
© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 1

Introduction to PIC Programming

Programming Midrange PICs in C

by David Meiklejohn, Gooligum Electronics

Lesson 2: Using Timer 0

As we saw in the previous lesson, C can be a viable choice for programming digital I/O operations on

midrange (14-bit) PICs, although, as we saw, programs written in C can consume significantly more memory

(a limited resource on these tiny MCUs) than equivalent programs written in assembler.

This lesson revisits the material from midrange lesson 4 on the Timer0 module: using it to time events, to

maintain the timing of a background task, for switch debouncing, and as a counter.

Selected examples are re-implemented using the “free” C compilers from HI-TECH Software: PICC-Lite

and HI-TECH C
1
 (in “Lite” mode) introduced in lesson 1, and, as was done in that lesson, the memory usage

and code length is compared with that of assembler. We‟ll also see the C equivalents of some of the

assembler features covered in midrange lesson 5, including macros.

In summary, this lesson covers:

 Configuring Timer0 as a timer or counter

 Accessing Timer0

 Using Timer0 for switch debouncing

 Using C macros

with examples for HI-TECH C and PICC-Lite.

Note that this tutorial series assumes a working knowledge of the C language; it does not attempt to teach C.

Example 1: Using Timer0 as an Event Timer

To demonstrate how Timer0 can be used to measure

elapsed time, midrange lesson 4 included a “reaction

timer” game, using the circuit on the right, where the

pushbutton has to be pressed as quickly as possible after

the LED on GP2, indicating „start‟ is lit. If the button is

pressed quickly enough (within a predefined reaction

time), the LED on GP1 is lit, to indicate „success‟.

Thus, we need to measure the elapsed time between

indicating „start‟ and detecting a pushbutton press, and

an ideal way to do that is to use Timer0, in its timer

mode (clocked by the PIC‟s instruction clock, which in

this example is 1 MHz).

1
 PICC-Lite was bundled with versions of MPLAB up to 8.10. HI-TECH C (earlier known as “HI-TECH C PRO”) was

bundled with MPLAB 8.15 and later, although you should download the latest version from www.htsoft.com.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_1.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_4.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_1.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_5.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_4.pdf
http://www.htsoft.com/

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 2

Ideally, to make a better “game”, the delay before the „start‟ LED is lit would be random, but in this simple

example, a fixed delay is used.

The program flow can be illustrated in pseudo-code as:

do forever

 clear both LEDs

 delay 2 sec

 indicate start

clear timer

 wait up to 1 sec for button press

 if button pressed and elapsed time < 200ms

 indicate success

 delay 1 sec

end

To use Timer0 to measure the elapsed time, we need to extend its range (normally limited to 65 ms) by

adding a counter variable, which is incremented each time the timer overflows (or reaches a certain value).

In the example in midrange lesson 4, Timer0 is configured so that it is clocked every 32 µs, by using the 1

MHz instruction clock with a 1:32 prescaler. After 250 counts, 8 ms (250 × 32 µs) will have elapsed; this is

used to increment a counter, which effectively measures time in 8 ms intervals. When the button is pressed,

this “8 ms counter” can then be checked, to see whether the maximum reaction time has been exceeded.

As explained in midrange lesson 4, to select timer mode, with a 1:32 prescaler, we must clear the T0CS and

PSA bits, in the OPTION register, and set the PS<2:0> bits to 100. This was done by:

 movlw b'11000100' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0)

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----100 prescale = 32 (PS = 100)

 banksel OPTION_REG ; -> increment TMR0 every 32us

 movwf OPTION_REG

Here is the main assembler code we had used to implement the button press / timing test routine:

 ; wait for button press

 clrf cnt8ms ; clear 8 ms counter

wait1s

 banksel TMR0 ; clear timer0

 clrf TMR0

w_tmr0

 banksel GPIO

 btfss BUTTON ; check for button press (low)

 goto btn_dn

 banksel TMR0

 movf TMR0,w

 xorlw 8000/32 ; wait for 8 ms (32 us/tick)

 btfss STATUS,Z

 goto w_tmr0

 incf cnt8ms,f ; increment 8 ms counter

 movlw 1000/8 ; continue to wait for 1 s (8 ms/count)

 xorwf cnt8ms,w

 btfss STATUS,Z

 goto wait1s

 ; check elapsed time

btn_dn movlw MAXRT/8 ; if time < max reaction time (8ms/count)

 subwf cnt8ms,w

 banksel GPIO

 btfss STATUS,C

 bsf SUCCESS ; turn on success LED

(This code is actually taken from midrange lesson 5)

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_4.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_4.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_5.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 3

HI-TECH C Implementation

As mentioned in the previous lesson, loading the OPTION register in HI-TECH C is done by assigning a

value to the variable OPTION:

 OPTION = 0b11000100; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----100 prescale = 32 (PS = 100)

 // -> increment every 32 us

Note that this has been commented in a way which documents which bits affect each setting, with „-‟s

indicating “don‟t care”. For example, we could have instead used „OPTION = 0b11010100‟, since the

value of bit 4, or T0SE, is irrelevant in timer mode.

However, some purists would argue, for both assembler and C, that we should be using the symbols defined

in the include, or header files, instead of binary constants, to make your code easier to understand, more

maintainable, and less error-prone (because it is easy to mistype a numeric constant, and the assembler

cannot warn you if that happens).

Since the HI-TECH C compilers make the individual OPTION register bits available as single-bit variables,

we can explicitly clear T0CS and PSA by writing:

 T0CS = 0; // select timer mode

 PSA = 0; // assign prescaler to Timer0

Setting PS<2:0> to 100 is more awkward. We could write:

 PS2 = 1; PS1 = 0; PS0 = 0; // PS=100 (prescale = 32)

But this generates three bit set/clear instructions (the code is inefficient), and it‟s not obvious that a value is

being assigned to a bit field.

Another approach is to use the AND operator, with a bit mask, preserving the value of the upper five bits of

the OPTION register, so that the value of PS<2:0> can be OR‟ed in:

 OPTION = OPTION & 0b11111000 | 0b100; // PS=100 (prescale = 32)

Or equivalently:

 OPTION &= 0b11111000 | 0b100; // PS=100 (prescale = 32)

Which you use is largely a question of personal style – and you can adapt your style as appropriate. It is

often preferable to use symbolic bit names to specify just one or two register bits, but using binary constants

if several bits need to be specified at once, especially where some bits need to be set and others cleared (as is

the case here), is quite acceptable – assuming that it is clearly commented, as above.

Using C macros

As explained in lesson 1, PICC-Lite comes with sample delay routines, including „DelayMs()‟, which

provides a delay of up to 255 ms.

To create the initial delay of 2 s, using PICC-Lite, we could use eight successive „DelayMs(250)‟ calls.

To save space, we could use a loop, such as:

 for (i = 0; i < 8; i++)

 DelayMs(250);

Or, since 20 × 100 ms = 2 seconds:

 for (i = 0; i < 20; i++)

 DelayMs(100);

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_1.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_1.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 4

And then, at the end of the main loop, to create the final 1 s delay, we could use:

 for (i = 0; i < 10; i++)

 DelayMs(100);

We are repeating essentially the same block of code, with a different end count in the „for‟ loop.

As we saw in midrange lesson 5, the MPASM assembler provides a macro facility, which allows a

parameterised segment of code to be defined once and then inserted multiple times into the source code.

Macros are useful in this situation, where similar code blocks are repeated – especially for a block of code

which implements a useful function such as a delay, since the macro can be reused in other programs.

C also allows macros to be defined.

For example, to implement a “delay in seconds” macro in PICC-Lite, we could use:

// Delay in seconds

// Max delay is 25.5 sec

// Calls: DelayMs() (defined in delay.h)

#define DelayS(T) {unsigned char i; for (i=0; i<T*10; i++) DelayMs(100);}

Having defined this macro, it can be used as if it was a function:

 DelayS(2); // delay 2s

„DelayS()‟ could have been added, as either a function or a macro, to the existing “delay.h” and “delay.c”

files. But if you modify those files, you would need to make it clear that these are your own customised

versions, not the ones originally provided with PICC-Lite. It is better to create your own library of useful

macros, which you would keep together in one or more header files, such as „stdmacros.h‟, and reference

using the #include directive.

Lesson 1 also explained that HI-TECH C PRO, when run in the free “Lite” mode, cannot use the sample

delay code provided with PICC-Lite, because it does not optimise the code it generates – making the delays

much longer than they should be. But we saw that that isn‟t a problem, because a built-in „_delay()‟

function and „__delay_us()‟ and „__delay_ms()‟ macros can be used to provide accurate delays.

This means that we would implement the “delay in seconds” macro for HI-TECH C PRO as:

// Delay in seconds

// Max delay is 25.5 sec

// Calls: DelayMs() (defined in delay.h)

#define DelayS(T) {unsigned char i; for (i=0; i<T*10; i++) __delay_ms(100);}

This „DelayS()‟ macro can then be used in exactly the same way as with PICC-Lite.

Thus, by encapsulating the compiler-specific code („DelayMs()‟ versus „__delay_ms()‟) within a

macro, the rest of the code, calling the macro, can be the same for the two compilers. This is a technique

worth remembering, if you need to write portable code.

The TMR0 register is accessed through a variable, TMR0, so to clear it, we can write:

 TMR0 = 0; // clear timer0

and to wait until 8 ms has elapsed:

 while (TMR0 < 8000/32) // wait for 8ms (32us/tick)

 ;

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_5.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_1.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 5

The “wait for button press or one second” routine can then the implemented as:

 cnt8ms = 0;

 while (BUTTON == 1 && cnt8ms < 1000/8) {

 TMR0 = 0; // clear timer0

 while (TMR0 < 8000/32) // wait for 8ms (32us/tick)

 ;

 ++cnt8ms; // increment 8ms counter

 }

(where, previously, „BUTTON‟ had been defined as a symbol for „GPIO3‟ – your code will be easier to

maintain if you use symbolic names to refer to pins)

Finally, checking elapsed time is simply:

 if (cnt8ms < MAXRT/8) // if time < max reaction time (8ms/count)

 SUCCESS = 1; // turn on success LED

Complete program

Here is the complete reaction timer program, using HI-TECH C PRO, so that you can see how the various

parts fit together:

/**

* *

* Description: Lesson 2, example 1 *

* Reaction Timer game. *

* *

* User must attempt to press button within defined reaction time *

* after "start" LED lights. Success is indicated by "success" LED. *

* *

* Starts with both LEDs unlit. *

* 2 sec delay before lighting "start" *

* Waits up to 1 sec for button press *

* (only) on button press, lights "success" *

* 1 sec delay before repeating from start *

* *

**/

#include <htc.h>

#define _XTAL_FREQ 4000000 // oscillator frequency for _delay()

/***** CONSTANTS *****/

#define MAXRT 200 // Maximum reaction time in ms

/***** CONFIGURATION *****/

// Pin assignments

#define START GPIO2 // LEDs

#define SUCCESS GPIO1

#define BUTTON GPIO3 // switches

// Config: int reset, no code protect, no brownout detect, no watchdog,

// power-up timer enabled, 4MHz int clock

__CONFIG(MCLRDIS & UNPROTECT & BORDIS & WDTDIS & PWRTEN & INTIO);

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 6

/***** MACROS *****/

// Delay in seconds

// Max delay is 25.5 sec

// Calls: DelayMs() (defined in delay.h)

#define DelayS(T) {unsigned char i; for (i=0; i<T*10; i++) __delay_ms(100);}

/***** MAIN PROGRAM *****/

void main()

{

 unsigned char cnt8ms; // 8ms counter (incremented every 8ms)

 // Initialisation

 TRISIO = 0b111001; // configure GP1 and GP2 as outputs

 OPTION = 0b11010100; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----100 prescale = 32 (PS = 100)

 // -> increment every 32 us

 // Main loop

 for (;;) {

 GPIO = 0; // start with all LEDs off

 DelayS(2); // delay 2s

 START = 1; // turn on start LED

 // wait up to 1 sec for button press

 cnt8ms = 0;

 while (BUTTON == 1 && cnt8ms < 1000/8) {

 TMR0 = 0; // clear timer0

 while (TMR0 < 8000/32) // wait for 8ms (32us/tick)

 ;

 ++cnt8ms; // increment 8ms counter

 }

 // check elapsed time

 if (cnt8ms < MAXRT/8) // if time < max reaction time (8ms/count)

 SUCCESS = 1; // turn on success LED

 DelayS(1); // delay 1s

 } // repeat forever

}

Comparisons

As we did in lesson 1, we can compare, for each language/compiler (MPASM assembler, HI-TECH PICC-

Lite and C PRO), the length of the source code (ignoring comments and white space) versus program and

data memory used by the resulting code. As a rough approximation, longer source code means more time

spent by the programmer writing the code, and more time spent debugging or maintaining the code. The C

source code tends to be much shorter than assembly code, while the C compilers tend to generate code that

uses more memory than hand-crafted assembly does. Hence, these comparisons illustrate the trade-off

between programmer efficiency and resource-usage efficiency.

The resource usage of the baseline (PIC12F509) versions of this example, from baseline C lesson 1, is also

given for comparison:

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_1.pdf
http://www.gooligum.com.au/tut_baseline_C.html

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 7

Reaction_timer

As expected, the C source code is less than half as long as the assembler source, but the generated C program

code is significantly larger (around 50% for the PICC-Lite compilers, which optimises the code it generates,

but more than twice as large for HI-TECH C PRO, which does not perform any optimisation when running

in “Lite” mode) and uses more data memory.

Also note that, because the midrange architecture is more suited to C programming, the PICC-Lite compiler

is better able to optimise the code it generates for the 12F629, compared with the baseline 12F509.

Example 2: Background Process Timing

As discussed in midrange lesson 4, one of the key uses of timers is to provide regular timing for

“background” processes, while a “foreground” process responds to user signals. Timers are ideal for this,

because they continue to run, at a steady rate, regardless of any processing the PIC is doing. On midrange

PICs this is normally done using timer-driven interrupts, which will be covered in the next lesson. However,

the non-interrupt method, described in baseline C lesson 2, can still be used, and is covered here mainly for

completeness.

The example in midrange lesson 4 used the circuit above, flashing the LED on GP2 at a steady 1 Hz, while

lighting the LED on GP1 whenever the pushbutton is pressed.

The 500 ms delay needed for the 1 Hz flash was derived from Timer0 as follows:

 Using a 4 MHz processor clock, providing a 1 MHz instruction clock and a 1 µs instruction cycle

 Assigning a 1:32 prescaler to the instruction clock, incrementing Timer0 every 32 µs

 Resetting Timer0 to zero, as soon as it reaches 125 (i.e. every 125 × 32 µs = 4 ms)

 Repeating 125 times, creating a delay of 125 × 4 ms = 500 ms.

This was implemented by the following code:

;***** Main loop

loop ; delay 500ms

 movlw .125 ; repeat 125 times

 movwf dlycnt ; (125 x 4ms = 500ms)

dly500 ; (begin 500ms delay loop)

 banksel TMR0 ; clear timer0

 clrf TMR0

w_tmr0 ; check timer0 until 4ms elapsed

 movf TMR0,w

 xorlw .125 ; (4ms = 125 x 32us)

 btfss STATUS,Z

 goto w_tmr0

Assembler / Compiler

Source code

(lines)

Program memory

(words)

Data memory

(bytes)

12F629 12F509 12F629 12F509 12F629 12F509

Microchip MPASM 56 53 54 56 4 4

HI-TECH PICC-Lite 25 25 76 89 7 11

HI-TECH C PRO Lite 24 24 111 109 7 4

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_4.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_3.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_2.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 8

 ; (end 500ms delay loop)

 decfsz dlycnt,f

 goto dly500

 ; toggle LED

 movf sGPIO,w

 xorlw 1<<GP2 ; toggle LED on GP2

 movwf sGPIO ; using shadow register

 banksel GPIO

 movwf GPIO

 ; repeat forever

 goto loop

And then the code which responds to the pushbutton was placed within the timer wait loop:

w_tmr0 ; check and respond to button press

 banksel GPIO

 bcf sGPIO,GP1 ; assume button up -> LED off

 btfss GPIO,GP3 ; if button pressed (GP3 low)

 bsf sGPIO,GP1 ; turn on LED

 movf sGPIO,w ; copy shadow to GPIO

 movwf GPIO

 ; check timer0 until 4ms elapsed

 banksel TMR0

 movf TMR0,w

 xorlw .125 ; (4ms = 125 x 32us)

 btfss STATUS,Z

 goto w_tmr0

The additional code doesn‟t affect the timing of the background task (flashing the LED), because there are

only a few additional instructions; they are able to be executed within the 32 µs available between each

“tick” of Timer0.

HI-TECH C Implementation

There are no new features to introduce; Timer0 is setup and accessed in the same way as in the last example.

Here is one way that the program logic, equivalent to the assembly code above, can be implemented in C:

 // Main loop

 for (;;) {

 // delay 500ms while checking for button press

 for (dc = 0; dc < 125; dc++) { // repeat for 500ms (125 x 4ms = 500ms)

 TMR0 = 0; // clear timer0

 while (TMR0 < 125) { // repeat for 4ms (125 x 32us)

 sGPIO &= ~(1<<1); // assume button up -> LED off

 if (GPIO3 == 0) // if button pressed (GP3 low)

 sGPIO |= 1<<1; // turn on LED on GP1

 GPIO = sGPIO; // update GPIO

 }

 }

 // toggle LED on GP2

 sGPIO ^= 1<<2;

 } // repeat forever

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 9

Note the syntax used to set, clear and toggle bits in the shadow GPIO variable, sGPIO:

 sGPIO |= 1<<1; // turn on LED on GP1

 sGPIO &= ~(1<<1); // turn off LED on GP1

 sGPIO ^= 1<<2; // toggle LED on GP2

We could instead have written:

 sGPIO |= 0b00000010; // turn on LED on GP1

 sGPIO &= 0b11111101; // turn off LED on GP1

 sGPIO ^= 0b00000100; // toggle LED on GP2

However, the right shift („<<‟) form more clearly specifies which bit is being operated on.

Note also that there no need to update GPIO after the LED on GP2 is toggled, because GPIO is being

continually updated from sGPIO within the inner timer wait loop.

Comparisons

Here is the resource usage summary for the “Flash an LED while responding to a pushbutton” programs:

Flash+PB_LED

The PICC-Lite compiler does particularly well in this example, once again generating more efficient code for

the 12F629 than for the 12F509 – in this case, almost as small as the hand-written assembler version, while

the C source code remains less than half as long as the assembler source.

Example 3: Switch debouncing

The previous lesson demonstrated one method commonly used to debounce switches: sampling the switch

state periodically, and only considering it to have definitely changed when it has been in the new state for

some minimum number of successive samples.

This “counting algorithm” was given as:

count = 0

while count < max_samples

 delay sample_time

 if input = required_state

 count = count + 1

 else

 count = 0

end

Assembler / Compiler

Source code

(lines)

Program memory

(words)

Data memory

(bytes)

12F629 12F509 12F629 12F509 12F629 12F509

Microchip MPASM 42 37 36 31 2 2

HI-TECH PICC-Lite 18 18 38 46 4 6

HI-TECH C PRO Lite 18 18 67 65 5 3

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_1.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 10

As explained in midrange lesson 4, this can be simplified by using a timer, since the timer increments

automatically:

reset timer

while timer < debounce time

 if input ≠ required_state

 reset timer

end

This algorithm was implemented in assembler, to wait for and debounce a “button down” event, as follows:

wait_dn clrf TMR0 ; reset timer

chk_dn btfsc GPIO,GP3 ; check for button press (GP3 low)

 goto wait_dn ; continue to reset timer until button down

 movf TMR0,w ; has 10ms debounce time elapsed?

 xorlw .157 ; (157=10ms/64us)

 btfss STATUS,Z ; if not, continue checking button

 goto chk_dn

This code assumes that Timer0 is available, and is in timer mode, with a 1 MHz instruction clock and a 1:64

prescaler, giving 64 µs per tick.

Of course, since the baseline PICs only have a single timer, it is likely that Timer0 is being used for

something else, and so is not available for switch debouncing. But if it is available, it makes sense to use it.

This was demonstrated by applying this timer-based debouncing method to the “toggle an LED on

pushbutton press” program developed in midrange lesson 3.

HI-TECH C Implementation

Timer0 can be configured for timer mode, with a 1:64 prescaler, by:

 OPTION = 0b11010101; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----101 prescale = 64 (PS = 101)

 // -> increment every 64 us

This is the same as for the 1:32 prescaler examples, above, except that the PS<2:0> bits are set to „101‟

instead of „100‟.

The timer-based debounce algorithm, given above in pseudo-code, is readily translated into C:

 TMR0 = 0; // reset timer

 while (TMR0 < 157) // wait at least 10ms (157 x 64us = 10ms)

 if (GPIO3 == 1) // if button up,

 TMR0 = 0; // restart wait

This could be defined as a macro (to be placed in a header file) as follows:

#define DEBOUNCE 10*1000/256 // switch debounce count = 10ms/(256us/tick)

// DbnceLo()

//

// Debounce switch on given input pin

// Waits for switch input to be high continuously for 10ms

//

// Uses: TMR0 Assumes: TMR0 running at 256us/tick

//

#define DbnceLo(PIN) TMR0 = 0; /* reset timer */ \

 while (TMR0 < DEBOUNCE) /* wait until debounce time */ \

 if (PIN == 1) /* if input high, */ \

 TMR0 = 0 /* restart wait */

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_4.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_3.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 11

and then called from the main program as, for example:

 DbnceLo(GPIO3); // wait until button pressed (GP3 low)

Complete program

Here is how this timer-based debounce code (without using macros) fits into the HI-TECH C version of the

“toggle an LED on pushbutton press” program:

/**

* Description: Lesson 2, example 3a *

* *

* Demonstrates use of Timer0 to implement debounce counting algorithm *

* *

* Toggles LED when pushbutton is pressed (low) then released (high) *

* Pin assignments: *

* GP1 - flashing LED *

* GP3 - pushbutton switch *

**/

#include <htc.h>

// Config: int reset, no code protect, no brownout detect, no watchdog,

// power-up timer enabled, 4MHz int clock

__CONFIG(MCLRDIS & UNPROTECT & BORDIS & WDTDIS & PWRTEN & INTIO);

void main()

{

 unsigned char sGPIO; // shadow copy of GPIO

 // Initialisation

 GPIO = 0; // start with LED off

 sGPIO = 0; // update shadow

 TRISIO = 0b111101; // configure GP1 (only) as an output

 OPTION = 0b11010101; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----101 prescale = 64 (PS = 101)

 // -> increment every 64 us

 // Main loop

 for (;;) {

 // wait until button pressed (GP3 low), debounce using timer0:

 TMR0 = 0; // reset timer

 while (TMR0 < 157) // wait at least 10ms (157 x 64us = 10ms)

 if (GPIO3 == 1) // if button up,

 TMR0 = 0; // restart wait

 // toggle LED on GP1

 sGPIO ^= 1<<1; // flip shadow GP1

 GPIO = sGPIO; // write to GPIO

 // wait until button released (GP3 high), debounce using timer0:

 TMR0 = 0; // reset timer

 while (TMR0 < 157) // wait at least 10ms (157 x 64us = 10ms)

 if (GPIO3 == 0) // if button down,

 TMR0 = 0; // restart wait

 } // repeat forever

}

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 12

Comparisons

Here is the resource usage summary for the “toggle an LED using timer-based debounce” programs:

Timer_debounce

Once again, the C source code is less than half as long as the assembler version, while the PICC-Lite

compiler generates particularly efficient code – even smaller than the hand-written assembler equivalent!

This is possible because some of the bank selection directives in the assembler version were not strictly

needed. The C compiler can keep track of which bank is selected, avoiding unnecessary instructions.

The code generated by the C compilers is also significantly more compact, and using less data memory, than

that generated for the corresponding example in lesson 1, where delay functions were used in implementing a

counter-based debounce algorithm. For example, the PICC-Lite version of the delay+counter debounce

program required 64 words of program memory, compared with 36 words for the timer-based program.

The lesson here is that your code can be shorter and more efficient if you are able to use a timer (or, as we‟ll

see in the next lesson, a timer-based interrupt) for switch debouncing.

Example 4: Using Counter Mode

The previous three examples use Timer0 in “timer mode”, where it is clocked by the PIC‟s instruction clock,

which runs at ¼ the speed of the processor clock (i.e. a nominal 1 MHz when the nominally 4 MHz internal

RC oscillator is used).

As we saw in midrange lesson 4,

the timer can instead be used in

“counter mode”, where it counts

transitions (rising or falling) on the

PIC‟s T0CKI input.

We can use the example from that

lesson to illustrate how Timer0 can

be used as a counter, using C:

Timer0 is driven by an external

32.768 kHz crystal oscillator (as

shown on the right), providing a

time base that can be used to flash

an LED at a reasonably accurate 1

Hz.

If the 32.768 kHz clock input is divided (prescaled) by 128, bit 7 of TMR0 will cycle at 1 Hz.

To configure Timer0 for counter mode (external clock on T0CKI) with a 1:128 prescale ratio, we need to set

the T0CS bit to „1‟, PSA to „0‟ and PS<2:0> to „110‟.

Assembler / Compiler

Source code

(lines)

Program memory

(words)

Data memory

(bytes)

12F629 12F509 12F629 12F509 12F629 12F509

Microchip MPASM 42 35 37 30 1 1

HI-TECH PICC-Lite 19 19 36 45 3 5

HI-TECH C PRO Lite 19 19 72 70 4 3

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_1.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_3.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_4.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 13

This was done in midrange lesson 4 by:

 movlw b'11110110' ; configure Timer0:

 ; --1----- counter mode (T0CS = 1)

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----110 prescale = 128 (PS = 110)

 banksel OPTION_REG ; -> increment at 256 Hz with 32.768 kHz input

 movwf OPTION_REG

The value of T0SE bit is irrelevant; we don‟t care if the counter increments on the rising or falling edge of

the input clock signal – only the frequency is important. Either edge will do.

Bit 7 of TMR0 (which is cycling at 1 Hz) was then continually copied to GP1 (using a shadow register), as

follows:

loop ; transfer TMR0<7> to GP1

 clrf sGPIO ; assume TMR0<7>=0 -> LED off

 banksel TMR0

 btfsc TMR0,7 ; if TMR0<7>=1

 bsf sGPIO,GP1 ; turn on LED

 movf sGPIO,w ; copy shadow to GPIO

 banksel GPIO

 movwf GPIO

 ; repeat forever

 goto loop

HI-TECH C Implementation

As always, to configure Timer0 using HI-TECH C, simply assign the appropriate value to OPTION:

 OPTION = 0b11110110; // configure Timer0:

 //--1----- counter mode (T0CS = 1)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----110 prescale = 128 (PS = 110)

 // -> increment at 256 Hz with 32.768 kHz input

To test bit 7 of TMR0, we can use the following construct:

 if (TMR0 & 1<<7) // if TMR0<7>=1

 sGPIO |= 1<<1; // turn on LED

This works because the expression “1<<7” equals 10000000 binary; the result of ANDing TMR0 with 1<<7

will be non-zero only if TMR0<7> is set.

Complete program

Here is the complete “flash an LED using crystal-driven timer” program:

/**

* *

* Description: Lesson 2, example 4 *

* *

* Demonstrates use of Timer0 in counter mode *

* *

* LED flashes at 1 Hz (50% duty cycle), *

* with timing derived from 32.768 kHz input on T0CKI *

* *

* *

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_4.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 14

* Pin assignments: *

* GP1 - flashing LED *

* T0CKI - 32.768 kHz signal *

* *

**/

#include <htc.h>

// Config: ext reset, no code protect, no brownout detect, no watchdog,

// power-up timer enabled, 4MHz int clock

__CONFIG(MCLREN & UNPROTECT & BORDIS & WDTDIS & PWRTEN & INTIO);

void main()

{

 unsigned char sGPIO; // shadow copy of GPIO

 // Initialisation

 TRISIO = ~(1<<1); // configure GP1 (only) as an output

 OPTION = 0b11110110; // configure Timer0:

 //--1----- counter mode (T0CS = 1)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----110 prescale = 128 (PS = 110)

 // -> increment at 256 Hz with 32.768 kHz input

 // Main loop

 for (;;)

 {

 // TMR0<7> cycles at 1Hz so continually copy to GP1

 sGPIO = 0; // assume TMR<7>=0 -> LED off (shadow)

 if (TMR0 & 1<<7) // if TMR0<7>=1

 sGPIO |= 1<<1; // turn on LED (shadow)

 GPIO = sGPIO; // copy shadow to GPIO

 } // repeat forever

}

Comparisons

Here is the resource usage summary for the “flash an LED using a crystal-driven timer” programs:

Timer_debounce

Again, the PICC-Lite compiler is able to generate very efficient code for 12F629 in this example –

significantly smaller than the corresponding code generated by the same compiler for the 12F509, and even

smaller than the hand-written assembler version!

Assembler / Compiler

Source code

(lines)

Program memory

(words)

Data memory

(bytes)

12F629 12F509 12F629 12F509 12F629 12F509

Microchip MPASM 25 20 20 15 1 1

HI-TECH PICC-Lite 11 11 19 29 3 5

HI-TECH C PRO Lite 11 11 26 24 3 2

© Gooligum Electronics 2008 www.gooligum.com.au

Midrange PIC C, Lesson 2: Using Timer0 Page 15

Summary

These examples demonstrate that Timer0 can be effectively configured and accessed using the HI-TECH C

compilers. The program algorithms can often be expressed quite succinctly in C, as illustrated by the code

length comparisons:

Source code (lines)

The C source code is consistently less than half the length of the corresponding assembler source.

Although the C compilers generated significantly larger code than assembler in example 1, the PICC-Lite

compiler was able to generate highly optimised code for the other examples – in some cases bettering the

assembler versions:

Program memory (words)

As mentioned above, the hand-written assembler code could be optimised further by removing redundant

banksel directives. This would, however, make the code less maintainable. The C compilers manage

bank selection for you – one of the nice aspects about using C for midrange PICs.

The programs generated by the C compilers do, however, consistently use more data memory than the

assembler versions:

Data memory (bytes)

Of course this is not an important issue in these small examples, where, even in example 1, the C programs

are using only 7 out of 64 bytes of data memory available on the 12F629.

In the next lesson we‟ll see how interrupts can be implemented using HI-TECH C.

Assembler / Compiler Example 1 Example 2 Example 3 Example 4

Microchip MPASM 56 42 42 25

HI-TECH PICC-Lite 25 18 19 11

HI-TECH C PRO Lite 24 18 19 11

Assembler / Compiler Example 1 Example 2 Example 3 Example 4

Microchip MPASM 54 36 37 20

HI-TECH PICC-Lite 76 38 36 19

HI-TECH C PRO Lite 111 67 72 26

Assembler / Compiler Example 1 Example 2 Example 3 Example 4

Microchip MPASM 4 2 1 1

HI-TECH PICC-Lite 7 4 3 3

HI-TECH C PRO Lite 7 5 4 3

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_3.pdf

	Introduction to PIC Programming
	Programming Midrange PICs in C
	Lesson 2: Using Timer 0
	Example 1: Using Timer0 as an Event Timer
	HI-TECH C Implementation
	Using C macros
	Complete program

	Comparisons

	Example 2: Background Process Timing
	HI-TECH C Implementation
	Comparisons

	Example 3: Switch debouncing
	HI-TECH C Implementation
	Complete program

	Comparisons

	Example 4: Using Counter Mode
	HI-TECH C Implementation
	Complete program

	Comparisons

	Summary

