
SKILL Development Help

Product Version 06.01
November 2001

 1990-2001 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this
document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 1-800-862-4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission statement,
this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or
distributed in any way, without prior written permission from Cadence. This statement grants you permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s customer
in accordance with, a written agreement between Cadence and its customer. Except as may be explicitly set
forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties
as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does
not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any
liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

SKILL Development Help

Contents
1
Cadence SKILL Language Development Help. 9

Overview . 10
Close Toolbox for Automatic License Check in/out . 11

2
SKILL Debugger . 13

Overview . 14
SKILL Debugger Commands . 15

Dump . 15
Stacktrace . 15
Where . 15
Step . 15
Next . 15
Step Out . 15
Exit Debug Toplevel . 15
Continue . 16
Tracing . 16
Set Breakpoints . 16
Debug Status . 16
Clear . 16
Automatic Stacktrace (Levels) . 16
Enter New Debug Toplevel on Error . 16
Terminate Debugging and Quit Debugger . 16

3
SKILL Lint. 17

Overview . 17
Form Options . 18

Input File . 18
November 2001 3 Product Version 06.01

SKILL Development Help
Context Name . 18
Package Prefixes . 18
Output . 19
Output File . 20
Check For . 20

Customize Messages Form . 22
Message Groups . 22
Messages . 24

SKILL Lint PASS/FAIL and IQ Algorithms . 31
SKILL Function . 32

4
SKILL Profiler . 37

Overview . 38
Using the SKILL Profiler . 38
File Menu . 39

Open Browser . 39
Save As . 39
Search . 40
Close Window . 41

Profile Menu . 41
Start Profiling Time . 41
Start Profiling Memory . 42
Stop Profiling . 42
Reset Profiling . 42

Options Menu . 43
Setup . 43
Filters . 44

Fixed Menu . 46
SKILL Functions . 46

5
Code Browser . 47

Overview . 48
Function To Expand . 48
November 2001 4 Product Version 06.01

SKILL Development Help
Code Browser Window . 49
Commands Menu . 49

Expand Function . 49
Find Function . 50
Delete All . 50
Close . 50

Misc Menu . 51
Defaults . 51
Filters . 51

Pop-up Functions Menu . 51
View . 51
Expand Functions . 52
Expand Deep . 52
Unexpand . 52
Delete . 52

6
Tracing . 53

Overview . 53
Tracing Form . 54

Tracing . 54
Type . 54
Trace Symbols . 55

SKILL Functions . 55

7
Finder . 57

Overview . 58
Your database may vary . 58
You can add your own functions . 58
Starting up . 58

Searching . 58
Simple Strings . 58
Combinations . 59
Categories . 59
November 2001 5 Product Version 06.01

SKILL Development Help
Starting a search . 60
Stopping a search . 60

Selecting from Matches . 60
Saving Descriptions . 61

Clear . 61
Save... . 61

More on Saving . 62
Cadence Data . 62
Customer Data . 63
Data Format . 63
Troubleshooting . 64

Too Many Matches . 64
Save File Is Not Writable . 64
No files found . 64
Descriptions Window Full . 64
Font Size Unsatisfactory . 65

Starting in UNIX . 65
Standard Mode . 65
Test Modes . 65

8
Walkthrough . 67

Introduction . 67
Tasks for the Program . 68
Tasks for You . 68
The Test Program . 69

Load the Program . 70
Run the Program . 71
Resolve the First Error . 71
Fix the Functional Error . 73
Run Lint . 75
Measure myFunction1 . 77
Check Performance . 81
Rerun the Profiler . 83
Using the Non-Graphical SKILL Debugger . 85
November 2001 6 Product Version 06.01

SKILL Development Help
9
Command Line Interface. 87

Command Line: Profiler . 87
ilProf . 87
ilProfFile . 87

Command Line: Test Coverage . 88
ilTCov . 88
ilTCovDir . 88
ilTCovReportsOnly . 88

TCov Report Files . 89
ilTCovSummary . 89
contextName.tcovSum . 89
fileName.tcov . 89
contextName.d . 89

10
Writing SKILL Lint Rules . 91

Overview . 91
Rule Structures - SK_RULE Macro . 92

sl_functions . 92
g_test . 92
g_statement 92
SK_RULE Example . 92

Rule Access Macros . 93
SK_ARGS() . 93
SK_CUR_FILENAME() . 93
SK_NTH_ARG(n) . 93
SK_FUNCTION() . 94
SK_FORM([n]) . 94

Rule Reporting Macros . 94
Advanced Rule Macros . 95

SK_CHANGED_IN(t_release) . 95
SK_CHECK_STRINGFORM(t_stringForm) . 96
SK_RULE(SK_CONTROL ...) . 96
November 2001 7 Product Version 06.01

SKILL Development Help
SK_CHECK_FORM(l_form) . 97
SK_PUSH_FORM(l_form)
SK_POP_FORM() . 97
SK_PUSH_VAR(s_var) . 98
SK_POP_VAR(s_var [dont_check]) . 98
SK_USE_VAR(s_var) . 98
SK_ALIAS(s_function s_alias) . 98

Storing Rule Definitions . 99
/cds/tools/local/sklint/rules . 99
/cds/tools/sklint/rules . 99

Examples . 99
Adding a New Required Argument . 99
Replacing One Function With Another . 100
Promoting Standard Format Messages . 101
Making the Code Look Nicer . 101

11
Set Breakpoints Form . 103

Overview . 103
Function Names . 104
Breakpoints . 104

Set . 104
Clear . 104

Where . 104
Entry . 104
Exit . 104

Condition . 104
Clear All Breakpoints . 105
SKILL Functions . 105
November 2001 8 Product Version 06.01

SKILL Development Help
1
Cadence SKILL Language Development
Help

This document discusses

■ Overview on page 10

■ Close Toolbox for Automatic License Check in/out on page 11

The SKILL Development Toolbox tools include

■ SKILL Debugger on page 13

■ SKILL Lint on page 17

■ SKILL Profiler on page 37

■ Code Browser on page 47

■ Tracing on page 53

■ Finder on page 57

See also

■ Walkthrough on page 67

■ Command Line Interface on page 87

■ Writing SKILL Lint Rules on page 91
November 2001 9 Product Version 06.01

SKILL Development Help
Cadence SKILL Language Development Help
Overview

The Cadence® SKILL language development toolbox provides software tools that reduce the
time it takes to develop SKILL code and that improve the efficiency and quality of the code.

Finder...

Tracing...

SKILL Profiler...

SKILL Lint...

SKILL Debugger...

Commands Help

SKILL Development

Code Browser...
November 2001 10 Product Version 06.01

SKILL Development Help
Cadence SKILL Language Development Help
Close Toolbox for Automatic License Check in/out

You do not need to check SKILL Development in and out manually. The skillDev license is
checked out when you open the toolbox and is checked back in when you close the toolbox.

Finder...
November 2001 11 Product Version 06.01

SKILL Development Help
Cadence SKILL Language Development Help
November 2001 12 Product Version 06.01

SKILL Development Help
2
SKILL Debugger

This document discusses

■ Overview on page 14

■ SKILL Debugger Commands on page 15

❑ Dump on page 15

❑ Stacktrace on page 15

❑ Where on page 15

❑ Step on page 15

❑ Next on page 15

❑ Step Out on page 15

❑ Exit Debug Toplevel on page 15

❑ Continue on page 16

❑ Tracing on page 16

❑ Set Breakpoints on page 16

❑ Debug Status on page 16

❑ Clear on page 16

❑ Automatic Stacktrace (Levels) on page 16

❑ Enter New Debug Toplevel on Error on page 16

❑ Terminate Debugging and Quit Debugger on page 16
November 2001 13 Product Version 06.01

SKILL Development Help
SKILL Debugger
Overview

To debug your SKILL code, you first bring up the SKILL Debugger Toolbox. The SKILL
Debugger program is automatically installed when the toolbox is brought up. After the
installation, when you run your code and an error occurs, you enter the debugger. You also
load and enter the debugger, regardless of whether it is installed, when you reach a
breakpoint.

When you run the code and an error occurs, use the Dump, Stacktrace, and Where
commands to display the SKILL stack and local variables. Output appears in the CIW.

To set breakpoints, click on Set Breakpoints to bring up the Set Breakpoints form, enter the
function names, and click on OK or Apply. Then run your program. When you reach a
breakpoint, use the Step, Next, and Step Out commands to step through the code.

To quit the SKILL Debugger, click Exit Debug Toplevel in the SKILL Debugger toolbox. Each
time you select Exit Debug Toplevel, SKILL exits the most recently entered (nested)
debugger session.
November 2001 14 Product Version 06.01

SKILL Development Help
SKILL Debugger
SKILL Debugger Commands

Dump

Prints to the CIW the current values of all the local variables on the stack, up to the maximum
specified by the number to the right of the Where button.

Stacktrace

Prints to the CIW all the functions on the stack, and their arguments, up to the depth specified
by the number to the right of the Where button.

Where

Prints to the CIW all the functions and local variables on the stack, up to the depth specified
by the number to the right of the Where button.

Step

Steps into functions from the break handler. The number of steps is specified by the number
to the right of the Step Out button.

Next

Does not step into functions, but allows execution to proceed from the break handler until the
stack returns to its current depth. This function repeats the number of times specified by the
number to the right of the Step Out button.

Step Out

Allows execution to proceed until the evaluator returns from the current function. This function
repeats the number of times specified by the number to the right of the Step Out button.

Exit Debug Toplevel

Exits the current SKILL Debugger toplevel.
November 2001 15 Product Version 06.01

SKILL Development Help
SKILL Debugger
Continue

Continues execution from a breakpoint.

Tracing

Brings up the Tracing Form on page 54.

Set Breakpoints

Brings up the Set Breakpoints Form on page 103.

Debug Status

Prints the functions, variables, and properties being traced and prints those functions that
have breakpoints set or are being counted.

Clear

Clears all tracing and breakpoints.

Automatic Stacktrace (Levels)

Sets the number of functions on the stack to print every time an error occurs. This is useful if
the SKILL Debugger is not installed or if the error occurs within an errset that prevents the
SKILL Debugger from being entered.

Enter New Debug Toplevel on Error

Click the checkbox to enter the Debugger every time a SKILL error occurs.

Terminate Debugging and Quit Debugger

Uninstalls the Debugger and closes the Debugger Toolbox.
November 2001 16 Product Version 06.01

SKILL Development Help
3
SKILL Lint

This document discusses

■ Overview on page 17

■ Form Options on page 18

❑ Input File on page 18

❑ Context Name on page 18

❑ Package Prefixes on page 18

❑ Output on page 19

❑ Output File on page 20

❑ Check For on page 20

■ Customize Messages Form on page 22

❑ Message Groups on page 22

❑ Messages on page 24

■ SKILL Lint PASS/FAIL and IQ Algorithms on page 31

■ SKILL Function on page 32

See also

■ Writing SKILL Lint Rules on page 91

■ Walkthrough on page 67

Overview

Examines Cadence® SKILL language code for possible errors and inefficiencies. The
program is useful for detecting errors not found during normal testing. In addition, the program
November 2001 17 Product Version 06.01

SKILL Development Help
SKILL Lint
helps you spot unused variables and global variables that are not declared as locals. You can
optionally write your own rules. See Writing SKILL Lint Rules on page 91.

To run SKILL Lint, enter the file name or context that you want analyzed and click on OK or
Apply. By default, the output is displayed in the window that appears when SKILL Lint
completes.

Form Options

Input File

The SKILL file to analyze. If you specify the input file, you do not need to specify the context
name.

Context Name

The context to analyze. If you don’t specify a file, SKILL Lint looks under the install_dir/
tools/dfII/pvt/etc/context/ContextName directory and analyzes the files in that
directory. You may also give a directory path for the context.

Package Prefixes

The list of acceptable package prefixes for functions and global variables. SKILL Lint notes
any variables that don’t have the prefix, such as tr, that you entered. See Checking Function

SKILL Lint
November 2001 18 Product Version 06.01

SKILL Development Help
SKILL Lint
and Global Variable Prefixes on page 30. This helps you find a variable that you meant to
declare as a local because prefixes are not normally used on local variables. This would also
flag whether your program uses a global from someone else’s program.

Output

Determines where to print the output.

Print To CDS Log File

Prints the SKILL Lint output to the CDS.log file and the CIW.

View Output File

Brings up a window containing the SKILL Lint output. If you turn on both Print To CDS Log
File and View Output File, the output file is displayed after the output is printed to the
CDS.log file. When you are done viewing the output, choose Close Window from the File
menu.

SKILL Lint Output
November 2001 19 Product Version 06.01

SKILL Development Help
SKILL Lint
Output File

The file to contain the SKILL Lint output. If you do not enter a name here, a temporary view
file like the one above, rather than a permanent file, is created.

errors: Indicates the number of errors

general warnings: Indicates the number of general warnings.

top level forms: Indicates the number of expressions in the input file.

IQ score = 100 - [25*(number of short list errors) + 20*(number of long list
errors) / (number of top level forms)]
See SKILL Lint PASS/FAIL and IQ Algorithms on page 31.

Syntax of an output line:

■ Message Group Name usually abbreviated and capitalized.

■ (Built-in Message Name) in parentheses and capitalized.

■ Message description.

Check For

Turns on or off different groupings of SKILL Lint messages.

Errors

Enables the messages that cause a SKILL error if the code is executed, such as error, error
global or fatal error.

Warnings

Enables the messages that are potential errors and areas where you should clean up your
code.

Undefined functions

Lists all the functions that cannot be executed in the executable from which you ran SKILL
Lint.
November 2001 20 Product Version 06.01

SKILL Development Help
SKILL Lint
Performance

Enables the messages that give hints or suggestions about potential performance problems
in your SKILL code.

Custom

Allows you to customize the error reporting to a higher granularity. In general, you do not need
to use this option. When you select Custom, the SKILL Lint form is redrawn with a Customize
Messages To Check For button to select another form at the bottom.

When you select Customize Messages To Check For, the Customize Messages form
appears. The form appears with the current Check For selections highlighted.

If you make selections, and then click OK or Apply, succeeding calls to the form reflect the
messages as you last set them.
November 2001 21 Product Version 06.01

SKILL Development Help
SKILL Lint
Customize Messages Form

Message Groups refers to different classes of messages reported. If a message group is
disabled, no messages in that group are reported.

Messages refers to SKILL Lint messages that you can turn on or off individually.

To make selections, click on items in any of the list boxes.

To move messages between the enabled and disabled lists, use the arrow buttons.

Message Groups

The Message Group Name is listed as indicated in bold below in the Customized Message
Form. The message group priority appears as the first field on an output report line.

Priority Message Group Name

Customize Messages
November 2001 22 Product Version 06.01

SKILL Development Help
SKILL Lint
ERROR error is the group of messages that are considered errors.

ERR GLOB error global is the list of variables used as both globals and
locals.

EXT GLOB external global is the list of variables defined externally as
globals.

Fatal Error fatal error is the group of messages that prevent SKILL Lint
from proceeding with analysis.

HINT hint is the group of messages that tell you how to make your
code more efficient.

INFO information is all general information messages.

Internal Error internal is the group of messages about failures of the reporting
mechanism.

NEXT RELEASE next release is a group of messages to flag SKILL code that will
not work in the next release.

PACK GLOB package global is the list of global variables that begin with the
package prefix.

SUGGEST suggestion is the group of messages that indicate possible
ways you can increase the performance of your code.

UNUSED VAR unused vars is the list of local variables that do not appear to
be referenced.

WARN warning is the group of messages that are potential errors.

WARN GLOB warning global is the list of global variables that do not begin
with a package prefix.
November 2001 23 Product Version 06.01

SKILL Development Help
SKILL Lint
Messages

The Built-in Message Name appears in parentheses in the output report line. The Message
Group Name appears as its associated message group priority name in the first field of the
output report line. Only the SKILL core messages are listed in this table.

Built-in Message
Name Message Group Message Description

ALIAS1 error Both arguments to alias must be symbols.

APPEND1 suggestion Consider using cons rather than append.

ARRAYREF1 error First argument to arrayref must evaluate to
an array.

ASSOC1 suggestion Consider using assq rather than assoc.

BACKQUOTE1 suggestion Possibly replace this backquote with a quote.

CASE1 warning case can never be reached (after default t).

CASE2 warning Symbol t used in case or caseq list.

CASE3 error Duplicate value in case or caseq.

CASE5 hint case can be replaced with caseq.

CASE6 warning Quoted value in case or caseq (quote not
required).

CASEQ1 error You must use case rather than caseq.

CHK1 error Type template string must be last argument.

CHK2 error Redundant statement.

CHK3 error Bad argument (must be a symbol).

CHK4 error Redundant argument template.

CHK6 error Macros cannot have @key, @rest, or
@optional.

CHK7 error Nlambda 1st argument must be a symbol.

CHK8 error Entry after @rest not allowed.

CHK9 error @rest, or @key, or @optional not
followed by an argument.

CHK10 error Argument duplicated.
November 2001 24 Product Version 06.01

SKILL Development Help
SKILL Lint
CHK11 error Nlambda 2nd argument should be a list.

CHK12 error Nlambda maximum of two arguments.

CHK13 error @optional and @key cannot appear in the
same argument list.

CHK14 error Bad argument, should be a list of length 2.

CHK15 error Bad argument, should be a list.

CHKARGS1 error Function requires at least n
arguments. See Checking the Number of
Function Arguments on page 30.

CHKARGS2 error Function takes at most n
arguments. See Checking the Number of
Function Arguments on page 30.

CHKARGS3 error Key argument repeated.

CHKARGS4 error Unknown key argument.

CHKARGS5 error No argument following key.

CHKFORM1 error Number of arguments mismatch.

CHKFORM2 error Bad statement.

DBGET1 error Second argument to ~> must be symbol or
string.

DEADCODE1 warning Unreachable code.

DECLARE1 error Arguments to declare must be calls to
arrayref, (e.g. a[10]).

DECODE1 error You must use case or caseq rather than
decode.

DEF1 error Extra argument passed to def.

DEF2 error Last argument to def is bad.

DEF3 hint nlambda, macro, or alias should not be
referenced before it is defined.

DEF4 hint nlambda, macro, or alias might be
referenced before it is defined.

Built-in Message
Name Message Group Message Description
November 2001 25 Product Version 06.01

SKILL Development Help
SKILL Lint
DEF5 hint Recursive call to an nlambda function or
macro is inefficient, call declareNLambda
first.

DEF6 error Definition for function def cannot have more
than 255 required or optional arguments.

DEFSTRUCT1 error Arguments to defstruct must all be symbols.

EQUAL1 hint You can replace == nil with !.

EQUAL2 hint You can replace == 1 with onep.

EQUAL3 hint You can replace == 0 with zerop.

EVALSTRING1 suggestion Consider using stringToFunction when
evalstring is called multiple times with the
same string.

ExtHead information Known/Unknown External functions called.

ExtKnown information Functions called that are defined outside of
analyzed code.

External information Functions called that are not defined.

FOR1 error First argument to for must be a symbol.

Flow information Reports the call flow for the code analyzed.

GET1 error Second argument to -> must be a symbol.

GET2 error Autoload symbol is no longer used, replace
get with isCallable.

GETD1 error getd no longer returns a list, use the function
isCallable.

GO1 error go must have exactly one argument, a symbol.

GO2 error go must be called from within a prog
containing a label.

IF4 error then and else required in if construct.

IF5 error else without corresponding then.

IF6 hint Remove the then nil part and convert to
unless.

Built-in Message
Name Message Group Message Description
November 2001 26 Product Version 06.01

SKILL Development Help
SKILL Lint
IF7 hint Remove the else nil part, and part convert
to a when.

IF10 hint Invert the test and replace with unless, as no
else part.

IQ information IQ score (best is 100).

IQ1 information IQ score is based on messages
* priority.

LABEL1 warning Label not used within scope.

LABEL2 error More than one declaration of label within
scope.

LAMBDA1 error Bad use of lambda.

LET1 error Incorrect let variable definition.

LET2 hint let statement has no local variables, so can
be removed.

LET3 hint Variable repeated in local variable list for let.

LET4 warning Variable used before available in let
assignment.

LET5 error let statements will not accept more that 255
local variables in the next release.

LOAD1 warning Can’t evaluate to an include/load file.

LOOP1 error First argument must be a symbol or list of
symbols.

LoadFile information Loading file.

MEMBER1 suggestion Consider use of memq rather than member.

MultiRead information Attempt to read file more than once.

NEQUAL1 hint You may be able to replace with !=.

NEQUAL2 hint You can replace with !=.

NTH1 hint Can replace call to nth with call to car, cadr,
and so on.

NoRead error Cannot read file.

Built-in Message
Name Message Group Message Description
November 2001 27 Product Version 06.01

SKILL Development Help
SKILL Lint
PREFIXES information Using package prefixes.See Checking
Function and Global Variable Prefixes on
page 30.

PREFIX1 warning Prefixes must be all lower case or all upper
case. See Checking Function and Global
Variable Prefixes on page 30.

PRINTF1 error Incorrect number of format elements.

PRINTF2 error Format argument is not a string.

PROG1 error Bad action statement.

PROG2 hint prog construct may be removed.

PROG4 hint Variable repeated in local variable list of prog.

PROG5 hint prog may be replaced with progn.

PROG6 hint Will need a nil at end if prog removed.

PROGN1 hint progn with only one statement can be
removed.

PUTPROP1 information The autoload symbol is no longer used for
functions in contexts.

REMOVE1 suggestion Consider using remq rather than remove.

REP SKILL lint run
message

Short for report. REP is not based on the
content of the program.

RETURN1 warning Not within a prog: return.

RETURN2 hint Replace return(nil) with return().

SETQ1 error First argument should be a symbol.

SETQ2 suggestion Possible variable initialized to nil.

SETQ3 suggestion Assignment to loop variable.

SKFATAL fatalerror Error found from which SKILL Lint can’t
proceed.

STATUS1 error Second argument must be t or nil.

STATUS2 error Unknown status flag.

Built-in Message
Name Message Group Message Description
November 2001 28 Product Version 06.01

SKILL Development Help
SKILL Lint
STATUS3 warning Internal (s)status flag, don’t use.

STRCMP1 hint Inefficient use of strcmp. Change to equal.

STRICT information Applying strict checking of global variable
prefixes. See Checking Function and Global
Variable Prefixes on page 30.

STRLEN1 hint Inefficient use of strlen. Change to equal
"".

TraceChecks information Applying SKILL Lint checks.

TraceForm information Form being read by SKILL Lint.

TraceRead information This message is given for each file that is
analyzed.

Unused unused vars Variable does not appear to be referenced.

VAR information Variable used or set in function/file.

VAR0 information Variable used or set in function/file.

VAR1 error Attempt to assign a value to t.

VAR4 information Variables used as both global and local.

VAR5 information Unrecognized global variables.

VAR6 information Acceptable global variables.

VAR7 error global Variable used as both a local and global.

VAR8 warning global Global variable does not begin with package
prefix.

VAR9 package global Global variable begins with package prefix.

VAR12 warning Argument does not appear to be referenced.

VAR13 information Internal global variable does not appear to be
referenced.

VAR14 information Package global variable does not appear to be
referenced.

VAR15 error Variable cannot begin with keyword symbol (?).

Built-in Message
Name Message Group Message Description
November 2001 29 Product Version 06.01

SKILL Development Help
SKILL Lint
Checking the Number of Function Arguments

SKILL Lint checks that the number of arguments passed to a function matches that expected
by the function. To do this it uses the previously known definition of a function, either from a
previous run of SKILL Lint or a previous declaration of the procedure.

If a procedure is unknown at the time it is used, then SKILL Lint delays checking the number
of arguments to the call until the procedure definition has been found.

If a procedure is used in a file before it is defined in the same file and the number of arguments
to the procedure changes, it may be necessary to run SKILL Lint twice to get accurate results
because the first run will use the previous declaration of the procedure.

Checking Function and Global Variable Prefixes

Functions and global variables used in SKILL code are expected to be prefixed with a suitable
string. You enter these strings on the SKILL Lint form.

By default, strict checking is only applied to the customer’s global variables, while functions
and Cadence’s prefixes are to be checked by specification, see SKILL Function on page 32.

The naming policy for functions and global variables is:

■ The naming policy for function and global variable prefixes is identical:

■ Cadence official (i.e. documented/supported) SKILL functions and global variables must
start with a lower-case character, while three characters and all lower-case are preferred.

■ Customer (and undocumented/unsupported) SKILL functions and global variables must
start with an upper-case character.

■ Functions or global variables must start with the prefix, or the prefix plus an optional
lower-case character (one of ’i’, ’v’, ’c’, ’b’, ’e’, ’f’, ’m’) followed immediately by an upper-
case character or a ’_’.

VAR15 error Variable cannot begin with keyword symbol (?)
in the next release.

VAR16 warning Variable declaration hides a previous
declaration.

WHEN1 hint Invert test and convert to when/unless.

Built-in Message
Name Message Group Message Description
November 2001 30 Product Version 06.01

SKILL Development Help
SKILL Lint
This strict checking can be switched off by disabling the STRICT message. In that case, the
system only checks that global variables begin with a specified prefix.

SKILL Lint PASS/FAIL and IQ Algorithms

Behind all the reporting that SKILL Lint does is a system called the standard reporting
mechanism, which

■ Allows any program to report messages in a consistent manner to the screen and log
files.

■ Allows messages to be switched off.

■ Prints a summary at the end.

■ Gives a simple way of changing messages to a different language.

One part of that system is the ability to register different message classes, such as
information, warning and error. With each class, you can indicate whether generating
a message of that class should cause an overall fail.

In SKILL Lint, the following classes cause a failure, and hence status FAIL:

■ error global

■ error

■ fatal error

■ warning

A case fails if it has a warning. If the warning has not been printed because the message
has been switched off, that does not stop it from appearing in the summary scores and the
status.

A case may have an IQ score of 0, but if there is nothing to cause a real failure, the overall
status can still be pass.

The IQ score is something that is specific to SKILL Lint. It is based on the number of each
class of message printed, multiplied by a factor for each different class.

■ Most classes score zero.

■ The following classes score 1:

❑ warning
November 2001 31 Product Version 06.01

SKILL Development Help
SKILL Lint
❑ error

❑ error global

❑ warning global

❑ unused var

❑ authorization

■ Fatal error scores 100.

The final score is the lower of the following two values.

■ Value One: The figures are totalled up, divided by the number of top level forms (the
number of lineread statements performed by SKILL Lint in parsing the files) and
multiplied by 20. This figure is subtracted from 100 to give the score. The minimum score
is zero.

■ Value Two: There is a class called shortListErrors, which consists just of the
number of error class messages. This is multiplied by 25 if SKILL Lint is run on a single
file, or by 10 if sklint is run across multiple files. The result is again subtracted from 100.

There is no cost to the IQ or pass/fail for undefined functions with respect to the score.

SKILL Function
sklint(

[?file tl_file]
[?context t_contextName]
[?outputFile t_outputFileName]
[?ignoreGroups l_ignoreGroups]
[?globals l_globals]
[?depends l_depends]
[?rulesFile t_rulesFile]
[?ignores l_ignores]
[?noPrintLog g_noPrintLog]
[?useGlobalIgnores g_useGlobalIgnores]
[?useGlobalRulesFileList g_useGlobalRulesFileList]
[?useDisableMessages g_useDisableMessages]
[?checkCdsFuncs g_checkCdsFuncs]
[?checkPvtFuncs g_checkPvtFuncs]
[?checkPubFuncs g_checkPubFuncs]
[?prefixes l_prefixList]
[?checkCdsPrefixes g_checkCdsPrefixes]
[?checkFuncPrefixes g_checkFuncPrefixes]
[?tabulate g_tabulate]
November 2001 32 Product Version 06.01

SKILL Development Help
SKILL Lint
[?skPath t_skPath]
[?codeVersion t_release]
=> t/nil

Arguments

file The name of the file to be processed, or a list of file names. Each
file is read and processed in turn.This option defaults to
"startup.il".

context The name of the context, or an absolute-pathed context name,
being processed.

outputFile The name of the reporting log file. Defaults to
<contextName>.log.

ignoreGroups The list of rule groups that should not be carried out.

globals The list of allowed globals not covered by the standard global list
and the prefix list. This allows handling of obscure globals cases.

depends The list of contexts on which the code under analysis depends.
This is used for loading external definitions files.

rulesFile The name of an additional rules file to be read prior to processing
the code.

ignores The list of message IDs to ignore.

checkNlambda Specifies whether to check the arguments to nlambda functions.
This option should only be used by very experienced users, as it
generally leads to results that are difficult to interpret. This option
defaults to nil.

noPrintLog Controls whether printing to the screen/ciw should take place.
Even if switched off, printing of start and stop messages will take
place. This option defaults to nil.

useGlobalIgnores Controls whether to ignore those message IDs listed in the
global variable skGlobalIgnores. This option is useful when
the list of messages to ignore is constant and is held in a global
list somewhere. This option defaults to nil.
November 2001 33 Product Version 06.01

SKILL Development Help
SKILL Lint
useGlobalRulesFileList
Specifies whether to use the rules file listed in the global variable
skGlobalRulesFiles. This option defaults to nil.

useDisableMessages Controls whether to turn on or off disable messages to allow
integrators to override message suppression put in the code.
This option defaults to t.

checkCdsFuncs Specifies whether to check both Cadence private and public
functions (i.e. force setting both checkPvtFuncs and
checkPubFuncs to t). This option defaults to nil.

checkPvtFuncs Controls whether to check Cadence private functions. This
option defaults to nil.

checkPubFuncs Specifies whether to check Cadence public functions. This
option defaults to nil.

prefixes The list of allowed functions and global variables not covered by
the standard global list and the prefix list. This allows for obscure
cases of globals to be handled.

checkCdsPrefixes Specifies whether the prefix checking is for Cadence public
function/variables - start with a lower-case character. If this
argument is not set to t (i.e. by default), the checking is for
customers’ function/variables prefixes - start with an upper-case
character. Note that this option is for Cadence internal use only.
This option defaults to nil.

checkFuncPrefixes Controls whether function prefixes should also be checked. If this
argument is not set to t (i.e. by default), only customers’ global
variable prefixes are checked. This option defaults to nil.

tabulate Controls whether to tabulate all the functions being called. This
option defaults to nil.

skPath The user-specified SKILL path to the file to be processed. If the
option is specified, SKILL Lint will only search this path.
Otherwise, the "." will be searched first by default.

codeVersion The release version of code being checked (e.g. "447" for
IC4.4.7). If this argument is specified all automatically generated
function change messages (from cdsFuncs.cxt) that are equal to
November 2001 34 Product Version 06.01

SKILL Development Help
SKILL Lint
or before the release specified (through this argument) will be
filtered out (i.e. will not be reported). By default, all automatically
generated function change messages (from cdsFuncs.cxt) will
be reported.

This argument is useful when the user wants to restrict reporting
of function change messages which occurred after the release
for which the code being checked was written. When users check
the code in IC447 they will not be interesting in seeing the
information about the change in IC445, since that was before
they wrote the code (or perhaps before it was migrated).

Specifying this argument will only filter out function changed
messages. Function deleted messages will always be reported.
November 2001 35 Product Version 06.01

SKILL Development Help
SKILL Lint
November 2001 36 Product Version 06.01

SKILL Development Help
4
SKILL Profiler

This document discusses

■ Overview on page 38

■ Using the SKILL Profiler on page 38

■ File Menu on page 39

❑ Open Browser on page 39

❑ Save As on page 39

❑ Search on page 40

❑ Close Window on page 41

■ Profile Menu on page 41

❑ Start Profiling Time on page 41

❑ Start Profiling Memory on page 42

❑ Stop Profiling on page 42

❑ Reset Profiling on page 42

■ Options Menu on page 43

❑ Setup on page 43

❑ Filters on page 44

■ Fixed Menu on page 46

■ SKILL Functions on page 46
November 2001 37 Product Version 06.01

SKILL Development Help
SKILL Profiler
Overview

The SKILL Profiler tells you where your Cadence® SKILL language programs are taking the
most time and allocating the most memory.

The SKILL Profiler

■ Measures the time spent in each function that executes longer than
1/60th of a second.

■ Shows how much SKILL memory is allocated in each function.

■ Measures performance without having to modify function definitions.

■ Displays a function call tree graph of all functions executed and the time or memory spent
in those functions.

■ Allows you to filter functions so you can see only those functions in which you are
interested.

Using the SKILL Profiler

To run the SKILL Profiler
November 2001 38 Product Version 06.01

SKILL Development Help
SKILL Profiler
1. Click the Start Profiling icon.

2. Execute the SKILL functions you want to measure.

3. Click the Stop Profiling icon.

A profile summary appears in the window. It lists the functions and the CPU time spent
in them. The gc function represents the time spent in garbage collection. If the amount
of time in gc is high, you should profile the SKILL memory usage by selecting Memory
allocated in SKILL functions in the Setup form and rerunning the SKILL Profiler.

File Menu

Open Browser

Opens the Code Browser at the top level if it has not been brought up already. The Code
Browser lets you examine the calling tree of a function’s children and how much time was
spent in each function.

Save As

The Save As form allows you to save your results for later reference.

Open Browser...
Save As...
Search...
Close Window...

 File Profile Options

Save As
November 2001 39 Product Version 06.01

SKILL Development Help
SKILL Profiler
Search

Search for

The text string you want to search for.

When Found

select

Adds the string to the selection list.

deselect

Removes the string from the selection list.

scroll to next match

Moves the cursor to the next match without selecting.

Match Options

whole word

Requires that the string be a separate word (surrounded by spaces).

Search
November 2001 40 Product Version 06.01

SKILL Development Help
SKILL Profiler
exact case

Requires that the capitalization of the string exactly match the entry in Search for.

Wrap Around

Continues the search at the beginning of the file once the end of the file is reached.

Scan the Whole File

Selects at once all occurrences of the string in the file.

Close Window

Exits the SKILL Profiler.

Profile Menu

Start Profiling Time

Starts measuring the time spent in all SKILL functions executed after this command is
selected.

Start Profiling Time
Start Profiling Memory
Stop Profiling
Reset Profiling

 File Profile Options
November 2001 41 Product Version 06.01

SKILL Development Help
SKILL Profiler
Start Profiling Memory

Starts measuring the memory allocated in all SKILL functions executed after this command
is selected.

Stop Profiling

Turns SKILL profiling off and displays the summary in the SKILL Profiler window.

Reset Profiling

Sets the time taken in each function back to zero or the memory allocated in each function
back to zero.

SKILL Profiler
November 2001 42 Product Version 06.01

SKILL Development Help
SKILL Profiler
Options Menu

Setup

Brings up the SKILL Profiler Setup form.

Select whether you want time or memory profiled.

Time spent in SKILL functions

Measures time spent in SKILL functions when the profiler is started.

Memory allocated in SKILL functions

Measures memory allocated by SKILL functions when the profiler is started.

Setup...
Filters...

 File Profile Options

SKILL Profiler Setup
November 2001 43 Product Version 06.01

SKILL Development Help
SKILL Profiler
Filters

Allows you to choose which data you want to display in the SKILL Profiler and Code Browser
windows. This form can also be brought up from the Code Browser Window using the Misc
- Filters command.

Sort By

Time or memory in function and children

Sorts functions by the time or memory inside the function and its children.

Time or memory in function

Sorts functions by the time or memory inside the function.

Profile Summary and Code Browser Filters
November 2001 44 Product Version 06.01

SKILL Development Help
SKILL Profiler
Display Functions

All

Displays all functions in the profiler window and expands all children in the Code Browser
window.

In context

Displays only those functions in the context given.

Matching regular expression

Displays only functions matching the regular expression given.

User functions

Displays functions that are not read protected.

Binary functions

Displays only those functions that are implemented in C and not SKILL.

Maximum functions to display

Limits the maximum functions to be displayed.

Minimum seconds to display

Displays only profiled functions that consumed more time than entered in the text entry field.

Minimum bytes to display

Displays only profiled functions that consumed more memory than entered in the text entry
field.
November 2001 45 Product Version 06.01

SKILL Development Help
SKILL Profiler
Fixed Menu

The fixed menu icons in the left column are accelerators for several of the text commands in
the menus.

SKILL Functions
profile(s_function ...) => t
unprofile(s_function ... | t) => t
profileSummary(

[?file t_filename]
[?allp g_listAll])
=> t

profileReset() =>t

Set up Profiling, same as Options - Setup

Start Profiling, depending on the Setup options, same as
Profile - Start Profiling Time or Start Profiling Memory

Stop Profiling, same as Profile - Stop Profiling

Reset Profiling, same as Profile - Reset Profiling

Browse Profiled Results, same as File - Open Browser
November 2001 46 Product Version 06.01

SKILL Development Help
5
Code Browser

This document discusses

■ Overview on page 48

❑ Function To Expand on page 48

■ Code Browser Window on page 49

■ Commands Menu on page 49

❑ Expand Function on page 49

❑ Find Function on page 50

❑ Delete All on page 50

❑ Close on page 50

■ Misc Menu on page 51

❑ Defaults on page 51

❑ Filters on page 51

■ Pop-up Functions Menu on page 51

❑ View on page 51

❑ Expand Functions on page 52

❑ Expand Deep on page 52

❑ Unexpand on page 52

❑ Delete on page 52
November 2001 47 Product Version 06.01

SKILL Development Help
Code Browser
Overview

The Code Browser displays the calling tree of user-defined functions. The calling tree shows
the child functions called by the parent functions.

■ You can expand the entire tree or one node at a time.

■ You can also view the function definition of any user-defined function.

Function To Expand

The function whose calling structure you want to see. When you enter the function name and
click on OK or Apply, the Code Browser window appears.

Code Browser Function
November 2001 48 Product Version 06.01

SKILL Development Help
Code Browser
Code Browser Window

The Code Browser window shows the tree structure of the code. Initially the first level of the
hierarchy is shown. When you click on a function name, the next level of the hierarchy
appears to the right.

To see the Functions menu, move the pointer to a function name and hold down the middle
mouse button. The menu is the same for all functions.

Commands Menu

Expand Function

Brings up the Code Browser Function form that lets you add functions to expand.

Expand Function
...
Find Function...
Delete All
Close

Command

View
Expand
Functions
Expand Deep
Unexpand
Delete

Defaults ...
Filters...

MiscCode Browser
November 2001 49 Product Version 06.01

SKILL Development Help
Code Browser
Find Function

Brings up a form that asks for the name of a function.

1. Type in the name and click OK or Apply.

The Code Browser call graph is searched for the first instance of the function. If found,
the function is highlighted and left-justified in the Code Browser window.

2. If you click OK or Apply again for the same function, the next instance of that function is
searched for.

Delete All

Deletes all functions from the Code Browser.

Close

Closes the Code Browser window.

Find Function in Code Browser
November 2001 50 Product Version 06.01

SKILL Development Help
Code Browser
Misc Menu

Defaults

Displays the Code Browser Defaults form that allows you to choose whether to browse the
source code function calling tree or the profiled function calling tree.

Source functions

Expands the call tree of functions based on their source code definitions.

Profiled functions

Expands the call tree of functions that were profiled using the SKILL Profiler and displays the
time spent in the functions.

Filters

Brings up a form that allows you to filter which functions are displayed. See the Profile
Summary and Code Browser Filters form under SKILL Development - Profiler.

Pop-up Functions Menu

View

Brings up a window that displays the source code selected in pretty printed form.

Code Browser Defaults
November 2001 51 Product Version 06.01

SKILL Development Help
Code Browser
Expand Functions

Displays the children functions of the node selected. Uses the Profile Summary and Code
Browser Filters form to determine which functions are expanded.

Expand Deep

Displays all user functions recursively until the entire calling tree is expanded.

Unexpand

Deletes all functions called by the one selected from the Code Browser window.

Delete

Deletes the function selected from the Code Browser window.
November 2001 52 Product Version 06.01

SKILL Development Help
6
Tracing

This document discusses

■ Overview on page 53

■ Tracing Form on page 54

❑ Tracing on page 54

❑ Type on page 54

❑ Trace Symbols on page 55

■ SKILL Functions on page 55

Overview

You can trace SKILL function calls as well as property and variable assignments

■ To trace functions, variables, or properties, select Set in the Tracing field.

■ To untrace functions, select Clear in the Tracing field.

■ To turn tracing on for Functions, Variables, or Properties, select the ones you want
traced in the Type field.

■ To trace individual symbols, type them in the Trace Symbols text entry field and click
Apply.

■ To trace all functions, variables, or properties, click All, then Apply.
November 2001 53 Product Version 06.01

SKILL Development Help
Tracing
Tracing Form

Tracing

Set

Turns tracing on for the Trace Symbols selected.

Clear

Turns tracing off for the Trace Symbols selected.

Type

Functions

Makes Trace Symbols apply to functions.

Tracing
November 2001 54 Product Version 06.01

SKILL Development Help
Tracing
Variables

Makes Trace Symbols apply to variables.

Properties

Makes Trace Symbols apply to properties.

Trace Symbols

By name

Traces or untraces the names in the text entry field.

In context

Traces or untraces all functions in the context entered in the text entry field.

Matching regular expression

Traces or untraces all the functions matching the regular expression in the text entry field.

User functions

Traces or untraces all the functions that are not read protected.

All

Traces or untraces all functions.

SKILL Functions
tracef([s_function | t_fileName] ... | t)

=> g_result
untrace(s_function | t_fileName ... | t) => g_result
tracev(s_variable ... | t) => g_result
untracev(s_variable ... | t) => g_result
tracep(s_variable ... | t) => g_result
untracep(s_variable ... | t) => g_result
November 2001 55 Product Version 06.01

SKILL Development Help
Tracing
November 2001 56 Product Version 06.01

SKILL Development Help
7
Finder

This document discusses

■ Overview on page 58

■ Searching on page 58

❑ Simple Strings on page 58

❑ Combinations on page 59

❑ Categories on page 59

❑ Starting a search on page 60

❑ Stopping a search on page 60

■ Selecting from Matches on page 60

■ Saving Descriptions on page 61

■ More on Saving on page 62

■ Cadence Data on page 62

■ Customer Data on page 63

■ Data Format on page 63

■ Troubleshooting on page 64

■ Starting in UNIX on page 65

❑ Standard Mode on page 65

❑ Test Modes on page 65
November 2001 57 Product Version 06.01

SKILL Development Help
Finder
Overview

The Finder is a quick reference tool that displays the abstracts and syntax statements for
language functions and APIs.

Your database may vary

The database will vary according to the products loaded on your system. Each separate
product loads its own language information in the Cadence hierarchy that the Finder reads.

You can add your own functions

You can add your own functions locally for quick reference because any information that is
properly formatted and located can be displayed.

Starting up

You can start up the Finder from the SKILL Development toolbox or from a UNIX command
line.

Searching

You don’t need complicated syntax to find information because you are searching a restricted
database.

Simple Strings

Some examples:

Locate non-case sensitive matches anywhere in a word (default).

Search For: string

Matches: buildString, evalstring, stringp, ...

Search for matches at the beginning of a word only.

Search For: string [x] at beginning
November 2001 58 Product Version 06.01

SKILL Development Help
Finder
Matches: stringp, stringToFunction, ...

Search for case sensitive matches at the end of a word only.

Search For: string [x] at end [x] case sensitive

Matches: evalstring, get_string, loadstring, ...

Combinations

The .* syntax lets you find most any combination of strings.

Some examples using the default settings:

Search For: hi.*view

Matches: hiEnableTailViewfile, hiGetViewBBox, ...

Search For: asi.*list

Matches: asiAddDesignVarList, asiDisplayNetlistOption, ...

Search For: ipc.*process

Matches: ipcBatchProcess. ipcBeginProcess, ...

Some equivalents:

[x] at beginning works the same as ^string

[x] at end works the same as string$.

Categories

➤ Use the default All Available Finder Data.

The Finder searches the Cadence database and the optional Customer database and
identifies the functions it finds by category in the Searching pull-down list. The database
will vary according to the products loaded on your system.
November 2001 59 Product Version 06.01

SKILL Development Help
Finder
➤ Select a category from the Searching pull-down list.

All searches are then confined to the functions in that category.

➤ To search for ALL the items in the category, type .* in the
Search for window.

Starting a search

➤ After you enter a search string, click Search or type carriage return to find matches to a
string.

The search is limited to 500 matches.

Stopping a search

The asterisk button changes to bold during the time that a search is being processed.

➤ Click on the bold asterisk button to stop a search in progress.

Selecting from Matches

The items in the Matches window are the database entries that match the search string.
Scroll bars appear if the matches are too long or too wide for the window.

Searching All Available Finder Data
SKILL Language Only
SKILL Development Only

Searching
SKILL Language Only

* *
November 2001 60 Product Version 06.01

SKILL Development Help
Finder
➤ Click on a function name to get its expanded description.

➤ Click on Select All to get expanded descriptions for all matches.

Expanded descriptions are displayed for all matches in the same order they appear in
the Matches window.

Saving Descriptions

You can edit the contents of the Descriptions window before you save the information.

Clear

Clears the contents of the window only, not previous saves to the log file.

Save...

Opens a save-to-file form that displays all files with the .sav extension in the specified
directory.

OK

Appends the contents of the Descriptions window to the finder.sav file in your home
directory. If this file does not exist, it is created.

abs
acos

Descriptions:

abs(n_number) => n_result
Returns the absolute value of a
floating-point number or integer.

Matches:

Select All
November 2001 61 Product Version 06.01

SKILL Development Help
Finder
Cancel

Does not save any information and no modifications are made to the file name or to the saved
default.

More on Saving

You can save the contents of the Descriptions window to a file other than the default file.

➤ Traverse the hierarchy.

❑ To descend the hierarchy, double click on a directory.

❑ To ascend the hierarchy, double click on a .. directory.

❑ To update the files displayed in the Directories and Files windows , single click on
a file or directory and click Filter. This has the same effect as the first two bullets
above.

➤ Change the file name using the .sav extension for any new file names.

❑ To append the contents of the Descriptions window to the specified file, click OK
or double click on another file name in the Files window.

❑ You can edit the file name in the Append descriptions to window directly or type
in a new name that has a .sav extension and click OK. The contents of the
Descriptions window is saved in the new file. On the next save, click Filter to
update the Files window.

Cadence Data

Cadence-supplied information is located in this hierarchy:

<install>/doc/finder/<language>/<functionArea>/*.fnd

<install> is the name of the Cadence installation directory.

Note: To find <install> use the function cdsGetInstPath ().

<language> is the language type, such as SKILL.
November 2001 62 Product Version 06.01

SKILL Development Help
Finder
<functionArea> is a descriptive subdirectory name for the product information, such as
SKILL_Language or SKILL_Development. The convention of naming, capitalization, and
underscoring to separate words is reflected in the Searching pull-down list.

.fnd is the required extension for the database files, such as chap1.fnd. All files must
contain information in the appropriate data format.

Customer Data

You can add your own internal functions to the database. Customer-supplied information can
be placed in this hierarchy:

<install>/local/finder/<language>/<functionArea>/*.fnd

where the directories and files are analogous to those in the Cadence Data description. The
program looks in this directory at start up. The directory names found are reflected in the
Searching pull-down list.

For example:

<install>/local/finder/SKILL/Your_APIs/your.fnd

Data Format

The program expects the following three-string format for each unique entry in the *.fnd text
files:

("functionName"
"syntax string"
"Abstract information.")

Searching All Available Finder Data
SKILL Language Only
SKILL Development Only

Searching All Available Finder Data
SKILL Language Only
SKILL Development Only
Your APIs Only
November 2001 63 Product Version 06.01

SKILL Development Help
Finder
For example:

("abs"
"abs(n_number) => n_result"
"Returns the absolute value of a floating-point number or integer.")

Identical functions can be stored together:

("sh, shell"
"sh([t_command]) => t/nil
shell([t_command]) => t/nil"
"Starts the UNIX Bourne shell sh as a child process to execute a command
string.")

Troubleshooting

Too Many Matches
More than 500 matches have been found. Please use a more restrictive search string.

Change the search string to limit the number of matches.

Save File Is Not Writable
<filename> is not a writable file. Please enter a new file name.

This message appears if any aspect of specifying the file name results in an error. Click OK.
The error dialog disappears, leaving the file name entry dialog on screen so you can enter
another name.

No files found

Look in the Cadence database directory to see if any files were loaded at installation. See
Test Modes.

<install>/doc/finder/<language>/<functionArea>/*.fnd

Descriptions Window Full
WARNING: The display has reached its maximum capacity. Please save
(if desired) and clear the window.

If the number of characters in the Descriptions window exceeds one Megabyte, the current
expansion operation aborts and the error message above appears. To clear the window,
Save if desired, then click Clear.
November 2001 64 Product Version 06.01

SKILL Development Help
Finder
Font Size Unsatisfactory

To change the font size, adjust the Finder*fiTextEntryFont variable in your
.Xdefaults file. If you make the font larger or smaller, the Finder window is drawn
proportionately larger or smaller. The default is

Finder*fiTextEntryFont: -*-courier-bold-r-*-*-12-*

Starting in UNIX

You can start the Finder from a UNIX command line.

Standard Mode

➤ To start the Finder from a UNIX command line in standard mode:

cdsFinder

Test Modes

➤ To turn on test mode, start the Finder with a -t option:

cdsFinder -t

Information is written to /tmp/finder.tst file as well as standard output. The Finder
reports directories it finds in the database and the number of entries found per file.

➤ To check for duplicate instances of each name in the specified directory's data files:

cdsFinder -t checkdir

For example:

cdsFinder -t doc/finder/SKILL/SKILL_Language
November 2001 65 Product Version 06.01

SKILL Development Help
Finder
November 2001 66 Product Version 06.01

SKILL Development Help
8
Walkthrough

This document discusses

■ Introduction on page 67

❑ Tasks for the Program on page 68

❑ Tasks for You on page 68

❑ The Test Program on page 69

■ Load the Program on page 70

■ Run the Program on page 71

■ Resolve the First Error on page 71

■ Fix the Functional Error on page 73

■ Run Lint on page 75

■ Measure myFunction1 on page 77

■ Check Performance on page 81

■ Rerun the Profiler on page 83

■ Using the Non-Graphical SKILL Debugger on page 85

Introduction

You need a Cadence® SKILL Development (skillDev) license to use the SKILL
Development environment.

This walkthrough is designed

■ to demonstrate how to use the SKILL Development environment

■ to introduce the debugging tools
November 2001 67 Product Version 06.01

SKILL Development Help
Walkthrough
The program used in this walkthrough, demo.il, demonstrates how a simple program can
be

■ fixed quickly

■ sped up substantially

Note: You can copy and paste examples from these windows.

■ Press Control-drag left mouse to select a segment of any size.

■ Press Control-double click left mouse to select a word.

■ Press Control-triple click left mouse to select an entire section.

Tasks for the Program

Here’s what the program should do (but doesn’t until you fix it). When you type
myFunction1() in the CIW, it should

■ Print a starting message.

■ Loop from 1 to 10000.

■ Print an ending message.

■ Return the numbers from 1 to 999.

What you learn from this exercise can be applied to developing and debugging much larger
programs for CAD-specific tasks, such as writing a database traversal program to count
fanout.

Tasks for You

For this walkthrough you’ll perform the following tasks:

■ Run the program.

■ Fix the SKILL error using the SKILL Debugger.

■ Fix the functionality error where the starting message is printed out after the 10th object
instead of the 1st by using breakpoints and single stepping.

■ Run SKILL Lint over the file and follow the suggestions.

■ Profile the time and memory used to run myFunction1 and analyze the results.

■ Run SKILL Lint over the file, checking for performance suggestions.
November 2001 68 Product Version 06.01

SKILL Development Help
Walkthrough
■ Fix the file to improve performance significantly.

■ Measure the time of myFunction1 again to confirm performance speedup.

The Test Program

This is the demo.il program that you will use in this walkthrough.

/* demo.il - This file is used for a walkthrough of the
 * SKILL Development Environment.
 */
/***
* myFunction1 - This function must
* Count from 1 to 10000.
* Return a list of numbers from 1 to 1000 in any order.
**/
(procedure myFunction1()

let((x y z myList)
for(i 1 10000
 myList = myFunction2(i)
)
myList

)
)
/***
* myFunction2 - This function must
* Print a starting message on the 1st object.
* Print an ending message at the 1000th object.
* Return a list of numbers less than 1000 in any order.
**/
(procedure myFunction2(object myList)

if(myTest(object)
then printf("Starting with object %d...\n" object)

)
if(object == 1000

then printf("Ending with object %d...\n" object)
)
if(object < 1000

then append(myList ncons(object))
else myList

)
)
/***
* myTest - This function must
* return t if object equals one.
**/
(procedure myTest(object)

if(object == 10
then t
else nil

)
)

November 2001 69 Product Version 06.01

SKILL Development Help
Walkthrough
Load the Program

1. Select Open -> SKILL Development.

The system indicates that it is “Loading skillDev.cxt” and the SKILL Development
Toolbox appears.

2. Select SKILL Debugger.

The SKILL Debugger Toolbox appears.

3. Check Utilities -> Log Filter from the CIW.

To focus on debugging the file and not get distracting output, use these settings.

4. Make a copy of the demo.il file in your /tmp directory, type the following in the CIW.

csh(strcat("cp " prependInstallPath("samples/skill/demo.il")
" /tmp/demo.il"))

❑ Be sure to include a space after cp and before /tmp. If successful, this function
returns t.

❑ Be sure you now have a copy of the file /tmp/demo.il and that you have write
permission.

5. To assure write permission, type the following in the CIW:

csh("chmod a+w /tmp/demo.il")

6. To load the file, type the following in the CIW.

load("/tmp/demo.il")

Be sure that the debugger is installed.

7. Check the prompt at the bottom of the CIW.

The prompt should be 1>. This means the debugger is installed but not on the stack. If
the prompt is greater than 1, such as Debug 2>, then you are in the SKILL Debugger.

Set Log File Display Filter
November 2001 70 Product Version 06.01

SKILL Development Help
Walkthrough
8. Select Quit Debugger in the SKILL Development Toolbox until you get to 1> before
continuing.

Run the Program

➤ In the CIW, type

myFunction1()

The system displays the following error message and the debug level changes to Debug
2>.

Resolve the First Error

The following error message indicates that myFunction2 is expecting two arguments.
However, only one argument is passed to myFunction2 from some unknown function.

Message: *Error* myFunction2: too few arguments (2 expected, 1 given) - (1)

Log: /usr/mnt/hamilton/CDS.log
November 2001 71 Product Version 06.01

SKILL Development Help
Walkthrough
1. To find which function called myFunction2 with the wrong number of arguments, select
Stacktrace on the SKILL Debugger Toolbox.

By examining the stack printed in the CIW, you can see that the errorHandler was
invoked by myFunction2. In turn, myFunction2 was called by myFunction1 inside
a for loop.

Now edit myFunction1 and see if you can determine what the proper second argument
to myFunction2 should be.

2. Select Quit Debugger to get to level one 1> again in the CIW.

3. To edit the file in an xterm window and have the file load back in when you quit the editor,
type the following.

edit("/tmp/demo.il" t)

The second argument t ensures file reloading when you quit the editor.

4. Examine the myFunction2 function definition.

Notice that it expects myList as a second argument.

5. In myFunction1 on line 12, change

myList = myFunction2(i)

to

myList = myFunction2(i myList)

6. Exit the editor by typing :wq if you are in vi to exit.

Log: /usr/mnt/hamilton/CDS.log.1
November 2001 72 Product Version 06.01

SKILL Development Help
Walkthrough
The file is automatically reloaded and you get a message verifying this and stating which
functions have been redefined.

function myFunction1 redefined
function myFunction2 redefined
function myTest redefined

7. In the CIW, type

myFunction1()

This time the program displays the following.

Starting with object 10 ..
Ending with object 1000 ..
(1 2 3 ... 999)

Fix the Functional Error

Notice that the message is printed for object 10. This violates the specification.

You need to change the code so that the first message is printed out for the first object instead
of the 10th.

You could use the tracing form to trace all functions starting with the characters “my”, but that
would generate over a 1000 lines of trace output. Instead, set a conditional breakpoint on
myFunction2 for when i equals 10.

1. Select Set Breakpoints in the SKILL Debugger Toolbox.

2. Type myFunction2 in the Function Names field of the Set Breakpoints form.

3. Type i == 10 in the Condition field.

4. Click OK.

Set Breakpoints
November 2001 73 Product Version 06.01

SKILL Development Help
Walkthrough
5. Type myFunction1() in the CIW.

A breakpoint has been reached with i’s value 10. You can now single step inside
myFunction2 to see why the message is being printed out for when object equals 10
instead of 1.

6. Click Step in the SKILL Debugger five times.

From the single stepping above, you can see that myFunction2 called myTest with a
value of 10. The myTest function returns t if the value passed in is equal to 10 but
should return t if the value is equal to 1.

7. Select Quit Debugger in the SKILL Debugger Toolbox.

Log: /usr/mnt/hamilton/CDS.log.1

Log: /usr/mnt/hamilton/CDS.log
November 2001 74 Product Version 06.01

SKILL Development Help
Walkthrough
8. Select Clear in the SKILL Debugger Toolbox to clear the breakpoint.

9. In the CIW, type

edit("/tmp/demo.il" t)

The system brings up an xterm window with demo.il open for editing.

10. On line 40 in myTest, change

if(object == 10

to

if(object == 1

11. Type :wq to exit the editor.

The file is automatically reloaded. You get a message verifying this and stating which
functions have been redefined.

function myFunction1 redefined
function myFunction2 redefined
function myTest redefined

12. In the CIW, type

myFunction1()

This time the program successfully executes:

Starting with object 1 ..
Ending with object 1000 ..
(1 ... 999)

13. Close the SKILL Debugger Toolbox.

Congratulations, you now have a working program.

Run Lint

First run SKILL Lint using the default settings.

1. Select SKILL Lint from the SKILL Development Toolbox.
November 2001 75 Product Version 06.01

SKILL Development Help
Walkthrough
The SKILL Lint form appears.

2. Type /tmp/demo.il as the Input File name.

3. Click OK.

SKILL Lint processes the demo.il program then displays the results in the SKILL Lint
Output form.

Make changes according to the suggestions in the output. SKILL Lint gives this code an
IQ score of 80 out of a possible 100 points:

INFO (IQ): IQ score is 80 (best is 100).

SKILL Lint

SKILL Lint Output
November 2001 76 Product Version 06.01

SKILL Development Help
Walkthrough
To improve the score, you must clean up the unused variables indicated with:

UNUSED VAR (Unused): /tmp/demo.il, line 10 (myFunction1) :
variable z does not appear to be referenced.

UNUSED VAR (Unused): /tmp/demo.il, line 10 (myFunction1) :
variable y does not appear to be referenced.

UNUSED VAR (Unused): /tmp/demo.il, line 10 (myFunction1) :
variable x does not appear to be referenced.

4. Edit the program. Type

edit("/tmp/demo.il" t)

5. In myFunction1, change line 10 from

let((x y z myList)

to

let((myList)

The current code never uses the x, y, and z variables.

6. Type :wq to exit the vi editor.

The file is automatically reloaded.

7. Run SKILL Lint again following steps 1, 2, and 3.

Notice that SKILL Lint displays the results in the SKILL Output window which includes
the line:

INFO (IQ): IQ score is 100 (best is 100).

SKILL Lint gives this code an IQ score of 100 points:

8. Close the SKILL Lint output window.

9. Run myFunction1() again to be sure its operation has not been affected by the
change.

The results should be unchanged.

The following sections will show you how to analyze and fix the performance of the
functions in demo.il to achieve a significant speedup.

Measure myFunction1

You need to measure the time taken and memory used to run myFunction1 and analyze the
results to gain some insight into why this program takes so long.

1. Select SKILL Profiler from the SKILL Development Toolbox.
November 2001 77 Product Version 06.01

SKILL Development Help
Walkthrough
The SKILL Profiler window appears. Notice that the three lower icons for stop, reset, and
browse are not available until you profile a function.

2. In the SKILL Profiler window, select the Start Profiling icon to begin profiling.

3. Type myFunction1() in the CIW followed by a carriage return.

As soon as you start, only the stop button is available.

4. When myFunction1 is finished, select the Stop Profiling icon to finish profiling.

SKILL Profiler
November 2001 78 Product Version 06.01

SKILL Development Help
Walkthrough
The results of the profile are printed in the SKILL Profiler window.

Notice that gc is taking the most time. gc stands for garbage collection and is the time
spent by SKILL collecting memory which is no longer being used. You can use the SKILL
Profiler to track down large memory producers. By reducing the memory used, you can
reduce the time spent in garbage collection.

5. For later reference, select File -> Save As and fill in the form that appears with a file
name, such as /tmp/prof.out.

6. Select the Set up Profiling icon to bring up the Setup form.

7. In the Setup form, select Memory allocated in SKILL functions. Click OK.

SKILL Profiler

SKILL Profiler Setup
November 2001 79 Product Version 06.01

SKILL Development Help
Walkthrough
8. Select the Start Profiling icon in the SKILL Profiler window.

9. Type myFunction1() in the CIW.

10. Select the Stop Profiling icon in the SKILL Profiler window.

The profiler summary report is displayed.

The profile summary indicates that over 6 Megabytes of SKILL memory have been used
by our small example.

It also shows that almost all the memory was allocated inside append.

The append function takes two lists and copies both of them to form a third list. This
copying consumes lots of memory.

A much more efficient alternative would be to use a function such as cons which adds
an element to the beginning of the list and does not require copying the entire list.

SKILL Profiler
November 2001 80 Product Version 06.01

SKILL Development Help
Walkthrough
Before changing any code, run SKILL Lint to locate potential performance problems in
the demo.il file.

Check Performance

Now let SKILL Lint identify the performance problems of demo.il.

1. Select SKILL Lint from the SKILL Development Toolbox.

The SKILL Lint form appears.

a. Type /tmp/demo.il as the Input File name.

b. Select the Check For - Performance toggle button.

c. Click OK.

SKILL Lint
November 2001 81 Product Version 06.01

SKILL Development Help
Walkthrough
SKILL Lint processes the demo.il program, then displays the results in the SKILL Lint
Output form.

Act on the following hints and suggestions:

SUGGEST (APPEND1): /tmp/demo.il, line 31 (myFunction2) : Consider
use of cons or tconc rather than append/append1: append(myList
ncons(object))

HINT (EQUAL3): /tmp/demo.il, line 40 (myTest) : You can replace
== 1 with onep : (object == 1)

2. Edit demo.il.

a. To use less memory and for faster execution, change line 31

then append(myList ncons(object))

to

then cons(object myList)

Note that the program is not concerned about the order of the sequence. Counting
up or counting down are equally acceptable.

b. For faster execution, change line 40

object == 1

to

SKILL Lint Output
November 2001 82 Product Version 06.01

SKILL Development Help
Walkthrough
onep(object)

Notice that the if/then/else clause can be removed because functions return
the last expression executed. Finally, you can replace the function myTest with
onep on line 24.

The original code is the following:

if(myTest(object)
then printf("Starting with object %d...\n" object)

)
if(object == 1000

then printf("End processing with object %d...\n" object)
)
if(object < 1000

then append(myList ncons(object))
else myList

)

The recommended changes are:

if(onep(object)
then printf("Starting with object %d...\n" object)

)
if(object == 1000

then printf("Ending with object %d...\n" object)
)
if(object < 1000

then cons(object myList)
else myList

)

3. Close the file after your edits.

4. Close the SKILL Lint output file.

Rerun the Profiler

Analyze the results to see whether the recommended changes improved performance.

1. Select SKILL Profiler from the SKILL Development Toolbox.

The SKILL Profiler window appears.

2. Select the Set up Profiling icon to bring up the Setup form.
November 2001 83 Product Version 06.01

SKILL Development Help
Walkthrough
The SKILL Profiler Setup form appears.

3. Select Time spent in SKILL functions.

4. Click OK to close the form.

5. In the SKILL Profiler window, select the Reset Profiling icon to clear previous values.

6. In the SKILL Profiler window, select the Start Profiling icon to begin profiling.

7. Type myFunction1() in the CIW followed by a carriage return.

Notice that now the numbers are printed in reverse order.

8. When myFunction1 is finished, select the Stop Profiling icon.

SKILL Profiler Setup
November 2001 84 Product Version 06.01

SKILL Development Help
Walkthrough
The results of the profile are printed in the SKILL Profiler window.

Compare these times with the previous results below in /tmp/prof.out and notice a
significant speedup.

Using the Non-Graphical SKILL Debugger

Here is a brief example of how to use the non-graphical SKILL debugger. It is a trivial example
intended to give you a sense of what a debugging session is like. This example uses
traditional Lisp style syntax.

(defun initItem (item)
(let ((shapeList '(path polygon ellipse))shape)

(setq shape (concat (get item 'shape)))
(if (memq shape shapeList)
November 2001 85 Product Version 06.01

SKILL Development Help
Walkthrough
(printf "\nPath %s initialized" (get item 'name))
)))

(installDebugger) ; Install the SKILL debugger.
(sstatus traceArgs t) ; Keep evaluated arguments for

; Stacktrace display.
(alias q debugQuit) ; Alias debugQuit to a shorter name.
(putprop 'item1 "path" 'shape)
(initItem 'item1)
*** Error in routine fprintf/sprintf:
Message: *Error* fprintf/sprintf: format spec.incompatible. SKILL
Debugger: type ‘help debug' for a list of commands or debugQuit to
leave.

Debug 2> where
<<< Stack Trace >>>
errorHandler("fprintf/sprintf" 0 t nil ("*Error* fprintf.))
printf("\nPath %s initialized" nil)
if(memq(shape shapeList) printf("\nPath %s initialized"...

shape = path
shapeList = (path polygon ellipse)

let(((shapeList '&) shape) (shape = concat(get(item &)))
item = item1

initItem(item1)
5
Debug 2> q
1>

The stack trace generated by where shows that printf expected a string but got nil
because there was no property called name on item1.

Notice that where prints out the local variables and their values in each function. Other
functions such as stacktrace and dump also help you examine the state of the program at
the point the error occurred. Setting breakpoints and single stepping can be used for more
difficult bugs.
November 2001 86 Product Version 06.01

SKILL Development Help
9
Command Line Interface

This document discusses

■ Command Line: Profiler on page 87

■ Command Line: Test Coverage on page 88

■ TCov Report Files on page 89

Command Line: Profiler

Most executables containing the Cadence® SKILL language take command line options to
turn on SKILL Profiling. The SKILL Profiler can be turned on when you start an executable by
passing it the following arguments.

executableName -ilProf [time/memory] -ilProfFile [filename]

Because you enter these commands at the shell level, you use the shell syntax, hence the
dash options. For example:

cds0 -ilProf memory -ilProfFile /tmp/profMem.out

ilProf

Turns on SKILL Profiling for time by default. If memory is given as the argument, that is used
instead.

ilProfFile

Specifies the destination file for the SKILL Profiling results. The file name should follow this
argument. The default is ilProf.out in the directory from which the executable was
started.

When the executable is exited, the profile summary file is written out.
November 2001 87 Product Version 06.01

SKILL Development Help
Command Line Interface
Command Line: Test Coverage

SKILL Test Coverage lets you determine which code was executed during a session. This
information lets you increase the coverage of your test cases and thereby improve the quality
of your SKILL code.

When you start up SKILL test coverage, you must pass the executable command line
arguments telling SKILL which files or context to measure. When those contexts or files are
loaded, they automatically compile the functions to include tCov instructions. When the
SKILL session ends, report files are written out.

➤ Run SKILL Test Coverage using the following command line arguments.

executableName -ilTCov [context/fileNames]
-ilTCovDir directory -ilTCovReportsOnly

Because you enter these commands at the shell level, you use the shell syntax, hence the
dash options and the single quotes around the context file names, to submit them as one
argument to the option.

For example:

cds0 -ilTCov 'hiBase.cxt hiTools.cxt' -ilTCovDir /tmp/test

ilTCov

Followed by a list of contexts is the only argument required to run SKILL Test Coverage.
Alternatively, you can pass in a list of SKILL files in the current directory.

ilTCovDir

Takes the directory into which all report files are written as its argument. For contexts, a
subdirectory for each context is created under the directory given, and report files for that
context are written into that directory. If this argument is not given, the report files are written
to the same directory from which the SKILL files being measured were loaded.

ilTCovReportsOnly

Allows you to print only the summary report files and not the files that actually show the
source code annotated with test coverage information. This option greatly reduces exit time
during test coverage.
November 2001 88 Product Version 06.01

SKILL Development Help
Command Line Interface
TCov Report Files

When the SKILL session is over and SKILL exits, the four report files for SKILL Test Coverage
listed below are written out.

ilTCovSummary

The overall summary file that contains the percent of expressions executed for all contexts
and functions monitored. This file is written to the directory from which the SKILL executable
was started.

contextName.tcovSum

A summary report for the given file or context showing what percentage of expressions and
functions were executed. This file is placed in the directory containing the source code for the
context or in a directory under the
-ilTCovDir, if one is given.

fileName.tcov

A tcov file for each source file or source file in a context showing each function definition and
which expressions were executed. This file is placed in the directory containing the source
code or in a directory under the -ilTCovDir, if one is given.

contextName.d

A temporary file used to collect data across multiple runs. This file is placed in the directory
containing the source code or in a directory under the
-ilTCovDir, if one is given.
November 2001 89 Product Version 06.01

SKILL Development Help
Command Line Interface
November 2001 90 Product Version 06.01

SKILL Development Help
10
Writing SKILL Lint Rules

This document discusses

■ Overview on page 91

■ Rule Structures - SK_RULE Macro on page 92

■ Rule Access Macros on page 93

■ Rule Reporting Macros on page 94

■ Advanced Rule Macros on page 95

■ Storing Rule Definitions on page 99

❑ /cds/tools/local/sklint/rules on page 99

❑ /cds/tools/sklint/rules on page 99

■ Examples on page 99

❑ Adding a New Required Argument on page 99

❑ Replacing One Function With Another on page 100

❑ Promoting Standard Format Messages on page 101

❑ Making the Code Look Nicer on page 101

Overview

Cadence® SKILL Lint has been extended to allow users to write their own rules to output
SKILL Lint messages.

While there are a large number of built-in rules within SKILL Lint, there are times when
specific rules are required according to a user’s own situation.

This document details how to write rules for SKILL Lint and gives some examples of the types
of rules that can be written.
November 2001 91 Product Version 06.01

SKILL Development Help
Writing SKILL Lint Rules
Rule Structures - SK_RULE Macro

The main structure of the rules is as follows:

SK_RULE(sl_functions g_test g_statement ...)

The SK_RULE macro is the main entry point for writing a rule. A number of macros are
provided for writing rules. These macros all use capital letters and the prefix SK_ only.

sl_functions

The first argument is the name of the function to which the rule applies. Rules in SKILL Lint
always apply to a particular function. For example, there is a rule associated with the setq
function (the assignment operator) which says that the first argument must be a symbol. The
first argument to SK_RULE may be a single function name, or it may be a parenthesized list
of function names if the same rule is to be applied to multiple functions.

g_test

The second argument is a single SKILL statement. This is known as the test statement. The
rules work by applying a series of commands whenever a call to the function(s) named is
found in the code under analysis. The test function is evaluated first, and the rest of the
commands are carried out only if the test function evaluates to non-nil.

g_statement ...

Subsequent arguments are the rules commands, which are executed whenever a call to the
named function(s) is found, providing that the test statement evaluates to non-nil. These
commands can be any SKILL statements

While the rule command statements are being evaluated, a number of macros are available
for accessing the SKILL code being checked and for reporting any problems found. These
macros are all detailed in the Rule Reporting Macros section. The simplest macro is
SK_ARGS(), which takes no arguments itself, and returns the list of arguments to the function
call being tested.

SK_RULE Example

This simple rule checks for calls to the ggTestData function, which currently has two
arguments, plus an optional third. Suppose in the next release, the third argument becomes
mandatory. We then want to find any current calls with only two arguments:
November 2001 92 Product Version 06.01

SKILL Development Help
Writing SKILL Lint Rules
SK_RULE(ggTestData
length(SK_ARGS()) == 2
warn(“Found call to ggTestData with

only 2 arguments.\n”)
)

■ The first argument to SK_RULE specifies that the rule is to be applied to any calls to the
function ggTestData.

■ The second argument is a test that the number of arguments, as returned by the
SK_ARGS() macro, is 2.

■ The final statement, which is only carried out if the test was true, prints out a warning to
the user that such a call was found.

Rule Access Macros

You can use the following macros in either the test statement or the rule commands.

SK_ARGS()

Returns the list of the arguments to the function call under test. This macro takes no
arguments. The list values returned by this macro should never be destructively altered (using
rplaca etc.) because that would produce unknown effects.

SK_CUR_FILENAME()

Returns the name of file currently being checked, within a SKILL Lint rule. For example:

SK_RULE(test
t
printf("Current file being checked is: ’%s’\n"

SK_CUR_FILENAME())
)

SK_NTH_ARG(n)

Returns the appropriate argument in the function call. The single argument to this macro
specifies an argument number. The argument number is zero-based, so that argument 1 is
the second argument to the function call. The list values returned by this macro should never
be destructively altered (using rplaca etc.) because that would produce unknown effects.
November 2001 93 Product Version 06.01

SKILL Development Help
Writing SKILL Lint Rules
SK_FUNCTION()

Returns the name of the function call under test. This might be needed to establish the
function name where the same rule is being used for several different functions. The list
values returned by this macro should never be destructively altered (using rplaca etc.)
because that would produce unknown effects.

SK_FORM([n])

Returns the entire function call under test as a list. The SK_ARGS() macro effectively is the
same as cdr(SK_FORM()) and the SK_FUNCTION macro is effectively car(SK_FORM()).

If an argument is given, then this macro returns the call further up the call stack. For example,
if an if is called from within a foreach which is within a let, then SK_FORM(2) returns the
call to let. Note that SK_FORM(0) is just SK_FORM(). The list values returned by this macro
should never be destructively altered (using rplaca etc.) because that would produce
unknown effects.

Rule Reporting Macros

The following macros allow the reporting of problems to the user in the same format as given
by the standard messages generated by SKILL Lint.

SK_ERROR(type format arg ...)
SK_WARNING(type format arg ...)
SK_HINT(type format arg ...)
SK_INFO(type format arg ...)

These macros allow reporting of hints, warnings and errors to the user. The arguments are
the identifier for the message, the format string, as used by printf, and the arguments for
printing. For example:

SK_WARNING(GGTESTDATA “This function now requires 3 arguments: %L\n”
SK_FORM())

This will print a message of the form:

WARN (GGTESTDATA) myFile.il line 32 : This function now requires
3 arguments: ggTestData(abc 78.6)

The file name and line number are added automatically.

These macros should be used within the commands of the rule to report messages to the
user when problems are found. To allow the user to control the reporting of these messages
in the same way as other SKILL Lint messages, it is necessary first to register the messages
November 2001 94 Product Version 06.01

SKILL Development Help
Writing SKILL Lint Rules
with the reporting system. This is necessary only to allow the user to disable particular
messages. To do this, add a call to the following macro OUTSIDE of the rule definition:

SK_REGISTER(type)

For example, add the following:

SK_REGISTER(GGTESTDATA)

outside of the call to SK_RULE to register the message type. Once the call to SK_REGISTER
has been carried out, the SKILL Lint user will see the message identifier on the Message
Customization form, and will thus be able to disable the reporting of this message.

The example rule shown above could thus be written as:

SK_RULE(ggTestData
length(SK_ARGS()) == 2
SK_ERROR(GGTESTDATA “This function now requires 3 arguments: %L\n”
SK_FORM())

)

SK_REGISTER(GGTESTDATA)

Advanced Rule Macros

The following are some more advanced rule macros that are not expected to be generally
required.

SK_CHANGED_IN(t_release)

This macro is used to specify the release version (e.g. "447" for IC4.4.7) that a function is
changed. The SK_CHANGED_IN() macro must be embedded as the second argument of
SK_RULE. For example:

SK_RULE(myFunc
SK_CHANGED_IN("447")
SK_INFO(myFunc
. . .

)

SK_CHANGED_IN() evaluates to non-nil if the code being checked, as specified with the
sklint argument ?codeVersion, is from an earlier release than the release specified through
the argument of SK_CHANGED_IN() and the SKILL Lint rules message that describes
function change (only) will not be reported. The argument must me a numeric string of the
release version (e.g. "447" for IC4.4.7). If ?codeVersion is not specified,
SK_CHANGED_IN() will always evaluate to nil and a function change rules message will be
reported.
November 2001 95 Product Version 06.01

SKILL Development Help
Writing SKILL Lint Rules
This macro is useful when the user wants to restrict reporting of function change rule
messages which occurred after the release for which the code being checked was written.
When users check the code in IC447 they will not be interesting in seeing the information
about the change in IC445, since that was before they wrote the code (or perhaps before it
was migrated).

If the function changes more than once, then there should be a separate SKILL Lint rule for
each change, each with a different SK_CHANGED_IN() macro.

Note: SK_CHANGED_IN() should only be used for filtering out function changed rule
messages. Function deleted rule messages should always be reported.

SK_CHECK_STRINGFORM(t_stringForm)

This macro is similar to SK_CHECK_FORM() but it is used to check SKILL form in strings
(e.g. callback string). This macro is added to deal with the problem that when a string form is
converted to a SKILL form, the line number of the string form will be messed up and causes
an incorrect line number to be reported.

An example of usage:

procedure(test()
let((c)

c = myFunc(
"foreach(i ’(1 2 3 4) a=i)"

)
c
)

)
SK_RULE(myFunc

t
SK_CHECK_STRINGFORM(SK_ARGS())

)

Note: The argument to SK_CHECK_STRINGFORM must be a string.

SK_RULE(SK_CONTROL ...)

The SK_RULE macro has an optional first argument which is the keyword SK_CONTROL.
When this keyword is given, it means that this rule is a “controlling” rule. This means that the
arguments to the function are not themselves checked by SKILL Lint. Usually, SKILL Lint will
first apply checking to all the arguments of a function call and then to the call itself. However,
if there is a controlling rule, then the arguments are not checked automatically. This type of
rule is generally needed for nlambda expression (for example nprocedures) where only
some of the arguments are evaluated.
November 2001 96 Product Version 06.01

SKILL Development Help
Writing SKILL Lint Rules
SK_CHECK_FORM(l_form)

This macro can be used to apply checking to a statement. This is generally useful within a
controlling rule. The argument is a list whose first element is the SKILL code to be checked.

For example, consider a rule to be written for the if function (ignoring for the moment that
there are internal rules for if.) This function evaluates all its arguments at one time or
another, except for the then and else keywords. Writing a rule for if would require a
controlling rule, which would call this macro to check all the arguments except for the then
and else. For example:

SK_RULE(SK_CONTROL if
t
foreach(map statement SK_ARGS()
unless(memq(car(statement) ‘(then else))

SK_CHECK_FORM(statement)
)

)
)

The SK_CONTROL keyword means that the arguments to if will not be checked
automatically. The test in this case is t, which means that the rule will be applied to all calls
to if. The rule command is a call to foreach, with map as the first argument. Each time
through the loop the statement is a new cdr of the arguments. We check that this is not a
then or else, and if not, then call SK_CHECK_FORM to check the argument.

Note: The argument to SK_CHECK_FORM must be a list whose first element is the
statement to check, not the statement itself.

It is important to call the checker on all appropriate arguments to a function, even if they are
just symbols, because the checker handles trapping of variables which are unused, or are
illegal globals and so forth.

There should only be a single control rule for any function.

SK_PUSH_FORM(l_form)
SK_POP_FORM()

These two macros are used to indicate an extra level of evaluation, such as is introduced by
the various branches of a cond or case function call. These macros should not be needed
by most user rules. They are used in very special circumstances to indicate to the dead-code
spotting routines where branches occur in the code.
November 2001 97 Product Version 06.01

SKILL Development Help
Writing SKILL Lint Rules
SK_PUSH_VAR(s_var)

Declares a new variable. For example, the rules for let, setof, etc. declare the variables in
their first argument using this function. The function should be called before calling
SK_CHECK_FORM on the statements in the body of the routine.

SK_POP_VAR(s_var [dont_check])

Pops a variable that was previously declared by SK_PUSH_VAR. Unless the second argument
is t, the variable is checked to see whether it was used by any of the statements which were
checked between the calls to SK_PUSH_VAR and SK_POP_VAR.

For example, consider a new function called realSetOf. Assume this function works just like
setof, except that it removes any duplicates from the list that is returned. The rule is a control
rule which pushes the variable given as the first argument, checks the rest of the arguments,
and then pops the variable, checking that it was used within the loop:

SK_RULE(SK_CONTROL realSetOf
t
SK_PUSH_VAR(car(SK_ARGS()))
map(‘SK_CHECK_FORM cdr(SK_ARGS()))
SK_POP_VAR(car(SK_ARGS()))
)

SK_USE_VAR(s_var)

Marks the given variable as having been used. Usually a variable is marked as having been
used if it is passed to a function. However, if a function has a controlling rule, and does not
call SK_CHECK_FORM then it might wish to mark a variable as having been used. For
example, the rule for putprop marks the first argument as having been used. The same rule
ignores the third argument (the property name) and calls the checker on the second
argument. If putprop did not have a controlling rule, then the symbol used for the property
name would get marked as having been used and would probably be reported as an error
global.

SK_ALIAS(s_function s_alias)

This macro can be used where one function should be checked with the same rules as
another function. For example, it is fairly common to see functions replacing printf, which
add a standard prefix to the function. For example:

procedure(ERROR(fmt @rest args)
fmt = strcat(“ERROR: “ fmt)
apply(‘printf cons(fmt args))
)

November 2001 98 Product Version 06.01

SKILL Development Help
Writing SKILL Lint Rules
It would be nice to check calls to ERROR with the same rules as are used for printf (mainly
to check that the number of arguments matches that expected by the format string.) This can
be achieved using the following call:

SK_ALIAS(ERROR printf)

This macro, like SK_REGISTER, is used outside of any rule definitions.

Storing Rule Definitions

Rule definitions should be placed in files and stored in the Cadence distribution hierarchy. The
files must be placed in one of two places.

/cds/tools/local/sklint/rules

Given a Cadence installation in /cds, the files should be placed in:
/cds/tools/local/sklint/rules and named with a .il extension.
These files are loaded on each run of SKILL Lint.

/cds/tools/sklint/rules

Alternatively, the files may be stored in: /cds/tools/sklint/rules. These files are
loaded only the first time SKILL Lint is run (actually when the SKILL Development
environment context is loaded.)

It is recommended that all user rules are placed in the
.../local/sklint/rules directory, because these are not likely to be removed when a
new release of Cadence code is installed. Also, while the rules are under development it is
more useful to have the rules loaded on each run of the tool.

Examples

The following sample rules show how the macros are used.

Adding a New Required Argument

Suppose in the next release of the code, the ggTestData function is being changed so that
a new third argument is required. The following rule is provided by the group which supplies
ggTestData to trap problems which will arise at the next release:
November 2001 99 Product Version 06.01

SKILL Development Help
Writing SKILL Lint Rules
SK_RULE(ggTestData
length(SK_ARGS()) == 2
SK_WARNING(GGTESTDATA
strcat("This function will require 3 arguments in the

next release: %L\n"
"The extra argument will specify the width of the widget.\n")

SK_FORM())
)
SK_REGISTER(GGTESTDATA)

Replacing One Function With Another

Suppose the standard setof function is not a true setof because it doesn’t remove
repeated elements (it is a bagof function.) A replacement, called trueSetof, does remove
repeated elements. The rule needs to handle the fact that the first argument is a loop variable.
Also, trueSetof allows multiple statements in the body of the function call, instead of the
one statement allowed by setof.

The following controlling function

■ Declares the loop variable.

■ Checks the body statements (not forgetting the one which defines the original set).

■ Checks that the loop variable was used.

SK_RULE(realSetof
t
let(((args SK_ARGS()))
when(symbolp(car(args))

SK_PUSH_VAR(car(args))
)
map(‘SK_CHECK_FORM cdr(args))
when(symbolp(car(args))
SK_POP_VAR(car(args))
)

)
)

Note that:

■ This rule used let to declare a local variable for the args to save calling the SK_ARGS()
macro multiple times.

■ We checked the loop variable was a symbol, in case the user did something very odd,
but we did not at this time report a problem if the loop variable is not a symbol.

A second rule can be defined to check that the loop variable is given as a symbol:

SK_RULE(realSetof
!symbolp(car(SK_ARGS()))
SK_ERROR(REALSETOF1 “First argument must be a symbol: %L\n”

SK_FORM())
November 2001 100 Product Version 06.01

SKILL Development Help
Writing SKILL Lint Rules
)
SK_REGISTER(REALSETOF1)

Promoting Standard Format Messages

To promote standard format messages, suppose a new system has been written which
provides three new function, ggInfo, ggWarn and ggError. The functions work similarly to
printf, taking the same arguments, but they change the format a little and also copy the
messages to various log files. A rule is needed to check that the format string matches the
given number of arguments. This rule is exactly that which is applied to the printf function
itself, so we want to alias these functions to use the same rules as for printf:

SK_ALIAS((ggInfo ggWarn ggError) printf)

Making the Code Look Nicer

To make the code look nicer, suppose we want to prevent lots of nested calls to the boolean
operators, null, or and and. For example:

!a && ((b || !c) && (!d || !b)

is difficult to understand and should probably be split into several statements with associated
comments. The rule we want is to look at a call to one of the boolean operators and see
whether there are other boolean operators within it:

SK_RULE((null and or)
ggCountBools(SK_FORM()) > 5
SK_HINT(BOOLS “Lots of boolean calls found : %L\n”

SK_FORM())
)
SK_REGISTER(BOOLS)

The ggCountBools function might be:

procedure(ggCountBools(args)
let(((i 0))

foreach(arg args
when(listp(arg) && memq(car(arg) ‘(null or and))

i = i + 1 + ggCountBools(cdr(arg))
)

)
i

)
)

The only problem with this is that it tends to report problems more than one time, where
booleans are nested deeply. We can improve this by looking at the function call higher in the
call stack and seeing whether that is a boolean function itself. If so, then there is no point in
checking the current call:
November 2001 101 Product Version 06.01

SKILL Development Help
Writing SKILL Lint Rules
SK_RULE((null and or)
!memq(car(SK_FORM(1)) ‘(null and or)) &&

ggCountBools(SK_FORM()) > 5
SK_HINT(BOOLS “Lots of boolean calls found : %L\n”

SK_FORM())
)

November 2001 102 Product Version 06.01

SKILL Development Help
11
Set Breakpoints Form

This document discusses

■ Overview on page 103

■ Function Names on page 104

■ Breakpoints on page 104

■ Where on page 104

■ Condition on page 104

■ Clear All Breakpoints on page 105

■ SKILL Functions on page 105

Overview

You bring up the Set Breakpoints Form by selecting Set Breakpoints on the Cadence®

SKILL Debugger Toolbox.

Set Breakpoints
November 2001 103 Product Version 06.01

SKILL Development Help
Set Breakpoints Form
Function Names

A list of functions on which to set or clear breakpoints. Separate each function from the others
by a space.

Breakpoints

Determines whether the breakpoints are set or cleared.

Set

Sets breakpoints for the function names given.

Clear

Clears breakpoints for the function names given.

Where

Allows you to hit a breakpoint when entering or exiting a function.

Entry

Sets a breakpoint for when the function is entered.

Exit

Sets a breakpoint for when the function is exited.

Condition

Allows you to give a condition in SKILL code that must evaluate to t to reach a breakpoint.
The condition is evaluated in the scope of the calling function. An example of a condition
would be: i==10.
November 2001 104 Product Version 06.01

SKILL Development Help
Set Breakpoints Form
Clear All Breakpoints

Clears all breakpoints.

SKILL Functions
dump([x_variables]) => nil
stacktrace([g_unevaluated] [x_depth] [x_skip]

[p_port]) => x_result
where([g_unevaluated] [x_depth] [x_skip] [p_port])

=> x_result
step([x_steps])
next([x_steps])
stepout([x_steps])
cont() or continue()
debugStatus() => nil
clear() => t
installDebugger() =>t/nil
uninstallDebugger() =>t/nil
breakpt(s_function...) => g_result
unbreakpt(s_function... | t) => g_result
November 2001 105 Product Version 06.01

SKILL Development Help
Set Breakpoints Form
November 2001 106 Product Version 06.01

	Contents
	Cadence SKILL Language Development Help
	Overview
	Close Toolbox for Automatic License Check in/out

	SKILL Debugger
	Overview
	SKILL Debugger Commands
	Dump
	Stacktrace
	Where
	Step
	Next
	Step Out
	Exit Debug Toplevel
	Continue
	Tracing
	Set Breakpoints
	Debug Status
	Clear
	Automatic Stacktrace (Levels)
	Enter New Debug Toplevel on Error
	Terminate Debugging and Quit Debugger

	SKILL Lint
	Overview
	Form Options
	Input File
	Context Name
	Package Prefixes
	Output
	Output File
	Check For

	Customize Messages Form
	Message Groups
	Messages

	SKILL Lint PASS/FAIL and IQ Algorithms
	SKILL Function

	SKILL Profiler
	Overview
	Using the SKILL Profiler
	File Menu
	Open Browser
	Save As
	Search
	Close Window

	Profile Menu
	Start Profiling Time
	Start Profiling Memory
	Stop Profiling
	Reset Profiling

	Options Menu
	Setup
	Filters

	Fixed Menu
	SKILL Functions

	Code Browser
	Overview
	Function To Expand

	Code Browser Window
	Commands Menu
	Expand Function
	Find Function
	Delete All
	Close

	Misc Menu
	Defaults
	Filters

	Pop-up Functions Menu
	View
	Expand Functions
	Expand Deep
	Unexpand
	Delete

	Tracing
	Overview
	Tracing Form
	Tracing
	Type
	Trace Symbols

	SKILL Functions

	Finder
	Overview
	Your database may vary
	You can add your own functions
	Starting up

	Searching
	Simple Strings
	Combinations
	Categories
	Starting a search
	Stopping a search

	Selecting from Matches
	Saving Descriptions
	Clear
	Save...

	More on Saving
	Cadence Data
	Customer Data
	Data Format
	Troubleshooting
	Too Many Matches
	Save File Is Not Writable
	No files found
	Descriptions Window Full
	Font Size Unsatisfactory

	Starting in UNIX
	Standard Mode
	Test Modes

	Walkthrough
	Introduction
	Tasks for the Program
	Tasks for You
	The Test Program

	Load the Program
	Run the Program
	Resolve the First Error
	Fix the Functional Error
	Run Lint
	Measure myFunction1
	Check Performance
	Rerun the Profiler
	Using the Non-Graphical SKILL Debugger

	Command Line Interface
	Command Line: Profiler
	ilProf
	ilProfFile

	Command Line: Test Coverage
	ilTCov
	ilTCovDir
	ilTCovReportsOnly

	TCov Report Files
	ilTCovSummary
	contextName.tcovSum
	fileName.tcov
	contextName.d

	Writing SKILL Lint Rules
	Overview
	Rule Structures - SK_RULE Macro
	sl_functions
	g_test
	g_statement ...
	SK_RULE Example

	Rule Access Macros
	SK_ARGS()
	SK_CUR_FILENAME()
	SK_NTH_ARG(n)
	SK_FUNCTION()
	SK_FORM([n])

	Rule Reporting Macros
	Advanced Rule Macros
	SK_CHANGED_IN(t_release)
	SK_CHECK_STRINGFORM(t_stringForm)
	SK_RULE(SK_CONTROL ...)
	SK_CHECK_FORM(l_form)
	SK_PUSH_FORM(l_form) SK_POP_FORM()
	SK_PUSH_VAR(s_var)
	SK_POP_VAR(s_var [dont_check])
	SK_USE_VAR(s_var)
	SK_ALIAS(s_function s_alias)

	Storing Rule Definitions
	/cds/tools/local/sklint/rules
	/cds/tools/sklint/rules

	Examples
	Adding a New Required Argument
	Replacing One Function With Another
	Promoting Standard Format Messages
	Making the Code Look Nicer

	Set Breakpoints Form
	Overview
	Function Names
	Breakpoints
	Set
	Clear

	Where
	Entry
	Exit

	Condition
	Clear All Breakpoints
	SKILL Functions

