
© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 1

Introduction to PIC Programming

Programming Midrange PICs in C

by David Meiklejohn, Gooligum Electronics

Lesson 5: Reset, Power and Clock Options

Midrange lesson 8 looked at some of the more “hardware-related” aspects of the midrange PIC architecture,

including clock sources, the power-on reset conditions needed to successfully power-up a midrange PIC, and

brown-out resets and detection. This lesson covers the same topics, re-implementing the examples using

“free” C compilers from HI-TECH Software: PICC-Lite and HI-TECH C
1
 (in “Lite” mode), as usual.

However, there is no to repeat all of the theory here, so you may wish to refer back to midrange lesson 8 for

more detail.

In summary, this lesson covers:

 Oscillator (clock) options

 Power-on reset (POR)

 Power-up timer (PWRT)

 Brown-out detection (BOD)

with examples for HI-TECH C and PICC-Lite.

Clock Options

Although it is often appropriate to use the internal RC oscillator as the processor clock source, there are some

situations where it is more appropriate to use some external clock circuitry, for reasons such as:

 Greater accuracy and stability.

A crystal or ceramic resonator is significantly more accurate than the internal RC oscillator, with less

frequency drift due to temperature and voltage variations.

 Generating a specific frequency.

For example, as we saw in lesson 2, the signal from a 32.768 kHz crystal can be readily divided

down to 1 Hz. Or, to produce accurate timing for RS-232 serial data transfers, a crystal frequency

such as 1.843200 MHz can be used, since it is an exact multiple of common baud rates, such as

38400 or 9600 (1843200 = 48 × 38400 = 192 × 9600).

 Synchronising with other components.

Clocking a number of devices from a common source, so that their outputs change synchronously,

may simplify your design – although you need to be careful; clock signals which are subject to

varying delays in different parts of your circuit will not be properly synchronised (a phenomenon

known as clock skew), leading to unpredictable results.

1
 PICC-Lite was bundled with versions of MPLAB up to 8.10. HI-TECH C (earlier known as “HI-TECH C PRO”) was

bundled with MPLAB 8.15 and later, although you should download the latest version from www.htsoft.com.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_8.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_8.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_2.pdf
http://www.htsoft.com/

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 2

Another approach is to make the PIC‟s clock available externally, so that other components can be

synchronised with it.

 Lower power consumption.

At a given supply voltage, PICs draw less current when they are clocked at a lower speed. Power

consumption can be minimised by running the PIC at the slowest practical clock speed and power

supply voltage. And for many applications, a high clock rate is unnecessary.

 Faster operation.

Most midrange PICs can operate at a clock rate of up to 20 MHz, while the internal RC oscillator

generally runs at only 4 or 8 MHz. If you need more speed than the internal oscillator can provide,

you need to use a crystal or other external clock source.

Midrange PICs support a number of clock, or oscillator, configurations, allowing, through appropriate

oscillator selection, any of these goals to be met (but not necessarily all at once – low power consumption

and high frequencies don‟t mix!)

The following table summarises the oscillator configuration options available for the PIC12F629, and the

corresponding MPASM and HI-TECH C symbols:

FOSC<2:0> MPASM symbol HI-TECH C symbol Oscillator configuration

000 _LP_OSC LP LP oscillator

001 _XT_OSC XT XT oscillator

010 _HS_OSC HS HS oscillator

011 _EC_OSC EC EC oscillator

100 _INTRC_OSC_NOCLKOUT INTIO Internal RC oscillator + GP4

101 _INTRC_OSC_CLKOUT INTCLK Internal RC oscillator + CLKOUT

110 _EXTRC_OSC_NOCLKOUT RCIO External RC oscillator + GP4

111 _EXTRC_OSC_CLKOUT RCCLK External RC oscillator + CLKOUT

Internal RC oscillator

Until now we‟ve been using the „INTIO‟ configuration, where the internal RC oscillator provides a

(nominally) 4 MHz processor clock (FOSC), driving the execution of instructions at approximately 1 MHz,

and every pin is available for I/O.

In the „INTCLK‟ configuration, the instruction clock (FOSC/4) is output on the CLKOUT pin, to allow

external devices to be synchronised with the PIC‟s internal RC clock.

Since, on the 12F629, CLKOUT shares pin 3, GP4 cannot be used for I/O in „INTCLK‟ mode.

You can use an oscilloscope to look at the signal on CLKOUT in „INTCLK‟ mode, but to verify that this

signal is indeed the instruction clock, it‟s useful to toggle another pin as quickly as possible, for comparison

with CLKOUT, using a simple program such as:

/**

* Description: Lesson 5, example 1 *

* *

* Demonstrates CLKOUT function in Internal RC oscillator mode *

* *

* Toggles a pin as quickly as possible *

* for comparison with 1 MHz CLKOUT signal *

* *

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 3

* Uses inline 500 ms delay routine *

* *

* *

* Pin assignments: *

* GP2 - fast-changing output *

* *

**/

#include <htc.h>

/***** CONFIGURATION *****/

// Config: ext reset, no code or data protect, brownout detect,

// no watchdog, power-up timer enabled, 4MHz int clock with CLKOUT

__CONFIG(MCLREN & UNPROTECT & BOREN & WDTDIS & PWRTEN & INTCLK);

// Pin assignments

#define OUT GPIO2 // fast-changing output on GP2

/***** GLOBAL VARIABLES *****/

unsigned char sGPIO; // shadow copy of GPIO

/***** MAIN PROGRAM *****/

void main()

{

 /*** Initialisation ***/

 // configure port

 TRISIO = 0; // config all pins (except GP3 and GP4) as outputs

 /*** Main loop ***/

 for (;;)

 {

 OUT = !OUT; // toggle output pin as fast as possible

 }

}

The internal RC oscillator with CLKOUT configuration was selected by:

// Config: ext reset, no code or data protect, brownout detect,

// no watchdog, power-up timer enabled, 4MHz int clock with CLKOUT

__CONFIG(MCLREN & UNPROTECT & BOREN & WDTDIS & PWRTEN & INTCLK);

To toggle the GP2 pin as quickly as possible, the main loop was made as tight as possible:

 for (;;)

 {

 OUT = !OUT; // toggle output pin as fast as possible

 }

Both of the HI-TECH C compilers generate code which toggles GP2 every five cycles, i.e. every 5 µs,

giving an output frequency of 100 kHz.

This is not as fast as we were able to toggle the pin in the example in midrange lesson 8 – demonstrating that

for best results in time-critical code, it can be necessary to use assembler.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_8.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 4

This is apparent in the following oscilloscope plot:

The top trace is the instruction clock signal on CLKOUT, which, as you can see, has a period very close to 1

µs, giving a frequency of 1 MHz, as expected.

The bottom trace is the signal on GP2, which changes state every five instruction cycles, also as expected.

Note that the transitions on GP2 are aligned with the falling edge of the instruction clock on CLKOUT.

Comparisons

The following table compares the source code length and memory usage for this example by both HI-TECH

C compilers and the corresponding assembler program from midrange lesson 8:

IntRC+CLKOUT

As usual, the C source code is only half as long as the assembler source, while the code generated by the

PICC-Lite compiler, with optimisation enabled, is barely any larger than the hand-written assembly version.

Assembler / Compiler
Source code

(lines)

Program memory

(words)

Data memory

(bytes)

Microchip MPASM 16 12 0

HI-TECH PICC-Lite 8 13 3

HI-TECH C PRO Lite 8 29 2

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_8.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 5

But, as noted above, it was not able to toggle the output as quickly, demonstrating that tight loops written in

assembler can be faster.

And as expected, HI-TECH C PRO generated much larger code, because it is running in “Lite” mode, which

does not perform any optimisation.

External clock input

An external oscillator can be used as the PIC‟s clock source.

This is sometimes done so that the timing of various parts of a circuit is synchronised to the same clock

signal. Or, your circuit may have an existing clock signal available, and it may make sense to use it if it is

more accurate and/or stable than the PIC‟s internal RC oscillator – assuming you can afford the loss of one

of the PIC‟s I/O pins.

To demonstrate the use of an

external clock signal, we‟ll use a

32.768 kHz crystal oscillator,

such as the one from baseline

lesson 5, as shown in the circuit

on the right.

To use an external oscillator

with the PIC12F629, the „EC‟

oscillator mode should be used,

with the clock signal (with a

frequency of up to 20 MHz)

connected to the CLKIN input:

pin 2 on a PIC12F629.

Since CLKIN uses the same pin

as GP5, GP5 cannot be used

for I/O when the PIC is in „EC‟

mode.

To illustrate the operation of this circuit, we can modify the crystal-driven LED flasher program developed

in lesson 2. In that example, the external 32.768 kHz signal was used to drive the Timer0 counter.

Now, however, the 32.768 kHz signal is driving the processor clock, giving an instruction clock rate of 8192

Hz. If Timer0 is configured in timer mode with a 1:32 prescale ratio, TMR0<7> will cycle at exactly 1 Hz

(since 8192 = 32 × 256) – as is assumed in the example from lesson 2.

Therefore, to adapt that program for this circuit, all we need to do is to change the configuration statement to:

// Config: int reset, no code protect, no brownout detect, no watchdog,

// power-up timer enabled, external clock

__CONFIG(MCLRDIS & UNPROTECT & BORDIS & WDTDIS & PWRTEN & EC);

and change the initialisation code from:

 OPTION = 0b11110110; // configure Timer0:

 //--1----- counter mode (T0CS = 1)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----110 prescale = 128 (PS = 110)

 // -> increment at 256 Hz with 32.768 kHz input

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_2.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_2.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 6

to:

 OPTION = 0b11010100; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----100 prescale = 32 (PS = 100)

 // -> increment at 256 Hz with 8192 Hz inst clock

With these changes made, the LED on GP1 should flash at almost exactly 1 Hz – to within the accuracy of

the crystal oscillator.

Complete program

Here is the program from lesson 2, modified as described above:

/**

* Description: Lesson 5, example 2 *

* *

* Demonstrates use of external clock mode *

* (using 32.768 kHz clock source) *

* *

* LED flashes at 1Hz (50% duty cycle), *

* with timing derived from 8192 Hz instruction clock *

* *

* Pin assignments: *

* GP1 - flashing LED *

**/

#include <htc.h>

// Config: int reset, no code protect, no brownout detect, no watchdog,

// power-up timer enabled, external clock

__CONFIG(MCLRDIS & UNPROTECT & BORDIS & WDTDIS & PWRTEN & EC);

// Pin assignments

#define nLED 1 // flashing LED on GP1

void main()

{

 unsigned char sGPIO; // shadow copy of GPIO

 // Initialisation

 TRISIO = ~(1<<nLED); // configure LED pin (only) as output

 OPTION = 0b11010100; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----100 prescale = 32 (PS = 100)

 // -> incr at 256 Hz with 8192 Hz inst clock

 // Main loop

 for (;;)

 {

 // TMR0<7> cycles at 1Hz, so continually copy to LED

 sGPIO = 0; // assume TMR<7>=0 -> LED off (shadow)

 if (TMR0 & 1<<7) // if TMR0<7>=1

 sGPIO |= 1<<nLED; // turn on LED (shadow)

 GPIO = sGPIO; // copy shadow to GPIO

 } // repeat forever

}

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_2.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 7

Comparisons

Here is the resource usage summary for the “external clock” examples:

Flash_LED_32k_EC

Once again, the optimised code generated by the PICC-Lite compiler is only a little larger than the hand-

written assembler version, while the C source code is around half the length of the assembler source.

Crystals and ceramic resonators

Generally, there is no need to build your own crystal oscillator; PICs include an oscillator circuit designed to

drive crystals directly.

A parallel (not serial) cut crystal, or a ceramic

resonator, is placed between the OSC1 and

OSC2 pins, which are grounded via loading

capacitors, as shown in the circuit diagram on

the right. For some crystals it may be necessary

to reduce the drive current by placing a series

resistor between OSC2 and the crystal, but in

most cases it is not needed, and the circuit

shown here can be used.

The PIC12F629 offers three crystal oscillator

modes: „XT‟, „LP‟ and „HS‟. They differ in the

gain and frequency response of the drive

circuitry.

„XT‟ (“crystal”) is the mode most commonly

used for crystals or ceramic resonators operating

between 100 kHz and 4 MHz.

„HS‟ (“high speed”) mode provides higher gain and is typically used for crystals or ceramic resonators

operating above 4 MHz, up to a maximum frequency (on the 12F629) of 20 MHz. The higher drive level

means that a series resistor is more likely to be necessary in „HS‟ oscillator mode.

Lower frequencies generally require lower gain. The „LP‟ (“low power”) mode uses less power and is

designed to drive common 32.786 kHz “watch” crystals, although it can also be used with other low-

frequency crystals or resonators.

The circuit shown here can be used to operate the PIC12F629 at 32.768 kHz, giving low power consumption

and an 8192 Hz instruction clock, which, as we have seen, is easily divided to create an accurate 1 Hz signal.

To flash the LED at 1 Hz, the program is exactly the same as for the external clock example above, except

that the configuration statement must instead include the LP option:

// Config: int reset, no code protect, no brownout detect, no watchdog,

// power-up timer enabled, LP oscillator

__CONFIG(MCLRDIS & UNPROTECT & BORDIS & WDTDIS & PWRTEN & LP);

Assembler / Compiler
Source code

(lines)

Program memory

(words)

Data memory

(bytes)

Microchip MPASM 21 16 1

HI-TECH PICC-Lite 12 19 3

HI-TECH C PRO Lite 12 26 3

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 8

Another option, when you want greater

accuracy and stability than the internal RC

oscillator can provide, but do not need as

much as that offered by a crystal, is to use a

ceramic resonator.

These are available in convenient 3-terminal

packages which include appropriate loading

capacitors, as shown in the circuit diagram on

the right. The resonator package incorporates

the components within the dashed lines.

Usually the built-in loading capacitors are

adequate and no additional components are

needed, other than the 3-pin resonator

package.

If you are using a 4 MHz resonator, to test this

circuit, you can change the „INTIO‟ configuration option to „XT‟ in the __CONFIG() macro in any program

from the examples in any of the earlier lessons, since they all used a 4 MHz clock.

A good choice is the “flash an LED at exactly 1 Hz” program developed in lesson 3, since it will generate an

output of exactly 1 Hz, given a processor clock of exactly 4 MHz, and so should benefit from the more

accurate clock source.

External RC oscillator

Finally, a low-cost, low-power option: midrange PICs

can use an oscillator based on an external resistor and

capacitor, as shown on the right.

External RC oscillators, with appropriate values of R

and C, can be useful when a very low clock rate is

acceptable – drawing significantly less power than

when the internal 4 MHz RC oscillator is used.

Running the PIC slowly can also simplify some

programming tasks, needing fewer, shorter delays.

Microchip does not commit to a specific formula for

the frequency (or period) of the external RC

oscillator, only stating that it is a function of VDD, R,

C and temperature, and in some documents providing

some reference charts. But for rough design

guidance, you can assume the period of oscillation is

approximately 1.2 × RC.

Microchip recommends keeping R between 5 kΩ and 100 kΩ, and C above 20 pF.

Those values R = 10 kΩ and C = 82 nF give a period of approximately 1.2 × 10×10
3
 × 82×10

-9
 s = 984 µs.

Hence, we can expect that the clock frequency in the circuit above will be around 1 kHz.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_3.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 9

This circuit was tested, using the component values shown, giving the following oscilloscope traces:

The top trace was recorded at the OSC1 pin, and shows the expected RC charge/discharge cycles.

The bottom trace shows the instruction clock output at the CLKOUT pin; you can see that it is one quarter of

the frequency of the clock input at OSC1.

In practice, the measured frequency was 1080 Hz; reasonably close, but the lesson should be clear: don‟t use

an external RC oscillator if you want high accuracy or good stability.

So, given a roughly 1 kHz clock, what can we do with it?

Flash an LED, of course!

Using a similar approach to before, we can use the instruction clock (approx. 256 Hz) to increment Timer0.

In fact, with a prescale ratio of 1:256, TMR0 will increment at approx. 1 Hz.

TMR0<0> would then cycle at 0.5 Hz, TMR0<1> at 0.25 Hz, etc.

Now consider what happens when the prescale ratio is set to 1:64. TMR0 will increment at 4 Hz, TMR0<0>

will cycle at 2 Hz, and TMR0<1> will cycle at 1 Hz, etc.

And that suggests a very simple way to make the LED on GP1 flash at 1 Hz:

If we continually copy TMR0 to GPIO, each bit of GPIO will reflect each corresponding bit of TMR0.

In particular, GPIO<1> will always be set to the same value as TMR0<1>. Since TMR0<1> is cycling at 1

Hz, GPIO<1> (and hence GP1) will also cycle at 1 Hz.

Only use an external RC oscillator if the exact clock rate is unimportant.

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 10

Complete program

The following program implements the approach described above. Note that the external RC oscillator is

selected by using the option „RCCLK‟ in the configuration statement.

/**

* *

* Description: Lesson 5, example 5 *

* *

* Demonstrates use of external RC oscillator (~1 kHz) *

* *

* LED on GP1 flashes at approx 1 Hz (50% duty cycle), *

* with timing derived from ~256 Hz instruction clock *

* *

* *

* Pin assignments: *

* GP1 - flashing LED *

* *

**/

#include <htc.h>

// Config: int reset, no code protect, no brownout detect, no watchdog,

// power-up timer enabled, ext RC oscillator (~1 kHz) + clkout

__CONFIG(MCLRDIS & UNPROTECT & BORDIS & WDTDIS & PWRTEN & RCCLK);

void main()

{

 // Initialisation

 TRISIO = ~(1<<1); // configure GP1 (only) as an output

 OPTION = 0b11010101; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----101 prescale = 64 (PS = 101)

 // -> incr at 4 Hz with 256 Hz inst clock

 // Main loop

 for (;;)

 {

 // TMR0<1> cycles at 1 Hz, so continually copy to GP1

 GPIO = TMR0; // copy TMR0 to GPIO

 } // repeat forever

}

The “main loop” is only a single assignment statement – by far the shortest “flash an LED” program we have

done, demonstrating that slowing the clock rate can simplify certain programming problems. On the other

hand, it is also the least accurate of the “flash an LED” programs, being only approximately 1 Hz. But for

many applications, the exact speed doesn‟t matter; it only matters that the LED visibly flashes, not how fast.

Power-On Reset

As explained in greater detail in midrange lesson 8, to reliably start program execution on a midrange (or

any) PIC, it is necessary to hold the device in a reset condition until the power supply has reached a

consistently high enough voltage.

This was traditionally done by a simple RC circuit attached to the external MCLR pin. However, there is

often no need to use external reset components with modern midrange PICs, because they include a power-

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_8.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 11

up timer (PWRT), which, if enabled, holds the device in reset for a nominal 72 ms from the initial power-on

reset (POR) which occurs when power-on is detected.

The power-up timer is controlled by the PWRTE bit in the processor configuration word; setting PWRTE to

„1‟ disables the power-on timer.

To enable it using HI-TECH C, include the symbol „PWRTEN‟ in the __CONFIG() macro.

To disable it, use „PWRTDIS‟ instead.

You may need to disable the power-up timer if your power supply takes more than 72 ms to settle. You

should then use an external RC reset circuit, or an external supervisory circuit, such as one of Microchip‟s

MCP10X devices, to hold the device in reset for longer. If so, it may appropriate to disable the internal

power-up timer, so that there is only one source of power-up delay.

But most of the time, unless your circuit is operating in difficult power supply conditions, you can enable the

power-up timer (as we have done so far) and, if you are using an external reset, use a 10 kΩ resistor between

MCLR and VDD.

If you are using the LP, XT or HS clock mode (which implies that you‟re probably using a crystal or

resonator driven by the PIC‟s on-board oscillator circuitry), the oscillator start-up timer (OST) is invoked to

give the crystal or resonator time to settle, after the PWRT delay completes. The OST counts pulses on the

OSC1 pin, and holds the device in reset until it has counted 1024 oscillator cycles.

The OST is also used when the PIC wakes from sleep in LP, XT or HS clock mode, for the same reason – the

oscillator is disabled while the device is in sleep mode, and takes a while to start and become stable.

Note that the OST is invoked whether or not PWRT is enabled. The only way to avoid the oscillator start-up

delay is to use one of the EC, internal RC or external RC oscillator modes.

For fastest processor start-up at power-on, disable the power-up timer and use an external clock, avoiding

both the PWRT and OST delays – and hope that you have a very fast-starting and stable power supply! But

it‟s generally best to simply accept that your program won‟t start running for up to 100 ms after you turn the

power on…

Brown-out Detect

Midrange lesson 8 also explained that the PIC‟s operation can become unreliable if the power supply voltage

falls too far during normal operation – a condition known as a brown-out. In general, it is preferable to stop

program execution while the brown-out situation persists, instead of risking unreliable operation; it‟s better

to be able to recover cleanly after the brown-out, instead of not knowing what your program might do.

Most mid-range PICs provide a brown-out detect (BOD, also called brown-out reset, or BOR) facility,

which, if enabled, will reset the device if the supply voltage falls below the brown-out detect voltage

(between 2.025 V and 2.175 V on the PIC12F629), and hold it in reset until the voltage rises again. If the

power-up timer is enabled (recommended if you are using BOD), the device will remain in reset for a further

72 ms after the brown-out condition clears – and if another brown-out occurs during this PWRT delay, it will

be detected and the process will repeat.

Brown-out detection on the PIC12F629 is controlled by the BODEN bit in the processor configuration word;

setting BODEN to „1‟ enables brown-out detection.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_8.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 12

To enable BOD (or BOR) using HI-TECH C, use the symbol „BOREN‟ in the __CONFIG() macro.

To disable it, use „BORDIS‟ instead.

Detecting a brown-out reset

If a brown-out occurs, resetting the PIC and hence restarting your program, you may want your application

to react to this, behaving differently to a power-on, watchdog timer, or other reset. For example, if your

program has restarted because of a brown-out, you may want it to try to continue doing whatever it was

doing before the brown-out, instead of running through the full initialisation routine.

Fortunately, midrange PICs provide flags which allow us to detect and respond differently to both power-on

and brown-out resets.

In the 12F629, these flags are contained in the power control register, PCON.

The POR (power-on reset status) flag is cleared when a power-on reset occurs, and is set if a brown-out

reset occurs. It is unaffected by all other resets.

This means that, to use this flag to differentiate power-on from other resets, you must set POR to „1‟

whenever a power-on reset occurs. Since all the other types of reset either set this bit or leave it unchanged,

it will then only ever be „0‟ when a power-on reset has occurred.

Similarly, the BOD (brown-out detect status) flag is cleared when a brown-out reset occurs, and is

unaffected by all other resets.

So to use this flag to differentiate brown-out from other resets, you must set BOD to „1‟ following power-

on. Since all the other resets leave this bit unchanged, it will only ever be „0‟ when a brown-out has

occurred.

Since BOD is unaffected by a power-on reset, its value is unknown when the device is first powered on.

Therefore, the first flag you should test is POR . If it is clear, you can be sure that a power-on reset has

occurred, and you can then set both POR and BOD , ready for testing after subsequent resets.

An example may help to clarify this.

We‟ll use the circuit shown on the left, which you

can implement using Microchip‟s Low Pin Count

Demo Board, by making connections on the 14-pin

header, as explained in midrange lesson 1: „RA0‟ to

„RC0‟, „RA1‟ to „RC1‟ and „RA2‟ to „RC2‟.

The program will simply turn on the LED on GP0,

regardless of why the PIC had been reset (or

powered on).

In addition, the LED on GP1 will be lit on power-

on (and not for any other reset), and the LED on

GP2 will indicate that a brown-out has occurred.

To generate a brown-out, you‟ll need to be able to

vary your power supply voltage – or you could

simply add a variable resistor in line with a fixed

supply.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_1.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 13

The pushbutton will be used to generate an external MCLR reset. When this happens, only the LED on

GP0 should light, because the reset is caused by neither power-on nor brown-out.

After enabling brownout detection in the device configuration:

// Config: ext reset, no code or data protect, brownout detect,

// no watchdog, power-up timer enabled, 4MHz int clock

__CONFIG(MCLREN & UNPROTECT & BOREN & WDTDIS & PWRTEN & INTIO);

and initialising TRISIO and clearing GPIO (so that all LEDs are initially off), as usual, the first task is to

test the POR flag to see if a power-on reset has occurred. If so, we should set the POR and BOD flags, to

set them up for any subsequent resets (as discussed above), and light the POR LED:

 if (!POR) // if power-on reset (*POR = 0),

 {

 POR = 1; // set POR and BOD flags for next reset

 BOD = 1;

 sGPIO |= 1<<nP_LED; // turn on POR LED (shadow)

 }

A shadow copy of GPIO is used to avoid potential read-modify-write problems, as we have done before.

Now we can reliably test for a brown-out reset, and, if one has occurred, set the BOD flag for next time, and

light the BOD LED:

 if (!BOD) // if brown-out detect (*BOD = 0)

 {

 BOD = 1; // set BOD flag for next reset

 sGPIO |= 1<<nB_LED; // turn on BOD LED (shadow)

 }

Note that, if a power-on reset had occurred, this brown-out detect code will never be executed, because the

earlier code sets the BOD flag, whenever a power-on reset is detected.

Finally, regardless of the reason for the reset, we light the “on” LED:

 sGPIO |= 1<<nO_LED; // turn on "on" indicator LED (shadow)

 GPIO = sGPIO; // copy shadow to GPIO

If the pushbutton is pressed, generating a MCLR reset, only this “on” LED will be lit.

Finally, we wait until the next reset:

 for (;;) // wait forever

 ;

Complete program

Here is how these pieces fit together:

/**

* Description: Lesson 5, example 6 *

* *

* Demonstrates use of brown-out detect *

* and differentiation between POR, BOD and MCLR resets *

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_1.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 14

* Turns on POR LED only if power-on reset is detected *

* Turns on BOD LED only if brown-out detect reset is detected *

* Turns on indicator LED in all cases *

* (no POR or BOD implies MCLR, as no other reset sources are active) *

* *

* Pin assignments: *

* GP0 - "on" indicator LED (always turned on) *

* GP1 - POR LED (indicates power-on reset) *

* GP2 - BOD LED (indicates brown-out detected) *

**/

#include <htc.h>

/***** CONFIGURATION *****/

// Config: ext reset, no code or data protect, brownout detect,

// no watchdog, power-up timer enabled, 4MHz int clock

__CONFIG(MCLREN & UNPROTECT & BOREN & WDTDIS & PWRTEN & INTIO);

// Pin assignments

#define nO_LED 0 // "on" indicator LED on GP0 (always on)

#define nP_LED 1 // POR LED on GP1 to indicate power-on reset

#define nB_LED 2 // BOD LED on GP2 to indicate brown-out

/***** GLOBAL VARIABLES *****/

unsigned char sGPIO; // shadow copy of GPIO

/***** MAIN PROGRAM *****/

void main()

{

 /*** Initialisation ***/

 // configure port

 TRISIO = ~(1<<nO_LED|1<<nP_LED|1<<nB_LED); // configure LED pins as outputs

 // initialise port

 GPIO = 0; // start with all LEDs off

 sGPIO = 0; // update shadow

 // check for POR or BOD reset

 if (!POR) // if power-on reset (*POR = 0),

 {

 POR = 1; // set POR and BOD flags for next reset

 BOD = 1;

 sGPIO |= 1<<nP_LED; // turn on POR LED (shadow)

 }

 if (!BOD) // if brown-out detect (*BOD = 0)

 {

 BOD = 1; // set BOD flag for next reset

 sGPIO |= 1<<nB_LED; // turn on BOD LED (shadow)

 }

 /*** Main code ***/

 sGPIO |= 1<<nO_LED; // turn on "on" indicator LED (shadow)

 GPIO = sGPIO; // copy shadow to GPIO

 for (;;) // wait forever

 ;

}

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 15

If you try this program, using a variable power supply, you should find that if you set the supply to say 4 V

and apply power, the POR LED should light, along with the “on” LED.

If you then simulate a brown-out, by lowering the voltage until both LEDs turn off (at around 2 V; by this

time they will be very dim, since the forward voltage of most normal-brightness LEDs is around 2 V),

without taking the voltage all the way to zero), and then raise the voltage again, the BOD LED should light,

along with the “on” LED, indicating that the brown-out was detected.

If you then turn off the power supply, and turn it back on again, the POR LED should light again, and not

BOD, because this was a normal power-on, not a brown-out.

Finally, if you press the pushbutton, generating a MCLR reset, while either the POR or BOD LED is lit, all

the LEDs will go out while the button is pressed, and then only the “on” LED will come on, indicating that

this reset was neither a power-on nor a brown-out.

Comparisons

Here is the resource usage summary for the “POR and BOD demo” examples:

POR+BODdemo

Again, the same pattern: the optimised code generated by the PICC-Lite compiler is little larger than the

hand-written assembler version, while the C source code is significantly shorter than the assembler source.

Summary

Most of the examples in this lesson did not require any new programming techniques; the first few being

minor adaptations of programs from earlier lessons, with different processor configuration options, to select

the oscillator mode being demonstrated.

However, the final example demonstrated that power-on and brown-out resets can be detected and responded

to effectively, using either of the HI-TECH C compilers – the detection code being simple and elegant,

compared with the assembler version.

In fact, all of the examples could be expressed succinctly in C, as illustrated by the code length comparisons:

Source code (lines)

As we have come to expect, the C source code is significantly shorter than the corresponding assembler

source, being typically half as long. The difference is more extreme in example 4, reflecting the ease with

which interrupts can be implemented using HI-TECH C.

Assembler / Compiler
Source code

(lines)

Program memory

(words)

Data memory

(bytes)

Microchip MPASM 35 27 1

HI-TECH PICC-Lite 20 31 3

HI-TECH C PRO Lite 20 55 2

Assembler / Compiler Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

Microchip MPASM 16 21 21 61 16 35

HI-TECH PICC-Lite 8 12 12 22 7 20

HI-TECH C PRO Lite 8 12 12 22 7 20

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 5: Reset, Power and Clock Options Page 16

And once again, the PICC-Lite compiler was able to generate optimised code almost as small as the hand-

written equivalent, in every example:

Program memory (words)

The programs generated by the C compilers continue to use more data memory than the assembler versions:

Data memory (bytes)

However, this data memory use is still only a small fraction of the 64 bytes available on the 12F629.

The next lesson will revisit material from midrange lessons 9 and 10, focussing on comparators – the single

comparator in the PIC12F629, and the dual comparator module in the PIC16F684.

Assembler / Compiler Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

Microchip MPASM 12 16 16 46 13 27

HI-TECH PICC-Lite 13 19 19 52 15 31

HI-TECH C PRO Lite 29 26 26 92 16 55

Assembler / Compiler Example 1 Example 2 Example 3 Example 4 Example 5 Example 6

Microchip MPASM 0 1 1 5 0 1

HI-TECH PICC-Lite 3 3 3 7 2 3

HI-TECH C PRO Lite 2 3 3 7 2 2

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_6.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_9.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_10.pdf

	Introduction to PIC Programming
	Programming Midrange PICs in C
	Lesson 5: Reset, Power and Clock Options
	Clock Options
	Internal RC oscillator
	Comparisons

	External clock input
	Complete program
	Comparisons

	Crystals and ceramic resonators
	External RC oscillator
	Complete program

	Power-On Reset
	Brown-out Detect
	Detecting a brown-out reset
	Complete program
	Comparisons

	Summary

