
DESIGNFOCUS

20 WIRELESS SYSTEMS DESIGN / APRIL 2000

OVER the years, a wide vari-
ety of digital-signal-processor
(DSP) core architectures has been
developed for wireless applica-
tions. Some of these include single-
instruction/multiple-data (SIMD),
very- long- ins t ruc t ion-word
(VLIW), complex-long-instruc-
tion-word (CLIW), and static-su-
perscalar-processing cores. While these
designs have received a great deal of
scrutiny, it is often the memory architec-
ture attached to these cores that decides
whether a particular processor is well-
suited for a specific application.

What is meant by memory architecture
is the way in which internal memory is
connected and accessed by the core-pro-
cessing units. The proper memory archi-
tecture for a particular application is pri-
marily defined by the data requirements
for the algorithm, along with the necessity
for absolute determinism for the specific
computation. If the internal memory can-
not properly support the data require-
ments or the raw processing performance
of the DSP, then total processing effi-
ciency is compromised.

MULTIPLY ACCUMULATE
The multiply/accumulate (MAC) is the

kernel of many signal-processing opera-
tions, including convolution, filtering, as
well as echo cancellation. Typically, this
instruction is contained within a tight
loop, causing the processor to repeated
multiply and add a series of data values
located in separate memory buffers. It can
be written in pseudocode as:

result = result + (data1 3 data2), data1
= newval1++, data2 = newval2++;

In this case, there are a total of three
memory fetches, along with the two com-
putational operations. These memory
fetches are opcode (instruction) fetch,
data1 (data) fetch, and data2 (data) fetch.

To sustain this operation in a single cy-
cle (assuming the core processor can per-

situations. Due to the single ad-
dress and data bus, there must be
three separate fetches to internal
memory to collect the instruction
and two data operands for the
MAC. This is clearly not an effi-
c i en t a r ch i t ec tu re fo r DSP
algorithms.
A Harvard architecture is one that

provides two separate memory spaces
and buses: one for instructions—program
memory (PM), and another for data—the
data memory (DM). The independence of
the PM and DM buses enables fetches
from both memory spaces in a single cy-
cle. While this is a dramatic improvement
over the Von Neumann architecture for
signal-processing applications, it is still
not fully optimized for a MAC. The MAC
instruction requires a single PM fetch and
dual DM fetches. The Harvard architec-
ture in its most basic form only supports
a single DM fetch. Therefore, the stan-
dard Harvard architecture requires two
cycles for this operation. While this
seems to be on the right track toward find-
ing a suitable memory architecture for
signal processing, some modifications
are needed in the standard Harvard archi-
tecture to optimize performance. This
points to the modified Harvard architec-
ture, which supports dual DM fetches
along with a PM fetch in a single cycle.

Advanced DSP Performance
Complicates Memory

Architectures In Wireless Designs

B Y E T H A N B O R D E A U X

FUTURE DSP BENCHMARKING
AND SELECTION MAY BE

DIFFICULT WITHOUT TAKING
MEMORY ARCHITECTURE INTO

CONSIDERATION.

form a single-cycle MAC), the processor
must fetch three operands from memory
in a single cycle. If it cannot, there is a
stall and performance is dramatically re-
duced (see table).

MEMORY ARCHITECTURES
One of the simplest processor memory

architectures is known as the Von Neu-
mann architecture (Fig. 1), where a sin-
gle address and data bus extends from the
core processor to internal (and often into
external) memory. While this is an old
and not particularly complicated internal
bus design, it is still common in many mi-
crocontrollers and microprocessors
where raw performance (especially in
data-intensive operations such as a MAC)
is not a primary concern. This architec-
ture is well-suited for “command-and-
control” applications, where the proces-
sor is not continually fetching data for
computations. With the MAC as an ex-
ample, it is clear just how poorly this ar-
chitecture performs in signal-processing

CPU CPUMemory

Address bus

Data bus

Program
memory

Data
memory

PM
Address

bus

DM
Address

bus

Data bus
PM

Data bus
DM

1. One of the simplest processor memory architectures is the Von Neumann architecture
(left). The Harvard architecture (right) is a dramatic improvement over the Von Neu-
mann system for signal-processing applications, it is still not fully optimized for a MAC.

22

While there are a great number of ways
this can be done, there are three common
methods.

Double-pumped memory: One path to
dual data fetches in a single cycle is to
make a portion of on-chip memory acces-
sible twice in a single instruction cycle.
Typically, this support is added to PM. In
the case of the MAC operation, the pro-
grammer places one of the data buffers in
DM and another in PM. When the MAC
operation executes, the processor ac-
cesses PM twice in a single machine cy-
cle—once to fetch the next opcode and
again to fetch one of the data operands for
the next instruction (Fig. 2).

Dual data buses: Another method of
modifying the standard Harvard architec-
ture to enable a single-cycle MAC is to
split data memory into separate memory
spaces and provide separate buses to each
data-memory region. Therefore, in a sin-
gle cycle, the DSP accesses program
memory and both data-memory regions.

Program-memory cache: One last
method of enabling a single-cycle MAC
through a modified Harvard architecture
is by using a PM cache. In this case, there
are still two physical memory spaces—
one for PM and another for DM with a
single bus running to each block of mem-
ory. If a particular algorithm requires dual
data fetches (such as an FIR filter which
is essentially a loop of MACs), the pro-
grammer places one buffer in PM and an-
other in DM. The first time that the pro-
cessor executes this instruction, there is a
one-cycle stall because it must fetch the
next opcode and the next piece of data
over the PM bus. However, whenever
there is bus conflict, the DSP “caches,” or
stores, the instruction in a small (typically
16 to 128 locations) memory space. As-
suming it has not been removed from the
cache, the next time the program se-
quencer points to this instruction, it skips
the opcode fetch and just fetches the data
while the opcode comes from the cache
over a separate bus. Therefore, the pro-
cessor achieves three bus performance
with two buses. Each of these three meth-
ods of modifying the standard Harvard
architecture enables a single cycle
MAC—hence, the bandwidth needed to
enable the highest processor perfor-
mance. However, each of these methods
follows a different path to this goal.

The double-pumped memory and dual
data-bus models for single-cycle MAC
performance are certainly the simplest
methods of increasing performance of the
standard Harvard architecture. In both of

these cases, there are no restrictions on
the location of the MAC to enable single-
cycle performance. The big disadvantage
of the double-pumped memory model is
that this often limits the maximum opera-
tional speed of the processor. If the DSP
is executing instructions at 75 MHz (13.3
ns), the internal memory must run at 150
MHz (an access time of 6.7 ns). However,
as long as the DSP itself executes code at
a rate suitable for the specific application,
this point is moot and the double-pumped
memory model is perhaps the easiest
method of enabling single cycle, dual
data-fetch execution. The dual data-bus
memory architecture is another simple
way of increasing the performance of the
standard Harvard architecture. The disad-
vantages of this method are more at the
chip-design stage rather than when the
original-equipment-manufacturer (OEM)
designer programs the chip. Since there
are now three separate address and data
buses on-chip, this could force the design

BROADBAND DSPS

WIRELESS SYSTEMS DESIGN / APRIL 2000

of the processor to either require addi-
tional silicon (Si)/metal layers or expand
the total die size.

MAIN DISADVANTAGES
The main disadvantages of the PM

cache are increased programming com-
plexity and a performance loss over the
other memory architectures. The com-
plexity comes from the fact that the pro-
grammer must keep the PM cache in
mind when writing code for the proces-
sor, especially when looking at the tight
inner loops. Code must be optimized so
that the cache is accessed as much as pos-
sible to enable the highest performance.
This means that the number of instruc-
tions within looped code that access the
cache should be less than the total length
of the cache, and that data should not be
placed in PM unless absolutely neces-
sary. Fortunately, most modern DSP de-
velopment tools provide statistical profil-
ing on cache hits versus cache misses
when simulating and emulating code.

Overview of common memory architectures
Cycles

Architecture for MAC Advantages Disadvantages

Von Neumann 3 None for data- Slowest for algo-
intensive code rithims based on

MAC operation

Harvard 2 Faster than Slower than all
Von Neumann modified Harvard

architecture for
MAC

Modified Harvard 1 Coding simplicity Top processor
double-pumped speed stunted
memory because of two

accesses per cycle
requirement, high-
er power dissipa-
tion over PM
cache design

Modified Harvard 1 Coding simplicity Increased silicon
dual data bus area, higher power

dissipation over
PM cache design

Modified Harvard 1 Lower power con- Slight performance
PM cache sumption over decrease over other

other modified modified Harvard
Harvard architectures, in-
architectures creased coding

complexity

L1/L2 cache modified 1 Faster memory, Loss of data deter-
Harvard increased memory minism, increased

flexibility complexity when
coding for deter-
minisitic behavior

24

This profiling eases the burden on the
programmer, who can focus optimization
efforts on areas where the cache is not
used efficiently.

It is important to note that even when
code is fully optimized to use the PM
cache, there are always times when the
cache is not preloaded properly and a
cache miss occurs. Therefore, execution
time is always somewhat slower in PM
cache architecture over double-pumped
or dual data-bus architectures. However,
this difference is often trivial in real-
world applications. For example, if a
particular algorithm requires a MAC op-
eration to occur 100 times within a single-
cycle inner loop, PM cached architecture
would have a cache miss the first time it
executed the instruction, but a cache hit
the next 99 times. This results in 99-per-
cent efficiency versus the other modified
Harvard architectures.

There is one important advantage of a
PM cache—it often leads to lower core-
processor power consumption. This is be-
cause the PM cache memory is typically
located close to the core and, therefore,
does not use the large address and data
buses that go to main system memory. In
the double-pumped and dual data-bus ar-
chitectures, the DSP must drive a total of
three full address and data buses every
time it executes a instruction that requires
dual data operands. The PM cached ar-
chitecture only drives two full buses,
along with the cache bus. This is particu-
larly significant if the DSP is used pri-
marily as a computational workhorse,
where it is almost exclusively executing
algorithmic code (and, hence, continually
using the PM cache). The power specifi-
cations in processor datasheets are often
based on the “typical” instructions the
DSP runs in a system. However, if a sys-
tem is using the DSP primarily for algo-

rithms that take advantage of the PM
cache, the difference in power consump-
tion for the PM cached DSP over the
other memory models may be signifi-
cantly greater.

The L1/L2 cache: The L1/L2 cache is a
memory architecture that has primarily
been used in microprocessor designs, but
not in DSPs. This memory arrangement
provides for two-memory levels on-chip.
The first level (L1) is relatively small and
connects directly to the processor core. In
a microprocessor, there might be a single
L1 memory space where it fetches either
code or data. However, in a DSP, it is of-
ten a modified Harvard architecture itself
with separate memory spaces for code
(L1PM) and data (L1DM) along with
provisions for transferring an opcode and
two data words to the core in a single cy-
cle. If the required instruction or data are
not found in the L1 cache, the processor
then looks in the L2 cache for the infor-
mation. If it is found, the information is
loaded into the L1 cache, along with the
information from a small series of ad-
dresses located immediately after the L2
hit location. The assumption here is that if
information at address n is required, there
is a high likelihood that information at ad-
dresses n+1, n+2, etc. is needed in subse-
quent operations. This is primarily true in
tight inner loops with data buffers, but not
in control code that involves jumps and
calls to a number of different locations. If
the required information is not found in
the L2 cache, the information is assumed
to be in external memory and is fetched
into the L2 and L1 caches (Fig. 3).

The primary reason this memory archi-
tecture has not yet been widely adopted
into DSP applications is due to an inher-
ent lack of execution time determinism in
an L1/L2 cache architecture. This is not a
big concern in microprocessors that are in

BROADBAND DSPS

WIRELESS SYSTEMS DESIGN / APRIL 2000

personal computers (PCs), because most
operations do not require the level of de-
terminism found in embedded DSP appli-
cations. It is not of paramount importance
if it takes a computer 1.525 or 1.526 s to
open a particular application. This is in
contrast to embedded applications where
the algorithms are based on data being
computed within an absolutely rigid pe-
riod of time. As an example, if a DSP
cannot keep up with the data input/output
(I/O) requirements of a G.729 vocoder
(which are specifically designated in the
G.729 specification), the output data are
invalid and the vocoder operates improp-
erly. Due to this level of indeterminacy,
prototyping of a total system based on a
cached DSP is required to realistically see
the lowest level of performance for a spe-
cific algorithm.

L1/L2 cached memories are expected
to grow in popularity on DSPs in the fu-
ture. This is true because the increased
memory requirements of new applica-
tions may not allow chip manufacturers to
place large enough static random-access
memories (SRAMs) onboard to support
the entire application. L2 cache does not
need to run at the full clock rate of the pro-
cessor and is configurable to hold either
code or data at runtime.

As DSP performance continues to in-
crease, this architecture may no longer be
reasonable (or even feasible) and memory
designs will appear that go against the old
standards. In the future, it may not be as
easy to benchmark and select a DSP with-
out taking the memory architecture and
the system requirements of the processor
into consideration.

ETHAN BORDEAUX,, DSP Applications En-
gineer, Analog Devices, P.O. Box 9106, 3 Tech-
nology Way, Norwood, MA 02062; (781) 461-
3094, FAX: (781) 461-3300.

WSD

CPUProgram
memory

Data
memory

PM address bus
(accessible

2x/cycle)

PM data bus
(accessible 2x/cycle)

DM data bus
(accessible 1x/cycle)

DM address bus
(accessible

1x/cycle)

2. When the MAC operation executes, the processor accesses PM
twice in a single machine cycle—once to fetch the next opcode
and again to fetch one of the data operands for the next
instruction.

Core

Instruction
cache

Data
cache

Level 1
cache

Level 2
cache

Main
memory

3. If the required information is not found in the L2 cache, the in-
formation is assumed to be external memory and is fetched into
the L2 and L1 caches, as shown in this L1/L2 cache-modified
Harvard architecture.

