designfeature By Ken Jaramillo and Subbu Meiyappan, Philips Semiconductors

PART ONE OF THIS SERIES REVIEWS BASIC SCAN-TEST
TECHNIQUES. PART TWO PRESENTS 10 DESIGN PRINCIPLES
TO FOLLOW FOR SUCCESSFUL IMPLEMENTATION OF

THOSE TECHNIQUES.

10 tips for successful
scan design: part two

“10 tips for successful scan design: part one,”
pg 67), you're ready to take some action. The
following list includes the most important issues to
be aware of to guarantee successful adoption of scan
techniques within your company or design group:
® Handle internal tristate buses with care and
avoid bus contention by design.
® Make all clocks and asynchronous resets come
from chip pins during scan mode.
® Ensure that all scan elements on a scan chain
are in the same clock domain.
® Know the requirements and limitations of your
chip testers.
® Handle mixing flip-flops triggered off different
edges of the clock with care.
® Break all combinational-logic feedback loops.
® Handle all nonscan elements with care.
® Avoid design practices that lead to non-
scannable elements.
® Handle multiple
clock domains

0 NCE YOU KNOW THE BASICS of scan design (see

\
Figure 1

sible, never implement designs with internal tristate
bus structures. If you can’t follow this rule, then im-
plement the fewest possible internal tristate-bus
structures and guarantee by design that no bus con-
tention can occur on any internal bus during scan
testing.

Two control problems require careful considera-
tion. First, you must ensure that there is no con-
tention on the tristate buses during scan-shift oper-
ations. Most scan-insertion tools can automatically
perform this task during the scan-insertion phase.
Second, you must ensure that there is no possible
contention on the internal tristate buses during the
capture cycles during scan testing.

With most designs, you can generate a scan-test
pattern that causes bus contention on some inter-
nal buses. Several ATPG tools are intelligent enough
to avoid generating patterns that cause bus con-
tention. However, although the tools may be intelli-
gent enough to avoid contention, this intelligence

with care to

POTENTIAL BUS CONTENTION DURING SCAN TESTING

. o BLOCK A
avoid potential tim- \
ing problems. o
® Plan chip-level scan FUNCTIONAL
issues before you INPUT O——0
SCAN INPUT BLOCK B
start block-level de- o—1
sign.
o SCAN ENABLE SCAN ENABLE
FUNCTIONAL
INTERNAL TRISTATE BUSES o CLOCK LG ity)
Without a doubt, the SCAN INPUT
biggest hurdle to overcome

SCAN ENABLE

in system-on-chip (SOC)

CLOCK

designs with respect to au-
tomatic test-pattern gener-
ation (ATPG) is the prop-

er control of internal tri- | When two flip-flops control the output enable for bus transceivers, bus contention can

state bus structures. If pos- | occur.

www.ednmag.com

FEBRUARY 17, 2000 | EDN 77

designfeature _Scan design

takes a fair amount of CPU effort. De-
pending on the design, the ATPG
effort could be so CPU- intensive
that it results in longer runtimes, fewer
patterns, and lower fault coverage. If the
ATPG tool cannot identify scan-test pat-
terns that create bus contention and uses
those vectors to test the device, then the
part may be stressed during the produc-
tion test. This production-test stress may
cause the part to fail on the tester, cause
damage, or cause a shortened life cycle.
Therefore, avoiding contention on inter-
nal tristate buses is important.

Bus-contention problems in SOC de-
signs occur at two levels. The first prob-
lem is within a design block that contains
multiple drivers to a tristate port. The
second problem is at the chip level, in
which multiple blocks interface to the
same bus. Consider the case of an inter-
nal PCI-bus structure. In normal opera-
tion, bus-arbitration logic via the re-
quest/grant pairs guarantees that only
one master controls the bus at a time.
During scan testing, however, the ATPG
tool easily generates test patterns that
would turn on multiple requests, grants,
and output-enable signals for bus trans-
ceivers, thus forcing multiple devices
onto the tristate bus simultaneously.

In Figure 1, two blocks drive
a common internal tristate bus.
The figure represents a single bit of the
bus. In each block, scan flip-flops control
the output enables for the bus trans-
ceivers. The last flip-flop in Block A’s scan
chain drives the first flip-flop in Block B’s
scan chain. If the ATPG tool generates a
pattern that causes both flip-flops to shift
in values of zero, then you have bus con-
tention on this bit of the bus.

Although there are several approach-
es to these types of problems, the solu-
tions are generally simple. (You can
download the appendix “Internal PCI-
bus-contention solution” from EDN’s
Web site, www.ednmag.com/ednmag/
reg/2000/02172000/04ms604.htm) It is
important to recognize that if you use in-
ternal buses, you must guarantee by de-
sign that bus contention is impossible
during scan testing.

CLOCKS AND ASYNCHRONOUS RESETS

The next biggest issue when it comes
to achieving high fault coverage is to en-
sure that all clocks and asynchronous re-

Fi

Fig

78 EpN | FEBRUARY 17, 2000

‘ FUNCTIONAL

gure 2 INPUT O—O\
SCAN INPUT

!

FUNCTIONAL

o—1
SCAN ENABLE

CLOCKO———8M™ ™
(a)

INPUT O—

CLOCK()—I

FUNCTIONAL
INPUT O—

FUNCTIONAL
INPUT
SCAN INPUT

I

SCAN ENABLE

() CLOCKO———

Two design practices to avoid are using one flip-flop in the scan chain to drive the asynchronous set
or clear of another flip-flop (a) and using one flip-flop in the scan chain to drive the clock of another

flip-flop (b).
LOCKUP
LATCH
o_\
SCAN INPUT 11 en [—O
o /
O
BLOCK A BLOCK B
CLOCK
O ®
ure 3

If the design includes falling-edge-triggered flip-flops, place all of these flip-flops at the beginning of
the scan chain for each block and insert lockup latches between blocks.

sets come from chip pins during scan
testing to allow the ATPG tool to control
clocks and resets in the design. Neglect-
ing this fact will cause the ATPG tool to
consider each potential scan element that
does not have a clock or reset coming
from a chip pin as unscannable. The tool
considers all unscannable cells as un-
knowns during pattern generation, re-
sulting in reduced fault coverage.

This suggestion does not imply that all
clocks and resets must come directly
from pins. Rather, the ATPG tool must
have total control of scan-element clock
and reset signals. The tool must be able
to control the clocks and be able to de-
assert the resets. The following examples
demonstrate this situation.

Figure 2a shows one flip-flop in the
scan chain driving the asynchronous set
or clear pin of another flip-flop. You must
avoid this design practice. As data shifts

around the scan chain, the second flip-
flop resets set or clear depending on the
shift data. The ATPG tools cannot pro-
duce useful scan patterns for this type of
circuit. Thus, the tool doesn’t include the
second flip-flop in the scan chain and
considers this flip-flop as an unknown
during pattern generation, resulting in a
loss of fault coverage. If this type of log-
ic exists, you should insert a multiplexer
in the reset path of the second flip-flop.
This multiplexer allows a chip pin to con-
trol the reset signal during scan test or
disables the reset pin of the flip-flop.

In general, you want to avoid any asyn-
chronous flip-flop input that a chip-lev-
el reset pin can’t disable. Therefore, if an
asynchronous-reset input of a flip-flop
ties to the output of some combination-
al logic that a chip-level reset pin cannot
disable (the logic may have scan flip-flop
outputs as its inputs or even chip-level

www.ednmag.com

designfeature _Scan design

inputs), then you must insert ‘
a multiplexer. Note
that if the offending
signals that prevent a single
chip-reset pin from disabling
the flip-flop’s asynchronous
input are chip pins, then you
can solve the problem by forc-
ing the ATPG tool to drive
these pins to constant values
during pattern generation.
This approach is easier than
adding multiplex circuitry.

Figure 2b shows one flip-
flop in the scan chain driving
the clock input of another
flip-flop. You must also avoid
this design practice if possi-
ble. As data shifts around the
scan chain, the second flip-flop’s clock
toggles, depending on the shift data. The
ATPG tools cannot produce useful scan
patterns for this type of circuit. Thus, the
scan chain does not include the second
flip-flop, and the tool considers this flip-
flop as an unknown during pattern gen-
eration, resulting in a loss of fault cover-
age.

This type of design exists for circuits
such as clock dividers. Therefore, if this
type of logic exists, you have two options.
First, you can insert a multiplexer in the
clock path of the second flip-flop such
that the clock input ties to one of the scan
clocks only during scan-test mode. Be-
cause this approach introduces logic in
the clock path, the clocks between the
flip-flops are no longer synchronous.
Therefore, you should insert a lockup
latch in the scan chain before and after
the second flip-flop to avoid any poten-
tial hold-time problems. If several in-
stances of this circuit exist, you may want
to create a clock that all these flip-flops
can use during scan-test mode. In this
case, you would need to place a lockup
latch only before the first and the last of
these flip-flops.

Second, you can insert a multiplexer in
the second flip-flop’s asynchronous re-
set path to tie this flip-flop active, which
holds the flip-flop in reset only during
scan-test mode. This approach is less ef-
fective than the first one but is better than
having the ATPG tool consider the sec-
ond flip-flop as an unknown.

In general, you want to avoid any clock
input that a single chip-level clock pin

Figure 4

80 epN | FEBRUARY 17, 2000

flops apiece. Each scan chain
requires a test pattern that is
1000 bits long for each test
pattern, even though the

o>
R
O

Combinational feedback loops, from IC, to IC, in this case, can produce an
unstable output. You need to break this loop during scan mode for the
ATPG tool to predict the operation of the circuit.

can’t control. Therefore, if a flip-flop’s
clock input ties to the output of some
combinational logic that a single chip-
level clock pin cannot control, then you
need to insert multiplex circuitry, just as
in the previous example. The logic may
have scan flip-flop outputs as its inputs,
chip-level inputs, and even chip-level
clock inputs. If the offending signals that
prevent a clock pin from controlling the
flip-flop’s clock input are themselves chip
pins, then you can force the ATPG tool to
drive these pins to constant values dur-
ing pattern generation. This approach is
easier than adding multiplex circuitry.

SCAN ELEMENTS

Several factors determine the number
of scan chains in a design. In general, you
want to divide scan chains by clock do-
main. All flip-flops in a scan chain should
use the same clock. However, some factors
might make this situation undesirable.

First, each scan chain must have its own
scan-input and -output pin. The more
scan chains you have, the more pins you
must set aside for test. If you don’t dedi-
cate pins for test, you must dedicate logic
to multiplex the scan inputs and outputs
with other chip pins. Also, the production
tester that tests the chips has limitations
that affect the number of scan chains a de-
sign can support. Finally, it is generally a
good idea to equalize scan-chain lengths.
Remember that each scan pattern is as
long as the longest scan chain.

For example, consider a design with 10
scan chains, one chain being 1000 flip-
flops long and the rest being two flip-

chains that are two flip-flops
long have patterns that con-
tain 998 don’t-care bits and
only two real-test bits. So, it
may be wise to break some
of the longest chains into
multiple chains. If you de-
cide to combine scan chains
based on different clocks—
to equalize the scan-chain
lengths or to compensate for
tester limitations, for exam-
ple—make sure you place
lockup latches between the
scan chains to avoid poten-
tial hold-time problems.

It is also a good idea to include lockup
latches between chip-level blocks even if
the blocks are in the same clock domains.
Inserting these latches is unnecessary if
you've done an accurate static-timing
analysis, but using the latches minimize
the chances for hold-time problems be-
tween blocks. Preventing hold-time
problems is important because most of
the effort relating to scan begins after you
deliver a final netlist for placement and
routing of the chip. Also, you typically
develop static timing scripts for scan
paths after the development of scripts to
verify functional paths. Adding these
lockup latches adds few gates to the de-
sign, and the latches help to avoid po-
tential timing problems that you might
not find until late in the design cycle.

REQUIREMENTS OF CHIP TESTERS

You have to know the limitations of
your production tester before you can
plan an effective strategy for scan. Two
limits impact test. The first is test time. In
general, you should design production
tests to operate in less than 3 sec, rough-
ly the cycle time of the device handler.
Tests that take longer than 3 sec result in
excess cost per chip. The second limit to
keep in mind is tester memory. The en-
tire test program must fit into the avail-
able memory of the tester. You can nev-
er reload test memory in the middle of
the test. Dedicated scan-hardware con-
straints limit most testers to a certain
number of scan chains. Table 1 shows
one possible configuration of an exam-

www.ednmag.com

designfeature _Scan design

ple tester with 128 Mbits of memory.

In Table 1, the example tester supports
amaximum of 32 scan chains. The num-
ber of scan chains you choose determines
how much memory you have to work
with, which directly impacts the number
of test patterns the tester can support.
Most testers work on even
numbers of scan chains. For ex-
ample, if a design has nine scan
chains, the available memory
per chain is still 8 Mbytes; the
remaining memory is inacces-
sible for the scan test.

The following example
shows how to determine the
number of allowable test pat-
terns you can generate based on the
tester’s memory limits:

Tester_Memory_Per_Chain>

(#Scan_Patterns-Max_Scan_Chain_L
ength)+Max_Scan_Chain_Length.

Tester_Memory_Per_Chain=To-
tal_Tester_Memory/Number_Of_Scan-
chains.

Number_Of_Scanchains is in multiple
of two increments (except if you have
only one scan chain).

1 Mbyte of memory=1,048,576 bits.

#Scan_Patterns<<(Tester_Memory_
Per_Chain—Max_Scan_Chain_Length)/
Max_Scan_Chain_Length.

For example, if the amount of memo-
ry available on the tester is 256 Mbytes,
your design has eight scan chains, and
your longest scan chain is 3000 flip-flops
long, then

Tester_Memory_Per_Chain=256
Mbits/8=33,554,432 bits=32 Mbits.

#Scan_Patterns<<(33,554,432—3000)/
3000=11,183 ATPG patterns.

This example shows how to calculate
tester-memory limitations. These calcu-
lations depend on the type of tester you
use. You should consult the test-engi-
neering personnel of your tester’s manu-
facturer for details.

MIXING FLIP-FLOPS

ATPG tools require that you place all
falling-edge-triggered flip-flops at the
front of a scan chain. If you place a
falling-edge-triggered flip-flop after a ris-
ing-edge-triggered flip-flop in the scan
chain, a single clock cycle will clock scan
data through both flip-flops. This situa-
tion causes some loss of coverage because
the two flip-flops always have the same

82 epn | FEBRUARY 17, 2000

Maximum number of scan chains

scan data value after a shift cycle.
Fortunately, handling a situation in
which several blocks within a chip may
have falling-edge-triggered flip-flops
doesn’t mean that you have to place all
falling-edge-triggered flip-flops at the
front of the entire scan chain, which con-

POSSIBLE TESTER MEMORY CONFIGURATIONS

Available memory per chain (Mbits)

One 128
Two 64
Four 32
Eight 16
16 8
32 4

sists of multiple chip-level blocks. When-
ever a falling-edge-triggered flip-flop fol-
lows a rising-edge-triggered flip-flop in
a scan chain, you must insert a lockup
latch between them. The lockup latch
prevents data from shifting through both
flip-flops in one clock cycle. To avoid
having an excessive amount of lockup
latches, it is still advisable to place all the
falling-edge-triggered flip-flops at the
beginning of the scan chain for each
block. Then, you need to place lockup
latches only between blocks. Figure 3
shows two chip-level blocks, A and B,
each containing falling-edge-triggered
flip-flops. The blocks’ scan ports connect
together via lockup latches at the chip
level.

A few ATPG tools have difficulty han-
dling falling-edge-triggered flip-flops
during capture cycles and may require
special commands to inform the tool
how to handle the

quiring that you add lockup latches be-
fore and after these flip-flops in the scan
chain.

COMBINATIONAL-LOGIC FEEDBACK LOOPS

Designs that contain combinational-
feedback loops have inherent testability
problems. Combination-
feedback loops may intro-
duce internal logic states to
a design that scan-storage
elements cannot control.
Consider a circuit with
three flip-flops and a com-
binational feedback loop
from IC, to IC, (Figure 4).
This feedback loop causes
the problem. If you initialize the flip-flops
to values of IC,=0, IC,=0, and IC, =1,
then the output at IC, will be a stable high.
IfIC, changes to alogic high, then the out-
put at IC, oscillates between 0 and 1. Be-
cause of this oscillation, ATPG tools can-
not predict the operation of the circuit. To
generate patterns, the ATPG tool would
have to break this loop, which would re-
duce overall fault coverage. ATPG tools
have a few methods for breaking combi-
national feedback loops. Some of these
methods are less harmful to fault cover-
age than others, but all of them result in
some loss of coverage. Therefore, you
should avoid combinational feedback
loops whenever possible. Most ATPG
tools inform users of all the combina-
tional-feedback loops present in a design.

If you cannot avoid these feedback
loops, then you should break the feed-
backloop by inserting an additional flip-

flip-flops. You should
investigate how your
ATPG tool handles

SYSTEM MEMORY

this situation. You

| LOCAL MEMORY BUS (FOR EXAMPLE, PCI)

may even consider
changing the Fi
circuit so that

these flip-flops trig-
ger off the rising edge
of the clock during
scan mode rather
than off the falling
edge. But remember,
modifying the clock

gure 5

C

FIFO

LOGIC NECESSARY TO TAKE
DATA FROM NETWORK AND

‘ PLACE IN SYSTEM MEMORY

inputs of these flip-
flops effectively puts
them in a different
clock domain, re-

NETWORK (IEEE 1394 FIREWIRE, ETHERNET, AND OTHERS)

You need to carefully handle the FIFO to be able to test the surround-
ing logic blocks, A and B.

www.ednmag.com

designfeature _Scan design

flop that is present in

the other. In this case, the

the feedback path only OENO— ™ OE_N test doesn’t include the
during scan-test mode. SCANTESTMODEO—— /' logic surrounding the
This modifica- i eo-n FIFO array unless you
tion results in Figure 6 eo-n |7WE‘N use special techniques to
the highest fault cover- WENO I—>ADDRESS make the FIFO ATPG-
age. If you cannot insert ADDRESSIM:0] tool-friendly. Figure 5
a flip-flop, then insert a DATAIN:0] < D shows an example of a
multiplexer in the feed- RAM RAM array (FIFO) for a
back path that drives a () (WiTH [?A%'\RBES;'ONAL networking application.
constant value during The logic in A and B
scan-test mode. This grabs the data off the
approach results in low- OENO—] TN oI network and places it in
er coverage than the SCANTESTMODEO——]_/ CS N system memory. If you

flip-flop option but

higher coverage than if WE_NO

you allow the tool to [s
ADDRESSIM:O]

break the loop by as- DATA_ININ:O] >0,

suming an unknown DATA_OUTIN: Ol Dout

value as a result of the

037N0—|7|7 WE_N

don’t handle the FIFO
carefully, you could lose
a lot of fault coverage.
You need to design the
FIFO so that you can ob-

serve the outputs from

100p. (WITH U,\ﬁm ECTIONAL the logic in B and control
(b) DATA BUS) the inputs to logic A dur-

NONSCAN ELEMENTS ing scan-test mode.
Scan-insertion tools CS_N Several techniques can
consider all cells that do CS_NO WE_ N increase the observabili-
not have a scan-equiva- WE N - ty of logic immediately
lent cell as black boxes ADDRESS[M:_O]O | ADDRESS before the RAM and in-
and do not insert them | D y crease the controllabili-
into a scan chain. ATPG b ty of logic immediately
tools consider sequen- DATAIN:0 <& o after the RAM. Support
tial cells that are not on — for these techniques
scan chains as black CENO—T™N (WITH UNIDIRECTIONAL varies among ATPG
boxes. Therefore, you | SCANTESTMODE o—1 DATA BUS) tools. So, investigate your
must treat all nonscan © ATPG tool’s capabilities
sequential elements | Deasserting the output enable during scan-test mode isolates RAM with bidirectional before you decide how to

with care to avoid loss of
fault coverage. Exam-
ples of nonscan elements are latches,
RAM, and design blocks that do not in-
clude scan.

Although latch-based designs are pop-
ular for gate and power savings, most
scan/ATPG tools do not handle these de-
signs optimally. ATPG tools can under-
stand the behavior of latches that the de-
sign holds transparent, but these tools
model the behavior of latches when they
are not transparent as unknowns. If the
latch data feeds into other logic that a
scanned register then captures, poor fault
coverage could result. In general, you
should keep all latches transparent dur-
ing scan testing, but you should investi-
gate how your scan/ATPG tool handles
latches.

RAM cells have more complex failure
modes than do the simple “stuck-at”
modes for standard-cell logic, such as

84 epN | FEBRUARY 17, 2000

(@) and unidirectional data buses (b, c).

flip-flops, latches, and combination-log-
ic gates. Thus, scan techniques do not
verify RAM circuits during production
testing. Instead, you use RAM built-in
self-test (BIST) to verify RAM cells. This
technique involves writing several pat-
terns into the RAM array to check for the
various failure modes of RAM cells. BIST
is a well-known technique. (See Refer-
ence 2 for an introduction to BIST and
testing of RAM and ROM.)

Because you test RAM via BIST, which
achieves high fault coverage, ATPG tools
need not test and fault-grade RAM.
However, even though BIST logic makes
RAM fully testable, a large reduction in
test coverage of the surrounding logic
may result. This reduction is commonly
known as the shadow effect. Imagine a
FIFO array for which surrounding logic
pushes data in one side and pulls data out

handle RAM. Keep in

mind that there are
many types of RAM blocks. Some have
bidirectional data buses, and others have
unidirectional data buses. Some are syn-
chronous, and others are asynchronous.
The best technique to use depends on
your application and your vendor library.
The approach you ultimately choose de-
pends on your design architecture (a sin-
gle bidirectional bus or two unidirec-
tional buses), your timing budget
(whether the design can withstand addi-
tional logic in the datapaths), and your
ATPG tool (whether it supports model-
ing of RAMs).

There are five ways to deal with RAM.
The first and easiest approach is to iso-
late the RAM block by deasserting its
output-enable signal during scan mode.
This method adds no observability or
controllability for the RAM, but it gets
the RAM off the bus so that it does not

www.ednmag.com

designfeature _Scan design

interfere with the other blocks on the
data bus. Implementation depends on
the type of RAM the design uses. Figure
6a shows the logic necessary to isolate a
RAM that has a bidirectional bus using
the RAM’s output-enable signal. Figure
6b is similar to Figure 6a except the RAM
has separate data-in and data-out buses,
and the design uses these buses separate-
ly. Figure 6c¢ is similar to Figure 6b in that
the RAM has separate data-in and -out
buses, but this implementation combines
the data buses into one bidirectional data
bus.

The second approach is to isolate the
RAM block by inserting a multiplexer to
drive the data signals during scan mode.
The drive values can be either constant
or some combination of the input-con-
trol signals. This approach is useful only
for RAM blocks with unidirectional
read-and-write data buses, but it is more
sophisticated than the previous ap-
proach, which simply disables the RAM.
In this case, you allow the test to drive a
constant pattern onto the output data
bus. Thus, this approach adds controlla-
bility to the logic immediately after the
RAM because the ATPG tool can affect
the output data of the RAM, although
only in a simple way. Figure 7a shows an
implementation using unidirectional
data buses; Figure 7b uses a bidirection-
al data bus. Both figures show a RAM
block that has unidirectional data buses.

Third, you can place the RAM block
into a transparent mode during scan test

Figure 7

(Figure 8). In this mode, you essentially
route data-in to data-out. Note that this
approach is only useful for RAM blocks
with unidirectional read-and-write bus-
es and with designs that use the buses
separately. This solution not only pro-
vides controllability of the logic imme-
diately after the RAM, as in the previous
approach, but also provides observabili-
ty to the logic immediately before the
RAM.

A fourth approach is to write RAM
data before scan test and use the RAM
contents to generate test data for the sur-
rounding logic during scan test. To avoid
disturbing the RAM contents during
scan test, disable the RAM write signal
during scan-test mode. This method re-
quires the ATPG tool to support a func-
tional RAM model. Some ATPG tools al-
low for only a partial initialization of the
RAM array.

This approach adds a lot of controlla-
bility to the logic immediately after the
RAM but no observability to the logic be-
fore the RAM. Another drawback is the
length of time that initializing the RAM
array might require. Yet another poten-
tial drawback is that this approach re-
quires the ATPG tool to support a func-
tional RAM model. Because many ATPG
tools support RAM models, this issue
may not be critical. Figure 9a shows the
implementation for which you must ini-
tialize the entire RAM before scan testing
and then allow the contents of the RAM
to test the surrounding logic. Figure 9b

shows the implementation for which you
need initialize only a single location
within the RAM before scan testing. This
approach saves time on initialization but
provides less controllability than the log-
ic in Figure 9a. You can create an ap-
proach between these two that requires
initialization of only a certain number of
locations, for example, the bottom 1
kbyte of memory.

The fifth approach is to leave the RAM
as is and let the ATPG tool functionally
exercise it to generate logic values to test
the surrounding logic during scan test.
This method requires that the ATPG tool
supports a functional-RAM model. This
approach requires no changes to the
hardware and provides the most observ-
ability of the logic before the RAM and
controllability of the logic after the RAM.
However, this approach requires an
ATPG tool that can model RAMs and a
little more effort to learn how to use it.

Portions of your chip may not include
scan circuitry. Examples are older ver-
sions of blocks and third-party intellec-
tual property. You can test these blocks by
using canned test vectors, logic BIST, or
other testing methods. However, you
need to be careful that the lack of scan in
these blocks does not hurt the ability to
test other blocks in the chip. You can use
multiplexer-isolation techniques to sep-
arate any nonscan blocks from the scan
section of the design during scan mode.
Well-designed scan and nonscan isola-
tion with appropriate control logic re-

RAM
(WITH UNIDIRECTIONAL
DATA BUS)

(WITH UNIDIRECTIONAL
DATA BUS)
Ii cs_N
0ELNO OE_N CS.NO
_ WE_N
Ii CS.N
WE_NO
CS_NO TR -
- I—»ADDRESS
WE_NO ADDRESS[M:0]
|—> ADDRESS
ADDRESS[M:0]
DATA_ININ:O] |0 Dy
1| Dour
DATAIN:0] et 0 Dout
DATA_OUTIN:0] 1
. CONSTANT VALUE
OEN
SCANTESTMODE SCANTESTMODE O
O CONSTANT VALUE

(a)

(b)

You can isolate RAM during scan test by driving output data to a constant value in the case of both unidirectional (a) and bidirectional (b) data buses.

86 EpN | FEBRUARY 17, 2000

www.ednmag.com

designfeature _Scan design

sults in fast and trouble-free test-pro- ‘

gram generation with high fault
coverage. To increase the fault cov-

erage that you can obtain from scan
ATPG software, the isolation circuitry of
nonscanned blocks should set the out-
puts of such blocks to known logic states
during scan mode.

Examples of nonscanned flip-flops are
flip-flops that have no scan equivalent
and thus can’t be part of the scan chain.
Nonscanned flip-flops can also be flip-
flops that you design into the circuit such
that you could not place them on a scan
chain because of improper generation of
clock or reset inputs (see tip 2). You
should first try to fix the cause of the
problem. For example, if the flip-flop has
no scan-equivalent cell in the ASIC li-
brary, then change the design so that it
uses a scan-type flip-flop instead. If
problems exist with the generation of the
clock or reset inputs, then change the de-
sign according to the recommendations
in tip 2. If you can’t modify the design,
the last resort is to design access to the
preset or clear connectors such that the
system, or tester, holds the flip-flops in
known states, either preset active or clear
active, during scan mode. This approach
somewhat reduces fault coverage because
it limits the controllability of input nodes
of the flip-flop and of the logic down-
stream from the flip-flop.

NONSCANNABLE ELEMENTS

The ASIC vendor and library you
choose dictate the types of scan-equiva-
lent cells you can design with. Because
most vendor libraries have a rich variety
of standard logic cells to choose, engi-
neers typically write HDL code to pro-
duce sequential logic without paying
much attention to the types of available
cells. However, the scan-insertion tools
pick flip-flops that come from a subset of
this library. Currently, only one cell lacks
vendor libraries when it comes to scan:
flip-flops with both asynchronous set
and asynchronous clear inputs. There-
fore, avoid designing functions that re-
quire these types of cells. Scan flip-flops
usually have either an asynchronous set
or an asynchronous clear but not both.

MULTIPLE CLOCK DOMAINS

It is important to handle multiple
clock domains with care. A clock domain
is a grouping of sequential elements all

88 epN | FEBRUARY 17, 2000

SCANTESTMODE O-

RAM
(WITH UNIDIRECTIONAL
i DATA BUS)
Figure 8
Ii OE_N
OE.N O
l_ CS_N
CS_N O
l_ WE_N
WE_N
I—» ADDRESS
ADDRESSIM:O]
DATA_ININ:O] D)y
DATA_OUTIN:0] < 1 Dl
0

Routing data in to data out during scan test places RAM in transparent mode.

tied to the same clock line. The same
clock tree must generate this clock line.
If two flip-flops use clocks that come
from the same clock tree but a different
branch of the tree, you still consider them
within the same clock domain as long as
you carefully watch your clock skew.
However, if one flip-flop takes the clock
directly from the clock tree and another
flip-flop has to modify the clock via com-
binational logic, then the two flip-flops
are in two clock domains. The only way
you could consider these clocks as in the
same clock domain is if you carefully
watch the clock skew between them, as-
suming that they are next to each other
in the scan chain.

Keeping an eye on clock skew is im-
portant because, although it’s usually
easy to meet setup-timing requirements
during scan testing, due to slow scan-
clock frequency, hold-time problems are
common. As you internally route the
blocks’ scan chains—meaning that you
route the scan chains at the block level
and connect them at the chip level—
hold-time problems aren’t prevalent for
flip-flops in the same clock domain. Tim-
ing problems usually occur between
blocks, due to the distance between log-
ically adjacent scan flip-flops, which
causes excessive clock skew, and within
blocks, in which clock-gating occurs. Any
gating of the clock—whether for power
savings or for multiplexing to handle is-
sues with the second scan-test technique,
for example—introduces skew in the
clock line.

You can avoid potential hold-time
problems by ensuring that a scan chain
consists only of flip-flops from the same
clock domain. If this situation is not fea-
sible, then you should add lockup latch-
es between the adjacent flip-flops on a
scan chain that are in different clock do-
mains. To avoid having too many lock-
up latches and a confusing scan-chain in-
terconnect, you should analyze your
designs beforehand to avoid any gating of
clocks. If you can’t avoid clock gating,
then attempt to minimize it. Try to de-
velop a scheme that localizes all of the
clock gating so that these flip-flops use
the same clock during scan mode, mean-
ing they are within the same clock do-
main for scan purposes. Then, you can
place the flip-flops together, and you
need to place lockup latches only before
the first and after the last flip-flop in this

group.
CHIP-LEVEL-SCAN ISSUES

This final set of tips is simply a collec-
tion of issues that you need to think
about at the chip level to ensure the cor-
rect handling of chip-level and block-lev-
el scan issues.

® Route the scan chains at the block

level and connect them at the chip
level. To avoid potential hold-time
problems, consider using lockup
latches at the chip level to hook up
the scan chains between blocks.

® Dedicate pins to handle the scan

chains using scan-enable, scan-in-
put, scan-output, and scan-test-

www.ednmag.com

designfeature _Scan design

mode signals, or design logic to
multiplex the scan pins with the
normal functional I/O.

® Preplan all the various test
modes you need and deter-
mine how to get the chip into those
modes. You can either use spare
pins or design in logic, such as test-
access-port controllers (Reference
1). This test logic needs to at least
generate a “scantestmode” signal to
alert logic in the chip when scan-
test mode is active. All of the vari-
ous multiplex logic that this article
mentions uses this signal to bypass
nonscan blocks, to multiplex clock
signals to clock pins of flip-flops,
and to multiplex reset signals to set
or clear pins of flip-flops.

® Buffer the scan-enable signal to

provide the maximum scan-testing
frequency. Remember that every
flip-flop uses the scan-enable sig-
nal. If youre not careful, you could
end up with a large ramp time on
this signal. A few 4X drive buffers
in parallel should be able to drive
more than 20,000 gates to run the
scan vectors at 20 MHz. If higher
speeds or more flip-flops are in-
volved, then a little more buffering
is necessary. Although 1 MHz is a
typical scan frequency, it may be
necessary to increase the frequency,
to 10 or 50 MHz, for example, for
the production-test vectors to run
in a reasonable amount of time.
The test frequency depends on the
complexity of design, how scan
friendly the design is, and how
many scan patterns are necessary to
achieve the desired fault coverage.
The design complexity limits the
speed of the test. A higher number
of scan patterns generally warrants
a higher test frequency, so that the
test time remains as short as possi-
ble.

Handle bidirectional I/O with care.
Bidirectional I/Os can cause problems on
testers, depending on how freely the
ATPG tool chooses to operate them. Fre-
quently, the default setting of the ATPG
tool allows it to generate vectors in which
the bidirectional I/Os change direction as
a result of the capture clock. Production
testers do not generally support this ac-
tivity. To be safe, you should instruct the
ATPG tool to generate scan patterns that

90 epN | FEBRUARY 17, 2000

Figure 9

WE_N O————F ~\ o
SCANTESTMODE O——— -
li CS_N
CS_.NO OF N
0E_NO
I—>ADDRESS
ADDRESS[M:0]
DATA_IN[N:0] P Din
DATA_OUTIN:0] - Dout
(a) RAM
(WITH UNIDIRECTIONAL
DATA BUS)
WE_NO—— 1\
WE_N
SCANTESTMODE O J
cS.N O CS_N
OE.N O OE_N
ADDRESS[M:O]
ADDRESS
0
DATA_IN[N:0] »| Dy
DATA_OUT[N:0] < Dout
RAM
(b) (WITH UNIDIRECTIONAL
DATA BUS)

Another way to test surrounding logic is to preinitialize the entire RAM (a) or one location in RAM
(b) and then use the contents to generate test data for the logic. You can use the “scantestmode”
signal to disable the RAM's write signal during scan test.

do not change the direction of bidirec-
tional I/Os as the result of a capture cy-
cle or do not cause any contention as a
result of the bidirectional I/Os changing
to outputs. O

REFERENCES
1. IEEE Standard 1149.1-1990, IEEE
Standard Test Access Port and Boundary
Scan Architecture, New York, IEEE, 1990.
2. “ASIC/IC Design-for-Test Process
Guide,” Mentor Graphics, www.
mentorgraphics.com

AUTHORS’ BIOGRAPHIES

Ken Jaramillo is a principal engineer at
Philips Semiconductors, where he has
worked for four years. He has worked as
designer and architect of ASICs, FPGAs,
and boards for products including avion-

ics, high-speed serial buses, high-perform-
ance gaming platforms, PCI-bus-related
products, high-performance PC audio, and
high-speed networking products. He has a
BSEE from the University of Missouri
(Kansas City) and a BSCE from the Uni-
versity of Missouri (Columbia).

Subbu Meiyappan is a senior design engi-
neer at VLSI Technology, a subsidiary of
Philips Semiconductors. He has worked for
the company for three years, designing, de-
veloping, synthesizing, simulating, and
validating high-performance intellectual-
property blocks for PCI, ARM-ASB-based
devices, and high-performance ASICs. He
has a BE from Annamalai University (An-
namalai Nagar, India) and an MS from
Tennessee Technological — University
(Cookeville, TN).

www.ednmag.com

