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Scattering Parameters 

Many of the readers of this book are analog engineers who are not well versed in s-parameters and Smith 
charts. While it is possible to get a lot of value from the book without understanding these things, an 
understanding is necessary if the output from Genesys is to be understood. For that reason, I am going to 
provide a brief overview of scattering parameters in this section. If you are already familiar with s-
parameters, you may skip to the next section. 
 
The fact that the average analog engineer is unfamiliar with these concepts (and has probably never used a 
program like Genesys before), is not a good reason not to learn and use these techniques. I am quite certain 
that these tools are very useful even if you are designing low frequency circuits. A few of the many reasons 
I make this statement are: 1) The transistors you use don’t know that they are supposed to work only at 
audio frequencies. They are perfectly happy to oscillate at many GHz if allowed. 2) Genesys (and other 
programs like it) contain modules that enable you to do EM modeling of things like circuit boards. This can 
be quite useful in making your circuit EMI hardened (a bane of many analog circuits). 3) These tools 
provide new insights into analog design broadening your knowledge and capabilities; insight that may help 
keep you ahead of your competitors. So while understanding s-parameters and having access to tools like 
Genesys is critical for the RF and high frequency, wide bandwidth analog designer, they are extremely 
useful for the low frequency analog designer as well.  
 
Scattering parameters are all about power; both reflected and incident in a linear two port system. It 
assumes that the system must be treated like a transmission line system; lumped elements no longer 
adequately describe the system.  
 
For the following analysis, refer to Figure:  A-1. 
 
 

 

Figure:  A-1 S Parameter Two Port Model 

 
 
 
 
The s-parameter definition is: 
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Lets look at the independent and dependent variables, a and b. 
 
The independent variables, a1 and a2 are normalized incident voltages defined as: 
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The dependent variables, b1 and b2 are normalized reflected variables defined as: 
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Restating the above equations for a and b gives: 
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While a and b represent transmission and reflections of power or voltage at the input and output of the 2-
port, what is the meaning of the s-parameter coefficients? These definitions are: 
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s11 = input reflection coefficient with the output port terminated by a matched load (ZL=Z0 sets a2 = 0) 
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s22 = output reflection coefficient with the input port terminated by a matched load (Zs=Z0 sets a1 = 0) 
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s21 = forward transmission (insertion) gain with the output port terminated by a matched load (ZL=Z0 sets a2 
= 0)  
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s12 = reverse transmission (insertion) gain with the input port terminated by a matched load (Zs=Z0 sets a1 = 
0) 
 
Or 
 
Squaring the s-parameters gives us the following: 
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Zs and ZL are the source and load terminating impedances respectively. Z0 is called the reference 
impedance for the two port. While it doesn’t have to be, in this book we will always define Z0 to be positive 
and real. In most cases, we will make the reference impedance 50 ohms.   
 
Given the discussion on reflection coefficients and matched loads, s-parameters clearly have something to 
do with transmission lines. In particular, at very high frequencies, “lumped elements” no longer look 
“lumped” but instead begin to look like some kind of distributed transmission line. In addition, other two 
port parameters (z, y, ABCD, etc) all rely on the ability to create either an ideal short or an ideal open (or 
both) at one of the ports in order to measure the parameter. At high frequencies; this is not possible because 
of inductance preventing a complete short, and capacitance preventing a complete open. I should point out, 
that it is possible to make the measurement using s-parameters, and then mathematically convert to one of 
the other 2-port definitions. Such conversion equations do exist.  
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Now let’s look at deeper meanings for these parameters. 
 
For those of you who don’t remember, the definition of reflection coefficient when applied to a 
transmission line is: 

 0

0

L
L

L

Z Z
Z Z

−
Γ =

+
 

ΓL ranges from -1 to +1 (when the load is either infinity or zero respectively). When Z0 = ZL, ΓL = 0 and 
there are no transmission line reflections allowing maximum power to be delivered to the load.  
Given this definition for Γ and the previous definitions for s11 and s22 we arrive at the following definitions: 
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Where V1 is the voltage at port 1, I1 is the current at port 1 and Z1 is the input impedance at port 1. 
 
Using this definition for s11, we can write an expression for VSWR at the input port: 
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Similarly we can write the definition of s22 as: 
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It is clear that both s11 and s22 are transmission line reflection coefficients. Because Smith charts were 
developed for studying transmission lines; they are perfect for displaying these parameters.  
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We can take this one more step and rearrange these equations to give the input and output impedance in 
terms of s11, s22, and Z0. Doing this gives: 
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Finally, we can define a parameter called insertion loss to be: 
 

1120 logLR s= −  
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What about s21 and s12? Is there additional insight from these parameters? The answer is yes. Looking at s21 
first, assume that we set a2 =0. This sets 

 + +
2 2 where I and V  represent the forward traveling wave components0 I V+ += =

By replacing the V1 in the equation for s21 with the generator voltage less the voltage drop over the source 
impedance, Z0  gives (for the case of matched loads only): 

2
21

1

and thus specifies the forward voltage gain.
2  

g
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=  

By a similar process, we find that s12 is equal to twice the reverse voltage gain. 
 
The forward power gain is G0 and is equal to: 
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Looking at a Genesys example for the very simple passive network circuit shown Figure 0-1 will help 
clarify these ideas.  
 

 
 

Figure 0-1 A Passive Circuit To Aid In Explaining S-Parameters 

Port 1 and port 2 both have port impedances of 50 ohms. Call these impedances Zs and ZL. By inspection, 
at low frequencies C1 is open so the input impedance should be r2 plus ZL impedance = 10 +50 = 60 ohms. 
At high frequencies, C1 is a short so the input impedance is R2 plus the parallel combination of R1 and ZL 
which equals 10 ohms plus 8.333 ohms = 18.333 ohms. 
 
Because C1 is open, the voltage gain from port 1 to port 2 at low frequencies is: 
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At high frequencies, C2 is a short and the voltage gain from port 1 to port 2 becomes: 
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GENESYS Results for S21 and E21 for Example Passive Network

 v  1a 

1) 1.019 MHz

 v  1a 

 a) 0.455

Figure 0-2: .5 *s22 And Voltage Gain Output From Genesys Passive Network Circuit 

This gives a result of 21
8.33 .454

8.33 10vE = =
+

This definition for voltage gain is the voltage gain (E21) 

provided by Genesys in Figure 0-2. 
 
 
We have stated that s21 is also a voltage gain. But it is referenced differently from the Ev21. In particular, it 
is the gain to the output port from the source voltage source. In other words, the input voltage is on the left 
side of the source impedance instead of the right side. This gives a new value for voltage gain that is equal 
to: 
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Figure 0-3: s11 and Zin for Example Passive Network 

Giving 21
8.33 .122

8.33 10 50vA = =
+ +

 

Remember, s22 is twice this voltage gain. Figure 0-2 is a plot of s22 multiplied by .5 (and also a plot of E21). 
This results in values that are identical at the low and high frequency end for the calculated vale of Av21 and 
.5*s22. Thus proving our assertion s21 is related to voltage gain. 
 
The magnitude of s11 and Zin is shown in Figure 0-3. Remember s11 is the reflection coefficient at the input 

port. As such it is related to Zin by the equation 11
1 0
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1
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−
. Note that s11 is a complex number, 

meaning Zin is normally complex. In this example, at low frequencies, and high frequencies, the imaginary 
part of s11 is close to zero. This allows us to substitute into the z1 equation only the real part of s11 and avoid 
complex arithmetic.   
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At low frequencies, we see that reap part of s11 is equal to .091 while at high frequencies it is -.463. 
Substituting these numbers into the equation for Z1 we obtain: 

1
1 .091 1.09150 50 50*1.2 60
1 .091 .909lowz +

= = =
−

=  

And 

1
1 .463 .53750 50 50*.367 18.35
1 .463 1.463highZ −

= = = =
+

 

Observe that these numbers are the same as the Genesys numbers for Zin 

Smith Charts 

Smith charts were invented to handle transmission line calculations before computers made life easier. 
Because of their unique nature, they are still one of the better ways to display data related to transmission 
lines. In particular, they map a complex rectangular impedance plane into a polar system that represents 
complex reflection coefficients. As such, they are perfect for representing s-parameters. Figure 0-4 shows a 
Smith chart displaying s11 for our example circuit of Figure 0-1. 
 
Notice that the horizontal axis represents pure resistance with 0 at the far left and infinity at the far right. 
The center of the circle is 1 and represents the normalized reference impedance (normally 50 ohms). If a 
point lands on 1, it represents a 50 ohm resistor. Notice that at 1 MHz, a low frequency, s11 is on the real 
axis with a value of 1.2 frequencies. Multiplying 1.2 by 50 gives 60 ohms; the input impedance of the 
network at this frequency. This is easier than going through the calculation from the 

equation 11
1 0

11

1
1

sz z
s

+
=

−
; the Smith chart does the calculation for you. Similarly, at 10 GHz s11 is also on 

the real axis at about .365. Multiplying .365 by 50 gives 18.25; the input impedance to the network at 10 
GHz. These are, within the error of reading the graph, the same as we obtained before.  
 
Circles on the Smith chart represent constant resistance curves, while the arcs radiating out from the right 
side to the edge of the Smith chart represent reactance curves. Notice that at 108 MHz, s11 intercepts a 
constant resistance curve equal to .7 and a constant reactance curve of about -.41. Multiplying these 
numbers by 50 gives an impedance for our circuit at 108 MHz of 35 –j20.5 ohms. Had we taken the actual 

value for s11 of .112 –j.267 and plugged it into 11
1 0

11

1
1

sz z
s

+
=

−
, we would have obtained the same result. 

 
Observe that points below the real axis representative capacitive circuits while points above the real axis 
will represent inductive reactance circuits. Any point on the edge of the Smith chart represents a pure 
reactance.  
 
Finally, observe that increasing the frequency always moves the graph in a clockwise direction. 
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S11 for example passive network circuit
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Figure 0-4: A Smith Chart Showing s11 for Our Example Circuit 
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