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Abstract 
A neural-type pool arithmetic unit is presented. The 

implementation of this arithmetic unit is based on the 
describing equations of neural chemical pools that occur in 
biological neurons where the concentration of a chemical 
pool depends on the synthesis (inward current) and degra- 
dation (outward Current) of the chemical materials. With 
different arrangements of inward and outward currents, this 
neural type arithmetic unit can perform functions such as 
addition, subtraction, sign inversion, square, and square root 
on voltages. 

I Introduction 
A neural pool represents the chemical storage in a neural 

cell and can be used to simulate the primary and second 
messenger chemical-electrical interactions in a neural sys- 
tem [1][2]. Because of the synthesis and degradation of the 
chemical materials, a neural pool can be described by the 
following equation: 
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where C is the pool volume, P is the concentration of the 
material and I ,  and I ,  represent the rates of the materials 
flowing into and out of the pool, respectively. I ,  and I,,, can 
be modulated by some other pools' levels or by the same 
pool [1][23. The equilibrium state of the pool concentration 
P is determined when the inward current I ,  is equal to the 
outward current I-. 

Equation (1) can be realized as the simple circuit shown 
in Figure 1 where the veltage across the capacitor represents 
the pool concentration and the capacitance represents the 
pool volume. 

2 Circuit Realization ot Neural-Type 
Poot Arithmetic Unit 

As mentioned in the introduction, I,,, and I,,, can be 
modulated by other signals. If the simplest modulation, 
linear modulation, is emploied, a pool can be realized as the 
circuit in Fig. 2 in which I, is linearly proportional to the 
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Figure 1: Basic circuit realization of pools. 
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Figure 2: A pool with linear modulation on I e and I ouI' 

difference V, - V, and I,, is linearly proportional to V, - Vd. 
As next discussed, the circuit of Fig. 2 realizes various 
arithmetic functions and, consequently, is called a "neural- 
type pool arithmetic unit". 

2.1 Adder, Subtracter, and Sign Inverter 
Three arithmetic functions, addition, subtraction, and 

sign inversion, can be easily obtained with the circuit of Fig. 
2 where different arrangements of the nodes in Fig. 2 can 
result in different functions. 

When we tie node b to No and c to GND, the inward 
and outward currents will be 

I, = K(V, - P >  and I,,, = K'(0 - V,) (2) 

where K and K are constants that depend on the sizes of 
the transistors and on the current I,, in the differential pairs 
in Fig. 2. If these two differential pairs are identical, K and 
K will be equal and can be cancelled out. The equilibrium 
state of this pool is determined when (V, - P )  = (0 - Vd).  In 
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this case we get 

P = v, + v, (3) 

For the function of subtraction, if node b is tied to No 
and d is tied to GND, the inward and outward currents are 
then be described by 

I ,  = K(V,  - P )  and I,,,, = K'(V, - 0)  (4) 

Again, when K = K'the equilibrium state of this pool will 
be 

( 5 )  P = v, - v, 
Sign inversion can De achieved by tying node a in the 

subtracter to GND so that the output, according to (5 ) ,  is 

p z 0 - v  e c  =-v (6) 

These functions of addition, subtraction, and sign inversion 
are summarized in the Table 1. 

Table 1:Input assignments for the neural-type pool arith- 
metic unit (Figure 2)  to perform addition, sub- 
traction, and sign inversion. 

2.2 Square and Square Root circuits 
By modifying one of the two differential pairs, the 

square and square root circuitsacan be achieved. These 
functions result when one of the currents I,,, or I,, is gen- 
erated by enhancement mode n-channel MOS transistor M1 
which is in its saturation region. Figure 3 shows a circuit to 
generate the square function. The gate of M1 is tied to the 
output of a 3-input voltage adder as shown in Fig. 3 where 

P is the source voltage of M1 and V, comes from a voltage 
source and is used to cancel out the threshold voltage of M1. 
M1 is in its saturation region when V ,  2 V ,  + P .  The inward 
current, flowing from V ,  through transistor M1, is 

I ,  = C(V@ - v$ = C(V,,)* (7) 

K W  
where C =% is the MOS constant with W/L the width to 
length ratio. 

The outward current, marked as I,, in Fig. 3, is 

I,, = C'(P - 0 )  (8) 

where C' is the gain of the differential amplifier at the right 
hand side. The equilibrium state of P in this circuit is at Ii, 
= I,,. That is, 

(9) 
c 
C 

C(V,,)' = C'(P)  =3 P = y ( V , J 2  

We can change the WfL ratio of M1 and/or the current 
source I ,  to make C = C', and in this case, P is the square 

The square. root function can be achieved by the circuit 
in Fig. 4 which is something like a turned around Fig. 3. In 
Fig. 4 we assume V ,  2 0 and denote by P the drain voltage 
of the n-channel enhancement mode transistor M1 whose 
source is tied to ground. M1 is in saturation because Vdr(MI) 
= V8s(MI,-V, = P .  The outward current and inward current 
are 

of v,. 

I,,, = C(P)* and I,, = C'V, (10) 

Because I ,  = lo,, we get 

where K = fi is a constant which can be set to be 1 by 
adjusting I ,  and/or changing the WfL ratio of M1. 

"& n 
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Figure 3: Simplified circuit for "Square" function. 
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Figure 4: Simplified circuit for "Square root" function. 

In equation (11) we rule out the possibility of 
P = - K K  because when V ,  2 0, the current is always 
flowing from right to left as indicated in Fig. 4. Thus, the 
drain voltage of M1, P, is always greater than the source 
voltage, 0 volt. 

2.3 Simulation Results 
The five arithmetic functions mentioned above have 

been simulated by PSPICE and the results are given in Figs. 
5 - 9. To improve the accuracy of the results and increase 
the range of input voltages, we used the improved differ- 
ential amplifier developed in [3] to replace all the differ- 
ential amplifiers in Figs. 2, 3, and 4. All the current mirrors 
in the differential amplifiers were also replaced by a 
regulated current mirror because of the need for high output 
resistance [4]. 

3 Conclusions 
A neural-type pool arithmetic unit has been introduced. 

This arithmetic unit is based on the structure of chemical 
pools in the biological neuron. Five functions, addition, 
subtraction, sign inversion, square, and square root have 
been implemented. This arithmetic unit works on analog 
voltages with no resistors needed. With this arithmetic unit, 
circuit which is equivaknt to an adjustable threshold 
MOSFET can be made [5] .  More applications are still under 
investigation. 
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Figure 5: Simulation results for addition. 
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SUBTRACTER 
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Figure 6: Simulation results for subtraction. 
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Figure 7: Simulation results for sign inversion. 

Figure 8: Simulation results for square. 

SQUARE ROOT 
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Figure 9: Simulation results tor square root. 
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