
© Gooligum Electronics 2011 www.gooligum.com.au

Midrange PIC C, Lesson 10: Using Timer2 Page 1

Introduction to PIC Programming

Programming Midrange PICs in C

by David Meiklejohn, Gooligum Electronics

Lesson 10: Using Timer2

Midrange assembler lesson 16 introduced a simple 8-bit timer, Timer2, showing how its period register can

be used to generate a specific timer period, and how its postscaler can be used to reduce the rate that timer

interrupts are triggered. We saw that these features make Timer2 ideal for generating a specific time-base

for interrupt-driven tasks.

This lesson revisits that material, showing how to use C to control and access Timer1, re-implementing the

examples using the free HI-TECH C
1
 (in “Lite” mode) and PICC-Lite compilers.

In summary, this lesson covers:

 Introduction to the Timer2 module

 Using the Timer2 postscaler to drive an interrupt at a reduced rate

 Using the Timer2 period register to generate a specific time-base

with an example program for HI-TECH C and PICC-Lite.

Timer2 Module

The current value of Timer2 is held in a single 8-bit register: TMR2.

Associated with TMR2 is an 8-bit period register: PR2, which specifies the maximum value that TMR2 will

reach before it is reset (rolls over) to zero on the next timer increment.

Thus, Timer2‟s period is equal to the value stored in PR2, plus one.

As usual, the HI-TECH C compilers make these available as unsigned char (8-bit) variables, TMR2 and

PR2.

Timer2 can only be driven by the instruction clock (FOSC/4). Thus, Timer2 can only be used as a timer; it

cannot be used to count external events.

Timer2 is configured using the T2CON register:

1
 PICC-Lite was bundled with versions of MPLAB up to 8.10. HI-TECH C (earlier known as “HI-TECH C PRO”) was

bundled with MPLAB 8.15 and later, although you should download the latest version from www.microchip.com.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T2CON – TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_16.pdf
http://www.microchip.com/

© Gooligum Electronics 2011 www.gooligum.com.au

Midrange PIC C, Lesson 10: Using Timer2 Page 2

Like Timer1, Timer2 can be turned on or off, using the TMR2ON bit: setting it to „1‟ to enables Timer2, and

clearing it to „0‟ stops it.

Prescaler

Like the other timers, Timer2 includes a prescaler, so that the timer does not have to increment on every

clock cycle.

The prescale ratio is set by the T2CKPS<1:0> bits, as shown in the following table:

T2CKPS<1:0> = „00‟ means that no prescaling will occur, and

TMR2 will increment at the instruction cycle rate.

T2CKPS1 = „1‟ (regardless of the value of T2CKPS0) selects the

maximum prescale ratio of 1:16, meaning that TMR2 will

increment every 16 instruction cycles. Given a 1 MHz instruction

cycle rate, the timer would increment every 16 µs.

Postscaler and Timer2 interrupts

Unlike the other timers, Timer2 also includes a postscaler.

A postscaler does not affect how quickly the timer increments.

Instead, it affects how often the Timer2 interrupt flag, TMR2IF, flag in the PIR1 register, is set:

This is similar to the other timers‟ interrupt flags, except that, instead of indicating a timer overflow, the

TMR2IF flag indicates that a match between TMR2 and PR2 has occurred.

If the postscaler is active (TOUTPS<3:0> ≠ „0000‟), this match has to occur some number of times before

TMR2IF is set.

The postscale ratio is equal to the value of TOUTPS<3:0> plus one.

Thus, the postscale ratio ranges from 1:1 (TOUTPS<3:0> = „0000‟) to 1:16 (TOUTPS<3:0> = „1111‟).

So, if TOUTPS<3:0> = „1001‟ (binary) = 9, the postscale ratio will be 1:10, and the match between TMR2

and PR2 will have to occur 10 times before TMR2IF is set.

The Timer2 interrupt is enabled by setting the TMR2IE enable bit is in the PIE1 register:

And of course, being a peripheral interrupt, to enable Timer2 interrupts you must also set the peripheral and

global interrupt enable bits (PEIE and GIE) in the INTCON register.

The postscaler effectively slows the interrupt rate, allowing Timer2 to generate a longer time-base.

An example will help to illustrate these concepts…

T2CKPS<1:0>

bit value

Timer2

prescale ratio

00 1 : 1

01 1 : 4

10 or 11 1 : 16

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PIR1 EEIF ADIF CCP1IF C2IF C1IF OSFIF TMR2IF TMR1IF

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PIE1 EEIE ADIE CCP1IE C2IE C1IE OSFIE TMR2IE TMR1IE

© Gooligum Electronics 2011 www.gooligum.com.au

Midrange PIC C, Lesson 10: Using Timer2 Page 3

Example 1: Flash an LED at exactly 1 Hz

Lesson 3 included an example where an LED was flashed at exactly 1 Hz, using a Timer0 interrupt. To do

so, the interrupt handler had to add an appropriate offset to the timer, and, to ensure accuracy, the prescaler

could not be used.

In this example, we will see that it is much

simpler to achieve the same result using

Timer2.

We will use the circuit shown on the right,

based on a PIC16F684 with an LED on

RC0, which we will flash at 1 Hz.

As usual, you can use Microchip‟s Low

Pin Count Demo Board, where an LED

(labelled DS1) is already connected to

RC0.

Using Timer2‟s period register, we can

have TMR2 reset automatically, with a

period that divides evenly into 1 s.

Given the default 4 MHz processor clock,

we‟ll need to toggle the LED every

500,000 instruction cycles.

The largest value, less than or equal to 256, that divides exactly into 500,000 is 250.

To generate a period of 250 counts, we need to load the value 249 (= 250 – 1) into PR2:

 PR2 = 249; // Timer2 period = 250 clocks (PR2 = period-1)

If we set the prescaler to 1:4, TMR2 increments every 4 µs, and will match PR2 every 250 × 4 µs = 1 ms.

And if we set the postscaler to 1:10, the interrupt will be triggered on every 10
th
 match, i.e. after 10 ms.

To configure Timer2 in this way, we can use:

 T2CON = 0b01001101; // configure Timer2:

 //-1001--- postscale = 10 (TOUTPS = 1001)

 //-----1-- enable Timer2 (TMR2ON = 0)

 //------01 prescale = 4 (T2CKPS = 01)

or, if using HI-TECH C version 9.81, you could express this as:

 // configure Timer2:

 T2CONbits.T2CKPS = 1; // prescale = 4

 T2CONbits.TOUTPS = 9; // postscale = 10

 T2CONbits.TMR2ON = 1; // enable Timer2

We can then enable the Timer2 interrupt:

 TMR2IE = 1; // enable Timer2 interrupt

 PEIE = 1; // enable peripheral

 ei(); // and global interrupts

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_3.pdf

© Gooligum Electronics 2011 www.gooligum.com.au

Midrange PIC C, Lesson 10: Using Timer2 Page 4

The ISR needs to maintain a count, so that it can toggle the LED after it has been run 50 times, to generate a

total period of 500 ms – and for that we need a static variable, defined at the start of the interrupt function:

 static unsigned int cnt_10ms = 0; // counts 10 ms periods

The ISR can then increment this variable each time it is called, toggling the LED after 500 ms (when the

count = 50):

 TMR2IF = 0; // clear interrupt flag

 // toggle LED every 500 ms

 ++cnt_10ms; // increment 10 ms period count

 if (cnt_10ms == FlashMS/10) // if we've counted for 500 ms,

 {

 cnt_10ms = 0; // reset count

 sPORTC ^= 1<<nF_LED; // toggle LED (using shadow register)

 }

where the constant FlashMS is defined by:

#define FlashMS 500 // LED flash toggle time in milliseconds

Note that the interrupt flag is cleared at the beginning of the interrupt handler, and, as we‟ve done before, a

shadow register is used when toggling the LED port bit, to avoid potential read-modify-write issues.

That means that all the main loop has to do is copy this shadow register to the port:

 // Main loop

 for (;;)

 {

 // copy shadow register (updated by ISR) to port

 PORTC = sPORTC;

 }

Complete program

This is how these pieces fit together, for HI-TECH C v9.81:

/**

* *

* Description: Lesson 10, example 1 *

* *

* Demonstrates use of Timer2 to perform generate a specific time-base *

* for an interrupt-driven background task *

* *

* Flash an LED at exactly 1 Hz (50% duty cycle). *

* *

* *

* Pin assignments: *

* RC0 - flashing LED *

* *

**/

#include <htc.h>

/***** CONFIGURATION *****/

// ext reset, no code or data protect, no brownout detect,

// no watchdog, power-up timer, int clock with I/O,

© Gooligum Electronics 2011 www.gooligum.com.au

Midrange PIC C, Lesson 10: Using Timer2 Page 5

// no failsafe clock monitor, two-speed start-up disabled

__CONFIG(MCLRE_ON & CP_OFF & CPD_OFF & BOREN_OFF & WDTE_OFF & PWRTE_ON &

 FOSC_INTOSCIO & FCMEN_OFF & IESO_OFF);

// Pin assignments

#define nF_LED 0 // flashing LED on RC0

/***** CONSTANTS *****/

#define FlashMS 500 // LED flash toggle time in milliseconds

/***** GLOBAL VARIABLES *****/

volatile unsigned char sPORTC; // shadow copy of PORTC

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // configure ports

 PORTC = 0; // start with PORTC clear (LED off)

 sPORTC = 0; // and update shadow

 TRISC = ~(1<<nF_LED); // configure LED pin (only) as an output

 // configure timers

 PR2 = 249; // Timer2 period = 250 clocks (PR2 = period-1)

 // configure Timer2:

 T2CONbits.T2CKPS = 1; // prescale = 4

 T2CONbits.TOUTPS = 9; // postscale = 10

 T2CONbits.TMR2ON = 1; // enable Timer2

 TMR2IE = 1; // enable Timer2 interrupt

 // configure interrupts

 // enable interrupts

 PEIE = 1; // enable peripheral

 ei(); // and global interrupts

 // Main loop

 for (;;)

 {

 // copy shadow register (updated by ISR) to port

 PORTC = sPORTC;

 }

}

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

 static unsigned int cnt_10ms = 0; // counts 10 ms periods

 // *** Service Timer2 interrupt

 //

 // Runs every 10 ms

 // (every 10th TMR2/PR2 match;

 // TMR2 matches PR2 every 250 x 4 clocks = 1000 us)

 //

 // Flashes LED at 1 Hz

 // by toggling on every 50th interrupt (every 500 ms)

© Gooligum Electronics 2011 www.gooligum.com.au

Midrange PIC C, Lesson 10: Using Timer2 Page 6

 //

 // (only Timer2 interrupts are enabled)

 //

 TMR2IF = 0; // clear interrupt flag

 // toggle LED every 500 ms

 ++cnt_10ms; // increment 10 ms period count

 if (cnt_10ms == FlashMS/10) // if we've counted for 500 ms,

 {

 cnt_10ms = 0; // reset count

 sPORTC ^= 1<<nF_LED; // toggle LED (using shadow register)

 }

}

We really only need this one example to demonstrate Timer2‟s features. But despite its simplicity, hopefully

this lesson has shown that Timer2 is a useful, and easy-to-use, timer.

Now that we‟ve seen all the timers, we can turn our attention to one of the most powerful midrange PIC

peripherals, the Capture/Compare/PWM module, which we‟ll introduce in the next lesson, beginning with its

capture and compare modes.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_7.pdf

	Introduction to PIC Programming
	Programming Midrange PICs in C
	Lesson 10: Using Timer2
	Timer2 Module
	Prescaler
	Postscaler and Timer2 interrupts
	Example 1: Flash an LED at exactly 1 Hz
	Complete program

