthreading
definition of 728
features of 728

supply, defined, in Trial Route 703
switch box, definition of 715
syntax conventions 42
syntax, of commands, using help and man

commands to see 79

T
tapering wires, NanoRoute router 770
target utilization 378

target value, in Violation Browser 1253
technology file 104
template, for power plans 461
threshold, as used by mixed signal

router 802
tie-off cells

adding 579
removing 579

Timing
Debug Results 1024

timing analysis
overview 986
preparatory procedure 988
and buffer problems 1020

timing budget
analyzing 922
calculating 932
constraints 942
customizing 935
deriving 913
deriving preliminary budget 915
justifying 937
verifying 936
warning report 945

timing budgeting
and hierarchical designs 910
methods for, in hierarchical

designs 910
timing budgets

constraint files for partitions,
generating 913

for partitions 913
values for, analyzing 936

timing closure design flow, preparing data
for 131

timing constraints
file, and set_dont_touch constraint 991
file 913
importing 129
preparing 129

Timing Debug
Global 1024

timing graph
commands to generate for NanoRoute

router 745
generating with CTE 745
using with standalone NanoRoute

router 745
timing libraries

for power domains 493
preparing 128
October 2010 1542 Product Version 9.1.3

Encounter Digital Implementation System User Guide
timing models, for cells in CTS 610
timing optimization

added buffers, viewing 1133
after routing 1112
clock domains 1103, 1104, 1107, 1108
correcting signal integrity violations

during 1114
hold violation repair 1112
incremental 1104, 1108, 1109
incremental,path groups 1104
incremental,useful skew 1104
inputting a SPEF file 1115
location of timing reports generated

by 1100
low-effort mode 1103
naming conventions 1133
optimizations performed during 1098
path groups 1103, 1107
post-CTS 1106
postroute 1110
pre-CTS 1102
reclaiming area 1104, 1105
requirements for 1098
results of 1099
and set_case_analysis timing

constraint 1127
setup and hold violation repair 1113
specifying MMMC environment

for 1121
useful skew 1103, 1108
using footprintless flow in 1127
using on-chip variation (OCV) analysis

for 1120
viewing added buffers 1133

timing reports, commands for
generating 1019

timing-driven routing, NanoRoute
router 761

tolerance, as used by mixed signal
router 799

total density, calculating 381
tracks

generating for NanoRoute router 718
tracks, horizontal and vertical, summarized

in Trial Route congestion distribution
report 702

Trial Route
analyzing values in congestion

distribution table 699
congestion distribution report 702

obstructed and overflowed gcells

in 702
congestion distribution table

acceptable values in 699
values described 704

congestion markers, overflow values
and 700

data for, deleted during partitioning 348
demand, defined 703
design analysis requirements 699
loading 699
overview 694
preparatory procedure 694
route congestion, resolving 708
saving 699
supply, defined 703
two layer designs 698

troubleshooting
NanoRoute router violations (table) 757
problems with NanoRoute router 778

TU (target utilization) value 378
typographic conventions 42

U
upper layer violations, NanoRoute

router 759
useful skew 1109

controlling optimization 1118
described 1117
post-CTS 1108, 1109, 1118
pre-CTS 1103, 1104, 1117

user-defined ring 454

V
verify geometry 1242
verifying

AC limit 1251
connectivity 1238
geometry 1242
maximum floating area 1250
metal density 1240
physical layout 1242
process antenna violations 1247

Verilog
checking for availability before

importing 134
Verilog netlists

concatenating for a partitioned
October 2010 1543 Product Version 9.1.3

Encounter Digital Implementation System User Guide
design 366
creating for entire design 366
creating from a DEF file 135
removing Assign nets from 144
unique for use in CTS, scan, and IPO

features 134
vertical and horizontal tracks, summarized in

Trial Route congestion distribution
report 702

via fill, adding 898
via probability, section in yield technology

file 1279
via ratio, increasing multiple-cut to single-cut

with NanoRoute router 763
via rules, as supported by

verifyGeometry 1245
via syntax 1354
vias

adding 687
changing 688
concurrent insertion of multiple-cut and

routing 763
example 1354
fat, definition of 764
giving unique names after streamOut or

oasisOut 150
inserting multiple-cut with NanoRoute

router 763
mapping Astro scheme format by

NanoRoute router 777
minimizing the number of 765
moving selected 677
optimizing in selected nets with

NanoRoute router 765
optimizing with NanoRoute router 764
postroute optimization of 763
rotated, checking for with NanoRoute

router 718
TOPOFSTACKONLY, defining for

NanoRoute 717
using multi-cut (redundant) 764

ViewICT
errors and warnings 1342

viewing violations 1252
viewing, Ecounter log file 75
viewlog command 76
Violation Browser

actual value 1253
features of 1253
navigating overlapped objects in 1253
target value 1253

violation markers
Assura or Calibre 1252
clearing from design 1255
highlighting 1252
imported from NanoRoute router to

Encounter 755
incremental updates to 1252
NanoRoute router placement of 755
overwriting 1252
and verifying connectivity 1238
viewing 1252

violation report
database impact of 1238

violations
clearing from design 1255
deleting violated nets 763
evaluating in NanoRoute router 755
fixing minimum cut 457
fixing minimum spacing 457
in NanoRoute router, evaluation

table 757
repair strategies for 763
types recognized by NanoRoute

router 755
viewing 1252

Virtuoso Digital Implementation, description
of 49

voltage level shifters
and MSV 484

W
well-tap cells

adding to MSV designs 558
controlling the distance between 558
placing 557
removing 558

wide wires, routing with NanoRoute
router 770

wire editing
bindkeys 673
controlling visibility of cell blockages

during 690
See also wires

wire groups, adding with wire editor 682
wire length report 722
wire tapering, with NanoRoute router 770
wire width

changing 684
repairing violations of 685
October 2010 1544 Product Version 9.1.3

Encounter Digital Implementation System User Guide
wires
adding 678
changing layers of 686
changing width of 684
correcting maximum width violations

of 684
cutting 683
deleting 676
duplicating 685
extending automatically 681
merging 687
moving

selected 677
with arrow keys 677
with mouse 676

reshaping routes of 689
selecting 675
splitting 687
stretching 686
trimming 683

WRoute router, when to use 714

X
XML

comment syntax 1273
reference for 1273
statement syntax 1272

Y
yield analysis

effects considered 1258
prerequisites for 1261
results of 1261
support for 45-degree shapes 1258

yield costs
definition of 1266

yield map
changing bin size of 1264
changing colors in 1265
changing object types in 1265
displaying 1263

yield report
probabilities in 1266
sections in 1266

yield technology file
cell probability section in 1282
contents of 1272

conventions used in 1273
example of 1285
header section in 1274
open point defect section in 1274
short point defect section in 1278
using template for 1272
via probability section in 1279
October 2010 1545 Product Version 9.1.3

Encounter Digital Implementation System User Guide
October 2010 1546 Product Version 9.1.3

	Contents
	About This Manual
	Audience
	How This Manual Is Organized
	Conventions Used in This Manual
	Related Documents
	EDI System Foundation Flows Documentation
	EDI System Product Documentation

	Product and Licensing Information
	Overview
	About EDI System Products and Product Options
	EDI System
	First Encounter Hierarchical Prototyping Solution
	EDI System Product Options

	About EDI System Licenses
	Licensing Terminology
	Checking Out Licenses for Product Options
	Advanced Node License Required for 32 nm DRC Rules

	Getting Started
	Product and Installation Information
	Setting the Run-Time Environment
	Supported and Compatible Platforms
	Specifying the 64-Bit or 32-Bit Version of EDI System Applications

	Configuring OpenAccess
	Launching the Console
	Completing Command Names
	Command-Line Editing
	Control (^) Characters
	Escape Sequences

	Setting Preferences
	Initialization Files

	Starting the Software
	encounter
	Using Generic Parameters to Specify 32- or 64-Bit Version

	Interrupting the Software
	Interrupt Behavior for Long-running Commands
	Interrupting the Execution of Batch Files
	Stopping the Software

	Using the Log File Viewer
	Integrated Log File Viewer
	Standalone Log File Viewer

	Accessing Documentation and Help
	Launching Cadence Help From the Command Prompt
	Accessing Documentation and Help From the Encounter GUI
	Using the Encounter man and help Commands on the Text Command Line
	Using the Integrated Log File Viewer
	Other Sources of Information

	Customizing the User Interface
	Overview
	Creating a New Menu
	Modifying an Existing Menu
	Adding a Menu Element to an Existing Menu
	Replacing an Existing Menu Element

	Adding a New Toolbar and Toolbutton
	Supported Image Formats for Icons

	Querying and Configuring Interface Elements
	Iterating, Querying, and Configuring a Menu
	Updating the Message on the Status Bar
	Setting the Main Window’s Size and Title

	Migrating Obsolete Internal Menu APIs

	Accelerating the Design Process By Using Multiple-CPU Processing
	Overview
	Running Distributed Processing
	Running Multi-Threading
	Running Superthreading
	Setting and Changing the License Check-Out Order
	Limiting the Multi-CPU License Search to Specific Products
	Releasing Licenses Before the Session Ends
	Controlling the Level of Usage Information in the Log File
	Where to Find More Information on Multi-CPU Licensing

	Data Preparation
	Generating a Technology File
	Creating Technology Information Using LEF
	Creating Technology Information Using OpenAccess

	Preparing Physical Libraries
	Using LEF to Create Physical Libraries
	Creating OpenAccess Physical Libraries

	Unsupported LEF and DEF Syntax
	Unsupported LEF 5.7 Syntax
	Unsupported DEF 5.7 Syntax

	Generating the I/O Assignment File
	Creating an I/O Assignment File
	Creating a Rule-Based I/O Assignment File
	I/O Pad and Pin Assignment Examples
	Performing Area I/O Placement

	Preparing Timing Libraries
	Encrypting Libraries
	Preparing Stamp Models
	Preparing Timing Constraints
	Preparing Capacitance Tables
	Preparing Data for Delay Calculation
	Preparing Data for Crosstalk Analysis
	Checking Designs
	Preparing Data in the Timing Closure Design Flow
	Converting iPRT Format to LEF

	Importing and Exporting Designs
	Overview
	Verifying Data before Importing a Design
	Preparing the Design Netlist
	Creating a Flat Verilog Netlist from a DEF File
	Recommended DEF Import Commands
	Reconciling the Object Names and Creating New DEF File That Can Be Used With the Normal EDI System Flows

	Beginning Designs
	Beginning a Design with LEF and Verilog
	Beginning a Design with OpenAccess

	Loading Previously Saved Configuration Files
	Loading Configurations Files from the Command Line
	Loading Configuration Files from the GUI

	Selecting Files
	Using Select Files

	Working with OpenAccess Designs
	Importing an OpenAccess Design
	Saving an OpenAccess Design
	Restoring an OpenAccess Design
	Transferring OpenAccess Data between EDI System and Virtuoso Chip Editor for ECO

	Handling Verilog Assigns
	Saving and Restoring Designs
	Saving Designs
	Restoring Designs
	Saving and Restoring OpenAccess Designs

	Importing and Exporting Design Data
	Loading a Partition
	Loading Floorplan Data
	Placement File Requirement
	Loading an I/O Assignment File
	Loading an FSDB File
	Saving a Partition
	Saving Floorplan Data

	Converting an EDI System Database to GDSII Stream or OASIS Format
	Creating Cells and Instances
	Renaming LEF Vias
	Merging GDSII Stream or OASIS Files
	Merge Examples

	About the GDSII Stream or OASIS Map File
	Map File Format
	Map File Columns
	Specifying Object Subtypes
	Using Multiple Layers and Data Types

	Updating Files during an EDI System Session
	SKILL to TCL Mapping

	Flip Chip Methodologies
	Overview
	Before You Begin

	Flip Chip Flow in EDI System
	Flip Chip Flow Steps

	SiP Bump Flow
	Reducing Data Size for SiP Import (Bypass Flow)
	Splitting Wires in Metal Layers
	Testing the Package Routing Feasibility

	Area I/O Flow
	Area I/O (AIO) Command Flow
	Routing Bumps to I/O Driver Cells (Hierarchical Area I/O Flow)
	Flip Chip Routing on Shielded Nets in AIO
	Example

	Peripheral I/O Flow
	Data Preparation
	Peripheral I/O Flow Steps
	Peripheral I/O (PIO) Command Flow
	RDL Planning and Routing
	Peripheral I/O Extraction
	SI and Timing Analysis

	Differentiating Area I/O and Peripheral I/O
	Point-To-Point Routing
	Distributed Co-design
	Swapping Signals
	Creating Differential Routing to Signal Bumps
	Specify Routing Nets
	Define Differential Pairs
	Define Nets to Match Tolerance
	Define a Shield Net
	Route Multiple Nets with Different Widths
	Route Nets with Tapering Pin Widths

	Examples and Report Files
	Routing and Placement Constraints
	IO_FILE Example

	Using ART in Hierarchical Designs
	Overview
	Types of Active Logic Views
	Flat Top
	Critical

	Creating an Active Logic View
	Example of Active Logic View Creation

	Applications of ART
	Timing Budgeting in Hierarchical Flow
	Timing Optimization After Assembling the Post-Routed Partitioned Design

	Using Interface Logic Models in Hierarchical Designs
	Overview
	Creating ILMs
	Example ILM Creation
	Preserving Selected Instances in ILMs
	Creating ILMs for Shared Modules
	Creating ILMs Without Using Encounter Database

	Specifying ILM Directories at the Top Level
	Example Top-Level Implementation Flow with ILMs

	ILMs Supported in MMMC Analysis
	ILMs Supported in SI
	Interactive Use of ILMs
	ILM Limitations

	What-If Timing Analysis
	Performing What-If Timing Analysis
	Prerequisite
	Timing Models Supported for What-If Timing Analysis
	Using the What-If Timing Commands

	Bus Planning
	Overview
	Bus Planning Flow in Encounter
	Creating a Bus Guide
	Using the Edit Bus Guide GUI
	Using Text Commands
	Example

	Customizing the Bus Guide Display
	Highlighting and Dehighlighting the Bus Guide

	Saving and Restoring Bus Guide Information
	Limitations of Bus Planning

	Partitioning the Design
	Overview
	Flow Methodologies
	Top-down Methodology
	Bottom-up Methodology

	Specifying Partitions and Blackboxes
	Defining Partitions
	Defining Partitions as Power Domains
	Defining Blackboxes
	Handling of Blackboxes with Non-R0 Orientation
	Specifying Multiple Instantiated Partitions and Blackboxes
	Changing Partition Clone Orientation
	Specifying Rectilinear Partitions and Blackboxes
	Specifying Core-to-I/O Distance for Partition Cuts
	Specifying Nested Partitions

	Assigning Pins
	Assigning Partition and Blackbox Pins
	Assigning I/O Pins
	Performing Congestion-aware Pin Assignment for Channel-based Designs
	Assigning Pins on Rectilinear Edges
	Swapping Partition Pins
	Pin Alignment
	Snapping Pins to the Grid
	Assigning Pins for Bus Guides
	Pin Assignment Limitations

	Inserting Feedthroughs
	Inserting Feedthrough Buffers
	Highlighting the Nets for which Feedthrough Buffers Have been Inserted
	Utilizing Pre-defined Feedthrough Pins in Custom Macros
	Inserting Routing Feedthroughs

	Generating the Wire Crossing Report
	Interpreting the Wire Crossing Report

	Estimating the Routing Channel Width
	Running the Partition Program
	Pushing Down Signal Routes
	How Top-level Stripes Are Pushed Down
	How Bumps, Routes, and Area I/O Cells Are Affected
	Limitations

	Restoring the Top-Level Floorplan with Partition Data
	Concatenating Netlist Files of a Partitioned Design
	Saving Partitions
	Loading Partitions
	Unpartitioning with Routing Data

	Working with OpenAccess Database
	Parallel Job Processing

	Floorplanning the Design
	Overview
	Common Floorplanning Sequence
	Viewing the Floorplan
	Module Constraint Types
	Target Utilization Display
	Effective Utilization Display
	Calculating Density
	Standard Row Spacing

	Grouping Instances
	Defining the Bounding Box
	Adding Logical Hierarchy Without Creating Additional Hierarchy
	Logical Hierarchy Manipulation

	Creating and Editing Rows
	Using Vertical Rows
	Using Multiple-height Rows
	Using Integer Multiple-height Rows
	Using Non-Integer Multiple-height Rows
	Working with User-defined DEF Files that Contain NIMH Rows or Unaligned Rows
	Merging Hierarchical Floorplans from Partitions

	Performing I/O Row Based Pad Placement
	Prerequisites
	Enabling the I/O Row Flow in EDI System
	Use Models

	Resizing Rectilinear Blocks
	Use Models
	Assumptions
	Results

	Using Blackblobs
	Defining Blackblobs
	Specifying Blackblobs
	Blackblob Useflow
	Blackblob Display
	Blackblob Overlap
	Saving and Restoring Blackblobs

	Editing Pins
	Pin Snapping on Resized Boundaries
	Moving Pins
	Swapping Pins
	Using the Pin Editor

	Running Relative Floorplanning
	Orientation Key
	Instance Place Example
	Pre-Route Examples
	Saving and Restoring Relative Floorplan

	Saving and Loading Floorplan Data
	Resizing the Floorplan
	Resize Floorplan Options
	Setting Resize Lines
	Specifying Resize Directions
	Snapping Resize Values
	Viewing Resize Lines using Color Preferences
	Distributing I/O’s using Resize Floorplan

	Power Planning and Routing
	Overview
	Before You Begin
	Results
	Loading, Saving, and Updating Special Route
	Creating a Ring with User Defined Coordinates
	Global Net Connections
	globalNetConnect Command and Connections for Signal Pins and Power/ Ground Pins

	Fixing LEF MINIMUMCUT Violations
	Fixing LEF Minimum Spacing Violations
	Adding Stripes to Power Domains
	Automatic Power Planning (APP)
	Creating a Template
	Using the IP Block Page
	Using the Design Page

	Specifying Template Parameters
	Instantiating a Template
	Template Naming Conventions

	Using the Synthesize Power Plan Functionality
	Creating Differential Routing to Signal Bumps

	Low Power Design
	Overview
	Power Domain Shutdown and Scaling
	Support for the Common Power Format (CPF)
	CPF Version Support
	EDI System Commands Supporting CPF
	Loading and Committing a CPF File
	Saving a CPF Database
	CPF Documentation

	Multiple Supply Voltage Flat Flow
	Preparing Data
	Loading the Configuration File
	Floorplanning the Design
	Loading and Committing the CPF File
	Setting the Power Domain Size
	Setting the Power Domain mingap
	Adding Power Switches
	Verify Power Domains
	Adding Well Tap Cells
	Planning Power
	Placing Standard Cells and Macros
	Highlight Power Domains (Optional)
	Adding Tie High/Low cells
	Routing Power
	Trial Routing
	Optimizing Timing
	Synthesizing Clock Trees
	Optimizing Timing (Post CTS)
	Routing the Design
	Analyzing Timing
	Analyzing Power
	Optimizing Timing (Post-Route)

	Multiple Supply Voltage Top-Down Hierarchical Flow
	Overview
	Always-On Feedthrough Handling
	Chip Partitioning
	Block-level CPF Generation
	Top-Level CPF Generation
	Block-Level Implementation
	Top-Level Implementation
	Chip Assembly

	Example of Block-Level CPF Generated by EDI System
	Example of Top-Level CPF Generated by EDI System
	Multiple Supply Voltage Bottom-Up Hierarchical Flow
	Block-Level Implementation
	Top-Level Implementation
	Chip Assembly

	Leakage Power Optimization Techniques
	Multi-Vth Optimization
	Substrate Biasing

	Power Shutdown Techniques
	Power Shutdown Commands
	Data Preparation
	Buffer Styles
	Adding Column Switches
	Attaching the Acknowledge Receiver Pin
	Enable Chaining
	Controlling the Maximum Enable Chain Depth
	Synthesizing Acknowledge Trees
	Adding Power Switch Rings
	Ring Conventions
	Using Pitch Control and Offsets

	Power Switch Optimization
	Power Switch Reduction
	Power Switch ECO

	Placing the Design
	Overview
	Loading a Design
	Preparing for Placement
	Guiding Placement With Blockages
	Placement Treatment of Preroutes

	Adding Well-Tap Cells
	Controlling the Distance Between Well-Tap Cells
	Adding Well-Tap Cells to MSV Designs
	Deleting Well-Tap Cells

	Adding End-Cap Cells
	Adding End Cap Cells to MSV Designs
	Deleting End-Cap Cells

	Placing Spare Cells and Spare Modules
	Placing Spare Cells That Are Included in the Netlist
	Placing Spare Cells That Are Not Included in the Netlist
	Spare Cell Placement Behavior
	Running Hierarchy-Aware Spare Cell Placement

	Adding Padding
	Adding Instance or Module Padding
	Adding Cell Padding

	Placing Standard Cells
	Running Placement in Multi-CPU Mode
	Multi-Threading Placement Steps

	Checking Placement
	Using the Amoeba View
	Using the Density Map

	Adding Filler Cells
	Adding Fillers to MSV Designs
	Deleting Filler Cells

	Placing Gate Array Style Filler Cells for Post-Mask ECO
	Adding Decoupling Capacitance
	Deleting Decoupling Capacitance

	Adding Logical Tie-Off Cells
	Saving Placement Data
	Specifying and Placing JTAG and Other Cells Close to the I/Os
	Optimizing and Reordering Scan Chains
	Specifying Scan Cells
	About Scan Chains
	Reordering Scan Chains

	Synthesizing Clock Trees
	Before You Begin
	Results
	Understanding CTS Operation Modes
	Manual CTS Mode
	Automatic CTS Mode

	How CTS Calculates Skew Values
	Improving Postroute Correlation
	Specifying Macro Model Delays
	Macro Model Support for MMMC Views
	Dynamic Macro Model

	Grouping Clocks
	Analyzing Hierarchical Clock Trees
	Module Placement Utilization
	Clock Designs with Tight Area
	Balancing Pins for Macro Models
	Timing Model Requirement for Cells
	Delay Variation and OCV
	Understanding Post-CTS Clock Tree Optimization
	Using the ckECO Command for Post-CTS Clock Tree Optimization
	Support for Local Skew Optimization
	Command Modes for the ckECO Command
	Using a SPEF File with the ckECO Command for RC Estimation
	Running Post-CTS Optimization with the ckECO Command
	Guidelines for Using the ckECO Command

	Creating a Clock Tree Specification File
	Using the Automatic Clock Tree Specification File Generator
	Example of a Clock Tree Specification File
	Naming Attributes Section
	NanoRoute Attribute Section
	Macro Model Data Section
	Clock Grouping Data Section
	Clock-Tree Topology Section
	Automatic Gated CTS Section
	Log File Headings

	CTS Report Descriptions
	General Information
	Macro Model Information
	Power Information
	AC Current Density Violations

	Supported SDC Constraints
	Clock Tree Analyst

	Working with Clock Mesh Structures
	Overview
	Clock Meshes Versus Clock Trees
	Creating Clock Meshes
	Determining the Mesh Structure
	Implementing the Clock Mesh
	Analyzing the Clock Mesh
	Generating Multiple Spice Run Deck For Big Clock-Mesh Networks

	Editing Wires
	Overview
	Before You Begin
	Results
	Using Keyboard Shortcuts
	Keyboard Shortcuts That Open Forms
	Keyboard Shortcuts That Are Equivalent to Tool Widgets
	Keyboard Shortcuts Used in Auto Query Mode
	Keyboard Shortcuts Used in Edit Wire Mode
	Keyboard Shortcuts Used in Stretch Wire Mode
	Keyboard Shortcuts Used to Change Vias

	Selecting Wires
	Deleting Wires
	Moving Wires
	Using the Mouse to Move Wires
	Using Arrow Keys to Move Wires
	Moving Selected Wires or Vias

	Adding Wires
	Adding a Wire for a Single Net
	Adding Wires for Multiple Nets
	Adding Wires that Automatically Extend to a Target
	Using Override to Add Wire Groups with Multiple Widths and Spacing

	Cutting Shielding Wires
	Trimming Antennas on Selected Stripes
	Changing Wire Width
	Repairing Maximum Wire Width Violations
	Duplicating Wires
	Stretching Wires
	Changing Wire Layers
	Splitting and Merging Wires
	Adding Vias
	Changing Vias
	Moving Vias
	Reshaping Routes
	Controlling Cell Blockage Visibility

	Using Trial Route for Congestion and Timing Analysis
	Overview
	Data Preparation
	Routing A Flat Design
	Routing a Partitioned Design
	Routing Two-Metal Layer Designs
	Routing Using the NanoRoute Global Router
	Loading and Saving Route Data
	Analyzing Route Data
	Congestion Markers in the Display
	Congestion Distribution Report

	Improving Route Congestion
	Using Bus Guides
	Additional Information
	Wire Overlap

	Using the NanoRoute Router
	About NanoRoute Routing Technology
	Routing Phases
	Global Routing
	Detailed Routing

	NanoRoute Router in the EDI System Flow
	Before You Begin
	Checking Your LEF Files
	Checking for Problems with Cells, Pins, and Vias
	Generating Tracks
	Specifying Routing Layers

	Interrupting Routing
	Using the routeDesign Supercommand
	Results
	Use Models
	Running the NanoRoute Router with EDI System Menu Commands and Forms
	Running the NanoRoute Router with EDI System Text Commands
	Running the NanoRoute Router in Standalone Mode

	Using NanoRoute Parameters
	Using Attributes and Options Together

	Accelerating Routing with Multi-Threading and Superthreading
	When to Accelerate Routing
	Superthreading Log File Excerpts

	Following a Basic Routing Strategy
	Using the EDI SystemText Commands
	Using the EDI System GUI

	Checking Congestion
	Using the Congestion Analysis Table
	Using the Congestion Map

	Resolving Open Nets
	Log File Examples
	Diagnosing Problems Using verifyTracks
	Resolving Additional Open Net Problems

	Running Timing-Driven Routing
	Input Files
	Using the CTE and the NanoRoute Router in Native Mode
	Using the CTE and Standalone NanoRoute

	Routing Clocks
	Setting Attributes for Clock Nets
	Routing Clock Nets Using the GUI Forms
	Running Postroute Optimization

	Preventing and Repairing Crosstalk Problems
	Crosstalk Prevention Options

	Running ECO Routing
	ECO Limitations
	ECO Flow

	Evaluating Violations
	Violations on Upper Metal Layers
	Violations in Timing-Driven Routing
	Deleting Violated Nets
	Using Additional Strategies to Repair Violations

	Concurrent Routing and Multi-Cut Via Insertion
	Postroute Via Optimization
	Optimizing Vias in Selected Nets
	Via Optimization Options
	Performing Shielded Routing
	Shielding Option
	Performing Shielded Routing Using the GUI
	Performing Shielded Routing Using Text Commands
	Interpreting the Shielding Report

	Routing Wide Wires
	Using Non-Default Rules

	Repairing Process Antenna Violations
	Repairing Violations on Multiple-Pin Nets
	Changing Layers
	Using Diodes
	Deleting and Rerouting Nets with Violations
	Repairing Violations on Cut Layers
	Process Antenna Options
	Examples

	Using a Design Flow that Includes Astro or Apollo
	Troubleshooting

	Using the Encounter Mixed Signal Router
	Overview
	Using the Mixed Signal Router
	Before You Begin
	Results
	Specialized Routing Techniques
	Matched Nets
	Differential Pair Nets
	Bus Routes
	Shielded Nets

	Using Routing Constraints
	Constraint File Format
	Specialized Constraints and Keyword Descriptions
	NETS
	MATCH
	DIFFPAIR
	SHIELDING

	Creating a Constraint File
	Using the Mixed Signal Constraint Editor
	Using a Text Editor

	Loading a Constraint File
	Using the Mixed Signal Constraint Editor Form
	Using the Mixed Signal Router Form
	Using the routeMixedSignal Command

	Editing a Constraint File
	Using the Mixed Signal Constraint Editor
	Using a Text Editor

	Sample Constraint File

	Digital Mixed Signal Flow
	Overview
	Design Data and Technology Data Preparation
	Software Requirements
	Library and Technology Requirements
	Generic Guidelines to Run the DMS Flow
	Technology Library Preparation
	IP Library Preparation

	Flow to Convert the EDI System Database to OpenAccess Database
	DMS Floorplanning Flow
	DMS Flow Diagram
	Verilog Netlist Creation
	Floorplanning of Verilog Netlist Using Blackboxes
	Generate From Source for Soft Analog Block Layout Using Virtuoso
	Load Physical View to Merge Optimized Pin Locations and Block Boundary
	Physical Implementation of Soft Analog Blocks Using Virtuoso
	Physical Implementation of Soft Digital Blocks Using EDI System
	Top-level Analog Net and Power Routing
	Assembling the Design
	Place and Route of Digital Portion at the Top and Early Digital ECO’s
	Quick Abstract Inference

	Static Timing Analysis for Mixed-Signal Designs
	The FTM Generation Flow Diagram
	Guidelines to Run FTM-Based STA Flow
	Steps to Run Static Timing Analysis

	Chip Finishing and ECO Flows
	Overview
	Virtuoso-Based ECO Flow
	EDI System-Based ECO Flow

	Optimizing Metal Density
	Overview
	Before You Begin
	Adding Metal Fill in Multiple-CPU Processing Mode

	After You Complete Adding Via and Metal Fill
	Metal Fill Features
	Staggered Metal Fill Pattern
	Connected and Floating Metal Fill
	Timing-Aware Metal Fill

	Specifying Metal Fill Parameters
	Recommendations for Adding Timing-Aware Metal Fill
	Timing-Aware Examples
	Specifying the Active Spacing Value

	Adding Metal Fill Over Macros
	Recommendations for Power Strapping Mode
	Adding Via Fill
	Recommendations for Metal/Via Fill Flow
	Achieving Gradient Density with Preferred Density Setting
	Trimming Metal Fill
	Verifying Metal Density
	Adding Metal Fill Using the GUI
	Adding Metal Fill with Iteration

	Timing Budgeting
	Overview
	Is My Design Ready for Budgeting?
	Deriving Timing Budgets
	Budgeting Using the GUI
	Budgeting Using Text Commands
	Top-Level Budgets Derived by Using Active Logic View
	Deriving Preliminary Budgets in Early Design Phase

	Budgeting Output Files for MMMC Designs
	Corner Cloning
	Mode Cloning

	Setup and View Handling for MMMC Designs
	Constraints Adjustment
	Analyzing Timing Budgets
	Resolving Conflicts with Path-Based Exceptions
	Budgeting Clock Latency in Propagated Mode

	Budgeting Libraries
	Resolving Conflicts with Path-based Exceptions
	Defining Clocks Inside the Partition

	Calculating Timing Budgets
	Customizing Budget Generation
	Verifying Timing Budgets
	Reading the Justify Budget Report
	Design Example
	SDC Constraints for Design Example
	Generated Report for Design Example

	Constraints Support in Budgeting
	Warning Report
	Pin Constraint Values Greater than Available Time
	Warning Report Example

	RC Extraction
	Overview
	Before You Begin
	Results
	Specifying Temporary File Locations

	Extraction Flow in EDI System
	Preroute Extraction
	Postroute Extraction
	Native Detailed
	TQRC and IQRC
	Incremental Extraction Support for Design Changes
	Sign-Off Extraction Using QRC
	Inputs for QRC Sign-Off Extraction

	Scale Factor Setting
	Generating a Capacitance Table
	Inputs for Generating a Capacitance Table
	Capacitance Table Generation Flow
	Generating Capacitance Table With Specified Scaling Factors

	Reading a Capacitance Table
	Reading a QRC Techfile
	Correlating Native Extraction With Sign-Off Extraction
	Correlating SPEF Files Using the Ostrich Utility
	Comparing SPEF Files Using a Perl Script
	Defining the Scaling Factor

	Distributed Processing
	Setting-up Distributed Processing
	Generating a Capacitance Table in Multi-CPU Mode
	Performing IQRC, TQRC, and Standalone QRC Extraction in Multi-CPU Mode

	Calculating Delay
	Overview
	Data Preparation
	Operating Conditions
	ECSM Libraries

	Delay Calculation Modes and Related Controls
	Choosing A Delay Calculation Engine
	Running Delay Calculation
	Calculating Delay in Multi-Thread Mode

	Timing Analysis
	Overview
	Timing Analysis Features
	Before You Begin
	Reading Timing Libraries
	Resolving Discrepancies in Timing Libraries

	Reading Timing Constraints
	Constraints Quick Reference

	Timing Analysis Results
	Setting Operating Conditions
	Calculating Clock Latency
	Defining RC Corners
	Specifying Timing Analysis Modes
	Definition of Early and Late Paths
	Single Timing Analysis Mode
	Best-Case Worst-Case (BC-WC) Timing Analysis Mode
	On-Chip Variation (OCV) Timing Analysis Mode

	Clock Path Pessimism Removal
	Analyzing Timing Problems
	Resolving Buffer-Related Problems

	Debugging Timing Results
	Overview
	Timing Debug Flow
	Generating Timing Debug Report
	Displaying Violation Report
	Analyzing Timing Results
	Viewing Power Domain Information

	Creating Path Categories
	Creating Predefined Categories
	Creating New Categories
	Creating Sub-Categories
	Hiding path categories
	Reporting Path Categories

	Using Categories to Analyze Timing Results
	Analyzing MMMC Categories
	Manual Slack Correction of Categories

	Editing Table Columns
	Cell Coloring

	Viewing Schematics
	Running Timing Debug with Interface Logic Models

	Statistical Static Timing Analysis
	SSTA Overview
	SSTA Inputs
	Libraries with sensitivities
	Statistical Parameter Distribution Format (SPDF) File
	Specifying Global or Die-to-Die Variations in SPDF File
	Specifying Random Variations in SPDF File
	Specifying Spatial Variations in SPDF File

	Sensitivity-Based SPEF (S-SPEF) File
	Loading the S-SPEF File

	SSTA Flows
	Running Block-Based SSTA
	Running Path-Based SSTA
	SSTA Outputs
	Block-Based SSTA Report
	Path-Based SSTA Report

	SSTA Correlation With Monte-Carlo Analysis

	Extracting Timing Models
	ETM Overview
	Using ETMs in Different Timing Analysis Modes
	Limitation of Timing Models

	ETM Inputs
	Guidelines for Generating ETMs
	ETM Generation Flow
	Validating the Generated Model
	Reducing the Size of GreyBox Models

	ETM Outputs
	Timing Library File
	Boundary Nets
	Internal Nets
	Timing Paths
	Minimum Pulse Width and Minimum Period
	Path Exceptions
	Constants
	Gating Checks
	Annotated Delays and Slews
	Design Rules
	Generated Clocks

	Timing Constraints Files
	set_false_path and set_multicycle_path constraints
	set_disable_timing and set_case_analysis
	create_clock and create_generated_clock
	set_input_delay and set_output_delay
	Design Rules
	set_load, set_resistance and set_annotated_transition
	set_annotated_delay and set_annotated_check
	set_input_transition and set_driving_cell

	Optimizing Timing
	Overview
	Before You Begin
	Results
	Interrupting Timing Optimization
	Performing Optimization Before Clock Tree Synthesis
	Correcting Violations in Pre-CTS Mode for the First Time
	Performing Rapid Timing Optimization for Design Prototyping
	Using Additional Pre-CTS Timing Optimization Parameters
	Performing Incremental Pre-CTS Optimization
	Changing Default Settings in Pre-CTS Mode

	Performing Post-CTS Optimization
	Correcting Violations in Post-CTS Mode
	Using Additional Post-CTS Timing Optimization Parameters
	Performing Incremental Post-CTS Optimization
	Changing Default Settings in Post-CTS Mode

	Performing Postroute Optimization
	About Postroute Optimization
	Correcting Violations in Postroute Mode
	Correcting Signal Integrity Violations
	Changing Default Settings in Postroute Mode

	Optimizing Power During optDesign
	Leakage Power Optimization
	Dynamic Power Optimization

	Using Useful Skew
	Using Useful Skew in Pre-CTS Mode
	Using Useful Skew in Post-CTS Mode
	Controlling Useful Skew Optimization

	Using Active Logic View for Chip-Level Interface Circuit Timing Closure
	Optimizing Timing in On-Chip Variation Analysis Mode
	Specifying the MMMC Environment
	Optimizing Timing in OCV Mode Using the Default Delay Calculator
	Optimizing Timing in OCV Mode Using the Sign-Off Delay Calculator

	Using Conformal Constraint Designer During Timing Optimization
	Post-Processing Approach
	Integrated Approach

	Optimizing Timing Using a Rule File
	Optimizing Timing When the Constraint File Includes the set_case_analysis Constraint
	Using the Footprintless Flow
	Using Cell Footprints
	AAE-Based SI Optimization
	AAE-Based Setup and Hold Fixing
	AAE SI Timing
	Sample Flow Scripts

	Viewing Added Buffers, Instances, and Nets
	Default Naming Conventions

	Interactive ECO
	Overview
	Before You Begin
	Results
	Adding Buffers
	Changing the Cell
	Deleting Buffers
	Displaying Buffer Trees
	Running ECO Placement
	Naming Conventions for Interactive ECO
	Comparing Physical Design Data

	Integration with LPA and CCP
	Overview
	Before You Begin
	Results
	Running LPA from Encounter
	Routing Layers Only Mode
	Sign-Off Mode

	Running CCP from Encounter
	CCP Flow in Encounter
	Running CCP in Cadence Model Flow
	Running CMP Analysis in TSMC Model Flow
	Viewing Hotspots

	Analyzing and Repairing Crosstalk
	Overview
	Inputs and Outputs for SI Analysis
	Setting Up Encounter for SI Analysis
	RC Extraction Settings
	Noise Analysis Settings
	Static Timing Analysis (STA) Settings
	Advanced Settings for SI Analysis
	Example of Setting Up Encounter for SI Analysis

	Preventing Crosstalk Violations
	Fixing Crosstalk Violations
	Data Preparation
	Using optDesign to Fix Setup Violations with Crosstalk Effects
	Using optDesign to Fix Hold Violations with Crosstalk Effects
	Using optDesign to Fix Transition Time Violations with Crosstalk Effects

	Performing XILM-Based SI Analysis and Fixing

	Power and Rail Analysis
	Early Rail Analysis
	Early Rail Analysis Key Features
	Prior to Running Early Rail Analysis
	Setting up and Running Early Rail Analysis
	Running Early Rail Analysis in Unplaced Mode
	Viewing Early Rail Analysis Results

	Signoff-Rail Analysis
	EDI System and EPS menu differences

	Verifying Violations
	Overview
	Test
	Interrupting Verification
	Verifying Connectivity
	Before You Begin
	Types of Connectivity Violations Reported
	Results

	Verifying Metal Density
	Before You Begin
	Results
	Verifying Metal Density in Multi-Thread Mode

	Verifying Geometry
	Before You Begin
	Verifying Geometry in Multi-Thread Mode
	Spacing Violation Checks
	Types of Antenna Violations Reported
	Support for Via Rules
	Results

	Verifying Process Antennas
	Before You Begin
	Verifying PAE
	Results
	Sample Process Antenna Report

	Verifying Maximum Floating Area Violations
	Verifying AC Limit
	Before You Begin
	Results

	Viewing Violations With the Violation Browser
	Viewing Geometry or Metal Density Violations
	Viewing Connectivity, Process Antenna, or AC Limit Violations
	Viewing Violation Markers From Assura or Calibre
	Violation Browser Features

	Clearing Violations

	Analyzing Yield
	Overview
	What Effects Does reportYield Consider?
	Calculating Failure Probabilities
	Critical Area Analysis
	Defect Data and Cumulative Defect Data Functions

	Before You Begin
	Results
	Interrupting Yield Analysis
	Interpreting the Yield Map
	Displaying the Yield Map

	Interpreting the Yield Report
	Yield Report
	Detailed Report

	Understanding the Yield Technology File
	File Format
	File Sections and Keyword Statement Descriptions
	Yield Technology File Example

	Formulas and Calculations
	Calculating the Probability of Failure for a Metal Layer
	Calculating Defect and Cumulative Defect Data
	Cost Formulas

	Creating An Initial Floorplan Using Automatic Floorplan Synthesis
	Overview
	Automatic Floorplan Synthesis Flow

	Data Preparation
	Selecting Seeds

	Importing the Design
	Setting Automatic Floorplan Synthesis Global Parameters
	Creating an Initial Floorplan
	Creating Floorplan for Hierarchical Design
	Macro placement
	Full-chip Floorplan
	Power-Domain Aware Floorplan

	Creating Multiple Alternative Floorplans
	Analyzing the Floorplan
	Adjusting Macro Placement
	Manual Macro Adjustment
	Automatic Floorplan Synthesis Macro Adjustment

	Saving the Floorplan

	Performing Multi-Mode Multi-Corner Timing Analysis and Optimization
	Overview
	Configuring the Setup for Multi-Mode Multi-Corner Analysis
	Creating Library Sets
	Creating Virtual Operating Conditions
	Creating RC Corner Objects
	Creating Delay Calculation Corner Objects
	Adding A Power Domain Definition To A Delay Calculation Corner
	Creating Constraint Mode Objects
	Creating Analysis Views
	Setting Active Analysis Views
	Checking the Multi-Mode Multi-Corner Configuration
	Saving Multi-Mode Multi-Corner Configurations

	Controlling Multi-Mode Multi-Corner Analysis Through the Flow
	Performing Timing Analysis
	Generating Timing Reports
	Performing Timing Optimization

	Creating the ICT File
	Format
	Data
	Comments
	Case Sensitivity
	Warnings and Errors
	Invalid Layer Names
	Commands
	Sample ICT File

	ECO Flows
	Overview
	Assumptions
	Flows

	Pre-Mask ECO Changes from a New Verilog File
	Preparation
	Flow
	Steps

	Pre-Mask ECO Changes from a New DEF File
	Preparation
	Flow
	Steps

	Pre-Mask ECO Changes from an ECO File
	Preparation
	Flow
	Steps

	Post-Mask ECO Changes from a New Verilog Netlist
	Preparation
	Flow
	Steps

	Post-Mask Gate Array Style ECO from a New Verilog Netlist
	Preparation
	Steps

	ECO Directives
	ADDHIERINST
	ADDINST
	ADDMODULEPORT
	ADDNET
	ATTACHMODULEPORT
	ATTACHTERM
	DELETEBUFFER
	DELETEINST
	DELETEMODULEPORT
	DELETENET
	DETACHMODULEPORT
	DETACHTERM
	INSERTBUFFER
	Example ECO File

	Clock Mesh Specification File
	Overview
	Routing Type Definitions
	Cutout Definitions
	Clock Mesh Definitions
	Timing and Power Constraints Section
	Tracing and Analysis Scope Section
	Mesh Structure Section
	Global Mesh Section
	Analysis Section
	Top Chain Section
	Local Tree Section

	Clock Mesh Specification File Example

	Supported CPF 1.0 Commands
	Supported CPF 1.0e Commands
	Supported CPF 1.1 Commands
	CPF 1.0 Script Example
	CPF 1.0e Script Example
	CPF 1.1 Script Example
	Cadence-Specific Liberty Extensions
	Overview
	Guidelines For Adding ECSM Extensions
	Representing ECSM Information in a Library
	Defining ECSM Extensions in a Library
	ecsm_waveform Group
	ecsm_waveform_set Group
	ecsm_capacitance Group

	Example

	Index

