cadence

Encounter Digital Implementation System
User Guide

Product Version 9.1.3

October 2010

© 2009-2010 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this
document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s
trademarks, contact the corporate legal department at the address shown above or call 1-800-862-4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission
statement, this publication may not be copied, reproduced, modified, published, uploaded, posted,
transmitted, or distributed in any way, without prior written permission from Cadence. This statement grants
you permission to print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;

3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other
proprietary notices and this permission statement; and

4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be
discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s
customer in accordance with, a written agreement between Cadence and its customer. Except as may be
explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any
representations or warranties as to the completeness, accuracy or usefulness of the information contained
in this document. Cadence does not warrant that use of such information will not infringe any third party
rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of
such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Encounter Digital Implementation System User Guide

Contents
About This Manual.................... 41
AUIENCE . . o 41
How This Manual Is Organizeduuiiiiiiii e e e 41
Conventions Used in This Manual e e 42
Related DOCUMENES . . . oo oot e e e e e 43
EDI System Foundation Flows Documentation 43
EDI System Product Documentation 44
1
Product and Licensing Information............................. 47
OVaIVIBW . o o e 48
About EDI System Products and Product Options 48
EDI System .. 48
First Encounter Hierarchical Prototyping Solution 49
EDI System Product OptionS oot 50
About EDI System LICENSES oo i 52
Licensing TerminoloQyot 52
Checking Out Licenses for Product Options 53
Advanced Node License Required for32 nm DRC Rules 53
2
Getting Started. ... 57
Product and Installation Information 58
Setting the Run-Time Environment e, 58
Supported and Compatible Platforms 58
Specifying the 64-Bit or 32-Bit Version of EDI System Applications 58
Configuring OPENACCESS . . o v v v e e e e e e e e e 59
Launchingthe Console e 60
Completing Command NameSo e 60
Command-Line Editing oot 61

October 2010 5 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Control (A) Characterst e e 61
ESCape SEqQUENCES i 62
Setting Preferences e 63
Initialization Files 64
Starting the Software e 66
ENCOUNEET .. . e e e e 67
Using Generic Parameters to Specify 32- or 64-Bit Version 71
Interrupting the Software e 72
Interrupt Behavior for Long-running Commandsiiinieenn... 72
Interrupting the Execution of Batch Files 73
Stopping the Software e 74
Using the Log File Viewer e e 75
Integrated Log File Viewer e 75
Standalone Log File Viewer e 76
Accessing Documentationand Help 77
Launching Cadence Help From the Command Prompt 77
Accessing Documentation and Help From the Encounter GUI 77
Using the Encounter man and help Commands on the Text Command Line 79
Using the Integrated Loqg File Viewer 82
Other Sources of Information e 83
3
Customizing the User Interface 85
OV IV W .ottt e 86
Creatinga New MenuU e e 87
Modifying an Existing Menu i 88
Adding a Menu Element to an ExistingMenu 88
Replacing an Existing Menu Element 88
Adding a New Toolbar and Toolbutton 90
Supported Image Formats forlcons 90
Querying and Configuring Interface Elements 91
Iterating. Querying. and ConfiguringaMenu0 i iirnnn.. 91
Updating the Message onthe StatusBar 91
Setting the Main Window’s Size and Title 92
Migrating Obsolete Internal Menu APIS 93

October 2010 6 Product Version 9.1.3

Encounter Digital Implementation System User Guide

4
Accelerating the Design Process By Using Multiple-CPU
ProCcessing. ... 95
OV IV W .ottt e 96
Running Distributed Processingo ittt 99
Running Multi-Threadingottt e e e e e e 99
Running Superthreadingo e 100
Setting and Changing the License Check-OutOrdero iun... 100
Limiting the Multi-CPU License Search to Specific Products 100
Releasing Licenses Before the Session Ends 101
Controlling the Level of Usage Information inthe LogFile 101
Where to Find More Information on Multi-CPU Licensing 101
)
Data Preparation.................. . . 103
Generating a Technology File e 104
Creating Technology Information Using LEF 104
Creating Technology Information Using OpenAccesscooiune... 104
Preparing Physical Libraries e e 104
Using LEF to Create Physical Libraries 104
Creating OpenAccess Physical Libraries, 105
Unsupported LEF and DEF Syntax 105
Unsupported LEF 5.7 Syntax et 105
Unsupported DEF 5.7 Syntaxo e 106
Generating the I/O Assignment File i 108
Creating an I/O Assignment File i 109
Creating a Rule-Based I/O Assignment File 120
I/O Pad and Pin Assignment Examples 121
Performing Area I/O Placement 124
Preparing Timing Libraries e 128
Encrypting Libraries e 128
Preparing Stamp Models i e 129
Preparing Timing Constraints e 129
Preparing Capacitance Tables e 130

October 2010 7 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Preparing Data for Delay Calculation 130
Preparing Data for Crosstalk Analysis 130
Checking DESIANS ... i ittt 130
Preparing Data in the Timing Closure Design Flow 131
Converting iPRT Formatto LEF e 131
6
Importing and Exporting Designs. 133
OV BW . ot 134
Verifying Data before Importinga Design it 134
Preparing the Design Netlist 134
Creating a Flat Verilog Netlist froma DEF File 135
Recommended DEF Import Commands ...ttt 135
Reconciling the Object Names and Creating New DEF File That Can Be Used With the
Normal EDI System FIOWS e et 136
Bedinning DeSIANSot e e 137
Beginning a Design with LEF and Verilog 137
Beqinning a Design with OpenACCESS ittt e 138
Loading Previously Saved Configuration Files 139
Loading Configurations Files from the Command Line 139
Loading Configuration Files fromthe GUI 140
Selecting Files oo 141
Using Select FIlesSo e 141
Working with OpenAccess DeSIANSottt e e 143
Importing an OpenACCEeSS DESIANo ittt e 143
Saving an OpenACCeSS DESION v ittt e 143
Restoring an OpenAccess DeSian oottt 143

Transferring OpenAccess Data between EDI System and Virtuoso Chip Editor for ECO
144

Handling Verilog ASSIONSottt e e e 144
Saving and Restoring DeSIigNSottt 144
SaVviNg DESIANS . .ottt e 145
Restoring DeSIONSottt e e 145
Saving and Restoring OpenAccess DesignNsS o i ittt it 145
Importing and Exporting Design Data 146
Loading a Partition e 146

October 2010 8 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Loading Floorplan Data 146
Placement File Requirement 147
Loading an I/O Assignment File 147
Loadingan FSDB File e 147
Savinga Partition e 148
Saving Floorplan Data i 148
Converting an EDI System Database to GDSII Stream or OASIS Format 149
Creating Cells and InStancesttt e e e 150
Renaming LEF Vias e 150
Merging GDSII Stream or OASIS Fileso e 151
Merge EXamples 151
About the GDSII Stream or OASIS Map File i 156
Map File Format e 156
Map File ColUMNS e e e 157
Specifying Object Subtypes e 160
Using Multiple Layers and Data Typesc .. 164
Updating Files during an EDI System Session 165
SKILLt0 TCL MApPINg . .o ottt et e e e e e e e e e e e et e e e e e e 166
7
Flip Chip Methodologies .. 169
O IV W .ottt e 170
Before You Bedin 170
Flip Chip Flow in EDI System ... i 172
Flip Chip Flow Steps e e e 173
SIP BUump FloW .. 177
Reducing Data Size for SiP Import (Bypass Flow) 177
Splitting Wires in Metal Layerst 177
Testing the Package Routing Feasibility 178
Area l/O FloW e 179
Area /O (AIOQ) Command FIOWttt et 180
Routing Bumps to I/O Driver Cells (Hierarchical Area I/O Flow) 180
Flip Chip Routing on Shielded Nets in AIO 181
EXamPle .. e 181
Peripheral /O Flow e 183

October 2010 9 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Data Preparation i 183
Peripheral I/O Flow Stepsot e 184
Peripheral I/O (PIO) Command FIOW 185
RDL Planning and BROUtiNgc ottt e e e 187
Peripheral I/O Extraction e 195
Sland TimIiNG ANAIYSISottt e e e e e 196
Differentiating Area I/O and Peripheral /O 197
Point-To-Point Routingo e 198
Distributed Co-desian i 200
Swapping Sidnals 201
Creating Differential Routing to Signal Bumps 203
Specify Routing Nets o e 204
Define Differential Pairs e 204
Define Nets to Match Tolerance 205
Define a Shield Net 205
Route Multiple Nets with Different Widths 206
Route Nets with Tapering Pin Widths 207
Examples and Report Files e 209
Routing and Placement Constraints 209
IO FILE EXamMPIe . ..ottt e e e e 211
8
Using ART in Hierarchical Designs............................ 215
OV IV W .ottt e 216
Types of Active LOQIC VIEWS et e 216
Flat Top .. e 216
Critical .. o e 217
Creating an Active LOgIiC VIiEW oot e 218
Example of Active Logic View Creationc ... 218
Applications of ART o e 218
Timing Budgeting in Hierarchical Flow 219
Timing Optimization After Assembling the Post-Routed Partitioned Design 219

October 2010 10 Product Version 9.1.3

Encounter Digital Implementation System User Guide

9
Using Interface Logic Models in Hierarchical Designs...... 225
O IV W .ottt e 226
Creating ILIMS 227
Example ILM Creation e 228
Preserving Selected Instances in ILMs 229
Creating ILMs for Shared Modules it 229
Creating ILMs Without Using Encounter Database 229
Specifying ILM Directories atthe Top Level 231
Example Top-Level Implementation Flow with ILMs 231
ILMs Supported in MMMC AnalySisS e 233
ILMs Supported in Sl 235
Interactive Use of ILMS e 235
ILM Limitations e e 236
10
What-If Timing Analysis... 239
Performing What-If Timing Analysis 239
Prerequisite e 240
Timing Models Supported for What-If Timing Analysis 240
Using the What-If Timing Commandscuii ... 243
H
Bus Planning 247
O IV W . ottt e 248
Bus Planning Flow in Encounter e 249
Creatinga Bus GUIE ottt e e e e e 250
Using the Edit Bus Guide GUI e 250
Using Text CommandSottt et e e e et e e 255
EXample .. 256
Customizing the Bus Guide Displayt 260
Highlighting and Dehighlighting the Bus Guide 260
Saving and Restoring Bus Guide Information 262
Limitations of Bus Planning i e 263

October 2010 11 Product Version 9.1.3

Encounter Digital Implementation System User Guide

12
Partitioning the Design.. 265
O IV W .ottt e 266
Flow MethodoloQiESot e e e e e e 266
Top-down Methodologyot 267
Bottom-up Methodologyo 271
Specifying Partitions and Blackboxes 274
Defining Partitions 275
Defining Partitions as Power Domainsc.iiiiiin .. 277
Defining BlackboXes 277
Handling of Blackboxes with Non-RO Orientation 280
Specifying Multiple Instantiated Partitions and Blackboxes 282
Changing Partition Clone Orientation 283
Specifying Rectilinear Partitions and Blackboxes 284
Specifying Core-to-1/0O Distance for Partition Cuts 285
Specifying Nested Partitions e 286
ASSIgNING PiNS ... o e e 287
Assigning Partition and Blackbox Pins 289
Assigning /O PiNS .. .o it 311
Performing Congestion-aware Pin Assignment for Channel-based Designs 315
Assigning Pins on Rectilinear EAges i 318
Swapping Partition Pins e 319
Pin Alignment 319
Snapping Pinstothe Grid 320
Assigning Pins for Bus GUIdeSot 321
Pin Assignment Limitations e 321
Inserting Feedthroughs 322
Inserting Feedthrough Buffers 324
Highlighting the Nets for which Feedthrough Buffers Have been Inserted 335
Utilizing Pre-defined Feedthrough Pins in Custom Macros 335
Inserting Routing Feedthroughs 341
Generating the Wire Crossing BReport ... 343
Interpreting the Wire Crossing BReport 344
Estimating the Routing Channel Width 346
Running the Partition Program e 348

October 2010 12 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Pushing Down Signal Routes 349
How Top-level Stripes Are Pushed Down i, 350
How Bumps, Routes, and Area I/O Cells Are Affected 353
Limitations e 360
Restoring the Top-Level Floorplan with Partition Data 365
Concatenating Netlist Files of a Partitioned Design 366
Saving Partitions e 367
Loading Partitions e 367
Unpartitioning with RoutingData 367
Working with OpenAccess Database 369
Parallel JOb Processingot 370
13
Floorplanningthe Design....................................... 371
OV BW . ot 372
Common Floorplanning SEQUENCEttt e e e e et 373
Viewing the Floorplan 374
Module Constraint TVDESo ittt e 377
Target Utilization Displayco it e e 378
Effective Utilization Display i et 380
Calculating Density it e 381
Standard BOW SPacCingottt e 382
Grouping INStaNCESo 383
Defining the Bounding BoX i e 384
Adding Logical Hierarchy Without Creating Additional Hierarchy 385
Loqical Hierarchy Manipulation 386
Creating and Editing ROWS i e 390
Using Vertical BOWSo e e e e 390
Using Multiple-height BOWS i e 392
Using Integer Multiple-height Rows 392
Using Non-Integer Multiple-height Rows 395
Working with User-defined DEF Files that Contain NIMH Rows or Unaligned Rows 397
Merging Hierarchical Floorplans from Partitions 400
Performing I/O Row Based Pad Placement iuo.o... 403
Prerequisites o e 403

October 2010 13 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Enabling the I/O Row Flow in EDI System 404
Use MOdEIS ... e 406
Resizing Rectilinear BIOCKS i e 408
Use MOdEIS ... e 409
ASSUMPHIONS ... e 410
BReSURS ... e 410
Using Blackblobs 411
Defining Blackblobs e 411
Specifying Blackblobs e 412
Blackblob Useflow e 416
BlackbIob Displayo e 419
Blackblob Overlap 424
Saving and Restoring Blackblobs 427
Editing PiNnS . .. 428
Pin Snapping on Resized Boundariesc.ci i, 428
MoVINg PiNS ... e 428
SWapPING PiNS ... e 429
Using the Pin Editor 429
Running Relative Floorplanning e 439
Orientation KeY oot e 439
Instance Place Example i e 440
Pre-Route EXamples e 440
Saving and Restoring Relative Floorplan 442
Saving and Loading Floorplan Data 442
Resizing the Floorplan 443
Resize Floorplan Optionsot 444
Setting Resize Lines i e 444
Specifying BResize Directions it 445
Snapping Resize Valuesc. i 445
Viewing Resize Lines using Color Preferences 446
Distributing 1/O’s using Resize Floorplan 448
M
Power Planningand Routing................................... 451
O IV W .ottt e 452

October 2010 14 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Before You Begin e 453
ReSURS e 454
Loading, Saving, and Updating Special Route 454
Creating a Ring with User Defined Coordinates 454
Global Net ConneCtioNSottt e e e 455

alobalNetConnect Command and Connections for Signal Pins and Power/Ground Pins
456

Fixing LEF MINIMUMCUT Violations ...ttt 457
Fixing LEF Minimum Spacing Violations 457
Adding Stripes to Power Domains 457
Automatic Power Planning (APP)ot 459
Creatinga Template e e e 461
Usingthe IPBIock Page e e 461
Usingthe Design Page e e e 462
Specifying Template Parameters 463
Instantiatinga Template e 464
Template Naming Conventions 464
Using the Synthesize Power Plan Functionality 465
Creating Differential Routing to Signal Bumps 467
15
Low PowerDesign.......................... 469
OV BW .ottt e 470
Power Domain Shutdownand Scaling 470
Support for the Common Power Format (CPF) 472
CPE Version SUPDOIt . ..ottt e e 472
EDI System Commands Supporting CPF 472
Loading and Committinga CPE File 473
Savinga CPE Database i e 473
CPE Documentation e 474
Multiple Supply Voltage Flat Flow 475
Preparing Data e 477
Loading the Configuration File i 480
Floorplanning the Design e 480
Loading and Committingthe CPFE File 481

October 2010 15 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Setting the Power Domain Size e 481
Setting the Power Domain mingap ...ttt et e e 481
Adding Power Switches 482
Verify Power DOmainsot e 482
AddingWell Tap Cellsottt e e e e 482
Planning Power e 482
Placing Standard Cells and Macros it 483
Highlight Power Domains (Optional) 485
Adding Tie High/Low cells e 486
RoUting POWETr . .. 486
Trial ROUtINg ... e 487
Optimizing TiMINGottt e e e e e e e e et e e e e e 489
Synthesizing ClocK TreeS oo it e e e 492
Optimizing Timing (Post CTS) e 493
Routingthe Design e 493
Analyzing TimiNgottt e e 493
ANalyzing POWer 493
Optimizing Timing (Post-Route) 494
Multiple Supply Voltage Top-Down Hierarchical Flow 495
OV IV BW . ot e 495
Always-On Feedthrough Handling 496
Chip Partitioningt e 498
Block-level CPF Generationiii et 498
Top-Level CPE Generationt e 500
Block-Level Implementation e 501
Top-Level Implementation 501
Chip Assembly e 501
Example of Block-Level CPF Generated by EDI System 503
Example of Top-Level CPF Generated by EDISystem 506
Multiple Supply Voltage Bottom-Up Hierarchical Flow 510
Block-Level Implementation 511
Top-Level Implementation i e 512
Chip Assembly 512
Leakage Power Optimization Techniques 514
Multi-Vth Optimizationc o e 514
Substrate BiasSing 515

October 2010 16 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Power Shutdown Techniquest 519
Power Shutdown Commandsttt e 519
Data Preparation e 520
Buffer Styles e 521
Adding Column Switches 522
Attaching the Acknowledge ReceiverPin 523
Enable Chaining e 525
Controlling the Maximum Enable Chain Depth 528
Synthesizing Acknowledge TreeSottt i e 529
Adding Power Switch RiNQS 531
RiNg Conventions e 533
Using Pitch Controland Offsets 539

Power Switch Optimization e i 549
Power Switch Reduction i 549
Power Switch ECO 550

16

Placing the Design................ 553

O IV W .ottt e 554

Loading @ DesSiANot e 554

Preparing for Placement e 554

Guiding Placement With Blockages ittt 555
Placement Treatment of Preroutes 556

Adding Well-Tap Cellso e e 557
Controlling the Distance Between Well-Tap Cells 558
Adding Well-Tap Cells to MSV DESIQNS . ..o o ittt et e et 558
Deleting Well-Tap Cellsot e e e e 558

Adding End-Cap Cells 558
Adding End Cap Cells to MSV DeSiaNS . ..o oo e e e e e 559
Deleting ENd-Cap Cellsttt e e 559

Placing Spare Cells and Spare Modulesc.c it 560
Placing Spare Cells That Are Included in the Netlist 560
Placing Spare Cells That Are Not Included in the Netlist 561
Spare Cell Placement Behavior i 561
Running Hierarchy-Aware Spare Cell Placement 563

October 2010 17 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Adding Paddingo e e 566
Adding Instance or Module Padding i 567
Adding Cell Padding . ..o i ittt 568

Placing Standard Cells e 570

Running Placement in Multi-CPU Mode i, 571
Multi-Threading Placement Steps 572

Checking Placement e 574
Usingthe Amoeba View e e 575
Usingthe Density Map e e 575

Adding Filler Cells e 576
Adding Fillers to MSV Designs ... 576
Deleting Filler Cellsot e e e e e 577

Placing Gate Array Style Filler Cells for Post-Mask ECO 577

Adding Decoupling Capacitance it 578
Deleting Decoupling Capacitance 579

Adding Logical Tie-Off Cells e e e 579

Saving Placement Data i 580

Specifying and Placing JTAG and Other Cells Closetothe I/Os 580

Optimizing and Reordering Scan Chains0 ittt 581
Specifying Scan Cells o e 581
About Scan Chains i e 582
Reordering Scan Chainsttt e et 582

17

Synthesizing Clock Trees..........................ooooin. 593

Before You Begin e 594

ReSURS e e 594

Understanding CTS Operation Modes ... 595
Manual CTS MOdEet e e e e 595
Automatic CTS MOdEot e e e e 596

How CTS Calculates Skew Values i 600

Improving Postroute Correlation i e 602

Specifying Macro Model Delays i 603
Macro Model Support for MMMC Views 603
Dynamic Macro Model e 604

October 2010 18 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Grouping CloCKS . ..ottt e 607
Analyzing Hierarchical Clock Tre€sottt 608
Module Placement Utilization i e 610
Clock Designs with Tight Area e 610
Balancing Pins for Macro Models i 610
Timing Model Requirementfor Cells 610
Delay Variation and OCV 610
Understanding Post-CTS Clock Tree Optimization 611
Using the ckECO Command for Post-CTS Clock Tree Optimization 611
Support for Local Skew Optimization 612
Command Modes forthe ckECO Command coiiiieennnnnn. 612
Using a SPEF File with the ckECO Command for RC Estimation 612
Running Post-CTS Optimization with the ckECO Command 613
Guidelines for Using the ckECO Commandiitriineernnnnnnn 614
Creating a Clock Tree Specification File 615
Using the Automatic Clock Tree Specification File Generator 615
Example of a Clock Tree Specification File 617
Naming Attributes Section 621
NanoRoute Attribute Section 622
Macro Model Data Section e 623
Clock Grouping Data Section e 627
Clock-Tree Topology Section e 627
Automatic Gated CTS Sectioncc it e 628
Log File Headings oot e e 646
CTS Report Descriptionsot e 647
General Information e 647
Macro Model Information 649
Power Information 649
AC Current Density Violations 650
Supported SDC Constraints 651
Clock Tree Analyst e 652
18
Working with Clock Mesh Structures.......................... 653
O IV W . ottt 654

October 2010 19 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Clock Meshes Versus ClocK TreES . ..o v v ittt et e et e et et 654
Creating Clock MeShes i e e e e e e 657
Determining the Mesh Structure 657
Implementing the Clock Mesh e 662
Analyzing the Clock Mesh e 663
Generating Multiple Spice Run Deck For Big Clock-Mesh Networks 666
19
Editing Wires ... 671
O IV W . ottt 672
Before You Bedin 673
BReSURS e 673
Using Keyboard Shortcuts e 673
Keyboard Shortcuts That Open Forms 673
Keyboard Shortcuts That Are Equivalent to Tool Widgets 673
Keyboard Shortcuts Used in Auto QueryMode 674
Keyboard Shortcuts Used in Edit Wire Mode i iinn... 674
Keyboard Shortcuts Used in Stretich Wire Mode 675
Keyboard Shortcuts Usedto Change Vias 675
Selecting WIS ... 675
Deleting WireS ... oo e 676
MoVING WirES . . .ot 676
Using the Mouse to Move WIreS i i 676
Using Arrow Keys to Move Wires i e 677
Moving Selected Wires or Viasttt e 677
AddiNg WireS .. e 678
Addinga WireforaSingle Net 678
Adding Wires for Multiple Nets e 679
Adding Wires that Automatically ExtendtoaTarget 681
Using Override to Add Wire Groups with Multiple Widths and Spacing 682
Cutting Shielding WIreSot e e e e e 683
Trimming Antennas on Selected Stripes 683
Changing Wire Width e 684
Repairing Maximum Wire Width Violations 685
Duplicating WiresSo e e 685

October 2010 20 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Stretching Wires ... 686
Changing Wire Layerst e e e e 686
Splitting and Merging Wireso it e 687
AddiNg Vias ... 687
Changing Viasttt 688
MOVING Vi8So 689
Reshaping Routes 689
Controlling Cell Blockage Visibility 690
20
Using Trial Route for Congestion and Timing Analysis 693
OV IV W . ottt e 694
Data Preparation e 694
Routing A Flat Desiant e e e e 695
Routing a Partitioned Design ittt e 696
Routing Two-Metal Layer Desiansttt e 698
Routing Using the NanoRoute Global Router i 698
Loading and Saving Route Data 699
Analyzing Route Data e 699
Congestion Markers inthe Display 699
Congestion Distribution Report 702
Improving Route Congestiont e 708
UsiNg BUS GUIESot e e e 709
Additional Information 710
Wire OVEIaD .. e 710
21
Using the NanoRoute Router 711
About NanoRoute Routing Technology 714
Routing Phases 714
Global Routingo e 714
Detailed ROULING ot e 715
NanoRoute Router in the EDI System Flow 716
Before You Begin e 716
Checking Your LEF Files e e e 716

October 2010 21 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Checking for Problems with Cells, Pins,and Vias 717
Generating TraCKSottt e 718
Specifying Routing Layers i e 718
Interrupting BOULINGot 720
Using the routeDesign Supercommand e, 720
BReSURS ... e 722
Use MOdEIS e 723
Running the NanoRoute Router with EDI System Menu Commands and Forms .. 723
Running the NanoRoute Router with EDI System Text Commands 723
Running the NanoRoute Router in Standalone Mode 724
Using NanoRoute Parameters i 725
Using Attributes and Options Together 726
Accelerating Routing with Multi-Threading and Superthreading 728
When to Accelerate Routing e 729
Superthreading Log File Excerpts i 730
Following a Basic Routing Strateqy it 732
Using the EDI SystemText Commandsuiiiiinee i, 732
Using the EDI System GUI e et 733
Checking Congestion it e 736
Using the Congestion Analysis Table 736
Using the Congestion Map i e 738
Resolving Open Nets 741
Log File EXamples 741
Diagnosing Problems Using verifyTracks, 742
Resolving Additional Open Net Problems 742
Running Timing-Driven Routing e 744
INPUL FIleS .. oo e 744
Using the CTE and the NanoRoute Router in Native Mode 744
Using the CTE and Standalone NanoRoute 745
Routing CloCKSo it 747
Setting Attributes for Clock Nets i 747
Routing Clock Nets Using the GUIFOorms i, 748
Running Postroute Optimization 748
Preventing and Repairing Crosstalk Problems 749
Crosstalk Prevention Optionsttt e 751
Running ECO RoUtingot e 753

October 2010 22 Product Version 9.1.3

Encounter Digital Implementation System User Guide

ECO Limitationsot 753
ECO FlOW ..ttt e 754
Evaluating Violations e e 755
Violations on Upper Metal Layers i 759
Violations in Timing-Driven Routing 761
Deleting Violated Nets 763
Using Additional Strategies to Repair Violations 763
Concurrent Routing and Multi-Cut Via Insertion 763
Postroute Via Optimization e 764
Optimizing Vias in Selected Nets e 765
Via Optimization Options i e e 765
Performing Shielded Routing i e 767
Shielding OptioN 767
Performing Shielded Routing Usingthe GUI 768
Performing Shielded Routing Using Text Commands 769
Interpreting the Shielding Beport 769
Routing Wide Wiresot e e e e e 770
Using Non-Default Rules e 771
Repairing Process Antenna Violations i 773
Repairing Violations on Multiple-Pin Nets 773
Changing Layerso e 774
USINg DIOdES ..o oottt 774
Deleting and Rerouting Nets with Violations 774
Repairing Violations on Cut Layersc.c it 774
Process Antenna Options i e 775
EXamMPIES .. 775
Using a Design Flow that Includes Astroor Apollo 777
Troubleshooting oo e 778
22
Using the Encounter Mixed Signal Router.................... 779
O IV W .ottt e 780
Using the Mixed Signal Router i e 781
Before You Bedin o 781
RESURS . ..o e 781

October 2010 23 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Specialized Routing Techniques e 782
Matched Nets 782
Differential Pair Nets e 786
BUS BOULESo e 787
Shielded Nets e 787

Using Routing Constraints e 791

Constraint File Format e 791

Specialized Constraints and Keyword Descriptions, 792
NET S . 792
MAT CH .. 797
DIEEPAIR . o 800
SHIELDING ..ottt e e e 807

Creatinga Constraint File e 810
Using the Mixed Signal Constraint Editor 810
Usinga Text Editor e 814

Loadinga Constraint File e 815
Using the Mixed Signal Constraint Editor Form 815
Using the Mixed Signal Router Form 815
Using the routeMixedSignal Commanditiieinnnnnnn.. 817

Editing a Constraint File 818
Using the Mixed Signal Constraint Editor 818
Usinga Text Editor e 819

Sample Constraint File 820

23

Digital Mixed Signal Flow 825

OV BW . ottt e 827

Design Data and Technology Data Preparation 830
Software Requirements i e 830
Library and Technology Requirements i, 830
Generic Guidelinesto Runthe DMS Flow 830
Technology Library Preparation 832
IP Library Preparation e 843

Flow to Convert the EDI System Database to OpenAccess Database 845

DMS Floorplanning FIOW e e e 846

October 2010 24 Product Version 9.1.3

Encounter Digital Implementation System User Guide

DMS FIow Diagram e 847
Verilog Netlist Creation e 848
Floorplanning of Verilog Netlist Using Blackboxes 849
Generate From Source for Soft Analog Block Layout Using Virtuoso 853
Load Physical View to Merge Optimized Pin Locations and Block Boundary 857
Physical Implementation of Soft Analog Blocks Using Virtuoso 859
Physical Implementation of Soft Digital Blocks Using EDI System 860
Top-level Analog Net and Power Routing 860
Assemblingthe Design e 861
Place and Route of Digital Portion at the Top and Early Digital ECO’s 861
Quick Abstract Inference 862
Static Timing Analysis for Mixed-Signal Designs 867
The FTM Generation Flow Diagram it i 867
Guidelines to Run FTM-Based STAFlowt 868
Steps to Run Static Timing AnalysisSt e 869
Chip Finishing and ECO FIOWSo ittt e e e et 874
OV IV BW .ot 874
Virtuoso-Based ECO FIOW ittt et e 875
EDI System-Based ECO FIOWottt e e e 877
ﬁ
Optimizing Metal Density 883
O IV W . ottt 884
Before You Beqin e 885
Adding Metal Fill in Multiple-CPU ProcessingMode 885
After You Complete Adding Viaand Metal Fill 885
Metal Fill Features e e e e e 886
Staggered Metal Fill Pattern e 886
Connected and Floating Metal Fill 887
Timing-Aware Metal Fill 891
Specifying Metal Fill Parameters 893
Recommendations for Adding Timing-Aware Metal Fill 894
Timing-Aware Examples e 895
Specifying the Active SpacingValue i 896
Adding Metal Fill Over MacroSt e e e e e e e 897

October 2010 25 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Recommendations for Power Strapping Mode i i 898
Adding Via Fill 898
Recommendations for Metal/Via Fill Flow 899
Achieving Gradient Density with Preferred Density Setting 902
Trimming Metal Fill e 904
Verifying Metal Density o e 905
Adding Metal Fill Using the GUIL e e 906
Adding Metal Fill with Iteration 906
25
Timing Budgeting 909
OV IV W . ottt e 910
Is My Design Ready for Budgeting? e 912
Deriving Timing Budgets i e e 913
Budgeting Usingthe GUI i e 913
Budgeting Using Text Commands ittt et et e 913
Top-Level Budgets Derived by Using Active Logic View 914
Deriving Preliminary Budgets in Early Design Phase 915
Budgeting Output Files for MMMC DesSigns oo ittt e e 917
Corner CloNINg ..ottt et e e 917
Mode ClONING . ..ottt e e e e e 918
Setup and View Handling for MMMC DesSigns i 919
Constraints Adjustment 920
Analyzing Timing Budgets i 922
Resolving Conflicts with Path-Based Exceptions 922
Budgeting Clock Latency in Propagated Mode 925
Budgeting Libraries i e 927
Resolving Conflicts with Path-based Exceptions 927
Defining Clocks Inside the Partition 930
Calculating Timing Budgets o e 932
Customizing Budget Generation it 935
Verifying Timing Budgets e 936
Reading the Justify Budget Report 937
Design EXample e e 939
SDC Constraints for Design Example 940

October 2010 26 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Generated Report for Design Example 940
Constraints Supportin Budgeting 942
Warning Beport e 945

Pin Constraint Values Greater than Available Time 945

Warning Report Example 945
26
RC EXtraction 947
OV BW . ot 948
Before You Beqin e 950

ReSURS ... e 950

Specifying Temporary File Locations 950
Extraction Flow in EDI System e 951
Preroute EXtraction e 952
Postroute Extraction e 952

Native Detailed e 952

TAQRC and IQRC ...ttt 953

Incremental Extraction Support for Design Changes 955

Sign-Off Extraction Using QRC e 957

Inputs for QRC Sign-Off Extraction 957
Scale Factor Setting ... e 957
Generating a Capacitance Table e 958

Inputs for Generating a Capacitance Table 958

Capacitance Table Generation FIow, 959

Generating Capacitance Table With Specified Scaling Factors 964
Reading a Capacitance Table i 965
Readinga QRC Techfile e e 966
Correlating Native Extraction With Sign-Off Extraction 967

Correlating SPEF Files Using the Ostrich Utility 968

Comparing SPEF Files Usinga Perl Script 971

Defining the Scaling Factor 974
Distributed Processingo ittt e 975

Setting-up Distributed Processing i e 975

Generating a Capacitance Table in Multi-CPUMode 976

Performing IQRC, TQRC, and Standalone QRC Extraction in Multi-CPU Mode ... 976

October 2010 27 Product Version 9.1.3

Encounter Digital Implementation System User Guide

27
CalculatingDelay 979
O IV W .ottt e 980
Data Preparation e 981
Operating ConditioNS ottt 981
ECSM LIibrarnies 981
Delay Calculation Modes and Related Controls , 982
Choosing A Delay Calculation Engingt eeee e 983
Running Delay Calculation e i 983
Calculating Delay in Multi-Thread Mode 983
28
Timing Analysis 985
O IV W .ottt e 986
Timing Analysis Features i e 987
Before You Begin 988
Reading Timing Libraries e e e 989
Resolving Discrepancies in Timing Libraries 989
Reading Timing Constraints i e e 990
Constraints Quick Reference e 990
Timing Analysis Results i e 992
Setting Operating Conditions i e 993
Calculating Clock LatenCyttt e e e 994
Definingd BC COrNeIS . ..ottt e e e e e e e e e e e 995
Specifying Timing Analysis Modes it 997
Definition of Earlyand Late Paths 997
Single Timing Analysis MOdEottt e e 999
Best-Case Worst-Case (BC-WC) Timing AnalysisMode 1003
On-Chip Variation (OCV) Timing AnalysisMode 1008
Clock Path Pessimism Bemoval e 1013
Analyzing Timing Problems 1019
Resolving Buffer-Related Problems 1020

October 2010 28 Product Version 9.1.3

Encounter Digital Implementation System User Guide

29
Debugging Timing Results 1023
O IV W .ot 1024
Timing Debug Flow e 1025
Generating Timing Debug Report ... 1026
Displaying Violation Beport e 1026
Analyzing Timing Results e 1027
Viewing Power Domain Information 1032
Creating Path Categories i e e 1033
Creating Predefined Categories 1033
Creating New Categori@So ittt et e e e 1034
Creating Sub-Catedoriest 1036
Hiding path categories i 1040
Reporting Path Cateqories it e 1040
Using Categories to Analyze TimingResults, 1042
Analyzing MMMC Categoriesttt e e e e 1043
Manual Slack Correction of Categories 1046
Editing Table ColUMNSt e e e e e 1046
Cell COlONNG . . vttt e 1048
Viewing Schematics 1050
Running Timing Debug with Interface Logic Models 1051
30
Statistical Static Timing Analysis 1053
SSTA OVEIVIBW . oottt e e e 1054
SSTA INPULS . ..o e 1058
Libraries with sensitivities e 1059
Statistical Parameter Distribution Format (SPDF) File 1061
Specifying Global or Die-to-Die Variations in SPDF File 1061
Specifying Random Variations in SPDF File 1061
Specifying Spatial Variations in SPDEFile 1062
Sensitivity-Based SPEF (S-SPEF) Filecoii .. 1063
Loadingthe S-SPEF File e 1063
ST A FIOWS ..ottt e 1064

October 2010 29 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Running Block-Based SSTA e 1065
Running Path-Based SSTA e 1066
SSTA OUIPULS ..o e 1067
Block-Based SSTA RepOrtt e 1067
Path-Based SSTA Reportt e e e 1069
SSTA Correlation With Monte-Carlo Analysis ...t 1071
31
Extracting TimingModels...................................... 1073
ETM OVeIVIEBW . ..ttt e e e e e e e e e e e e 1074
Using ETMs in Different Timing Analysis Modes 1075
Limitation of Timing Models e 1076
ETM INpULS .o e e 1078
Guidelines for Generating ETMSttt e 1079
ETM Generation FIOW e e 1081
Validating the Generated Model0 .. 1083
Reducing the Size of GreyBox Models 1084
ETM OUIPULS . ..o e 1086
Timing Library File e 1086
Boundary Nets 1086
Internal Nets e 1087
Timing Paths e 1087
Minimum Pulse Width and Minimum Period 1088
Path EXCEptions e 1089
CONSIANtS ... 1089
Gating CheCKS . ..ot 1089
Annotated Delays and SIEWS it e 1090
Design RUlES ... 1091
Generated ClOCKS i ittt e 1091
Timing Constraints Files e 1094
set false path and set multicycle path constraints 1094
set disable timingand set case analysis 1094
create clock and create generated clock 1095
set input delay and set output delay 1095
Design RUlES ... 1095

October 2010 30 Product Version 9.1.3

Encounter Digital Implementation System User Guide

set load. set resistance and set annotated transition 1095
set annotated delay and set annotated check 1096
set input transition and set driving cell 1096
32
Optimizing Timing 1097
O BV W .ottt e 1098
Before You Begin oo 1098
ReSURS e 1099
Interrupting Timing Optimization 1101
Performing Optimization Before Clock Tree Synthesis 1102
Correcting Violations in Pre-CTS Mode for the First Time 1102
Performing Rapid Timing Optimization for Design Prototyping 1103
Using Additional Pre-CTS Timing Optimization Parameters 1103
Performing Incremental Pre-CTS Optimization 1104
Changing Default Settings in Pre-CTS Mode cciiiiiinnn... 1105
Performing Post-CTS Optimization 1106
Correcting Violations in Post-CTS Mode 1106
Using Additional Post-CTS Timing Optimization Parameters 1107
Performing Incremental Post-CTS Optimization 1108
Changing Default Settings in Post-CTS Mode 1109
Performing Postroute Optimization 1110
About Postroute Optimization 1110
Correcting Violations in Postroute Mode 1112
Correcting Signal Inteqgrity Violations 1114
Changing Default Settings in Postroute Mode 1115
Optimizing Power During optDesian ...t 1116
Leakage Power Optimization 1116
Dynamic Power Optimization 1116
Using Useful SKEWo e 1117
Using Useful Skew in Pre-CTS Modeci ittt et e 1117
Using Useful Skew in Post-CTS Mode i, 1118
Controlling Useful Skew Optimization 1118
Using Active Logic View for Chip-Level Interface Circuit Timing Closure 1119
Optimizing Timing in On-Chip Variation Analysis Mode 1120

October 2010 31 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Specifying the MMMC Environment i 1121
Optimizing Timing in OCV Mode Using the Default Delay Calculator 1123
Optimizing Timing in OCV Mode Using the Sign-Off Delay Calculator 1123
Using Conformal Constraint Designer During Timing Optimization 1123
Post-Processing Approach i e 1124
Integrated Approach e 1124
Optimizing Timing Usinga Rule File 1127

Optimizing Timing When the Constraint File Includes the set case analysis Constraint
1127

Using the Footprintless Flow 1127
Using Cell Footprints e 1128
AAE-Based Sl Optimization 1130
AAE-Based Setup and Hold FiXingot e 1130
AAE SIETIMING . . oo ot e e e e 1131
Sample FIoOW SCriptS ot e 1131
Viewing Added Buffers, Instances., and Nets 1133
Default Naming Conventions 1133
33
Interactive ECO 1135
OVEIVIBW . o oo e 1136
Before You Beqino 1136
BeSURS . ..o 1136
Adding BUuffers 1136
Changing the Cell e e e 1139
Deleting BUferso 1141
Displaying Buffer Tre€S ot e 1143
Running ECO Placement et 1145
Naming Conventions for Interactive ECO i 1146
Comparing Physical Design Data 1146
34
Integration with LPAand CCP................................. 1153
OVEIVIEBW . o o e e e 1154
Before You Beqin 1154

October 2010 32 Product Version 9.1.3

Encounter Digital Implementation System User Guide

RESURS ... e 1155
Running LPA from Encounter e 1155
Routing Layers Only Modettt e e 1155
SIgnN-Off MOdE . ..ot 1164
Running CCP from Encounter i 1175
CCP Flow in Encounter e e 1176
Running CCP in Cadence Model Flow 1176
Running CMP Analysis in TSMC Model Flowc....... 1182
Viewing Hotspots 1183
35
Analyzing and Repairing Crosstalk........................... 1185
O IV W .ottt 1186
Inputs and Outputs for ST ANalysis e 1187
Setting Up Encounter for STAnalysis i, 1188
RC Extraction Settingsc i 1188
Noise Analysis Settindsottt 1190
Static Timing Analysis (STA) Settingst 1193
Advanced Settings for STAnalysis 1194
Example of Setting Up Encounter for Sl Analysis 1198
Preventing Crosstalk Violations i 1199
Fixing Crosstalk Violations e e e 1200
Data Preparation e e 1200
Using optDesign to Fix Setup Violations with Crosstalk Effects 1201
Using optDesign to Fix Hold Violations with Crosstalk Effects 1203
Using optDesign to Fix Transition Time Violations with Crosstalk Effects 1205
Performing XILM-Based Sl Analysisand Fixing 1208
36
Power and Rail Analysis 1209
Early Rail ANalysis e 1210
Early Rail Analysis Key Features 1210
Prior to Running Early Rail Analysis 1211
Setting up and Running Early Rail Analysis, 1212
Running Early Rail Analysis in Unplaced Mode 1224

October 2010 33 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Viewing Early Rail Analysis Results i 1225
Signoff-Rail ANalysSisS i 1230
EDI System and EPS menu differences 1231
37
Verifying Violations ... 1233
O IV W . ottt 1234
St oo e 1236
Interrupting Verification e 1237
Verifying Connectivity 1238

Before You Bedin e e 1238

Types of Connectivity Violations Reported 1238

ReSURS ... e 1239
Verifying Metal Density 1240

Before You Bedin e 1240

ReSUS ... 1240

Verifying Metal Density in Multi-Thread Mode 1241
Verifying GeOMEIIY 1242

Before You Bedin o 1242

Verifying Geometry in Multi-Thread Mode , 1243

Spacing Violation Checks i e e 1244

Types of Antenna Violations Reported 1244

SupportforVia Bules 1245

ReSURS e 1246
Verifying Process AntennNasttt 1247

Before You Bedin e 1247

Verifying PAE . .o e 1247

ReSUS ... e 1247

Sample Process Antenna Beport 1248
Verifying Maximum Floating Area Violations 1250
Verifying AC Limito e 1251

Before You Bedin 1251

ReSURS e 1251
Viewing Violations With the Violation Browser iu..... 1252

Viewing Geometry or Metal Density Violations 1252

October 2010 34 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Viewing Connectivity, Process Antenna, or AC Limit Violations 1252
Viewing Violation Markers From Assura or Calibre 1252
Violation Browser Features 1253
Clearing Violationsttt e e e e 1255
38
Analyzing Yield........... 1257
O IV W .ottt 1258
What Effects Does reportYield Consider? 1258
Calculating Failure Probabilities e 1259
Critical Area ANalySiSottt 1260
Defect Data and Cumulative Defect Data Functions 1261
Before You Bedin 1261
BReSURS ... e 1261
Interrupting Yield Analysist e 1262
Interpreting the Yield Map i e 1263
Displaying the Yield Map e e e e 1263
Interpreting the Yield Report e 1266
Yield Report .. o e 1266
Detailed BReport e 1270
Understanding the Yield Technology File 1272
File Format e 1272
File Sections and Keyword Statement Descriptions 1274
Yield Technology File Example 1285
Formulas and Calculations i e 1288
Calculating the Probability of Failure fora Metal Layer 1288
Calculating Defect and Cumulative DefectData 1288
Cost Formulas 1291
39
Creating An Initial Floorplan Using Automatic Floorplan
Synthesis ... 1293
OV BW .ot e e 1294
Automatic Floorplan Synthesis Flow 1295

October 2010 35 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Data Preparation e 1297
Selecting Seeds 1297
Importing the Desian e 1303
Setting Automatic Floorplan Synthesis Global Parameters 1304
Creating an Initial Floorplan e 1304
Creating Floorplan for Hierarchical Designcoii .. 1305
Macro placement e 1306
Full-chip Floorplan e e e 1307
Power-Domain Aware Floorplan i 1308
Creating Multiple Alternative Floorplans 1310
Analyzing the Floorplan 1311
Adjusting Macro Placement e 1312
Manual Macro Adjustment 1313
Automatic Floorplan Synthesis Macro Adjustment 1313
Saving the Floorplan e 1318
40
Performing Multi-Mode Multi-Corner Timing Analysis and
Optimization........................ 1319
O IV W . ot 1321
Configuring the Setup for Multi-Mode Multi-Corner Analysis 1322
Creating Library Sets 1323
Creating Virtual Operating Conditions 1324
Creating RC Corner Objectso e 1325
Creating Delay Calculation Corner Objects, 1326
Adding A Power Domain Definition To A Delay Calculation Corner 1328
Creating Constraint Mode Objects i, 1329
Creating Analysis VIeWS it e e 1333
Setting Active Analysis VIEWS 1334
Checking the Multi-Mode Multi-Corner Configuration 1335
Saving Multi-Mode Multi-Corner Configurations 1336
Controlling Multi-Mode Multi-Corner Analysis Throughthe Flow 1336
Performing Timing ANalySisSottt e e 1338
Generating Timing BEPOrtSottt 1339
Performing Timing Optimization 1339

October 2010 36 Product Version 9.1.3

Encounter Digital Implementation System User Guide

a1
Creatingthe ICT File ... 1341
Format e 1342
Data .. 1342
COMMENES ...ttt 1342
Case Sensitivity e 1342
Warnings and Errorsot 1342
Invalid Layer NamesSottt e et 1342
COMMANAS ...ttt e 1342
Sample ICT File e e e e 1355
42
ECO FIOWS ... 1367
O IV W .ottt 1368
ASSUMPLIONS e e 1368
BlOWS o 1368
Pre-Mask ECO Changes from a New Verilog File 1370
Preparation 1370
BlOW o 1370
SIEPS . e e 1371
Pre-Mask ECO Changes froma New DEF File 1374
Preparation e e 1374
BlOW o 1375
PSS 1375
Pre-Mask ECO Changes froman ECOFile 1378
Preparation e 1378
BlOW o 1379
SIS . e 1379
Post-Mask ECO Changes from a New Verilog Netlist 1382
Preparation e 1382
BlOW o 1383
SIEPS . e 1383
Post-Mask Gate Array Style ECO from a New Verilog Netlist 1388
Preparation e 1388

October 2010 37 Product Version 9.1.3

Encounter Digital Implementation System User Guide

eSS . e 1390
43
ECO DIreCtiVES. 1393
ADDHIERINST ... 1395
ADDINST .. 1396
ADDMODULEPORT ... i e 1398
ADDNET ... i 1399
ATTACHMODULEPORT ..ottt e e e e e 1400
ATTACHTERM ... e e 1401
DELETEBUFEFER e 1403
DELETEINST ... e e 1405
DELETEMODULEPORT ...ttt e e e e e 1406
DELETENET .. e e e e e 1407
DETACHMODULEPORT ...ttt e e e e e 1408
DETACHTERM ... e e 1409
INSERTBUEFER e 1410
Example ECO File e e e e 1413
ﬁ
Clock Mesh Specification File................................. 1415
O IV W . ottt 1415
Routing Type Definitions i e 1416
Cutout Definitions i 1416
Clock Mesh Definitionsottt e e e e 1417
Timing and Power Constraints Section 1418
Tracing and Analysis Scope Section 1419
Mesh Structure Section 1420
Global Mesh Section ... 1421
Analysis Section 1434
Top Chain Section i e 1434
Local Tree Section 1436
Clock Mesh Specification File Example 1439

October 2010 38 Product Version 9.1.3

Encounter Digital Implementation System User Guide

45

Supported CPEF 1.0 Commands 1445

46

Supported CPF 1.0e Commands............................. 1455

47

Supported CPF 1.1 Commands 1469

48

CPE 1.0 Script Example 1483

49

CPF 1.0e Script Example................. 1495

50

CPE 1.1 Script Example 1501

51

Cadence-Specific Liberty Extensions 1507

OV IV W . ot ot 1507

Guidelines For Adding ECSM EXtensSionsScctii it e 1508

Representing ECSM Information in a Library 1508

Defining ECSM Extensions in a Library 1509
ecsm_ waveform GroUD . .o oot e e e e 1511
ecsm_waveform Set GroUD . . . vt v vt e e e e e e 1514
ecsm_capacitanCe GroUDt vttt e e e e e 1516

EXamPIE .. e 1520

INAeX. .. 1529

October 2010 39 Product Version 9.1.3

Encounter Digital Implementation System User Guide

October 2010 40 Product Version 9.1.3

Encounter Digital Implementation System User Guide

About This Manual

The Cadence® Encounter® Digital Implementation System family of products provides an
integrated solution for an RTL-to-GDSII design flow. This manual describes how to install,
configure, and use Encounter Digital Implementation System (EDI System) to implement
digital integrated circuits.

Audience

This manual is written for experienced designers of digital integrated circuits. Such designers
must be familiar with design planning, placement and routing, block implementation, chip
assembly, and design verification. Designers must also have a solid understanding of UNIX
and Tcl/Tk programming.

How This Manual Is Organized

The chapters in this manual are organized to follow the flow of tasks through the design
process. Because of variations in design implementations and methodologies, the order of
the chapters will not correspond to any specific design flow.

Each chapter focuses on the concepts and tasks related to the particular design phase or
topic being discussed.

In addition, the following sections provide prerequisite information for using the EDI System
software:

m Chapter 2. “Getting Started”

Describes how to install, set up, and run the EDI System software, and use the online
Help system.

m Chapter 5, “Data Preparation”

Describes how to prepare data for import into the EDI System software.

October 2010 41 Product Version 9.1.3

Encounter Digital Implementation System User Guide

About This Manual

Conventions Used in This Manual

This section describes the typographic and syntax conventions used in this manual.

text

text

text

October 2010

Indicates text that you must type exactly as shown. For
example:

analyze connectivity -analyze all

Indicates information for which you must substitute a name
or value.

In the following example, you must substitute the name of a
specific file for configfile

wroute -filename configfile

Indicates the following:

m Text found in the graphical user interface (GUI),
including form names, button labels, and field names

m Terms that are new to the manual, are the subject of
discussion, or need special emphasis

m Titles of manuals
Indicates optional arguments.

In the following example, you can specify none, one, or
both of the bracketed arguments:

command [-argl] [arg2 value]

Indicates an optional choice from a mutually exclusive list.

In the following example, you can specify any of the
arguments or none of the arguments, but you cannot
specify more than one:

command [argl | arg2 | arg3 | arg4d]
Indicates a required choice from a mutually exclusive list.

In the following example, you must specify one, and only
one, of the arguments:

command {argl | arg2 | arg3}

42 Product Version 9.1.3

Encounter Digital Implementation System User Guide
About This Manual

{01 [13 Indicates a required choice of one or more items in a list.

In the following example, you must choose one argument
from the list, but you can choose more than one:

command {[argl] [arg2] [arg3]}

{1} Indicates curly braces that must be entered with the
command syntax.

In the following example, you must type the curly braces:
command argl {x y}
Indicates that you can repeat the previous argument.

Indicates an omission in an example of computer output or
input.

Command — Subcommand Indicates a command sequence, which shows the order in
which you choose commands and subcommands from the
GUI menu.

In the following example, you choose Power from the
menu, then Power Planning from the submenu, and then
Add Rings from the displayed list:

Power — Power Planning — Add Rings

This sequence opens the Add Rings form.

Related Documents

For more information about the EDI System family of products, see the following documents.
You can access these and other Cadence documents with the Cadence Help online
documentation system.

EDI System Foundation Flows Documentation

B Encounter Digital Implementation System Foundation Flows User Guide

Describes how to use the scripts that represent the recommended implementation flows
for digital timing closure with the EDI System software.

B Encounter Digital Implementation System Foundation Flows: Flat
Implementation Flow Guide

October 2010 43 Product Version 9.1.3

../flowSetup/flowSetupTOC.html#firstpage
../flatImpl/flatImplTOC.html#firstpage
../flatImpl/flatImplTOC.html#firstpage

Encounter Digital Implementation System User Guide
About This Manual

Describes the default-effort flat implementation flow, using the EDI System software.

Encounter Digital Implementation System Foundation Flows: Hierarchical
Implementation Flow Guide

Describes the default-effort hierarchical implementation flow, using the EDI System
software.

Encounter Digital Implementation System Foundation Flows: CPF-Based Low-
Power Implementation Flow Guide

Describes the CPF-Based Low Power implementation flow, using the EDI System
software.

EDI System Product Documentation

What's New in Encounter Digital Implementation System

Provides information about new and changed features in this release of the EDI System
family of products.

Encounter Digital Implementation System Known Problems and Solutions

Describes important Cadence Change Requests (CCRs) for the EDI System family of
products, including solutions for working around known problems.

Encounter Digital Implementation System Text Command Reference

Describes the EDI System text commands, including syntax and examples.

Encounter Digital Implementation System Menu Reference

Provides information specific to the forms and commands available from the EDI System
graphical user interface.

Encounter Digital Implementation System Database Access Command
Reference

Lists all of the EDI System database access commands and provides a brief description
of syntax and usage.

Encounter Digital Implementation System Library Development Guide

Describes library development guidelines for the independent tools that make up the EDI
System family of products.

README file

October 2010 44 Product Version 9.1.3

../hierImpl/hierImplTOC.html#firstpage
../LPImpl/LPImplTOC.html#firstpage
../LPImpl/LPImplTOC.html#firstpage
../soceWN912/soceWN912TOC.html#firstpage
../soceKPNS/soceKPNSTOC.html#firstpage
../fetxtcmdref/fetxtcmdrefTOC.html#firstpage
../encounter/encounterTOC.html#firstpage
../soceDBAref/soceDBArefTOC.html#firstpage
../socelibdev/socelibdevTOC.html#firstpage

Encounter Digital Implementation System User Guide
About This Manual

Contains installation, compatibility, and other prerequisite information, including a list of
Cadence Change Requests (CCRs) that were resolved in this release. You can read this
file online at downloads.cadence.com.

For a complete list of documents provided with this release, see the Cadence Help online
documentation system.

9/23/10

October 2010 45 Product Version 9.1.3

http://downloads.cadence.com

Encounter Digital Implementation System User Guide
About This Manual

October 2010 46 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Product and Licensing Information

m Overview on page 48

m About EDI System Products and Product Options on page 48

a EDI System on page 48
0 First Encounter Hierarchical Prototyping Solution on page 49

0 EDI System Product Options on page 50

m About EDI System Licenses on page 52

O Licensing Terminology on page 52

O Checking Out Licenses for Product Options on page 53

0 Advanced Node License Required for 32 nm DRC Rules

October 2010 47 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Product and Licensing Information

Overview

Each Cadence® EDI System product is sold as part of a product package. Product packages
may also include product options. The options provide advanced features and capabilities,
such as support for the common power format, the ability to route mixed signal designs or to
avoid and correct lithography problems .

Each product and product option has a corresponding license. The software uses licenses to
determine the features that are available when the software runs.

About EDI System Products and Product Options

This release of the EDI System software includes the following product packages and
options:

m EDI System on page 48
m First Encounter Hierarchical Prototyping Solution on page 49

m EDI System Product Options on page 50

EDI System

This package includes the products listed in Table 1-1 on page 49. To start any of these
products, type the following UNIX/Linux command:

encounter

Note: You can use the velocity command for backward compatibility. Starting from the 9.1
release, encounter and velocity commands have the same behavior. However, it is
recommended that you use the encounter command.

October 2010 48 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Product and Licensing Information

Table 1-1 EDI System Products

Name Abbreviation Prod. Description
Num.

Encounter Digital EDS-L EDS100 An automatic digital implementation system for

Implementation System high-performance block-level implementation from

L RTL synthesis to GDSII with end-to-end multiple-
CPU functionality on a configurable, extensible,
and scalable platform. Limited to 300,000
instances in the netlist.

Encounter Digital EDS-XL EDS200 Has all the features of EDS-L without the 300,000

Implementation System instance limitation. In addition, this product

XL supports hierarchical designs.

NanoRoute® UltraSoC ~ NRU FE150 Optimized routing and routing verification system

Routing Solution with utmost in speed and capacity for signal
integrity, timing, and interconnect optimization for
manufacturability.

Virtuoso® Digital VDI 3002 Has all the features of EDS-L and adds RTL

Implementation Compiler functionality for logic synthesis. Limited

to 50,000 instances in the netlist.

First Encounter Hierarchical Prototyping Solution

In addition to the products listed in Table 1-1 on page 49, the encounter and velocity
commands can be specified to start the products that belong to the First Encounter
Hierarchical Prototyping Solution, which are listed in Table 1-2 on page 49. To start any of
these products, type the following UNIX/Linux command:

encounter

Table 1-2 First Encounter Hierarchical Prototyping Solution

Name Abbreviation Prod. Description
Num.
First Encounter’ L FE-L FE80 An automatic silicon virtual prototyping and

hierarchical partitioning solution with built-in power
planning and floorplanning.

October 2010 49 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Product and Licensing Information

Name Abbreviation Prod. Description
Num.
First Encounter XL FE-XL FE100 Has all the features of First Encounter XL. In
GPS addition, this product supports RTL, global
physical and clock-tree synthesis.
First Encounter GXL FE-GXL FE800 Has all the features of First Encounter XL. In

addition, this product supports advanced design
for yield (DFY) features.

EDI System Product Options

The product options provide the extendibility and cost-effective access to additional advanced
technologies for specific design needs, such as low power design, mixed signal design,
design at advanced nodes and signoff analysis . These product options are available with
both EDI System and First Encounter Hierarchical Prototyping Solution product packages.

The EDI System includes the following product options:

Table 1-3 EDI System Product Options

Prod.

Name Abbreviation
Num.

Description

Encounter Low Power ~ ENC-LP Opt. EDS10
GXL Option

Encounter Mixed ENC-MS Opt. EDS20
Signal GXL Option

October 2010

50

Adds advanced low-power functionality by
automating multiple power domain and power-
switch-aware floorplan synthesis, implementation,
and routing, enabled by full common power format
(CPF) support.

Adds mixed signal functionality by allowing you to
transfer design data and routing constraints
between the custom (Virtuoso) and digital design
environments and route the design with the
Encounter mixed signal router.

Note: For mixed signal designs and viewing data
on OpenAccess database, Virtuoso IC6.1 or later
is required.

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Product and Licensing Information

Prod.

Name Abbreviation Description

Num.
Encounter Advanced @ ENC-AN Opt. EDS30 Adds new 32 nm rules support, concurrent
Node GXL Option design for yield/design for manufacturing

capability by preventing lithography hotspots and
analyzing and optimizing them if they occur,
support for on-chip/off-chip variation mode and
statistical static timing analysis (SSTA).

For more information on 32 nm rules
licensing, see Advanced Node License

Required for 32 nm DRC Rules.

Encounter DFM GXL ENC-DFM EDS50 Enables Turbo LPA and brings Litho Physical

Option Opt. Analysis in the design implementation loop, and
allows early detection and screening of potential
litho hotspots.

Note: The EDS30 and EDS50 product options provide an interface to standalone LPA and
CCP. However, to run these standalone applications you require LPA and CCP licenses.

For more information on these products and options, see EDI System Licensing and
Packaging on SourceLink®.

October 2010 51 Product Version 9.1.3

http://sourcelink.cadence.com/docs/files/Docs/EDISLicPkg.pdf
http://sourcelink.cadence.com/docs/files/Docs/EDISLicPkg.pdf

Encounter Digital Implementation System User Guide
Product and Licensing Information

About EDI System Licenses

When you run a command to invoke a product or product option, a license is checked out.
Each product and product option has a unique license string (also called a license key). The
following table lists the product and product option names and provides the corresponding
license strings.

Table 1-4 Product and product options and corresponding license strings

Product or option License string

Encounter Digital Implementation System L Encounter_Digital Impl Sys_L

Encounter Digital Implementation System XL Encounter_Digital_Impl_Sys_XL

NanoRoute Ultra Routing Solution NanoRoute_Ultra

Virtuoso Digital Implementation Virtuoso_Digital_implement
First Encounter L First_Encounter_VIP

First Encounter XL First_Encounter_GPS

First Encounter GXL First_Encounter_GXL
Encounter Advanced Node GXL option Encounter_Adv_Node_GXL
Encounter Low Power GXL option Encounter_Low_Power_GXL
Encounter Mixed Signal GXL option Encounter_ Mixed_Signal_ GXL
Encounter DFM GXL option Encounter_DFM_GXL

Licensing Terminology

The following terminology is useful in understanding licenses.

Base license

The license that is checked out when the software starts. Only a full-fledged product
license can be used as a base license. You cannot use a product option license as a base
license to start the software.

Dynamic license

A license for a product option that is not checked out until a feature provided by the
product option is needed. You can check out more than one dynamic license per base

October 2010 52 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Product and Licensing Information

license. For more information on dynamic licenses, see “Checking Out Licenses for
Product Options” on page 53.

Multi-CPU license

A license that enables additional CPUs for multithreading, Superthreading, or distributed
processing. Multi-CPU licenses must be product licenses, and can be checked out after
the base license is checked out. You can check out more than one multi-CPU license per
base license. For more information on multi-CPU licenses, see EDI System Licensing
and Packaging on SourceLink®.

Checking Out Licenses for Product Options

The following command specifies the product options to be checked out when you invoke
the software. The product options specified with the -checkoutList parameter are
checked out immediately and the product options specified with the -optionList
parameter are checked out dynamically.

encounter -checkoutList "optionl option2 .." -optionList "optionl option2 .."

Note: If you do not want any product options to be checked out dynamically, use empty
quotes with the -optionList parameter, as follows:

encounter -checkoutList "optionl option2 .." -optionList " "

The following command can be used to check out product options after you have invoked
the software. The product option specified with the -checkoutList parameter is
checked out immediately and the product options specified with the -optionList
parameter are checked out dynamically.

setLicenseCheck -checkout option -optionList "optionl option2 .."

With the -checkoOut parameter, you can specify only one product option.

Note: If you do not want any product options to be checked out dynamically, use empty
quotes with the -optionList parameter, as follows:

setlLicenseCheck -checkout option -optionList " "

/ Important

You cannot check out a license for a product option if you have not checked out a
base license.

Advanced Node License Required for 32 nm DRC Rules

Newly added DRC rules for 32 nm and smaller process nodes require an Advanced Node
license.

October 2010 53 Product Version 9.1.3

http://sourcelink.cadence.com/docs/files/Docs/EDISLicPkg.pdf
http://sourcelink.cadence.com/docs/files/Docs/EDISLicPkg.pdf
../fetxtcmdref/generalT.html#setLicenseCheck
../fetxtcmdref/generalT.html#setLicenseCheck

Encounter Digital Implementation System User Guide
Product and Licensing Information

Note: The Advanced Node license for 32 nm support is required when running NanoRoute
commands and optDesign -postRoute command (which uses NanoRoute).

The LEF property keywords used for these rules that require an Advanced Node license are
highlighted below in bold text:

Layer (Cut)

[PROPERTY LEF58_TYPE
“TYPE [TSV | PASSIVATION] ;” ;]

[PROPERTY LEF58_BACKSIDE
“BACKSIDE ;" ;]

[PROPERTY LEF58_CUTCLASS
"CUTCLASS className WIDTH viaWidth [LENGTH viaLength] [cuTsS numCut]

- " .]
7 7

[PROPERTY LEF58_SPACING
"SPACING cutSpacing

[MAXXY

| [CENTERTOCENTER]

[SAMENET | SAMEMETAL | SAMEVIA]

[LAYER secondLayerName [STACK]

| ADJACENTCUTS {2 | 3 | 4} [EXACTALIGNED exactAlignedCut]
WITHIN cutWithin [EXCEPTSAMEPGNET] [CUTCLASS className]
[SIDEPARALLELOVERLAP]

| PARALLELOVERLAP [EXCEPTSAMENET | EXCEPTSAMEMETAL | EXCEPTSAMEVIA]

| PARALLELWITHIN within [EXCEPTSAMENET]

| SAMEMETALSHAREDEDGE parwithin [ABOVE] [CUTCLASS className)]

[EXCEPTTWOEDGES] [EXCEPTSAMEVIA numCut]
| AREA cutAreal ;" ;]

[PROPERTY LEF58_ENCLOSUREEDGE
"ENCLOSUREEDGE [CUTCLASS className] [ABOVE | BELOW] overhang
WIDTH minWidth PARALLEL parLength WITHIN parWithin
[EXCEPTEXTRACUT [cutWithin]]
[EXCEPTTWOEDGES]
o

[PROPERTY LEF58_ENCLOSURE
“ENCLOSURE [CUTCLASS className] [ABOVE | BELOW]
{overhangl overhang? | END overhangl SIDE overhang2}
[WIDTH minWidth
[EXCEPTEXTRACUT cutWithin [PRL | NOSHAREDEDGE]]
| LENGTH minLength
| EXTRACUT
| REDUNDANTCUT cutWithin
;7 5]

October 2010 54 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Product and Licensing Information

[PROPERTY LEF58_SPACINGTABLE
“SPACINGTABLE
[ORTHOGONAL
{WITHIN cutWithin SPACING orthoSpacing} ... ;
| [DEFAULT defaultCutSpacing]l
[SAMENET | SAMEMETAL]
[LAYER secondLayerName]
[CENTERTOCENTER { {classNamel1 | ALL}| TO {className2 | ALL}
}...1
cuTcLASS { {classNamel | ALL} [SIDE | ENDI}...
{{className2 | ALL} [SIDE | END] {-]|cutSpacing}
{-|cutSpacing}...}...;

[/
1 1

[PROPERTY LEF58_ARRAYSPACING
"ARRAYSPACING [CUTCLASS className] [PARALLELOVERLAP]
[LONGARRAY] [WIDTH viaWidth] CUTSPACING cutSpacing
{ARRAYCUTS arrayCuts SPACING arraySpacing} ... ;

].” .
’ ’

[PROPERTY LEF58_ ENCLOSUREWIDTH
"ENCLOSUREWIDTH VIAOVERLAPONLY
;"o

Layer (Routing)

[PROPERTY LEF58_BACKSIDE
“BACKSIDE ;" ;]

[PROPERTY LEF58_AREA
"AREA minArea
[[EXCEPTMINWIDTH minWidth]
| [EXCEPTEDGELENGTH minLength]
[EXCEPTMINSIZE minWidth minLength] ;" ;]

[PROPERTY LEF58_SPACING
"SPACING eolSpace ENDOFLINE eolWidth [OPPOSITEWIDTH oppositeWidth]
WITHIN eolWithin
[ENDTOEND endToEndSpace [OTHERENDWIDTH otherEndwidth]]
[MAXLENGTH maxLength
|MINLENGTH minLength [TWOSIDES]]
[EQUALRECTWIDTH]
[PARALLELEDGE [SUBTRACTEOLWIDTH] parSpace WITHIN parWithin
[MINLENGTH minLength] [TWOEDGES]]
[ENCLOSECUT [BELOW | ABOVE] encloseDist CUTSPACING cutToMetalSpacel]
HA

[PROPERTY LEF58_SPACINGTABLE
"SPACINGTABLE
PARALLELRUNLENGTH {length}
{WIDTH width {spacing} ...} ... ;

October 2010 55 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Product and Licensing Information

[SPACINGTABLE
INFLUENCE {WIDTH width WITHIN distance SPACING spacing} ... ;]
| TWOWIDTHS {WIDTH width [PRL runLength] {spacing} ...} ... ;
| PARALLELSPANLENGTH PRL runLength {SPANLENGTH spanlLength {spacing} ... };
"l

[PROPERTY LEF58_OPPOSITEEOLSPACING
"OPPOSITEEOLSPACING WIDTH width
ENDWIDTH eol/Width [MINLENGTH minLength]
[JOINTWIDTH jointWidth] JOINTLENGTH spanlLength
{ [JOINTTOEDGEEND jointToEdgeEndLength]
{ [EXCEPTEDGELENGTH edgelLength [PRL maxPRL]]}...
ENDTOEND endSpacing endSpacing
ENDTOJOINT endSpacing jointSpacing
JOINTTOEND jointSpacing endSpacing
JOINTTOJOINT jointSpacing jointSpacing ;
HA

[PROPERTY LEF58_MINSTEP
"MINSTEP minStepLength
[MAXEDGES maxEdges]
[MINADJACENTLENGTH minAdjLength
[CONVEXCORNER | minAdjLength2]
| MINBETWEENLENGTH minBetweenLength [EXCEPTSAMECORNERS]
I

[PROPERTY LEF58_EOLEXTENSIONSPACING
"EOLEXTENSIONSPACING spacing
{ENDOFLINE eol/Width EXTENSION extension
[ENDTOEND endToEndExtension]}
[MINLENGTH minLength [TWOSIDES]]
o]

[PROPERTY LEF58_ SPACINGTABLE
"SPACINGTABLE JOGTOJOGSPACING jogToJogSpacing
JOGWIDTH jogWidth SHORTJOGSPACING shortJogSpacing
{WIDTH width PARALLEL parLength WITHIN parWithin
LONGJOGSPACING longJogSpacing}

A

[PROPERTY LEF58 WIDTH
"WIDTH minWidth [WRONGDIRECTION]
;oo

[PROPERTY LEF58 MINWIDTH
"MINWIDTH minWidth [WRONGDIRECTION]
;oo

October 2010 56 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Getting Started

Product and Installation Information on page 58

Setting the Run-Time Environment on page 58
Configuring OpenAccess on page 59

Launching the Console on page 60

Completing Command Names on page 60

Command-Line Editing on page 61

Setting Preferences on page 63

Starting the Software on page 66

Interrupting the Software on page 72

Using the Log File Viewer on page 75

Accessing Documentation and Help on page 77

October 2010 57

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

Product and Installation Information

For product, release, and installation information, see the README file at any of the following
locations:

m downloads.cadence.com, where you can review the README before you download the
software

B In the software installation, where it is also available when you are using or running the
software

For information about EDI System licenses, see About EDI System Licenses in the “Product
and Licensing Information” chapter.

Setting the Run-Time Environment

» To set the run-time environment, include the following installation directory in your path
install_dir/tools/bin by using the following command:

set path = (<install_dir>/tools/bin S$path)

Supported and Compatible Platforms

The README file lists the supported and compatible platforms for this release.

Specifying the 64-Bit or 32-Bit Version of EDI System Applications

You can run the EDI System software in either 32-bit and 64-bit mode. The 32-bit version and
64-bit version of the software are installed in the same tools hierarchy. By default, software
runs in 32-bit mode if it is available.

Note: 32-bit versions of the software are not available for the following platforms:
O Sun (sol86 and sun4v)
a IBM AIX (ibmrs)

For more information, see the README file.

Use one of the following methods the specify the version to use:

B Setthe CDS_AUTO_64BIT environment variable before starting the software. For more
information, see Using the CDS AUTO 64BIT Environment Variable on page 59.

October 2010 58 Product Version 9.1.3

http://downloads.cadence.com

Encounter Digital Implementation System User Guide
Getting Started

B Use a command parameter when you start the software. For information, see Using
Generic Parameters to Specify 32- or 64-Bit Version on page 71.

Using the CDS_AUTO_64BIT Environment Variable

To run 64-bit versions of all or some applications, complete the following steps before starting
the software:

1. If you are using the 1nx86 operating system, verify that it supports 64-bit applications.
2. Setthe CDS_AUTO_64BIT environment variable.
For example,

@ To run all applications in 64-bit mode, type the following command:
setenv CDS_AUTO_64BIT ALL

@ Torunjustafew applications in 64-bit mode, such as NanoRoute® and CeltIC®, and
all other applications in 32-bit mode, type one of the following commands:

setenv CDS_AUTO_64BIT nanoroute:celtic
setenv CDS_AUTO_64BIT nanoroute,celtic
setenv CDS_AUTO_64BIT 'nanoroute;celtic'

Configuring OpenAccess

The EDI System software installs OpenAccess in the <Cadence_install_dir>/
directory. The software creates a symbolic link from <Cadence_install_dir>/share/
oa to the OpenAccess installation directory.

The software reports the version and data model of OpenAccess with which it was compiled.
For example, when you start the EDI System software, it displays a message similar to the
following:

INFO: This Encounter release has been compiled with OA data Model 4 and OA version
p006.

/ Important

Cadence recommends that you use the OpenAccess kit that comes with the EDI
System software for almost all uses.

However, if you decide to change the kit, use the 0OA_HOME environment variable to
override the default OpenAccess installation. Before setting this variable, make sure of
the following:

October 2010 59 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

Q The version of the OpenAccess kit you specify must use the same or a newer data
model than the one that was included with the EDI System installation.

Q The release data of the OpenAccess kit that you specify must be newer than the
release data of the one that was included with the EDI System installation.

To set the variable, type the following command:
setenv OA_HOME oa_install_dir

Where oa_install_dir is the path to the OpenAccess installation to use.

For information on the version of OpenAccess supported with this release, see the
README file.

Launching the Console

The window (shell tool, xterm, and so on) where you start the EDI System session is called
the EDI System console. You enter all EDI System text commands in the console window, and
the software displays messages there. When a session is active, the console displays the
following prompt:

encounter>

Note: If you started the software by using the velocity command, the console
displays the following prompt:

velocity>

If you use the console for other actions—for example, to use the vi editor—the session
suspends until you finish the action.

If you suspend the session by typing Control -z, the encounter> prompt is no longer
displayed. To return to the EDI System session, type fg, which brings the session to the
foreground.

Completing Command Names

Use the Tab key within the software console to complete text command names.

After you type a partial text command name and press the Tab key, the software displays the
exact command name that completes or matches the text you typed (if the string is unique to
one text command) or all the commands that match the text you typed.

For example, if you type the following text and press the Tab key

setPlace

October 2010 60 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

The software displays the following command:

setPlaceMode

If you type the following text and press the Tab key

setPl

The software displays the following commands:

setPlaceMode setPlanDesignMode

Command-Line Editing

The Encounter software provides a GNU Emacs—like editing interface. You can edit a line
before it is sent to the calling program by typing control characters or escape sequences. A
control character, shown below as a caret followed by a letter, is typed by holding down the
Control key when typing the character.

Most editing commands can be given a repeat count, n, where n is a number. To enter a
repeat count, press the Esc key, the number, and then the command to execute. For example,
Esc 4 ~f moves forward four characters. If a command can be given a repeat count, the
text [n] is shown at the end of its description.

You can type an editing command anywhere on the line, not just at the beginning. You can
press Return anywhere on the line, not just at the end.

Note: Editing commands are case sensitive: Esc F is not the same as Esc f.

Control (*) Characters

A Move to the beginning of the line

B Move left (backwards) [n]

~C Exits from editing mode, returning the console to normal EDI System mode
~D Delete character [n]

E Move to end of line

~F Move right (forwards) [n]

G Ring the bell

~H Delete character before cursor (backspace key) [n]

~T Complete filename (Tab key); see below

October 2010 61 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

~J Done with line (Return key)

~K Kill to end of line (or column [n])

L Redisplay line

"M Done with line (alternate Return key)

N Get next line from history [n]

P Get previous line from history [n]

R Search backward (forward if [n]) through history for text; must start line if text
begins with an up arrow

AT Transpose characters

~V Insert next character, even if it is an edit command

AW Wipe to the mark

AXAX Exchange current location and mark

~Y Yank back last killed text

~ Start an escape sequence (Esc key)

e Move forward to next character ¢

A2 Delete character before cursor (Delete key) [n]

Escape Sequences

Esc "“H Delete previous word (Backspace key) [n]

Esc Delete Delete previous word (Delete key) [n]

Esc SP Set the mark (Space bar); see “x~x and ~Y above
Esc . Get the last (or [n]’th) word from previous line
Esc < Move to start of history

Esc > Move to end of history

Esc b Move backward a word [n]

Esc d Delete word under cursor [n]

Esc f Move forward a word [n]

Esc 1 Make word lowercase [n]

October 2010 62 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

Esc u Make word uppercase [n]

Esc vy Yank back last killed text

Esc v Show library version

Esc w Make area up to mark yankable

Esc nn Set repeat count to the number nn

Esc C Read from environment variable _C_, where C is an uppercase letter

Setting Preferences

You set preferences at the beginning of a new design import. You can assign special
characters for the design import parser for Verilog®, DEF, and PDEF files, and control the
display of the Floorplan and Physical view windows. You can also change the hierarchical
delimiter character in the netlist before importing the design, and change the DEF hierarchical
default character and the PDEF bus default delimiter before loading the file.

Note: If you change the default values for the DEF delimiter or PDEF bus delimiter, these
changes become the default delimiters for the DEF and PDEF writers.

You can also change the control defaults while working in the floorplan. These defaults
include the snapping of the module guides, minimum module guides, minimum flight line
connection width, and route congestion.

For information on setting design preferences, see Options — Set Preference in the
Encounter Digital Implementation System Menu Reference.

October 2010 63 Product Version 9.1.3

../encounter/optionsG.html#des_menu7

Encounter Digital Implementation System User Guide

Getting Started

Initialization Files

The EDI System software uses the following initialization files for setting preferences:

.encrc

enc.tcl

enc.pref.tcl

.enc

Used for setting Tcl parameters or adding user-defined Tcl
commands. If different versions of this file exist in the
installation, home, or working directories, the file in the working
directory takes precedence.

Note: Usage of this file is no longer recommended, but is
allowed for backward compatibility. Use enc. tcl instead. This
file is processed before the GUI is created, so it cannot be used
to customize the GUI.

Used for setting Tcl parameters, customizing the GUI, or adding
user-defined Tcl commands or global variables. If different
versions of this file exist in the installation, home, or working
directories, the file in the working directory takes precedence.

Note: The software does not create or modify this file. You must
create the file and then put a copy of the file in the installation
directory (encounter_installation_path/tools/
fe/etc), home directory, or working directory.

Contains design preferences set using the Design, Display,
Floorplan, and Selection tabs in the Preferences form in the
GUI (see Options — Set Preference in the Encounter Digital
Implementation System Menu Reference).

Note: By default, EDI System saves changes that you make to
your preferences to the enc.pref. tcl file in the working
directory.

Contains design preferences set using the Windows tab in the
Preferences form in the GUI (see Options — Set Preference in
the Encounter Digital Implementation System Menu
Reference).

The initialization files are read in the following sequence:

1. .encrc in the home directory

2. .encrc in the working directory

October 2010

64 Product Version 9.1.3

../encounter/optionsG.html#des_menu7
../encounter/optionsG.html#des_menu7

Encounter Digital Implementation System User Guide

Getting Started

7.

. enc.pref.tcl in the working directory

3
4.
5
6

.enc in the home directory

. enc.tclinthe installation/etc directory

. enc.tcl in the home directory

enc. tcl in the working directory

Note: If initialization files contain conflicting information, the last file read takes precedence.

October 2010 65

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

Starting the Software

To start an EDI System session, type one of the following commands with the appropriate
parameters on the UNIX/Linux command line. If you type a command without parameters, the
software starts in GUI mode and creates a log file and a command file. The system attempts
to check out the license with the most functionality, then the license with the next most
functionality, and so on.

B encounter

Starts one of the following products:

o U 0O U 0 U

Q

Encounter Digital Implementation System L
Encounter Digital Implementation System XL
First Encounter’ L

First Encounter XL

First Encounter GXL

NanoRoute Ultra

Virtuoso® Digital Implementation

Note: All the above products can also be started by using the velocity command. The
behavior of the encounter and velocity commands is exactly the same in the 9.1
release. The velocity command has been retained for backward compatibility.

For an overview of the products and product licensing, see “Product and Licensing
Information.”

October 2010 66 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Getting Started

encounter
encounter
[{ -edsl | -edsxl | -nru | -vdi [-N{1 | 2} |
-fel | -fexl | -fegxl }]

help]

-version]

[
[
[
[
[
[
[
[
[
[
[
[
[

Parameters

—-checkoutList

October 2010

-checkoutList "licl I1ic2 ..."]
-cmd file.cmd]
config configFile.conf]

-init initFile.tcl]

-libDefFile libDefFile.defs]

-log logFile.log]

-nowin | -win]

-optionList "Iicl l1ic2 ..."]
-multiCpulicenselList "licl 1ic2 ..."]
-overwrite]

-walt time_in _minutes]

"optionl optionZ2..."

Checks out licenses for the specified product options when the software
starts and holds the licenses for the remainder of the session. The
product options provide additional features to your base license.

If you specify an option that is not allowed with your base product, or an
option without an available license, the software does not check out a
license for that option and instead issues a warning message.

If you specify more than one option, begin and end the list with double
quotation marks or braces.

Specify one or more of the following parameters:

Note: For information on these parameters, see “Product and
Licensing Information.”

cndc CeltlC Nanometer Delay Calculator
encan Encounter Advanced Node GXL option
enclp Encounter Low Power GXL option
encms Encounter Mixed Signal GXL option
encng Encounter Next Generation

Note: This license is used to enable beta features.

67 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Getting Started

epsl
epsx1l
etsl
etsxl

nru

Encounter Power System L
Encounter Power System XL
Encounter Timing System L
Encounter Timing System XL

NanoRoute Ultra Routing Solution

-config configFile.conf

Specifies the design input configuration file. For information on the
configuration file, see “Configuration File Variables” in the Encounter
Digital Implementation System Text Command Reference.

Note: The value of this parameter disables the value specified by the
-init parameter, if both are specified.

{-edsl | -edsxl | -fegxl | -fel | -fexl | -nru | -vdi [-N{1 | 2}1}

October 2010

Checks out a base license for the specified product.

If the license you specify is not available, the software generates an
error message and does not start.

Specify one of the following licenses:

Note: For information on these parameters, see “Product and
Licensing Information.”

-edsl
-edsxl
-fegxl
-fel
-fexl

-nru

Encounter Digital Implementation System L
Encounter Digital Implementation System XL
First Encounter GXL

First Encounter L

First Encounter XL

NanoRoute® Ultra

-vdi [-N{1 | 2}]

Virtuoso® Digital Implementation

The VDI option is limited to designs with a maximum of
50,000 instances. If you specify -vdi, the software checks
out one VDI option by default. To check out two VDI
licenses, type the following command:

encounter -vdi -N2

68 Product Version 9.1.3

../fetxtcmdref/configT.html#firstpage

Encounter Digital Implementation System User Guide

Getting Started

-help

Outputs a brief description for each encounter parameter.

-init initFile.tcl

Specifies the Tcl file to read in at the start of the session and starts the
software in non-GUI mode. When the command finishes executing the
Tcl file, the software switches to GUI mode.

Note: The value of the -config parameter disables the value specified
by this parameter, if both are specified.

-libDefFile libraryDefinitionFile.defs

-log logFile.

-nowin

-win

Specifies the path and file name of the library definition file (1ib.defs)
for OpenAccess-based flows. If you do not specify this parameter, all
OpenAccess-based operations refer to the 1ib. defs file in the current
working directory.

log

Specifies a name for the log file. By default, the software saves log files
in the run directory and increments them, for example,

encounter. log, encounter.logl, encounter.log2,
encounter.log3, and so on.

Default: encounter. log

Specifies whether the software runs in a GUI environment.
Default: -win

-optionList "optionl option2 .."

October 2010

Specifies product options to check out dynamically. Even though you
specify options with this parameter, the licenses for the options are not
checked out until they are needed. The licenses are held for the duration
of the session.

If you specify an product option that is not allowed with your base
product, or an option without an available, the software does not check
out that license and instead issues a warning message.

If you specify more than one product option, begin and end the list with
double quotation marks or braces.

Specify one or more of the following parameters:

Note: For information on these parameters, see “Product and
Licensing Information.”

69 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

cndc CeltlIC Nanometer Delay Calculator
encan Encounter Advanced Node GXL option
enclp Encounter Low Power GXL option
encms Encounter Mixed Signal GXL option
encng Encounter Next Generation

Note: This license is used to enable beta features.

epsl Encounter Power System L
epsxl Encounter Power System XL
etsl Encounter Timing System L
etsxl Encounter Timing System XL
nru NanoRoute Ultra Routing Solution

-multiCpulicenselList "licl 1ic2 ..."

Specifies an ordered list for automatic multi-CPU license checkout. The
following licenses can be specified with this parameter:

B edsl
B edsxl
m fel
B fexl
B fegxl
-overwrite Overwrites the existing log file.
-version Displays the version of Encounter software installed on the host

machine without checking out a license or starting the software.
-wait time_in_minutes

Specifies the amount of time the system waits for a license to become
available. If the license is available in less than the specified wait time,
the system checks out the next needed license without waiting.
Default: 0 (no wait time)

Value range: 0 to 10,000

October 2010 70 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Getting Started

Using Generic Parameters to Specify 32- or 64-Bit Version

When you start the software, complete the following steps:

1. Specify one of the following parameters:
{-32 | -64 | -32only | -64only | -3264 | -6432)

-32

-64

-32only

-64only

-3264

-6432

Tries to run the 32-bit version of the application. If the 32-bit
version is not available, prints a warning and tries to run the 64-
bit version.

Tries to run the 64-bit version of the application. If the 64-bit
version is not available, prints a warning and tries to run the 32-
bit version.

Tries to run the 32-bit version of the application. If the 32-bit
version is not available, prints an error and exits with an error.

Tries to run the 64-bit version of the application. If the 64-bit
version is not available, prints an error and exits with an error.

Tries to run the 32-bit version of the application. If the 32-bit
version is not available, prints an info and tries to run the 64-bit
version.

Tries to run the 64-bit version of the application. If the 64-bit
version is not available, prints an info and tries to run the 32-bit
version.

Note: If the CDS_AUTO_64BIT environment variable is not set and one of the following
parameters is specified, the wrapper sets CDS_AUTO_64BIT t0o NONE:

a -32

Q -32only

a -3264

If the CDS_AUTO_64BIT environment variable is not set and one of the following
parameters is specified, the wrapper sets CDS_AUTO_64BIT to ALL:

a -64

Q -64only

Q -6432

October 2010

71 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

2. Optionally, specify one or more of the following parameters:
[-quiet3264] [-debug3264] [-plat platform] [-v3264] [-help3264]

-debug3264 Prints the environment, updated by the wrapper and the
command launched.
-plat platform

Allows you to override the default platform selection when you
launch the tool from the following directory:

install root/bin

-quiet3264 Suppresses warning, error, and info messages generated by
the -32, -32only, -3264, -64, -64only, Or -6432
parameters.

-v3264 Prints the wrapper’s version string.

Interrupting the Software

You can interrupt an EDI System session by using the Ctr1-C key combination. For most
commands, Ctrl-C exits the session and causes the software to issue the following
message:

Interrupt—one more Ctrl-C to exit First Encounter ..

m If you do not press Ctr1-C again, the software proceeds as normal.

m If you do press Ctr1-C again, the software stops and the session ends.

Interrupt Behavior for Long-running Commands

The behavior of the software when you use Ctr1-cC differs for the following long-running
commands:

NanoRoute Router
B routeDesign
B globalDetailRoute

For information, see Interrupting Routing in the “Using the NanoRoute Router” chapter.

October 2010 72 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

Timing Optimization (optDesign)
B optDesign

For information, see Interrupting Timing Optimization in the “Optimizing Timing” chapter.

Verification

B verifyGeometry

B verifyConnectivity
verifyPowerVia
verifyMetalDensity

verifyProcessAntenna

verifyACLimit

For information, see Interrupting Verification in the “Verifying Violations” chapter.

Yield Analysis
B reportYield

For information, see Interrupting Yield Analysis in the “Analyzing Yield” chapter.

Interrupting the Execution of Batch Files

The behavior of the software when you use ctr1-c differs if you interrupt the execution of a
batch script.

When you press Ctrl-C during the execution of a batch script, the command that is running
when you press Ctr1-C continues to completion. The software then stops and prompts you
to confirm whether to interrupt the script.

B To confirm that you want to interrupt script, type Y.
In this case, you can save the design and proceed with the flow.

B To continue running the script, type N.

October 2010 73 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

Stopping the Software

Use one of the following methods to stop the software:
B In the main EDI System window, select File — EXxit.

m On the text command line, type the following command:

exit

October 2010 74 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

Using the Log File Viewer

The Encounter software provides the following methods to view the log file:

B Integrated Log File Viewer on page 75
m Standalone Log File Viewer on page 76

Integrated Log File Viewer

You can use the integrated log file viewer when the software is running. It has the following
features:

B Ability to expand and collapse command information.

B Ability to view multiple log files in separate console windows simultaneously.
m Color coding of error, warning, and information messages.

B String matching through the Edit — Find/Select Object menu.

For more information, see Find/Select Object in the “Edit Menu” chapter of the
Encounter Menu Reference.

B Access to the documentation in the Encounter Digital Implementation System Text
Command Reference.

When a log file is displayed, click on any of the underlined commands to open an HTML
window that displays the documentation for that command.

Use one of the following methods to use the viewer:
» Select Tools — Log Viewer on the main menu.

The Log File window is displayed. Select the log file to view. The software opens a
separate console window and displays the log file.

For more information, see Tools — Log Viewer in the “Tools Menu” chapter of the
Encounter Digital Implementation System Menu Reference.

» Onthe text command line, type the following command in the console window where the
software is running:

viewlog [-file logFileName]

This command opens the log file in a separate window. It opens the most recently
created log file unless you specify a different log file with the -f£i1e parameter.

October 2010 75 Product Version 9.1.3

../etsMR/layoutG.html#FindSelectObject
../encounter/toolsG.html#LogViewer
../fetxtcmdref/generalT.html#viewLog

Encounter Digital Implementation System User Guide
Getting Started

Standalone Log File Viewer

You can use the standalone viewer even if the software is not running. It provides most of the
same functionality as the viewer that is run within the software but does not provide access
to the documentation.

To use the standalone viewer, type the following UNIX/Linux command in the console window:

viewlog [-file logFileName]

The viewer opens the most recently created log file unless you specify a different file with the
-file parameter.

October 2010 76 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

Accessing Documentation and Help

You can access the Encounter documentation and help system by using the following
methods:

m Launching Cadence Help From the Command Prompt on page 77

Accessing Documentation and Help From the Encounter GUI on page 77

Using the Encounter man and help Commands on the Text Command Line on page 79
Using the Integrated Log File Viewer on page 82

Other Sources of Information on page 83

Launching Cadence Help From the Command Prompt

1. Change to the following directory:

installation_dir/tools/bin

2. Enter the following command:
./cdnshelp

After launching Cadence® Help, press F1 or choose Help — Contents to display the help
page for Cadence Help.

For more information see the Cadence Help manual.

Accessing Documentation and Help From the Encounter GUI

The software provides the following two methods to access documentation and help from the
GUL:

m Select Help on the Main Encounter Menu on page 78

B Select Help on an Encounter Form on page 79

October 2010 77 Product Version 9.1.3

../cdnshelp/cdnshelpTOC.html#firstpage

Encounter Digital Implementation System User Guide
Getting Started

Select Help on the Main Encounter Menu

cadence |

Help Library...

Encounter Menu Reference...
Encounter User Guide...
Encounter Text Command Reference...

Encounter Known Prablems and Solutions.
What™s Mew in Encounter
Customer Support

About Encaunter..

Veoaaaas

Word View =

[a|[[seum:o [(116.438 , 60.558)

» Select Help, and then any of the following options:

Q

Help Library

Opens the Cadence Help window, which provides access to all the documentation
shipped with the release.

Encounter Digital Implementation System Menu Reference

Opens the Table of Contents page of the menu reference.

Encounter Digital Implementation System User Guide

Opens the Table of Contents page of the user guide.

Encounter Digital Implementation System Text Command Reference
Opens the Table of Contents page of the text command reference.

Encounter Digital Implementation System Known Problems and Solutions
Opens the Table of Contents page of the known problems and solutions document.
What’s New in Encounter Digital Implementation System

Opens the Table of Contents page of the what’'s new document.

October 2010 78 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

Select Help on an Encounter Form

» Click the Help button in the bottom right corner of a form.

Attribute Editaor _I

Object Type: HaloBlock
Index: 1 of total 2 objects | Brew | | Mest _LDTMF_INSTfF!P.M_128x1 E_TEST_INSTIB
Name Value Type
Mame MNET/RAM_126<16_TEST_INST/RAM_128«16_IMNST String =
Mao. of Terminals 43 Integer
Cell Type ram_236x164 String
Cell Width 256.483 Double
Cell Height 151.733 Double
Placement Halo (15.0 ,15.0) (15.0 , 15.0) Eox
Location X: 276.34 Y 476135 ﬂl Location -
Location Origin [Loveer Left b Origin
Crientation [[] MY | Orientation
Status | FIXED b | Enumerate
Routing Halo Maone String
InstGroup Mone String
Power Domain - AO String
Low Power Cell Mone String
m oanple g Laapplaallag oAdd Prap] (BeleteiBropy | Clase Help

Clicking the Help button opens the Encounter Digital Implementation System Menu

Reference entry for the form in the Cadence Help window.

Using the Encounter man and help Commands on the Text Command Line

Using the help Command to View the Command Syntax

B To see syntax information for a command, type the following command in the software

console:

help command_name

October 2010 79 Product Version 9.1.3

../encounter/encounterTOC.html#firstpage
../encounter/encounterTOC.html#firstpage
../fetxtcmdref/generalT.html#help

Encounter Digital Implementation System User Guide
Getting Started

For example, to see syntax information for the 1oadConfig command, type the
following command:

help loadConfig
The software displays the following text:

Usage: loadConfig <fileName> [0 | 1]

B To see the entire list of Encounter commands and their syntax, type the following
command in the software console:

help

Using the man Command to View the Command Description

B To see the complete set of information for an Encounter command, type the following
command in the software console:

man command_name

For example, to see the complete set of information for the 1oadConfig command, type
the following command:

man loadConfig

The software displays the following text:
loadConfig (1) loadConfig (1)

NAME
loadConfig

SYNTAX
loadConfig <fileName> [0 | 1]

DESCRIPTION

Loads a configuration file. If you use this command in batch mode and
specify a filename, the file is loaded and the design is imported. If you
specify a filename and the 0 parameter, the software loads the file, but
does not import the design. To synchronize all relative paths in the
configuration file to the current working directory, vyou can precede the
loadConfig command with the setImportMode -syncRelativePath true command.
You can load this configuration file from any directory without first
changing vyour current working directory to the previous working
directory where the configuration file was saved. You can use the
loadconfig command to import the design when used in batch mode. You can
use it only once in a design session. For more information on the
variables that can be set in the configuration file, see Configuration File
Variables.

Parameters

October 2010 80 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

-help Prints a brief description that
includes the type and default
information for each parameter of
the loadConfig command. For a
detailed description of the command
and all of its parameters, use the
man command: man loadConfig.

<fileName> Specifies the configuration file to
load.
[0 | 1] Specifies whether to apply settings

in the configuration file. 1 loads
the configuration file and imports
the design. 0 loads the
configuration file and does not
import the design.

Default: If you do not specify this
parameter, 1 is selected.

Example
- The following command loads mydesign.conf file:

loadConfig mydesign.conf

- The following command loads mydesign.conf, but does not
apply the settings in the file:

loadConfig mydesign.conf 0

This populates the fields in the Design Import form.
Click OK to commit settings.

Using the help Command to View Message Summary

m To see the message summary of a particular message ID, type the following command
in the software console:
help msg_1id
For example, to see the message summary for the ENCSYC-3160 message ID, type the
following command:
help ENCSYC-3160

The software displays the following text:

Ignoring the -keepEmptyModule setting in the configuration file. In the non-
physical mode, the software keeps the empty modules and converts them into
leaf cells. Remove the -keepEmptyModule setting from the configuration file.

October 2010 81 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

Using the man Command to View Message Detail

To see the message detail of a particular message ID, type the following command in the
software console:

man msg_1id

For example, to see the message summary for the ENCSYC-3160 message ID, type the
following command:

man ENCSYC-3160
The software displays the following text:

NAME
ENCSYC-3160
SYNOPSIS

Ignoring the -keepEmptyModule setting in the configuration file. In the non-
physical mode, the software keeps the empty modules and converts them into
leaf cells. Remove the -keepEmptyModule setting from the configuration file.

DESCRIPTION

{This warning is displayed when you use the -keepEmptyModule setting in the
configuration file. The software does not honor this setting and keeps the
empty modules (in non-physical mode) by default. In the non-physical mode, the
empty modules are converted into leaf cells. To avoid this warning, remove the
-keepEmptyModule setting from the configuration file.}

/ Important

The detailed description is not available for all active message IDs.

Using the Integrated Log File Viewer

You can also access the command documentation by using the integrated log file viewer. The
command to start the viewer is viewlLog. For more information see “Integrated Log File
Viewer” on page 75 or viewLog in the “General Commands” chapter of the Encounter
Digital Implementation System Text Command Reference.

October 2010 82 Product Version 9.1.3

../fetxtcmdref/generalT.html#viewLog

Encounter Digital Implementation System User Guide
Getting Started

Other Sources of Information

You can also get help on Cadence products by selecting Customer Support on the Help
menu. The Customer Support submenu provides access to the following Cadence
resources:

m Cadence Online Support

Opens Cadence Online Support in your browser.
m Web Collaboration

Opens SpaceCruiser in your browser.
B Education Services

Opens the Education Services Web site in your browser.

October 2010 83 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Getting Started

October 2010 84 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Customizing the User Interface

m Overview on page 86

m Creating a New Menu on page 87
B Modifying an Existing Menu on page 88

Q Adding a Menu Element to an Existing Menu on page 88

O Replacing an Existing Menu Element on page 88

m Adding a New Toolbar and Toolbutton on page 90

m Querying and Configuring Interface Elements on page 91

Q lterating. Querying. and Configuring a Menu on page 91

0 Updating the Message on the Status Bar on page 91

O Setting the Main Window’s Size and Title on page 92

m Migrating Obsolete Internal Menu APls on page 93

October 2010 85 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Customizing the User Interface

Overview

Encounter Digital Implementation System (EDI System) provides a GUI development kit
comprising five APIs that let you cusotmize the menus, toolbars, status bar, main window, and
other interface elements. The kit comprises the following five APIs:

uiadd
uiDelete
uiSet
uiGet

uiFind

For more information on these commands, see the “GUI Commands” chapter of the
Encounter Digital Implementation System Text Command Reference.

Using the commands in the GUI development kit, you can:

Add a new menu to the main window menu bar. This includes adding a submenu, menu
commands, separators, checks and radio buttons. For more information, see Creating a
New Menu on page 87.

Modify an existing menu. For more information, see Modifying an Existing Menu on
page 88.

Add a new toolbar and toolbutton. For more information, see Adding a New Toolbar and
Toolbutton on page 90.

Query and configure interface elements, including menus, status bar, and the main

window. For more information, see Querying and Configuring Interface Elements on
page 91.

This chapter provides a suite of simple examples with annotated comments to familiarize you
with the development kit and shorten the learning curve.

October 2010 86 Product Version 9.1.3

../fetxtcmdref/guiT.html#uiAdd
../fetxtcmdref/guiT.html#uiDelete
../fetxtcmdref/guiT.html#uiSet
../fetxtcmdref/guiT.html#uiGet
../fetxtcmdref/guiT.html#uiFind
../fetxtcmdref/guiT.html

Encounter Digital Implementation System User Guide
Customizing the User Interface

Creating a New Menu

Using the uiAdd command, you can create a new menu and add it to the main window menu
bar. You can then add menu elements, such as command, submenu, separator, radio button
and check box, to the new menu using the same uiadd command.

The following script adds a new menu, labeled ExampleMenu, to the main window menu
bar:

uiAdd expMenu -type menu -label ExampleMenu -in main

uiAdd expCommand -type command -label "ExampleCommand..." -command [list puts
"Example Command"] -in expMenu

uliAdd expSep -type separator -in expMenu
uiAdd expSubmenu -type submenu -label "ExampleSubmenu" -underline 1 -in expMenu

uiAdd expCommand2 -type command -label "ExampleCommand2..." -command [list puts
"Example Command"] -in expSubmenu:

By default, the new ExampleMenu is appended to the end of the menu bar. By specifying
the -before option in Line 1 of the script, you can insert the new menu before a specified
menu.

Lines 2 to 5 of the script add three types of elements to the menu, including command,
separator and submenu.

Sloorplan Power Place Optimize Clock Boute Timing Werify Options Tools Flows Help

b4 IR Q QA B g O | A
N

Similarly, you can add items of type radio and check using the uiAdd command.

For more information on the syntax and parameter of the uiadd command, see tthe “GUI
Commands” chapter of the Encounter Digital Implementation System Text Command
Reference.

October 2010 87 Product Version 9.1.3

../fetxtcmdref/guiT.html#uiAdd
../fetxtcmdref/guiT.html#uiAdd
../fetxtcmdref/guiT.html
../fetxtcmdref/guiT.html
../fetxtcmdref/guiT.html#uiAdd
../fetxtcmdref/guiT.html#uiAdd

Encounter Digital Implementation System User Guide
Customizing the User Interface

Modifying an Existing Menu

You can also use the uiAdd command to add or replace menu elements in an exisiting menu.

Adding a Menu Element to an Existing Menu

The following script adds a new command to the existing Verify menu:

set vMenu [uiFind main -type menu -label "Verify"]

ulAdd newVerify -type command -label "New Verify" -command [list puts "New Verify"]
-in S$vMenu

Line 1 of the script retrieves the name of the Verify menu and assigns it temporarily to the
variable vMenu. Line 2 adds a new command labeled New Verify to viMenu, which
represents the Verify menu.

Line 1 finds name of Verify menu

Eile Edit “iew Padition Floorplan Power Place Optimize Clock Boute Iiming&@pti_ons Tools Flows Help ExampleMeny cadence

[=H=N 1OBERIR Q 8B R O |4 oo » [[Design is: ot in Memary
|°‘%’ % 1 ﬁ\% H_LL‘ n = ﬂg '|_'|.i§. % werlfy Process Antenna.. Q)

Werify AC Limit... Layer Control £l

Werify Metal Density... |Floorplan Yiew

Yerify Cut Density.. All Calars YOS
Werify Power Via... Floorplan Yiew v
Yerify Routing Canstraint.. idpelE g
" ” Fence L]

e }
LAt

Line 2 adds new command to Verify menu

Replacing an Existing Menu Element

The following script finds an existing menu element and replaces it with a new one:

set toolMenu [uiFind -type menu -label "Tools"]

set oldMenu [uiFind S$StoolMenu -type command -label "Design Browser..."]
set before [uiGet SoldMenu -before]

uiDelete S$oldMenu

set newMenu S${oldMenu}_new

uliAdd S$newMenu -type command -label "New Design Browser..." -before $before -
command "puts {New Design Browser}" -in S$StoolMenu
In this script:

October 2010 88 Product Version 9.1.3

../fetxtcmdref/guiT.html#uiAdd

Encounter Digital Implementation System User Guide
Customizing the User Interface

Line 1 finds the name of the Tools menu.
Line 2 finds an existing command, Design Browser, in the Tools menu by its label.
Line 3 finds its neighbor using the uiGet command.

Line 4 deletes the Design Browser command using the uiDelete command.

Line 5 and 6 create a new menu labeled New Design Browser in the same location.

Line 5and 6

File Edit Wiew Partiion Floorplan Power Place Optimize Clock Route Timing Yerify Optiong ~dadence

"“_L E ||| | O I}!é\@j ||| Q Q Q EE Qp{\ © | {% .ﬁ}m&g ”__l" E Mew Design Browser...

............. i vialatian Browser..

"l"%‘> % 1 |§3 I—-]*—-u Yo o= E‘T% {L}_% | Cell Viewer.

Schematic Viewer...

Log Yiewer..
Elip Chip...
Zonfarmal »

October 2010 89 Product Version 9.1.3

../fetxtcmdref/guiT.html#uiGet
../fetxtcmdref/guiT.html#uiDelete

Encounter Digital Implementation System User Guide
Customizing the User Interface

Adding a New Toolbar and Toolbutton

Using the uiadd command, you can add a new toolbar and toolbuttons as shown in the

following script:

uiAdd expToolbar -type toolbar -in
set ICON DIR “./”

main -label "Example Toolbar" -newline true

uiAdd expToolbutton -type toolbutton -in expToolbar -label "Example Toolbutton" -

tooltip "Example Toolbutton" -icon

[file join SICON DIR example.xbm]

Line 1 adds a new toolbar in the main window. As the -newline option is setto true, the

toolbar is added as a new row. Lines 2
as its icon.

and 3 add a new toolbutton, which uses an .xbm file

Line 1 adds a toolbar in a new row

File Edit %iew Parition Floorplan Power Place Optimize | Clock Route Timing Yerify Options Toals Flows Help ExampleMenu cadence

¥ ||| | G4 \%j ||| CL L:{ k:'\ E‘:ﬂ; Q'Q: (=) | i B e ||| ||| 2y |||Design is: Mat in bema

(R % B 1 B % ==& 05 E & (&

o A 4

| Layer Control &
|Floorplan iews l
I Al T alnre WO
Lines 2 and 3 add a new toolbutton

Supported Image Formats for Ilcons

The following image formats are supported for icon files:

Table 3-1

Format Description

BMP Windows Bitmap

GIF Graphic Interchange Format (optional)

JPG, JPEG Joint Photographic Experts Group

PNG Portable Networks Group

XBM X11 Bitmap

XPM X11 Pixmap

October 2010 90 Product Version 9.1.3

../fetxtcmdref/guiT.html#uiAdd

Encounter Digital Implementation System User Guide
Customizing the User Interface

Querying and Configuring Interface Elements

Using the uiGet, uiFind and uiSet commands in the GUI development kit, you can query
and configure various interface elements, including menus, status bar, and the main window.

Iterating, Querying, and Configuring a Menu

The following script finds and sets the File menu’s state.

set menus [uiGet main -menu]
foreach menu S$menus {
if {[ulGet Smenu -label] == "File"} {

uiSet $menu -disabled true

}

This script iterates all the menus in the main window to find the File menu. It disables the File
menu with the uiSet command.

File Edit “iew Partiion Floorplan Power Place Optimize Clock Boute Timing Merify Options Tools Flows Help ExampleMeny cadence

I I=0=H 1O eI Q QRE & 9)&% I L » [[Design is: ot in Menary
1I0EA Y R YR Y B & (i)
Bz

Layer Control &%
\Floorplan Yiew B

The same thing can also be done using the script below:
set menu [uiFind main -type menu -label "File"]

uiSet Smenu -disabled true

Updating the Message on the Status Bar

With the help of the uiGet and uiset commands, you can also update the message
displayed on the status bar of the main window as shown in the following script:

set edi statusbar [uiGet main -statusbar]

uiSet S$edi statusbar -message "Example Message"

October 2010 91 Product Version 9.1.3

../fetxtcmdref/guiT.html#uiGet
../fetxtcmdref/guiT.html#uiGet
../fetxtcmdref/guiT.html#uiFind
../fetxtcmdref/guiT.html#uiSet
../fetxtcmdref/guiT.html#uiSet
../fetxtcmdref/guiT.html#uiSet

Encounter Digital Implementation System User Guide
Customizing the User Interface

This script first finds the status bar name with the uiGet command. It then sets its message

using the uiSet command.

Example hMessage Q I SelMum: 0 | (0.054 , 0.052)

Updated message on the status bar

Setting the Main Window’s Size and Title

You can use the uiSet command to set the size of the main window as desired. For instance,
you can set the main window size to 800x600 as follows:

uiSet main -geometry 800x600

In addition, uiSet can be used to set the main window’s coordinates and title as in the
following script:

uiSet main -geometry 780x686+232+0

uiSet main -title "New Window Title"

Line 1 of the script sets main window size to 780x686 and its coordinates to 232,0. Line 2
sets the main window’s title to New Window Title.

Line 2 updates title

New Window Title

File Edit ¥iew Parition Floorplan Power Flace Optimize Clock Boute Timing Merify Options Tools »CédE‘l’ICE‘
Ead

[=0=N O EBIR Q QA B & O] &F & »E » [psgnisin emon
MR) % ¢ B 1 & b %= & By =N
| Layer Control Ik
Flnnrnlan Wim [|

October 2010 92 Product Version 9.1.3

../fetxtcmdref/guiT.html#uiGet
../fetxtcmdref/guiT.html#uiSet
../fetxtcmdref/guiT.html#uiSet

Encounter Digital Implementation System User Guide
Customizing the User Interface

Migrating Obsolete Internal Menu APIs

The following tk-based internal menu APIs have been made obsolete in EDI System 9.1
release:

uiAddChildMenuSeparator
uiAddMenuItem

uiAddMenuSeparator

uiAddChildMenuItem

|

|

|

B uiAddChildMenu
n

B uiDeleteMenu
|

uiAddMenu

These internal menu APIs can be migrated using the new public APIs. Let’s look at an
example:

The script below uses the old internal menu APIs to add a menu labeled Flow to the menu
bar in the main window.

tk-based menu APIs

uiAddMenu dac Flow

uiAddMenultem dac CCD {ccd -d ./dofile &}

uiAddMenultem dac NewSDC {read sdc -reset leon.sdc}

To do the same using the new public APls, you can use the following script:
new public APIs

uiAdd dac -type menu -label Flow -in main
uiAdd dac.ccd -type command —-in dac -label CCD -command {ccd -d ./dofile &}

uiAdd dac.newSdc -type command -in dac -label NewSDC -command {read sdc -reset
leon.sdc}

Line 1 of the script adds a menu labeled Flow. Lines 2 and 3 add menu items CCD and
NewSDC to the Flow menu.

Place Optimize Clock Route Timing Merify Options Tools Flows Help Iim CE_dEI'ICE

LS QoL la s By IFE [=Y} nMemary

MewsDC o

= iy 55 | s 2 (@]

October 2010 93 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Customizing the User Interface

October 2010 94 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Accelerating the Design Process By
Using Multiple-CPU Processing

Qverview on page 96

Running Distributed Processing on page 99

Running Multi-Threading on page 99

Running Superthreading on page 100

Setting and Changing the License Check-Out Order on page 100

Limiting the Multi-CPU License Search to Specific Products on page 100

Releasing Licenses Before the Session Ends on page 101

Controlling the Level of Usage Information in the Log File on page 101

Where to Find More Information on Multi-CPU Licensing on page 101

October 2010 95 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Accelerating the Design Process By Using Multiple-CPU Processing

Overview

You can accelerate portions of the design flow by using multiple-CPU processing. The
Encounter Digital Implementation System (EDI System) software has the following multiple-
CPU modes:

m Multi-threading

In this mode, a job is divided into several threads, and multiple processors in a single
machine process them concurrently.

m Distributed processing

In this mode, a job is processed by two or more networked computers running
concurrently.

B Superthreading

In this mode, a job runs in the distributed processing mode but each distributed job can
also run threads, that is, one or more networked computers, each with multiple
processors, work concurrently to complete a job.

You configure multiple-CPU processing by using the commands described in the Multiple-
CPU Processing Commands chapter of the Encounter Digital Implementation System
Text Command Reference or the Multiple CPU Processing form on the Options menu.

Table 4-1 on page 97 shows the EDI System features that support multiple-CPU processing. .

October 2010 96 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#firstpage
../fetxtcmdref/multicpuT.html#firstpage
../encounter/optionsG.html#MultipleCPUProcessing

Encounter Digital Implementation System User Guide
Accelerating the Design Process By Using Multiple-CPU Processing

Table 4-1 EDI System features that support multiple-CPU processing

Feature Command Limitations/Notes
Capacitancetable generateCapTbl For more information, see Capacitance
generation Table Generation Flow in the “RC
Extraction” chapter.
Global placement placeDesign m Supported in default mode only
, (-modulePlan is true)
addFiller

For more information, see Running
Placement in Multi-CPU Mode in the
“Placing the Design” chapter.

Automatic multiPlanDesign For more information, see Creating

floorplan Multiple Alternative Floorplans in the

synthesis “Creating an Initial Floorplan Using
Masterplan” chapter.

Metal fill addMetalFill For more information, see Adding Metal
Fill in Multiple-CPU Processing Mode in
the “Optimizing Metal Density” chapter.

NanoRoute router globalRoute m Superthreading is supported for

, detailed routing only.
globalDetailRoute
_ m Superthreading options take
detallRoute precedence over multi-threading
routeDesign options.
ecoRoute For more information, see Accelerating
Routing with Multi-Threading and
Superthreading in the “Using the
NanoRoute Router” chapter.

TQRC, IQRC,and setExtractRCMode For more information, see TQRC and

Standalone extractRC IQRC Extraction and Standalone

extraction Extraction in the “RC Extraction”

chapter.

October 2010

97

Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#generateCapTbl
../soceUG/extractRC.html#CapacitanceTableGenerationFlow
../soceUG/extractRC.html#CapacitanceTableGenerationFlow
../fetxtcmdref/placementT.html#placeDesign
../fetxtcmdref/placementT.html#addFiller
../fetxtcmdref/floorplanT.html#multiPlanDesign
../fetxtcmdref/metalfillT.html#addMetalFill
../fetxtcmdref/routeT.html#globalRoute
../fetxtcmdref/routeT.html#globalDetailRoute
../fetxtcmdref/routeT.html#detailRoute
../fetxtcmdref/routeT.html#routeDesign
../fetxtcmdref/interactive_ecoT.html#ecoRoute
../fetxtcmdref/rcextractionT.html#setExtractRCMode
../fetxtcmdref/rcextractionT.html#extractRC
../soceUG/extractRC.html#TQRCandIQRCExtraction
../soceUG/extractRC.html#TQRCandIQRCExtraction
../soceUG/extractRC.html#StandaloneExtraction
../soceUG/extractRC.html#StandaloneExtraction

Encounter Digital Implementation System User Guide
Accelerating the Design Process By Using Multiple-CPU Processing

Feature Command Limitations/Notes

Signal integrity optDesign B For backward compatibility,

analysis -postRoute -si distributed processing options take
precedence.

timeDesign -si
Superthreading options take
" In MMMC mode precedence over multi-threading

® In non-MMMC mode options.

For more information, see Multi-CPU
Processing Settings in the “Analyzing
and Repairing Crosstalk” chapter.

Verify geometry verifyGeometry For more information, see Verifying
Geometry in Multi-Thread Mode in the
“Verifying Violations” chapter.

Verify connectivity verifyConnectivity For more information, see Verifying
Connectivity in the “Verifying Violations”

chapter.
Verify metal verifyMetalDensity For more information, see Verifying
density Metal Density in Multi-Thread Mode in
the “Verifying Violations” chapter.
Delay calculation All commands that For more information, see Calculating
require timing data and Delay in Multi-Thread Mode in the
invoke a full delay “Calculating Delay” chapter.
calculation.

Related Topics

B setup.tcl inthe Encounter Digital Implementation System Foundation Flows:
Flat Implementation Flow Guide.

M metal fill.tcl inthe Encounter Digital Implementation System Foundation
Flows: Flat Implementation Flow Guide.

B Route the Design and Run Postroute Optimization in the Encounter Digital
Implementation System Foundation Flows: Flat Implementation Flow Guide.

October 2010 98 Product Version 9.1.3

../fetxtcmdref/timing_ipoT.html#optDesign
../fetxtcmdref/timinganalysisT.html#timeDesign
../fetxtcmdref/verificationT.html#verifyGeometry
../fetxtcmdref/verificationT.html#verifyConnectivity
../fetxtcmdref/verificationT.html#verifyMetalDensity
../soceUG/delayCal.html#CalculatingDelayMultiThreadMode
../soceUG/delayCal.html#CalculatingDelayMultiThreadMode
../flatImpl/flow.html#setuptcl
../flatImpl/flow.html#metal_filltcl
../flatImpl/flow.html#RoutetheDesignandRunPostrouteOptimization

Encounter Digital Implementation System User Guide
Accelerating the Design Process By Using Multiple-CPU Processing

Running Distributed Processing

To run the software in distributed processing mode, the following two commands are required:

B setDistributeHost

Use this command to specify a configuration file for distributed processing or create the
configuration for the remote shell, secure shell, or load-sharing facility queue to use for
distributed processing. If you request more machines than are available, most
applications wait until all requested machines are available.

To display the current setting for setDistributeHost, use the getDistributeHost
command.

B setMultiCpuUsage

Use this command to specify the maximum number of computers to use for processing.

To display the current setting for setMultiCpuUsage, use the
getMultiCpuUsagecommand.

For example, to run the multiPlanDesign command in distributed processing mode on
four machines with a in an existing LSF environment on machines that have 4 GB of memory,
specify the following commands:

setDistributeHost -1sf -queue memdG
setMultiCpuUsage -remoteHost 4
multiPlanDesign -autoTrials 4

Running Multi-Threading

To run the software in multi-threading mode, the following command is required:
B setMultiCpuUsadge

Use this command to specify the number of threads to use. Upon completion, the log file
generated by each thread is appended to the main log file.

Note: The -localCpu parameter limits the number of threads running concurrently.
Although the software can create additional threaded jobs during run time, depending on the
application in use, only the number of threads specified with this parameter are run at a given
time.

If you ask for more threads than are available, the software issues a warning and runs with
the maximum number of available threads.

For example, to run placement with four threads, specify the following commands:

October 2010 99 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#setDistributeHost
../fetxtcmdref/multicpuT.html#getDistributeHost
../fetxtcmdref/multicpuT.html#setMultiCpuUsage
../fetxtcmdref/multicpuT.html#getMultiCpuUsage
../fetxtcmdref/multicpuT.html#setMultiCpuUsage

Encounter Digital Implementation System User Guide
Accelerating the Design Process By Using Multiple-CPU Processing

setMultiCpuUsage -localCpu 4
placeDesign

Running Superthreading

To run the EDI System software in Superthreading mode, the following two commands are
required:

B setDistributeHost

B setMultiCpuUsage

Because Superthreading is distributed processing plus multi-threading, you must specify the
number of hosts and number of threads per host. If you request more machines than are
available, most applications wait until all requested machines are available.

For example, to run the NanoRoute router in Superthreading mode, using a load-sharing
facility queue with two machines and three processors each, specify the following commands:

setDistributeHost -1lsf -gqueue myQueue -resource "mem>4000 OS=RH4"
setMultiCpuUsage -remoteHost 2 -cpuPerRemoteHost 3
detailRoute

Setting and Changing the License Check-Out Order

To change the license check-out order, use the following command:

setMultiCpuUsage -licenselList {nru vdi edsl edsxl fexl fegxl}

For information on the default check-out order, see Encounter Digital Implementation System
Licensing and Packaging on SourceLink®.

Limiting the Multi-CPU License Search to Specific
Products

Each base license allows a set of specific licenses to be used for Multi-CPU processing. This
list can be obtained from the getMultiCpuUsage command after invoking the software.

[DEV] encounter 1> getMultiCpuUsage
Total CPU(s) Enabled: 2
Current License(s): 1 Encounter_Digital_Impl_Sys_ XL

keepLicense: true

October 2010 100 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#setDistributeHost
../fetxtcmdref/multicpuT.html#setMultiCpuUsage
../fetxtcmdref/multicpuT.html#setMultiCpuUsage
http://sourcelink.cadence.com/docs/files/Docs/EDISLicPkg.pdf
http://sourcelink.cadence.com/docs/files/Docs/EDISLicPkg.pdf

Encounter Digital Implementation System User Guide
Accelerating the Design Process By Using Multiple-CPU Processing

licenselList: nru edsl edsxl

This license list can be customized from among the available choices by using the
setMultiCpuUsage -licenseList command.

Releasing Licenses Before the Session Ends

By default, the software holds multi-CPU licenses for the duration of the current session. To
release the multi-CPU licenses before the EDI Systemsession ends, complete one of the
following steps:

m Before running any multi-CPU applications, specify the following command to keep the
acquired multiple CPU-licenses until the current session ends:

setMultiCpuUsage -keeplLicense true

To display the current setting for setMultiCpuUsage -keepLicense, use the
getMultiCpuUsage -keepLicense command

B Atthe point when you want to release the multi-CPU licenses (for example, when global
placement finishes), specify the following command:

setMultiCpuUsage -releaselLicense

Controlling the Level of Usage Information in the Log File

Use the following command to set the level of usage information in the log file:
setMultiCpuUsage -threadInfo {0 | 1 | 2}

By default, the software does not write starting and ending information for threads or timing
details to the log file, but you can change this behavior by specifying 1 or 2 for the
-threadInfo parameter.

m Specify 1 to write the final message to the log file.

B Specify 2 to write additional starting/ending information for each thread.

Where to Find More Information on Multi-CPU Licensing

See Encounter Digital Implementation System Licensing and Packaging on SourceLink®.

October 2010 101 Product Version 9.1.3

../fetxtcmdref/multicpuT.html#setMultiCpuUsage
../fetxtcmdref/multicpuT.html#getMultiCpuUsage
../fetxtcmdref/multicpuT.html#setMultiCpuUsage
../fetxtcmdref/multicpuT.html#setMultiCpuUsage
http://sourcelink.cadence.com/docs/files/Docs/EDISLicPkg.pdf

Encounter Digital Implementation System User Guide
Accelerating the Design Process By Using Multiple-CPU Processing

October 2010 102 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Data Preparation

Generating a Technology File on page 104

Preparing Physical Libraries on page 104
Unsupported LEF and DEF Syntax on page 105

Generating the 1/0 Assignment File on page 108

Preparing Timing Libraries on page 128

Encrypting Libraries on page 128

Preparing Stamp Models on page 129

Preparing Timing Constraints on page 129

Preparing Capacitance Tables on page 130

Preparing Data for Delay Calculation on page 130

Preparing Data for Crosstalk Analysis on page 130

Checking Designs on page 130

Preparing Data in the Timing Closure Design Flow on page 131

Converting iPRT Format to LEF on page 131

October 2010 103

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

Generating a Technology File

The technology file provides the software with design rules for placement and routing, and
interconnect resistance and capacitance data for generating RC values and wireload models
for the design. The technology file also contains process information for the metal
interconnect layers, including metal thickness, metal resistance, and line-to-line capacitance
values of metal layers, for determining coupling capacitance.

Creating Technology Information Using LEF

You can use the Library Exchange Format (LEF) to specify technology information. If you do
not have LEF technology information, refer to the LEF/DEF Language Reference for
details on specifying the information manually.

Creating Technology Information Using OpenAccess

You can also create technology information equivalent to the information you specify in LEF,
but in an OpenAccess database format. This allows you to share technology information
easily among tools that support the OpenAccess standard.

Preparing Physical Libraries

To run the Encounter software, you must create physical libraries (cells and macros).

If you have a complete LEF file that contains all cells in the design, and process technology
information, then you can import a LEF file.

Using LEF to Create Physical Libraries

You can use the following methods for creating abstracts for each leaf cell in the design.
B Use the Abstract Generator.

For more information, see the Cadence Abstract Generator User Guide.
m Create LEF MACROs manually.

For more information, see the LEF/DEF Language Reference.

October 2010 104 Product Version 9.1.3

../lefdefref/lefdefrefTOC.html#firstpage
../lefdefref/lefdefrefTOC.html#firstpage

Encounter Digital Implementation System User Guide
Data Preparation

Creating OpenAccess Physical Libraries
You can translate the LEF MACROs to OpenAccess format by using a LEF-to-OpenAccess

translator. This allows you to share libraries easily among tools supporting OpenAccess
standard.

Unsupported LEF and DEF Syntax

The Encounter software supports most of the syntax statements in the 5.7 versions of LEF
and DEF with the exception of the ones listed below.

Unsupported LEF 5.7 Syntax

The Encounter software parses but ignores the following LEF 5.7 syntax:

LEF Statement Unsupported Syntax

Layer (Routing) [DIAGWIDTH diagWidth ;]
[DIAGSPACING diagSpacing ;]
[DIAGMINEDGELENGTH diagLength ;]
[SLOTWIREWIDTH minWidth ;]
[SLOTWIRELENGTH minLength ;]
[SLOTWIDTH minWidth ;]
[SLOTLENGTH minLength ;]
[MAXADJACENTSLOTSPACING spacing ;]
[MAXCOAXIALSLOTSPACING spacing ;]
[MAXEDGESLOTSPACING spacing ;]
[SPLITWIREWIDTH minWidth ;]
[HEIGHT distance ;]

[SHRINKAGE distance ;]
[CAPMULTIPLIER value ;]

Macro Pin [TAPERRULE ruleName ;]
[NETEXPR “netExprPropName defaultNetName” ;]

Nondefault Rule [DIAGWIDTH diagWidth ;]
[HARDSPACING ;]
[USEVIARULE viaRuleName ;]

Via Rule Generate [DEFAULT]

October 2010 105 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Data Preparation

The following LEF 5.7 syntax causes an error message in the Encounter software:

LEF Statement

Unsupported Syntax

Layer (Routing)

DIRECTION {DIAG45 | DIAG135} ;

Unsupported DEF 5.7 Syntax

The Encounter software parses but ignores the following DEF 5.7 syntax:

DEF Statement Unsupported Syntax
Blockages [+ SLOTS]
Groups [+ PROPERTY {propName propValue}...]
Extensions All BEGINEXT syntax
History All HISTORY syntax
Nets [+ SYNTHESIZED]
[+ VPIN vpinName [LAYER layerName] pt pt
[PLACED pt orient | FIXED pt orient | COVER pt orient]]
[+ SUBNET subNetName
[({compName pinName | PIN pinName | VPIN vpinName})]
[NONDEFAULTRULE ruleName]]
Note: SUBNET NONDEFAULTRULE is ignored; routing uses
rule for NET.
[+ USE {RESET | SCAN | TIEOFF}]
Note: Supports ANALOG, CLOCK, GROUND, POWER, and
SIGNAL.
[+ PATTERN {STEINER | WIREDLOGIC}
[+ ESTCAP wireCapacitance]
[+ SOURCE {DIST | NETLIST | TEST | USER}
October 2010 106 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Data Preparation

DEF Statement

Unsupported Syntax

Pins

[+ USE {TIEOFF | SCAN | RESET}

Note: Supports SIGNAL, POWER, GROUND, ANALOG, and
CLOCK.

+ DIRECTION FEEDTHRU]

+ NETEXPR “netExprPropName defaultNetName”]

+ SUPPLYSENSITIVITY powerPinName]

[
(
[
[+ GROUNDSENSITIVITY groundPinName]

Pin Properties

All PINPROPERTIES syntax

Property Definitions

The object types: GROUF, REGION, and ROW

Regions [+ PROPERTY {propName propVal}...]
Rows [+ PROPERTY {propName propVal}...]
Slots All SLOTS syntax
Special Nets [+ SYNTHESIZED]
[+ VOLTAGE volts]
[+ SOURCE {DIST | NETLIST | USER}]
[+ USE {RESET | SCAN | TIEOFF}]
Note: Supports ANALOG, CLOCK, GROUND, POWER, and
SIGNAL.
[+ PATTERN {STEINER | WIREDLOGIC}]
[+ ESTCAP wireCapacitance]
[+ WEIGHT weight]
Note: + WEIGHT only supported in NETS section.
Special Wiring Statement:
[+ STYLE styleNum]
Note: If included in the DEF file, the software displays an error
message stating that only the default style is supported, ignores the
specified style, and replaces it with the default one.
Styles All STYLES syntax

October 2010

107 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

The following syntax causes an error message in the Encounter software:

DEF Statement Unsupported Syntax
Nets [orient]

(Regular Wiring [STYLE styleNum]
Statement)

Generating the I/O Assignment File

The 1/0O assignment file defines the rules that determine how the I/O instances (pad cells and
area 1/0), 1/0O pins, bumps, and bump arrays are organized. The file is rule-based to specify
exact location, global spacing, individual spacing, skip, offset, keep clear, and corner
information. You can specify detailed rules to control the locations, or you can specify minimal
or no rules to allow Encounter to determine the locations automatically.

Encounter does not require you to create an I/O assignment file to run the software. If you do
not specify an I/O assignment file when you import a design, I/Os are assigned randomly.

If you do not specify an I/O assignment file, but you want to set I/O pin or pad placement, use
a DEF file. Load the DEF file after importing the design, then save the floorplan. You can also
save the /O file to write a sequence file for rule-based work.

If you provide an I/O assignment file, you are not required to specify the exact location of all
I/O pads. You can specify the 1/0O row name to place the I/O pads in a specific 1/0 row. Also,
if you do not provide offset values, Encounter spaces the 1/O pads evenly along the specified
row. The spacing between the corners and adjacent pads is the same as the spacing between
the other pads.

October 2010 108 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

This section discusses the following topics:

m Creating an I/0O Assignment File on page 109
Creating a Rule-Based I/0O Assignment File on page 120

I/O Pad and Pin Assignment Examples on page 121

Performing Area I/O Placement on page 124

Creating an I/0 Assignment File

You manually create an 1/O assignment file using the following template:
(globals

version = 3
io_order = clockwise
total edge = 10
space = 1.06

)

(row_margin

(top | north | left | west | right | east | bottom | south

(io_row ring number = 1 margin = 0.0000)
(io_row ring number = 2 margin = 94.0000)
(io_row ring number = 3 margin = 181.0000)

)

(iopad
(top | north | left | west | right | east | bottom | south | row
(locals
row name = name of row

space = 1.2
ring number = 1

io _order = counterclockwise

(inst
name = ioinst 1
skip = 2.2

space = 1.2
offset = 10.2

October 2010 109 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

indent = 10.2
orientation = rl180
place status = fixed

)
(keepclear begin = 10.0 end = 12.0)

(inst

name = ioinst 2
orientation = rl180
skip = 2.2

cell = mymaster

)

(endspace gap = 1.2)
)
corner io cell

(topright | northeast | topleft | northwest | bottomright | southeast |

bottomleft | southwest | row
(locals
row name = name of row
ring number = 1
)
(inst
name = corner 1
orientation = rl80
cell = corner master
)
)
(inst
name = ioinst 2
x = 100.0
y = 200.0
orientation = rl80
place_status = fixed
)
)
(iopin

(top | north | edge num = 0

(locals
space = 1.2
io_order = counterclockwise

)

October 2010 110 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

(pin name = “din [0]”
layer = 3

width = 0.28

depth = 0.28

skip = 2.2

space = 1.2
offset = 10.2
place status = fixed
)
)
(left | west | edge #
)
(right | east | edge #
)
(bottom | south | edge #
)
(up
(pin name="address[2]"
x=158.0700
y=180.6400
layer=4
width=0.2800
depth=0.2800
)
(pin name="rcc_ clk"
x=159.3400
y=180.5600
layer=6
width=0.6000
depth=0.8000
)

)

(bump
(array
name = array 1
cell = bcl
11x = 100
1ly = 100

October 2010 111 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

urx = 100

ury = 100

x = 100.0

y = 200.0

xpitch = 20
ypitch = 20
xspace = 10
yspace = 10

row = 6

column = 6

out _rings = 3
style = stagger | full
center column = 4
center row = 4

center style = stagger | full
)
(bump
name = lvdsov33vl2 ca sref 142 rlcl
cell = bcl
x = 100.0
y = 200.0
signal = vddl2
type = power | ground
assignment = fixed
array = array 1

orientation = r180

)

The following entries are included in the template:

globals

version = 3 Specifies the beginning of a new I/O format.

October 2010 112 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

lo_order

total_edge

space

iopad locals

space

ring_number

row_name
iopad instance

name

October 2010

Specifies the order of the 1/0 pads and pins.
This can be:

B clockwise
B counterclockwise
m default

Note: The default I/O order for a vertical
edge is from the bottom to the top, and for a
horizontal edge, it is from the left to the right.

Specifies the number of edges for the
rectilinear block design.

The edges are numbered starting from 0. For
example, ifthe total_edge is 4, then the
edges are numbered as edge 0, edge 1,
edge 2, and edge 3.

Note: You must verify that the total number of
edges that you specify matches with the
value in the destination design.

Specifies the global 1/O pin spacing, in
umeters.

Specifies the local I/0O pad spacing, in
umeters.

Note: This space setting is honored by the
first cell on one edge, when xy or offset is not
specified.

Specifies the ring number in which the 1/0
pad is placed.

Specifies the /O row name.

Specifies the name of the 1/O instance.

113 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

X, Vv Specifies the absolute x, y location of the I/O
pad instance, starting from the lower left
corner.

Note: Specifying x,y location for sides and
edges of I/O pads is not supported in the I/O
file.

skip Specifies the distance, in umeters, of the I/O
pad from the previously defined 1/O pad.

The value that you specify here is valid only
for this cell.

space Specifies the spacing, in umeters, between
the pad being defined and the previously
defined pad.

The value that you specify here, overrides
the global space setting.

Space between 1/Os

i~

Core Area

UORORENN BA
IR

U UNNENEDEED

October 2010 114 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

offset Specifies the offset in umeters. The offset of
a pad is the offset from the die boundary,
based on the order direction.

The value that you specify here is valid only

for this cell.
|
Die Box |

I TTENTY 1

== Core Area

= | B2

== P

— [

o— |

— [

o— |

— [

o— |

= —

B IImmymone
Note: For one I/O pad, you can specify only one of the following
parameters:
m skip
B space
m offset

If you specify all the three parameters, only the last parameter that
you define, is considered for I/O pad placement.

October 2010 115 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

October 2010

indent

orientation

place_status

Specifies the offset, in umeters, from the row
margin.

T
g Core Area %
E DRI E W0 %

However, for designs with single 1/O ring, row
margin is 0. Hence, indent is the offset of the
I/O pad from the die boundary.

Specifies the orientation of the /0.

Specifies the placement status of the 1/O pad
instance. This can be:

B placed
m covered
m fixed

Default: fixed.

116 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

keepclear Specifies an area on the chip where you
cannot place pins or pads. Specify a range
between begin and end, in umeters, on the
chip side in which pins and pads cannot be
placed.

Note: You must define pad cells in the order
in which they appear in the design.

Keepclear area

1) e 1P| RT

Core Area

UORORENN BA
IR

il AR DD HN

cell Specifies the physical I/0 cell.

endspace gap Specifies the space, in umeters, between the
corner pad and the last I/O pad for the
specified side of the design.

Endspace Gap

IEmI -

Core Area

NN ERR 0N
N IUNEEREnE

NN NN e

October 2010 117 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

iopin locals
side Specifies the side of the I/O pin. This can be:
m top | north
m left | west
B right| east
m bottom | south

edge num = 0 Specifies the edge number of the 1/0 pin,
with edge num = 0 starting from the left
side of the lowest y coordinate and the left
most corner, in the clockwise direction.

Edge 3

¥

Edge 2

Edge 1

'

Edge 0

space Specifies the spacing, in umeters, between
the previously defined pin and the pin being
defined.

The value that you specify here, sets the
global space setting.

iopin
pin name Specifies the name of a pin. Specify I/Os as
pins for block designs.

layer Specifies the metal layer on which the pin
must be placed.

width Specifies the width of the pin in umeters. It is
the length of the edge that is centered at the
reference point.

October 2010 118 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

depth

up

Specifies the length of the pin in umeters.

Specifies the details of internal
I/0 pins.

Specifies the absolute x,y location of the
internal 1/0 pin.

Note: The I/O file supports specifying xy
location for internal I/O pins only.

Specifies the incremented 1/O pin edge
number.

The following commands allow you to create multiple 1/0 rows on multiple rings:

Row Margin

side

ring_number

margin

Specifies the side of the /O row margin. This
can be:

top
north
left
west
right

east

bottom
H south

Specifies the 1/0 ring number on which the I/
O rows are placed, with ring 1 being the
outer most ring.

Specifies the distance, in microns, from the
die boundary edge to the 1/0O row edge.

Note: You can use the Edit I/O Ring form to specify I/O pad rings and row margins for
multiple rows. Alternatively, to achieve the same using text commands, you must first use the
setToRowMargin command to set the distance from the die boundary edge to start of each

October 2010

119 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

row and then use the placePad10 command to place the I/0O pads evenly between these
rows.

Note: When creating the I/O assignment file, start comment lines with a pound (#) sign.

Specifying Area I/0 Information

You can also define the following objects in the 1/0O assignment file for area 1/0O placement:
B Bump

A bump is a piece of metal that works as a bonding pad to the package. When defining
a bump, you must specify its master bump cell and its physical location. You can generate
one bump, or an array of bumps of the same bump cell type.

O To define an individual signal bump, use the following syntax:

Bump: bump_name bumpCell_name x y signal type assignment array
orientation

For example,
Bump: A3 BUMP 300 100 vddl2 power fixed array 1 rl80

O To define an array of bumps, use the following syntax:

Bump: bump_name bumpCell 1lx 1ly urx ury X y xpitch ypitch xspace
yspace row column out_rings style center_ column center_row
center_style

For example,

Bump: myBumpArray myBumpCell 100 100 100 100 300 100 20 20 10 10 6 6 3 full
4 4 full

m IOlnst

This section specifies the preplaced area I/O instances. Define area I/O instances using
the following format:

IOInst: inst_name [x y [orientation] [place status]]

For example,
I0Inst: A1/B1/BUF1 200 200 r180 fixed
Creating a Rule-Based I/0 Assignment File

To create a rule-based I/O assignment file,
1. Create an I/0O assignment file with I/O pads in the proper sequence.

This file can include VDD and VSS filler pads.

October 2010 120 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Data Preparation

Import the design.

@ a » e n

Save the floorplan to a file.

I/0 Pad and Pin Assignment Examples

After reviewing the I/O pads, choose Design — Save — 10 File.
On the Save IO File form, select sequence.

Edit the new file for reimporting, or use the 1oadIoFile command.

The following example shows statements in a sample I/0O assignment file for I/O pads as

shown in the figure below:

I/O Pads
— =i

Core Area

|

version = 3

io_order = clockwise
total edge = 4

space = 1.06

(inst
name = IOPADS INST/padl W
offset = 235.0000
orientation = RO
place status = fixed

)

(inst
name = IOPADS INST/pad2 W
offset = 296.1250
orientation = RO

place status = fixed

October 2010 121

Product Version 9.1.3

Encounter Digital Implementation System User Guide

Data Preparation

Assigning Pads for Multiple Rows

The following example shows statements in a sample I/O assignment file for multiple rows of

I/O pads as shown in the figure below:

Multiple Row 10 Pads

version = 3

io_order = clockwise
total edge = 4

space = 1.06

iopad
(topright
(locals
ring number = 1
)
(
instname = IOPADS INST/padl W
offset = 235.0000
)
(locals
ring number = 2
)
(
instaname = IOPADS INST/pad2 W
offset = 296.1250
)

October 2010 122

Product Version 9.1.3

Encounter Digital Implementation System User Guide

Data Preparation

Assigning Module Pins

The following example shows an I/O assignment file for module pins as shown in the figure

below:

Module Pins
] e oo

El ——— [

version = 3

(iopin

(top | north | edge num

(locals
space = 1.2

)

o H
‘ Module Area ‘

0]
u 1]

=0

(pin name = address[l14] N

layer 3
width 0.28
depth = 0.28

offset = 19.4700

place status = fixed

)

(pin name = address[14] N

layer = 4
width = 0.38
depth = 0.38

offset = 39.2700

place status = fixed

)

October 2010

123

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

Recognizing Multiple Corner Cells

The following example shows multiple corner cells defined in I/O file. The 1oadIoFile
command recognizes the multiple corner cells defined in 1/O file and place them in the right
corner with right orientation.

version = 3
(iopad
(topright

(

instname = CNR@OO0O1
orientation = RO
cell = ZMGACS101N

)

(
instname = CNRQOOO2

orientation = RO
cell = ZCGLSNEIS1A
)

Performing Area I/O Placement

Before you begin area I/O placement, you must first specify CLASS PAD AREAIO in a LEF
file. Additionally, a SITE or region must be defined for the placeAT0 command to place the
CLASS PAD AREAIO macro in the required location. The SITE must be referenced in the

AREATIO macro.

The following example shows a SITE definition followed by a CLASS PAD AREAIO macro
which refers to the STITE.

SITE IO CLASS PAD ; SIZE 210 BY 100.8 ; END IO
MACRO INBUF

CLASS PAD AREAIO ;
FOREIGN INBUF 0.00 0.00 ;
ORIGIN 0 O ;

SIZE 210 BY 100.8 ;
SYMMETRY X Y R90 ;

SITE 10 ;

PIN PAD

October 2010 124 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Data Preparation

DIRECTION INPUT ;
USE SIGNAL ;

PORT ;

LAYER M6 ;

RECT 95.0 40.0 115.0 60.0 ;

END
END PAD

Note: The CLASS PAD AREAIO saves bump status defined in the DEF file only if the bump
status is FIXED or COVER. See Defining BUMP CELL Placement Status on page 126.

Defining the Connection between a Bump and P/G Pin Shape

The flip chip router (area 1/0) determines which power/ground pin shape on the I/O driver cell
must be connected to a bump. The following MACRO PIN statement added in the LEF 5.7

file specifies that the port is a bump connection point for multiple pins.

MACRO PVDD1DGZ
CLASS PAD AREAIO ;
FOREIGN PVDD1DGZ 0.000 0.000 ;
ORIGIN 0.000 0.000 ;
SIZE 40.000 BY 35.280 ;
SYMMETRY x y r90 ;
SITE IO1 ;

PIN VDD
DIRECTION OUTPUT ;
USE POWER ;
PORT

CLASS BUMP ;
LAYER METALS8 ;
RECT 5.0 25.0 15.0 35.0
END
END VDD
END PVDD1DGZ

’

For more information, see “Macro Pin Statement” in the LEF/DEF Language Reference.

Defining BUMP CELL in LEF

Bumps must also be defined in a LEF file. The following example shows a BUMPCELL macro.

October 2010

125

Product Version 9.1.3

../lefdefref/LEFSyntax.html#MacroPinStatement

Encounter Digital Implementation System User Guide
Data Preparation

MACRO BUMPCELL

CLASS COVER BUMP ;
ORIGIN O O ;

SIZE 80.0 BY 80.0 ;
SYMMETRY X Y ;

PIN PAD
DIRECTION INPUT ;
USE SIGNAL ;
PORT
LAYER M6 ;
RECT 0.0 0.0 80.0 80.0 ;
#POLYGON 23.0 0.057.0 0.0 80.0 2
END
END PAD

END BUMPCELL

Defining BUMP CELL Placement Status

You can define the bump cell placement status, FIXED | COVER for a bump object in the
design, in a DEF/IN file or using the_Attribute Editor in Encounter. The CLASS PAD AREAIO
saves the bump placement status— FIXED or COVER.

Note: The default bump placement status is PLACED.

The following example shows the BUMP CELL placement status defined in the DEF file:

Bump: Bump 83 2 8 BUMPCELL 255.720 855.720 refclk -fixed -bumpArray array 0 -
placeStatus placed

Bump: Bump 82 1 8 BUMPCELL 155.720 855.720 pllrst -fixed -bumpArray array 0 -
placeStatus cover

Bump: Bump 81 0 8 BUMPCELL 55.720 855.720 ibias -fixed -bumpArray array 0 -
placeStatus fixed

Importing LEF Files

To import the LEF files, use the following procedure:
1. Select File — Import Design.
The Design Import form appears.

2. On the Design page, enter the names of the Verilog files, and choose a top cell
assignment option.

3. Inthe LEF Files field, type the LEF file names to import, and include the file that contains
the CLASS PAD AREATIO statement. Or, you can click on the ... icon to the right of the
field to select files.

4. Click OK.

October 2010 126 Product Version 9.1.3

../encounter/editG.html#AttributeEditor

Encounter Digital Implementation System User Guide
Data Preparation

The Design Import form closes and Encounter imports the data.

To load the floorplan and 1/O assignment files separately, use the following procedure:
1. Select File — Load — Floorplan or run the 1oadFPlan text command.

2. Select File — Load — I/0O File or run the 1oadIoFile text command.

As an alternative, you can include the 1/0 assignment file in the floorplan file, add the following
statement to your floorplan file before loading your floorplan.

IOFile: iofile_name

Note: You can also specify area I/0O rows in DEF or PDEF files.

For more information on the 1/0O assignment file, see “Creating an 1/O Assignment File” on
page 109.

October 2010 127 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

To save your floorplan and I/O assignment files, use the following procedure:
1. Select File — Save — Floorplan. Fill out the form and click Save.
As an alternative, you can specify the saveFP1lan text command.
2. Select File — Save — I/O File. Fill out the form and click Save.

As an alternative, you can specify the saveIoFile text command.

To place area |I/Os, use either the GUI or command line:

B To place area I/Os from the GUI, select Tools — Flip Chip — Place & Route — Place
Flip Chip I/0 — Area 1/0. Fill out the form and click OK.

B To place area I/Os from the command line, use the placeAIO text command.

Specify the -on1yAT0 argument to place only the area 1/Os on the area I/O rows. If you
do not specify this argument, all standard cell instances and blocks are also placed.

Specify the -assignBump argument if you have unassigned bumps for area I/O instance
connections. If you specify this argument, area I/O instances are connected to the
nearest unassigned bumps.

Note: You can also assign bumps after area 1/0O placement by using the assignBump
command.

Preparing Timing Libraries

Timing library files contain timing information in ASCII format for all of the standard cells,
blocks and I/O pad cells. The Encounter software reads timing library format files (. t1£f) or
Synopsys Technology Library format files (. 1ib). You do not need to translate timing library
files before reading them into the software.

Encrypting Libraries

To protect proprietary data, you can encrypt the ASCII library files. Use the 1ib_encrypt
utility to perform the encryption. The 1ib_encrypt utility is installed along with the
Encounter software. To encrypt the ASCI! library file, use the following command:

lib_encrypt [-ogz] [-help] in_file out_file

October 2010 128 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

Parameters

-help Displays the syntax of the 1ib_encrypt command.
in_file Specifies the name of library file to be encrypted.
-0gz Creates a gzip file of the encrypted output library file.
out_file Specifies the name of the output file.

Preparing Stamp Models

Stamp models contain timing information for a module, such as an instantiated module, block,
or partitioned module. It describes the timing models of large blocks, such as RAM blocks,
microprocessor cores, DSP, and others that have not been synthesized into gate-level
netlists.

A stamp model consists of two files:
B Model file that describes the ports, timing arcs, and other attributes of the block.

m Data file that provides technology specific data, including values for timing arcs, port
capacitance, and maximum transitions.

You do not need to translate these files before reading them into the software.

Note: Stamp models supersede timing library models.

Preparing Timing Constraints

To import timing constraints, use the write_script or write_sdc command from within
Design Compiler, PrimeTime, or Physical Compiler. These commands eliminate any variable
substitution confusion, making them easier for the user and the software to read.

Usethewrite_script command onthe designinside dc_shell orpt_shell forthe best
results, for example:

write script -format {ptsh | dcsh | dctcl} -output fileName

Or, you can use the following command:

write sdc

You do not need to translate either DC or PT constraints before reading them into the
software.

October 2010 129 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

Note: When reading in constraints, only read in one format type in a session.

Preparing Capacitance Tables

For accurate extraction results, use capacitance tables. You can generate and use separate
capacitance tables for different process corners.

For more information on preparing capacitance tables, see chapter RC Extraction.

Preparing Data for Delay Calculation

If you want to use the SignalStorm® nanometer delay calculator, see Chapter 27, “Calculating
Delay” for information about preparing ECSM libraries.

Preparing Data for Crosstalk Analysis

For information on preparing data for crosstalk analysis, see Chapter 35, “Analyzing and
Repairing Crosstalk.” For more information on preparing cdB noise libraries using the
make_cdB utility, see the “make_cdB Noise Characterizer User Guide.”

Checking Designs

Before importing the design or running Encounter at various stages of the design process,
you can check for missing or inconsistent library and design data.

To perform these checks, use the following command:

checkDesign

You can check for the following data:

Tie-high and tie-low pins

m Physical library
m Timing library
B Netlist

m |/Os

[

[

Power and ground pins

October 2010 130 Product Version 9.1.3

../soceUG/extractRC.html#firstpage
../fetxtcmdref/importT.html#checkDesign

Encounter Digital Implementation System User Guide
Data Preparation

Cadence recommends that you check libraries and data as follows:

Perform I/O checking at any time. I/O problems might not impede any tool, but they might
add to design problems.

Perform netlist checking at any time after the design has been loaded.
Perform physical library checking before floorplanning.

Perform power and ground checking before routing and extraction, and verifying
geometry and connectivity.

Perform timing library checking before any timing-related operation (for example, timing-
driven placement or routing, timing optimization, clock-tree synthesis, and static timing
analysis).

Perform tie-high and tie-low checking before routing and extraction.

Preparing Data in the Timing Closure Design Flow

For information on preparing data for the timing closure design flow, see the Encounter
Timing Closure Guide.

Converting iPRT Format to LEF

The iprt2lef translator converts DRC rules, place-and-route technology data, and RCX
data from iDRC, iPRT and iRCX format to the technology LEF format.

For more information about this translator, refer to the iPRT to LEF Translator Application
Note on Cadence Online Support.

October 2010 131 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Data Preparation

October 2010 132 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Importing and Exporting Designs

Overview on page 134

Verifying Data before Importing a Design on page 134
Preparing the Design Netlist on page 134

Creating a Flat Verilog Netlist from a DEF File on page 135

Beqinning Designs on page 137

Loading Previously Saved Configuration Files on page 139

Selecting Files on page 141

Working with OpenAccess Designs on page 143

Handling Verilog Assigns on page 144

Saving and Restoring Designs on page 144

Importing and Exporting Design Data on page 146

Converting an EDI System Database to GDSII Stream or OASIS Format on page 149
About the GDSII Stream or OASIS Map File on page 156

Updating Files during an EDI System Session on page 165
SKILL to TCL Mapping on page 166

October 2010 133 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Overview

The Encounter Digital Implementation System (EDI System) software provides the following
options for saving, restoring, importing, and exporting design data:

Starting (importing) Allows you to specify data for starting a design or

designs load existing configuration files.

Saving designs Allows you to save the work you complete on designs
during a design session for access at a later date.

Restoring designs Allows you to load saved data from a previous design
session.

Loading design data Allows you to load design data saved in various

stages of the design process, and to bring data from
specific formats (DEF, PDEF, SPEF, SDF, and OA
Cellview) into the EDI System environment.

Saving and exporting Allows you to save design data in various stages of

design data the design process, and to export data in specific
formats (DEF, PDEF, GDS, and OASIS) from the EDI
System environment.

Verifying Data before Importing a Design

To check that Verilog, LEF, and . 11ib files are available at the beginning of an EDI System
session, use the following command:

setCheckMode -netlist true -library true

EDI System performs this check by default. To report the current checking mode, use the
following command:

getCheckMode

Preparing the Design Netlist

The EDI System software requires that your Verilog® design netlist or OpenAccess netlist be
unique so that you can run Clock Tree Synthesis (CTS), Scan Reorder, and timing
optimization features.

» To ensure that the names of all instantiated cell types are unique in a Verilog netlist, use
the following command:

October 2010 134 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

uniguifyvNetlist

The uniquifyNetlist command tests all levels of intermediate modules. It does not test
leaf cells.

There is no equivalent command for uniquifying OpenAccess netlists. You must manually
ensure that the names of all instantiated cell types are unique.

Creating a Flat Verilog Netlist from a DEF File

Cadence requires a Verilog netlist for design import. There is an exception: if you have a DEF
file that contains connectivity information, you can import this file. This is not the
recommended approach.

@auﬁon

After loading the DEF netlist, you can perform floorplanning, non-timing
driven placement and routing, wire editing, and verification. You cannot
use the DEF netlist flow for parasitic extraction, delay calculation, and
timing-driven placement and routing effectively because the DEF names
do not properly match the Verilog names used in timing constraints and
timing analysis.

Recommended DEF Import Commands

/ Important

Cadence highly recommends using these commands instead of the alternative DEF
import flow.

To import a DEF file that contains connectivity information, use either of the following
commands:

B defToVerilogdefFile verilogFile

The defToverilog command loads the DEF netlist, saves the netlist as a Verilog file,
and frees the design, enabling to you continue in the EDI System environment.

B loadDefFile defFile

The 1oadbDefFile command loads a DEF file to build EDI System’s in-memory
database. In order to use this command, the library data must be present in memory (use
the loadLefFile command).

October 2010 135 Product Version 9.1.3

../fetxtcmdref/importT.html#uniquifyNetlist

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

For more information, see the defToverilog and loadDefFile commands in the
Encounter Digital Implementation System Text Command Reference.

Reconciling the Object Names and Creating New DEF File That Can Be
Used With the Normal EDI System Flows

The following procedure imports the Verilog file generated by the saveNet1ist command
in the previous encounter session, and reconciles names in the DEF and Verilog files. This
procedure is required if you want to retrieve more information from the original example.def
file.

1. Start EDI System.

encounter

2. Use a configuration file containing commands to load the LEF file and the Verilog file
generated by the saveNet1ist command from the first session.

loadConfig output.conf
3. Import the DEF file.

defIn -verilog from def netlist flow example.def

This command reads all DEF constructs, not just connectivity.

October 2010 136 Product Version 9.1.3

../fetxtcmdref/importT.html#defToVerilog
../fetxtcmdref/importT.html#loadDefFile

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Note: The -verilog_ from_def_netlist_flow parameteris used in this flow only.
The the defIn operation uses this parameter to correct special characters so that the
names in the output.def file match the names in the new Verilog file.

4. Write the DEF file.

defOut [other-options] output.def

The output . def file is equivalent to the example. def file, but with the Verilog names
resolved. It can be used in future encounter sessions without the
-verilog_from_def_netlist_flow parameter.

5. Exit the current session.

exit
Now, you can use output.conf, output.v, and output.def in any encounter flow.
Beginning Designs

Before you begin a design, you must first prepare the data. For more information, see “Data
Preparation” in the Encounter Digital Implementation System User Guide.

Beginning a Design with LEF and Verilog

To begin a LEF and Verilog design, complete the following steps:

—h

. Select File — Import Design.

2. Select the Basic tab if it is not already selected.

3. Specify the gate-level Verilog netlist files to import in the Files text field.
4. Select one of the following options to specify the top cell:

Q Auto Assign

Automatically extracts the top cell name from the netlist, provided the netlist contains
only one design.

Q By User

(Default) Specifies the name of the top cell when a netlist contains more than one
design (more than one top design name). The top cell name specified is the design
the software imports and processes.

5. Specify the LEf files to import. You must specify the technology LEF file first, then specify
the standard cell LEF and block LEF in any order.

October 2010 137 Product Version 9.1.3

../soceUG/dataprep.html#firstpage
../soceUG/dataprep.html#firstpage

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

The LEF file provides technology information, such as metal layer and via layer
information and via generation rules, which is used in the Add Rings and Add Stripes
forms. The router also uses the technology information contained in the LEF file.

If a cell is defined multiple times, EDI System reads the geometry information only from
the first definition. For subsequent definitions, EDI System reads the antenna information
only.

Note: If the LEF file contains all the physical information for the design, no other files are
required for the Technology Information/Physical Libraries panel.

6. Click Save or OK.
Q Save saves your settings to a configuration file. The design is not imported.

O OKuses the current settings to import the design. The configuration file is not
updated.

Beginning a Design with OpenAccess

To begin an OpenAccess design, complete the following steps:
1. Select File — Import Design.
2. Click the Basic tab, then select OA.
3. Specify the following information:
Q Library
Specifies the OpenAccess database library.
a Cell
Specifies the OpenAccess database cell.
a View
Specifies the OpenAccess database view.
4. Specify the following OpenAccess technology and physical library information:
Q OA Reference Libraries

Specifies the OpenAccess reference libraries to import. The first OpenAccess
reference library listed in this field must contain the technology information for the
leaf cells.

October 2010 138 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Each reference library is processed using the abstract view name list (Abstract
View Names).

For example, if the reference library is *1ibl 1ib2”, and the abstract view name
listis “abstract abstract2”, LEF MACRO information is processed for 1ib1l
with the abstract view. Then, for any cells in 1ib1 that didn notvhave abstract,
but did have abstract2, that view is processed for MACRO information. If a cell has
both views, the first one is used. The process then is repeated for 1ib2.

aQ OA Abstract View Names

Specifies the OpenAccess view names that the software should examine to find the
equivalent LEF MACRO information (for example, PINS, OBS, FOREIGN).

aQ OA Layout View Names
Specifies the layout view names (separated by spaces) to import.
5. Click Save or OK.
Q Save saves your settings to a configuration file. The design is not imported.

O OKuses the current settings to import the design. The configuration file is not
updated.

Note: In version 8.1 and earlier of the software, 1ib.defs was used by default.
However, in EDI System 9.1, the cds. 1ib plugin is used by default to improve
interoperability between EDI System and Virtuoso.

If you still want EDI System to interoperate with 8.1 and earlier versions, use the
lib.defs plugin.

To use 1ib.defs plugin, set the following:

setenv OA PLUGIN PATH install_hierarchy_ root/share/oa/data/altplugins

Loading Previously Saved Configuration Files

You can use either the command line or GUI to load previously saved configuration files.

Loading Configurations Files from the Command Line

To load a previously saved configuration file, use the following command:
loadConfig fileName [0 | 1]

October 2010 139 Product Version 9.1.3

../fetxtcmdref/importT.html#loadConfig

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

If you use this command in batch mode and specify a fi 1ename, the file is loaded and the
design is imported. If you specify a filename and the 0 parameter, the software loads the file,
but does not import the design.

To apply settings specified in the current configuration file and import the design, use the
following command:

commitConfig

Related Topics

Configuration File Variables in the Encounter Digital Implementation System Text

Command Reference.

Load and Check Data in the Encounter Digital Implementation System Foundation

Flows: Flat Implementation Flow Guide.

Loading Configuration Files from the GUI

To load a previously saved configuration file from the GUI, complete the following steps:

1.
2.

g

N o o »

Select File — Import Design.

Select the Basic tab if it is not already selected.

Click Load.

The Load Import Configuration form is displayed.

Select the directory of the file you want to load.

Select Input config file (*.conf”) in the Files of type field.

Specify a file name or click on the filename in the window. The filename suffix is . conf.
Click Open.

The Load Import Configuration form closes.

The configuration file is loaded.

In the Design Import form, continue to specify data you want to import into the design.
Click Save or OK.

Q Save saves your settings to a configuration file. The design is not imported.

O OK saves your settings to a configuration file and starts the design import process.
This might take several minutes to complete, depending on the size of your design.

October 2010 140 Product Version 9.1.3

../flatImpl/flow.html#LoadandCheckData
../fetxtcmdref/configT.html#firstpage

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

When the design is loaded, the Design Import form closes and the design displays
in the EDI System main window.

Selecting Files

Many of the text fields on the Design Import form contain a browse (...) button that opens a
separate form for selecting files. The name of the form corresponds to the specific file you are
selecting; for example, Netlist Files, LEF Files, or Timing Files. These forms are provided for
easier file management.

Using Select Files

1. On the Design Import form, click the browse (...) button next to the text field of the file
type in which you are interested.

This opens the Files form for that file type. For example, clicking the browse button next
to the Max Timing Libraries field opens the Timing Files form.

Timing Files

Timing File: |

Timing Files:

2. To type in a specific filename, do the following:

a. In the first text field, type one or more filenames, specify wildcards, or select a
directory. Use spaces to separate multiple filenames.

b. Click Add.

The filenames appear in the Files list of this form and in the specific Files field of
the Design Import form.

October 2010 141 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

c. Click close.

3. To choose a file from a directory, do the following:

a. Click the file folder icon.

This expands the form and displays a list of directories and files.

Timing File:

Timing

~Timing Files:

L'Delete”j

Files

~ Timing Selection:

[/homesleenap/tokathy

9 672667 9 teste
B appOption.dat

B appTemplate.dat

FE dtmf_chip.enc.dat

F mp_datall

FE mp_datali
FE mp_dataz?

B summaryReport

Filters: 'lTiming Files (".lik .t

nec.dat

Select one or more files in the Files list.

Click Add.

The filenames appear in the Files list of this form and in the specific Files field of

the Design Import form.

d. Click close.

4. To delete files, select the file(s) to be deleted in the Files list and click Delete.

The files are deleted from the both this form and the Design Import form.

October 2010

142

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Working with OpenAccess Designs

Importing an OpenAccess Design on page 143

Saving an OpenAccess Design on page 143

[
[
m Restoring an OpenAccess Design on page 143
[

Transferring OpenAccess Data between EDI System and Virtuoso Chip Editor for ECO
on page 144

Importing an OpenAccess Design

For information on importing OpenAccess designs, see “Beginning Designs” on page 137.

Saving an OpenAccess Design

Before you attempt to save an OpenAccess design for the first time, you must set the
Reference Libraries and Abstract View values on the Design Import form.

Then, after you run File — Restore Design and then select OA in a new session, the EDI
System software restores the design state to the same as state it was in when you used File
— Save Design and then select OA in the previous session.

Restoring an OpenAccess Design

To restore an OpenAccess design, use one of the following methods:

B To load the netlist information from an Open Access database, select File — Import
Design, click the Basic tab, then select OA. Specify the information needed in the
Library, Cell, and View fields.

B After you have imported the design, if the OpenAccess database contains physical
information, select File — Load — OA Cellview.

m To restore a design that you saved previously by using File — Save Design — OA, select
File — Restore Design — OA.

Note: If you saved the design in EDI System, then edited and saved it under a different name
using another tool, you must run the copyOaRestoreFiles command to copy the required
information from the original Library/Cell/View that was saved.

October 2010 143 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Transferring OpenAccess Data between EDI System and Virtuoso Chip
Editor for ECO

1. From an EDI System session, save the OpenAccess design.

saveOaDesign 1ib cell view

2. Exit the EDI System session.

g

Open the OpenAccess database in the Virtuoso Chip Editor tool and edit the design.
Note: You must use Virtuoso Chip Editor rather than the Virtuoso Layout Editor.
Save the design.

Exit the VCE tool.

Start an EDI System session.

N o o &

Restore the OpenAccess design.

restoreOaDesign 1ib cell view

Handling Verilog Assigns

Verilog assign statements may be added, removed, or replaced with buffers automatically by
EDI System. However, if IPO cannot resolve design-rule violations (DRVs) of nets with an
assign statement, you may need to replace the assign statement with a buffer by specifying
the following command before loading a design:

setDoAssign on -buffer buffer_ name

The above command replaces each assign statement with a buffer, including ones that are
not involved with a DRV problem. It also does not affect an assign statement driven by 1'b1/
1'b0 unless the following command is also specified:

setImportMode -bufferTieAssign 1

Saving and Restoring Designs

This section contains the following general guidelines for saving and restoring your design
data:

B Saving Designs on page 145

m Restoring Designs on page 145

B Saving and Restoring OpenAccess Designs on page 145

October 2010 144 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Saving Designs

To save a design, you can use the text command or menu command.

B Use the text command as follows:

saveDesign sessionName

or
m From the EDI System GUI, use the menu command as follows:

File — Save Design and click the Encounter option button.

The design files you save depend on the work completed during an EDI System session. For
example, if you did not perform Trial Route on an imported design, the saved design data will
not include a route file.

/ Important

You can save a netlist file only if you made a design change during the EDI System
session. If you make no changes, EDI System references the original netlist when it
saves the design. Do not use the Save Design form to save a partition.

Restoring Designs

To restore a design, you can use the text command or menu command.

B Use the text command as follows:

restoreDesign sessionName.dat

or
m From the EDI System GUI, use the menu command as follows:

File — Save Design and click the Encounter option button.

Saving and Restoring OpenAccess Designs

For information on saving and restoring OpenAccess designs, see “Working with
OpenAccess Designs” on page 143.

October 2010 145 Product Version 9.1.3

../encounter/designG.html#savedesignencounter
../fetxtcmdref/importT.html#saveDesign
../fetxtcmdref/importT.html#restoreDesign
../encounter/designG.html#savedesignencounter

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Importing and Exporting Design Data

This section contains some general suggestions for importing design data into the EDI
System environment and exporting data out of the EDI System environment.

Loading a Partition

To load a partition, you can use the menu command as follows:

File — Load — Partition

Before you load a partition, perform the following tasks:

—h

. Import the design

2. Load the full chip (flat) floorplan, including partition specifications
3. Commit the partition without pin assignment or a timing budget
4

. Place and route each of the partitions

When you load a partition design, the EDI System software rebuilds the individual partition
and the top level, so that the entire chip can be analyzed. When you load a saved partition,
the software loads all the files that are selected in the Load Partition File form.

/ Important

The netlist and routing must be consistent when you load a partition that contains
routing data. For example, if your netlist was modified after in-place optimization
(IPO) or after running NanoRoute, you should make sure that the loaded routing
results correctly correspond to the new netlist.

Loading Floorplan Data
To load floorplan data, use the following menu command:

File - Load - Floorplan

When you load a floorplan, the EDI System software treats the following items as floorplan
data:

m Floorplan dimensions

m Standard cell rows

October 2010 146 Product Version 9.1.3

../encounter/designG.html#LoadPartition
../encounter/designG.html#LoadFloorplanFile

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Floorplan guides
Hard blocks (macros)
Blackboxes

Power structures
Density screens
Placement blockages
Routing blockages
Pin blockages

Partition pin cuts

Feedthrough guides

/ Important

Blocks and instances that you load with the Load Floorplan command are set as
preplaced.

Placement File Requirement

Before you load the floorplan file that was used to generate the placement file, make sure the
placement file is in EDI System format.

Loading an I/0 Assignment File

If you do not read an I/O assignment file into your EDI System session, and if no I/O pad
instances are preplaced, the EDI System software randomly places I/O pad instances.

Loading an FSDB File

Before you begin, run a simulation-based power analysis with VCD input. Load an FSDB file
for detailed power analysis using the Debussy Waveform (nWave) tool.

October 2010 147 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Saving a Partition

You can save import configuration, netlist, floorplan, special route, and vendor-specific files
for each partition, including the top level.

Note: Regardless of your choice of output file, the Verilog® netlist, configuration file, and
floorplan file are always saved.

/ Important

You can specify a timing constraint output format for each partition only if you
selected Derive Timing Budget when you ran the Partition program.

Saving Floorplan Data

When you save a floorplan, the EDI System software treats the following items as floorplan
data:

B Floorplan dimensions
Standard cell rows
Floorplan guides
Hard blocks (macros)
Blackboxes

Power structures
Density screens
Placement blockages
Routing blockages
Pin blockages

Partition pin cuts

Feedthrough guides

After you save a floorplan, the EDI System software creates the following files:
B A general floorplanning file with the extension . fp

B A power route data file with the extension . fp.spr

If there is an entry in the /O Cell Libraries field in the Design Import form, a third file is
created with the extension . fp.areaio.

October 2010 148 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Converting an EDI System Database to GDSII Stream or
OASIS Format

To convert an EDI System database to GDSII Stream or OASIS format at any stage of the
design flow, use the following commands:

m For GDSIlI Stream format:

Q setStreamOutMode

a streamOut

Create GZIP files by appending . gz to the flename. The streamOut -merge
command can read files with the . gz extension.

Note: You can also use the following GUI forms:
O Options — Set Mode — Mode Setup — StreamOut
O File — Save — GDS/OASIS

m For OASIS format:

O setOasisOutMode

Q oasisOut
Note: You can also use the following GUI forms:
O Options — Set Mode — Mode Setup — OasisOut
O File — Save — GDS/OASIS

If the database is partitioned into hierarchical blocks, create a file that includes all cells by
completing the following steps:

1. Generate GDSII Stream or OASIS files for the hierarchical blocks.

2. Merge the block-level GDSII Stream or OASIS files to make a top-level file for the whole
design.

Related Topics

To see where this step fits in the design flow, see Analyze Sl, Run Post-SI Optimizatin and
Physical Verification and Generate GDS in the Encounter Digital Implementation System
Foundation Flows: Flat Implementation Flow Guide.

October 2010 149 Product Version 9.1.3

../encounter/optionsG.html#ModeSetupOasisOut
../encounter/designG.html#GDSOASISExport
../fetxtcmdref/importT.html#setStreamOutMode
../fetxtcmdref/importT.html#streamOut
../encounter/optionsG.html#ModeSetupStreamOut
../encounter/designG.html#GDSOASISExport
../fetxtcmdref/importT.html#setOasisOutMode
../fetxtcmdref/importT.html#oasisOut
../flatImpl/flow.html#AnalyzeSIRunPost-SIOptimization
../flatImpl/flow.html#AnalyzeSIRunPost-SIOptimization

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

For more information, see “Merging GDSII Stream or OASIS Files” on page 151.

Creating Cells and Instances

When it converts the database, the software creates instances according to following cases:

m If a LEF MACRO does not have any FOREIGN statements, or if a MACRO name and
FOREIGN name are the same, the software creates one top-level instance that has the
same name as the MACRO. At the cell level, a cell with the same name as the MACRO
already exists, so the software does not create any new cells.

m If a LEF MACRO has multiple FOREIGN statements, or if the MACRO name and FOREIGN
name are different, the software also creates one top-level instance that has the same
name as the MACRO. However, at the cell level there is no cell with the same name as the
MACRO, so the software creates one. This cell contains pointers to the data for each
FOREIGN structure in the LEF MACRO.

Renaming LEF Vias

To force the streamOut or oasisOut commands to give unique names to LEF vias, type
one of the following commands before running the streamOut or oasisOut command:

| setStreamOutMode -SEvianames true

B setOasisOutMode -SEVianames true

These commands rename all LEF vias, and all generated vias, using the following naming
convention:

topSructureName_VIA index
Examples of renamed vias are chip_VIAl and bigDesign_VIA23.

For more information, see setStreamOutMode Or setOasisOutMode in the Encounter
Digital Implementation System Text Command Reference.

October 2010 150 Product Version 9.1.3

../fetxtcmdref/importT.html#setStreamOutMode
../fetxtcmdref/importT.html#setOasisOutMode

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Merging GDSII Stream or OASIS Files

The software allows you to merge several GDSII Stream or OASIS files into a single file for

hierarchical designs. It merges cells that are either referenced (instantiated) in the design or
can be referenced in a recursive search from any child cell that is referenced in the design.

For example, if a merge file contains cells 2, B, C, X, Y, and z, and C has a reference to X, and
X has a reference to v, and the design references cells A, B, and C (but not directly X, v, or z),
the software merges cells 2, B, C, X, and Y, but not z.

The software creates a file in the highest version number of all the merge files.

Merging Files Using the Command Line

1. Create the block-level GDSII Stream or OASIS files by using one of the following
commands:
streamOut -merge list_of GDS _files [-uniquifyCellNames]
oasisOut -merge list_of OASIS_files [-uniquifyCellNames]

If you specify the —uniquifyCellNames parameter, you must list the top-level file first,

as the software uses the first name in the search path when renaming cells. For more
information, see “Merge Examples” on page 151.

2. Create the top-level GDSII Stream or OASIS file by using the block-level files as the
merge files.

The software issues warning messages if any of the files, including the block-level files,
contain structures with the same name or if it renames any cells.

The top-level GDSII Stream or OASIS file contains the following structures:
m Top structure (the design data from the EDI System software)

m Via structures (output from the EDI System design data)

m Leaf cell structures and their children (copied from the merge files)

[

Intermediate structures from the FORETIGN structure

Merge Examples

The following examples show the order dependency in merge files. In the examples, the
COMMON cells may be the same or different. If the cells are different, or if you are not sure
whether they are the same or different, use the ~-uniquifyCellNames parameter in
addition to the -merge parameter.

October 2010 151 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Note: In the examples, for simplicity GDS and streamOut are used. If you are merging
OASIS format files, substitute OASIS for GDS and ocasisOut for streamOut.

Case 1

Most cases are similar to the following:
B 2contains cells X, COMMON (COMMON is instantiated in X).

B GDS2 contains cell Y, COMMON (COMMON is instantiated in Y).

The design instantiates cells X and Y.

B For examples of cases where hierarchical cells are involved and the contents of a
hierarchical cell is different from another cell with the same name, see “Case 2” on
page 153.

Example 1
streamOut -merge {GDS1 GDS2}

B GDS1 processed: X and COMMON are copied from GDS1.

B GDS2 processed: Y is copied from GDS2, COMMON is assumed to be the same, so it is not
copied, Y references the version of COMMON that was copied from GDS1.

Example 2
streamOut -merge {GDS2 GDS1}

B GDS2 processed: Y and COMMON are copied from GDS2.

B GDS1 processed: X is copied from GDS1, COMMON is assumed to be the same, so it is not
copied, X references the version of COMMON that was copied from GDS2.

Example 3

streamOut -merge {GDS1 GDS2} -uniquifyCellNames

B GDS1 processed: X and COMMON are copied from GDS1.

B GDS2 processed: Y is copied from GDS2, COMMON is copied from GDS2 but renamed
COMMON_GDS2 due to uniquification, reference from Y to COMMON is changed to
COMMON_GDS?2.

October 2010 152 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Example 4
streamOut -merge {GDS2 GDS1} -uniquifyCellNames

B GDS2 processed: Y and COMMON are copied from GDS2.

B GDS1 processed: X is copied from GDS2, COMMON is copied from GDS2 but renamed to
COMMON_GDS1 due to uniquification, reference from X to COMMON is changed to
COMMON_GDS1.

Results

Assuming the COMMON cells are copies of the same cell, the results of Example 1 and
Example 2 are the same. Example 3 and Example 4 are geometrically equivalent, but have
duplicate copies of the coMMON cell (with one copy with a different name).

Assuming the COMMON cells are different, the results of Example 1 and Example 2 are not
correct. In this case, the results of Example 3 and Example 4 are both correct, but yield
different cell names depending on the order.

Case 2

In some cases, hierarchical cells are involved and the contents of a hierarchical cell is
different from another cell with the same name. The following examples show the results of
order dependency of merge files in these cases.

B GDS1 contains cells X, Y (Y is instantiated in).

B CDS2 contains cell Y.
The Y cells in the files contain different information.

The design instantiates cells X and Y.

Example 5
streamOut -merge {GDS1 GDS2}

B GDS1 processed: X and Y are copied from GDS1.

B GDS2 processed: Y from GDS2 is dropped.

October 2010 153 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Example 6
streamOut -merge {GDS2 GDS1l}

B GDS2 processed: Y from GDS2 is copied from GDS2.

B GDS1 processed: X is copied from GDS1, Y is dropped (references from X to Y now use
the one copied from GDS2).

Example 7

streamOut -merge {GDS1 GDS2} -uniquifyCellNames

B GDS1 processed: X and Y are copied from GDS1.

B GDS2 processed: Y from GDS2 is dropped.

Example 8

streamOut -merge {GDS2 GDS1} -uniquifyCellNames

B GDS2 processed: Y from GDS2 is copied from GDS2.

B GDS1 processed: X is copied from GDS1, Y is copied from GDS1 but renamed to Y_GDS1
due to uniquification, reference from X to Y changed to Y_GDS1.

Results

Assuming the Y cells are copies of the same cell, the results of Example 5, Example 6, and
Example 7 are the same. The results of Example 8 are geometrically equivalent, but have two
copies of the Y cell, and one copy has a different name.

Assuming the Y cells are different, you must know whether the design is supposed to have its
Y cell from GDS1 or GDS2. If the correct version of Y is from GDS1, then Example 5 and
Example 7 give the correct results. If the correct version of Y is from GDS2, then only Example
8 gives the correct results.

For more information, see the following commands:
B streamOut

B oasisOut

October 2010 154 Product Version 9.1.3

../fetxtcmdref/importT.html#streamOut
../fetxtcmdref/importT.html#oasisOut

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Merging GDS/OASIS Files Using the GUI

Use the GDS/OASIS Export form.
1. Choose File — Save — GDS/OASIS.

2. Fill in the appropriate fields on the form.

For more information, see Save — GDS/OASIS in the “File Menu” chapter of the Encounter
Digital Implementation System Menu Reference.

Merging GDSII Stream or OASIS Files for Hierarchical Assembly of Partitioned Blocks

To merge GDSII Stream/OASIS files for the hierarchical assembly of partitioned blocks for
further usage, such as, LVS/DRC, following are the methods described below which would
result in two different uniquified cell names in the GDSII Stream/OASIS files:

Method 1

Building *block* . gds files requires running the following steps:

streamOut pnrblockl.gds ... -merge {std.gds}
streamOut pnrblock2.gds ... -merge {std.gds}
streamOut top.gds ... -merge {std.gds pnrblockl.gds pnrblock2.gds}

Note: This method results in copying of the cells from std. gds being uniquified for each
block (if -uniquifyCellNames is enabled) since each pnrblock has its own copy of cells.
Method 2

Building *block* . gds files without merging cells (deferred merging to top level), requires
running the following steps (LVS/DRC cannot be performed at the block level):

streamOut pnrblockl.gds ... (no -merge)
streamOut pnrblock2.gds ... (no -merge)
streamOut top.gds ... -merge {pnrblockl.gds pnrblock2.gds std.gds}

Note: No matter where std. gds is placed, there is no cell name conflict with
pnrblockl.gds and pnrblock2.gds. For Method 1, if pnrblockl used a cell that was
not used in the top level, and if std.gds was merged with pnrblockl . gds, then that cell
is uniquified and merged with top.gds because the tool checks the cell's hierarchy.

Note: The streamOut command is not dependent on the order of the list of GDSII files
provided with -merge parameter. All cells used by top or other cells are merged, but different
order will generate different uniquified cell names.

October 2010 155 Product Version 9.1.3

../encounter/designG.html#GDSOASISExport

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

About the GDSII Stream or OASIS Map File

When the software converts an EDI System database to GDSII Stream or OASIS format, it
creates a file for mapping the layers in the EDI System database to a GDSII Stream or OASIS
database. The file can handle up to 1000 GDSII Stream or OASIS layers. In the file each layer
is assigned a unique number and is described on a separate line. You must customize the file
to make it appropriate for your design.

Related Topics

m Flat Implementation Flow chapter in the Encounter Digital Implementation System
Foundation Flows: Flat Implementation Flow Guide.

o “Results”

Map File Format

The file has the following four columns, and may contain comments:

B Layer object name (layerObiName)

B Layer object type (LayverObiType)

m Layer number (1ayerNumber)

m Datatype (dataType)

Each comment starts and ends with a hash mark (#) and must be the first or last argument
on a line. It can be preceded by spaces or tabs.

Following is a short example of a map file with comments:

#This comment is the first argument on a line#

METAL1 NET 1 0
METAL1 SPNET 999 0
#This comment is preceded by white space#
METAL1 PIN 1000 0
#This comment is preceded by a tab#
METALL LEFPIN 2000 0
METAL1 FILL 3000 0
METALL VIA 4000 0 #This comment is at the end of a line#
METALL VIAFILL 5000 0
METAL1 LEFOBS 10000 0
NAME METAL1/NET 20000 0

October 2010 156 Product Version 9.1.3

../flatImpl/flow.html#firstpage
../flatImpl/flow.html#Results

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Map File Columns

layerObjName Specifies one of the following objects:

LEF_layer_name Specifies a LEF layer from the LAYER
statement in the LEF technology file.

If the IayerobjName is a LEF layer name,
the IayerobjType must specify the DEF
object type.

COMP Specifies component outlines.

If the IayerObjName is COMP, the
layerObjType must specify ALL.

DIEAREA Specifies the chip boundary.

If layerObjName is DIEAREA, the
layerObjType must specify ALL.

October 2010 157 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

NAME Specifies a text label for the layer name and
associated object type. If you do not want to
output text labels, remove the NAME lines
from the file.

There is no limit on the length of a structure
(cell) name. Because some GDS/OASIS
readers have a 32-character limit, the EDI
System software issues a warning message
when a structure name is longer than 32
characters.

If layerObjName is NAME,
layerObjType can be a composite layer
name /object type (LEFPIN, NET, PIN, oOr
SPNET), or COMP.

B LEFPIN places the label on the LEF
MACRO PIN shape. (Applies only when
the -outPutMacros parameter is
specified. For more information, see
streamOut Or pasisOut.)

B NET places the label on the NET.

B PIN places the label on the PIN or I/O
abstract pad.

B SPNET places the label on the

SPECIALNET.
B COMP places the label on the placed DEF
component.
layerObjType Specifies an object type.

You can specify a subtype for some layerobjTypes. For
more information, see “Specifying Object Subtypes” on
page 160.

ALL B Inrouting layers, ALL is equivalent to
NET, SPNET, VIA, PIN, LEFPIN, FILL,
FILLOPC, LEFOBS, VIAFILL, and
VIAFILLOPC.

B Incutlayers, ALL is equivalent to VIa,
VIAFILL, and VIAFILLOPC.

October 2010 158 Product Version 9.1.3

../fetxtcmdref/importT.html#streamOut
../fetxtcmdref/importT.html#oasisOut

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

October 2010

BLOCKAGE

BLOCKAGEFILL

CUSTOM

FILL

FILLOPC

LEFOBS

LEFPIN

NET

PIN

Equivalent to DEF BLOCKAGES without
+ FILLS.

Equivalent to DEF BLOCKAGES with
+ FILLS.

Applies to addCustomText and
addCustomBox information only.

For more information, see addCustomText
and addCustomBox.

Equivalent to DEF FILLS without + OPC or
DEF SPECIALNETS with + SHAPE
FILLWIRE.

You can separate FILL into floating and
connected fill by specifying the FLOATING
subtype. For more information, see “Fill

Subtype” on page 161.

Equivalent to DEF FILLS with + OPC or
DEF SPECIALNETS + SHAPE
FILLWIREOPC.

You can separate FILLOPC into floating and
connected fill by specifying the FLOATING
subtype. For more information, see “Fill

Subtype” on page 161.

Note: DEF 5.6 does not support this object
type.

Equivalent to LEF oBs. (Applies only when
the -outPutMacros parameter is specified.
For more information, see streamOut or
ocasisOut.)

Equivalent to LEF PIN. (Applies only when
the -outPutMacros parameter is specified.
For more information, see streamOut or
ocasisOut.)

Equivalent to DEF NETS wiring. For more
information, see “Net Name Subtype” on
page 162.

Equivalent to DEF PINS.

159 Product Version 9.1.3

../fetxtcmdref/importT.html#addCustomText
../fetxtcmdref/importT.html#addCustomBox
../fetxtcmdref/importT.html#streamOut
../fetxtcmdref/importT.html#oasisOut
../fetxtcmdref/importT.html#streamOut
../fetxtcmdref/importT.html#oasisOut

Encounter Digital Implementation System User Guide

Importing and Exporting Designs

layerNumber

dataType

See the “DEF Syntax”
on the object types.

/ Important

SPNET Equivalent to DEF SPECIALNETS without
+ SHAPE FILLWIRE Or + SHAPE
FILLWIREOPC. For more information, see
“Net Name Subtype” on page 162.

TEXT Applies to strip box information.

For more information, see dbCreateText

VIA For via master creation for regular vias.

VIAFILL You can separate VIAFILL into floating and
connected fill by specifying the FLOATING
subtype. For more information, see “Fill

Subtype” on page 161.

VIAFILLOPC You can separate VIAFILLOPC into floating
and connected fill by specifying the
FLOATING subtype. For more information,

see “Fill Subtype” on page 161.

Note: DEF 5.6 does not support this object
type.“Fill Syntax” on page 107

Specifies the GDSII Stream/OASIS layer number or numbers.
The number must be an integer between 1 and 65535.

Specifies the GDSII Stream/OASIS data type or data types. The
data type must be an integer between 0 and 65535.

chapter inthe LEF/DEF Language Reference for more information

Layer names or object types that exist in the EDI System database but are not
specified in the map file are not output to the GDSII Stream or OASIS file.

Specifying Object Subtypes

You can specify subtypes for some layerobjTypes. Specifying a subtype allows you to
split the data from a 1ayerobjType, so that part of it is output to one 1ayernName/
dataType and part of it is output to another 1ayerName/dataType, orto copy it, soitis
output to more than one 1ayerName/dataType. For example, if you use the FLOATING
subtype for FILL, you can divide the output for FILL so that FILL that is FLOATING is output
to one layerName/dataType and FILL that is not FLOATING is output to a different

October 2010

160 Product Version 9.1.3

../lefdefref/DEFSyntax.html#firstpage
../soceDBAref/cmds_A-E.html#dbCreateText

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

layerNamel/dataType, Or you can output FILL that is FLOATING to a specified
layerNamel/dataType and also output it to the same layerName/dataType as FILL
that is not FLOATING.

You can specify the following subtypes:
B Floating and non-floating metal and via fill

For more information, see “Fill Subtype” on page 161.
m Netnames

For more information, see “Net Name Subtype” on page 162.

m Voltage levels

For more information, see “Voltage Subtype” on page 162.

m VIA cut sizes

For more information, see “SIZE Subtype” on page 163.

Fill Subtype

Use the following syntax to specify metal and via fill:

layerObjName layerObjType|:FLOATING] layerNumber dataType

: FLOATING is optional. It specifies unconnected fill. Use this syntax for FILL, FILLOPC,
VIAFILL, and VIAFILLOPC shapes.

In the map file, FLOATING shapes can be output to a different 7ayerNumber/dataType
than the non-FLOATING (connected) shapes, or they can be output to the same
layerNumber/dataType and to a different IayerNumber/dataType.

For example, to divide the output of metal fill shapes, so that non-floating fill on METALT is
outputto TayerNumber 8 dataType 0 and floating fill to 1ayerNumber 8 dataType
51, the map file would have the following statements:

METAL1 FILL 8 O
METAL1 FILL:FLOATING 8 51

To output the connected metal fill shapes on METAL1t0 layerNumber 8 dataType 0
and floating fill to both IayerNumber 8 dataType 0 andto layerNumber 8 dataType
51, the map file would have the following statements:

METAL1 FILL 8 O
METAL1 FILL:FLOATING 8 0,51

October 2010 161 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Net Name Subtype
Use the following syntax to specify layers for nets. The syntax affects wires only, not vias.

For special nets, use the following syntax:

layerObjName SPNET|[:netName] layerNumber dataType

For regular nets, use the following syntax:

layerObjName NET[:netName] layerNumber dataType
:netName is optional. Use the whole net name of any net.

For example, to output special nets named vDD on LEF layer METAL 1 to GDS layer 41, and
all other special nets on LEF layer METAL 1 to GDS layer 31, include the following lines in
the map file:

METAL1l SPNET:VDD 41 O
METAL1 SPNET 31 O

Voltage Subtype

Use the following syntax to specify the voltage level for nets, special nets, pins, and vias:

layerObjName layerObjType:VOLTAGE:minVoltage[:maxVoltage] layerNumber
dataType

For example, to output nets on LEF layer METAL 1 with a minimum voltage of 1.8 to
layerNumber 31 dataType 3, use the following syntax:

METALl NET:VOLTAGE:1.8 31 3

To output nets on LEF layer METAL 1 with a minimum voltage of 1.8 and a maximum voltage
of 2.499 t0 layerNumber 31 dataType 3, use the following syntax:

METAL1 NET:VOLTAGE:1.8:2.499 31 3

If you specify both net names and voltages in the file, the net name overrides the voltage
(because the net name is more specific than the voltage). In the following example, VDD nets
are outputto layerName/dataType 31 4, even whose voltage is between 1.8 and 2.499.

METAL1 NET:VDD 31 4
METAL1 NET:VOLTAGE:1.8:2.499 31 1

As with other subtypes, you can output objects with different voltages to different
layerNames/dataTypes, Oor you can copy the output, so that it appears in more than one
layerNameldataType in the map file. In the following example, nets whose voltage is
between 1.8 and 2.499 are output to both IayerName/dataType 31 0 and IayerName/
dataType 31 1.

October 2010 162 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

METAL1 NET 31 O
METALl NET:VOLTAGE:1.8:2.499 31 0,1

SIZE Subtype

You can use the STZE attribute to specify the size of cuts to be checked. The SIZE attribute
applies only to VIA object types (VIA, VIAFILL, and VIAFILLOPC) and to their cut layers. A
warning message is displayed if the STZE attribute is applied to a non-cut layer or a non-VIA
object.

The map file syntax is as follows:

layer VIA:SIZE:valuelxvalue2 gdsLayer gdsDatatype
layer VIAFILL:SIZE:valuelxvalue? gdsLayer gdsDatatype
layer VIAFILLOPC:SIZE:valuelxvalue2 gdsLayer gdsDatatype

The cut size values valuel and value2 are specified in microns.

Examples of usage of SIZE attribute are given below:

VIAl2 VIA:SIZE:0.1x0.1 41 O
VIAl2 VIA:SIZE:0.1x0.2 41 1
VIAl2 VIA:SIZE:0.2x0.2 41 2

For rectangles both the cut orientations are checked using one statement. For example, cuts
0.1x0.2 and 0.2x0.1 are checked using the following statement:

VIAl2 VIA:SIZE:0.1X0.2 41 1

It is recommended to define a via without using the SIZE attribute. For example,

VIAl2 VIA 41 O

VIAlZ VIA:SIZE:0.1x0.1 41 O
VIAl2 VIA:SIZE:0.1x0.2 41 1
VIAl2 VIA SIZE:0.2x0.2 41 2

In this case, all the possible cut sizes are checked. If, say, three standard cut sizes are
specified, the “default” size is picked and not the one specified using the STZE attribute. The
“unsized” construct is used to check cuts that do not have standard sizes.

For 0.1x0.1 VIA defined without a STZE attribute, you can also specify a simpler usage, such
as,

VIAl2 VIA 41 O
VIAl2Z VIA:SIZE:0.1x0.2 41 1
VIAl2 VIA SIZE:0.2x0.2 41 2

October 2010 163 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Importing and Exporting Designs

Using Multiple Layers and Data Types

The following examples show the use of multiple layers and data types.

To output ...

METAL1

METAL1
METAL1
METAL1

METAL1
METAL1

NET

NET

NET

NET

NET
NET

October 2010

31 0

31 0,1
31,32 0
31,32 0,1

31 0
32 1

To ... Use ...

Single layer, single data 31:

type

Single layer, two data types 31:
Two layers, single data type 31:
Two layers, two data types 31:

Two layers, each with a 31:

different data type

164

0

31:
32:
31:
32:

R P o B

32:0, 32:1

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

Updating Files during an EDI System Session

The following table lists the files you can replace or update incrementally during an EDI

System session:

Type

ILM

LEF

Encounter Tech File
Timing Libraries
Timing Constraints
Stamp Models

I/O Assignment File
Partition File
Floorplan File
Placement File
Routing File
Special Route File
DEF

PDEF

Replace

X X X X XK XK XK Z2< 2222

<

Update

< XK Z2 22222 < 2 2 <

<

How

loadLefFile -incremental

loadTimingCon -incr

loadIoFile

specifyPartition

loadFPlan

restorePlace

restoreRoute

Use loadSpecialRoute to replace

defIn (use -scanChain option to
update scan chains)

pdeflIn

* The EDI System software loads information for display only. You cannot edit it.

October 2010

165

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

SKILL to TCL Mapping

The following table shows the mapping of Virtuoso SKILL functions to EDI System TCL
functions while using the set0axMode -bindkey parameter.

Virtuoso Key
(Default)

Shift-k
Shift-m
Shift-g
Shift-r
Shift-s
Shift-u

Shift
<DrawThru3>

a

C

October 2010

SKILL Function

leHiClearRuler ()

leHiMerge ()

leEditDesignProperties ()

leHiReShape ()
leHiSearch ()
hiRedo ()

hiZoomOut ()

geSingleSelectPoint ()

leHiCopy ()

leHiEditDisplayOptions ()

hiZoomAbsoluteScale
(hiGetCurrentWindow ())

leHiCreateRuler ()

leHiMove ()
leHiCreateVial()
leHiEditProp ()
leHiRotate()
leHiStretch()
leUndo ()

hiPrevilinView

(hiGetCurrentWindow ())

166

EDI
System
Key
(Default)

K

N G ©nn H® O X

EDI System
Command

cleanRuler
mergeWire
summaryReport
resizeMode
getWireInfo
redo

zoomOut

selectMode
copySpecialWire
popUpEdit

fit

createRuler
moveWireMode
addviaMode
attributeEditor
rotatelInstance
stretchWireMode
undo

previousView

Product Version 9.1.3

../fetxtcmdref/importT.html#setOaxMode

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

z hiZoomIn/() z zoomIn
4- Down arrow key geScroll (nil \\\"n\\\" Up panUp
nil)
5- Down arrow key geScroll (nil \\\"s\\\" Down panDown
nil)
4-Down arrow key geScroll (nil \\\"w\\\" Left panLeft
nil)
5-Down arrow key geScroll (nil \\\"e\\\" Right panRight
nil)
F2 geSave () F2 saveDesign
Delete leHiDelete () Delete deleteSelected
Escape cancelEnterFun () Escape cancel
Ctrl-d geDeselectAllFig () Ctrl-d deselectAll
Ctrl-n leSetFormSnapMode Ctrl-n snapFloorplan
(N\\\"90XFirst\\\")
Ctrl-r hiRedraw() Ctrl-r redraw
Ctrl-s leHiSplit () Ctrl-s splitWire

Note: If the setOaxMode -bindkey parameter is used, then the Virtuoso Key column
applies to EDI System for all of the equivalent commands in the mapping.

October 2010 167 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Importing and Exporting Designs

October 2010 168 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Flip Chip Methodologies

Overview on page 170

Flip Chip Flow in EDI System on page 172
SiP Bump Flow on page 177

Area 1/O Flow on page 179

Peripheral 1/0O Flow on page 183

Differentiating Area 1/0O and Peripheral 1/0O on page 197

Point-To-Point Routing on page 198

Distributed Co-design on page 200

Swapping Signals on page 201

Creating Differential Routing to Signal Bumps on page 203

Examples and Report Files on page 209

October 2010 169

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

Overview

Flip chip is a methodology for placing I/0O bumps and driver cells over the entire chip area in
either a boundary (peripheral 1/0) or core (area 1/0O) configuration. The Encounter Digital
Implementation System (EDI System) flip chip design handles bump arrays, 1/O drivers,
electrostatic discharge cells (ESDs), and routing information. Power, ground, and signal
assignments are made after the bumps are placed.

Bump Array

L
0@
4L
@

Note: Flip chip is sometimes referred to as area 1/0 placement in EDI System
documentation. Area I/O placement is a subset of flip chip.

Power bump (red)

Ground bump (yellow)

Signal bump (blue)

Related Packaging Tools

Allegro® Package Designer (APD) and Allegro® SiP Digital Layout are related packaging
tools that interface with flip chip. You must have a separate license to run APD. The
documentation for APD is provided in the Allegro® Package Designer User Guide
available on SourceLink.

To check the package routing from the bump array, use the APD/SIP tool.

Before You Begin

Before using flip chip, the following information is required:
B Parameter data for:
Q Bumps

a |I/O drivers

October 2010 170 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

Using this Chapter

The flows in this chapter include steps with examples of how to use flip chip.

m For general flip chip flow information, see “Elip Chip Flow in EDI System” on page 172.

m Forinformation on a specific type of flow, see one of the following sections:

0 SiP Bump Flow on page 177

0 Areal/O Flow on page 179

Q Peripheral I/O Flow on page 183

Related Flip Chip Information
B Text commands

For information on the flip chip commands, see the “Flip Chip Commands” chapter of the
Encounter Digital Implementation System Text Command Reference.

m Flip Chip Toolbox Menu

For information on the flip chip forms, see the “Elip Chip” section of the Tools Menu
chapter in the Encounter Digital Implementation System Menu Reference.

October 2010 171 Product Version 9.1.3

../encounter/toolsG.html#FlipChipToolbox
../fetxtcmdref/flipchipT.html#firstpage

Encounter Digital Implementation System User Guide

Flip Chip Methodologies

Flip Chip Flow in EDI System

The following figure shows the general EDI System flip chip flow including sub flows.

‘ EDI System ‘

| VCE (Virtuoso) ‘

/ 1O_FILE - -
JER |
L

/ IO_PLACE/ _ _
I

Lo —

Fe—— =

/DEF Bump / - —-

L — — —

___>

Verilog LEF
Netlist - —_— —
r— — — %/ VCE-OA |
1 Y S
Load Floorplan
¢ \J
SiP / APD
2 SiP Bump Flow
[
v Read LEF/
2 Edit Bumps
Assign Bumps/
4 Add Stripes RDL
5 Place 1/0 / Assign Bumps {«——|Route Feasibility[
‘ .
6 Perform Power Routing / Cross Probing

Signal Routing using Flip Chip

Verification/
Export

Partition

Block Design

1 License Required

Place Design

Route Design

Verify Connectivity

RC Extraction

Timing Analysis

Update Power

Output Files

Package Design

SiP-based Bypass Flow?
using -noCoreCells option
of the defout command

Typical
EDI Syse
Flow

2 Bypasses Flip Chip Toolbox menu (see Reducing Data Size for SiP Import (Bypass Flow) on

October 2010

172

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

Flip Chip Flow Steps
1. Load the floorplan.
Load the floorplan as in a typical EDI System flow.
Note: The floorplan information can be passed to SiP through the DEF file.
The following files are imported during this step:
Q Verilog netlist

A Verilog structural netlist is required for the design connectivity. No bumps are
allowed in the netlist since they are physical cells.

a LEF File

The LEF input files must contain the normal technology information, standard cell
macros plus the 10 PAD, and bump LEFS.

O The LEF BUMP MACRO must contain CLASS COVER BUMP.

O The LEF 10 Driver cells must contain CLASS PAD (peripheral 1/0) or CLASS
PAD AREAIQO (area I/0O).

For more information, see Differentiating Area 1/0 and Peripheral I/O on page 197.

Text Command: loadLefFile
0 OA database via Virtuoso (VCE)

The Virtuoso Chip Editor (VCE) can be used through the OpenAccess (OA) 2.0
database.

Note: This is a specialized flow. The VCE data should be imported as flat so the
routes can be extracted.

Q IO_FILE, IO_PLACE, or DEF Bump file
Import either the 10_FILE, IO_PLACE, or DEF Bump file.

O The IO_FILE contains bumps, I/0O rows (optional), and I/O instances (optional).
For an example IO_FILE, see “10 FILE Example” on page 211.

Text Command: 1loadIoFile

O The IO_PLACE file can be used for specific placement of peripheral 1/0Os or
double 1/0 rows.

Text Command: 1loadIoFile

October 2010 173 Product Version 9.1.3

../fetxtcmdref/importT.html#loadLefFile
../fetxtcmdref/floorplanT.html#loadIoFile
../fetxtcmdref/floorplanT.html#loadIoFile

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

O The DEF file can be used to import bumps.

Text Command: defIn
2. Define the bumps using the bump flow.

Q Bump Flow— See “SiP Bump Flow” on page 177.

The area I/O flow supports several methods to define the bumps:

O Bump Matrix Generation
Use the bump matrix generator. These bumps will be assigned later in step 5.

O IO_FILE Generation
Generate an IO_FILE that contains the x and y locations of the bumps along
with the x and y locations of the 1/0 rows. The 1/O rows are the rows or sites into
which the 1/O driver cells are placed. These bumps may or may not be assigned
to signals at this time.

O APD Bump Generation
Use APD to generate the bump matrix or other DEF input file, and pass the
bumps via a DEF instance.

3. Edit the bumps.
Use the following flip chip forms to edit bumps:

o Edit Bump Array

0 Add Bump to Bump Array

Q Unassign Bump

O Swap Signals
4. Add stripes.

Generate the power stripes on the chip using the addstripe text command.
5. Place driver cells and assign bumps.

Use the placeAIO -onlyAIO -assignBump command and options to place the area
I/O driver cells into the rows/sites closest to the corresponding bumps. If the bumps are
not assigned at this time, this command assigns the bumps and also place all of the
standard cells, if requested.

Use the placePI0 command to perform initial peripheral I/O pad placement. After you
run the assignBump command to assign the signal and power/ground bumps, use the

October 2010 174 Product Version 9.1.3

../encounter/toolsG.html#FlipEditBumpArray
../encounter/toolsG.html#FlipAddBumpToArray
../fetxtcmdref/importT.html#defIn
../encounter/toolsG.html#fcp_menu5
../encounter/toolsG.html#SwapSignal
../fetxtcmdref/fp_special_routeT.html#addStripe
../fetxtcmdref/flipchipT.html#placeAIO
../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/flipchipT.html#assignBump

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

placePI0 -assignBump -noRandomPlacement command and options to optimize
the initial bump assignment.

6. Connect the power and ground bumps / signal bumps.

Use the fcroute -type power command and option to connect the power and
ground bumps to stripes.

Use the fcroute -type signal command and option to connect the signal bumps
to the 1/O driver cell specified in the netlist.

If required, use the routePointToPoint command for SPECIALNETS, to connect any
remaining I/O pad pins and bumps, or wires and bumps, or bumps and stripes that were
not routed correctly during fcroute.

/ Important

Before running the placePI0 and fcroute commands, you must specify the flip
chip constraints using the setF1ipChipMode command which loads data for
placePIO and fcroute commands.

Note: If you want to view the flight lines before you route the bumps, you must first be in
the Floorplan view. Then, use the left mouse button to click on the bump.

The remainder of the flow is similar to the typical EDI System flow.
7. Partition the design.

Bumps, bump routing, power routing, and I/O driver cells can be pushed down as
blockages into the partition. See speci fvPartition and handlePtnArealo
commands for more information.

8. Place the design.
Place the design using the placeAT0 command.
9. Route the design.

NanoRoute (globalDetailRoute command) can be used to connect the regular nets
in the design.

10. Verify the connecitivity.

Verify the bump (physical cells) connections to the logical cells using the
verifyvConnectivity command.

11. Run extraction.

October 2010 175 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/flipchipT.html#fcroute
../fetxtcmdref/flipchipT.html#fcroute
../fetxtcmdref/partitionT.html#specifyPartition
../fetxtcmdref/flipchipT.html#handlePtnAreaIo
../fetxtcmdref/flipchipT.html#placeAIO
../fetxtcmdref/routeT.html#globalDetailRoute
../fetxtcmdref/verificationT.html#verifyConnectivity
../fetxtcmdref/flipchipT.html#routePointToPoint
../fetxtcmdref/flipchipT.html#fcroute
../fetxtcmdref/flipchipT.html#setFlipChipMode
../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/flipchipT.html#fcroute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

Extract the RC data using the runoRC command or the extractRC command and then
generate a SPEF file. The runQRC command input is the DEF output file which contains
the bumps that are not present in the original Verilog file. You can create a Verilog output
file containing bumps to match the runQRC command SPEF.

Note: You can also create a defout file and convert the bumps to pins so you do not have
to create a physical verilog.

12. Do a timing analysis.

The timing analysis report is the same as in the normal EDI System flow. See
report timing command.

13. Update power.

Update power using the report power and analvze early rail commands. Aflip
chip design can have multiple power sources.

14. Output the files.

Write out the DEF, Verilog, OpenAccess, SPEF, and GDSII files. The defout command
contains the -noCoreCells option to reduce the data sent to APD. For more
information, see the “Reducing Data Size for SiP Import (Bypass Flow)” on page 177.

October 2010 176 Product Version 9.1.3

../fetxtcmdref/rcextractionT.html#runQRC
../fetxtcmdref/rcextractionT.html#extractRC
../fetxtcmdref/timinganalysisT.html#report_timing
../fetxtcmdref/importT.html#defOut
../fetxtcmdref/cpeT.html#report_power
../fetxtcmdref/railanalysisT.html#analyze_early_rail

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

SiP Bump Flow

For information on the SiP bump flow, see System-in-Package Flow Guide available on
SourceLink or in the SiP Product Help.

Reducing Data Size for SiP Import (Bypass Flow)

You can use the -noCoreCells option of the defout command to reduce data size for
import into SiP. The syntax is as follows:

defOut -noCoreCells

This flow bypasses the bump flow (see FElip Chip Flow in EDI System on page 172).

/ Important

You should use the -noCoreCells option whenever you are creating a DEF file for
SiP.

Splitting Wires in Metal Layers

If wires that route the bumps are wider than the LEF MAXWIDTH parameter, you can use the
editFixWideWires command to split them.

For wires splitting in specific metal layers, you can modify a LEF layer with a specific
MAXWIDTH parameter as shown in the following example for LAYER M5.
LAYER M5 TYPE ROUTING ; DIRECTION VERTICAL ;
WIDTH 0.70 ; SPACING 0.70 ; PITCH 1.4 ;
CAPACITANCE CPERSQDIST 0.0001000 ; RESISTANCE RPERSQ 0.010000 ;
MAXWIDTH 8.0 ;
END M5

After running the editFixwWideWires command, wires in this layer are split to satisfy the
MAXWIDTH value in the LEF file.

The following figure shows how a 16 . 0 micron wire is split using this LEF layer code and the
editFixWideWires command. The resulting split wires will be slightly less than 8.0
microns each. There will be a split spacing between the wires such that the total widthis 16 .0
microns.

The split spacing is automatically determined by considering the MINSPACING, PARALLEL
RUNLENGTH SPACING, and DENSITY constraints. The split spacing will be greater than or

October 2010 177 Product Version 9.1.3

../fetxtcmdref/importT.html#defOut
../fetxtcmdref/wireeditT.html#editFixWideWires

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

equal to the MINSPACING constraint. There is no manual control for the split spacing
parameter.

16.0 micron width wire

becomes
two < 8.0 micron width wires

< 8.0 micron width wire

16.0

microns
’ < 8.0 micron width wire

spacing

Testing the Package Routing Feasibility

You can test the package routing feasibility of the design using APD / SiP.

For more information, see the Cadence Chip I/O Planner User Guide or the SiP Digital
Architect/Layout User Guide on SourceLink.

October 2010 178 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

Area 1/O Flow

For Area /O designs, bumps are placed within the core area of the design, and the bonding
pads are not built into the bump cells. This means that the bump cells require routing to the
pads.

To create an Area /O design, complete the following steps:

1.

Load the floorplan.

Use the Load FPlan File form to load the floorplan file.
Define the bumps.

Use the Create Bump Array form to set up the bump array.

Create area I/O driver rows.

Use the Create Area IO Row form to set up the area I/O rows.

Place Area I/O pads and standard cells.

Use the Place Area 1/O form to place 1/O driver cells.

Assign signals, power, and ground to the bumps.

O Use the Assign Signals form to assign the signals to the bumps. Signal bumps are
blue-filled squares.

O Use the Assign Power/Ground Bumps form to assign power and ground to bumps.
Power bumps are red-filled squares. Ground bumps are yellow-filled squares.

Add area I/O filler cells in the blank sites of the specified area I/O row clusters using
addAToFiller command.

Create power rings and stripes.

0 Use the Add Rings form to create rings around the core area and around the power
and ground bumps.

O Use the Add Stripes form to create stripes that connect to the power and ground
bumps.

Connect power, from bumps to I/O cells or from bumps to rings/stripes.

Use the Route Flip Chip - Advanced - Routing Style form to establish the power
connections.

Note: The remainder of this flow is similar to the typical EDI System flow.

October 2010 179 Product Version 9.1.3

../encounter/toolsG.html#FlipBumpArray
../encounter/toolsG.html#FlipIODriver
../encounter/toolsG.html#FlipSignalWork
../encounter/toolsG.html#FlipPowerGnd
../fetxtcmdref/flipchipT.html#addAIoFiller
../encounter/designG.html#LoadFloorplanFile
../encounter/toolsG.html#PlaceAIO
../encounter/powerG.html#AddRingsBasic
../encounter/powerG.html#AddStripesBasic
../encounter/toolsG.html#RouteFlipChipAdvanced

Encounter Digital Implementation System User Guide

Flip Chip Methodologies

Area I/O (AlO) Command Flow

The area I/0O command flow is described as follows:

floorPlan ordefIn

#

ciopCreateBump

#

addATORow

'

placeAIQ -onlyAIO -assignBump

Assign bumps

addAIoFiller

#

addRing

#

addStripe

Area I/O Flow using Text Commands

Place area I/O in rows

and assign bumps

Routing Bumps to I/O Driver Cells (Hierarchical Area I/0 Flow)

The hierarchical area I/O flow allows you to route the bumps, using the fcroute command,
to 1/O driver cells and then push down (partition) this data into a lower level.

October 2010

180

Product Version 9.1.3

../fetxtcmdref/floorplanT.html#floorPlan
../fetxtcmdref/importT.html#defIn
../fetxtcmdref/flipchipT.html#ciopCreateBump
../fetxtcmdref/flipchipT.html#addAIORow
../fetxtcmdref/flipchipT.html#placeAIO
../fetxtcmdref/flipchipT.html#addAIoFiller
../fetxtcmdref/fp_special_routeT.html#addRing
../fetxtcmdref/fp_special_routeT.html#addStripe
../fetxtcmdref/flipchipT.html#fcroute
../fetxtcmdref/flipchipT.html#fcroute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

The text command is:

handlePtnArealo buffer name

This command pushes down data in the partition as follows:
Bumps become routing blockages
I/O cells become placement and routing blockages

An internal pin is created over the 1/O cell pin

A boundary pin is created
B A buffer is created between the internal pin and the boundary pin

Note: If you want to view the flight lines before you route the bumps, you must first be in the
Floorplan view. Then, use the left mouse button to click on the bump.

Flip Chip Routing on Shielded Nets in AlIO

When using the fcroute shielding option in the AIO mode with manhattan (90 degree) routing
style, the defOut marks the shielded nets as ‘SHIELD’, while displaying the SHAPE and
ROUTED status of the metal shield wire.

Note: Shielding nets is not supported in PIO mode.

Example

Consider the following example in which the £croute command connects signal bumps to I/
O cells using 90 degree signal routing for AIO; The command adds a side shield (VSs) on
both sides of the signal route.

Command

fcroute -type signal -designStyle aio -routeStyle manhattan -layerChangeToplayer 8
-layerChangeBotLayer 7 -routeWidth 8 -constraintFile CFG/aio.constr

Constraint File CFG/aio.constr: Shield Net Description

SHIELDING

SHIELDBUMP true
SHIELDWIDTH 0.4
SHIELDLAYERS abc
SHIELDNET VSS
scan_out 2

port pad data out[1l5]

October 2010 181 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#fcroute
../fetxtcmdref/flipchipT.html#handlePtnAreaIo

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

END SHIELDING

DEF Syntax

The defOut contains the SHIELD syntax as follows:

-scan_out 2 (Bump 27 6 2 PAD) (IOPADS INST/Pscanout2op PAD)
+ ROUTED METALS8 16000 + SHAPE IOWIRE (1255310 541920) (1369310 ¥*)
NEW METAL8 16000 + SHAPE IOWIRE (1263310 533920) (* 695760)

+ PROPERTY BUMP ASSIGNMENT “ASSIGNED”
-VSS (* VSS)

+ SHIELD scan out 2 METAL8 800 + SHAPE IOWIRE (1275310 554320) (1315310 *)
NET METAL7 16000 + SHAPE IOWIRE (1255310 541920) (1315310 *)

NET METAL8 800 + SHAPE IOWIRE (1250510 529520) (1315310 *)

+ ROUTED METAL6 16000 + SHAPE STRIPE (1553200 109600) (* 186800)

NET METAL6 16000 + SHAPE STRIPE (1753200 109600) (* 186800)

+ SHIELD scan_out 2 METAL8 800 + SHAPE IOWIRE (1275710 553920) (* 675760)
METAL7 16000 + SHAPE IOWIRE (1263310 533920) (* 695760)

METAL8 800 + SHAPE IOWIRE (1250910 529120) (* 675760)

October 2010 182 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

Peripheral I/O Flow

The peripheral I/O approach to flip chip methodology places I/O driver cells at the edges of
the core area of the design. This means that the bump cells require routing to the I/O driver
cells using the top-most layer with or without one extra layer below. This layer is called the
redistribution layer (RDL), and is used to connect the bumps to the I/0O pads. The procedures
and examples in this section use the two-layer approach.

The peripheral 1/O flow is similar to area I/O, wherein you can use I/O rows (regions/sites) to
place the I/O driver cells since they remain on the boundary. The peripheral 1/O flow also
includes non-orthogonal (45-degree) RDL routing, 1/0 cell optimization, and bump
reassignment for better single layer routing.

Since the top two layers are used for RDL routes, and RDL routes are wider than regular
routes, coupling effects from the RDL routes to regular routes can be significant. To avoid
huge coupling effects, avoid regular routing in one layer below the RDL.

There are three major aspects of the peripheral 1/0 flow:
m RDL planning and routing
O The automatic placement of the I/O cells on the edge of the design

O The optimization of the I/O cells and the reassignment of bumps to enhance single
layer routing.

0 Non-orthogonal routing on the redistribution layer (RDL).
m RC extraction

B Signal integrity and timing analysis

Data Preparation

The LEF CLASS statements for I/O pad cells and bump cells must contain the following
classes for the peripheral I/O flow to work.

I/O cell: cLASS PAD AREATIO

Bump cell: CLASS COVER BUMP

These are the LEF properties used for connecting power/signal bumps to power/signal I/O
cells.

Normally, the bump to I/O pad connection is defined in the Verilog file. The signal names are
specified in the Verilog top module port list, and the I/O cells are connected to these ports.

October 2010 183 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

For 1/0 power pads which are not defined in the Verilog file, you can define the connection of
the 1/0O pads to bumps using the command:

B fcroute -connectPowerCellToBump

The MACRO PIN statement added in LEF 5.7 tells which power/ground pin shape on the I/
O driver cell must be connected to a bump. See Defining the Connection between a Bump
and P/G Pin Shape in the “Data Preparation” chapter of the Encounter Digital
Implementation System User Guide.

Peripheral I/O Flow Steps

The peripheral 1/0 implementation flow is similar to the traditional physical implementation
flow, except for the handling of bump cells and RDL routing.

There are four major elements of the flow:

B After the initial floorplanning stage (set die and area and place I/O driver cells), the RDL
implementation flow includes bump placement and assignment, optimization of 1/0 driver
cell placement, and RDL routing.

m The bump placement and assignment is passed to APD (Allegro® Package Designer)
for package design. You can determine the route feasibility by using APD to check the
bump routability to the package. This can be invoked from the EDI System user interface.

m The RDL-routed design is then ready for power planning / QRC / other placement and
routing operations.

B Initial parasitics can be extracted in EDI System using the extractRC command. If more
accurate parasitics are required, the signal-routed design can be streamed out in GDSII
format and sent to Assura™ RCX for extracting RC parasitics, which can be used for
timing and Sl analysis with the RDL effects.

October 2010 184 Product Version 9.1.3

../soceUG/dataprep.html#ConnectBumpPGPinShape
../soceUG/dataprep.html#ConnectBumpPGPinShape

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

Peripheral 1/0 (PIO) Command Flow

The peripheral /O command flow is described as follows:

Peripheral I1/0 Flow using Text Commands

floorPlan ordefIn

¢

placePIO

'

ciopCreateBump

¢

assignBump

#

placePI0 -assignBump -noRandomPlacement

Initial placement

Initial assignment of bumps

- 7

|
¢ Optimize assignment of
bumps

addRing

#

addStripe

#

fcroute

October 2010 185 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#floorPlan
../fetxtcmdref/importT.html#defIn
../fetxtcmdref/flipchipT.html#ciopCreateBump
../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/flipchipT.html#assignBump
../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/fp_special_routeT.html#addRing
../fetxtcmdref/fp_special_routeT.html#addStripe
../fetxtcmdref/flipchipT.html#fcroute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

The following flow diagram shows the major flow components for implementing an RDL

design.

/Netlist

SDC /

%

Initial Floorplanning
RDL Planning
> Bump Creation and % and Routing
* » Bump and IO Optimization
Package Design and LEF and DEF ¢
Analysis with APD - RDL Routing
[|
RCLG | ¢
Model | Incremental Y
| SDF Power Planning and Routing
' '
|
| : Placement, CTS, IPO, Routing @——
| DEF, Verilog,
| VCDITWF, ¢ GDS
Power Locatio
| RDL Extraction with
| extractRC or Assura RCX
| Coupled SPEF
L - - — — — A
vy Y ¢ ¢
IR-Drop Analysis Timing Analysis S| Analysis
Instance Voltage TWF; Incremental SDF

Violation Fixing

October 2010

Violation Fixing

186

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

RDL Planning and Routing

The following are the basic steps for planning and routing in a peripheral 1/0O flow.
1. Load the floorplan.

Use the Load FPlan File form to load the floorplan file.

2. Define the bumps.

Create a bump matrix based on bump pitch and other parameters by using the EDI
System bump selection and assignment user interface or the ciopCreateBump text
command.

From the EDI System user interface, select Tools -> Flip Chip -> Create Bump Array.

3. Place the peripheral I/Os. See “Place peripheral 1/0O pads” on page 189.

4. Assign the power and ground bumps either by loading a predefined 1/O File using the
loadIoFile command or by using the EDI System bump selection and assignment
user interface or the text command, assignPGBumps.

From the EDI System user interface, select Tools -> Flip Chip -> Assign Power/
Ground.

5. Assign the signal bumps by either loading a predefined 1/O File using the 1ocadIoFile
command or by using the EDI System bump selection and assignment user interface or
the text command, assignBump.

From the EDI System user interface, select Tools -> Flip Chip -> Assign Signal.

The assignBump command uses the signal names (ports) in the Verilog top module list
and assigns them to the closest I/O cell. The assignBump command assumes the I/O
cells have been preplaced.

6. Route the signal and power/ground bumps to the I/O driver cells or power/ground stripes
using the fcroute command. See “Route bumps” on page 193.

7. If the routing is not optimal, either reassign the bumps or change the 1/0 cell placement
using the placeP10 command. See “Reassign bumps” on page 192.

8. Snap or split route.

Use the snapRoute command to snap the 45-degree routes created by APD to the
manufacturing grid.

Use the splitRoute command to split 45-degree routes that are wider than the
maximum width.

October 2010 187 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#placePIO
../encounter/designG.html#LoadFloorplanFile
../fetxtcmdref/flipchipT.html#ciopCreateBump
../fetxtcmdref/floorplanT.html#loadIoFile
../fetxtcmdref/flipchipT.html#assignPGBumps
../fetxtcmdref/floorplanT.html#loadIoFile
../fetxtcmdref/flipchipT.html#assignBump
../fetxtcmdref/fp_special_routeT.html#snapRoute
../fetxtcmdref/fp_special_routeT.html#splitRoute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

9. Create power rings and stripes.

O Use the Add Rings form to create rings around the core area and around the power
and ground bumps.

O Use the Add Stripes form to create stripes that connect to the power and ground
bumps.

10. Connect power, from bumps to I/O cells or from bumps to rings/stripes.

Use the Route Flip Chip - Advanced - Routing Style form to establish the power
connections.

Note: The remainder of this flow is similar to the typical EDI System flow.

The EDI System log file displays the routing status of each bump-pad pair in the fcroute PIO
mode.

October 2010 188 Product Version 9.1.3

../encounter/toolsG.html#RouteFlipChipAdvanced
../encounter/powerG.html#AddRingsBasic
../encounter/powerG.html#AddStripesBasic

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

The following diagram shows the peripheral I/O task flow.

(Ne|tlist) (IO_PIace) (LET/OA > —+

Route Cells
: v
Floor Plan DEF
Extraction with Assura RCX
v Use the GUI to create
Create/Assign the matrix and assigq *
bumps or use an I/O file Read SPEF
* to initialize and optimize
I/O placement *
Place PIO
Power AnaIysis/Encounter®

Power System (Next-
Generation VoltageStorm)

Y

Timing

Power Planning

; v

Metal Fill
RDL Route Use fcroute to connect
from 1/0Os to bumps; *
Vo b | [EdWies | Abousevoe
Route Power P) PS, via OA
placeDesign for
* standard cells *
Write Data DEF, OA, GDSII
Place Cells
Edit routes with VCE
Peripheral I/0 RDL Flow Verify connectivity, geometry, etc.

Place peripheral I/0 pads

Since CLASS PAD AREAI/O cells are not automatically placed, you must invoke a command
to randomly place the I/Os on the periphery. This command has an option to specify the
number of peripheral I/O rows (rings).

October 2010 189 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

From the EDI System user interface, select Tools -> Flip Chip -> Place & Route -> Place
Flip Chip I/O -> Peripheral 1/0.

The syntax for the placePI0 command is

placePIO [-assignBump] [-optIOs] [-overflowMap] [-maxIOHeight] [-i1oFile fileName]
[-rdlConstraintFile fileName] [-noRandomPlacement] [-extraConfig filename] [-
celllist {cellList}] [-instlist {instList}] [-powerDomain powerDomainName] [-

ioRow IORowNameList]

Note: The placePTI0 command also reads flip chip options from setF1lipChipMode
command.

Another method for creating the initial 1/0 placement is to read in an I/O file specifying the
Pad: or I0Inst: syntax with the instance name and side of the design or XY location.

You can refine the initial placement or reassign bumps by using various command options.
The initial placement can be modified in two ways:

m Fixed Bumps

If the bumps have been assigned, the I/O cells can be moved using the placePIO
command to help ensure a one-layer route.

m Fixed |/Os

The bumps can be reassigned to improve the routing if the I/O cells have been fixed.

Once the placement is finished, the data can be stored in the floor plan file and restored. The
I/O cells can also be moved manually with the move command since there are no specified I/
O rows.

October 2010 190 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/flipchipT.html#placePIO

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

The following figure shows the results of the placePI0 command.

O B Uy e E Ry

—r7

B B B B B B BT BT OB BB
ﬂﬂ_mﬂﬂﬂ_ﬂﬂﬂmﬂﬂﬂi

. S .

.

Optimize peripheral I/0 placement
During peripheral 1/0 placement, you can specify a constraint file which controls certain

features of the optimization. For an example of a constraint file, see Routing and Placement
Constraints on page 209.

October 2010 191 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

The following figure shows the results of the placePI0 command.

Note: placePIO has two features. The first is to randomly place the 1/O cells on the
periphery, and the second is to optimize the 1/0O pad cells. If you specify an 1/O file with the
-ioFile option or use the -noRandomPlacement option, placePIO does not do a random
placement.

Reassigh bumps

To optimize the bump assignment, use the placePIO -assignBump -
noRandomPlacement command.

October 2010 192 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

Route bumps

This command routes the bumps to 1/O cells using 45-degree routing.
1. In EDI System, select signal routing type, using fcroute -type signal
By default, 45-degree routing style is selected.

2. Select the peripheral I/O routing style using the command fcroute -designStyle
pio.

This option calls both the detail and global routers to route the bumps.

3. Set the minimum escape distance from the bump to where the route can proceed at an
angle. Specify either the Minimum Escape Distance constraint on the form or use the
command fcroute -minEscapeDistance uni t to specify the distance.

4. To specify the minimum distance before the route can turn, you must create a
configuration file (fcroute.config) and include the following command:

srouteMinlength value

Use the command -fcroute -extraConfig fcroute.config to specify the file or
specify the file from the Route Flip Chip Advanced form.

5. You can specify the routing constraints by using the -constraintFile option.
fcroute -constraintFile file_name
For example:

fcroute -constraintFile fcroute.constr

For an example of an fcroute constraint file, see Routing and Placement Constraints
on page 209.

Alternatively, you can specify basic and advanced routing and placement constraints
using the Flip Chip Route form in the EDI System GUI.

For more information, see the following topics in the Tools Menu chapter of the
Encounter Digital Implementation System Menu Reference:

Q0 Flip Chip Route— Basic

Q Flip Chip Route — Advanced

October 2010 193 Product Version 9.1.3

../encounter/toolsG.html#RouteFlipChipAdvanced
../encounter/toolsG.html#RouteFlipChipBasic
../encounter/toolsG.html#FlipChipRoute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

The following figure shows the results of the fcroute command.

Splitting wires

You can use the splitRoute command to split the RDL layer after it has been routed if you
do not use the native fcroute splitting.

splitRoute [-absWidth valuel] [-maxWidth value2] [-minSpacing value3]

The fcroute command splits the route during the routing process. The splitRoute
command is used after routing is complete, most often when working with an APD-routed
DEF tile where the route was not split.

You can invoke the wire splitting function during fcroute by specifying the MAXWIDTH value
in the LEF layers section.

October 2010 194 Product Version 9.1.3

../fetxtcmdref/fp_special_routeT.html#splitRoute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

LAYER METAL7

MAXWIDTH 10.0 ;

Adding power stripes

You can use the addstripe command to add a power stripe over or between power bumps
without specifying the exact xy locations. If the stripe is on a different layer than the bump
layer, addstripe will automatically drop a via array.

From the EDI System user interface, select Power -> Power Planning -> Edit Power
Planning Option -> Stripe

You can also open the Edit Power Planning Option form by clicking the +icon next to the
Use option set field on the Basic tab of the Add Stripes form.

The syntax for the addstripe command is
addStripe

Routing the power bumps

> Route the power routes to the stripes by using the EDI System user interface or the
fcroute text command.

From the EDI System user interface, select Tools -> Flip Chip -> Place & Route -> Route
Flip Chip -> Advanced -> Routing Style -> Connect Power

The syntax for the fcroute command is

fcroute —-type power

Peripheral 1/0 Extraction

In the RDL extraction flow for designs using peripheral I/O methodology, EDI System outputs
the design with the RDL routing into a GDS file that is fed into RCX for parasitic extraction at
the cell-level. RCX generates a cell-level SPEF/DSPF file that is used for timing and signal
integrity analysis.

There are two steps involved in parasitic extraction with RCX.

B LVSis run to perform connectivity extraction.

m RCX s run to perform parasitic extraction.

October 2010 195 Product Version 9.1.3

../fetxtcmdref/fp_special_routeT.html#addStripe
../fetxtcmdref/flipchipT.html#fcroute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

The following diagram illustrates this flow.

- RDL Extraction
Stream ‘ Techfiles &

| |

| |

| |

| |

— ' — '

>

Design > Rscfﬂcifg : Design + RDL % Ié\;t?;?fo); —®| SPEF/ :
| |

| |

| |

| |

Design +—
_def

_def 99 DSPF_J
De?/lgn T Design J
— - v
L - - - - -] = = J

Signal Integrity

SoCE RDL Extraction Flow Timing

Inputs to Extraction

m \Verilog netlist for annotation, generated by SoCE
m GDS of design with RDL, generated by SoCE

m RCXtechnology data

Outputs from Extraction
m Cell-level SPEF/DSPF for SI/Timing analysis

B Includes coupling RDL nets to signal nets

Sl and Timing Analysis

The following procedure describes the signal integrity and timing analysis flow for an RDL
design using the coupled SPEF file generated by the RCX extraction tool.

1. Restore the design.

restoreDesign routedSession.dat designname

This command restores the routed view of the design including the regular routing and
RDL routing.

October 2010 196 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

2. Import the coupled SPEF file from RCX.

spefIn rcx coupled.spef

Make sure all the parasitics of the SPEF are back annotated in EDI System. If all the nets
are back annotated, EDI System displays the following message:

0 nets are missing in SPEF file.
3. Perform timing analysis in EDI System.
@ Run timing analysis using the timeDesign command.
timeDesign -postRoute -reportOnly

This command reports worst and total negative slack as well as register-to-register,
input-to-register, and input-to-output port slacks.

4. Analyze signal integrity by performing Sl analysis in EDI System. The Sl engine analyzes
the design for glitch and Sl violations. It generates incremental sdf for the delay induced
due to Sl. The incremental sdf is used to analyze timing with Sl effects.

timeDesign -postRoute -si

This command analyzes the design for S| and creates the analysis report. Later, the
command uses an incremental sdf file for timing analysis and reports the worst negative
slack path with Sl-induced delay.

The following listing is a sample script for signal integrity and timing analysis in EDI System.

timeDesign —-postRoute —-reportOnly -si

Differentiating Area I/O and Peripheral I/O

The LEF I/O Driver cells must contain CLASS PAD (for peripheral I/O) or CLASS PAD
AREAIQO (for area 1/0).

Note: Depending on your design style, you may need to modify the LEF macro CLASS
statement.

m Areal/O
CLASS PAD AREAIO = 1I/O cell without bump.
CLASS PAD AREAIOQ is used by the assignBump and placeAT0 commands.

Additionally, the SITE must be defined and referenced in the LEF macro. See Performing
Area I/O Placement on page 124 in the Data Preparation chapter for more information
and example.

m Peripheral /O

October 2010 197 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#assignBump
../fetxtcmdref/flipchipT.html#placeAIO

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

CLASS PAD = 1/O cell with bound pad.
CLASS PAD is used by the io_placer to place the pads along the boundary.

By default, the CLASS PAD macro is automatically placed along the boundary when the
configuration file is read. You can also load a file with the 1oadIoFile command.

The normal wire bound I/O cells are CLASS PAD, however, to use the assignBump and
placePI0 commands, they must be CLASS PAD AREAIO even on the periphery.

LEF MACRO CLASS PAD and PAD AREAIO

To support a peripheral I1/O-driver with flip-chip bumps flow, PAD AREAIO cells are allowed
outside the core box.

m LEF MACRO CLASS PAD has the bonding pad built into the cell.

m LEF MACRO PAD AREAIO has no bonding pad built-in, so it requires routing to the
bump.

Point-To-Point Routing

The Point-To-Point routing in flip chip enables routing between any two DEF SPECIALNET
objects such as a bump and an I/O pad pin, a wire and a bump, or a bump and a stripe. The
point-to-point router can point any location in the chip area.

Use the point-to-point router any time on special nets, especially after you run fcroute and
you find an area where routing is not complete or an area which contains a problem route. In
such cases, delete the problem route and reroute using the point-to-point router.

To perform point-to-point routing:

1. From the EDI System user interface, select Tools -> Flip Chip -> Place & Route ->
Route Point to Point.

or

In the tools area, click the routePoint2Point %ﬁ icon, and press the F3 key.

2. In the Point-To-Point form, specify the minimum width.

3. Select 2 points in the design, an I/O pad pin and a bump (or a wire). View the routing that
occurs between the 2 selected points.

October 2010 198 Product Version 9.1.3

../encounter/toolsG.html#RouteFlipChipPointToPoint
../fetxtcmdref/flipchipT.html#fcroute
../fetxtcmdref/flipchipT.html#assignBump
../fetxtcmdref/flipchipT.html#placePIO
../fetxtcmdref/floorplanT.html#loadIoFile

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

To view the point-to-point routing, ensure that you are in the physical view in EDI System.

If the point-to-point route is not complete, check the encounter.log file or check for any
error message on the screen.

The point-to-point router connects any two objects defined in the Point-To-Point form only.

The router automatically selects the net name when you point the two objects — bump and
I/0O pad.

Alternatively, you can run the routePointToPoint command to perform point-to-point
routing.

October 2010 199 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#routePointToPoint

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

The following example displays the results of the routePointToPoint command:

routePointToPoint -routelayer M8:M8 -width 0.44 -spacing 0.46 -routeStyle
doubleBend -pin {IOPADS_INST/PtdspipOl PAD (944.4765 1013.278)} -pin
{Bump 81 8 8 port pad data in[1] (933.832 917.4755)}

s *

Floorplan Wiew

kodule
Fence
Glide
Chstruct
Region
Area Density
Instance
Std. Cell
Cover Cell
Block

10 Cell
Area |0 Cell
Met

Special Met
Terminal
Fuler

Text

Fel. FFlan
Yield Cell
Yield kap
Density Map

H

KErRREKKEREKERRKKRK K

O

KEKERKELERKEKEEREERLRRE KKK K

L4

| World View &)X

I

A

Distributed Co-design

Distributed co-design is a flow in which the package design and IC design are done in a
distributed manner, and the package and IC design teams share data through text file
exchange. The data shared includes information about die size, I/0O pad ring placement, pin
and bump placement, and so on.

October 2010 200 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

The following command in EDI enable reading the I/O and bump — placement and
assignment information from SiP layout into EDI System:

B readloUpdate

The package balls in the package file dumped out by the SiP layout in XML format can be
correctly displayed in EDI System even when the design is a flipchip design.

After saving the package XML file in the SiP Layout, you can load the package data in the EDI
System floorplan view using the readPackage command.

For more information, see the Flip Chip Commands chapter in the Encounter Digital
Implementation System Text Command Reference.

Swapping Signals

Signal swapping allows you to swap signals between bumps. Signals must be assigned to
either one or both of the bumps to be swapped.
1. Click on the two bumps for the signals you want to swap.

2. Select Tools — Flip Chip — Swap Signal.

The figures below show signal swapping as follows:

m Highlight the Bumps on page 202

B Signals Swapped on page 203

October 2010 201 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#readIoUpdate
../fetxtcmdref/flipchipT.html#readPackage

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

Highlight the Bumps

The following figure shows two highlighted bumps with signals to be swapped (bumps A
and B).

Bump A

Bump B

Note: If you want to view the flight lines before you swap signals, you must first be in the
Floorplan view. Then, use the left mouse button to click on the bump.

October 2010 202 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

Signals Swapped

The following figure shows the signals after swapping.

Bump A

Bump B

Creating Differential Routing to Signal Bumps

Differential routing creates wires of the same length or configuration between a set of sources
and targets. Use the Route Flip Chip - Advanced - Routing Constraints form to specify
differential routing parameters.

October 2010 203 Product Version 9.1.3

../encounter/toolsG.html#RouteFlipChipAdvancedConstraints

Encounter Digital Implementation System User Guide

Flip Chip Methodologies

You can create a constraint file to define differential pairs, shield nets, and nets to match
tolerance. The following information provides the syntax and examples for creating a

constraint file.
Specify Routing Nets

Syntax

NETS
WIDTHRANGE
WIDTHSTEP
SPACING
PINSPACING dbUnitSpacing
<nets>
END NETS

Example

NETS

WIDTHRANGE 5:10

WIDTHSTEP 1

SPACING 0.1

PINSPACING 0.2

out[10] out[ll] out[l4] out[1l9 out[8] out[9]

out[15] out[l6] out[l7] out[1l8] resetn

clk out[1l2] out[1l2] out[l3] out[1l5] out[3] out[3]
END NETS

Define Differential Pairs

/ Important

DIFFPAIR is supported only in the fcroute AIO mode.

Syntax

DIFFPAIR
THRESHOLD
<2 nets>

END DIFFPAIR

October 2010 204

Product Version 9.1.3

Encounter Digital Implementation System User Guide

Flip Chip Methodologies

Example

DIFFPAIR
THRESHOLD 0.2
port pad data out[7]
port pad data out[8]
END DIFFPAIR

Define Nets to Match Tolerance

Syntax

MATCH

TOLERANCE

<2 or more nets>
END MATCH

Example

MATCH
TOLERANCE 0.2
tdigit[1l] tdigit[2] tdigit[3]
END MATCH

Define a Shield Net

/ Important

Shielding is supported only in the fcroute AIO mode.

Syntax 1

SHIELDING

SHIELDBUMP true | false

SHIELDWIDTH

SHIELDGAP

SHIELDLAYERS Above | Below | Common
SHIELDNET

<nets>

END SHIELDING

October 2010 205

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

Example 1

SHIELDING

SHIELDBUMP true
SHIELDWIDTH 0.4
SHIELDGAP 0.1
SHIELDLAYERS Above
SHIELDNET VSS
scan_out 2

port pad data out[15]

END SHIELDING

Route Multiple Nets with Different Widths

The following shows a constraint syntax that allows one £croute command to route multiple
routes with different widths.

fcroute -constraintFile file_name

Example Constraints File

NETS

WIDTH 24.0
ROUTELAYERS 7:7
SPACING 0.1

Net Definition

VDDPST #apply two nets only
VSSPST

END NETS
NETS

WIDTH 20.0
ROUTELAYERS 8:7
SPACING 0.1

Net Definition

~VDDPST #negation - for all other nets
~VSSPST #negation
END NETS

October 2010 206 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#fcroute

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

Route Nets with Tapering Pin Widths

Tapering feature is enabled in the area I/O mode, wherein fcroute uses a thin routing width
on I/O pins and wide routing width on the bumps.

Non- Tapering
Route Width

Tapering
Route Width

You can specify the Tapering constraint in the fcroute constraint file. The constraint syntax
is as follows:

Syntax 1

NETS
TAPERSTEP stepsizevalue
TAPERWIDTH PINWIDTH | value
<nets>

END NETS

where,

October 2010 207 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

TAPERSTEP: 0 | 1 Specifies the step between the width of I/O pin and route width
specified in -routewidth.

Default: 1
0: Allows to connect in narrow direction without tapering.

TAPERWIDTH: PINWIDTH | value

Specifies the tapering width value.

Default: PINWIDTH

Example 1
NETS
TAPERSTEP 1 # 1 enables tapering, 0 disables tapering
TAPERWIDTH PINWIDTH | value # If PINWIDTH is specified, the router
fetches the pin width automatically as the
starting routing width; If value is specified,
the router starts routing with the width
value.
vssx_0 # Specifies the net name
vddex_ 1 # Specifies the net name
END NETS

October 2010 208 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

Examples and Report Files

Routing and Placement Constraints

The following listing is the constraint file that is used for both fcroute and placePI0.

For individual constraint descriptions, see Route Flip Chip - Advanced -Routing Constraints
page in the Tools Menu chapter of the Encounter Digital Implementation System Menu
Reference.

R I S I S I I b I I I I e b b I b b I b I I e b b b b b I I b b b b I I R b A b b b I b b b b b b b b S b b Sh b b dh b b 4h b b b e Y

Routing constraints: fcroute -designStyle aio | pio

R R i b b i I I I b b I I I e b b I b b I b b I e b b b b b I I b b b b I I I S b b b b b b b b IR Sh b b b S b b Sh b b dh b b 4h b b b S Y

#0One constraint file is used for fcroute and placePIO

VERSION 2
WIDTH 10 ; global constraint
SHIELDBUMP ; global constraint
NETS
out[10]
END NETS
DIFFPATR
WIDTH 20 ; can’t accept, because of global constraint
MAXLENGTH 1000 ; can’t accept, because of global constraint
SHIELDWIDTH 0.5 ; local constraint
SHIELDLAYERS abc ; local constraint

out[111] out[114] SHIELDNET VDD
END DIFFPAIR
DIFFPAIR
out[119] out[120]
END DIFFPAIR

SHIELDING
WIDTH 20 ; can’t accept, because of global constraint
SHIELDWIDTH 0.5 ; local constraint
SHIELDLAYERS abc ; local constraint

out[18] out[1l9] out[1l1l5] out[l1l6] out[1l1l7] out[ll8] resetn
END SHIELDING
DIFFPAIR and MATCH results maybe different in -designStyle aio | pio
DIFFPATIR

out[10] out[1ll] SHIELDNET VDD
out[14] out[19]

END DIFFPAIR

October 2010 209 Product Version 9.1.3

../encounter/toolsG.html#RouteFlipChipAdvancedConstraints
../fetxtcmdref/flipchipT.html#fcroute
../fetxtcmdref/flipchipT.html#placePIO

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

#SHIELDING only works with fcroute -designStyle aio
SHIELDING
SHIELDNET VDD (width spacing)

inl net2
outl out2

END SHIELDING
#NETS only work with fcroute -designStyle pio
NETS

WIDTH 24.0

ROUTELAYERS 8:7

SPACING 0.1

VDDPT # apply two nets only
VSSPT

END NETS
NETS

WIDTH 20.0

ROUTELAYERS 8:7

SPACING 0.1

~VDDPT # negation - for all other nets.
~VSSPT # negation

END NETS

BUMPREGION
AREA 3942.0 3545.0 3903.0 -3979.0 -3868.0 -3932.0 3774.0 -3521.0
VDD*
END AREA

END BUMPREGION

R R b I b b I b b I Sb b I Sb I S S S S S S Sb e b b R S b e S b S b S b I S b S b S b b S b b S b I Sb b b Sb b S Sb 2b I Sb 2b I S 4

Placement constraints: Only used with placePIO command
IR R IR I i g b b b Sh b 2 dh b b Sh b b S Sh b b 2h b b 2b Sh b 2 dh b b 2h b b 2 Sh b b 2h b b 2 Sh b b Sh b 2 2h Sh b db Sh b 2 dh Sh b db ah b b dh S 2 4h Ib b 2h e Y
FIXNETPAD
net name list
END FIXNETPAD ; (All the pads associated with given nets are fixed)
FIXPAD
pad name list
END FIXPAD ; (A1l the pads in the list are fixed)
FIXNETPADSIDE {EAST WEST SOUTH NORTH}
net name list
END FIXNETPADSIDE
FIXPADSIDE {EAST WEST SOUTH NORTH}
pad name list
END FIXPADSIDE
GROUPNET

net name list

October 2010 210 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

END GROUPNET
GROUP
pad name list
END GROUP
FIXBUMP
netl net2 net3
END FIXBUMP
R IR d b i Ib b db Ib b 2 db b b S S b d dh b I db Ib b db Ib b 2 dh b b 2h S b 2 Ib b b db b b 2h S b b Sb b b dh S b d Sb b dh Sb b Jb Sb b db S b dh Ib b db 9 4
Resistance constraints for all (MAXRES) and/or individual nets (RESTABLE)
used by placePIO command

R R e I b b I b b I S b I Sb I Sb S S S S S e S Sb e S b R S b e S b e S IR S b S I S b S 2b b S b b S b I Sb b b Sb b S Sb 2b I Sb 2b I S 4

NETS
WIDTHRANGE
ROUTELAYERS
MAXRES <resistance (ohms)>
NET 1
NET 2
END NETS
RESTABLE
#<Netname> <resistance (ohms)>
NET 1 0.1
NET 2 0.2

END RESTABLE

I0_FILE Example

The following sample is an I0_FILE file showing bumps, I/O rows, and I/O instances. Format
definitions follow the sample.

BumpCell: BUMPCELL Rect 1 Layer 6 0.000 0.000 80.000 80.000
Bump: bumpAry 16 3 3 BUMPCELL 697.440 696.800 DI[1]
Bump: bumpAry 15 2 3 BUMPCELL 497.440 696.800 DO[1]
Bump: bumpAry 14 1 3 BUMPCELL 297.440 696.800 DO[O0]
Bump: bumpAry 13 0 3 BUMPCELL 97.440 696.800 SO
Bump: bumpAry 12 3 2 BUMPCELL 697.440 496.800
Bump: bumpAry 11 2 2 BUMPCELL 497.440 496.800
Bump: bumpAry 10 1 2 BUMPCELL 297.440 496.800
Bump: bumpAry 9 0 2 BUMPCELL 97.440 496.800
Bump: bumpAry 8 1 BUMPCELL 697.440 296.800 DI[O0]
Bump: bumpAry 7 2 1 BUMPCELL 497.440 296.800
Bump: bumpAry 6 1 1 BUMPCELL 297.440 296.800 SI

1 BUMPCELL 97.440 296.800

0

Bump: bumpAry 5
BUMPCELL 697.440 96.800 CLK

O_
3

o
1
O_
Bump: bumpAry 4 3

October 2010 211 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Flip Chip Methodologies

Bump: bumpAry 3 2 0 BUMPCELL 497.440 96.800
Bump: bumpAry 2 1 0 BUMPCELL 297.440 96.800 SM
Bump: bumpAry 1 0 0 BUMPCELL 97.440 96.800

IORoOwW:
TIORow:
TIORoOwW:
IORoOwW:

IOInst:
IO0Inst:
IO0Inst:
IOInst:
IO0Inst:
IO0Inst:
IOInst:
IO0Inst:

IOROW 1
IOROW 2
IOROW 3
IOROW 4

520.
520.
119.
119.

100
100
700
700

596.400 I0O1 RO V 100.800 2
126.000 I01 RO VvV 100.800 2
596.400 IO1 RO Vv 100.800 2
126.000 I0O1 RO VvV 100.800 2

test clk/clk/inbuf 520.100 126.000 RO -fixed

test clk/test/smbuf 119.700 126.000 RO -fixed

test clk/test/sibuf 119.700 226.800 RO -fixed

test clk/test/sobuf 119.700 697.200 RO -fixed
iocall/io A/inbuf 0/inbuf 520.100 226.800 RO -fixed
iocall/io A/inbuf 1/inbuf 520.100 596.400 RO -fixed
icall/io B/outbuf 0/outbuf 119.700 596.400 RO -fixed
icall/io B/outbuf 1/outbuf 520.100 697.200 RO -fixed

Format Definitions

m |I/O Rows:

IOROW:

iorow name

Xy

site name

orient
H | V

step

num

m |/Oinstances:

IO0Inst:

inst_name

Xy

orient

October 2010

iorow_name X y site_name [orient] [[H | V] step num]

Specifies the row name.

Specifies the x and y coordinates, in microns, of the origin.
Specifies the site name. This must be defined in the LEF file.
Specifies the row orientation.

Specifies either a Horizontal or a Vertical row.

Specifies the site width or height (depending on orientation), in
microns, of the row.

Specifies the number of sites in the row (multiply by step for
row length).

inst_name [x y [orient] [-fixed]]

Specifies the instance name.
Specifies the x and y coordinates, in microns, of the origin.

Specifies the instance orientation.

212 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

-fixed Sets the placement status to fixed.

For more information, see the adda10Row command in the “Flip Chip Commands” chapter
of the Encounter Digital Implementation System Text Command Reference.

October 2010 213 Product Version 9.1.3

../fetxtcmdref/flipchipT.html#addAIORow

Encounter Digital Implementation System User Guide
Flip Chip Methodologies

October 2010 214 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Using ART in Hierarchical Designs

Overview on page 216

Types of Active Logic Views on page 216
Creating an Active Logic View on page 218

Applications of ART on page 218

a Timing Budgeting in Hierarchical Flow on page 219

0 Timing Optimization After Assembling the Post-Routed Partitioned Design on
page 219

October 2010 215 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs

Overview

Active-logic Reduction Technology (ART) is a technique that is used to activate certain
portion of a logic in a design and masking the other logic, while maintaining full physical
design database in memory. In ART, an active logic view contains only the active portion of
the logic.

ART can be applied to any timing-related command, such as timing budgeting or timing
optimization to reduce run time and memory usage. In timing operations, an active logic view
contains only the set of timing paths exposed to the specific operation. When applied to timing
optimization, active logic views enable cross-hierarchical optimization while preserving the
full hierarchical view of the design after optimization is complete.

Types of Active Logic Views

The tool creates an active logic view based on the partition boundaries, set of critical timing
paths, block module boundaries, and physical area. There are two types of active logic views:

m Flat Top
m Critical
Flat Top

A flat top is a partition-based active logic view that activates the top-level paths and the
interface path of partition blocks. The logic inside the partition blocks is excluded from the
timing database.

October 2010 216 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs

The following figure shows the flat top active logic view:

Design Partitions Active Logic View

Masked Logic

Flat Top (Partition-Based Active Logic View)

Critical

The critical active logic view activates all paths in a design that have a negative slack. All other
logic in the design is masked.

Masked Logic

Critical Path-Based Active Logic View

October 2010 217 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs

Creating an Active Logic View

To create an active logic view, load the entire chip as a design in the Encounter Digital
Implementation System (EDI System) software, specify the partition, and then run the
createActiveLogicView command with an appropriate option.

/ Important

An active logic view cannot be saved as a database or a file. Run the
createActivel.ogicView command to create an active logic view.

Note: The EDI System software considers MMMC settings while creating an active logic
view.

Example of Active Logic View Creation

The following method shows time budgeting using active logic view in a hierarchical design:

To create an active logic view:

1. Mark the top-level timing graph to mask all logic inside the interface logic of each
partition.

createActivelLogicView -type flatTop
2. Derive timing budget.
deriveTimingBudget

3. Clear ART marking.

clearActivelogicView

Note: Timing database will be rebuilt when the next timing command is called.

Applications of ART

ART helps reduce run time and memory snapshots for big designs. It brings the active portion
of a design to a size that is manageable for flat analysis.

This section provides information about the use of ART in timing budgeting and timing
optimization during the post-route stage.

October 2010 218 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs

Timing Budgeting in Hierarchical Flow

In a hierarchical flow, the deriveTimingBudget command creates timing constraints for
the partition blocks based on timing budgeting with full-chip timing conditions. During timing
budgeting, it is not essential to analyze the paths that are enclosed in partitions. In such a
situation, the £1atTop type of an active logic view provides an exact condition that activates
the top-level logic and interface logic of the partition blocks. It takes less memory and run
time.

Timing Optimization After Assembling the Post-Routed Partitioned
Design

After assembling the design, you might see timing issues at the top-level logic, the interface
paths of the partition blocks, or the internal paths of partition blocks as you have a full-chip
view. In the traditional hierarchical flow, you might need to go back to the partition level to
solve the timing issues that might be time consuming.

The ART-based post-route optimization flow helps reducing the overhead and works
effectively for the timing issues because it contains the full-chip view for solving the timing
issues.

ART-based Post-Route Optimization

When you perform ART-based post-route optimization, the top-level timing paths and
interface paths of partition blocks are activated by ART as active logic views and then they
are optimized. The other internal paths of the partition blocks are masked and not optimized.
This technique saves memory usage and run time for large designs.

/ Important

ART-based post-route optimization is partition aware. Therefore, after completing
ART-based post-route optimization, you can still partition your design and sign it off
at the block level or convert these blocks to IPs.

October 2010 219 Product Version 9.1.3

../fetxtcmdref/timingbudgetingT.html#deriveTimingBudget

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs

The following figure shows timing optimization using active logic views in the EDI System
hierarchical flow:

Partitioning

¢

|
Partition Block
r— Implementation

¢

Assemble Design

Traditional
Hierarchical
Flow ART-based Post-Route
No No Opt|m|z§t|on
L optDesign
(-virtualPartition)
Yes
I
Sign-off

To use ART-based flow, run the following commands:
setOptMode -virtualPartition true

optDesign -postRoute [-hold] [-noECORoute]
setOptMode -virtualPartition false

The setOptMode -virtualPartition command runs the ART-based post-route
optimization. The optDesign command internally applies active logic view for the design.

October 2010 220 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs

The following figure depicts the setOptMode -virtualPartition command flow details:

ART Marking

l

optDesign

-noECORoute?

ecoRoute

S

Steps to Run ART-Based Post-Route Optimization

1. Assemble the partition blocks and the top partition.

assembleDesign -fe -topDir partitionl.enc.dat \
-blockDir Blockl.enc.dat \

-blockDir BlocklO.enc.dat \
-saveEcoRef -ecoRefDir partitions eco

The assembleDesign command creates full-chip data from the partition blocks and the
top-level partition data to apply ART-based post-route optimization. Using the following
options, assembleDesign creates an ECO reference file for hierarchical ECO routing
after optDesign:

Q The -saveEcoRef parameter creates a directory for every partition block that is
specified in the assembleDesign command. It also creates the ECO reference
files for these partition blocks. For more information about the -saveEcoRef

October 2010 221 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs

parameter, see the assembleDesign command in “Partition Commands” chapter
of the Encounter Digital Implementation Text Command Reference.

Q The-ecoRefDir directoryName parameter is used to specify the directory
where the files generated by -saveEcoRef parameter are saved. If you do not
specify this parameter, the files generated by -saveEcoRef are saved in the
current working directory.

Q The ECO reference files are used during hierarchical ECO routing after
optDesign. The files are placed in the directory which is created by the
-saveEcoRef parameter or the —ecoRefDir parameter. In the process of
hierarchical ECO routing, an ECO reference file is used to identify ECO nets in the
design to make ECO routing more efficient.

The ECO reference file gets updated after routing.

\ Caution

The ECO reference file and the directory has been designed for an
efficient hierarchical ECO routing. To avoid any unexpected issues within
the flow, do not modify the ECO reference file.

’J\/ .
(l) Tip
During assembleDesign, if a DEF file and a Verilog netlist are used, there can be

a run-time penalty at ecoRoute because the routing results have been imported
from the DEF file.

Contact your Cadence representative if you require help.

@aut/on

The ART-based post-route optimization resolves timing issues for top-
level paths and interface paths of partition blocks. Therefore, ensure that
the internal paths of partition blocks have no timing issues and are DRC
checked for routing before optimization.

2. Perform optimization using ART and execute optDesign for the assembled design.
setOptMode -virtualPartition true

optDesign -postRoute
setOptMode -virtualPartition false

or
setOptMode -virtualPartition true

optDesign -postRoute -noECORoute
setOptMode -virtualPartition false

October 2010 222 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assembleDesign

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs

You can also use this flow for hold violation. By default, the hierarchical ecoRoute is
called to ensure that design can be partitioned and it uses the ECO reference file which
was generated earlier using the assembleDesign command.

The hierarchical ecoRoute might reset some settings that have been set using the
command file, especially the global EDI System variables. Cadence recommends that
you reinitialize the global variables after completing ART-based post-route optimization.

S
) Tip

Disable the ART controls after ART-based portion of the flow is completed to ensure
that there are no side effects on other parts of the flow.

Run the following command after ART-enabled portion of the flow is completed:

setOptMode -virtualPartition false

@auﬁon

3.

Sl fixing is not supported in this flow.
Run ECO routing.

This is an optional step if you have used -noECORoute earlier. To execute the
hierarchical ecoRoute, run the following command:

ecoRoute -handlePartition

The ecoRoute -handlePartition parameter enables hierarchical ECO routing that
maintains the partition structure of the design and performs routing with reasonable run
time for a large design.

The hierarchical ecoRoute performs routing by maintaining the partition-pin location
and number of pins of the partition for ECO nets which have been changed by the IPO
operation using optDesign in the flow. An ECO reference file is used in the process.

Note:

O Use ecoRoute -handlePartition together with assembleDesign -
saveEcoRef as a part of the flow. This is similar to the ART-based post-route
optimization which is done for a hierarchical design. To use this command apart from
this flow, contact your Cadence representative.

@ You can apply multiple-CPU processing for ecoRoute -handlePartition. For
help regarding its usage, contact your Cadence representative.

October 2010 223 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using ART in Hierarchical Designs

=

N\ Caution

You can still use the ecoRoute command without the -handlePartition
parameter. However, you will be unable to partition your design if you do
not use this parameter.

October 2010 224 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Using Interface Logic Models in
Hierarchical Designs

Overview on page 226

Creating ILMs on page 227

0 Example ILM Creation on page 228

O Preserving Selected Instances in ILMs on page 229

a Creating ILMs for Shared Modules on page 229

Specifying ILM Directories at the Top Level on page 231

O Example Top-Level Implementation Flow with ILMs on page 231

ILMs Supported in MMMC Analysis on page 233

[LMs Supported in Sl on page 235

Interactive Use of ILMs on page 235

ILM Limitations on page 236

October 2010 225 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs

Overview

Models are compact and accurate representations of timing characteristics of a block. An
Interface Logic Model (ILM) is a structural representation of a block, specifically a subset of
the block’s structure including instances along the 1/O timing paths, clock-tree instances, and
instances or net coupling affecting the signal integrity (SI) on I/O timing paths.

Instead of using a blackbox at the top level, you create an ILM at the block level and use it as
you would use a blackbox.

The advantages of using ILMs are as follows:

B More accurate analysis than a black box flow
Q More Sl aware than combined . 1ib or . cdb approach
0 Can model clock generator inside block

O More accurate timing and Sl reduces the number of design iterations to close timing
and Sl.

B No need to characterize blocks
Q Works on a actual design data

B Canbe used in the initial prototyping stage for very big designs. when loading full design
data is not feasible.

a Allows you to modify only top-level data
Q Fully preserves implemented partitions
B Uses the original constraint file for top-level analysis

0 No abstraction for timing exceptions

October 2010 226 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs

Creating ILMs

In the hierarchical design flow, you create a detailed block-level implementation of a block,
then specify the createInterfacelogic command to create an ILM for the block. This
command creates the specified directory containing ILM files.

You can also create ILMs for blocks that are in an intermediate stage of design, then use the
data at the top level of the design for preliminary timing optimization.

/ Important

An ILM created for an incomplete block is not as accurate as an ILM created for a
complete block. Always use ILMs for complete blocks to complete the top-level
design.

The software generates ILM data for CTS, signal integrity, and other design stages (pre-CTS,
post-CTS, post-route)

m ILM data for pre-CTS, post-CTS, and post-route

The model contains the netlist of the circuitry leading from the I/O ports to interface
sequential instances (that is, registers or latches), and from interface sequential
instances to 1/O ports. The clock tree leading to the interface registers is preserved.

ILMs do not contain information about the following:
QO Internal register-to-register paths, if internal logic is not part of the interface path

O Internal paths (if -noInterClockPath is used): Internal paths controlled by
different clock, or clocks connected to the ILM module through different ports.

If the logic between the I/O ports is pure combinational, it is preserved in an ILM.
m |LM data for SI

The model includes all of the above, plus aggressor drivers or nets which affect I/O paths.
It also includes the timing window files in the ILM model directory.

m ILM data for CTS

The model includes all clocked instances (clock sinks), and clock tree instances and
nets.

Use createInterfaceLogic -writeSDC to generate block level constraints which can
be used:

October 2010 227 Product Version 9.1.3

../fetxtcmdref/partitionT.html#createInterfaceLogic

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs

m During a bottom-up design flow to manually build a top-level constraint file from the block
constraints. The generated block-level .sdc file contains references to the block
instances or pins or nets which made it into the ILM model netlist.

m To validate a model at the block level. For example, an ILM netlist and the . sdc file can
be read in a separate Encounter session and timing analysis can be run on all paths.
Then, the results can be compared against timing for the same path during full-block
implementation.

Note: When createInterfaceLogic is called, all views are generated for multi-corner,
multi-mode (MMMC) analysis.

Example ILM Creation

The following method creates a model that can be used in the top-level implementation flow
by both timeDesign and optDesign for both setup and hold efforts, including post-route
Sl optimization. This model is also used during clockDesign.

createInterfacelLogic -hold -dir block A.ILM

Sample Summary Report

The following is a sample summary report generated at the end of the
createInterfaceLogic command:

Model Reduced Instances Reduced Registers
ilm data 7153/7621 (93%) 174/285 (61%)
cts_data 7254/7621 (95%) 0/285 (0%)

si ilm data 6793/7621 (89%) 160/285 (56%)

In this report, the reduction ratio in the 1 1m_data model is 93 percent which means that 7153
out the total 7621 instances for this block have been eliminated. Only 468 instances are
written to the Verilog netlist for the 11m_data model out of which 111 instances are registers.

This summary report applies to a block using MMMC. Therefore, views with worst reduction
ratio are displayed for each model.

Note: You can run the following commands for improving the reduction ratio:

QO setIlmMode -highFanoutPort false

Q createInterfacelogic -noInterClockPath

October 2010 228 Product Version 9.1.3

../fetxtcmdref/partitionT.html#setIlmMode
../fetxtcmdref/partitionT.html#createInterfaceLogic

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs

Preserving Selected Instances in ILMs

You can force the selected instances and nets to be included in the ILM model by using the
createInterfacelLogic -keepSelected parameter.

1. Select instances or nets using the selectInst or selectNet commands.

2. Specify createInterfaceLogic -keepSelected.

Creating ILMs for Shared Modules

You can use the same sub-block module in different ILM blocks, enabling reuse of versatile
modules. The createInterfaceLogic command considers constant propagate, so that
only the enabled parts of a module are considered when creating ILMs for the reused
modules. Because the Encounter database cannot handle the same module name in different
circuits, the software automatically modifies the module names with the following rule:

topModuleName+timestamp+$+moduleName

As an example, one ILM block (Modulea) uses an ALU module (ALU) as an unsigned ALU,
and a second block (ModuleB) uses the ALU as a signed ALU. You can change the input
signal to use the ALU differently, setting one ALU as sign enabled and the other to off. When
you run the createInterfaceLogic command, the software considers only the enabled
parts of the ALU when creating ILMs for Modulea and ModuleB. The software also ensures
that the name of the ALU module in Modulea and the name of the ALU module in ModuleB
are different.

Creating ILMs Without Using Encounter Database

If you do not have Encounter database for an implemented block but have a Verilog netlist,
constraints, and SPEF for that block, then use the createILMDataDir command to store
data in the ILM format.

Following is the usage of the createILMDataDir command:

createIlLMDataDir -cts -si -dir block A.ILM -cell block A -mmmc -verilog myfile.v

createILMDataDir -cts -si -dir block A.ILM -cell block A -mmmc -incr \
-spef max.spef.gz -rcCorner rcMax

createILMDataDir -cts -si -dir block A.ILM -cell block A -mmmc -incr \
-spef typ.spef.gz -rcCorner rcTyp

createILMDataDir -cts -si -dir block A.ILM -cell block A -mmmc -incr \
-spef min.spef.gz -rcCorner rcMin

createILMDataDir -cts -si -dir block A.ILM -cell block A -mmmc -incr \
-sdc funMaxMax.sdc -viewName funct-devSlow-rcMax

October 2010 229 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs

createIlLMDataDir -cts -si -dir block A.ILM -cell
-sdc funMaxTyp.sdc -viewName funct-devSlow-rcTyp

createIlLMDataDir -cts -si -dir block A.ILM -cell
-sdc tstMaxMax.sdc -viewName test-devSlow-rcMax

createIlLMDataDir -cts -si -dir block A.ILM -cell
-sdc funMinMin.sdc -viewName funct-devFast-rcMin

createIlLMDataDir -cts -si -dir block A.ILM -cell
-sdc tstMinMin.sdc -viewName test-devFast-rcMin

October 2010 230

block A

block A

block A

block A

—mmmc

—mmmc

—mmmc

—mmmc

—-incr \

—-incr \

—-incr \

—-incr \

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs

Specifying ILM Directories at the Top Level

Use specifvyIlm to use the ILM data for a block at the top partition level rather than using
the default . 1ib model. You can run speci fyI1m multiple times in the same session. Each
time you run this command, the software overwrites the previous setting for the block. If
master/clones exist in the design, the cell name will have the name of the master partition.

Note: You can use this command (and unSpecifyIlm) only if the ILMs are unflattened
(unflattenIlm). You cannot change ILM settings in flattened or ILM view.

Use unSpecifvIlm to revert to using the . 1ib model for the block.
m The following form enables you to specify and unspecify ILM directories:

Q Design Import — Advanced — Specify ILM

Example Top-Level Implementation Flow with ILMs
1. Before you start the Encounter tool, prepare the top-level Verilog file, if needed.

If you use the Encounter hierarchical flow in a previous Encounter session, then the
savePartition command automatically creates the top-level data. Else, you need the
following in the top-level directory:

Q A Verilog netlist that includes dummy modules for the blocks (ILM or Liberty) in the
design.

Q A view definition file since ILMs are supported only in the MMMC mode. If you have
a non-MMMC design, create or load a view definition file that contains the following:

set analysis views -setup {model slowCorner} -hold {model fastCorner}

2. Startan Encounter session from the top-level module directory within the directory where
the partitions are saved.

3. Load the config file, including the top-level netlist, ILM directory name,
ilm_blocks.1ib (optional if using ILM), stdcells.1lib, and . lef for the block and
chip-level constraints.

loadConfig fileName
specifyIlm -cell block A -dir ../block A/block A.ILM
specifyIlm -cell block B -dir ../block B/block B.ILM

As an alternative, you can use the GUI to specify the ILM directories.

Design Import — Advanced — Specify ILM

Specify the directory for each module, and the timing constraints file.

October 2010 231 Product Version 9.1.3

../fetxtcmdref/partitionT.html#unspecifyILM
../fetxtcmdref/partitionT.html#specifyILM

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs

4. Load the floorplan.
loadFPlan top floorplan
5. Place the design.
placeDesign
6. Run pre-CTS timing optimization.
optDesign -preCTS
7. Build the clock tree.
clockDesign
8. Run post-CTS timing optimization.
optDesign -postCTS
or
optDesign -postCTS -hold ;#optional
9. Route the design.
routeDesign
10. Run post-route optimization for setup.
optDesign -postRoute
11. Run post-route optimization for setup and hold.
optDesign -postRoute -hold
12. Run post-route optimization for Sl.

optDesign -postRoute -si

If you want to create an ILM of the resulting block for use in the next level up in the hierarchy,
run the following steps with the above-mentioned flow:

1. Flatten the design as creating ILM calls timing analysis.

setIlmType -model si
flattenIlm

2. Perform timing analysis.

timeDesign -postRoute -si

3. Create ILM.

createInterfacelogic -dir block_parent

October 2010 232 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs

ILMs Supported in MMMC Analysis

Cadence strongly recommends that you use ILMs in the MMMC mode. If you have a non-
MMMC design, create and load a view definition file that contains the following:

set analysis views -setup {model slowCorner} -hold {model fastCorner}

The MMMC analysis for designs including ILMs is identical to MMMC analysis for black box
designs except for the following considerations:

1. Views, modes, and corners at the top and partition levels must have same names.

2. Whenyou use create_constraint_mode to specify constraints for MMMC, you must
specify the ILM constraints using the -i1m_sdc_files parameter (thatis, timing in the
presence of ILMs get constraints from the -i1m_sdc_files parameter, not the -
sdc_files parameter). The .sdc files specified with the -1i1m_sdc_files parameter
are allowed to reference nets or pins internal to the ILM model.

3. The interactive constraint commands are currently not supported when using ILMs. Use
the update_constraint_mode -ilm_sdc_files to change the current constraints
files. When using ILMs, the -11m_sdc_files is used. It allows references to nets or
pins internal to the ILM model.

Note: In the current ILM flow, the SDC constraints (originally specified against the complete
flat netlist for the design) that reference parts of the design that were pruned cause warnings
and errors during constraint loading. In this release, you can set the temporary

timing suppress ilm constraint mismatches global variable to true to suppress
all error and warning messages related to the unfound objects. Note that this command might
also suppress error messages that might be of use (that is, where the top-level pins or nets
or instances cannot be found).

Currently, constraints are used during timing in the flattened mode. So, the internal ILM
instances are seen instead of the LEF pins of the ILMs. Therefore, reading the bounding box
constraints causes errors without using the

timing_ suppress_ilm_constraint_mismatches variable.

If you want to see the LEF pins of the ILM in GUI, the design must be in the unflattened mode.

October 2010 233 Product Version 9.1.3

../fetxtcmdref/timingglobalsT.html#timing_suppress_ilm_constraint_mismatches

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs

The following figure shows the flattened and unflattened ILM. The LEF pins of the ILM are
visible after unflattening the ILM.

Flattened ILM Unflattened ILM

October 2010 234 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs

ILMs Supported in Si

ILM supports the -si parameter for optDesign and timeDesign. These commands
automatically run set I1mType -model si before calling f1lattenIlm such that the SI ILM
model is used. Therefore, your present post-route optimization scripts should run
successfully in the presence ILMs (without any additional changes).

The following command can be used to get timing reports containing the Sl push-out delays
on nets using the -setI1mType -model command:

setIlmType -model si

Flattens to the timing model

flattenIlm

Reflattens to SI model, then does not unflatten (All other design

commands unflatten upon exit, regardless of the flattened/unflattended
state before invocation)

+= = =

timeDesign -postroute -si
Adds incremental delay column (for SI push-out delays) in timing output:

set global report timing format {instance arc cell fanout load slew delay
incr delay arrival}

Minimizes the width of the report such that it easily fits into the screen
without wrapping

set table style -name report timing -no_ frame -indent 0
report timing

Note: You can also invoke the Global Timing Debugger (Timing — Debug Timing — Generate)

Interactive Use of ILMs

B Commands such as optDesign, timeDesign, clockDesign, and so on
automatically take care of flattening and upon completion, leaves the design in an
unflattened state.

m Timing commands require you to run flattenIlm first so that the nets and instances
internal to ILM are exposed to the timing engine.

encounter> flattenIlm
ilmView> report timing

Notice that the prompt changes to i ImvView after flattenIlm.

B The Global Timing Debugger (GTD) also requires the design to be in a flattened state.
GTD displays rows with instances or nets which are internal to the ILM as grayed out.

October 2010 235 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs

B The new -ilm parameter has been added to the saveNetlist command to write a
netlist with ILM guts. This parameter can be specified only in the f1lattenIlm state.

B The non-timing commands require the design to be in an unflattened state before
invocation:

ilmView> unflattenIlm
encounter>verifyGeometry

ILM Limitations

When ILMs are present in a design, ensure that you set the following variable in the
~/enc.tcl file in your home directory or ./enc.tc1 file in the run directory before loading the
design:

set socelIlmEnableCommandControl 2

In the present release, all previously entered interactive constraints are lost while running
unflattenIlm, which is automatically called at the end of running design commands, such
as placeDesign, optDesign, clockDesign, routeDesign, saveDesign and So on.
Therefore, it does not save the interactive constraints.

If the design is in the flattened mode, timeDesign does not run unflattenIlm while
exiting and leaves the interactive constraints intact. Therefore, you can use timeDesign
(and report_timing, and Timing Debug GUI) to debug interactive constraints in the
presence of ILMs.

If you want the design commands (including saveDesign) to honor new constraints when
ILMs are present in the design, perform either of the following:

m Edit one of the existing -1i1m_sdc_files (as defined in the
create_constraint_mode command in the viewdefinition. tcl file) and then
run the following in the MMMC mode:

flattenIlm
set interactive constraint modes {yourListOfViews}

A\

set analysis view -setup "[all setup analysis views]"
-hold "[all hold analysis views]"

In non-MMMC mode, edit the existing . sdc file and then run the following commands:

flattenIlm
unloadTimingCon

loadTimingCon -ilm previous.sdc

October 2010 236 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs

The above commands force reading of this changed constraint file (this is the
set_analysis_view command found in this design’s viewdefinition. tcl file)
again.

m Create a file with additional constraints and then run the following commands in the
MMMC mode:

flattenIlm

set interactive constraint modes {yourListOfViews}

set previousSDCs [get constraint mode constraintName -ilm sdc files]
update constraint mode -name constraintName -ilm sdc files

[concat $previousSDCs additional.sdc]

set analysis view -setup "[all setup analysis views]"

-hold "[all hold analysis views]"

In the non-MMMC mode, run the following commands:
flattenIlm

loadTimingCon -ilm additional.sdc -incr

The above commands automatically read in these additional constraints (as well as the
previous constraints).

October 2010 237 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Using Interface Logic Models in Hierarchical Designs

October 2010 238 Product Version 9.1.3

Encounter Digital Implementation System User Guide

10

What-If Timing Analysis

Performing What-If Timing Analysis

You use blackboxes or blackblobs in large designs containing hierarchical flows when gate-
level details are not available at the beginning of the design cycle. You can easily modify the
timing model of a blackbox or blackblob at the top level because it is not a hard macro. Using
the Encounter software, you can make quick modifications to the timing model of a blackbox
or blackblob, and run timing analysis to check the impact of the modifications. This feature is
known as what-if timing budgeting. The Encounter software provides what-if timing
commands to support what-if timing budgeting. For more information on what-if timing

commands, see the chapter What-if Timing Commands.” in the Encounter Text Command
Reference.

/ Important

The what-if timing analysis commands do not support the Multi-Mode Multi-Corner
(MMMC) feature.

October 2010 239 Product Version 9.1.3

../fetxtcmdref/bbox_timingT.html#firstpage

Encounter Digital Implementation System User Guide
What-If Timing Analysis

The following diagram shows the what-if budgeting flow.

setWhatlfTimingMode ¢ — - Set one time for all the blackboxes or
blackblobs of the design

r— " - - - -" -"-" -"--=- A
: setWhatlfClockLatency -init :4— - Work for each blackbox or blackblob
I I
| setWhatlfDriveType |
I setWhatlfCombDelay
| setWhatlfSeqDelay I

setWhatlfTimingCheck "
I setWhatlfClockLatency -new I Top TA Okay
I I
[getWhatlfAssertions |
[getWhatlfClockLatency
I I
I deleteWhatlfTimingAssertions I
: checkWhatlfTiming :
I I I
[saveWhatlfTimingAssertions —T T What-if command file
| saveWhatlfTimingModel —T 71 > b
| saveWhatlfConstraints —t—T1 ™ SDC, DC, PT
L e e e e e e — = -

Prerequisite

Prior to using what-if timing commands, you must load the what-if timing models into the
database because the what-if timing commands simulate the modifications of the timing arcs.

If you do not have timing models in the early design phase, you can use the
setWhatIfClockPort command to create clock ports. You can then use the clock port to
create timing arcs.

Timing Models Supported for What-If Timing Analysis

The Encounter software supports two timing models for what-if timing analysis: intrinsic and
normalized. You can select only one mode at a time.

Figure 10-1 shows the intrinsic timing model.

October 2010 240 Product Version 9.1.3

../fetxtcmdref/bbox_timingT.html#setWhatIfClockPort

Encounter Digital Implementation System User Guide
What-If Timing Analysis

Figure 10-1 Intrinsic Timing Model

5 4

K

! I

/ L~

v//}

1

5 4

)) I

% o/ / L

2 3
7

The data types associated with the numbers in the Figure 10-1 and the corresponding

commands that you use to specify that data are as follows:

|Data Type Command

Combinational delay from an input port to the input of [setWhatIfCombDelay
the driver

Delay from the clock input port to the data input port |setWhatIfTimingCheck

Sequential delay from the clock input port to the input |setWhatIfSegbelay
of the driver

Type of Driver setWhatIfDriveType

Driver input slew

Clock insertion delay to internal registers setWhatIfClockLatency

An intrinsic timing model uses the following formula for timing arcs ending on output ports:

Delay = constant delay + driver delay (look-up table)

If you do not use slew specifications in an intrinsic timing model, the timing arc is a 2-D timing
table containing input slew and output capacitance dependencies. With slew specifications,
the timing arc is only load dependent.

Figure 10-2 shows the normalized timing model.

October 2010 241 Product Version 9.1.3

../fetxtcmdref/bbox_timingT.html#setWhatIfCombDelay
../fetxtcmdref/bbox_timingT.html#setWhatIfTimingCheck
../fetxtcmdref/bbox_timingT.html#setWhatIfSeqDelay
../fetxtcmdref/bbox_timingT.html#setWhatIfDriveType
../fetxtcmdref/bbox_timingT.html#setWhatIfClockLatency

Encounter Digital Implementation System User Guide
What-If Timing Analysis

Figure 10-2 Normalized Timing Model

Rl

6

5
s

6

X

- =-
&

The data types associated with the numbers in Figure 10-2, and the corresponding
commands that you use to specify that data is as follows:

[Data Type

Command

Combinational delay from an input port to the output
port. It includes the driver delay

setWhatIfCombDelay

Delay from the clock input port to the data input port

setWhatIfTimingCheck

Sequential delay from the clock input port to the data
output port. It includes the driver delay

setWhatIfSegDela

Driver type

setWhatIfDriveType

Driver input slew

Total driver output net capacitance

N ol o &

Clock insertion delay to internal registers

setWhatIfClocklLatency

A normalized timing model uses the following formula for timing arcs ending on output ports:

Delay = constant delay - driver delay* + driver delay (look-up table)

Where,

constant delay = Timing arc delay including driver delay

driver delay = Constant delay considering an input slew and an output capacitance

constant delay - clock latency mustbe greaterthan driver delay*

October 2010

242 Product Version 9.1.3

../fetxtcmdref/bbox_timingT.html#setWhatIfCombDelay
../fetxtcmdref/bbox_timingT.html#setWhatIfTimingCheck
../fetxtcmdref/bbox_timingT.html#setWhatIfSeqDelay
../fetxtcmdref/bbox_timingT.html#setWhatIfDriveType
../fetxtcmdref/bbox_timingT.html#setWhatIfClockLatency

Encounter Digital Implementation System User Guide
What-If Timing Analysis

In a normalized timing model mode driver input slew is always required. In this mode, timing
arcs are only load dependant. If you do not specify the driver total output net capacitance, the
software takes real net capacitance into account.

Using the What-If Timing Commands

You can perform the following tasks with the what-if timing commands:

Selecting Timing Model
Use the following command to select the timing mode:

Q setWhatIfTimingMode

Defining generated clocks on internal pins:

Use the following command to create an internal pin and to define a generated clock on
the pin.

U createWhatIfInternalGeneratedClock

Set the following values on the what-if ports, if required:

0 Capacitance

Q Maximum capacitance

Q Maximum transition

O Maximum fanout

Use the following command to set these values on the what-if ports:

a setWhatIfPortParameters

By default, the parameters specified with the setiWhatIfPortParameterscommand
are applied to all ports in the what-if timing analysis model. If you want to apply the values
for a particular port, specify the port name with the setWhatIfPortParameters
-port parameter.

Selecting the precedence between the values set by setiWhatIfDriveType command
and the values set by the setWhatIfPortParameters command

On output ports, parameters such as capacitance value, maximum capacitance values,
maximum transition value, or the maximum fanout value can come from the driver
(setWhatIfDriveType command) or they can be set through the
setWhatIfPortParameters command.

October 2010 243 Product Version 9.1.3

../fetxtcmdref/bbox_timingT.html#setWhatIfTimingMode
../fetxtcmdref/bbox_timingT.html#createWhatIfInternalGeneratedClock
../fetxtcmdref/bbox_timingT.html#setWhatIfPortParameters
../fetxtcmdref/bbox_timingT.html#setWhatIfPortParameters
../fetxtcmdref/bbox_timingT.html#setWhatIfPortParameters

Encounter Digital Implementation System User Guide
What-If Timing Analysis

Use the following command to define which of these values will take precedence in case
of a conflict.

Q setWhatIfTimingMode
B Modifying Timing Arcs

While what-if commands are the same for both intrinsic and normalized timing models,
the delay value specified in the commands for the combinatorial and the sequential
timing arcs has different meaning. The driver output net capacitance is a characteristic
of the normalized timing model only. Whenever you create or modify a timing arc, the
timing graph is updated automatically. The Encounter software recomputes the entire
timing arc whenever any of the parameter such as clock insertion delay, timing arc delay
or driver type is modified.

Note: The timing sense of the driver is taken into account in the combinatorial what-if
timing arc description—while applying the drive type, the timing sense of the
combinatorial arc is replaced by the timing sense of the driver’s timing arc. For sequential
arcs, the timing sense is always set to non_unate.

Use the following commands to modify timing arcs:

setWhatIfDriveType

setWhatIfCombDelay

setWhatIfSegbDelayv

setWhatIfTimingCheck

setWhatIfClockPort

a
a
a
a
a
a

setWhatIfClocklLatency

B Getting Timing Arcs Assertions
Use the following command to get what-if timing arc assertions:
O getWhatIfTimingAssertions

B Saving Timing Arcs Assertions
Use the following command to save what-if timing arc assertions:

Q saveWhatIfTimingAssertions

m Deleting Timing Arcs Assertions
Use the following command to delete the what-if timing arc assertions:

Q deleteWhatIfTimingAssertions

October 2010 244 Product Version 9.1.3

../fetxtcmdref/bbox_timingT.html#setWhatIfTimingMode
../fetxtcmdref/bbox_timingT.html#setWhatIfDriveType
../fetxtcmdref/bbox_timingT.html#setWhatIfCombDelay
../fetxtcmdref/bbox_timingT.html#setWhatIfSeqDelay
../fetxtcmdref/bbox_timingT.html#setWhatIfTimingCheck
../fetxtcmdref/bbox_timingT.html#setWhatIfClockPort
../fetxtcmdref/bbox_timingT.html#setWhatIfClockLatency
../fetxtcmdref/bbox_timingT.html#getWhatIfTimingAssertions
../fetxtcmdref/bbox_timingT.html#saveWhatIfTimingAssertions
../fetxtcmdref/bbox_timingT.html#deleteWhatIfTimingAssertions

Encounter Digital Implementation System User Guide
What-If Timing Analysis

B Checking Timing Assertions
Use the following command to check the what-if timing assertions:

Q checkWhatIfTiming

B Generating what-if timing Models

After modifying the what-if timing model (in memory) using the what-if command, you can
generate an updated timing model (.lib).

Use the following command to generate an updated .lib file:

Q saveWhatIfTimingModel

B Generating What-If SDC constraints

The Encounter software generates the what-if timing constraints considering the top-
level environment of the blackbox or blackblob. It provides a higher convergence for a
top-down flow. The software generates drive, load and transition as IN context. The
software generates the input and output delays as OUT context taking into account the
last modifications done when you use the what-if commands.

Use the following command to save the What-If constraints:

QO saveWhatIfConstraints

October 2010 245 Product Version 9.1.3

../fetxtcmdref/bbox_timingT.html#checkWhatIfTiming
../fetxtcmdref/bbox_timingT.html#saveWhatIfTimingModel
../fetxtcmdref/bbox_timingT.html#saveWhatIfConstraints

Encounter Digital Implementation System User Guide
What-If Timing Analysis

October 2010 246 Product Version 9.1.3

Encounter Digital Implementation System User Guide

11

Bus Planning

m Overview on page 248
B Bus Planning Flow in Encounter on page 249
m Creating a Bus Guide on page 250
O Using the Edit Bus Guide GUI on page 250

0 Using Text Commands on page 255

Q Example on page 256

m Customizing the Bus Guide Display on page 260

0 Highlighting and Dehighlighting the Bus Guide on page 260

B Saving and Restoring Bus Guide Information on page 262

m Limitations of Bus Planning on page 263

October 2010 247

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning

Overview

The Bus Planning feature in the Encounter software enables you to plan and create bus
guides which are used to guide the path of busses for floorplanning, partition pin optimization,
feedthrough insertion, congestion prediction in trialroute, and final routing in nanoroute.

Most designs need bus planning for estimating the design size and routing channel widths.
Without bus guides, the routers do not route all the bus bits together on the desired path.
Routing the bus bits outside the desired path can have high cost implications. Hence it is very
important to accurately plan the bus guide layouts.

Bus planning is critical in the prototyping stage of the hierarchical flow. Use the bus planning
capability to guide the path of bus routing for feedthrough insertion, partition pin optimization,
and congestion prediction. If you are in the implementation stage, use bus planning to guide
the path of busses for detailed routing.

October 2010 248 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning

Bus Planning Flow in Encounter

For hierarchical designs, you create bus guides before or after assigning the partition/black
box pins. For flat or top-level designs, you create bus guides before routing. Normally, you
create bus guides before pin assignment.

The following steps describe the bus planning flow in Encounter:
1. Importing the design
Import the design into the Encounter environment.
2. Floorplanning the design

If the design is a partition design then specify partitions. For more information, see
Specifying Partitions and Blackboxes in the “Partitioning the Design” chapter of the
Encounter User Guide.

If it is a black box design then define black boxes and specify their sizes. You can
manually preplace black boxes/macros or run planDesign to automatically place them.
Further, adjust the floorplan if needed.

3. Defining net groups

Group the bus bit nets together as net groups using createNetGroup and/or
addNetToNetGroup commands.

4. Creating bus guides

Create bus guides associated with the net groups, to guide routing for all the nets of the
specified net group. Bus guides can be created using the Edit Bus Guide GUI and/or
the createBusGuide command. See Creating a Bus Guide on page 250.

5. Placing the design

Place the standard cells. If you do not want the Encounter placer (placeDesign) to
move your macros and/or black boxes, set their placement status to £ixed before
running placement.

Note: This is an optional step for designs that do not have standard cells at full-chip level.
6. (Optional) Routing the design

Run trialRoute to route the design.

7. (Optional) Inserting feedthrough buffers

Feedthrough can be inserted based on routing or placement. If trialRoute was run
before this step, then feedthroughs are inserted based on routing.

October 2010 249 Product Version 9.1.3

../soceUG/partitioning.html#SpecifyingPartitionsandBlackboxes
../fetxtcmdref/floorplanT.html#planDesign
../fetxtcmdref/partitionT.html#createNetGroup
../fetxtcmdref/partitionT.html#addNetToNetGroup
../fetxtcmdref/busplanT.html#createBusGuide
../encounter/editG.html#EditBusGuide
../fetxtcmdref/placementT.html#placeDesign
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/routeT.html#trialRoute

Encounter Digital Implementation System User Guide
Bus Planning

For more information, see Inserting Routing Feedthroughs in the “Partitioning the
Design” chapter of the Encounter User Guide.

8. Assigning pins
Assign pins using assignPtnPin command.
9. Committing partition
Commit partitions using partition command.
10. Saving Partition

Save the partition information using savePartition command.

11. Running NanoRoute/Mixed Signal Route at the top-level design

Perform detailed routing using NanoRoute router / Mixed Signal Route
(routeMixedSignal) at the top-level design.

Creating a Bus Guide

A bus guide consists of one or more overlapping segments. It must always be associated with
a net group. So, before creating a bus guide you must define a net group. Remember that a
net group can either be assigned to a bus guide or a pin guide, but not to both. For each bus
guide segment that you create, you must specify a layer or a layer range.

You can create a bus guide Using the Edit Bus Guide GUI and/or Using Text Commands.

Using the Edit Bus Guide GUI

The bus guide editor in Encounter, allows you to create bus guides before or after assigning
the bus pins. Using the Edit Bus Guide form, you can edit the bus guide properties and
interactively create the bus guide. You can specify the net group associated with the bus
guide, layer or layer range on which the bus guide is to be created, and the width of the bus
guide segment. By default, the bus guide editor derives the default minimum guide width
required to hold all the nets assigned to the bus guide. If the bus guide connects to placed
pins on block edges, the bus guide editor automatically adjusts the width of the guide segment
to cover all the pins of nets in the net group. The bus guide editor provides options to enable

October 2010 250 Product Version 9.1.3

../soceUG/partitioning.html#NetGroup
../soceUG/nanoroute.html#firstpage
../soceUG/partitioning.html#InsertingRoutingFeedthroughs
../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#savePartition
../fetxtcmdref/mixedsignalT.html#routeMixedSignal

Encounter Digital Implementation System User Guide
Bus Planning

overlapping check for bus guides created on a specific layer and display flight lines of nets in
the net group, when creating the bus guides.

Edit Bus Guide
Associated Met Group: n ﬂl

Horizontal Segment

Layer Range: From: [METALT » | To: | METALT #

Guide Width _Calculate Width " Width Factor 2

Vertical Segment
Layer Range: From: [METALZ | To: | METALZ »

Guide Width _Calculate Width " Width Factor 2

_ Display Flightlines of Mets in Met Group
» Check Overlapping Bus Guide On Same Layer

For more information on the Edit Bus Guide form, see_ Edit - Object - Edit Bus Guide in
the “Edit Menu” chapter of the Encounter Menu Reference.

Drawing a Bus Guide

To draw a bus guide in Encounter, you must first click the Add Bus Guide ‘ 1][} icon in the
toolbar.

Once you are in the bus planning mode, you can draw the bus guide segment by clicking the
left mouse button and dragging it along the points of center line for the guide segment. To
end a bus guide segment, double-click the left mouse button. By default, the bus guide
extends half width for the overlapping end of the created segment. However, if the guide
segment overlaps with another segment that has bigger or smaller width, the bus guide

October 2010 251 Product Version 9.1.3

../encounter/editG.html#EditBusGuide
../encounter/editG.html#firstpage

Encounter Digital Implementation System User Guide
Bus Planning

editor uses half the width of the other segment for the extension of the overlapping end.

Segment 1

Extension of the
overlapping end using half

the width of Segment 1 Overlapping

Segment 2

Note: All the segments of the bus guide should overlap to ensure continuity; Otherwise, the
router (nanoroute) may create routing problems or may take longer time to run.

You can specify a new segment connected to an existing segment as shown in the following
image where segment 4 overlaps with segment 1:

Figure 11-1

Segment 3

Segment 2 \

—
B —
Segment 1
R N
Bus Guide
' 1 Inst B
Segment 4

October 2010 252 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning

You can also draw a bus guide segment that connects to the placed pins of the associated
net group.

Figure 11-2
Inst A
|

This segment v
has the width . g m| InstB
specified in the .
bus guide GUI

ond Digitized ~ \ 1St Digitized

Point Point

If you click on the partition boundary side where the pins are placed, the bus guide editor
automatically snaps to these pins. If the width value specified in the bus guide editor is smaller
than the width required to fully cover all these pins, the bus guide editor derives new width for
the guide segment such that all the associated physical pin geometries are covered. If the
width value is bigger than the width that needs to cover all pins, the editor will use the current
width value without adjusting it.

In the Figure 11-2 on page 253, the width of the segment defined by the first and the second
digitized points is derived based on the placed pin information such that the segment width

can fully cover the all the pins. The width of the next segment (defined by second and third

points) is the width that is specified in the bus guide editor.

The snapping of bus guides to pins (partition or black box pins) occur at the start or at the end
of the bus guide, when you double-click to end the bus guide.

October 2010 253 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning

The following example illustrates the snapping behavior at the starting digitized point. The
snapping occurs before you specify the second point:

Start Digitized Point

single-click)
g’A

—»

i
)

The following example illustrates the snapping behavior at the end of a bus guide

Last Digitized Point or Double-click

2nd Digitized Point
+
+
= -
. i

1st Digitized Point

To view the attributes of a bus guide that you created, double-click the bus guide segment to

October 2010 254 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Bus Planning

display the Attribute Editor as shown in the following example:

—

ATtribute Editor

Object Type: Bus Guide
Name Value Type
Met Group |alu29xe String
Width |58.32 Double
Height |214.355 Douhle
Location |709.64 |eg24 22 J Location
B I(?EIE!.E-!I , 2024221 (323,995 , £882.5 Box
Routing Layers I A1 I Mz I rS | hAd I kS MG | Layers :'
K1 S
- [8]4 apply &dd Prop Close Help

A bus guide gets deleted when you delete it's associated net group.

Using Text Commands

You can create and edit bus guides using the following text commands:

Commands Usage

createBusGuide Creates a bus guide segment.

deleteBusGuide Deletes a bus guide.
Note: You can also delete a bus guide segment by
selecting the segment and pressing the Del key on the
keyboard.

deselectBusGuide Deselects a bus guide segment.

selectBusGuide Selects a bus guide segment.

October 2010 255 Product Version 9.1.3

../encounter/editG.html#ObjAttr
../fetxtcmdref/busplanT.html#createBusGuide
../fetxtcmdref/busplanT.html#deleteBusGuide
../fetxtcmdref/busplanT.html#deselectBusGuide
../fetxtcmdref/busplanT.html#selectBusGuide

Encounter Digital Implementation System User Guide
Bus Planning

Commands Usage

selectBusGuideSegment Selects a bus guide segment with its specified bounding
box.

For more information on the commands, see the “Bus Plan Commands” chapter in the
Encounter Text Command Reference.

The following Example describes the steps to create bus guides using text commands.

Example

This sample script creates 2 bus guides for 2 bus nets, abcBusNet and cdeBusNet. The
abcBusNet bus has 32 bus bits and cdeBusNet has 100 bus bits. 2 net groups,
abcNetCGroup and cdeNetGroup are defined for abcBusNet and cdeBusNet busses,
respectively. 2 bus guides are used to guide routing for these 2 busses for feedthrough
insertion:

#Restore the bBoxFP.enc.dat design of top cell Test that is already being floorplanned

restoreDesign bBoxFP.enc.dat Test

#Create net groups for busses abcBusNet and cdeBusNet

createNetGroup abcNetGroup -net abcBus*

createNetGroup cdeNetGroup -net cdeBus*

#Create bus guide for bus net abcBusNet [0..31]. This bus guide has 4 segments.

createBusGuide -netGroup abcNetGroup -centerLine 4421.8 10749.36 4960.8 10749.36 -
width 90 -layer Metal4:Metal8

createBusGuide -netGroup abcNetGroup -centerLine 4900.8 10809.36 4900.8 9470 -width
90 -layer Metal3:Metal?

createBusGuide -netGroup abcNetGroup -centerLine 4840.8 9530.0 11525.4 9530.0 -
width 90 -layer Metal4:Metal8

createBusGuide -netGroup abcNetGroup -centerLine 11465.4 9590.0 11465.4 9203.5 -
width 90 -layer Metal3:Metal”

#Create bus guide for net cdeBusNet [0..99] that has only one vertical segment.

createBusGuide -netGroup cdeNetGroup -centerLine 15300.7 7061 15300.7 11230 -width
300 -layer Metalb:Metal7’

Place the design since design has some top-level cells

placeDesign

#Run trialRoute with option -printWiresOutsideBusguide to report any nets that
are routed outside specified bus guide areas

October 2010 256 Product Version 9.1.3

../fetxtcmdref/busplanT.html#firstpage
../fetxtcmdref/busplanT.html#selectBusGuideSegment

Encounter Digital Implementation System User Guide
Bus Planning

trialRoute -printWiresOutsideBusguide

#Continue with the normal flow, invoking feedthrough insertion, pin assignment, and so on...

October 2010 257 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning

The following figure displays the bus guide associated with the net group abcNetGroup,
highlighted in green, and the bus guide associated with the net group cdeNetGroup,
highlighted in red:

After running createBusGuide to create 5 segments

egment 5 0
cdeNetGroup

Segments 1, 2, 3, and 4 belong to abcNetGroup
Segment 5 belongs to cdeNetGroup

October 2010 258 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning

The following figure displays the routing of the bus abcBusNet [0. . .31], routed within the
bus guide area:

After running the placeDesign and trialRoute

All the 32-bus bits of abcBusNet group are routed within the bus guide area.

October 2010 259 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning

Customizing the Bus Guide Display

You can specify multiple colors for bus guide objects in the design, using the Bus Guide
Color Selection form. (Color Preferences — Objects — Bus Guide — Bus Guide Color
Selection)

Highlighting and Dehighlighting the Bus Guide

After specifying colors for bus guides, you can highlight the bus guides in the design using
the Edit — Bus Guide — Color menu command.

Alternatively, you can run the setBusGuideMultiColors command to color the bus guides
and resetBusGuideMultiColors command to clear the bus guide colors.

October 2010 260 Product Version 9.1.3

../encounter/startingG.html#BusGuideColorSelection
../fetxtcmdref/busplanT.html#setBusGuideMultiColors
../fetxtcmdref/busplanT.html#resetBusGuideMultiColors
../encounter/editG.html#BusGuideColors

Encounter Digital Implementation System User Guide
Bus Planning

The following example displays the bus guides before you run the
setBusGuideMultiColors command:

Non-
highlighted
Bus Guides

MULT 32 INST

October 2010 261 Product Version 9.1.3

../fetxtcmdref/busplanT.html#setBusGuideMultiColors

Encounter Digital Implementation System User Guide
Bus Planning

The following example displays the bus guides after you ran the
setBusGuideMultiColors command:

Highlighted
Bus Guides

AMULT 32 INST

Saving and Restoring Bus Guide Information

The bus guide data is stored in the floorplan sprfile (. £p . spr file). You can save and restore
this information using the saveFPlan and loadFPlan commands.

However, you cannot load the . fp . spr file having bus guide information from the 8.1
version, into an older version of Encounter.

October 2010 262 Product Version 9.1.3

../fetxtcmdref/busplanT.html#setBusGuideMultiColors
../fetxtcmdref/floorplanT.html#loadFPlan
../fetxtcmdref/floorplanT.html#saveFPlan

Encounter Digital Implementation System User Guide
Bus Planning

Limitations of Bus Planning

B Feedthrough insertion does not honor bus planning. Once you insert feedthroughs in the
design, the existing bus guides will no longer be valid.

B The software currently does not provide checks to detect the following:
a Overlapping bus guide segments on different layers
0 Complete bus guide coverage from source to sink
0 Complete coverage of placed pins
Q

Enough room for routing.

October 2010 263 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Bus Planning

October 2010 264 Product Version 9.1.3

Encounter Digital Implementation System User Guide

12

Partitioning the Design

OQverview on page 266

Flow Methodologies on page 266

Specifying Partitions and Blackboxes on page 274

Assigning Pins on page 287

Inserting Feedthroughs on page 322

Generating the Wire Crossing Report on page 343

Estimating the Routing Channel Width on page 346

Running the Partition Program on page 348

Restoring the Top-Level Floorplan with Partition Data on page 365

Concatenating Netlist Files of a Partitioned Design on page 366

Saving Partitions on page 367

Loading Partitions on page 367

Working with OpenAccess Database on page 369

Parallel Job Processing on page 370

October 2010 265 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Overview

Most of the system-on-a-chip devices are designed in a traditional flat flow that avoids the
effort to set up a design hierarchy. However, in multi-million gate designs, this could result in
memory limitations and long run time. Designs team can develop and adopt a hierarchical
flow to shorten the turnaround time on large designs. Designs can be divided into
manageable partitions; each partition can be independently assigned to different design
groups to be developed in parallel.

Flow Methodologies

Hierarchical design can be divided into three general stages: chip planning, implementation,
and chip assembly.

m Chip Planning
Breaks down a design into block-level designs to be implemented separately.
B Implementation

This stage consists of two sub-stages: block implementation for a block-level design, and
top-level implementation for a design based on block-level design abstracts and timing
models.

m Chip Assembly

Connects all block-level designs into the final chip.

This chapter covers the following methodologies in the partitioning area:

B Top-down Methodology

m Bottom-up Methodology

October 2010 266 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Top-down Methodology

The top-down methodology usually consists of top-down planning, implementation, and chip
assembly stages. Use this methodology to create a top-level or hierarchical floorplan from a
flat floorplan based on fenced modules. In this approach, the die size, shape, and 1/O pads
locations will drive block and partition placement. Block-level design size and pins will be
generated based on the top-level floorplan.

Chip Planning

The following steps describe the most common flow for chip planning, which includes
specifying partitions and blackboxes:

1.

Import the entire design to be partitioned.

Import the design into the Encounter Digital Implementation System (EDI System)
environment. You can also include blackboxes.

(Optional) Define the blackboxes.

If your design has blackboxes that are not specified in step 1, you can define them after
reading in the netlist. You can also adjust the size of the blackboxes. For more
information, see Saving Blackboxes.

Lay out the floorplan.

Manually pre-place all modules that will become partitions or blackboxes. You can also
generate an initial floorplan by running plandesign to place Macros, then place standard
cells and/or bring all modules inside the core by generating the floorplan guide (using the
Floorplan — Generate Floorplan Guide menu command or the generateGuide text
command).

Run power planning.
Specify the modules and blackboxes that will become partitions.

You can further adjust blackbox size, if necessary. For more information, see Specifying

Partitions and Blackboxes.

Run placement.
(Optional) Insert feedthrough buffers.

Insert feedthrough buffers into partitions to avoid routing nets over partition areas. This
step is necessary for channelless or mixed designs. For more information, see Inserting
Feedthroughs.

October 2010 267 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#generateGuide

Encounter Digital Implementation System User Guide
Partitioning the Design

11.
12.

13.
14.

Run Trial Route before this step if you want to run route-based feedthrough insertion. You
must also run Trial Route if you want to display and generate a list of all nets that cross
over the top of each partition (using the Partition — Show Wire Crossing menu
command or the showPtnWireX text command).

Run Trial Route

Depending on what stage of the design is in, such as prototyping, intermediate, tapeout,
use the appropriate option of the trialRoute command. For example, the
-floorplanMode option should be used for prototyping and the -highEf fort option
should be used for tapeout mode. Use the ~-handlePartition orthe
-handlePartitionComplex parameter for channel-based designs. Use the
-handlePartitionComplex parameter for channelless designs only after the
feedthrough insertion step.

For channel based designs with thick channels, instead of running trialRoute with
the -handlePartitionComplex parameter, use trialRoute -
fastRouteForPinAssign. This route option generates routing topology similar to
trialRoute -handleParittionComplex butwith lesser runtime because it routes
only the inter partitions and top-level nets.

If your design has blackboxes, you can run the trialRoute command with the
-routeBasedBBPin parameter. With this parameter, the trialRoute command
determines near-optimal location for blackbox pins with respect to top channel
congestion and places blackbox pins at these locations. The trialRoute command
then creates routes to the blackbox pins without crossing over blackboxes.

The results give the first-order location of aligning the partition pins.

. Assign partition pins and blackbox pins using the assignPtnPin command.

. Regenerate the routes that follow assign pins using the trialRoute -honorPin

command.
Validate pin assignment result
If needed, refine the pin assignment results or perform incremental pin assignment.

If pin placement results need to be improved, you can further refine pin placement
manually or automatically. After re-adjusting pins, verify pin placement again.

Budget the timing for blocks using the deriveTimingBudget command.

Partition the design using the partition command.

If your design has multiple instantiated partitions, run the alignPtnClone command
before the pin assignment step to make sure that all partition clones are well aligned with
the master partition on a power mesh so you will not have any problems when flattening

October 2010 268 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/partitionT.html#alignPtnClone
../fetxtcmdref/timingbudgetingT.html#deriveTimingBudget
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/partitionT.html#showPtnWireX

Encounter Digital Implementation System User Guide
Partitioning the Design

the partitions. For more information, see Specifying Multiple Instantiated Partitions and
Blackboxes.

15. Save the partition.

This creates a directory for each block, and saves its netlist, floorplan, and budgeted
constraints to this directory. For top-level designs, this also creates a directory containing
the top-level netlist, floorplan, simple timing model, and physical abstract for each
partition block or blackbox. Subsequent work should be done in these block-level and
top-level directories for implementing the block-level and top-level designs, respectively.

) Tip

, You should do all design work in each saved partition directory, including the
top-level directory.

Implementation

After the chip planning is complete, the next stage is to implement the individual blocks. The
detail of each block is implemented using the constraints for timing, size, and pin assignment
determined during the planning stage. Block implementation should be done at a block
directory that was generated by the savePartition step. At the completion of this step,
block abstracts, timing models, a DEF file, and a GDSII file should be generated to be used
in top-level implementation and chip-assembly.

The next step is to implement the top-level designs with block model data, such as LEF, timing
model, power model, and noise model.

Chip Assembly

Chip assembly is the last stage in the top-down process and consists of bringing together the
detailed information for the top-level and all of the blocks for full chip extraction, power, timing,
and crosstalk analysis. Chip assembly is done using the assembleDesign command.

Note: Before using the assembleDesign command, for each design, save the top-level and
the block-level designs using the saveDesign -def command.

As an example, consider a design called dtmf that has two partitions: arb and tdsp. After
running the partition command, the partition directories are saved under the PTN
directory. You would, therefore, implement the following:

B top-level design dtmf_chip

B arb block

October 2010 269 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#savePartition
../fetxtcmdref/partitionT.html#partition

Encounter Digital Implementation System User Guide
Partitioning the Design

B tdsp block

The design files are arb.enc.dat and tdsp.enc.dat for the arb and tdsp blocks
respectively. The following figure shows the directory structure:

PTN directory

dtmf_chip arb directory tdsp directory
directory
dtmf_chip.enc.dat arb.enc.dat file tdsp.enc.dat file
file

You can now perform chip assembly using the assembleDesign command. This command
does the following:

m Concatenates the Verilog netlist files from the partitions back to the top level

Note: The partition netlists and top level netlist are changed from the time the save
partition step was performed.

m Merges the design data with the original top design level. By default, data from DEF files
is used. However, you can use the - £e parameter to specify that EDI System data should
be used. You can also use data in the OpenAccess database format.

B Brings back the row information if the -row parameter is specified.

B Preserves scan chain information at partition block level design, thus minimizing the
floorplan data loss during partition and assemble design cycle. The start and stop scan
chain points at partition block 1/O pins are adjusted back to instances that connect to
scan chain points. Top-level scan chains are not connected to block-level scan chains.

Run this command from the directory that contains the full chip-level floorplan for the
top-down hierarchical flow.

For details of the syntax and the parameters, see the description of the assembleDesign
command in the Encounter Digital Implementation System Text Command Reference.

For this example, you would run the assembleDesign command as follows:

assembleDesign -topDir PTIN/dtmf chip/dtmf chip.enc.dat -blockDir PTN/arb/
arb.enc.dat -blockDir PTN/tdsp/tdsp.enc.dat -topFP fullChip.fp

October 2010 270 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#assembleDesign

Encounter Digital Implementation System User Guide
Partitioning the Design

This assembles the entire design.

You can also use the assembleDesign command to bring back specified block data from
OpenAccess database. Here is an example:

assembleDesign —topDesign testOALib DTMF layout -block testOALib ptnl layout -block
testOALib ptn2 layout

In this example, the OpenAccess database top-level library is testOALib, the top-level cell
name is DTMF, and the top-level view is 1ayout. Two blocks, ptnl and ptn2, have been
specified.

Note: The assembleDesign command supports rectilinear partitions. It also supports
nested blackboxes for the place-and-route data (- fe parameter) and the OpenAccess
database. However, because blackbox information cannot be specified in a block-level DEF
file, nested blackboxes are not supported for the DEF flow.

Bottom-up Methodology

The bottom-up methodology consists of implementation and assembly stages. In the bottom-
up methodology, the size, shape, and pin position of block-level designs will drive the top-level
floorplanning.

Implementation

Each block in the design must be fully implemented. This includes place and route as well as
clock, power, and I/O.

This section covers the following topics:

m Block Implementation

B Top-level Implementation

Block Implementation

The size of a block-level design can be derived or adjusted using the Floorplan — Specify
Floorplan menu command or the £1oorPlan text command. The EDI System software can
support a rectilinear block level design. You can use the same procedure to create a
rectilinear partition to create a rectilinear block-level design using the following steps:

1. Click on the Cut Rectilinear widget from the Tools area.

2. Move the mouse to an edge or corner of the design.

October 2010 271 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/floorplanT.html#floorPlan

Encounter Digital Implementation System User Guide
Partitioning the Design

3. Left click and drag over the area.

4. Left click again to complete the cut.

At a block level design the rectilinear information will be stored in a floorplan file as a
CellPtnCutList syntax, for example:

CellPtnCutList: execute_i 2
0.0000 142.5100 37.1200 181.4400
156.3800 154.9350 180.1800 181.4400

You can run the assignIoPins text command to assign I/O pins based on placement
information.

You can specify initial I/O pin placement in an 1/O constraint file. For more information, see
the Generating the 1/0 assignment File section in the “Data Preparation” chapter of the
Encounter Digital Implementation System User Guide. You can read in the 1/O
constraint file into the EDI System environment during the design import step, or use the
loadIoFile text command after reading in the netlist.

If an I/O constraint file does not exist, an initial I/O pin placement can be derived from cell
placement. After placing macros and standard cells, the placer can internally call the
assignIoPins text command to place I/O pins based on current cell placement. By default,
pins are placed under power areas on different layers. Use the -pinOffStripes or
-noPinBelowStripe option of the assignIoPins command to disable the default
behavior.

Note: Use the setPlaceMode -placeIoPins option to disable I/O pin assignment during
placement.

After I/O pins have been assigned, you can further refine the current I/O pin assignment by
doing either of the following:

October 2010 272 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assignIoPins

Encounter Digital Implementation System User Guide
Partitioning the Design

B Adjust pins (using the Pin Editor or the edi t Pin text command). You can also use direct
pin manipulation to manually move selected pins to different locations.

B Run incremental pin assignment by running the assignIoPins text command. This
command honors fixed pins and re-assigns only the ones that have a placed or
unplaced status.

Note: The 1oadIoFile text command automatically sets the I/O pin placement status to
fixed. For the pins that need to be re-assigned, you must change their pin placement status.

You can use the 1egalizePin text command to resolve pin overlaps or pins
off-grid.

Top-level Implementation

After block implementation, an abstract should be developed for each block-level design that
will be used in the top-level implementation.

For the bottom-up approach, create a top-level floorplan where block-level abstracts would be
referenced in the top-level design.
Chip Assembly

For the bottom-up approach, see Chip Assembly, to bring together all the top-level and block-
level netlists and routing information.

Note: For the bottom-up approach, do not use the -topFP option of the assembleDesign
command.

October 2010 273 Product Version 9.1.3

../fetxtcmdref/partitionT.html#legalizePin
../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#editPin

Encounter Digital Implementation System User Guide

Partitioning the Design

Specifying Partitions and Blackboxes

Defining Partitions on page 275

Defining Partitions as Power Domains on page 277

Defining Blackboxes on page 277
Saving Blackboxes on page 279

Handling of Blackboxes with Non-RO Orientation on page 280
Specifying Multiple Instantiated Partitions and Blackboxes on page 282

Changing Partition Clone Orientation on page 283

Specifying Rectilinear Partitions and Blackboxes on page 284

Specifying Core-to-1/0O Distance for Partition Cuts on page 285

Specifying Nested Partitions on page 286

Assigning Pins on page 287

October 2010 274

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Defining Partitions

To designate partitions, use the definePartition and gpecifyPartition text
commands and the Specify Partition form.

The following figure shows an example of how some of the fields in the Specify Partition form
relate to the partition. For a description of all the fields, see Specify Partition in the Encounter
Digital Implementation System Menu Reference.

Partition Pins

o —

Partition Core

Specify Partition

~ Partition List

Hinst Mame:

e (Partition Mame):
Tech Site: 130NMMETROSITE
0o

. oo
Min Pin spacingis ~ \ _\ - - .
RoXjng Halo Bottom Layer. (ka1 ») |_#ddiReplace

every other metal track _ . | A
RoNting Halo Top Layer: [k& » | L elele J

Cell -
unit: micran
Row o
Layers Reserved For Partition: » m1 o MZ & ~ 4 ST e
| Power Domain |
tinimum Fin Pitch: Leit 4
Placement Hala: Lef 0.0 Right \ 0.0 Top \ 0.0 Battam 0.0
Care Ta: Left 0.0 Right 0.0 Top 0.0 Bottom 0o
Partition Pin Layer Used:
Top: ¥ ME M3 ¥4 M ¥ ME M7 ¥ NS
Left: oM W AT M & ME L ME & BT ME
Bottom: M ME M3 MR ME ™ ME . MT W ME
Right: R 1% 0 % P RN 1" SN 1 R U | I %
» Save Partition Spec. to: dimf_chip.ptn =

k Apply 'j k Load.. J Lﬁelected:j L' Qefault:j L Qancel:j L Help J

To specify a module as a partition, complete the following steps:
1. Move the module inside the core area.

You can manually move a module, or use the setObjFPlanBox text command, to
define a new module boundary with its coordinates in the core area.

October 2010 275 Product Version 9.1.3

../fetxtcmdref/partitionT.html#definePartition
../fetxtcmdref/partitionT.html#specifyPartition
../encounter/partitionG.html#SpecifyPartition
../encounter/partitionG.html#SpecifyPartition

Encounter Digital Implementation System User Guide
Partitioning the Design

Note: A blackbox is a special partition where this restriction does not apply.
Note: You cannot create donut shaped objects during the partition flow.

2. Specify the name of the partition.

3. Specify the instance name of a module that is to become a partition.

Note: A partition cannot have another partition as its ancestor or descendant. For the
case where more than one module is instantiated with the same cell type, see Specifying
Multiple Instantiated Partitions and Blackboxes.

4. Specify the space, in micrometers, between the module boundary and core design area
of the partition module.

5. (Optional) If the partition row height is different than specified in the Core Spec page of
the Design Import form, specify the row height, in micrometers.

6. (Optional) To account for wide wires at the top-level design, specify the extra spacing, in
micrometers, around the partition.

At the top-level design, this information is saved as part of the partition section in a
floorplan file. This information is also saved in a partition floorplan file when saving
partitions. By default, this value is 0; the top-level router uses minimum wire spacing.

7. Specify the selected metal layers that are used for routing in the partition and generating
partition pins.

A normal six-metal layer selection process is M1, M2, M3, M4 and M5 selected, and M6
unselected. When saving the partition, the LEF generated for this partition will have
routing blockages on their layers so that the top-level router is aware of which metal
layers are being used in the partition.

The selected metal layers generate a file which is saved in the top-level design directory.
This file notifies the top-level which metal layers are being used in the partition. In
addition, the floorplan file generated by saving partition will include the routing blockage
for the partition. To customize routing interconnects over a partition, use the Add
Partition Feedthrough widget.

8. (Optional) Specify the pin pitch dimension for the partition sides.
9. (Optional) Select or deselect the metal layers from the defaults.

Deselecting all metal layers for a side of a partition prevents pins from being created for
the entire side of that partition.

The selection of partition pin metal layers works in conjunction with the Partition Pin
Guide floorplan object. The partition pin guide object specifies exactly where the pins are

October 2010 276 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

to be created. When partition pin guide objects are not used, the partition pins are
created where the top-level routing connects with the partition.

10. Add the partition information to the Partition List field and save the partition
specification file.

Defining Partitions as Power Domains

If a block-level design has different row structures than a top-level design, you will need to
define a partition as a power domain. The power domain must be a hierarchical instance. The
power domain will have the same size as the partition fence.

To specify a partition as a power domain, complete the following steps:
1. Import the design.
2. Create the power domain.
3. Floorplan the design.
In this step you would normally place the 1/Os, place the power domain, and so on.

4. Assign a partition to a power domain by specifying the same power domain hierarchical
instance as the partition.

5. Continue with the normal partition flow (see Defining Partitions on page 275).

Defining Blackboxes

Normally a blackbox is a module with content that is not well defined. However, a well-defined
module can also be defined as a blackbox. A blackbox is similar to a hard block, but like a
fence, a blackbox can be resized, reshaped, and have pins assigned. After a blackbox has its
pins assigned and is partitioned, it behaves like a hard block. The blackbox feature can be
used only with a partitioned design.

After the netlist has been loaded, you can further specify which modules or cells will be
regarded as blackboxes, or modify the existing blackbox sizes. A blackbox size can be
specified in terms of an estimated area (an actual value or an area value in terms of gate
count), or a fixed block width and height.

You can define a blackbox in the following ways:

B Usethe setImportMode -treatUndefinedCellsAsBbox False -
keepEmptyModule True command before importing a design. Once the design is

October 2010 277 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

imported, specify a module or hard macro as blackbox using the specifyBlackBox
command or the Specify Black Box GUI form.

Note: Converting a hard macro into a blackbox will not update the blockage definitions
when you change the blackbox size.

m Define LEF abstracts for blackboxes. You can specify a blackbox library in the LEF Files
field of the Design Import form.

If a blackbox LEF abstract is specified in the LEF Files field, the LEF abstract should
have CLASS type as BLOCK BLACKBOX to indicate it is a blackbox.

The following is an example of a blackbox LEF abstract:

MACRO amba_dsp
CLASS BLOCK BLACKBOX ;
ORIGIN 0 0O ;
SIZE 4411.8600 BY 5697.3600 ;
END amba_dsp

After defining a blackbox with any of the above methods, you can further modify an existing
blackbox size with the specifyBlackBox command.

Note: You can use the getBlackBoxArea command to retrieve the standard cell area,
macro area, and cell utilization value for the specified blackbox.

@auﬁon

If you convert a hard macro into a blackbox or define a blackbox with a
LEF abstract that has obstructions, the obstructions size will not be
updated with a new blackbox size. Due to this limitation, obstructions
may be intruded outside of the new blackbox boundary.

Blackbox Flow

Note: Even though there are more than one ways to define a black box, it is recommended
that you define a black box by using the gspeci fvBlackBox command.

The following flow specifies blackboxes with an original netlist that has modules with content
that is not well-defined:

1. Import the design. By default, the EDI System software keeps empty modules

(setImportMode
-treatUndefinedCellAsBbox false -keepEmptyModule true)

2. Specify the blackboxes or load a floorplan file with blackbox information.

October 2010 278 Product Version 9.1.3

../fetxtcmdref/partitionT.html#specifyBlackBox
../fetxtcmdref/importT.html#setImportMode
../encounter/partitionG.html#SpecifyBBox
../fetxtcmdref/partitionT.html#specifyBlackBox
../fetxtcmdref/partitionT.html#getBlackBoxArea
../fetxtcmdref/partitionT.html#specifyBlackBox

Encounter Digital Implementation System User Guide
Partitioning the Design

. Floorplan the design.

3
4. (Optional) Save the design, which saves the blackbox information.
5. Run placement.

6

. (Optional) Run Trial Route with or without the -routeBasedBBPin parameter. When
you run Trial Route with this parameter, Trial Route determines near-optimal location for
blackbox pins with respect to top channel congestion and places blackbox pins at these
locations. Trial Route then creates routes to the blackbox pins without crossing over
blackboxes.

7. Proceed with the normal hierarchical flow for the design.
There is no separate step required for assigning blackbox pins or committing the blackbox.

After the blackbox pins are placed at near-optimal location by running Trial Route with the
-routeBasedBBPin parameter, use the assignPtnPin command to finally place
blackbox pins to honor user-specified constrains.

When you partition the design, blackboxes as well as regular partitions are committed.
Blackboxes get converted to hard macros at top-level design that display as a Block objects
in the Attribute Editor.

The following flow is an ECO flow where the contents of the black box are now well defined.

1. Restore the design (or import the design and load a floorplan with the black box
information)

2. Run the loadBlackBoxNetlist command to incrementally load the netlist for the
blackbox. You can run this command without exiting the current session of the EDI
System software.

3. Run the convertBlackBoxToFence command to convert the blackbox to a fence.

Note: To convert the fence back to a blackbox, run the convertFenceToBlackBox
command.

Continue with the following steps to finalize pin assignment for the black box:

4. Proceed with the normal hierarchical flow for the design.

Saving Blackboxes

To save blackbox information, use the saveDesign command or the File — Save Design
menu command.

October 2010 279 Product Version 9.1.3

../fetxtcmdref/partitionT.html#loadBlackBoxNetlist
../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/floorplanT.html#saveFPlan
../fetxtcmdref/partitionT.html#convertBlackBoxToFence
../fetxtcmdref/partitionT.html#convertFenceToBlackBox
../encounter/editG.html#ObjAttr

Encounter Digital Implementation System User Guide
Partitioning the Design

Deleting Blackboxes

If a blackbox is an empty module in the netlist, or a cell without a physical macro definition,
you must modify the netlist before you can delete it.

N
()" Tip

You should not delete a blackbox that was originally defined as a macro in the
technology file; otherwise, you might have problems with loosely integrated
applications because these application interfaces automatically generate only
macro definitions for blackboxes. You should only use the delete capability to try out
different floorplan.

Handling of Blackboxes with Non-R0 Orientation

The partitioning- and blackbox-related commands in EDI System support only those
blackboxes whose master instances have an RO orientation. Clones with a non-R0 orientation
clones are, however, supported.

Partitioning-related commands such as assignPtnPin, partition, assembleDesign,
flattenPartition, convertBlackBoxToFence, and editPin work only with those
blackboxes whose master instances have an RO orientation.

Several commands in the EDI System software automatically convert the orientation of
master blackboxes to RO.

In addition, you can also run the changeBBoxMasterToR0 command to convert the
orientation of the master blackboxes to RO. This would be useful for example, you restore a
design and want to convert the orientation of all the master blackboxes to RO.

The following sections provide addition information about automatic conversion of orientation
and about the changeBBoxMasterToR0 command.

m Automatic Conversion of Orientation on page 280

m Performing RO Transformation on page 282

Automatic Conversion of Orientation

When the following commands change the orientation of a master instance blackbox to non-
RO, the commands automatically convert the new orientation to RO:

B specifyBlackBox

October 2010 280 Product Version 9.1.3

../fetxtcmdref/partitionT.html#specifyBlackBox
../fetxtcmdref/partitionT.html#changeBBoxMasterToR0
../fetxtcmdref/partitionT.html#changeBBoxMasterToR0
../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#flattenPartition
../fetxtcmdref/partitionT.html#convertBlackBoxToFence
../fetxtcmdref/partitionT.html#editPin

Encounter Digital Implementation System User Guide
Partitioning the Design

flipInst

multiPlanDesign

orientateInst

placeInstance

planDesign

rotateInst

In addition:

m Opening the Attribute Editor for such a master blackbox automatically converts the
orientation to RO.

B Using the Flip or the Rotate options from the context menu (the menu that appears when
you click the middle mouse button on an object) automatically converts the orientation to
RO.

B Using the Flip or the Rotate options on the Floorplan toolbox automatically converts the
orientation to RO. For more information, see Floorplan Toolbox in the “Floorplan Menu”
chapter of Encounter Digital Implementation System Menu Reference.

The conversion includes the following:
m Cell blackbox geometries (PORT, OBS, and so on) are transformed.

B Master instances are converted to RO orientation. The clone instances are oriented
accordingly.

Note: The placement location remains unchanged.

B Any pin guides, pin blockages, and pin constraints associated with transformed
blackboxes are deleted.

/ Important

There is no change in the design physically as a result of these transformations.
Only the cell orientation and the instance representation are modified.

As an example, if the blackbox master instance is MX, then after the transformation:
B cell geometries are transformed to MX

B The orientation of the master instance is changed to RO.

October 2010 281 Product Version 9.1.3

../encounter/floorplanG.html#FloorplanToolbox
../fetxtcmdref/floorplanT.html#flipInst
../fetxtcmdref/floorplanT.html#multiPlanDesign
../fetxtcmdref/floorplanT.html#multiPlanDesign
../fetxtcmdref/floorplanT.html#orientateInst
../fetxtcmdref/placementT.html#placeInstance
../fetxtcmdref/floorplanT.html#planDesign
../fetxtcmdref/floorplanT.html#rotateInst

Encounter Digital Implementation System User Guide
Partitioning the Design

Performing RO Transformation

For designs that contain blackboxes whose master instances have a non-RO0 orientation, you
can use the changeBBoxMasterToR0 command to convert the orientation of the master
blackboxes to RO. The syntax of the command is as follows:

changeBBoxMasterToR0O [-checkOnly] [{cellName | cellNameList}]

If a cell name, or a list of cell names, is not specified, the command converts the orientation
of all the non-R0O master blackboxes to RO.

If the -checkOnly parameter is specified, the command does not actually convert the
orientation of any master blackbox; it only displays the number of master blackboxes whose
orientation would have been changed had the command been run without the -checkoOnly
parameter.

For more information, see the description of the changeBBoxMasterToR0 command in the
Encounter Digital Implementation System Text Command Reference.

When you are ready to run a loosely integrated application, complete the following steps:

1. Run the saveDesign command to make sure that you have updated the size and pin
information.

2. Exit the EDI System software, or use the freeDesign text command.

3. Rerun the EDI System software with the updated macro information.

To delete all the blackboxes in the design, use the unspecifyBlackBox -all command.

Specifying Multiple Instantiated Partitions and Blackboxes

When a module with multiple instantiations (also known as repeated partitions) of the same
cell type is assigned to become a partition, you can specify either one of the multiple
instantiated hierarchical instances to be partitions. The name of a hierarchical instance used
for partition specification becomes the master partition, and the other instantiations are
clones of this master partition.

Note: All the master and clone hierarchical instances should be placed inside the core before
you specify the partition. This restriction does not apply to blackboxes.

October 2010 282 Product Version 9.1.3

../fetxtcmdref/importT.html#saveDesign
../fetxtcmdref/importT.html#freeDesign
../fetxtcmdref/partitionT.html#unspecifyBlackBox
../fetxtcmdref/partitionT.html#changeBBoxMasterToR0
../fetxtcmdref/partitionT.html#changeBBoxMasterToR0

Encounter Digital Implementation System User Guide
Partitioning the Design

When working with repeated partitions, you should be aware of the following:

B You can only specify one instance as a master partition. The EDI System software will
treat the other instances are partition clones.

m For the top-down hierarchical flow, where the top-level design is implemented first, the
instance must have a RO orientation; otherwise, you will run into problems with the pin
assignment, feedthrough buffer insertion, and commit partition steps.

m For the bottom-up hierarchical flow, where the block is implemented first, the partition
master can have a non-R0 orientation. Make sure all the non-uniquified instances are
placed inside the core before you specify the partition.

m For non-uniquified blackboxes, the EDI System software automatically converts all
hierarchical instances of a same module as repeated blackboxes. The hierarchical
instance that is first instantiated in the netlist is treated as the master blackbox.

m Partition and blackbox clones can be rotated and flipped if the design only has regular
square vias, and flipped if regular vias used in the design are symmetry in the flip
directions.

m Partition clones share the same pin assignment and pushed-down data as their partition
master, you must run the alignPtnClone command before the commit partition step
to make sure all the partition clones are well aligned with the master on power mesh so
you do not run into problems when flattening the partitions.

m Formaster and clones partitions, the EDI System software automatically snaps the clone
partitions such that clones will have the same row structure and pattern as their master.
To disable this snapping capability, use the -noEqualizePtnHInst option of the
loadFPlan command.

Changing Partition Clone Orientation

After specifying the partition, you can change the partition clones’ orientation by using the
setClonePtnOrient command or through Attribute Editor during floorplanning.

For routing purposes, the EDI System software automatically stitches regular wires and
rotates vias correctly for non-RO orientations, such as MX, MY, R90, R180, and R270.

For example, there is a case where some of the clones follow the orientation of the master
instance (R0), and some are placed with R180 orientation. After chip assembly, the EDI
System software flips and places the clone instances’ standard cells to match the R180 clone
orientation, and repositions the routing according to the R180 orientation.

October 2010 283 Product Version 9.1.3

../encounter/editG.html#ObjAttr
../fetxtcmdref/partitionT.html#setClonePtnOrient

Encounter Digital Implementation System User Guide
Partitioning the Design

Because R90 and R270 orientation clones have vertical rows, all the cell placement, routing,
and IPO should be done at the top-level before flattening step. After flattening the design, you
should only run full chip flat timing analysis.

The following example shows a design that has R90, R180, and R270 orientation clones:

T O g O g
E Master E E E
— Partition I — LWM'IM”m}”ﬁ‘k’.&' —
é \ RO R90 é é é
[] I [
— | Reo — = —
— R180 — = —
L L]

Floorplan View

Physical View after Unpartitioning
(does not show the top-level connection)

Note: The illustration above only shows the wire information inside the partition, and does
not include the top-level connection.

Specifying Rectilinear Partitions and Blackboxes

You can specify a rectilinear (non-rectangular) partition shape by adding a cut area. The
partition’s cut area will have no cell placement and no routing. Pins are assigned to the
rectilinear partition edges, as shown in the following figure:

Cut Area

pins

Partition Area

October 2010 284 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

The rectilinear pin assignment recognizes the rectilinear edges when assigning pins, and
supports any rectilinear shape. See Assigning Pins on Rectilinear Edges on page 318 for
more information.

To add a cut area to the partition or blackbox, complete the following steps:
1. Click on the Cut Rectilinear widget from the Tools area.
2. Move the mouse to an edge or corner of the partition or blackbox.
3. Left click and drag over the area.
4

. Left click again to complete the cut.

A macro definition file (LEF) will be created with blockage on the overlap layer covering the
cut area. For the top-level partition, the cut area allows block or cell placements.

The equivalent text command is setObjFPlanBoxList with the Module object type. For
backward compatibility, you can also use the createPtnCut text command. You should
specify a module as a partition before using createbPtnCut.

For repeated partitions or blackboxes, when you create a cut on one instance—either master
or clone—the cut is applied to the other instances as well.

Note: If a cut is made on a blackbox that has pins assigned to it, the affected blackbox pins
are automatically moved to the new edge boundary created by the cut.

Specifying Core-to-I/O Distance for Partition Cuts

Core-to-1/O distance is specified in the Specify Partition form. If the partition has a partition
cut, core-to-1/0O distance is honored where the cut is specified. The specified top, bottom, left,
and right core-to-1/0O distances is automatically assigned for the cutting edges that face the
north, south, west, and east side, respectively.

October 2010 285 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

For example, if you specify a core-to-I/O distance of 5 um for the top and bottom, and 2 um
for left and right sides:

The core to I/O distance for the edge A (facing east) should be 2 um. The core to I/O distance
for the edge B (faced to north) should be 5 um, same as the top side.

Specifying Nested Partitions

The EDI System software does not support a partition that is nested inside another partition.
For nested partitions, you can work around this limitation by specifying the second-level
partition at the partition-level design.

For example, consider a case where the module mult_32 is a nested module inside the
module tdsp_core and you want to define bothmult_32 and tdsp_core as partitions. For
this, first define tdsp_core as a partition and then follow the normal partition flow to define
mult_32 as a partition. Here are the steps:

1. Import the design.

Specify tdsp_core as partition.
Perform placement and routing.
Commit the partition tdsp_core.
Save the partition.

Change to the tdsp_core partition directory.

N o g » 0 DN

Define mult_32 as a partition.

October 2010 286 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Assigning Pins

You can optimize partition and blackbox pins in the EDI System environment based on routing
or placement information. You can assign the pins or ports to a location on a partition, and
set various constraints as per your requirements on pin assignment, for example, you can
create pin blockages on specified areas.

Run the Check Pin Assignment menu command (Partition— Check Pin Assignment) or the
checkPinAssignment text command after pin assignment to make sure that all pins are
assigned, are placed on routing grids, and are not overlapping.

Blackbox pins are assigned in the same way as partition pins.

Pin assignment supports the following:
B Rectilinear partitions and black boxes

B Repeated partitions and black boxes. Both master and clones are considered when
assigning their pins.

B Designs with an arbitrary origin.
® Non-uniform tracks.

Note: Pin assignment assigns only signal pins but it does honor power/ground stripes and
followpins. Power and ground pins are created when the design is partitioned.

/ Important

You cannot assign blackbox or partition pins when design is unplaced and unrouted.
Make sure you place the design before partitioning; otherwise, all pins will be
unplaced.

The following sections describe pin assignment in EDI System:

Assigning Partition and Blackbox Pins

Assigning I/0O Pins

Performing Congestion-aware Pin Assignment for Channel-based Designs

Assigning Pins on Rectilinear Edges

Swapping Partition Pins
Snapping Pins to the Grid

Assigning Pins for Bus Guides

October 2010 287 Product Version 9.1.3

../encounter/partitionG.html#CheckPinAssignment
../fetxtcmdref/partitionT.html#checkPinAssignment

Encounter Digital Implementation System User Guide
Partitioning the Design

B Pin Assignment Limitations

October 2010 288 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Assigning Partition and Blackbox Pins

Assigning pins for partitions and blackboxes includes the following steps:

m Setting Pin Constraints on page 289

Assigning Pins on page 299

Validating Pin Placement Results on page 302

Refining Pin Assignment and Fixing Pin Violations on page 306

ECO Pin Assignment on page 309

Setting Pin Constraints

The EDI System software provides a number of constraints to control or guide partition,
blackbox, or I/O pin assignment:

m Pin Group

Net Group
Pin Guides

Pin Size (Width and Height)

Pin Spacing
Pin Layers

Pin-to-corner distance

Pin Blockage

Pin Group

While assigning bus pins or signal pins that you want to be placed together, you can specify
a constraint for these pins by creating a cell pin group. You can create a cell pin group with
the createPinGroup text command or by using the Edit Pin Group GUI form (Edit—Edit
Pin Group). You can add pins to a cell pin group withthe createPinGroup text command
or with the addPinToPinGroup text command.

Cell pin groups do not have to be associated with a partition pin guide because a pin group
is not a constraint on any partition edge. In this case, the pin assignment program can freely
place this group of pins on any edge of the partition. However, pins that belong to this pin
group are still placed together in adjacent locations.

October 2010 289 Product Version 9.1.3

../fetxtcmdref/partitionT.html#createPinGroup
../fetxtcmdref/partitionT.html#createPinGroup
../fetxtcmdref/partitionT.html#addPinToPinGroup
../encounter/editG.html#EditPinGroup

Encounter Digital Implementation System User Guide
Partitioning the Design

With a pin group you can:

m Optimize order of pins within a cell pin group to improve wire length using the
-optimizeOrder option of the createPinGroup text command. If this option is not
specified, the pin order is exactly as specified in the pin group.

m Place pin members of a pin group on alternate layers using the -alternatelLayer
parameter of the createPinGroup text command.

B Specify pin spacing. The default minimum pin spacing between pins of a cell pin group
is two tracks.

The following commands create a pin group pGroup1l that consists of 3 INT bus bit pins of
the module ALU. These pins can be optimized within the pin group:

createPinGroup pGroupl -cell ALU -pin {INT[O] INT[2] INT[3]} -optimizeOrder

Or

createPinGroup pGroupl -cell ALU -optimizeOrder
addPinToPinGroup -cell ALU -pinGroup pGroupl -pin {INT[0] INT[2] INT[3]}

Use the deletePinGroup command to delete a pin group or all pin groups.

Use the deletePinFromPinGroup command to delete a pin from a pin group.

Net Group

You can create a net group using the createNetGroup command or by using the Edit Net
Group GUI form (Edit—Edit Net Group). You can specify net members when creating a net
group or add them later using the addNetToNetGroup command. To be honored by pin
assignment, net groups must be used in conjunction with a pin guide.

As for a pin group, you can optimize net pin order, alternate pin layers, and specify pin spacing
for a net group.

The following commands create a net group nGroup1 that has two nets NET1 and NET2 with
minimum pin spacing of 2 tracks.

createNetGroup nGroupl -net {NET1l NET2} -spacing 2

Or

createNetGroup nGroupl -spacing 2
addNetToNetGroup nGroupl -net {NET1 NET2}

Use the deleteNetGroup command to delete a net group or all net groups.

October 2010 290 Product Version 9.1.3

../fetxtcmdref/partitionT.html#createPinGroup
../fetxtcmdref/partitionT.html#createPinGroup
../fetxtcmdref/partitionT.html#deletePinGroup
../fetxtcmdref/partitionT.html#deletePinFromPinGroup
../fetxtcmdref/partitionT.html#createNetGroup
../encounter/editG.html#EditNetGroup
../encounter/editG.html#EditNetGroup
../fetxtcmdref/partitionT.html#addNetToNetGroup
../fetxtcmdref/partitionT.html#deleteNetGroup

Encounter Digital Implementation System User Guide
Partitioning the Design

Note: When you delete a net group, any bus guide associated with the net group also gets
deleted.

Use the deleteNetFromNetGroup command to remove a net from a net group.

Pin Guides

You can create a pin guide to constrain a bus, net, pin, net group, or pin group to be placed
in specific areas. A pin guide is used for specifying a physical guided area where pins
belonging to the pin guide will be placed.

Note: While creating a pin guide, you cannot optimize the order of pin members or specify
minimum spacing. If you want to control the pin order and the pin spacing of the members of
a pin guide, first create a net group or a pin group and associate this net group or pin group
with a pin guide.

A pin guide can support multiple constraint pin layers. In addition, any bus, net, pin, net group,
or pin group can be assigned to multiple pin guides.

You can create a pin guide using the Create Pin Guide widget from the GUI or through the
createPinGuide text command. A physical location constraint can be specified either as a
rectangular area or as an edge constraint. If you specify a physical location constraint as an
edge constraint, you will also need to specify the partition/black box cell name.

Here are a few examples of using the createPinGuide text command to create a pin guide.

Example 1: The following command creates a pin guide for a net group nGroup1l. The pin
order within this net group will be optimized. The pin members of this pin guide can be placed
on the top edge of the cell ALU. Pins will be placed on Metal2 or Metal4 layers:
createNetGroup nGroupl -net {NET1 NET2} -optimizeOrder

createPinGuide -netGroup nGroupl -edge 1 -cell ALU -layer {Metal2 Metald}

Example 2. The following command creates a pin guide for a pin group pGroup1 of cell/
module ALU. Pins of this pin guide will have a minimum spacing of 2 tracks:
createPinGroup pGroupl -cell ALU -pin {INT[O] INT[2] INTI[3]} -spacing 2
createPinGuide -area 678.52 371.25 778.53 787.33 -pinGroup pGroupl -cell ALU

The pins will be assigned on the preferred layers.

Example 3. The following command creates a pin group pGroup2. This pin group can be
placed on the top edge or the right edge of the cell TDSP. For top edge, pins can be assigned
on the Metal4 or Metal6 layers. For right edge, pins can be assigned on the Metal5 layer.
createPinGroup pGroup2 -cell TDSP -pin p addr* -optimizeOrder

createPinGuide -edge 1 -pinGroup pGroup2 -cell TDSP -layer {Metald4 Metal6}

October 2010 291 Product Version 9.1.3

../fetxtcmdref/partitionT.html#deleteNetFromNetGroup
../encounter/startingG.html#AddPartitionPinGuides
../fetxtcmdref/partitionT.html#createPinGuide
../fetxtcmdref/partitionT.html#createPinGuide

Encounter Digital Implementation System User Guide
Partitioning the Design

createPinGuide -edge 2 -pinGroup pGroup2 -cell TDSP -layer Metalb

You can also use the GUI to create a partition pin guide, as follows:

After you have determined a pin guide location in the design display area, you can create a
partition port for a net or bus name and add a partition pin guide. To add a partition pin guide
through the GUI, complete the following steps:

1. Inthe Tools area, click the Create Pin Guide widget.

2. Press the F3 key to bring up the Set Pin Guide Options GUI form. Alternatively, select
Edit — Create Pin Guide to display the Set Pin Guide Options GUI form. Use this form to
specify the pin guide name, cell name, mode (by area or by edge), and the applicable
layers.

3. Click and drag over a partition fence overlap to specify the area or edge.

For vertical edges, the first pin generated starts from the bottom intersect point. For
horizontal edges, the first pin generated starts from the left intersect point, as shown in
the following figure:

Partition Partition
Pin Guide 1 Pin Guide 2

Creates ports at the top side, >
starting left-to-right

Creates ports at the right side,
starting bottom-to-top

Partition

The default pin spacing is 2, which places one pin for every two metal tracks. You can
change the pin spacing with the Minimum Pin Pitch field in the Specify Partition form,
or by changing spacing of the associated pin group or net group. You can use the Move/
Resize/Reshape tool to modify the pin guide location.

Note: For a partition that has a rectangular cut, the partition pin guide must be placed
on the edge of the cut. You can also use a pin guide to assign pins, net group, or a pin
group to a specific side without specifying a pin guide area by using the
createPinGuide command.

4. Change the partition pin guide object name to the net, bus, or net group name.

Use the partition pin guide attribute editor to change pin guide name to a net name, or
the name of a predefined net group or pin group.

October 2010 292 Product Version 9.1.3

../encounter/startingG.html#AddPartitionPinGuides
../encounter/partitionG.html#SpecifyPartition
../encounter/startingG.html#MoveResizeReshape
../encounter/startingG.html#MoveResizeReshape
../fetxtcmdref/partitionT.html#createPinGuide
../encounter/editG.html#SetPinGuideOptions

Encounter Digital Implementation System User Guide
Partitioning the Design

If the partition pin guide was assigned the net group name, all nets and buses added to
this net group name will have partition pins generated for the partition. Pins are
generated in the order the net or bus was entered by the addNetToNetGroup
command. Pins for unconnected nets and buses are randomly assigned. You can also
use the partition pin guide to assign floating pins.

Use the deletePinGuide command to delete a pin guide or all pin guides.

Pin Size (Width and Height)

By default, pin size will be created based on the minimum area rule. Use the
setlLayerPinWidth and gsetLaverPinDepth commands to set new pin width and depth
of a routing layer for a specific partition/black box cell. When this constraint is defined, pin
assignment will use these values for creating pin size.

You can also specify pin size for a specific pin or pin group using the setPinwWidth and the
setPinDepth commands.

Use the getLayerPinWidth and the getLayerPinDepth commands to retrieve pin width
and depth for particular layer(s) of specific partition/black box cell.

Use the getPinwWidth and the getPinDepth commands to retrieve width and depth of a
specific pin or pin group.

Example 1: The following commands set the pin width and depth of layer Metal2 for partition
cellALUto 0.4 and 0. 6 respectively.

setLayerPinWdith -cell ALU -layer Metal2 -width 0.4
setLayerPinDepth -cell ALU -layer Metal2 -depth 0.6

Example 2: The following commands set the pin width of pin group pGroup1 to 0.3 and pin
depth of pin pGroup1 to default.

setPinWidth -cell ALU -pinGroup pGroupl -width 0.3
setPinDepth -cell ALU -pinGroup pGroupl -default

With this example, all the pins of pin group pGroupl will have the width 0.3 and the default
depth.

Pin Spacing

You can set minimum pin spacing in terms of track number using the Specify Partition form
(Partition — Specify Partition). The default pin spacing is 2, which places a pin for every two
metal tracks.

October 2010 293 Product Version 9.1.3

../encounter/partitionG.html#SpecifyPartition
../fetxtcmdref/partitionT.html#addNetToNetGroup
../fetxtcmdref/partitionT.html#deletePinGuide
../fetxtcmdref/partitionT.html#setLayerPinWidth
../fetxtcmdref/partitionT.html#setLayerPinDepth
../fetxtcmdref/partitionT.html#setPinWidth
../fetxtcmdref/partitionT.html#setPinDepth
../fetxtcmdref/partitionT.html#getLayerPinWidth
../fetxtcmdref/partitionT.html#getLayerPinDepth
../fetxtcmdref/partitionT.html#getPinWidth
../fetxtcmdref/partitionT.html#getPinDepth

Encounter Digital Implementation System User Guide
Partitioning the Design

You can modify the pin spacing in the following ways:
m Global pin spacing at design level

Use the setGlobalMinPinSpacing and the getGlobalMinPinSpacing
commands to set and retrieve global pin spacing. This spacing value will be applied to
all partition/black box pins of the design.

m Partition/black box level

Use the definePartition command with —-minPitchTop, -minPitchBottom,
-minPitchLeft, and -minPitchRight parameters to specify minimum pin spacing
for a partition. Similarly, to specify the minimum pin spacing for a blackbox, use the
specifyBlackBox command with -minPitchTop, - minPitchBottom,
-minPitchLeft, and -minPitchRight parameters.

B Specific partition/black box area or edge

Use the setMinPinSpacing and the getMinPinSpacing commands to set and get
the minimum pin spacing for a particular edge or all edges of a partition/black box cell.

The -edge parameter of the setMinPinSpacing and getMinPinSpacing
commands can take the following values:

Q N, S, W, E(supports both upper and lower case)

Q T, B, L, R(supportsboth upper and lower case)

Q dbcN, dbcS, dbcE, dbcW

Example1: The following commands set the minimum pin spacing for top and bottom
edge of partition cell ALU to 1 track.

setMinPinSpacing -cell ALU -edge T -spacing 1
setMinPinSpacing -cell ALU -edge B -spacing 1

Example 2: The following command sets minimum pin spacing for all edges of partition
cell TDSP to 3 tracks

setMinPinSpacing -cell TDSP -all -spacing 3
m Pin group or net group
Use the createPinGroup or the createNetGroup commands to specify minimum

pin spacing at the pin group or net group level. This specified minimum pin spacing will
apply to all the pin members of the specified pin group or net group.

m Pinlevel

Use the setPinConstraint command to specify minimum pin spacing of a particular
pin.

October 2010 294 Product Version 9.1.3

../fetxtcmdref/partitionT.html#specifyBlackBox
../fetxtcmdref/partitionT.html#setGlobalMinPinSpacing
../fetxtcmdref/partitionT.html#getGlobalMinPinSpacing
../fetxtcmdref/partitionT.html#definePartition
../fetxtcmdref/partitionT.html#setMinPinSpacing
../fetxtcmdref/partitionT.html#getMinPinSpacing
../fetxtcmdref/partitionT.html#setMinPinSpacing
../fetxtcmdref/partitionT.html#getMinPinSpacing
../fetxtcmdref/partitionT.html#createPinGroup
../fetxtcmdref/partitionT.html#createNetGroup
../fetxtcmdref/partitionT.html#setPinConstraint

Encounter Digital Implementation System User Guide
Partitioning the Design

As spacing constraint can be specified at more than one level, pin assignment will honor
spacing constraint in the following order:

m Pin spacing

m Net group or pin group spacing

m Partition/black box spacing on a particular edge
m Partition/black box spacing

m Global spacing

Pin Layers

Specify pin layers that will be used for placing pins on a specific partition side using the
Specify Partition form (Partition — Specify Partition menu command). The equivalent text
command is setAllowedPinlaversOnEdge.

You can specify layer constraints at partition level, pin guide level, or pin level.
m Partition level
Layer constraint per edge can be specified at partition level using either

Q the Specify Partition form (Partition — Specify Partition menu command), or

QO the definePartition command with -pinLayerTop, -pinLayerBottom,
-pinLayerLeft, and -pinLayerRight parameters. These layer constraints will
be applied to all pins on a particular edge of the specified partition.

Q the setAllowedPinLayversOnEdge command with the -1layer and -edge
options. This command

m Pin guide level

Use the -1layer parameter of the createPinGuide command to specify layer
constraints for all pin members of a pin guide. Layer constraint at pin guide will override
the layer constraint at partition level.

B Pinlevel

Use the -layer parameter of the setPinConstraint command to specify layer
constraint for a specific partition/black box pin.

Note: Layers can be specified using the LEF layer names or layer ID numbers.

Layer constraint at pin level will have higher priority than layer constraint at partition level.

October 2010 295 Product Version 9.1.3

../fetxtcmdref/partitionT.html#setAllowedPinLayersOnEdge
../encounter/partitionG.html#SpecifyPartition
../fetxtcmdref/partitionT.html#setAllowedPinLayersOnEdge
../encounter/partitionG.html#SpecifyPartition
../fetxtcmdref/partitionT.html#definePartition
../fetxtcmdref/partitionT.html#createPinGuide
../fetxtcmdref/partitionT.html#setPinConstraint

Encounter Digital Implementation System User Guide
Partitioning the Design

If a layer constraint is applied to a pin that also belongs to a pin guide, the pin guide layer
constraint will have higher precedence.

If a layer constraint is being applied to a pin that already belongs to a pin group a or net group,
the layer constraint will not be applied. To apply layer constraint for this pin, first remove this
pin from the pin group or net group, and then apply the pin layer constraint.

Pin-to-corner distance

To keep pins away from partition/black box corners, you can set the pin-to-corner distance
constraint.

Use the setPinToCornerDistance command to set pin to corner distance for a particular
corner or all corners of a specific cell.

Use the getPinToCornerDistance command to retrieve the pin-to-corner value of a
cell-specific corner or all corners.

Use setPinToCornerDistance -cell * to set global pin-to-corner distance that will be
applied to all partition and blackboxes in the current design. The default value is 5 routing
tracks.

The -corner cornerNumber parameter of the commands specifies the corner of the
partition block. This is an integer value, where corner numbering starts at 0 from the
lower-left corner of a partition clock-wise. Corner 0 is the corner that has the smallest y
value.

Corner 2 Corner 1

R

Corner 0

Example: The following command sets pin-to-corner distance for corner 0 and corner 2 of the
cell ALU to 8 routing tracks.

setPinToCornerDistance -cell ALU -corner 0 8

setPinToCornerDistance -cell ALU -corner 2 8

October 2010 296 Product Version 9.1.3

../fetxtcmdref/partitionT.html#setPinToCornerDistance
../fetxtcmdref/partitionT.html#getPinToCornerDistance
../fetxtcmdref/partitionT.html#setPinToCornerDistance

Encounter Digital Implementation System User Guide
Partitioning the Design

Pin Blockage

After determining the partition pin blockage point, you can block that area from assigning pins
on specific metal layers. Pin assignment engines also honor regular routing blockages if they
intersect with partition edges.

You can create pin blockages with the Create Pin Blockage widget or by using the
createPinBlkg command.

Note: Trial Route does not honor the partition pin blockage.

To create the partition pin blockage with the Create Pin Blockage widget, complete the
following steps:

1. Click the Create Pin Blockage widget from the Toolbox. Alternatively, select Floorplan —
Edit Floorplan — Create Pin Blockage.

2. Left click and drag over a partition fence overlap.

3. Use the Attribute Editor to specify the metal layers to block.

The following command creates a pin blockage for the entire left edge of cell TDSP on layer
M5.

createPinBlkg -edge 0 -cell TDSP -layer 5

If the -1ayer option is not specified, the pin blockage will be created on all partition/black box
reserved routing layers.

Use the deletePinBlkg command to delete a pin blockage or all pin blockages
(deletePinBlkg -all).

Performing Pin Pre-Assignment

You can pre-assign a pin before pin assignment using the Pin Editor or the editPin text
command. These pre-assigned pins will have fixed placement status so pin optimizers will
honor them. For more details, see the Pin Editor section in the “Edit Menu” chapter of the
Encounter Digital Implementation System Menu Reference.

Setting Constraints on a Specific Pin

Use the setPinConstraint command to specify the following constraints for a particular
pin:

B Physical location

October 2010 297 Product Version 9.1.3

../encounter/startingG.html#AddPartitionPinBlockage
../fetxtcmdref/partitionT.html#createPinBlkg
../fetxtcmdref/partitionT.html#deletePinBlkg
../encounter/editG.html#PinEditor
../fetxtcmdref/partitionT.html#editPin
../encounter/startingG.html#AddPartitionPinBlockage
../encounter/editG.html#PinEditor
../fetxtcmdref/partitionT.html#setPinConstraint
../encounter/editG.html#ObjAttr

Encounter Digital Implementation System User Guide
Partitioning the Design

A pin can be constrained by specifying its coordinate (x, y) location and its preferred
routing layer. If specified location is not on valid track, the pin will be snapped to the
closest location. To keep the pin on non-preferred routing layer or to not snap the pin, use
the editPin command instead.

Besides an actual physical location, a pin can also be constrained to a particular edge.
m Layer
B Spacing

For example, the following command specifies that the pin reset of partition cell mult_32
should be placed on top edge with either Metal5 or Metal?7 routing layer.
setPinConstraint -cell mult 32 -pin reset -edge 1 -layer {Metald Metal7}

For setting pin size constraint for a specific pin use the setPinWidth and setPinDepth
commands.

The following salient points apply to setting the pin constraints for a specific pin:

m If constraints are applied to a pin that also belongs to a pin guide, the pin guide constraint
will have higher precedence.

m If alocation and/or layer constraint is being applied to a pin that already belongs to a pin
group or a net group, the constraint will not be applied. To apply location and/or layer
constraint for this pin, first remove this pin from the pin group or net group, and then apply
the pin constraint(s).

m If a pin with layer constraints defined is added to a net group or pin group, the pin cannot
be added to a pin group or a net group with the createPinGroup, createNetGroup,
addPinToPinGroup, of addNetToNetGroup commands because the pin has already
been constrained. To add this pin to a pin group or net group remove the constraints first
(using the unsetPinConstraint command).

m If the following constraints cannot be met during pin assignment, the EDI System
software will issue a warning message and the constrained pins will be placed at the
lower-left corner of the partition/black box with unplaced placement status:

Q Pin constraint
@ Pin group constraint

Q Net group constraint

Use the unsetPinConstraint command to remove constraint settings for a specific pin.

October 2010 298 Product Version 9.1.3

../fetxtcmdref/partitionT.html#editPin
../fetxtcmdref/partitionT.html#setPinWidth
../fetxtcmdref/partitionT.html#setPinDepth
../fetxtcmdref/partitionT.html#createPinGroup
../fetxtcmdref/partitionT.html#createNetGroup
../fetxtcmdref/partitionT.html#addPinToPinGroup
../fetxtcmdref/partitionT.html#addNetToNetGroup
../fetxtcmdref/partitionT.html#unsetPinConstraint

Encounter Digital Implementation System User Guide
Partitioning the Design

Assigning Pins

There is no separate step required for assigning black box pins. To assign pins, use the
Partition — Assign Pins GUI menu or the assignPtnPin text command.

Pin assignment supports the following:
B Rectilinear partitions and black boxes
B Repeated partitions and black boxes.

® Non-uniform tracks

Pin assignment assigns signal pins but it does honor power/ground stripes and followpins.
Power and ground pins will be created during the partition step.

Placement-based Pin Assignment

Pin assignment is based on connectivity flightlines. Cell placement should be performed
before running pin assignment.

Route-based Pin Assignment

For route-based pin assignment, routing should be performed prior to the assignPtnPin

command. Routing cross points with partition/black box boundary will be used as guidance
for pin assignment.

For a design that has blackboxes, if you want to have near-optimal locations for black box pins,
the -routeBasedBBPin option should be used. The differences between Trial Route with
and without -routeBasedBBPin options are as follows:

Default Trial Route performs the following:
Q Assigns initial black box pins based on connectivity

a Creates temporary routing blockages over black boxes based on black box reserved
routing layers

O Runs trialRoute to route to black box pins

Q Removes temporary blockages

Trial Route with the -routeBasedBBPin parameter performs the following:

Q Shrinks black box boundary and runs connectivity based pin assignment to get initial
pin location

October 2010 299 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#assignPtnPin

Encounter Digital Implementation System User Guide
Partitioning the Design

Runs partition-aware routing (ptnAwareRouteForPA)
Re-adjusts black box pins to actual black box boundary based on routing cross point

Creates temporary routing blockages

o 0 O O

Runs trialRoute to route to black box pins

Q Removes temporary blockages

For channel-based designs that have thick channels, instead of using trialRoute -
handleParitionComplex, it is recommended to run trialRoute -
fastRouteForPinAssign.

However, if the design has black boxes then you can run Trial Route with -
routeBasedBBPin and -handlePartitionComplex options.

Tips for Assigning Partition Pins

For most of the designs, running the assignPtnPin command without any option should
give a reasonable result. However specific options can provide better results in some cases.
These options are described here:

-maxPinMovementForAlign and -skipPinRefine parameters

If you have ran partition aware routing (trialRoute -fastRouteForPinAssign Of
trialRoute -handlePartitionComplex)forpinassignment, you should use these
parameters to minimize pin movement from existing routing cross points because these
routing cross points should give near-optimal pin locations.

Example:

trialRoute -fastRouteForPinAssign

assignPtnPin -maxPinMovementForAlign 20 -skipPinRefine
-ptn ptnName -pin pinList parameter

Use this parameter for running incremental pin assignment or assigning specific pins of
specific partitions.

This parameter can be used in the following pin assignment scenarios:

O When you want to assign critical pins first and then assign the rest of partition and/
or black box pins.

O First, run pin assignment to assign these critical or specific pins. Use the above
option in conjunction with the -markFixed parameter so these pins will not be
moved by second pin assignment run.

October 2010 300 Product Version 9.1.3

../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/partitionT.html#ptnAwareRouteForPA
../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/routeT.html#trialRoute

Encounter Digital Implementation System User Guide
Partitioning the Design

O Run pin assignment again to assign the rest of the pins.

Example:

assignPtnPin -ptn tdsp core glue -pin {p_address[0] p_ address[3]} -ptn
alu 32 -pin rom data* -markFixed

assignPtnPin

In the previous example, if you are running routed based pin assignment, you should
run trialRoute between the first and the second pin assignment run so that the
routing that will be used for the second pin assignment is based on pin locations of
the first pin assignment step.

Q Runincremental pin assignment

This scenario is in contrast to the first scenario where you would run pin assignment
for all partition and/or black box pins, and then further re-optimize some specific
pins.

Example:

assignPtnPin

assignPtnPin -ptn mult 32 -pin {reset addr*}

If reset and all addr pins of the partition mult_32 have fixed placement status,
you should also use -moveFixedPin option; otherwise pin optimizer will not move
fixed pins.

B -noPinlLayerOverlap parameter

Use this parameter if you do not want the pin optimizer to place signal pins overlapping
each other on different layers. This option can be used to avoid DRC violations between
adjacent pins and the routing connecting to these pins.

October 2010 301 Product Version 9.1.3

../fetxtcmdref/routeT.html#trialRoute

Encounter Digital Implementation System User Guide
Partitioning the Design

The previous figure shows that adjacent pins are placed on alternate layers M2 and M4.
-enforceRoute parameter

With this parameter, pin assignment completely follows the routing information without
honoring any user-specified pin constraints and pin locations may not be legal. This
option should only be used for a rough pin assignment or for comparing pin locations
based purely on routing result with pin locations that are legalized. If you want to use
this pin placement result for your implementation stage, you need to run the
legalizePin command after the assignPtnPin command to legalize them.

Validating Pin Placement Results

You can perform the following steps to validate and correct pin placement results:

Checking the Pin Legality on page 303
Reporting QoR of Pin Assignment on page 303

Adjusting Pins on page 306

Aligning Partition Pins on page 307

Running incremental Pin Assignment on page 308

October 2010 302 Product Version 9.1.3

../fetxtcmdref/partitionT.html#legalizePin
../fetxtcmdref/partitionT.html#assignPtnPin

Encounter Digital Implementation System User Guide
Partitioning the Design

B Adjusting Floorplan or Floorplanning the Design Again on page 308

B Performing Pin Assignment Again on page 308

Checking the Pin Legality

Use the checkPinAssigment command to make sure that pins are legalized (for example,
the pins snap to routing grid, are on reserved routing layers, honor user-specified constraints,
do not cause any DRC violations, and so on).

You can check

m All partition/black box pins
Example: The following command checks all partition/black box pins in the current
design and saves the result into the output file pinLegality.rpt.

checkPinAssignment -outFile pinLegality.rpt

m All pins of a specific partition

Example: The following command checks all pins of the partition TDSP_CORE

checkPinAssignment -ptn TDSP CORE -pin *
B Specific partition pins

Example: The following command checks all bus pins p_addrs and rom_data of the
partition TDSP_CORE

checkPinAssignment -ptn TDSP CORE -pin {p_ addrs* rom data*}

Note: You can use the -verbose parameter of the checkPinAssigment command to print
detailed pin-specific information for each reported violation. You cans also exclude certain
checks, for example, checks related to pin spacing violation or pin layer violation. For more
information, see the description of the checkPinAssigment command in the Encounter
Digital Implementation System Text Command Reference.

Reporting QoR of Pin Assignment

YoucanusethepinAnalvsis command to report certain Quality of Results (QoR) metrics
for pin assignment. The pinAnalysis command deletes the existing routes, reroutes the
design ensuring that the routes pass through partition pins, and reports pin assignment QoR
metrics.

October 2010 303 Product Version 9.1.3

../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/partitionT.html#checkPinAssignment
../fetxtcmdref/partitionT.html#checkPinAssignment
../fetxtcmdref/partitionT.html#checkPinAssignment

Encounter Digital Implementation System User Guide
Partitioning the Design

/ Important

The pinAnalvsis command creates new routes. The original routes are not
retained.

Note: ThepinAnalvsis command reroutes the design using trialRoute -honorPin.
This command thus takes at least as much time as running Trial Route. Also, because Trial
Route is run, you can use the generated routing information for other applications such as
time budgeting.

When you run the pinAnalysis command after assigning pins but before committing the
partition, the following are reported:

B Pin-deviation from routing cross-points
m Estimated net-length and via-count

m Comparison between net lengths, via counts, and congestion indexes of the original and
the new routes

Note: Original route refers to the routing that was performed before the pin assignment
step. New route reefers to the routing performed by the pinAnalvsis command.

®m Number of two-pin nets that have aligned pins and number of two-pin nets that have
unaligned pins

m CPU time and memory usage

When you runthe pinAnalvsis command after committing the partition, the following are
reported:

m Estimated total top-channel net-length and via-count
m Congestion report with overall congestion index values for top-level channel nets

m Number of two-pin nets that have aligned pins and number of two-pin nets that have
unaligned pins

®m Run time and memory usage

You can check the legality of pin assignment (similar to the functionality of
checkPinAssignment command) by specifying the -checkLegality parameter with the
pinAnalysis command.

You can also save the output of the command in a text file by specifying the -outFile
parameter.

October 2010 304 Product Version 9.1.3

../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/partitionT.html#pinAnalysis
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/partitionT.html#checkPinAssignment

Encounter Digital Implementation System User Guide
Partitioning the Design

In addition to displaying the report on screen, this command also generates the report in an
HTML file named pinAnalysis.html. The legality details for every partition are available
through hyperlinks in the HTML report file.

As an example, the following command checks the legality of pin assignment, displays the
QoR report for pin assignment on the screen, and also prints the QoR report to a file named
pinAnalysisMetricReport.

pinAnalysis -checklLegality -outFile pinAnalysisMetricReport

The output of the previous command is similar to the following:

Analysing Pin Assignment.....

| Partiton | Total | Internal | Unplaced | Legal | Illegal |
| Name | Pins | Pins | Pins | Pins | Pins |
____________ cesulteconv | 33 | 0 1 39 1 01 o |
"""""""""""""" cepcore | 14 | 0 | 14 | 0 1 o |
"""""""""""""" smecnie | 0 1 o0 1 0 1 01 o |

Unaligned 2-pin Net: DTMF_INST/t addrs[0].

Unaligned 2-pin Net: DTMF_ INST/m clk.

There are 2 unaligned 2-pin nets.

| QoR Metric | Before Pin-Assignment | After Pin-Assignment | Percent Increase |

October 2010 305 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

| Horizontal | 0.000% | 0.032% | NA

| Congestion | | \ |
| Vertical | 0.000% | 0.697% | NA

Congestion		\	
Total	6.089e+05um	6.150e+05um	1.011%
Net-Length		\	
Total	48300	540306	11.876%

| Via-Count |

Completed pinAnalysis (CPU=0:00:07.6 MEM=5.9)

Note: The internal pins (shown in the Legality Report) are not checked for legality. Internal
pins are the pins that are not on the partition boundary.

In the previous table, the Before Pin-Assignment column shows the results of the routing
before pin assignment and the After Pin-Assignment column shows the results of the
routing after pin assignment.

Refining Pin Assignment and Fixing Pin Violations

After assigning partition or blackbox pins, you can further refine the current pin assignment
and fix any pin violations using one or more of the following methods:

Adjusting Pins

Aligning Partition Pins

Running incremental Pin Assignment

Adjusting Floorplan or Floorplanning the Design Again

Performing Pin Assignment Again

These steps are explained in the following sections.
Adjusting Pins

You can Adjust pins using the Pin Editor or the editPin text command. You can also use
direct pin manipulation to manually move selected pins to different locations.

October 2010 306 Product Version 9.1.3

../encounter/editG.html#PinEditor
../fetxtcmdref/partitionT.html#editPin

Encounter Digital Implementation System User Guide
Partitioning the Design

Aligning Partition Pins

You can align partition pins with other block pins (using the Pin Editor or the pinAlignment
text command).

The pinaAlignment command can be used to align partition/black box pins with or without
specified reference object(s). Reference objects can be hard macros, blackboxes, 1/0O pads,
and standard cells.

You can use the pinAlignment command in different ways to align pins:
B Align specific pins with the specified referenced object
pinAlignment -refObj <refInstName> -ptnInst <instName> -pinNames <pinList>

m Align all pins of specified partition/blackbox instance that connect with the specified
reference object

pinAlignment -refObj <refInstName> -ptnInst <instName>

m Align all pins of every partition/blackbox that connects with the specified reference object
pinAlignment -refObj <refInstName>

B Align specific pins of specified partition/blackbox instance

pinAlignment -ptnInst <instName> -pinNames <pinList>

m Align all pins of specified partition/blackbox

pinAlignment -ptnInst <instName>

m Align all possible partition/blackbox pins

pinAlignment

If the referenced object is not specified, the pinAlignment command will automatically
derive referenced object based on connectivity information. If the aligned pin has multiple
connections, the referenced object will be derived based on the following priority:

m Hard macro pin

m 1/O pad pin or I/O pin

m Partition pin

m Standard cell pin

By default an aligned pin will:

B be snapped to routing grid. Use -noSnap option if you want that pins should not be

shapped.

October 2010 307 Product Version 9.1.3

../fetxtcmdref/partitionT.html#pinAlignment
../fetxtcmdref/partitionT.html#pinAlignment
../fetxtcmdref/partitionT.html#pinAlignment
../fetxtcmdref/partitionT.html#pinAlignment

Encounter Digital Implementation System User Guide
Partitioning the Design

B have the same layer routing with the referenced pin. Use the -keepLayer option to keep
existing aligned pin layer. Use the -newLayer option to assign new layer for aligned pin.

B not be legalized. Use the -1egalizePin option to legalize aligned pin(s).

B have afixed pin status. Use the -markPlaced option to assign placed status to aligned
pin(s).
Running incremental Pin Assignment

Based on the current pin assignment result, re-run pin assignment. You can specify pin
constraints to further guide new pin placement.

If you want to reoptimize only a few specific pins, use the -ptn and the -pin options of the
assignPtnPin command to specify the list of pins that will be reassigned.

Example: The following command reoptimizes address bus bit pins, rom_data bus bit pins of
partition ALU, and reset pin of partition ARB:

assignPtnPin -ptn ALU -pin {address* rom data[*]} -ptn ARB -pin reset

By default, -ptn and -pin options will not reassign specified pins if they have fixed status.
Use the -moveFixedPin option with the -ptn and -pin options to force specified fixed
pins to be reassigned.

However if you want to keep only a few existing pins and re-optimize the rest of the pins,
instead of specifying many pins, you can mark these existing pins to fixed placement status
using the setPtnPinStatus command and then re-run pin assignment (without using
-ptn and -pin options):

setPtnPinStatus <partitionName> <pinName> fixed

assignPtnPin

Adjusting Floorplan or Floorplanning the Design Again

Sometimes a sub-optimal floorplan can also lead to a bad pin placement result. If this is the
case, re-adjust the floorplan and run pin assignment again.

Performing Pin Assignment Again

Perform pin assignment again. If the partitions or blackboxes have been committed, use the
flattenPartition command to unassign the pins. If the partitions or blackboxes are not
yet committed, use the setPtnPinStatus command to unplace the pins.

October 2010 308 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#setPtnPinStatus
../fetxtcmdref/partitionT.html#flattenPartition
../fetxtcmdref/partitionT.html#setPtnPinStatus

Encounter Digital Implementation System User Guide
Partitioning the Design

ECO Pin Assignment

The EDI System software provides incremental or ECO pin assignment capability. This
capability can be used in the ECO flow where partition/black box ports in the original netlist
get modified (added/deleted). In this flow, you can preserve most of the existing partition/
black box pin locations and let the software assign the newly added pins.

General Flow
1. Import design.
Floorplan design (specify partition/black box information in this step).
Run placement.
Route design.
Save full chip floorplan and/or save design for later use.

Assign pins (assignPtnPin).

Save partition/black box pin information into a partition file (savePtnPin).

Route design to connect to new partition/black box pins (trialRoute -honorPin).

Derive timing budget (deriveTimingBudget).

Commit partitions/black boxes (partition) .

- e © ® N o g Db

[Y

Save top and partition information into each directory (savePartition).

After having new modified netlist, ECO pin assignment can be run as follows:
12. Import design with new modified netlist.
13. Load full-chip floorplan that saved in the previous step 5.

14. Place and route the design. Placement and routing information that are saved in the step
5 can be restored if still applicable.

15. Use the 1oadPtnPin command to load the partition file that was saved in the previous
step 7 or the partition file (or DEF file) of each partition block to preserve existing
partition/blackbox pin locations. Make sure that partition/blackbox pins in partition file
have fixed placement status so they will not be moved in the next step, pin assignment.

16. Run pin assignment to assign the newly added pins.

October 2010 309 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#loadPtnPin
../fetxtcmdref/partitionT.html#savePtnPin
../fetxtcmdref/partitionT.html#savePartition
../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/routeT.html#trialRoute
../fetxtcmdref/timingbudgetingT.html#deriveTimingBudget

Encounter Digital Implementation System User Guide
Partitioning the Design

Saving the Partition Pins

Use the savePtnPin command to save pin placement information for later use. The
command provides options to save pin information of

B Specific partition/blackbox
Example: Save pin locations of partition execute_i into file execute_i.ptn
savePtnPin -ptn execute_i execute_i.ptn
m All partitions and/or blackboxes
Example: Save pin information of all partitions and/or black boxes in the current design
savePtnPin -all allPtnPin.ptn
B Current block-level design
Example: Save 1/O pin locations of the current design

savePtnPin -design ioPin.ptn

Restore Partition Pin Information

Use the 1oadPtnPin command to restore/load pin placement information of a particular
partition/blackbox. The command restores the following:

B A partition file that is generated by the savePtnPin or the saveFPlan
(floorplan. fp.ptn) commands

Example: Load pin locations of the partition ALU from partition file ALU.ptn
loadPtnPin -ptnName ALU -inFile ALU.ptn

B Block-level DEF file
Example: Load pin locations of partition ALU from ALU DEF file

loadPtnPin -ptnName ALU -def ALU.def

October 2010 310 Product Version 9.1.3

../fetxtcmdref/partitionT.html#savePtnPin
../fetxtcmdref/partitionT.html#loadPtnPin

Encounter Digital Implementation System User Guide
Partitioning the Design

Assigning I/O Pins

For a top-down hierarchical flow, I/O pins of a block-level design will normally be assigned
during the full-chip pin assignment. This pin placement information is saved in a block-level
floorplan partition file (floorplan. fp.ptn) or a DEF file that is generated by the
savePartition command.

For a bottom-up hierarchical flow, I/O pin placement can be generated from an I/O constraint
file or during the cell placement step.

You can also explicitly run 1/0O pin assignment with the assignIoPins command.

This section covers the following topics:

m Setting Pin Constraints on page 311

Performing Initial Pin Assignment on page 311

[|
B Refining Pin Placement on page 312
[|

Validating Pin Placement on page 313

Setting Pin Constraints

The EDI System software provides a number of pin constraint commands to control or guide
I/O pin assignment. The same set of pin constraint commands that are used for setting
constraints for partition/blackbox pins can also used for I/O pins. The only difference is that
you do not need to specify the -cel1 option for I/O pins. For more information, see Setting
Pin Constraints on page 289 in the Assigning Partition and Blackbox Pins section of this
document.

Performing Initial Pin Assignment

For a bottom-up flow, initial pin placement can be generated by any of the following methods:
B Using an I/O constraint file

An 1/O constraint file can be read into the EDI System environment during the design
import step. Or, you can use the 1oadIoFile command to load a constraint file after
netlist had been read in.

An 1/O constraint file can be created by manually editing a text file.

October 2010 311 Product Version 9.1.3

../fetxtcmdref/partitionT.html#savePartition
../fetxtcmdref/partitionT.html#assignIoPins

Encounter Digital Implementation System User Guide
Partitioning the Design

For more information about I/O constraint file, see the “Generating the I/0O assignment
File” section in the “Data Preparation” chapter of the Encounter Digital
Implementation System User Guide.

m Randomly assigning I/O pins

You can create an 1/O template file with random I/O pin assignment using the following
steps. I/0 placement is evenly distributed on design boundary:

a. Import design

b. Runthe savelIoFile command with the -template option

c. Use the 1loadIoFile command to load I/O file generated from the step 2

m Placing the design

After importing a design and floorplanning it, you should place the design. By default, the
EDI System placer (placeDesign) internally invokes the 1/O pin assignment to place I/
O pins based on the current floorplan.

Note: Set the -placeIoPins option of the setPlaceMode command to False if you
want to disable 1/O pin assignment during the placement step.

Refining Pin Placement

After I/O pins are assigned, you can further refine the current I/O pin assignment by one of
the following methods:

m Manually adjust pins by direct pin manipulations or using pin editor.

B Usethe assignIoPins command to further optimize I/O placement.

Using the assignloPins Command to Optimize I/O Placement

The assignIoPins command assigns I/O pins based on placement information. The design
must be placed before this command is run. The command supports:

B Rectilinear designs
® Non-uniform tracks

B User-specified constraints

By default, the assignIoPins command will honor fixed pins and only assign pins that have
placed/unplaced placement status. If the initial I/O placement is generated by loading a
constraint file (that is, the 1oadIoFile command automatically set I/O placement status to

October 2010 312 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#saveIoFile
../fetxtcmdref/floorplanT.html#loadIoFile
../fetxtcmdref/placementT.html#placeDesign
../fetxtcmdref/partitionT.html#assignIoPins

Encounter Digital Implementation System User Guide
Partitioning the Design

fixed) you should change 1/O pins placement status to placed using setPtnPinStatus
command before running 1/O pin assignment.

To incrementally assign I/O pins, you can do one of the following:

B Specify pins that should be re-optimized using the -pin option.
Example: Re-assign all p_address bus pins, int, and bio I/O pins of the design tdsp_core.
Optimize these specified pins even though they have fixed placement status.

assignloPins -pin {p_address[*] int bio} -moveFixedPin

m Mark I/O pins that you want to keep with fixed status and run the assignIoPins
command. This scenario can be used when you want to re-optimize most of 1/0 pins.
Example: Preserve port_pad_data_in and port_pad_data_out buses and clock
pins, and re-optimize the rest.

setPtnPinStatus tdsp core port pad data* fixed
setPtnPinStatus tdsp core clk fixed

assignIoPins

Validating Pin Placement
After assigning I/O pins, it is recommended that you check for I/O legalization.
Use the checkPinAssigment command to make sure that pins are legalized (such as they

snap to routing grid, are on reserved routing layers, honor user-specified constraints, not
cause any DRC violations, and so on).

You can check:
m Alll/O pins

Example: Verify all I/O pins of the current design and output the result into the output file
pinLegality.rpt.

checkPinAssignment -outFile pinLegality.rpt

m Specific /0O pins

Example: Verify all bus pins BG_scan_in, BG_scan_out, and the write pin of the
design

checkPinAssignment -pin {BG_scan* write}
If any pin violation is detected, you can:

m Manually adjust pins by direct pin manipulation or using pin editor.

October 2010 313 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assignIoPins
../fetxtcmdref/partitionT.html#checkPinAssignment
../fetxtcmdref/partitionT.html#setPtnPinStatus

Encounter Digital Implementation System User Guide
Partitioning the Design

m Runthe legalizePin command to automatically legalize pins. You can legalize all I/O
pins or specific I/0O pins of the design. Fixed pins will not be adjusted unless the
-moveFixedPin option is specified.

Examplel: legalizePin

With this example, the EDI System software will legalize all pins in the design. If the
design is a block-level design that also has partition/blackbox -pins, it will also adjust the
partition/ blackbox pins. If you want to legalize only the 1/O pins but not the partition/black
box pins, you should use 1legalizePin -pin * instead.

Example2: 1egalizePin -pin * -moveFixedPin

With this example, the EDI System software will legalize all I/O pins. Fixed pins will also
be adjusted because the option -moveFixedPin has been specified.

Example3: legalizePin -pin {clock reset rom_data*}

The EDI System software will legalize clock, reset, and all rom_data bus bit pins of the
design. Pins with fixed status will not be moved.

October 2010 314 Product Version 9.1.3

../fetxtcmdref/partitionT.html#legalizePin

Encounter Digital Implementation System User Guide
Partitioning the Design

Performing Congestion-aware Pin Assignment for Channel-based
Designs

To perform route-based pin placement for channel-based designs, it is recommended that
you run partition-aware routing instead of a routing that does not take partitions into
consideration. Pin assignment decisions based on such partition-aware routing are more
optimal with respect to top-channel congestion. However, Trial Route when run in
partition-aware mode (trialRoute -handlePartitionComplex)is much slower
compared to flat (partition-unaware) Trial Route.

To generate a partition-aware routing topology similar to trialRoute
-handlePartitionComplex, butin much lesser time, you can use the
ptnAwareRouteForPA command (or trialRoute -fastRouteForPinAssign).

This command generates a routing topology similar to the handlePartitionComplex
topology for approximately 95% of the inter-partition nets, in about 3X-6X lesser time. For the
remaining inter-partition nets, the topology is similar to that generated by flat Trial Route.

The syntax of the command is as follows:

ptnAwareRouteForPA trialRouteOptions -intraNets

where:

B trialRouteOptions are the parameters of the TrialRoute command
B -intraNets specifies that intra-partition nets should also be routed.

Note: If Trial Route is invoked with the ~-handlePartition option, the
-handlePartition option is ignored and a warning is displayed.

The ptnAwareRouteForPA command should be called before pin assignment. The use
flow is:

1. Import the design.
. Floorplan the design.

. Runthe ptnAwareRouteForPA command.

2

3

4. Assign partition pins.

5. Run trialRoute -honorPin
6

. Derive time budgeting.

October 2010 315 Product Version 9.1.3

../fetxtcmdref/partitionT.html#ptnAwareRouteForPA
../fetxtcmdref/partitionT.html#ptnAwareRouteForPA
../fetxtcmdref/partitionT.html#ptnAwareRouteForPA
../fetxtcmdref/routeT.html#trialRoute

Encounter Digital Implementation System User Guide
Partitioning the Design

The ptnAwareRouteForPA command generates a tabular output listing the nets that were
routed in partition-aware manner and those that were not. An example of the output is as
follows:

Inter Partition Net groups summary:

NetGrp Normal/PtnAware NetCount ptnNames

1 PtnAware 87 (223 tdsp_core(DTMF_INST/TDSP_CORE_INST)
2 PtnAware 42 (223) ram 256x16 test (DTMF_INST/
RAM 256x16 TEST INST)
3 PtnAware 32(223) Gl(DTMF_INST/Gl_PH
4 PtnAware 20(223) results_ conv (DTMF_INST/RESULTS_ CONV_INST)

tdspicore(DTMFilNST/TDSP7COREiINST)
ram 128x16 test (DTMF INST/
RAM 128x16 TEST_ INST)

5 Normal 18(223) ram 128x16 test (DTMF_INST/

RAM 128x16 TEST INST)
6 Normal 15(223) results_conv(DTMF_INST/RESULTS_CONV_INST)
7 Normal 3(223) tdsp core (DTMF_INST/TDSP_CORE_INST)

ram 128x16 test (DTMF INST/
RAM 128x16 TEST INST)

8 Normal 2(223) G1 (DTMF_INST/Gl_ PH)
results_conv (DTMF_INST/RESULTS CONV_INST)
tdsp_core (DTMF_INST/TDSP CORE_INST)

9 Normal 1(223) G1 (DTMF_INST/G1l_PH)
tdsp core (DTMF INST/TDSP CORE INST)

10 Normal 1(223) Gl (DTMF_INST/G1l PH)
results_conv(DTMF_INST/RESULTS_CONV_INST)

11 Normal 1(223) Gl (DTMF_INST/G1l PH)
tdsp core (DTMF INST/TDSP_CORE INST)

12 Normal 1(223) Gl (DTMF_INST/Gl PH)
results conv (DTMF INST/RESULTS CONV_INST)
ram 256x16 test (DTMF_ INST/ B B
RAM 256x16 TEST INST)
ram 128x16 test (DTMF INST/
RAM 128x16 TEST INST

B NetGrp: Indicates a group of nets. For example, NetGrp 7 indicates the set of nets that
logically connect instances only in partition tdsp_core and in partition
ram_128X16_test.

October 2010 316 Product Version 9.1.3

../fetxtcmdref/partitionT.html#ptnAwareRouteForPA

Encounter Digital Implementation System User Guide
Partitioning the Design

Normal/PtnAware: Indicates whether the nets of this group are routed in
partition-aware routing topology or flat routing topology.

NetCount: Indicates the number of nets in the corresponding net group. For example,
NetGrp 7 contains 3 nets out of a total of 223 inter-partition nets in this design.

ptnNames: indicates the partitions to which the nets in this group of nets connect.

Salient Points About Congestion-aware Pin Assignment

The following points apply to the behavior and usage of the congestion-aware pin assignment
feature:

The routing topology generated by the ptnAwareRouteForPA command should be
used only for the pin assignment flow.

The net groups are sorted in descending number of nets in them.

The net groups that have a significant number of inter-partition nets are routed in a
partition-aware manner. The remaining netgroups with fewer inter-partition nets are
routed in a manner similar to flat trialRoute.

There is a possibility of more DRC violations in the routing topology generated by the
ptnAwareRouteForPA command as compared to trialRoute
-handlePartitionComplex. However, for pin assignment purposes, it has little or no
impact in deciding the location of partition pins.

This command is suited only for channel-based designs. Also, the improvement in
quality of results of pin assignment, with respect to top channel congestion, is more
visible in case the design has thick channels.

October 2010 317 Product Version 9.1.3

../fetxtcmdref/partitionT.html#ptnAwareRouteForPA
../fetxtcmdref/partitionT.html#ptnAwareRouteForPA

Encounter Digital Implementation System User Guide
Partitioning the Design

Assigning Pins on Rectilinear Edges

Rectilinear pin assignment can recognize rectilinear edges when assigning pins. It can
support any rectilinear shape (such as L, T, and U shapes). For rectilinear boundaries created
with partition cuts, the edges are identified by starting at the lower-left-most corner, moving
clockwise to mark each edge with a direction flow, as shown in the following figure:

Top Top
|
Right Top Left
Left A Right
Start Point
-
Bottom

All the edges with the same direction flow are considered to be on the same side and have
the same user-specified pin constraints.

October 2010 318 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Partitioning the Design

Swapping Partition Pins

1. Select two pins of the same partition.

2. With the cursor over one of the selected pins, click and hold the middle mouse button to

bring up the context pop-up menu.

3. Select Swap Pins (or use the swapPins command).

Pin Alignment

Using pinAlignment, the following command aligns 20 and A1 pins of blockB to the

reference pins of blocka:
pinAlignment -block blockB -refBlock blockA {A0 Al}

Reference Block

Al

Target Block

. A[O]

< AN
Alla” .-

Before Pin Alignment

October 2010

Reference Block

319

Target Block

p After Pin Alignment

Product Version 9.1.3

../fetxtcmdref/floorplanT.html#swapPins
../fetxtcmdref/partitionT.html#pinAlignment

Encounter Digital Implementation System User Guide
Partitioning the Design

Snapping Pins to the Grid

To snap center of pins to nearest intersecting routing grid, where the horizontal and vertical
routing tracks cross, use the snapPtnPinsToTracks text command. For example, the
following command snaps center of partition ptn_xy pins to the nearest intersecting routing
grid:

snapPtnPinsToTracks ptn yz

|
il

ptn_yz before snapPtnPinsToTracks ptn_yz after snapPtnPinsToTracks

October 2010 320 Product Version 9.1.3

../fetxtcmdref/partitionT.html#snapPtnPinsToTracks

Encounter Digital Implementation System User Guide
Partitioning the Design

Assigning Pins for Bus Guides

A bus guide helps ensure that buses are routed together over blocks and is typically used in
early floorplanning stages. For more information on the Bus Guide feature, see Chapter 10,
Bus Planning.

The use model of pin assignment for a bus guide is similar to that of a pin guide. The
assignPtnPin command supports bus guides by treating a bus guide as a pin guide that is
associated with a net group. When you assign pins for a design containing a bus guide, all
pins of the corresponding net group are placed in the specified bus guide area.

If the specified bus guide area is not large enough to cover all the net group pins, the
assignPtnPin command issues a warning message and places the maximum possible net
group pins in bus guide area. The rest of pins are placed outside the pin guide area such that
the pins stay together.

Bus guide pin assignment also supports all features of net group such as -optimizeOrder,
-alternateLayer, and non-default rules.

The check pin assignment, pin legalization and pin refinement features also support bus
guides.

/ Important

The bus guide feature is intended to guide partition pins and blackbox pins and not
I/O pins. The I/O pin assignment feature (assignIoPins command) does not,
therefore, take bus guides into account.

Pin Assignment Limitations

m Does not support non-R0 orientation black box (non-R0 master black box) pin

assignment. For more information, see Handling of Blackboxes with Non-R0 Orientation
on page 280.

B Does not assign or legalize pins on non-preferred routing layers

m Does not assign power/ground pins. For top-down hierarchical flow, power and ground
pins will be created during the partition step. For bottom-up flow, power/ground pins
should be created at design boundary during power planning stage.

m Partition/blackbox pin assignment may cause routing crossing. In such cases, run the
pinAlignment command to improve pin QoR (Quality of Results).

October 2010 321 Product Version 9.1.3

../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#assignIoPins

Encounter Digital Implementation System User Guide
Partitioning the Design

Inserting Feedthroughs

There are two types of feedthroughs you can use for partitions: feedthrough buffers and
routing feedthroughs. Both types offer different approaches for inserting feedthroughs.
Inserting feedthrough buffers allows a netlist change, whereas inserting routing feedthroughs
does not.

/ Important

Before inserting feedthroughs, you should determine what stage the design is in,
such as prototyping, intermediate, tapeout, and set the appropriate global options
by running the setMode commands, such as setPlaceMode and
setTrialRouteMode. For example, when inserting feedthroughs during
prototyping, you could set modes with the following commands:

setPlaceMode -fp
setTrialRouteMode -floorplanMode true
setExtractMode -default

You can use the insertPtnFeedthrough command (or the Insert Feedthrough Buffer
form) to insert feedthrough buffers into the partitions, and the createPtnFeedthrough
command (or the Create Physical Feedthrough form) to create a partition routing feedthrough
object. The differences between how these two commands affect the design are as follows:

insertPtnFeedthrough

The insertPtnFeedthrough text command inserts feedthrough buffers into the
partitions to change the partition netlists, and avoids routing nets over partition areas.
This command affects the design in the following areas:

0 Changes both the top-level and partition-level netlists.

Q After inserting buffers, it automatically calls ecoPlace to place these buffers close
to the partition boundary. However, insertPtnFeedthrough does not place the
feedthrough pins, which should be assigned during partitioning.

0 Inserted buffers will be part of the partition netlists and pushed down to the partition
level during Partitioning.

O Wherever a net enters and exits a partition, two ports and a buffer (or two buffers
with the -doubleBuf fer option) are added to the partition netlist.

Q Fornets that enter or exit a partition several times, such as a “T” shaped connection,
three ports will be created. For a cross shaped connection, four ports will be created.

October 2010 322 Product Version 9.1.3

../encounter/partitionG.html#InsertFeedthrough
../encounter/partitionG.html#CreateFeedthroughs
../fetxtcmdref/partitionT.html#insertPtnFeedthrough
../fetxtcmdref/partitionT.html#insertPtnFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design

Q Use the Design Browser to view the newly added buffer instance and net names for
each partition. The new port names have a FE_FEEDX_ net_name prefix.

Q For pure channelless designs, use the -chanLess option to insert feedthrough
buffers for all nets that connect to partitions, except nets that can be connected
directly between two adjacent partitions.

Q For mixed designs, not all nets should become feedthrough nets. To exclude certain
nets, such as clock nets or high fanout nets, use the -excludeNet option. This
option is based on the topology of the partition neighborhood relationship, so trial
routing is not required before inserting feedthrough buffers, although it could help
improve the quality of results.

a To specify a file that contains net names for which to insert feedthrough buffers, use
the -selectNet option. You can create this file manually, create a list of nets via a
script, or use showPtnWireX.

Q Whether you use the -chanLess or -selectNet options, the EDI System
software does not necessarily insert a feedthrough.

O Feedthrough insertion is driven by connectivity when Trial Route is not run before
insertPtnFeedthrough.

O You can save feedthrough insertion buffer topology tree information in a file by using
the -saveTopoFile parameter. You can later use this topology tree file with
another ECO netlist and replicate the feedthrough insertions. For more information,
see “Replicating Feedthrough Insertions Across ECO Netlists” on page 331.

O The insertPtnFeedthrough command can detect if the design has power
domains. This way, appropriate buffers can be derived automatically from power
domain library binding to support both Always On and switchable power domains.
However, an error message is reported if no regular buffer is found for an Always
On power domain in the feedthrough path.

Q The insertPtnFeedthrough command removes nets that are inserted with
feedthrough buffers from any net groups to which they belong. After running this
command you should, therefore, update the net groups that contain feedthrough
nets.

B createPtnFeedthrough

The createPtnFeedthrough text command inserts routing feedthroughs into the
partitions without changing the design netlist. This command affects the design in the
following areas:

Q Manages only the physical aspect of a partition, not the logical aspect.

October 2010 323 Product Version 9.1.3

../fetxtcmdref/partitionT.html#createPtnFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design

a No new ports are added to a partition and no buffers are added to the partition
netlist.

Q For channel feedthroughs, this creates channels for over-the-block routing on
specified layers at the top-level design. These channels are pushed down as routing
blockages on the correct routing layers at the partition level during Partitioning.

O For placement island feedthroughs, the EDI System software reserves these areas
for inserting buffers at the top-level design after running the insertRepeater
command. These island feedthroughs will be pushed down as placement blockages
and routing blockages on all routing layers at the partition level during partitioning.

Inserting Feedthrough Buffers

Partition feedthrough insertion manages partitioned designs that have nets that need to be
pushed down to become a component of each partition design. That is, each feedthrough
buffer must be added to the partitioned design, which changes the partition’s netlist. This
approach is typically used in channelless designs and in designs with limited channel
resources.

A pure channelless design has no channel routing resource—connections among partitions
are always done by means of module abutment and pin alignment. A mixed or partially
channelless design has limited routing resource in the channels; therefore, abutment and pin
alignment is only performed on selected nets.

The following example shows how nets are selected for feedthrough buffers:

net1
1/0 pin IN
\ net 2 R
ouT \ IN
Partition A Partition B \\\ Partition C

Feedthrough Candidates

Inserting Feedback Buffers

You can insert a feedthrough buffer to a net that loops back to an original partition to avoid
the net routing over a partition area using the insertPtnFeedBackBuf fer text command,
which you should run after the feedthrough insertion step.

October 2010 324 Product Version 9.1.3

../fetxtcmdref/partitionT.html#insertPtnFeedBackBuffer

Encounter Digital Implementation System User Guide
Partitioning the Design

The following example shows a situation where net LoopBack connects to output pin 0 and
input pin T of Partition A, and input 12 of Partition C.

Partition A Partition B Partition C

LoopBack

By inserting a feedthrough buffer (BUF1) with the insertPtnFeedthrough text
command, and inserting a feedback buffer (BUF2) with the insertPtnFeedBackBuffer
text command, LoopBack now connects to the input pins of BUF1 and BUF2, as shown in the
following figure:

Partition A Partition B Partition C

BUF1
BUF2

Limitations

B Each partition must be intact. A non-child instance cannot be preplaced in another
partition. This would present a top-level net connection problem.

m Partition pin guides cannot be used during feedthrough insertion.

B A partition design that has repeated partition modules is not supported. Exclude all nets
that connect into a repeated partition module.

B The Unpartition program cannot remove the inserted buffers for the feedthrough nets.
m Does not handle blackboxes.

B It might not handle clock nets efficiently because the insertPtnFeedthrough text
command does not take timing into account.

October 2010 325 Product Version 9.1.3

../fetxtcmdref/partitionT.html#insertPtnFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design

B It cannot handle nets that are connected to two or more glue logic standard cells. This
type of net should be excluded from feedthrough insertion.

B It might not provide good quality of results for high fanout nets. You should exclude high
fanout nets and clock nets from feedthrough insertion to avoid timing and routing
problems.

Procedure
1. Design the top-level floorplan for the partition design.
2. Run Placement.

3. (Optional) Run Trial Route.

/ Important

Up to step 3, the flow is similar to a partition design flow. To control which nets get
buffers inserted, complete step 4. If all nets require buffering, skip step 4 and use
the insertPtnFeedthrough text command’s -chanLess option.

4. Create a file to identify which nets get buffers.

You can manually edit the file, create a script, or generate a wire crossing file (see
Generating the Wire Crossing Report on page 343).

5. Generate the feedthrough buffers and nets.

Usethe insetPtnFeedthrough -chanLess command, or insetPtnFeedthrough
-selectNet with the created net file.

Note: Step 6 returns to the normal partition design flow.

6. Run Trial Route to completely connect the design, including the inserted feedthrough
buffers.

7. Run Partition to generate the partition pins and change the partition module status to
hard block.

8. Run Save Partition.

This saves the design and generates a top-level directory and partition directories.

October 2010 326 Product Version 9.1.3

../fetxtcmdref/partitionT.html#insertPtnFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design

Using a Topology File to Insert Feedthrough Buffers

You can guide the insertion of feedthrough buffers for specific nets by providing the
feedthrough topology information for those nets in a topology file. You can manually create

this file and subsequently edit it.

Note: If you are using topology files from releases prior to the 8.1 release, they will still work

with this release.

Note: The syntax is case sensitive.

The syntax of the topology information in the file is as follows.

Comment line
version version string;
nametype netname
fromtype-totype
fromtype-totype

end nametype

nametype netname
fromtype-totype
fromtype-totype

end nametype

October 2010

from name

from name

from name

from name

to name

to_name

to_name

to name

327

route data=(x,x,%,%,%X,x)];

route data=(x,x,X,X%,X%,X);

route data=(x,x,X,%X,%x,X)];

route data=(x,x,X,%,%X,X);

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

The description of the syntax is as follows

nametype

October 2010

Can be net, bus, or netgroup. The value netgroup
represents all nets in the net group. You should update the net
group after feedthrough insertion step.

Here are some examples of nametype:

bus
net
bus

net

myBus [0:1] specifies bus bits
myBus [0:1] specifies a scalar net.
myBus [1] specifies a bus bit

mybus [1] specifies a scalar net or a bus bit. In case

both exist in the design, use the Verilog escape name and
use the dbgIsBackSlashInNamesHiddenFlag variable
to resolve correctly.

328 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Partitioning the Design

netname

October 2010

Can be a net name, bus name, or a net group name. Wildcards
(* or ?) can be used for net name, bus name, or net group
name.

If more than one net group is matched with wildcard, the
insertPtnFeedthrough command will issue a warning
message and:

m use only the first matched net group

B ignore the other ones.

Wild cards can only be used for a bus name BUT not bus range.
Example you cannot specify bus busname[1:*].

Specifying bus entries: If a bus named databus has 32 bits
(from 0 to 31), its r bus entries are specified as follows:

B bus databus specifies all 32 bits from 0 to 31

B Dbus databus[13:23] specifies databus[13] to
databus[23]

B bus databus[13] specifies only the bit 13 of databus

You cannot provide any net-specific entries for multiple bus bits,
net groups, or wildcard nets. Hence, bus topologies cannot be
specified for bus nets connected to top-level instance pins or to
I/O pins.

Using escape mechanism for special characters: The
following escape mechanisms remove all restrictions on
characters:

\\ for the backslash character (\) itself
\b for blank

\ t for tab

\n for new line

\ 0 for null

\ s for semicolon (semicolon (;) is the path statement
terminator).

Any other character which follows a backslash (\) is taken
literally. For example, \a is considered as a. If one wants to use
*,? literally then must use escaping as these are used for
wildcards.

329 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Partitioning the Design

fromtype

totype

version

route_data

Note: If a net appears twice in any form, the first entry
corresponding to the net is used. The subsequent entries
generate an error.

Can have one of the following values:
B io forl/O pins

B hinst for hierarchical instance name of a partition or
partition clone

B instterm for top-level instance pins
Can have one of the following values:
m 1o forl/O pins

B hinst for hierarchical instance name of a partition or
partition clone

instterm for top-level instance pins

hinstfb for hierarchical instance name of a partition or
partition clone. This can only be used as part of the
combination hinst-hinstfb, which specifies a feedback
buffer path.

Version is the format version. The format version for this release
is 1.0.

If the topology file does not have the version statement then the
insertPtnFeedthrough command will parse the file as per
the format of the version prior to the 8.1 release.

Optional field that specifies routing information.

This is not a user-specified field. This field is created when the
insertPtnFeedthrough command is run with the
-saveTopoFile parameter. This field is used only for ECO
purposes.

The route_data parameter is not available if the totype is
hinstfb.

All version- and topology-statements in the topology file end with a semicolon (;). Any extra

spaces are ignored.

Here is an example of a topology file:

October 2010

330 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

FHAHHH AR AR H AR A AR H AR
version 1.0;

net netl

io-hinst netl i b;
hinst-instterm i b inst c/netl;

end net

net clk*
hinst-hinst i a i b;
hinst-hinst i b i c;

end net

netgroup group_a
hinst-hinst i a i b;
hinst-hinst i b i c;

end netgroup

bus databus[0:31]
hinst-hinst i a i b;
hinst-hinst i b i c;
end bus

g sassaassdsaaaad R st

Replicating Feedthrough Insertions Across ECO Netlists

While performing a feedthrough insertion through the insertPtnFeedthrough command,
you can save the feedthrough buffer topology tree information in a file by specifying the
-saveTopoFile parameter as follows:

insertPtnFeedthrough -saveTopoFile TopoFileName
where TopoFileName is the name of the file in which topology information is saved.

When you run the insertPtnFeedthrough command on another ECO netlist, you can use
the saved file to replicate feedthrough buffer insertions by specifying the -topoFile
parameter as follows:

insertPtnFeedthrough -topoFile SavedTopoFileName

where SavedTopoFileName is the name of the file that was saved earlier using the
-saveTopoFile parameter.

October 2010 331 Product Version 9.1.3

../fetxtcmdref/partitionT.html#insertPtnFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design

This way, you can save a file with feedthrough buffer topology tree information and use it to
create the same feedthrough buffer insertions across multiple netlists.

The flow can be summarized as follows:
1. Import a design.
2. Perform floorplanning on the design.

3. Perform feedthrough buffer insertion and save the feedthrough buffer topology tree
information in a file (use the -saveTopoFile parameter of the
insertPtnFeedthrough command).

4. Import design with a new ECO netlist.
Note: The ECO netlist should not contain the original inserted feedthrough buffers.

5. Perform feedthrough buffer insertion with the topology file saved from step 3 (use the
-saveTopoFile parameter of the insertPtnFeedthrough command).

Note: If you use the -topoFile parameter, only those nets that are specified in the
topology file are considered for feedthrough buffer insertion.

Note: If a net does not exist in the design, it should not be in the topology file. For
example, if ECO changes remove a net, that net should be removed from the topology
file.

6. Repeat steps 4 and 5 for more ECO netlists, if required.

Reducing the Number of Buffers and Ports Added for Route-based Feedthrough
Insertions

You can use the -reduceAddedPort parameter of the insertPtnFeedthrough
command to specify that feedthrough insertion should follow the routing topology more
closely. This can help reduce the number of added ports and buffers.

The ports are created at the route crossing points. The status of the added ports is set to
Fixed. Subsequent use of Trial Route will make the routes pass through these pins.
Therefore, there is no need to create partition pin guides for these pins.

Note: The -reduceaddedPort parameter is applicable only for route-based feedthrough
insertions.

This behavior is illustrated through the following scenarios:

B Net Connecting to Non-partition Instance Terminals in the Top-level Routing Channels:

October 2010 332 Product Version 9.1.3

../fetxtcmdref/placementT.html#addFiller

Encounter Digital Implementation System User Guide

Partitioning the Design

B Net Connecting Through Adjoining Partition

Net Connecting to Non-partition Instance Terminals in the Top-level Routing Channels

The following diagram illustrates the improvement in feedthrough insertion where a net
connects to a non-partition instance terminals in the top-level routing channels.

Without the
—reduceAddedPort
parameter

Destination

Partition A = Source
Original Trial Route ‘

Undesrable:

+ Four new buffers
created where one
buffer was requireed.

+ Four new output ports
get created when one
was enough.

+ Deviates from

the original route
topology.

With the
—reduceAddedPort
parameter

Net Connecting Through Adjoining Partition

Desirable:

+ Only one buffer added.
+ Follows the original
route topology.

The following diagram illustrates the improvement in feedthrough insertion between partitions

where there is another partition in between.

October 2010

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Without the
—reduceAddedPort
parameter
Destination
v’ n
4 x
J Partition A2
< Source
‘ Original Trial Route ‘
With the
—reduceAddedPort
parameter

Abbreviating Lengthy Feedthrough Net Names

Undesitable:
*Two buffers
added.

*Three new ports
get created in B.
+Deviates from
original route
topology.

Al

Desirable:

+Only one buffer
added in B.
+Maintains original
route topology.

Al

O_I__-_

You can abbreviate inserted feedthrough net names so that the net names will not extend too
long if you run the insertPtnFeedthrough Or insertPtnFeedBackBuffer commands

multiple times. With the -useShortName option, you can eliminate the use of the old net
name and partition names, and instead use a running count for the new net names.

For example, if a feedthrough net reset connects two partitions tt_chiplet and
video_chiplet, the feedthrough net name is:

FE_FEEDX_NET C__ tt_chiplet_video_chiplet_reset

The net name abbreviation convention for feedthrough buffer insertion when using the

insertPtnFeedthrough -useShortName command are:

Net Names FE_FTN_n, where n is an integer

Buffer Names FE_FTB_n, where n is an integer

October 2010

334

Product Version 9.1.3

../fetxtcmdref/partitionT.html#insertPtnFeedthrough
../fetxtcmdref/partitionT.html#insertPtnFeedBackBuffer

Encounter Digital Implementation System User Guide
Partitioning the Design

The net name abbreviation convention for feedback buffer insertion when using the
insertPtnFeedBackBuffer -useShortName command are:

Net Names FE_FB_NET_n, Where n is an integer

Buffer Names FE_FB_BUF_n, where n is an integer

Highlighting the Nets for which Feedthrough Buffers Have been Inserted

Once you insert partition feedthrough buffers with the insertPtnFeedthrough command,
you can highlight these nets withthe hiliteFeedthroughNets command. The highlighted
feedthrough path consists of the nets, the terms that the nets connect to, and the instances
that contain those terms.

For the hiliteFeedthroughNets command to work, the insertPtnFeedthrough
command must be run with the -netMapping parameter. The net mapping file generated
with the insertPtnFeedthrough -netMapping parameter is used by the
hiliteFeedthroughNets command to highlight the feedthrough nets.

To dehighlight the feedthrough nets, run the dehighlight command.

Utilizing Pre-defined Feedthrough Pins in Custom Macros

Some designs contain hard macros, which could, for example, be IP blocks or analog blocks.
chip-level routing might not be possible without passing over these blocks. Or, in other cases,
routing might not meet timing requirements if it detours around these blocks. To facilitate
routing these blocks might provide pre-defined feedthrough pins

You can utilize these predefined feedthroughs using the connectMacroFeedthrough
command. This command automatically connects the feedthrough pins to nets that have
wires crossing over these blocks or macros.

Use Flow

The connectMacroFeedthrough command uses the routing topology to connect the pre-
defined feedthrough nets. Therefore, the design must be placed and routed before you run
the connectMacroFeedthrough command. The use flow is as follows:

1. Import the design.
2. Floorplan the design.

October 2010 335 Product Version 9.1.3

../fetxtcmdref/partitionT.html#connectMacroFeedthrough
../fetxtcmdref/partitionT.html#connectMacroFeedthrough
../fetxtcmdref/partitionT.html#connectMacroFeedthrough
../fetxtcmdref/partitionT.html#insertPtnFeedthrough
../fetxtcmdref/partitionT.html#hiliteFeedthroughNets
../fetxtcmdref/generalT.html#dehighlight
../fetxtcmdref/partitionT.html#insertPtnFeedthrough
../fetxtcmdref/partitionT.html#insertPtnFeedthrough
../fetxtcmdref/partitionT.html#hiliteFeedthroughNets
../fetxtcmdref/partitionT.html#hiliteFeedthroughNets

Encounter Digital Implementation System User Guide
Partitioning the Design

3. Perform placement.

4. Run Trial Route.

/ Important

At least one vertical and one horizontal routing layer must be available (that is, not
blocked) on the macro(s). Otherwise, there will be no routing over the macro(s). In
case the macro has all the layers blocked, manually remove the blockage over one
horizontal and vertical layer.

5. Connect the built-in feedthroughs through the connectMacroFeedthrough

command.

Note: Before running detailed routing, take care of the unused feedthrough input pins that
are left floating. For example, you might want to assign them to tie-high or tie-low. You can
save the list of the unused ports with the connectMacroFeedthrough -
floatingPortList command.

How the connectMacroFeedthrough Command Connects Feedthroughs

The following points illustrate the criteria for feedthrough selection and other important
features of the connectMacroFeedthrough command:

The connectMacroFeedthrough command considers all routing on all layers that
cross the specified custom macro boundaries.

The command searches for a feedthrough whose in and out pins lie on the same sides
of the macro on which the wires enter and exit the macro.

A feedthrough that has pins that are closer to the intersections has a higher probability
of selection. Both input and output pins are considered. Layer information is ignored
while evaluating the distance. To consider only pins within a specific distance from the
wire crossing, use the -maxSearchDistance parameter.

The command creates new nets and ports as required.

If multiple feedthrough insertions are performed, the command keeps track of the
feedthroughs already used, and does not assign such feedthroughs again.

The new nets (the nets that connect to feedthrough output pins) have the following
naming convention:

FE FTM x netName

where x is a unique numeric identifier and ne t Name is the name of the original net.

October 2010 336 Product Version 9.1.3

../fetxtcmdref/partitionT.html#connectMacroFeedthrough
../fetxtcmdref/partitionT.html#connectMacroFeedthrough
../fetxtcmdref/partitionT.html#connectMacroFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design

B You can select only specific nets for or exclude specific instances or nets. You can also
specify the distance till which the command will search for a connected feedthrough. The
feedthrough connectivity is described through a mapping file, which is described in the
section Mapping File For Describing Feedthrough Connectivity on page 339.

Feedthrough Connection for Abutted Macros

For abutted custom macros, the connectMacroFeedthrough command detects the paths
formed by the abutted feedthrough pins. The EDI System software considers only the end
points of the detected paths, and picks those feedthroughs that will give good results.

The following figures show how EDI System selects the feedthroughs for insertion in the
abutted custom macros.

1 .

October 2010 337 Product Version 9.1.3

../fetxtcmdref/partitionT.html#connectMacroFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design

The following figure shows pre-defined custom feedthroughs in the design.

The following figure shows how these feedthroughs are utilized by the
connectMacroFeedthrough command. Notice the feedthrough pins, represented by

October 2010 338 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

yellow squares, that are added at the intersection of the macro boundary and the pre-defined
nets.

Custom macro

Custom macro

Mapping File For Describing Feedthrough Connectivity

The feedthrough connectivity is defined through a mapping file that is provided as a
parameter to the. If a mapping file is not specified with the connectMacroFeedthrough
command, EDI System assumes that a file with the name portmap in the current directory
is used by default.

The syntax of the file is as follows:

MACRO MacroName

Macro definition section

END MACRO

The definition of the macro is provided in the Macro definition section, which can
contain one or more feedthrough sections. The name of the feedthrough section is optional.

October 2010 339 Product Version 9.1.3

../fetxtcmdref/partitionT.html#connectMacroFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design

Note: The definitions for all custom macros to be used in the design should be in a single
portmap file.

The syntax of the Feedthrough section is as follows. The name of the feedthrough is optional.
Feedthrough [FeedthroughName]

Pin Section

END FEEDTHROUGH

Each Feedthrough section contains one section for the input pin and one section for the
output pin.

Note: Multi-fanout feedthrough sections are not supported.

The syntax of the pin section is as follows:
PIN PinName

END PIN

Note: All the predefined macro feedthrough pins should be floating pins.

Here is an example of a mapping file:
MACRO RAMXXX

FEEDTHROUGH feedthroughl
PIN feedthroughl in

END PIN

PIN feedthroughl out

END PIN

END FEEDTHROUGH
FEEDTHROUGH feedthrough2
PIN feedthrough2 in

END PIN

PIN feedthrough2 out;
END PIN

END FEEDTHROUGH

END MACRO

October 2010 340 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Limitations

The connectMacroFeedthrough command has the following limitations:
m Multi-fanout feedthroughs are not supported.

B Routing blockage and congestion are not considered. However, because topology is
derived from routing, this should not be a concern.

m Bidirectional pins (INOUT) are not supported.

B The topology is derived from the routing results. Therefore, you might need to specify
certain Trial Route options (for example, options to block or unblock certain routing
tracks) to get the desired routing results.

B Floating module ports connected to a net are not supported because there is no routing
to the floating module ports.

B Rectilinear hard macros are not supported.

Inserting Routing Feedthroughs

Routing feedthroughs and hole punch buffers reserve a portion of the partition area for top-
level use. Because the partition’s netlist does not change, no new ports are created for the
partition. Buffers are inserted in top-level netlist but occupy space within the partition’s fence.
Partition feedthroughs are used to indicate the top-level partition’s concession within the
partition fence.

Partition feedthroughs should be defined before running the Partition program, which
automatically generates appropriate placement and routing blockages within the partition and
in top-level view to reflect the real estate ownership scheme. For example, a routing
feedthrough with Metal6 will generate a Metal6 routing blockage for the partition, and an
opening in the Metal6 blockage in the top level.

Note: The partition feedthrough discussed in this section is a floorplan object. It affects a
partition only physically (not logically) and does not affect partition feedthrough buffer cells.

October 2010 341 Product Version 9.1.3

../fetxtcmdref/partitionT.html#connectMacroFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design

A routing feedthrough (slot) within the partition’s fence is used by the top-level partition’s
routing, and an is/and within the partition’s fence can be used by the top-level partition’s
placement, as shown in the following figure:

Routing
Feedthroughs /

(slots)
Islands /

Note: Routing feedthroughs can be used without placement islands.

To create a channel-type feedthrough, use the Create Physical Feedthrough tool widget.
After adding a partition feedthrough to the design, you can use the Attribute Editor to change
its layers. The specified routing layers are reserved for top-level use, and the partition uses
the other layers. You can create an island type partition feedthrough in a similar way, but all
layers are deselected.

To insert routing feedthroughs and hole punch buffers, complete the following steps:
1. Create routing feedthroughs using one of the following methods:

Method 1: Use the Create Physical Feedthrough widget to create the feedthrough
buffer on the partition. Select the buffer and open the Attribute Editor form, specify the
metal layer, and click OK. This creates the channel for the routing on the specified layers
at the top level, and pushes down appropriate routing blockages at the block level.

Method 2: If you want to specify narrow feedthroughs or several of them on a given
partition, choose Partition — Create Physical Feedthroughs to open the Create
Physical Feedthrough form. To specify which partition you want, click on the partition in
the design display area, then click get selected. Complete the form and click OK.

2. (Optional) if you have hole punch buffers, create an island to specify where the holes are
to be punched in the partition.

To do this, use the Create Physical Feedthrough widget to create a routing blockage
and placement island, run IPO or buffer insertion to place buffers into the island, then
deselect all layers after double-clicking on the island. This creates the island for buffer
placement at the top level, and pushes down the appropriate routing and placement
blockage at the block level.

October 2010 342 Product Version 9.1.3

../encounter/partitionG.html#CreateFeedthroughs
../encounter/partitionG.html#CreateFeedthroughs
../encounter/startingG.html#AddPartitionFeedthrough
../encounter/editG.html#ObjAttr

Encounter Digital Implementation System User Guide
Partitioning the Design

3. Run Partition.

This automatically creates routing blockages for the channel feedthroughs, and
placement blockages for the placement island, as shown in the following figure:

Channel Channel
Feedthrough Feedthrough
(layer M6) (layer M5)

/

gem izl 2

L LHH Placement
‘// Island

HH HH

I]

HH HH

I]

Partition with
Partition Feedthroughs

Generating the Wire Crossing Report

Routing

Obstruction
(layer M6)

A

Routing
Obstruction
(layer M5)

/

y

N

N

y -

Committed Partition

Placement

L~ QObstruction

You can display and write a file of wires that physically cross over partitions using the
showPtnWireX text command or the Partition — Show Wire Crossing menu command.

The results are saved to a designName.wirecrossing file that reports nets that cross
each partition in a design. For any net that crosses more than one partition, you can use it as
a starting point for generating a list of nets for feedthrough insertion.

)" Tip

Editthe designName.wirecrossing file to exclude high fanout nets, clock nets,
and nets that are connected to two or more glue logic standard cells to avoid timing
and routing problems on these nets. You can use the resulting file with the
insertPtnFeedthrough text command’s -selectNet option. Note that the

EDI System software determines the buffer tree topology, so not all specified nets
will receive inserted feedthroughs. For example, nets that connect directly between
adjacent partitions are not candidates for feedthrough insertion.

October 2010

343

Product Version 9.1.3

../fetxtcmdref/partitionT.html#showPtnWireX
../fetxtcmdref/partitionT.html#insertPtnFeedthrough

Encounter Digital Implementation System User Guide
Partitioning the Design

Interpreting the Wire Crossing Report

The wire crossing report section lists the nets, their wire lengths, in micrometers, and the
shape of the wire in relation to the partition. For example, the following report segment is for
a partition module named ptn01:

FHERFHFHFH AR ERF AR RERFRF AR FRF AR F R H AR A

Nets that cross partition module ptn0Ol

Box (335 335) (833 567)

Format: Net <netName> <wireLength> <shape>
FHHH A H A A R 4

Net A 65 I
Net B 80 L
Net C 1050 T
Net D 132 X

The first net in the report, A, has a wire length of 65 micrometers in an ‘I’ shape, which
indicates that the net crosses the partition on opposite sides, as follows:

Net A 65 I

The second net in the report, B, has a wire length of 80 micrometers in an ‘L’ shape, which
indicates that the net crosses the partition on adjacent sides, as follows:

Net B 80 L

.

October 2010 344 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

The third net in the report, C, has a wire length of 105 micrometers in an ‘T’ shape, which
indicates that the net crosses the partition on three sides, as follows:

Net C 105 T

&

The fourth netin the report, D, has a wire length of 132 . 30 micrometers in an ‘X’ shape, which
indicates that the net crosses the partition on all four sides, as follows:

Net D 132 X

&
IR

In the report, you can also include the total length of the wire crossing the block in the
horizontal X direction and total length of the wire crossing the block in the vertical Y direction
usingthe -delta option of the showPtnWireX command. For example, the following report
segment is for the same partition module named ptn01 using the -delta option:

FHERH AR AR H AR H AR R R R R R 4

Nets that cross partition module ptn0Ol

Box (335 335) (833 567)

Format: Net <netName> <wireLength> <shape> <deltaX> <delta¥Y>
FHAF A AR R R R

Net A 65 I 0 65
Net B 80 L 38 47

The first net in the report, A, has a wire length of 65 micrometers in an ‘I’ shape, with a total
of 0 length in the horizontal X direction, and 65 in the vertical Y direction:

October 2010 345 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Net A 65 I 0 65

The second net in the report, B, has a wire length of 80 micrometers in an ‘T’ shape, with a
total of 38 length in the horizontal X direction, and 47 in the vertical Y direction:

Net B 80 L 38 47

Horizontal segment net length
X1=15

X1 X2=5

NetB —& 317745 X3 =18

Y2| X3 Vertical segment net length

Y1=10
Y2=12
Y3=25

Y3

In the above example, the 38 length in the X direction is calculated for the X direction net
segments (X1 + X2 + X3), and the 47 in the Y direction is calculated for the Y direction net
segments (Y1 + Y2 + Y3).

Estimating the Routing Channel Width

For committed partitions and blackboxes with assigned pins, channel width estimation uses
the current pin assignment. If partition pins are not assigned, they are placed at the lower-left
corner. In this case, the EDI System software issues a warning message because the
estimator cannot produce a good result.

For uncommitted partitions, channel width estimation runs the Partition program, assigns
pins, estimates the channel widths, and runs the Unpartition program. For blackboxes without
assigned pins, it assigns pins and estimates the channel widths.

Channel width estimation also considers topology constraints to drive block placement.
These constraints are block-to-block boundary, block-to-block distance, block order and

October 2010 346 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

alignment, block aspect ratio, net weight (from global trialRoute), and block halo. The
channel width estimator also respects these constraints so that their top-level block floorplans
are not dramatically changed. If there is conflict between a specified constraint and the
minimum required channel spacing, the EDI System software honors the minimum required
channel spacing.

This feature produces a report containing the following information:

m Estimated required spacing, in micrometers, between partitions, blackboxes, and hard
macros.

m Estimated required spacing surrounding each partition based on its pins (the relative
distance between partition blocks required for top-level routing).

m Estimated distance between blocks and core boundaries (top, bottom, left, right).

The following figure shows an example of how the channel estimation report relates to the
design:

r "1 Blockl Block2 Current Required
bot-boundaryINST124.6 28.8
bot-boundaryINST254.3 46.9
BB1 INST3 bot-boundaryHB225.0 31.2
lft-boundaryINST138.2 45.5
lft-boundaryINST343.2 37.8
lft-boundaryHB146.8 33.5
INST1 INST3 64.8 39.4
INST1 INST2 72.1 55.7
INST2 HB1 top-boundary57.2 10.9
INST1 HB1 BB1 44.5 69.1
INST4 top-boundary59.5 51.7
INST4 rht-boundary53.0 50.5
L I ..
Partition % Hard Macro . Blackbox

October 2010 347 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Running the Partition Program

The Partition program creates the partitions in the top-level design. This changes the
module’s status from a fence to a block and generates pins if routing data exists from running
Trial Route. When the Partition program is run, the Trial Route data is deleted because the
current placement and route data are not suitable for further work at the top level. The
partition pin guide (floorplan) object can be used to determine the location of the pins, and
nets or buses will be assigned to the partition pin guide objects.

If the partitions are changed, then the placement and Trial Route programs must be rerun. To
change the status of the partition from being a hard block, you must run Unpartition to flatten
the partition.

/ Important

After you run the Partition program and save the partition data, you should exit the
session and start a new session for the top-level design and for each partition in their
newly created UNIX directories.

Note: Running the Partition program creates a blockage on an OVERLAP layer even though
the OVERLAP layer is not defined in the technology section of the LEF file. As a result, the
partition LEF file cannot be loaded into either the EDI System software or any standalone
tools. If your design has rectilinear partitions or feedthroughs, the OVERLAP layer must be
defined in the technology section of the LEF file.

/ Important

If a partitioned design is unpartitioned and then partitioned again, it will lose the
original routing and timing information. The routing and timing information are not
preserved during the unpartition-partition process.

To restore the timing information, Save your routing data before partitioning. If you
unpartition later, run the restoreRoute text command to get the routing information,
then run extractRC, and then buildTimingGraph, to restore timing information.

/ Important

To preserve the existing power/ground pins during partitioning and create additional
pins based on the power structure that crosses partitions in the floorplan, use the
partition command with the -keepPGPin parameter.

You can save the partition data in an OpenAccess database. For more information, see
Working with OpenAccess Database on page 369.

October 2010 348 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition

Encounter Digital Implementation System User Guide
Partitioning the Design

Creating a Top-Level Partition
1. Run the Partition program.
2. Run Trial Route on the top-level partition.
3. Check for routing congestion.
If there is no congestion, you are done. If there is congestion, continue to step 4.
4. Run the Unpartition program and add more routing resources to the congested area.

5. Rerun the Partition program.

Repeat steps 1 — 5 until there is no routing congestion.

Block-Level Partition

To create a block-level partition, complete the following steps:
1. Run the Partition program.
2. Check to see if each partition size is suitable.
If it is, you are done. If it is not, continue to step 3:
3. Run the Unpartition program.
4. Increase the size of the block.

5. Rerun the Partition program.

Continue with the steps above until you have reached suitable partition sizes.

Pushing Down Signal Routes

During partition program, you can use the -pushRoute parameter of the partition
command to push down signal routes to the respective partitions.

/ Important

Before running the partition -pushRoute command, you can check the
hierarchy violations for nets on the partitions with the checkHierRoute command.

Here’s the pushdown behavior with the -pushRoute parameter of the partition
command:

October 2010 349 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#checkHierRoute

Encounter Digital Implementation System User Guide
Partitioning the Design

B The following routes are pushed down:
Q Intra-partition nets routed completely within the routed boundary.

Q Inter-partition nets that cross the partition boundary only once and that pass
through the partition pin location.

B Top nets that are routed completely in the top channels are retained at the top

B All other nets are deleted.

For nets that have a hierarchy violation, only the wire segments that have a hierarchy violation
on the nets are discarded. The other wire segments are retained.

How Top-level Stripes Are Pushed Down

This section explains how stripes on the top level are pushed down into the partition when
you run the partitioning program. The following scenarios are discussed:

B The Default Behavior on page 350

m Behavior with the -stripStayOnTop Option on page 351

The Default Behavior

The following table summarizes the default behavior.

Stripe Position How Stripe Is Pushed Down

Stripe is completely m Top-level: The stripe is removed from the top.

inside partition _ L ,

boundary B Block-level: The stripe is pushed down as two pins and one

stripe.
H Block Abstract:

Q On layers reserved for partition, two pins are created on
the boundary.

a On layers not reserved for partition, one big LEF pin is
created.

October 2010 350 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Stripe Position How Stripe Is Pushed Down

Stripe is partially inside ®m Top-level: The stripe is retained at the top.

partition boundary. Block-level: The stripe is pushed down as two pins and one

stripe.
Block Abstract: The stripe is pushed down as a big LEF pin.

Stripe is outside but
close to partition
boundary

Top-level: The stripe is retained at the top.

Block-level: The stripe is retained at the top and is copied as
a routing blockage (same size as stripe) with a
+PUSHDOWN attribute.

m Block-abstract: No effect.

Behavior with the -stripStayOnTop Option

The -stripStayOnTop parameter in the partition command specifies that stripes that
are not on a layer reserved by the partition are retained at the top level and are also copied
into the partition. The following table explains how the stripes on the top level are pushed
down to the partition when you run the partitioning program with the -stripStayOnTop
parameter.

October 2010 351 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition

Encounter Digital Implementation System User Guide

Partitioning the Design

Stripe Position

How Stripes Are Pushed Down

Stripe completely inside
partition boundary

Stripe is partially inside
Partition boundary.

Stripe is outside but
close to boundary

Top-level:

Q Onlayers not reserved for partition, the stripe is retained
at the top and is copied to the block-level design.

O On layers reserved for partition, the stripe is pushed
down to the block-level design.

Block-level:

a Onlayers not reserved for partition, the stripe is retained
at the top and is copied as two pins and one stripe.

0 On layers reserved for partition, the stripe is pushed
down as two pins and one stripe.

Block Abstract:

0 On layers not reserved for partition, two pins are created
at the edges.

0 Onlayers reserved for partition except the topmost layer,
two pins are created at the edges.

@ On the topmost layer reserved for partition, one big LEF
pin is created.

Top-level: The stripe is retained on the top and is copied to
the block-level design.

Block-level: The stripe is retained at the top and is copied as
two pins and one stripe.

Block Abstract: The stripe is retained at the top and is copied
as a big LEF pin.

Top-level: Stripe is retained at the top.

Block-level: Stripe is retained at the top and is copied as a
routing blockage (same size as wire) with a +PUSHDOWN
attribute.

Block-abstract: No effect.

October 2010

352 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

How Bumps, Routes, and Area I/O Cells Are Affected

This section illustrates how bumps and routes are handled when the design uses hierarchical
partitioning with flip chip RDL routing and 45-degree routes. This information pertains to the
partition command.

Note: In the releases of EDI System prior to 6.1, the area I/O cells had to be part of the
top-level netlist; otherwise, DRC violations were reported during block implementation. From
the 6.1 release onwards, the area 1/O cells can be at the top level or be a part of the partition
netlist. This section describes the behavior for both the cases.

After the partition, LEF obstruction is cut against the overlapping bumps at the top. This is
done for all the bumps (power/gnd/signal/unused). Similarly the routing blockages inside the
partition is cut against the pushed down bump.

The following scenarios are discussed:

m Areal/O Cells are Part of the Top-level Netlist

B Areal/O Cells are Part of the Partition Netlist:

0 Bumps and Routing are on Top Routing Layer—Behavior with the stripStayOnTop
parameter

0 Bumps and Routing are on Reserved Routing Layer—Behavior with the
stripStayOnTop parameter

0 Bumps and Routing are on Top Routing Layer—Default Behavior

0 Bumps and Routing are on Reserved Routing Layer—Default Behavior)

Area I/O Cells are Part of the Top-level Netlist

When area I/O cells are part of the top-level netlist, signal bumps and routes remain bumps
and wires at the top level, but become routing blockages at the partition level. This allows
routing at the block level while preserving the space for the signal bumps and routes.

October 2010 353 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition

Encounter Digital Implementation System User Guide
Partitioning the Design

Power and ground bumps and routes are copied and pasted (duplicated) from the top level to
the partition. This allows power analysis at the block level. When the design is flattened, the
duplicate power and ground bumps and routes are removed from the block level.

Top Level Partition Level
Area I/O cell Area I/O cell Placement and Routing
Blockage
Signal bump Signal bump Placement and Routing
Blockage
Signal route Signal Route Routing blockage
Power and ground bump Bump Bump (copied and pasted)
Power and ground route Route Route (copied and pasted)

Area I/O Cells are Part of the Partition Netlist

When area I/O cells are part of the partition netlist, the pushdown behavior depends on:

B whether the stripStayOnTop parameter has been specified with the partition
command.

m whether the bumps and routing are on the top routing layer or the reserved routing layer

/ Important

In this case (that is, area 1/O cells are part of the partition netlist), the behavior
applicable to area I/O cells is also applicable to any other instance to which the bump
is logically connected.

If the area I/0O cell and the bump connection pass through a partition pin, the pin will not be
assigned when you assign partition pins. These partition pins are assigned only when you
run the partition command. If the bump overlaps the partition, a partition pin is created,
with a geometry similar to that of the bump. If the bump does not overlap the partition, the pin
is created during special route pushdown. The pin is created on the partition boundary where
the routes between the bump and the area I/O cross the partition boundary.

For floating partition pins that are connected to a bump, the assignPtnPin command will
check if the bump physically overlaps with the partition. If so, the command will not assign the
pin and a partition pin is created, with a geometry similar to that of the bump, only when the
partition command is run. Otherwise, the pin is assigned on the partition boundary by
assignPtnPin command.

October 2010 354 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#assignPtnPin
../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#assignPtnPin

Encounter Digital Implementation System User Guide
Partitioning the Design

The following sections discuss the behavior for the following cases:

®m Bumps and Routing are on Top Routing Layer—Behavior with the stripStayOnTop
parameter

B Bumps and Routing are on Reserved Routing Layer—Behavior with the stripStayOnTop
parameter

m Bumps and Routing are on Top Routing Layer—Default Behavior

B Bumps and Routing are on Reserved Routing Layer—Default Behavior

Note: For all the listed scenarios, the push down behavior for signal routes is similar to the
behavior described in the How Top-level Stripes Are Pushed Down on page 350.

Bumps and Routing are on Top Routing Layer—Behavior with the stripStayOnTop
parameter

The following table summarizes the behavior when the bumps and the routing are on the top
routing layer and you run the partition command withthe -stripStayOnTop parameter.

Object Type Top Level Partition Level

Area I/O cell An pin equivalent pin to the area Area I/O cell is retained in the
I/O pin is created in the partition partition netlist
LEF file. This pin has the same
size, location, and metal layer as
the area I/0 pin.

October 2010 355 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition

Encounter Digital Implementation System User Guide
Partitioning the Design

Object Type Top Level Partition Level

Signal bump Signal bump stays on top and, m If the bump overlaps fully
additionally, an equivalent pin is or partially with the
created in the partition LEF file. partition, and connects to

the partition:

An equivalent pin for the
signal bump is created in
the partition LEF file.
This pin has the same
size, location, and metal
layer as the bump.

m [fthe bump overlaps with
the partition but is not
connected to the
partition:

The signal bump is
pushed down as a
routing blockage.

October 2010 356 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Object Type Top Level Partition Level
Signal Routes Signal Routes routed on the top m If the signal route
routing layers stays at top. overlaps the partition

and is also connected to
a area /O cell inside the
overlapping partition and
a signal bump at the top,
the signal route is copied
and pasted to the
partition. The pushed
down net will be the
internal net in the
partition and will be
named based on the
partition port it is
connected to inside the
partition.

m If the signal route
overlaps the partition to
which it is not connected
(that is, it is not
connected to any
instance inside the
partition but to a bump at
top), these routes are
copied and pasted as
routing blockages inside
the overlapping partition.

October 2010 357 Product Version 9.1.3

Encounter Digital Implementation System User Guide

Partitioning the Design

Bumps and Routing are on Reserved Routing Layer—Behavior with the

stripStayOnTop parameter

The following table summarizes the behavior when the bumps and the routing are on the
reserved routing layer and you run the partition command with the
-stripStayOnTop parameter.

Object Type
Area /O cell

Signal bump

Signal route

Top Level Partition Level

Not applicable Area I/O cell is retained in
because area I/O the partition netlist.

cell is already part

of the partition

netlist.

Signal bump stays Bumps get pushed down to
on top and, the partition as an
additionally, an equivalent pin in the
equivalent pinis partition DEF file.

created in the

partition LEF file.

Signal routes are Routing gets pushed down
removed from the inside the partition block
top.

Bumps and Routing are on Top Routing Layer—Default Behavior

The following table summarizes the default behavior when the bumps and the routing are on
the top routing layer. The default behavior in this context refers to the behavior that occurs
when you run the partition command withoutthe -stripStayOnTop parameter.

Object Type
Area /O cell

October 2010

Top Level Partition Level

Not applicable Area I/O cell is retained in
because area I/O the partition netlist

cellis already part

of the partition

netlist.

358 Product Version 9.1.3

../fetxtcmdref/partitionT.html#partition
../fetxtcmdref/partitionT.html#partition

Encounter Digital Implementation System User Guide
Partitioning the Design

Object Type Top Level

Signal bump

created in

partition LEF file.

Signal route

top.

Bump Stays at
Top. An additional
Bump pin is

Signal routes are
removed from the

Partition Level

Bumps get pushed down
inside the partition block as
an equivalent pin in
partition DEF file.

Routing gets pushed down
inside the partition block

The routes on top routing
layer are cut from the top
and pasted inside the
partition. For details, please
refer to How Top-level
Stripes Are Pushed Down
on page 350.

Bumps and Routing are on Reserved Routing Layer—Default Behavior

The following table summarizes the default behavior when the bumps and the routing are on

the reserved routing layer.

Object Type Top Level

Area |/O cell Not applicable.

Signal bump Signal bump stays
at top. An additional
bump pin is created
in the partition LEF
file.

Signal route Signal routes are
removed from the
top.

October 2010

Partition Level

Area /O cell is retained in
the partition netlist

Bumps get copied down
inside the partition block as
a pin.

Routing gets pushed down
inside the partition block.

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Limitations

B The pushdown of the signal bumps as an equivalent pin inside the partition is not
supported for the non-rectangular shapes of the bump cell.

m If the pushed down area I/O cell has pin shapes on the top routing layers, the blockages
created on the top routing layers are not cut against these component pins.

m If the signal routes are pushed down to the partition, any routes that do not overlap with
the partition but lie close enough to the partition boundary and may thus result in spacing
violations at chip assembly, will be pushed down as blockage inside the partition. This
may result in some blockages being pushed down to the partition but outside the partition
box.

The following examples illustrate the behavior:

m Case 1: All Routing Layers Reserved for the Partition

m Case 2: Top Layer Not Reserved for Routing

Case 1: All Routing Layers Reserved for the Partition

The design has six routing layers. All the layers are reserved for the partition. Signal Bump
SM is connected to area I/O cell inside the partition.

The following diagram shows the floorplan view before partitioning.

Signal bump
at top

Area /0 instance
inside partition

October 2010 360 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

The following figure shows the view at top after partitioning.

Signal bump stays
at top

The following figure shows the view inside the partition

. A WG Signal bump gets pushed down
as an equivalent pin shape

Signal route gets pushed down

Area I/0 instance is retained in
the partition block

October 2010 361 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Case 2: Top Layer Not Reserved for Routing

The design has six routing layers. Layers M1-M5 are reserved for the partition. M6 is the top
routing layer.

The following diagram shows the floorplan view before partitioning.

Signal bump at top
(layer M6)

Area IO instance
inside the partition

The following diagram shows the view at the top after partitioning with the
-stripStayOnTop parameter specified.

Signal bump stays
at top

i
BEIEERE L

Signal route on the top routing
layer M6

October 2010 362 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

The following figure shows the view on the top after partitioning with the pins visible.

i
:
%

g e e |

sty
SR
K pta by at el
Ty

Fely

Signal bump at top
{equivalent pin
shape is also visible)

Febaly oo

¥:

¥

..,.,.,.
Epbalaaty

Pin shape on layer
M3 in partition
hlock

i
g
i
S
s
g
ey
e
s
S
e
e
s
e S
e
S
e
b
i
g
i
S
s
g
ey
5
i
S
ik
e
e

The following figure shows the view on the top after partitioning without the
-stripStayOnTop parameter specified.

Signal bump at
top

October 2010 363 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

The following figure shows the view on the top after partitioning with visible routing blockages
on layer M6.

Signal bump gets pushed down
as an equivalent pin shape.
Routing blockage is cut against
this pin shape

LA ey ATy ATy
P |
AL AL AL L AL A Y FLA LA R LR
LA AL L AL A Y viALEA b
AL AL AL L AL A Y FLALIA R LR
Eer i T L KR LA SR
e
e T Y e
AL A A LA A A A AR A A e AR
Ty T)
(A D T]

The following figure shows the view inside partition with the display of the routing blockages
turned off

- 1

e

Li.t.] W
it g i
e Ml | - el R B
A e A
P e P
Ry o ot
L1111 — L1 1]
iy g o
P e | el T e el P P
sy i

el R | el R B
s A
o T R P
Ry o
. s e e

Note:

October 2010 364 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Restoring the Top-Level Floorplan with Partition Data

1. Import the entire design from the top-level directory that was created or updated when
you saved the partition.

If any portion of the design (top level or any partition) was changed by running scan
optimization, CTS, or IPO, the changed netlist of the entire design is imported, not the
original netlist. This changed netlist is usually created by concatenating each of the
partition netlists to the top-level netlist. To do this, use a text editor to manually edit it, or
use the Design Import form to create a single Verilog netlist of the entire design (see
“Concatenating Netlist Files of a Partitioned Design” on page 366).

/ Important

If a tool changes the partition netlist, you must update the full chip netlist. Some
routers, such as NanoRoute™, might modify the partition netlist. The EDI System
software requires that the full chip netlist, loaded during Design Import, be
consistent with the routed partition netlist.

2. Load the top-level floorplan used to partition the entire design.

3. Set the Partition forms with Perform Pin Assignment deselected and partition the

design.
4. Load the top-level placement data from the top-level directory.
5. Choose File — Load — Partition.
This opens the Load Partition form.
6. In the Load Partition form, enter the directory name where the partition data was saved.
7. Click OK.
) Tip

In place of steps 5, 6, and 7, you can use the setTopCell command to restore the
partition and top-level data for the entire design. This is especially useful for
restoring placement data from a DEF or TDF file.

Note: To perform a full chip analysis or a timing budget refinement analysis, use the
Unpartition form to flatten the design.

October 2010 365 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Concatenating Netlist Files of a Partitioned Design

To create a single Verilog netlist of the entire design, including the top level and all the
partitions, complete the following steps:

1. Start a new EDI System session.

2. Choose File — Import Design to open the Design Import form, and click the Basic tab
if it is not selected.

3. Inthe Verilog Files field, enter each netlist filename in the order from top-level netlist
followed by the partition netlist files.

Note: The partition netlist are read from each of the partition’s work directories.
Click OK.

Choose File — Save — Netlist to open the Save Netlist form.

Enter a Verilog file netlist name in the Netlist File field.

Click OK.

©® N o o »

Use the saved Verilog file to restore the top-level floorplan with partition data (see
“Restoring the Top-Level Floorplan with Partition Data” on page 365).

October 2010 366 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Saving Partitions

You can save partition results, including the top-level partition, to their own subdirectories so
that each partition can be worked on concurrently. Each partition directory contains all files
necessary to run the EDI System software. Files necessary to run back-end tools in DEF,
PDEF, and TDF formats can be selected when saving partitions.

To save a partition, use the Save Partition form or the savePartition text command.

@aut/on

Do not use the Save Design form to save a partition.

You can also save partitions in the OpenAccess database format. For more information, see
Working with OpenAccess Database on page 369

Loading Partitions

After completing the design work for each partition and the top level, you can restore a
partitioned design to the top level, which includes loading all the partition design directories
and its data.

To restore a saved partition design, use the Load Partition form.

Unpartitioning with Routing Data

When loading a partition, it is important that the loaded routing results correctly correspond
to the new netlist. To ensure that the netlist and routing file are consistent, you need to
unpartition with the routing data using the following steps:

1. Load the original flat design.

This is the original design before running the partition steps.
. Specify the partition and save to a file (to be loaded later in step 7).
. Run partitioning with pin assignment.

. Save the partitions and the top level.

a A~ WD

. For each partition and the top-level, run the block-level implementation with the following
commands:

4 encounter

October 2010 367 Product Version 9.1.3

../encounter/designG.html#SavePartition
../fetxtcmdref/partitionT.html#savePartition
../encounter/designG.html#LoadPartition

Encounter Digital Implementation System User Guide
Partitioning the Design

QO restoreDesign (for the block or top level)
Q trialRoute Or nanoroute Or wroute
0 saveRoute
6. Load the original design (the same design loaded in step 1).

If the netlist has been modified after step 1 (for example, in the case where a netlist is
modified after in-place optimization or running NanoRoute) use the updated netlist
instead.

To specify the updated netlist, you must first specify top-level netlist, then the block-level
netlists in the Verilog Files field of the Design Import form’s Design page. For example,
top.v blockl.v block2.v ...

/ Important

The netlist and routing must be consistent when loading a partition with routing data,
be sure you load the design with floorplanning, placement, and routing data that is
consistent with the data saved in step 4.

7. Load the partition file (specified in step 2).
8. Run partitioning without pin assignment.
9. Load the partition data.

For each partition, select the partition, then change the partition view (using the
Partition — Change Partition View menu command) and load all the data for the
viewed partition. You can use either the DEF file, or the . fp, .place and .route files.

10. Reset the view back to the top level (using the Partition— Change Partition View menu
command).

11. Load the top-level data.

You can read in the top-level physical information by either using the DEF file or the
placement (.place) and routing (.route) file. You must not read in the floorplan (.fp) file
again because the floorplan information was already read in at the very beginning.

Note: Top-level physical information can only be loaded using DEF.

12. Unpartition the design (flattenPartition).

October 2010 368 Product Version 9.1.3

Encounter Digital Implementation System User Guide
Partitioning the Design

Working with OpenAccess Database

You can save and load designs using the OpenAccess database. The following commands
and parameters are used for OpenAccess database designs.

B The savePartition command can save files in OpenAccess database format:

Q -oaPtnlLib

Specifies an OpenAccess directory library name where the top-level and the block-level
designs will be saved.

Q -oaPtnView

Specifies a view name for the top view and the partition view.
Q -reflLibs

Specifies a list of reference libraries.

The assembleDesign command supports assembling the saved OpenAccess format
files.

Q -topDesign
Specifies the top-level name.
Q -block

Specifies the block names.

The updateBlock command can bring back block information from OpenAccess
database files.

Q -topDesign
Specifies the top-level name.
Q -block

Specifies the block names.

The general flow for designs that use an OpenAccess database is the same as described
throughout this chapter.

The following command saves the partition information/files in the OpenAccess database
format. The information for the top and the block level designs (all blocks) will be written in the

1libForOA directory view with the view name ptnviewl.

savePartition -oaPtnLib 1ibForOA -ocaPtnView ptnViewl

October 2010 369 Product Version 9.1.3

../fetxtcmdref/partitionT.html#savePartition
../fetxtcmdref/partitionT.html#assembleDesign
../fetxtcmdref/partitionT.html#updateBlock

Encounter Digital Implementation System User Guide
Partitioning the Design

The following command assembles the design after bringing back information from the
top-level cell DTMF and block-level cells TDSP_CORE and TDSP_ARB.

assembleDesign -topDesign libForOA DTMF ptnViewl -block libForOA TDSP_ CORE ptnViewl
-block 1libForOA TDSP_ ARB ptnViewl

For ECO flow, the updateBlock command can be used to bring back the information from
the top- and block level-cells. Here is an example:

updateBlock -topDesign libForOA DTMF ptnViewl -block 1libForOA TDSP CORE ptnViewl
-block libForOA TDSP_ARB ptnViewl -all

Parallel Job Processing

With parallel processing, you can distribute jobs using a remote shell (rsh) or load sharing
facility (LSF), specify host names for running jobs, and specify job information, such as block
working directories and their run scripts.

The following procedure provides the most common steps for parallel job processing:

—h

. Import the design.

. Floorplan the design.

. Assign pins.

. Run Timing Budgeting.

2

3

4

5. Partition the design.
6. Save the partition

7

. Run parallel job processing to implement the blocks.

For more information, see:

m Set Multiple CPU Usage in the “Options Menu” chapter of the Encounter Digital
Implementation System Menu Reference.

October 2010 370 Product Version 9.1.3

../fetxtcmdref/partitionT.html#updateBlock
../encounter/optionsG.html#MultipleCPUProcessing

Encounter Digital Implementation System User Guide

13

Floorplanning the Design

Overview on page 372

Common Floorplanning Sequence on page 373
Viewing the Floorplan on page 374

Module Constraint Types on page 377

Grouping Instances on page 383

Creating and Editing Rows on page 390

Using Vertical Rows on page 390

Using Multiple-height Rows on page 392

Performing 1/O Row Based Pad Placement on page 403

Resizing Rectilinear Blocks on page 408

Using Blackblobs on page 411

Editing Pins on page 428
Running Relative Floorplanning on page 439

Saving and Loading Floorplan Data on page 442

Resizing the Floorplan on page 443

October 2010 371

Product Version 9.1.3

Encounter Digital Implementation System User Guide
Floorplanning the Design

Overview

Floorplanning a chip or block is an important task of physical design in which the location,
size, and shape of soft modules, and the placement of hard macros are decided. Depending
on the design style or purpose, floorplanning can also include row creation, 1/0 pad or pin
placement, bump assignment (flip chip), bus planning, power planning, and more. For
example, floorplanning is very important when preparing the design for timing closure and
detailed routing. Floorplanning, in conjunction with placement and trial routing, can be an
iterative design process.

The Encounter Digital Implementation System (EDI System) software provides a rich set of
commands and GUI functions to floorplan your design interactively. There are also
commands for creating an initial floorplan automatically, or, resize a finished floorplan while
keeping relative placement of objects.

m Forinformation on floorplan commands, see the Floorplan Commands chapter, in the
Encounter Digital Implementation System Text Command Reference.

m Forinformation on floorplan GUI, see the Floorplan Menu chapter, in the Encounter
Digital Implementation System Menu Reference.

EDI System includes several keyboard shortcuts for use with the floorplanning feature. Make
sure you type the bindkey while the main EDI System window is active and the cursor is in
the design display area. The Binding Key form contains a complete list of bindkeys. To display
this form, select Options — Set Preference from the EDI System menu, then click the
Binding Key button on the Design tab of the Preferences form, or use the default b binding
key.

October 2010 372 Product Version 9.1.3

../fetxtcmdref/floorplanT.html#firstpage
../encounter/floorplanG.html#firstpage
../encounter/optionsG.html#BindingKey

Encounter Digital Implementation System User Guide
Floorplanning the Design

Common Floorplanning Sequence

Floorplanning usually starts by preplacing blocks, modules, and submodules according to the
prepared floorplan. All other modules or blocks not in the prepared floorplan are left outside
the chip area.

The following steps describe the most common sequence for floorplanning:

—h

. Importing the design.
2. Studying the design’s connectivity.

3. Performing the minimum amount of floorplanning based on the chip design floorplan, or
do no floorplanning at all.

4. In some cases, no floorplanning is required. For example, a front-end designer might
want to predict the quality of the design’s netlist by initially placing the entire design
without any floorplanning. This iteration provides a good indication of how the blocks
should be located and arranged together with the larger modules. After a few iterations,
it should be clear how to position the blocks and modules in the floorplan.

5. Running placement and Trial Route to view placement and routing congestion.

Optionally, running resize floorplan to enlarge or shrink the die after placement and
routing. See Resizing the Floorplan on page 443.

6. In this case, floorplanning is done to detail the pre-placement of all blocks, most likely
done by a back-end designer to gauge the feasibility of a prepared floorplan.

7. The placer places all remaining blocks that were not preplaced in the floorplan, and also
recognizes the floorplan object, such as power and ground routes.

8. If you are at the design’s top-level in the display area and want to generate a guide for a
submodule, ungroup the top module until you have reached the submodule.

9. Using the full chip placement to refine block (hard macro and blackbox) locations.

(Optional) Based on the full chip placement results—placement density and routing
congestion, running resize floorplan to enlarge or shrink the die.

10. View the placements of blocks to determine if you need to change the al