
 
 
A Multitasking kernel for Microchip Pic30, Pic33 an d Pic24 (V3.3) 
 
Here is a lightweight kernel that supports true, time-sliced multitasking using a round robin 
scheduler. It implements event flags, semaphores and messages. Many programmers will 
find these basic control structures provide enough functionality for their software. The design 
aim was to keep the kernel small, fast and easy to use, nonetheless, this multitasking 
subsystem is not a toy, but a powerful tool that can be used to enhance the performance of 
your programs. 
 
The Multitasking Kernel. 
 
The software was developed using Mplab IDE version 8.6 and Mplab C30 version 
3.25. These were the latest releases at the time of writing. The IDE and student 
version of the C compiler are available as a free download from Microchip. 
The kernel is designed to be used with code written in the C programming language. 
A multitasking kernel should use minimum resources and task switch in the fastest 
possible time. In an attempt to achieve these goals, the kernel is written in assembler. 
The ‘dsPic30F Programmers Reference Manual’ is available in hardcopy or can be 
downloaded as a pdf from Microchip. This is essential reading to fully understand the 
programmer’s model and instruction set of the 16-bit microcontrollers. 
The program consists of two files, ‘multitask.s’ contains the core assembler code, and 
‘multitask.h’ defines the C interface to the kernel. 
 
Using The Kernel. 
 
To write a multitasking program you include ‘multitask.h’ in your C file and add 
‘multitask.s’ to the projects ‘Source Files’ list. 
The kernel needs to steal one timer from the system. This implementation uses Timer 
1 for task timing. Timer 1 is sometimes used as a real time clock function. If this is 
the case, it is quite easy to change timers to one that is not being used. 
All instructions operating on the chosen timer have been defined as macros to help with 
changing timers. Appendix A contains instructions on changing timers. 
The Timer 1 interrupt priority is set to 1. Priority level 1 is reserved for use by the kernel.  
The micro’s peripheral nested interrupts can be used as normal. The priority levels for the 
peripherals should be set to two or greater. 
 



Tasks. 
 
A task is a program running on the microcontroller. A task executes as if it owns the 
entire CPU. A task is akin to the ‘main’ function of a C program. The multitasking 
kernel manages the running of multiple tasks. 
A task is not called nor does it return. It should be programmed as a never ending loop 
using a ‘while(True)’ statement or a ‘for(;;)’ ever loop. 
 
Task Template. 
 
void task_name(void) 
    { 
    Local variables; 
   
    for(;;) 
        { 
        Executable code goes here. 
        } 
      } 
 
All tasks must follow this format. 
 
‘Multitask.h’ blow by blow. 
 
Two defines set the timing of the multitasking program. These values will be set up 
to suit the oscillator frequency of the system. 
 
/*--- Frequency of Instruction Cycle Clock in Megahertz (Fcy) ---*/ 
 
#define FREQ_FCY 10.0    
 
This value is the frequency of the internal instruction cycle clock, Fcy. 
Include the decimal point as this value is used in the macro to calculate the value for 
the timer period register. 
 
The 16-bit family has numerous Oscillator options that can be configured to set the speed of 
the processor oscillator, Fosc.  
Fcy is derived from the final set speed of Fosc.  
 
For a dsPic30f, Fcy = Fosc / 4;  
For a dsPic33, Pic24, Fcy = Fosc / 2; 
 
  /*--- Task time slice in mili Seconds ---*/ 
 
#define TIME_SLICE   5.0  
 
This value sets up the task switching rate or the time slice duration for each task. This 
value can be adjusted to suit the response time required by the program. Typical values for 
this will range from 1 to 25, giving task time slices of 1mS to 25mS. 
 
The maximum time slice that can be set is related to Fcy and the timer prescaler.  
With an Fcy of 20MHz, max time slice  is (1/Fcy) * 8 * 65536 = 26.2144mS. 
If you needed to increase this with a high speed processor, you could change the timer 
prescaler to 64 in the header file and source code file. 
 
/*--- Macro to calculate Timer period (8:1 Prescale value) ---*/ 
 
#define PRESCALE  8.0 
#define TMR_PERIOD (((TIME_SLICE)*(1000.0))/((PRESCALE)/(FREQ_FCY))) 
 



This macro uses the above defines to calculate the value that is loaded into the Timer 
Period register. This sets the interrupt frequency of the timer to the defined time slice.  
Unless you wish to change the timer pre-scale value,  there is nothing to do here. 
 
/*--- System configuration parameters --*/ 
 
#ifndef MULTITASK_H 
#define MULTITASK_H 
 
/*--- Processor Include files ---*/ 
 
#if defined (__dsPIC30F__) 
    #include <p30Fxxxx.h> 
#elif defined (__dsPIC33F__) 
    #include <p33Fxxxx.h> 
#elif defined (__PIC24H__) 
    #include <p24Hxxxx.h> 
#elif defined (__PIC24F__) 
    #include <p24Fxxxx.h> 
#else 
    #error Selected processor not supported 
#endif 
 
The above lines of code contain the include guard and the include files required by the 
program. The include guard prevents multiple includes when a program is made up of 
several C source files. 
 
#include "PosixTypes.h" 
 
This is a useful file to include in all programs, it is a typdef for the basic numerical 
types. In the program files you will notice that these types have syntax highlighting. 
This is a feature of Mplab IDE. There is a file in the include directory called 
‘keywords.txt’ that lists the words to be highlighted. If you right click in one of your 
source files in the IDE and choose ‘Properties’, or choose ‘Edit’ from the menu and 
‘Properties’ then click on the ‘Text’ tab. In the ‘Choose Colors’ there is an option for 
‘User File Defined.’ Here you can select the color for your highlighting, exit that then 
use the browse button to select your ‘User Defined Color File’ and click ‘Apply’ 
This will turn on highlighting for all the words listed in your ‘keywords.txt’ file. 
 
/*--- Function pointer type define ---*/ 
 
typedef void(*Taskptr)(void); 
 
This defines a function pointer type that is used to pass the address of the task in the 
CreateTask call. 
 
/*--- Multitask function prototypes ---*/ 
 
void CreateTask(Taskptr task, uint16_t stack_size); 
 
This function creates the task. The first argument is a function pointer to the task. 
The second argument is the size of the task stack. 
 
void Multitask(uint16_t tmr_period); 
 
After all tasks have been created, this function is called to start up the multitasking 
kernel. The argument is the previously defined TMR_PERIOD that sets the interrupt rate and 
task time slice duration. 
 
 



void TaskSleep(uint16_t count); 
 
This function puts the task to sleep and suspends it from running. Each time it's turn to run 
comes up in the scheduler, count is decremented. When count reaches zero, it resumes 
running.   
 
void TaskYield(void); 
 
Calling this function forces an early task switch. This is called if a task becomes idle 
and can give up the remainder of its time slice to the processor. 
 
void DisableInterrupts (void); 
 
This function disables interrupts. This is used when entering a critical section in your 
code and you need the task to complete before an interrupt or task switch occurs. 
 
void EnableInterrupts (void); 
 
This function enables interrupts. These two functions are always used together. It is 
used to resume tasking and interrupts when leaving a critical section. 
 
/*--- Event flag functions ---*/ 
 
void WaitForEvent(uint16_t event); 
 
This function sets an event flag, or a combination of event flags and then suspends 
itself from running. When the event fires and the flag or flags are cleared, it resumes 
running. The system supports 16 event flags. 
 
void TriggerEvent(uint16_t event); 
 
This function is called to trigger an event and clear the event flag. It can be used as a 
means of inter task communication or called from a system interrupt. 
 
/*--- Semaphore functions ---*/ 
 
void SetSemaphore(uint16_t *sem); 
void ClearSemaphore(uint16_t *sem); 
 
These two functions work in conjunction with each other to control access to a 
resource or a non re-entrant function. 
 
The Re-entrancy Requirement. 
 
Any function that might be called from or shared by two or more tasks must be fully 
re-entrant, or access to it must be serialised. A re-entrant function is one that uses no 
global or static data and calls only re-entrant functions. This is easy to see. A task 
calling a function that uses global or static data might be interrupted while inside the 
function by a task switch. The new task might also call the function and change the 
value of the global or static data. When the first task is resumed, the data might not 
have the value the task assumed it had before. This may lead to system crashes, or 
worse, subtle, hard to find bugs. 
Access to non re-entrant functions must be controlled. The same argument can be 
applied to hardware resources that cannot be accessed by two or more tasks 
simultaneously. The process of controlling access to a resource is called serialisation. 
For historical reasons, the flags used to control serialisation are called Semaphores. 
 
 
 
 



/*--- Message passing functions ---*/ 
 
void CreateMessage(uint8_t MsgID, uint8_t message_size); 
Bool MessageWrite(uint8_t MsgID, void *message); 
Bool MessageWaiting(uint8_t MsgID); 
Bool MessageRead(uint8_t MsgID, void *message); 
Bool ByteWrite(uint8_t MsgID, uint8_t index, uint8_t byte); 
uint8_t ByteRead(uint8_t MsgID, uint8_t index); 
 
These functions work in conjunction with each other to provide a message passing 
method for inter task communication. A message can be of any type or structure, 
providing each task knows what form the message takes. 
 
/*--- Debug and Trace functions ---*/ 
 
#ifdef __DEBUG 
void TraceStack(uint16_t *StackTop); 
void TraceTask(uint16_t TaskID, volatile uint16_t *port, uint16_t port_bit); 
#endif 
 
These functions are used during code development as a debugging aid to trace task 
stack usage and to visually see when task are running using the Logic Analyzer 
window. On the Main menu of Mplab IDE in the speed button section, there is a drop 
down combo box that allows you to switch between ‘Debug’ and ‘Release’ when 
compiling your project. When set to ‘Debug’, the pre-processor symbol `__DEBUG' 
is defined. This conditionally compiles these functions. Setting it to ‘Release’ disables 
them, reducing final code size. 
 
#endif /* Include gaurd */ 
 
/*--- End of File ---*/ 
 
 
Example Programs. 
 
To demonstrate the use of the kernel, 5 small projects have been created. 
The files are in a zip file which will create the correct directory structure,  the  
examples should then compile and run ok, otherwise use the 
Project\Build Options to point the compiler to the correct directories. 
All examples make use of MPLAB SIM as the debugger, so no hardware is required 
to use the examples. Use the ‘Build All’ speed button or Project option and not the 
‘Make’ button when compiling the examples. Make will not rebuild ‘multitask.s’ for 
the processor variant and the linker will complain, 
 
Start MPLAB and open the project ‘example_1.mcp’. This example simulates a 
dsPic30f6011A and demonstrates how to create tasks. Select MPLAB SIM as the 
debugger and select ‘Debug’ build. 
 
Example 1 
 
#include <p30f6011a.h> 
#include "multitask.h" 
 
/*--- Configuration fuses ---*/ 
 
_FOSC(CSW_FSCM_OFF & XT_PLL8) 
_FWDT(WDT_OFF) 
 
After including the processor header file and setting up the configuration fuses we 
come to this code, 



 
/*--- Trace maximum stack usage ---*/ 
 
#ifdef __DEBUG 
#define NUM_TASKS 5U 
uint16_t UsedStack[NUM_TASKS]; 
#endif 
 
One of the more tricky aspects of creating a task is to decide on the optimum stack 
size for the task. Setting it too small will result in a system crash and setting it too large 
will result in wasted unused memory. If Debug build is chosen, this array will be 
defined for use by a stack trace function which tracks the maximum stack size used 
during program execution. This value is defined as a global so it can be seen in the 
watch window. To enable real-time watch updates, from the Mplab menu select, 
Debugger \ Settings \ Animation / Realtime Updates’ and enable in the checkbox. 
After running the program, the maximum stack depth used during execution can be 
examined. 
The NUM_TASKS define should be set to the number of tasks in the program. Failure 
to do this will result in an illegal address access trap 
 
/*--- Task function prototypes ---*/ 
 
void task_0(void); 
void task_1(void); 
void task_2(void); 
void task_3(void); 
void task_4(void); 
 
These are the function prototypes of the tasks we will create in the example program. 
A task is not called so takes no arguments and does not return a value. It is assumed 
that more meaningful names would be used for the tasks in a non-trivial program. 
Tasks have an ID number that is sequentially assigned by the kernel in the order of 
task creation starting at 0. 
 
/*--- Local function prototypes ---*/ 
 
void init_io(void); 
void Delay(uint16_t delay); 
 
Here would be the function prototypes that make up the rest of the program. 
 
/*--- Global variables ---*/ 
 
uint16_t var0 = 0; 
uint16_t var1 = 0; 
uint16_t var2 = 0; 
uint16_t var3 = 0; 
uint16_t var4 = 0; 
 
These are global variables so that they can be seen being updated in the watch 
window when real time updates have been enabled in the Mplab Sim debugger. 
 
/*--- Program Entry ---*/ 
 
int main(void) 
{ 
init_io(); 
 
The micros peripherals could be initialized here. In this example, we just set Port B to 
outputs for use by the Logic Analyser. 



 
IMPORTANT!  
If initialising peripherals that generate interrupts, initialise them after creating the 
tasks and before calling 'Multitask(TMR_PERIOD);' that starts the program. 
No interrupts should occur before all the tasks have been created and the 
multitasking system is started. 
 
CreateTask(task_0, 56); 
CreateTask(task_1, 56); 
CreateTask(task_2, 56); 
CreateTask(task_3, 56); 
CreateTask(task_4, 56); 
 
IMPORTANT! 
The sequential creation of all the tasks should be one of the first things to do on 
program entry. You cannot have code in between the CreateTask calls, as this will 
prevent the kernel from creating a circular linked list of task structures. 
Failure to do this will result in undefined behaviour. 
 
IMPORTANT!  
The CreateTask function Must be called from within the programs ‘main()’ function. 
The memory allocation algorithm for the tasks needs to know the depth of the call 
stack to successfully allocate memory. 
 
Task creation is static. All tasks for the program are created at the beginning of the 
program and exist for the duration of the program. 
 
The first argument to CreateTask is a function pointer to the task, which is simply the 
function name.  
The second argument is the size of the stack. The size of the stack will depend on the 
number of local variables used by the task, the number and nesting of function calls it 
makes and the local variables used by the called functions. The Micros peripheral 
hardware interrupts also use the stack to save context. If nested interrupts are used, the 
stack can grow quite large. 
The size here is the depth of the stack and not the number of bytes. These are 16-bit 
processors, so a stack depth of 40 takes up 80 bytes of memory. In this example we 
set the stack depth to 56. We can use the watch window to see how much stack is 
actually used during program execution. 
 
The kernel manages the tasks state and stack internally. A task can be in one of four 
states, 
 
READY, the task is ready to run. 
BLOCKED, the task is waiting for access to a resource. 
WAITING, the task is waiting for an event. 
ASLEEP, the task has suspended itself from running. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



As tasks are created, the kernel creates a circular linked list of task structures. 
 
Struct task 
  { 
  Pointer to next task in list; 
  Pointer to this tasks stack top; 
  The task ID (Hi-Byte) and the taskstate (Lo-Byte); 
  Semaphores pending; 
  Event flags; 
  Sleep count; 
  
#Ifdef DEBUG 
    Trace Port 
    Trace Bit 
  #endif 
 
    Pointer to this task function; 
    Hi word of function pointer; 
 
    If Pic30 or Pic33 
        Registers[58] ; 
    Else 
        Registers[36] ; 
 
    CORCON; 
    PSVPAG; 
    } 
 
For a Pic30 or Pic33, a task needs a stack of 80 Bytes to store its state. 
A Pic24 needs 22 fewer bytes, as it does not have the DSP registers. 
 
The next lines of code set up the stack trace function and the task trace functions. The 
task must have been created before calling these functions. 
 
#ifdef __DEBUG 
TraceStack(&UsedStack[0]); 
TraceTask(0, &PORTB, 0); 
TraceTask(1, &PORTB, 1); 
TraceTask(2, &PORTB, 2); 
TraceTask(3, &PORTB, 3); 
TraceTask(4, &PORTB, 4); 
#endif 
 
The TraceStack function call with the address of the previously defined UsedStack[] 
array as an argument initialises the array for use by the kernel. 
The TraceTask functions allow us to see the execution of the tasks using the 
‘Simulator Logic Analyzer’ window. The scheduler will set an I/O port line high 
when the task is started and clear the line when the task is stopped. 
The first argument is the task ID. ID’s are assigned by the kernel in the order of task 
creation, beginning at 0. 
The second argument is the address of the I/O port to use and the third argument is the 
Port I/O line. 
Here we will use Port B and I/O lines RB0, RB1, RB2, RB3 and RB4 to trace task 
execution. 
To enable the Logic analyser, from the Mplab menu select, 
‘Debugger / Settings / Osc / Trace’. And enable the check box ‘Trace All’. 
Set the Buffer Size to 1 M lines. 
OK that, then go to ‘View’ and select ‘Simulator Logic Analyzer’. 
In the Logic Analyzer window, select ‘Channels’ and select RB0, RB1, RB2, RB3 
and RB4. 



If debugging hardware and the task trace functions are not required, delete or 
comment out these calls. The kernel only calls these functions if they have been 
defined. 
 
Multitask(TMR_PERIOD);  
 
This function call starts the multitasking kernel. The arguments are the previously 
defined TMR_PERIOD in ‘multitask.h’ that set the timing of the 
program.  
 
return 0; 
} /* Closing brace of main */ 
 
The remainder of the program is the coding for the tasks. 
As this example is just to demonstrate the creation of tasks and task traces and the 
overall structure and layout of a program, the tasks do nothing but wait in an infinite 
loop and increment their global variables, task_1 goes to sleep for two turns to demonstrate 
the sleep function. This is useful if you have a low priority task that only needs to run at a 
lower frequency 
 
The tasks call the re-entrant function Delay(delay); This function is safe to call as it uses no 
global or static data and calls no other functions. 
 
At the end of the program we have a conditional compile of the Stack 
overflow/underflow trap and the illegal address access trap. If the stack size is too 
small and overflows, or the program attempts an illegal memory access, the program 
will end up here. 
 
On the Mplab menu, select ‘View/Watch’ to view the watch window. Select ‘Add 
Symbol’ in the watch window and add the ‘UsedStack’ array. Variables can also be 
dragged and dropped from the source code into the watch window. Expand the 
‘UsedStack’ variable and right click on a value. Select properties and change the 
display to decimal.  
UsedStack[0] is the task id and the value is the maximum stack depth used by the 
task. 
 
Select Watch 2 tab and add the var0 to var4 global variables to the watch window. 
These can be seen being updated as the program runs. 
 
Build the program and run it. The watch window will be updated in real time. If you 
pause the program, the logic analyser will display the order that the tasks have run. 
Unfortunately, the Logic Analyzer does not update in real time while the program is 
running. One way around this is to place a breakpoint in a task. Now, running the program  
to the breakpoint, you can see the Logic Analyzer tracing the task switches. 
You can use the ‘Zoom Axis’ and ‘Scroll Axis’ speed buttons in the Logic Analyzer 
to zoom into a task switch. Using the cursors, you can see the number of instruction 
cycles needed to affect a task switch. 
 
To speed up single stepping in the debugger, uncheck 'Trace All' in the debugger settings. 
 
The points to remember are that the list of tasks should be created with one unbroken 
sequence of ‘CreateTask’ function calls from within the ‘main’ function. 
Multitasking will start with the first task in the list. 
 
 
 
 
 
 
 



Example_2. 
 
The second project illustrates the use of event flags. Open project ‘Example_2.mcp’. 
This code is essentially the same as example_1, but now simulates a 
dsPic33FJ256GP710. 
 
Example_2 adds the following defines. 
 
/*---- Define Event flags as single bits ---*/  
 
#define EVENT_0 0x0001 
#define EVENT_1 0x0002 
#define EVENT_2 0x0004 
#define T2_INTERRUPT 0x0008 
 
Each task has a 16-bit integer to store event flags. Each bit can be an event flag. 
To use event flags, you would normally define some meaningful names to the bits. 
The event flags are common to all tasks. If two tasks are waiting for EVENT_1, both 
will resume running when the event is cleared. 
 
WaitForEvent(EVENT_1); 
 
The function call ‘WaitForEvent’ sets the event flag, changes the task state to 
WAITING and gives up the rest of its time slice. 
As event flags are bits, event flags can be combined. For example, one could call, 
 
WaitForEvent(EVENT_1 + EVENT_2) ; 
 
TriggerEvent(EVENT_1); 
 
Calling TriggerEvent(EVENT_1); clears the event flag and sets the tasks state 
waiting on the event to ready. The task will now resume running next time it’s time 
slice occurs. 
 
On the Debugger settings menu, set the Trace buffer size to 2 M lines and check the 'Break 
on Trace Buffer Full' checkbox. Build and run the example, the program will break when the 
trace buffer is full and display the results in the logic analyzer window. This make take a few 
seconds to update depending on the speed of your system. 
 
This example also demonstrates the use of a peripheral interrupt to clear an event flag. 
Timer 2 is initialised with its interrupt priority set to 3. All peripheral interrupts 
should have a priority of 2 or greater to prevent contention with the kernel. 
The default priority level for the peripheral interrupts on processors reset is 4. 
Timer 2 sets Port bit RC1 on entry and clears it on exit. Add channel RC1 to the Logic 
Analyzer window. 
Timer 3 is initialised with its interrupt priority set to 5. This will result in peripheral 
nested interrupts to occur. The stack sizes of the tasks have been increased to 64 to 
insure this does not cause a stack overflow. Timer 3 interrupt toggles Port bit RC5. 
Use the cursors in the Logic Analyzer window to help see the sequence of events. 
 
Example_3.mcp 
 
This project demonstrates the use of Semaphores to control access to a shared 
resource, but now simulates a Pic24FJ128GA010. The stack structure is smaller as 
this micro doesn’t have the dsp registers of the Pic30/33 series. 
 
Semaphores are implemented as Global unsigned integers that must be initialised to 0 
before they are used. These variables must be accessible to all the functions that wish 
to use them. There is no limit to the number of semaphores used. 
 



/*--- Define and initialise global Semaphores to 0 ---*/ 
 
uint16_t Semaphore_1 = 0; 
uint16_t Semaphore_2 = 0; 
 
The semaphore functions are always used together. The following code fragment 
shows one way to use the semaphore functions to control access to a function called 
‘Critical_function(uint8_t arg, uint8_t *var);’ 
 
The argument to SetSemaphore and ClearSemaphore is the address of the semaphore. 
 
void Critical_function(uint8_t arg, uint8_t *var) 
    { 
    SetSemaphore(&Semaphore_1); 
 
    /* functions code */ 
 
    ClearSemaphore(&Semaphore_1); 
    } 
 
To help visualise what is happening, the Critical function sets RC1, RC2 or RC3 high 
depending on which task has the semaphore, then low when the function exits. 
This can be seen in the Logic Analyzer window.  
In the debugger/Settings menu, the 'Break on Trace Buffer Full'  checkbox should be selected 
and the Buffer size set to 2 M Lines. This will stop the program and display a full cycle in the 
Logic Analyzer window.  
 
IMPORTANT!  
The semaphore functions are for the use of the tasks and the kernel, they cannot be 
called from a peripheral interrupt. It would make no sense to do so. The peripheral 
interrupts always have higher priority than the tasks. If an interrupt called a semaphore 
function and was blocked on a semaphore, the multitask kernel would stop as the task timer 
interrupt has the lowest priority. If using nested interrupts, the peripheral interrupts should use 
the functions DisableInterrupts(); and EnableInterrupts(); to manage critical sections. 
 
Example_4.mcp 
 
This project demonstrates the message passing functions, but now simulates a 
Pic24HJ64GP206. This variant has a more complex oscillator configuration. For this 
demo, we will leave the Frequency of Oscillator setting at  40MHz. 
 
/*--- Message passing functions ---*/ 
 
void CreateMessage(uint8_t MsgID, uint8_t message_size); 
Bool MessageWrite(uint8_t MsgID, void *message); 
Bool MessageWaiting(uint8_t MsgID); 
Bool MessageRead(uint8_t MsgID, void *message); 
Bool ByteWrite(uint8_t MsgID, uint8_t index, uint8_t byte); 
uint8_t ByteRead(uint8_t MsgID, uint8_t index); 
 
A message can be of any type, it could be a structure, an array, a value or a character 
string, so long as the task sending the message and the task receiving the message 
know what form the message takes. The size of the message can be up to 255 bytes. 
An enumeration should be defined to give the messages meaningful names and also create 
the message ID's which should be zero based. IE: 0,1,2,3,4 etc. 
 
/*--- Message names ---*/ 
 
enum{TXT_MSG = 0, STRUCT_MSG, ISR_MSG, BUFFER}; 
 



 
 
Creating messages. 
 
CreateMessage(TXT_MSG, 12); 
CreateMessage(STRUCT_MSG, sizeof(TESTSTRUCT)); 
CreateMessage(ISR_MSG, 24); 
CreateMessage(BUFFER, BUFFERSIZE); 
 
The first argument to the CreateMessage function is the message ID, the second 
argument is the message size in bytes. Memory for the messages is assigned from the 
top of the memory space growing downwards. The kernel sets the top of the system 
stack below the messages. 
 
IMPORTANT!  
The calls to CreateMessage should be after the calls to CreateTask and before the 
multitasking kernel is started. All calls to CreateMessage should be in one  unbroken 
sequence. 
Messagebox creation is static. All messages for the program are created at the 
beginning of the program and exist for the duration of the program. 
 
The kernel manages the Messages internally and creates a linked list of message structures. 
 
Struct message 
    { 
    Pointer to next message in list; 
    Message ID;  
    Message Size; 
    MessageBuffer[Sizeof message]; 
    } 
 
Message Functions. 
 
Bool MessageWrite(uint8_t MsgID, void *message); 
 
This call writes a message to the message box. The first argument is the message ID. 
The second argument is the address of the array or variable containing the message. 
The function returns True if the call was successful, and False if there was an error. 
The call will only fail if the MsgID is invalid. 
After the message has been written, the function sets the internal message flag to 
indicate the message box is full. 
 
Bool MessageWaiting(uint8_t MsgID); 
 
This function returns the state of the messages internal flag. True if a message is 
waiting to be read and False if the message box is empty or has been read. 
 
Bool MessageRead(uint8_t MsgID, void *message); 
 
This call reads the message. The first argument is the message ID. The second 
argument is the address of the array or variable to receive the message. 
The function returns True if the call was successful, and False if there was an error. 
The call will only fail if the MsgID is invalid. 
 
After the message has been read, the function clears the internal message flag to 
indicate the message box has been read. 
The message state flag just serves as an indicator. The flag being set does not prevent 
the message box from being written to. A call to MessageWrite with the flag being set 
will just over write the existing message. 
 



A call to MessageRead reads the message but does not clear it. A call to MessageRead 
with the flag being clear will read the contents of the last written message. 
The read and write message functions can be called from the processors peripheral 
interrupts. The event flags can be used to make a task suspend itself from running 
until a message is ready. The task sending the message can trigger the event flag after 
writing the message. 
 
Build and run the example. Add the message read arrays and variables to the Watch 
window. Place breakpoints just after the MessageRead calls to see the results in the 
Watch window. 
 
Example_5.mcp 
 
This project demonstrates the Read/Write byte message functions, It simulates a 
Pic24FJ256DA210. This variant has DSRPAG and DSWPAG registers in place of the 
PSVPAG register.  
Uncomment this line at the top of 'multitask.s' file to add support for this device.  
 
.equiv NO_PSV_PAGE,1 ;Adds support for PIC24FJ256DA210 family. 
 
Byte Read/Write Functions. 
 
Bool ByteWrite(uint8_t MsgID, uint8_t index, uint8_t byte); 
 
This function allows you to write a single byte to a message structure. The first argument is 
the message ID. The second argument is the index into the message buffer and the third 
argument is the byte value to write. The function returns true if the byte was written and False 
if there was an error. The call will fail if the index is out of bounds or the MsgID is invalid. 
  
uint8_t ByteRead(uint8_t MsgID, uint8_t index); 
 
This function allows you to read a single byte from a message structure. The first argument is 
the message ID. The second argument is the index into the message buffer. The function 
returns the value of the byte at the index in the message buffer  
If the index is out of bounds or the MsgID is invalid, the function will return 0. Not a lot of 
help? Just ensure the index value and MsgID are valid before making the call! 
 
These two functions can be used to create data structures such as stacks and circular 
buffers. 
 
Example 5 implements a simple stack and a circular buffer. The circular buffer is filled from an 
interrupt and read by one of the tasks into the global variable data[8]; The data array is global 
so that it can be seen being updated in the watch window if real-time watch updates are 
enabled. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Conclusion. 
 
The examples have demonstrated the use of the kernel using one of each variant in the 
Microchip 16-bit family. 
 
Some simple rules need to be followed by the programmer to make the system work. 
 
Define FREQ_OSC. 
Define TIME_SLICE 
 
The unbroken sequential creation of tasks from within main(). 
The unbroken sequential creation of messages. 
Multitasking will start with the first task in the list. 
 
Tasks are programmed as the task template, a never-ending loop that does not return. 
Peripheral interrupts should have a minimum priority of 2. 
 
The goal was to produce a lean, mean and fast multitasking system that is simple to use. 
Just three basic control mechanisms of rtos systems have been implemented. 
Nevertheless, complex systems can be built up from simple building blocks. 
 
 
Appendix A. 
 
System Timers. 
 
Depending on the specific variant, the 16-bit device family offers several timers. 
These timers are designated as Timer1, Timer2, Timer3, ..., etc. 
Each timer module is a 16-bit timer/counter consisting of the following 
 
readable/writable registers: 
 
• TMRx: 16-Bit Timer Count register 
• PRx: 16-Bit Timer Period register associated with the timer 
• TxCON: 16-Bit Timer Control register associated with the timer 
 
Each timer module also has the associated bits for interrupt control: 
 
• Interrupt Enable Control bit (TxIE) 
• Interrupt Flag Status bit (TxIF) 
• Interrupt Priority Control bits (TxIP<2:0>) 
 
With certain exceptions, all of the 16-bit timers have the same functional circuitry. 
The 16-bit timers are classified into three types to account for their functional 
differences: 
 
• Type A time base 
• Type B time base 
• Type C time base 
 
Some 16-bit timers can be combined to form a 32-bit timer. 
Some are dedicated timers that are associated with peripheral devices. For example, 
this includes the time base associated with the input capture or output compare 
modules. A timer can trigger an A/D conversion. Timer1 has support for 
implementing a real time clock. 
 
 
 
 
 



Changing system Timers. 
 
The timer selected for the task time slice switching, should be one that is not being 
used by the peripheral devices in the program. 
 
All instructions operating on the chosen timer have been defined as macros in ‘multitask.s’ 
 
To change the timer, consult the data sheet for the selected processor and change the 
registers in the macro to suit the new timer. 
 
Then change the interrupt vector for the selected timer. 
 
In the following example, the macro has been edited to use Timer 4 as the task timer 
and the interrupt vector has been changed to the __T4Interrupt. 
 
/*--- Macros for Timer interrupt ---*/ 
 
.macro StartTaskTimer     ;Initialise task timer 
mov w0,PR4    ; TMR_PERIOD  to timer period register 
clr TMR4    ;Clear timer 
bset IPC6,#T4IP0   ;Set timer priority to 1 
bclr IPC6,#T4IP1 
bclr IPC6,#T4IP2 
bclr IFS1,#T4IF    ;Clear interrupt flag 
bset IEC1,#T4IE   ;Enable interrupt 
mov #0x8010,w0 
mov w0,T4CON   ;Start Timer, Prescale 1:8 
.endm 
 
.macro ClearInterrupt 
bclr IFS1,#T4IF    ;Clear interrupt flag 
.endm 
 
.macro StartTasking   ;Enable Tasking interrupt 
bset IEC1,#T4IE   ;Set interrupt enable flag 
.endm 
 
.macro StopTasking   ;Disable Tasking interrupt 
bclr IEC1,#T4IE   ;Clear interrupt enable flag 
.endm 
 
 
/*--- Global Task Functions ---*/ 
 
.global __T4Interrupt   ;Change the interrupt vector prototype 
 
/*--- Task scheduler Timer interrupt ---*/ 
 
__T4Interrupt:    ;Change the interrupt function vector 
 
Rebuild the program. Timer 4 will now be used by the kernel for task switch timing. 
 
 
 
 
 
 


