DESIGNFOCUS

Advanced DSP Performance
Complicates Memory
Architectures In Wireless Designs

OVER the years, awide vari-
ety of digital-signal-processor
(DSP) core architectures has been
developed for wireless applica-
tions. Some of theseinclude single-
instruction/multiple-data (SIMD),
very-long-instruction-word
(VLIW), complex-long-instruc-
tion-word (CLIW), and static-su-

designs have received a great deal of
scrutiny, it is often the memory architec-
ture attached to these cores that decides
whether a particular processor is well-
suited for a specific application.

What is meant by memory architecture
is the way in which internal memory is
connected and accessed by the core-pro-
cessing units. The proper memory archi-
tecture for a particular application is pri-
marily defined by the data requirements
for thealgorithm, a ong with the necessity
for absolute determinism for the specific
computation. If the internal memory can-
not properly support the data require-
ments or the raw processing performance
of the DSP, then total processing effi-
ciency is compromised.

MULTIPLY ACCUMULATE

The multiply/accumulate (MAC) isthe
kernel of many signal-processing opera-
tions, including convolution, filtering, as
well as echo cancellation. Typicaly, this
instruction is contained within a tight
loop, causing the processor to repeated
multiply and add a series of data values
located in separate memory buffers. It can
be written in pseudocode as.

result = result + (datal X data?), datal
= newval 1++, data2 = newval 2++;

In this case, there are a total of three
memory fetches, along with the two com-
putational operations. These memory
fetches are opcode (instruction) fetch,
datal (data) fetch, and data2 (data) fetch.

To sustain thisoperationinasingle cy-

20

FUTURE DSP BENCHMARKING

AND SELECTION MAY BE

DIFFICULT WITHOUT TAKING

MEMORY ARCHITECTURE INTO
CONSIDERATION.

BY ETHAN BORDEAUX

perscalar-processing cores. While these | form asingle-cycle MAC), the processor |

must fetch three operands from memory
in a single cycle. If it cannot, there is a
stall and performance is dramatically re-
duced (see table).

MEMORY ARCHITECTURES

One of the simplest processor memory
architectures is known as the Von Neu-
mann architecture (Fig. 1), whereasin-
gle address and data bus extends from the
core processor to internal (and often into
external) memory. While this is an old
and not particularly complicated internal
busdesign, itisstill common in many mi-
crocontrollers and microprocessors
where raw performance (especialy in
data-intensive operationssuchasaMAC)
is not a primary concern. This architec-
ture is well-suited for “command-and-
control” applications, where the proces-
sor is not continually fetching data for
computations. With the MAC as an ex-
ample, it is clear just how poorly this ar-
chitecture performs in signal-processing

i ture, which supports dual DM fetches

situations. Due to the single ad-
dress and data bus, there must be
three separate fetches to internal
memory to collect the instruction
and two data operands for the
MAC. This is clearly not an effi-
cient architecture for DSP
algorithms.

A Harvard architecture is one that
provides two separate memory spaces
and buses: onefor instructions—program
memory (PM), and another for data—the
datamemory (DM). Theindependence of
the PM and DM buses enables fetches
from both memory spacesin asingle cy-
cle. Whilethisisadramatic improvement
over the Von Neumann architecture for
signal-processing applications, it is till
not fully optimizedforaMAC. TheMAC
instruction requiresasingle PM fetch and
dual DM fetches. The Harvard architec-
ture in its most basic form only supports
a single DM fetch. Therefore, the stan-
dard Harvard architecture requires two
cycles for this operation. While this
seemsto beontheright track toward find-
ing a suitable memory architecture for
signal processing, some modifications
are needed in the standard Harvard archi-
tecture to optimize performance. This
points to the modified Harvard architec-

along with a PM fetch in asingle cycle.

PM DM
Address Address
Address bus bus bus
CPU Memory ';:gglrgr"; CPU m'::t'gry
Data bus Data bus Data bus
PM DM

1. One of the simplest processor memory architecturesis the Von Neumann architecture
(left). The Harvard architecture (right) is a dramatic improvement over the Von Neu-

cle (assuming the core processor can per- | mann system for signal-processing applications, it is still not fully optimized for a MAC.

WIRELESS §YSTEMS DESIGN/ APRIL 2000



BROADBAND pDSPS

While there are a great number of ways !
this can be done, there are three common
methods.

Double-pumped memory: One path to
dua data fetches in a single cycle is to
make aportion of on-chip memory acces-
sible twice in a single instruction cycle.
Typicaly, this support isadded to PM. In
the case of the MAC operation, the pro-
grammer places one of the databuffersin
DM and another in PM. When the MAC
operation executes, the processor ac-
cesses PM twice in a single machine cy-
cle—once to fetch the next opcode and
againto fetch one of the data operandsfor
the next instruction (Fig. 2).

Dual data buses. Another method of
modifying the standard Harvard architec-
ture to enable a single-cycle MAC is to
split data memory into separate memory
spaces and provide separate busesto each
data-memory region. Therefore, in asin-
gle cycle, the DSP accesses program
memory and both data-memory regions.

Program-memory cache: One last
method of enabling a single-cycle MAC
through a modified Harvard architecture
isby usingaPM cache. Inthis case, there
are till two physical memory spaces—
one for PM and another for DM with a
single bus running to each block of mem-
ory. If aparticular algorithm requiresdua
data fetches (such as an FIR filter which
is essentialy aloop of MACs), the pro-
grammer places one buffer in PM and an-
other in DM. The first time that the pro-
cessor executes thisinstruction, thereisa
one-cycle stall because it must fetch the
next opcode and the next piece of data
over the PM bus. However, whenever
thereisbusconflict, the DSP*“ caches,” or
stores, theinstructioninasmall (typically
16 to 128 locations) memory space. As-
suming it has not been removed from the
cache, the next time the program se-
quencer pointsto thisinstruction, it skips
the opcode fetch and just fetches the data
while the opcode comes from the cache
over a separate bus. Therefore, the pro-
cessor achieves three bus performance
with two buses. Each of these three meth-
ods of modifying the standard Harvard
architecture enables a single cycle
MAC—hence, the bandwidth needed to
enable the highest processor perfor-
mance. However, each of these methods
follows a different path to this goal.

The double-pumped memory and dual
data-bus models for single-cycle MAC
performance are certainly the simplest
methods of increasing performance of the !
standard Harvard architecture. In both of |

22

these cases, there are no restrictions on | of the processor to either require addi-

thelocation of theMAC toenablesingle-

cycle performance. The big disadvantage
of the double-pumped memory model is
that this often limits the maximum opera-
tional speed of the processor. If the DSP
isexecuting instructionsat 75 MHz (13.3
ns), the internal memory must run at 150
MHz (an accesstime of 6.7 ns). However,
aslong asthe DSP itself executes code at
arate suitablefor the specific application,
this point is moot and the double-pumped
memory model is perhaps the easiest
method of enabling single cycle, dual
data-fetch execution. The dual data-bus
memory architecture is another simple
way of increasing the performance of the
standard Harvard architecture. The disad-
vantages of this method are more at the
chip-design stage rather than when the
original-equipment-manufacturer (OEM)
designer programs the chip. Since there
are now three separate address and data

buses on-chip, this could forcethe design

tiona silicon (Si)/meta layers or expand
thetotal diesize.
MAIN DISADVANTAGES

The main disadvantages of the PM
cache are increased programming com-
plexity and a performance loss over the
other memory architectures. The com-
plexity comes from the fact that the pro-
grammer must keep the PM cache in
mind when writing code for the proces-
sor, especialy when looking at the tight
inner loops. Code must be optimized so
that the cacheis accessed as much as pos-
sible to enable the highest performance.
This means that the number of instruc-
tions within looped code that access the
cache should be less than the total length
of the cache, and that data should not be
placed in PM unless absolutely neces-
sary. Fortunately, most modern DSP de-
velopment tools provide statistical profil-
ing on cache hits versus cache misses
when simulating and emulating code.

Overview of common memory architectures

Cycles
Architecture for MAC
Von Neumann 3
Harvard 2
Modified Harvard 1
double-pumped
memory
Modified Harvard 1
dual data bus
Modified Harvard 1
PM cache
L1/L2 cache modified 1
Harvard

Advantages Disadvantages

None for data-
intensive code

Slowest for algo-
rithims based on
MAC operation

Slower than all
modified Harvard
architecture for
MAC

Faster than
Von Neumann

Coding simplicity =~ Top processor
speed stunted
because of two
accesses per cycle
requirement, high-
er power dissipa-
tion over PM
cache design

Increased silicon
area, higher power
dissipation over
PM cache design

Coding simplicity

Lower power con-
sumption over
other modified
Harvard
architectures

Faster memory,
increased memory
flexibility

Slight performance
decrease over other
modified Harvard
architectures, in-
creased coding
complexity

Loss of data deter-
minism, increased
complexity when
coding for deter-
minisitic behavior

WIRELESS §YSTEMS DESIGN/ APRIL 2000



BROADBAND pDSPS

PM address bus DM address bus Instruction
(accessible (accessible cache
Program | 2x/cycle) CPU 1x/cycle) Data .
memory memory Core Level 1 Level 2 Main
cache cache memory
PM data bus DM data bus L | Dal;
(accessible 2x/cycle)  (accessible 1x/cycle) cache

2. When the MAC operation executes, the processor accesses PM
twice in a single machine cycle—once to fetch the next opcode
and again to fetch one of the data operands for the next

instruction.

This profiling eases the burden on the : rithms that take advantage of the PM

programmer, who can focus optimization
efforts on areas where the cache is not
used efficiently.

It is important to note that even when
code is fully optimized to use the PM
cache, there are aways times when the
cache is not preloaded properly and a
cache miss occurs. Therefore, execution
time is dways somewhat slower in PM
cache architecture over double-pumped
or dual data-bus architectures. However,
this difference is often trivial in real-
world applications. For example, if a
particular agorithm requiresa MAC op-
eration to occur 100 timeswithinasingle-
cycleinner loop, PM cached architecture
would have a cache miss the first time it
executed the instruction, but a cache hit
the next 99 times. This results in 99-per-
cent efficiency versus the other modified
Harvard architectures.

There is one important advantage of a
PM cache—it often leads to lower core-
processor power consumption. Thisisbe-
cause the PM cache memory is typicaly
located close to the core and, therefore,
does not use the large address and data
buses that go to main system memory. In
the double-pumped and dual data-bus ar-
chitectures, the DSP must drive atota of
three full address and data buses every
timeit executesainstruction that requires
dua data operands. The PM cached ar-
chitecture only drives two full buses,
along with the cache bus. This s particu-
larly significant if the DSP is used pri-
marily as a computational workhorse,
where it is aimost exclusively executing
agorithmic code (and, hence, continually
using the PM cache). The power specifi-
cations in processor datasheets are often
based on the “typical” instructions the
DSPrunsin asystem. However, if asys

tem is using the DSP primarily for algo-

24

cache, the difference in power consump-
tion for the PM cached DSP over the
other memory models may be signifi-
cantly greater.

TheLl/L2cache: TheL1/L2 cacheisa
memory architecture that has primarily
been used in microprocessor designs, but
not in DSPs. This memory arrangement
provides for two-memory levels on-chip.
Thefirstlevel (L1) isrelatively small and
connectsdirectly to the processor core. In
amicroprocessor, there might be asingle
L1 memory space where it fetches either
code or data. However, inaDSP, itisof-
ten amodified Harvard architecture itself
with separate memory spaces for code
(L1PM) and data (L1DM) aong with
provisionsfor transferring an opcode and
two datawordsto the core in asingle cy-
cle. If the required instruction or data are
not found in the L1 cache, the processor
then looks in the L2 cache for the infor-
mation. If it is found, the information is
loaded into the L1 cache, along with the
information from a small series of ad-
dresses located immediately after the L2
hit location. The assumption hereisthat if
information at addressnisrequired, there
isahigh likelihood that information at ad-
dressesn+1, n+2, etc. is needed in subse-
quent operations. Thisisprimarily truein
tightinner loopswith databuffers, but not
in control code that involves jumps and
callsto anumber of different locations. If
the required information is not found in
the L2 cache, the information is assumed
to be in external memory and is fetched
into the L2 and L1 caches (Fig. 3).

The primary reason thismemory archi-
tecture has not yet been widely adopted
into DSP applications is due to an inher-
ent lack of execution time determinismin
an L1/L 2 cache architecture. Thisisnot a

big concernin microprocessorsthat arein

3. If the required information is not found in the L2 cache, the in-
formation is assumed to be external memory and is fetched into
the L2 and L1 caches, as shown in this L1/L2 cache-modified
Harvard architecture.

i personal computers (PCs), because most

operations do not require the level of de-
terminism found in embedded DSP appli-
cations. Itisnot of paramount importance
if it takes a computer 1.525 or 1.526 sto
open a particular application. Thisisin
contrast to embedded applications where
the algorithms are based on data being
computed within an absolutely rigid pe-
riod of time. As an example, if a DSP
cannot keep up with the datainput/output
(I/O) requirements of a G.729 vocoder
(which are specifically designated in the
G.729 specification), the output data are
invaid and the vocoder operatesimprop-
erly. Due to this level of indeterminacy,
prototyping of atotal system based on a
cached DSPisrequiredtoredistically see
thelowest level of performancefor aspe-
cific algorithm.

L1/L2 cached memories are expected
to grow in popularity on DSPs in the fu-
ture. This is true because the increased
memory requirements of new applica-
tionsmay not allow chip manufacturersto
place large enough static random-access
memories (SRAMs) onboard to support
the entire application. L2 cache does not
needto run at thefull clock rate of the pro-
cessor and is configurable to hold either
code or data at runtime.

As DSP performance continues to in-
crease, thisarchitecture may no longer be
reasonable (or evenfeasible) and memory
designswill appear that go against the old
standards. In the future, it may not be as
easy to benchmark and select aDSP with-
out taking the memory architecture and
the system requirements of the processor
into consideration. Wsp

ETHAN BORDEAUX, DSP Applications En-
gineer, Analog Devices, P.O. Box 9106, 3 Tech-

nology Way, Norwood, MA 02062; (781) 461- !

3094, FAX: (781) 461-3300.
WIRELESS §YSTEMS DESIGN/ APRIL 2000




