
© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 1

Introduction to PIC Programming

Programming Midrange PICs in C

by David Meiklejohn, Gooligum Electronics

Lesson 7: Driving 7-Segment Displays

We saw in midrange lesson 12 how to drive 7-segment LED displays, using lookup-tables and multiplexing

techniques implemented in assembly language. This lesson shows how C can be used to apply those

techniques to drive multiple 7-segment displays, using the free HI-TECH C
1
 (in “Lite” mode) and PICC-Lite

compilers to re-implement the examples from the assembler lesson.

In summary, this lesson covers:

 Using lookup tables to drive a single 7-segment display

 Using multiplexing to drive multiple displays

Lookup Tables and 7-Segment Displays

To demonstrate how to drive a single 7-segment display, we will use the circuit from midrange lesson 12,

using a PIC16F684, as shown here.

This circuit uses a common-

cathode 7-segment LED

module. Most will have a

different pin-out to that shown,

but are all connected to the PIC

in the same way. Each segment

is driven, via a 330 Ω resistor,

directly from one of the output

pins. The whole of PORTC is

used, plus RA2 from PORTA.

The common-cathode

connection is grounded. If a

common-anode module is used

instead, the anode connection is

connected to VDD and the pins

become active-low (cleared to

zero to make the connected

segment light) – you would need

to make appropriate changes to

the examples below.

1
 PICC-Lite was bundled with versions of MPLAB up to 8.10. HI-TECH C (earlier known as “HI-TECH C PRO”) was

bundled with MPLAB 8.15 and later, although you should download the latest version from www.htsoft.com.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_12.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_12.pdf
http://www.htsoft.com/

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 2

As we saw in midrange lesson 12, lookup tables on midrange PICs are normally implemented as a computed

goto into a sequence of „retlw‟ instructions, each returning a value corresponding to its offset within the

table.

The example program in that lesson implemented a simple seconds counter, displaying each digit from 0 to

9, then repeating, with a 1 s delay between each count.

HI-TECH C PRO or PICC-Lite

In C, a lookup table would usually be implemented as an initialised array. For example:

 char days[12] = {31,28,31,30,31,30,31,31,30,31,30,31};

The problem with such a declaration for HI-TECH C is that the compiler has no way to know whether the

array contents will change, so it is forced to place such an array in data memory (which even in large 8-bit

PICs is a very limited resource) and add code to initialise the array on program start-up – wasteful of both

data and program space.

If, instead, the array is declared as „const‟, the compiler knows that the contents of the array will never

change, and so can be placed in ROM (program memory), as a lookup table of retlw instructions.

So to create lookup tables equivalent to those in the assembler example in midrange lesson 12, we can write:

// Lookup pattern for 7 segment display on port A

const char pat7segA[10] = {

 // RA2 = G

 0b000000, // 0

 0b000000, // 1

 0b000100, // 2

 0b000100, // 3

 0b000100, // 4

 0b000100, // 5

 0b000100, // 6

 0b000000, // 7

 0b000100, // 8

 0b000100 // 9

};

// Lookup pattern for 7 segment display on port C

const char pat7segC[10] = {

 // RC5:0 = ABCDEF

 0b111111, // 0

 0b011000, // 1

 0b110110, // 2

 0b111100, // 3

 0b011001, // 4

 0b101101, // 5

 0b101111, // 6

 0b111000, // 7

 0b111111, // 8

 0b111101 // 9

};

Looking up the display patterns is easy; the digit to be displayed is used as the array index.

To set the port pins for a given digit, we then have:

 PORTA = pat7segA[digit]; // lookup port A and C patterns

 PORTC = pat7segC[digit];

This is quite straightforward, and certainly much simpler than the assembler version.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_12.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_12.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 3

However, the assembler example used two tables, one for PORTA, the other for PORTC, to simplify the

code for writing the appropriate pattern to each port. In C, it is easier to write more complex expressions,

without being as concerned by (or even aware of) implementation details.

In this case, if you were writing the C program for this example from scratch, instead of converting an

existing assembler program, it would probably seem more natural to use a single lookup table with patterns

specifying all seven segments of the display, and to then extract the parts of each pattern corresponding to

various pins.

For example:

// Lookup pattern for 7 segment display on ports A and C

const char pat7seg[10] = {

 // RC5:0,RA2 = ABCDEFG

 0b1111110, // 0

 0b0110000, // 1

 0b1101101, // 2

 0b1111001, // 3

 0b0110011, // 4

 0b1011011, // 5

 0b1011111, // 6

 0b1110000, // 7

 0b1111111, // 8

 0b1111011 // 9

};

Bits 6:1 of each pattern provide the PORTC bits 5:0, so to get the value for PORTC, shift the pattern one bit

to the right:

 PORTC = pat7seg[digit] >> 1;

Pattern bit 0 gives the value for RA2. To derive that value, the pattern is ANDed with a mask, leaving only

bit 0:

 RA2 = pat7seg[digit] & 0b0000001;

Complete program

Here is the complete single-lookup-table version of this example, for HI-TECH C PRO:

/**

* Description: Lesson 7, example 1b *

* *

* Demonstrates use of lookup tables to drive a 7-segment display *

* *

* Single digit 7-segment display counts repeating 0 -> 9 *

* 1 second per count, with timing derived from int RC oscillator *

* (single pattern lookup array) *

* *

* *

* Pin assignments: *

* RA2, RC0-5 = 7-segment display (common cathode) *

* *

**/

#include <htc.h>

#define _XTAL_FREQ 4000000 // oscillator frequency for delay functions

#include "stdmacros-HTC.h" // DelayS() - delay in seconds

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 4

/***** CONFIGURATION *****/

// ext reset, no code or data protect, no brownout detect,

// no watchdog, power-up timer, int clock with I/O,

// no failsafe clock monitor, two-speed start-up disabled

__CONFIG(MCLREN & UNPROTECT & BORDIS & WDTDIS & PWRTEN & INTIO & FCMDIS &

IESODIS);

/***** LOOKUP TABLES *****/

// Lookup pattern for 7 segment display on ports A and C

const char pat7seg[10] = {

 // RC5:0,RA2 = ABCDEFG

 0b1111110, // 0

 0b0110000, // 1

 0b1101101, // 2

 0b1111001, // 3

 0b0110011, // 4

 0b1011011, // 5

 0b1011111, // 6

 0b1110000, // 7

 0b1111111, // 8

 0b1111011 // 9

};

/***** MAIN PROGRAM *****/

void main()

{

 char digit; // digit to be displayed

 // Initialisation

 TRISA = 0; // configure PORTA and PORTC as all outputs

 TRISC = 0;

 PORTA = 0; // make all PORTA pins low

 // Main loop

 for (;;) {

 // display each digit from 0 to 9 for 1 sec

 for (digit = 0; digit < 10; digit++) {

 // display digit

 RA2 = pat7seg[digit] & 0b0000001; // extract pattern bits

 PORTC = pat7seg[digit] >> 1; // for each port

 // delay 1 sec

 DelayS(1);

 }

 }

}

This makes use of the DelayS() macro developed in lesson 2, defined in the external “stdmacros-

HTC.h” file.

The PICC-Lite version is the same, except that, to make use the delay functions it is supplied with, we

substitute:

#define XTAL_FREQ 4MHZ // oscillator frequency for delay functions

#include "stdmacros-PCL.h" // DelayS() - delay in seconds

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_2.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 5

Comparisons

The following table summarises the resource usage for the “single-digit seconds counter” assembler and C

example, along with the baseline (PIC16F505) versions of this example, from baseline C lesson 4, for

comparison. Note however that the assembler example uses two lookup tables, while the C versions use a

single lookup array with more complex pattern extraction. You could argue that such a comparison is not

valid. However, the purpose of these tutorials is to show how a task would typically be done in each

language; different ways to approach a problem may seem more natural in one language or another. The

idea here is to show how each example might typically be implemented in C, without being constrained by

what is simplest in assembler.

Count_7seg_x1

As you can see, the C versions are much shorter than the assembler equivalent – largely due to having only a

single table instead of two. But even with only one table in memory, the C compilers still generate larger

code than the two-table assembler version – mainly due to the instructions needed to extract the patterns

from each array entry.

Note that the 16F684 versions are all smaller than their 16F505 equivalents, demonstrating that this type of

application can be implemented more efficiently using the midrange PIC architecture.

Interrupt-driven Multiplexing

As explained in more detail in midrange lesson 12, multiplexing can used to drive mutiple displays, using a

minimal number of output pins. Each display is lit in turn, one at a time, so rapidly that it appears to the

human eye that each display is lit continuously.

Ideally the display multiplexing would be a “background task”; one that continues steadily while the main

program is free to perform tasks such as responding to changing inputs. As we saw in lesson 3, that‟s an

ideal application for timer-based interrupts. The interrupt service routine displays each digit, one at a time,

in succession. If the interrupt is triggered at 1 ms intervals, each digit would be displayed for 1 ms, then the

next digit for another 1 ms, and so on.

We‟ll use the example circuit from midrange lesson 12, shown at the top of the next page, to demonstrate

how to implement this interrupt-driven multiplexing technique, using C.

Each 7-segment display is enabled when the NPN transistor connected to its cathode pins is turned on (by

pulling the base high), providing a path to ground.

To multiplex the display, each transistor is turned on (by raising the pin connected to its base) in turn, while

outputting the pattern corresponding to that digit on the segment pins, which are wired as a bus.

Assembler / Compiler

Source code

(lines)

Program memory

(words)

Data memory

(bytes)

16F684 16F505 16F684 16F505 16F684 16F505

Microchip MPASM 60 66 66 72 4 4

HI-TECH PICC-Lite 25 26 78 96 8 11

HI-TECH C PRO Lite 25 26 107 122 6 4

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_4.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_12.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_3.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_12.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 6

The multiplexing example in midrange lesson 12 was built a piece at a time. First, the single-digit example

was re-implemented, using only the „ONES‟ digit (enabled by raising RA0), with the display maintained by

a timer-driven interrupt, running every 2.048 ms.

This was then expanded to three digits, counting minutes and seconds.

The interrupt service routine displayed a different digit on each 2.048 ms tick.

A “multiplex counter” variable was used in the ISR to keep track of which digit to display.

This approach was expressed this in pseudo code as:

 ; display next digit in sequence

 ; (determined by current value of mpx_cnt)

 if mpx_cnt = 0

 display ones digit

 if mpx_cnt = 1

 display tens digit

 if mpx_cnt = 2

 display minutes digit

 ; increment mpx_cnt, to select next digit for next time

 mpx_cnt = mpx_cnt + 1

 if mpx_cnt = 3 ; reset count if at end of digit sequence

 mpx_cnt = 0

However, the assembler code actually used was structured a little differently than this, so that it could be

implemented more efficiently.

HI-TECH C PRO or PICC-Lite

As we did in midrange lesson 12, we can start by re-implementing the single-digit example, setting up a

timer-based interrupt, running every 2.048 ms, to maintain the display.

In the assembler example we used a macro to perform the table lookups. In C, it is more natural to

implement this as a function, called from the interrupt service routine:

void set7seg(char digit); // display digit on 7-segment display (shadow)

This function would be responsible for outputting the pattern corresponding to the digit passed to it.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_12.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_12.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 7

For consistency with the assembler examples, and because it is good practice (avoiding potential read-

modify-write issues), we will use shadow port registers, with the set7seg() function updating the shadow

registers, not the ports directly.

It makes sense to include the pattern table definitions within the function, so that the function is self-

contained – only the function needs to “know” about the pattern tables; they are never accessed directly from

other parts of the program.

So we have:

/***** Display digit on 7-segment display (shadow) *****/

void set7seg(char digit)

{

 // Lookup pattern table for 7 segment display on PORTA

 const char pat7segA[10] = {

 // RA2 = G

 0b000000, // 0

 0b000000, // 1

 0b000100, // 2

 0b000100, // 3

 0b000100, // 4

 0b000100, // 5

 0b000100, // 6

 0b000000, // 7

 0b000100, // 8

 0b000100 // 9

 };

 // Lookup pattern table for 7 segment display on PORTC

 const char pat7segC[10] = {

 // RC5:0 = ABCDEF

 0b111111, // 0

 0b011000, // 1

 0b110110, // 2

 0b111100, // 3

 0b011001, // 4

 0b101101, // 5

 0b101111, // 6

 0b111000, // 7

 0b111111, // 8

 0b111101 // 9

 };

 // lookup pattern bits and write to shadow registers

 sPORTA = pat7segA[digit];

 sPORTC = pat7segC[digit];

}

Note that we‟ve gone back to using two pattern tables. Because we‟re writing the whole of PORTA

(actually, the shadow copy of PORTA) in this function, and the display enable lines are connected to

PORTA, it has the side effect of blanking the display by clearing all the display enable lines.

So, after calling this function, we must enable the display:

 // display digit (using shadow registers)

 set7seg(digit); // output digit

 sPORTA |= 1 << nDISPLAY; // enable display

You can see that this will be easy to extend to multiple digits; all we need do is enable different displays,

after outputting the appropriate digit pattern on the 7-segment bus.

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 8

We can then wrap this within an interrupt service routine:

void interrupt isr(void)

{

 // *** Service Timer0 interrupt

 // TMR0 overflows every 2.048 ms

 // (only Timer0 interrupts are enabled)

 //

 T0IF = 0; // clear interrupt flag

 // display digit (using shadow registers)

 set7seg(digit); // output digit

 sPORTA |= 1 << nDISPLAY; // enable display

 // copy shadow regs to ports

 PORTA = sPORTA;

 PORTC = sPORTC;

}

And configure Timer0 to generate an interrupt (running this ISR) every 2.048 ms:

 // setup Timer0

 OPTION = 0b11000010; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----010 prescale = 8 (PS = 010)

 // -> increment every 8 us

 // -> TMR0 overflows every 2.048 ms

 // configure interrupts

 T0IE = 1; // enable Timer0 interrupt

 ei(); // enable global interrupts

With this interrupt code running in the background, taking care of displaying the current contents of the

„digit‟ variable (which now has to be declared as a global variable, so that the ISR can access it), all the

main loop code has to do is update the value of „digit‟ every second:

 // Main loop

 for (;;)

 {

 // display each digit from 0 to 9 for 1 sec

 for (digit = 0; digit < 10; digit++)

 {

 DelayS(1); // delay 1 sec

 }

 }

That‟s one of the main advantages of using a timer-based “background” interrupt to maintain the display;

your main code only has to update the display contents, without worrying about the mechanics of how it is

displayed, making the main code easier to follow.

In the first three-digit assembler example (midrange lesson 12, example 2), the time count digits were stored

as a separate variables:

GENVAR UDATA ; general variables

mpx_cnt res 1 ; multiplex counter

mins res 1 ; current count: minutes

tens res 1 ; tens

ones res 1 ; ones

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_12.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 9

This was done to simplify the assembler code, which, at the end of the main loop, incremented the “ones”

variable, and if it overflowed from 9 to 0, incremented “tens”.

This was followed by an example showing how the seconds value could be stored in a single value, using

binary-coded decimal (BCD) format to save data memory, while keeping the process of extracting each digit

relatively simple:

GENVAR UDATA ; general variables

mpx_cnt res 1 ; multiplex counter

mins res 1 ; current count: minutes

secs res 1 ; seconds (BCD)

However, in C it is far more natural to simply store minutes and seconds as ordinary integer variables:

unsigned char mins = 0; // time counters (displayed by ISR)

unsigned char secs = 0;

(initialised to ensure that they hold defined, legal values when the ISR, which references them, first runs)

And then to extract the tens digit (by dividing seconds by ten) and display it, using the function developed

above, we can simply write:

 set7seg(secs/10); // output tens digit

 sPORTA |= 1 << nTENS; // enable tens display

Similarly, the ones digit is returned by the expression „secs%10‟, which gives the remainder after dividing

seconds by ten:

 set7seg(secs%10); // output ones digit

 sPORTA |= 1 << nONES; // enable ones display

This code assumes that the symbols „nTENS‟ and „nONES‟ have been defined:

// Pin assignments

#define nMINS 4 // minutes enable on RA4

#define nTENS 1 // tens enable on RA1

#define nONES 0 // ones enable on RA0

Within the interrupt service routine, we need to keep track, from one invocation of the ISR to the next, of

which digit to display next. So we need to declare a static variable within the ISR, to be used for this:

 static unsigned char mpx_cnt = 0; // multiplex counter

It is then straightforward to translate the pseudo code presented above into C:

 if (mpx_cnt == 0) {

 set7seg(secs%10); // output ones digit

 sPORTA |= 1 << nONES; // enable ones display

 }

 if (mpx_cnt == 1) {

 set7seg(secs/10); // output tens digit

 sPORTA |= 1 << nTENS; // enable tens display

 }

 if (mpx_cnt == 2) {

 set7seg(mins); // output minutes digit

 sPORTA |= 1 << nMINS; // enable minutes display

 }

 // Increment mpx_cnt, to select next digit for next time

 mpx_cnt++;

 if (mpx_cnt == 3) // reset count if at end of digit sequence

 mpx_cnt = 0;

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 10

However, when selecting between blocks of code, based on various possible values of a single variable, it is

more normal to use the C „switch‟ statement:

 switch (mpx_cnt)

 {

 case 0:

 set7seg(secs%10); // output ones digit

 sPORTA |= 1 << nONES; // enable ones display

 break;

 case 1:

 set7seg(secs/10); // output tens digit

 sPORTA |= 1 << nTENS; // enable tens display

 break;

 case 2:

 set7seg(mins); // output minutes digit

 sPORTA |= 1 << nMINS; // enable minutes display

 break;

 }

 // Increment mpx_cnt, to select next digit for next time

 mpx_cnt++;

 if (mpx_cnt == 3) // reset count if at end of digit sequence

 mpx_cnt = 0;

Note that the multiplex count is updated in a separate increment and test (in case the end of the sequence has

been reached) operation, after the „switch‟ statement.

An alternative is to update mpx_cnt within the switch statement:

 switch (mpx_cnt)

 {

 case 0:

 set7seg(secs%10); // output ones digit

 sPORTA |= 1 << nONES; // enable ones display

 mpx_cnt = 1; // display tens next

 break;

 case 1:

 set7seg(secs/10); // output tens digit

 sPORTA |= 1 << nTENS; // enable tens display

 mpx_cnt = 2; // display minutes next

 break;

 case 2:

 set7seg(mins); // output minutes digit

 sPORTA |= 1 << nMINS; // enable minutes display

 mpx_cnt = 0; // display ones next

 break;

 }

This is in the form of a state machine, where for each current state, we explicitly state what the next state

will be. It is particularly appropriate when the states are not purely sequential, as they are here.

This method is also shorter, when there are only a couple of cases. In this example, both code fragments are

the same length, and PICC-Lite generates the same size (optimised) code in both cases, so there is no

advantage one way or another – it becomes a matter of personal style.

After updating the shadow registers, we have to copy them to PORTA and PORTC, as before:

 // copy shadow regs to ports

 PORTA = sPORTA;

 PORTC = sPORTC;

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 11

Once again, with the display being updated by the interrupt code, in the background, the main loop code has

nothing to do except increment the counters, once per second:

 for (;;)

 {

 // count minutes:seconds from 0:00 to 9:59

 // (displayed by ISR)

 for (mins = 0; mins < 10; mins++)

 {

 for (secs = 0; secs < 60; secs++)

 {

 DelayS(1); // delay 1 sec

 }

 }

 }

Complete program

Fitting all this together, we have, for PICC-Lite:

/**

* Description: Lesson 7, example 2 *

* *

* Demonstrates use of timer-based interrupt-driven multiplexing *

* to drive multiple 7-seg displays *

* *

* 3 digit 7-segment LED display: 1 digit minutes, 2 digit seconds *

* counts in seconds 0:00 to 9:59 then repeats, *

* with timing derived from int 4 MHz oscillator *

* *

* *

* Pin assignments: *

* RA2, RC0-5 = 7-segment display (common cathode) *

* RA4 - minutes enable (active high) *

* RA1 - tens enable *

* RA0 - ones enable *

* *

**/

#include <htc.h>

#define XTAL_FREQ 4MHZ // oscillator frequency for delay functions

#include "stdmacros-PCL.h" // DelayS() - delay in seconds

/***** CONFIGURATION *****/

// ext reset, no code or data protect, no brownout detect,

// no watchdog, power-up timer, int clock with I/O,

// no failsafe clock monitor, two-speed start-up disabled

__CONFIG(MCLREN & UNPROTECT & BORDIS & WDTDIS & PWRTEN & INTIO & FCMDIS &

IESODIS);

// Pin assignments

#define nMINS 4 // minutes enable on RA4

#define nTENS 1 // tens enable on RA1

#define nONES 0 // ones enable on RA0

/***** PROTOTYPES *****/

void set7seg(char digit); // display digit on 7-segment display (shadow)

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 12

/***** GLOBAL VARIABLES *****/

unsigned char sPORTA; // shadow registers: PORTA

unsigned char sPORTC; // PORTC

unsigned char mins = 0; // time counters (displayed by ISR)

unsigned char secs = 0;

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // setup ports

 TRISA = 0; // configure PORTA and PORTC as all outputs

 TRISC = 0;

 // setup Timer0

 OPTION = 0b11000010; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----010 prescale = 8 (PS = 010)

 // -> increment every 8 us

 // -> TMR0 overflows every 2.048 ms

 // configure interrupts

 T0IE = 1; // enable Timer0 interrupt

 ei(); // enable global interrupts

 // Main loop

 for (;;)

 {

 // count minutes:seconds from 0:00 to 9:59

 // (displayed by ISR)

 for (mins = 0; mins < 10; mins++)

 {

 for (secs = 0; secs < 60; secs++)

 {

 DelayS(1); // delay 1 sec

 }

 }

 }

}

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

 static unsigned char mpx_cnt = 0; // multiplex counter

 // *** Service Timer0 interrupt

 // TMR0 overflows every 2.048 ms

 // (only Timer0 interrupts are enabled)

 //

 T0IF = 0; // clear interrupt flag

 // Display current count on 3 x 7-segment displays

 // mpx_cnt determines current digit to diplay

 //

 switch (mpx_cnt)

 {

 case 0:

 set7seg(secs%10); // output ones digit

 sPORTA |= 1 << nONES; // enable ones display

 break;

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 13

 case 1:

 set7seg(secs/10); // output tens digit

 sPORTA |= 1 << nTENS; // enable tens display

 break;

 case 2:

 set7seg(mins); // output minutes digit

 sPORTA |= 1 << nMINS; // enable minutes display

 break;

 }

 // Increment mpx_cnt, to select next digit for next time

 mpx_cnt++;

 if (mpx_cnt == 3) // reset count if at end of digit sequence

 mpx_cnt = 0;

 // copy shadow regs to ports

 PORTA = sPORTA;

 PORTC = sPORTC;

}

/***** FUNCTIONS *****/

/***** Display digit on 7-segment display (shadow) *****/

void set7seg(char digit)

{

 // Lookup pattern table for 7 segment display on PORTA

 const char pat7segA[10] = {

 // RA2 = G

 0b000000, // 0

 0b000000, // 1

 0b000100, // 2

 0b000100, // 3

 0b000100, // 4

 0b000100, // 5

 0b000100, // 6

 0b000000, // 7

 0b000100, // 8

 0b000100 // 9

 };

 // Lookup pattern table for 7 segment display on PORTC

 const char pat7segC[10] = {

 // RC5:0 = ABCDEF

 0b111111, // 0

 0b011000, // 1

 0b110110, // 2

 0b111100, // 3

 0b011001, // 4

 0b101101, // 5

 0b101111, // 6

 0b111000, // 7

 0b111111, // 8

 0b111101 // 9

 };

 // lookup pattern bits and write to shadow registers

 sPORTA = pat7segA[digit];

 sPORTC = pat7segC[digit];

}

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 14

As always, the HI-TECH C PRO version is the same, except for substituting:

#define _XTAL_FREQ 4000000 // oscillator frequency for delay functions

#include "stdmacros-HTC.h" // DelayS() - delay in seconds

Comparisons

Here is the resource usage summary for all of the 3-digit time count example programs:

Count_7seg_x3

You can see that using interrupts to drive the display multiplexing in the midrange versions has added to the

program complexity, increasing both the source code length and program memory size, compared with the

baseline versions. You may conclude from this that using interrupts isn‟t worth the trouble, but if you

compare the relative simplicity of the “main loop” code in the midrange, interrupt-driven examples with the

baseline versions, you can see that we now have a platform that is easily built upon – the display code, in the

ISR, can remain the same, while program complexity increases.

Otherwise, the patterns we saw for the baseline examples in baseline C lesson 4 remain the same.

The C source code is less than half as long as either of the assembler version, demonstrating how much

simpler it is to implement the display multiplexing algorithm in C.

However – even the optimised code generated by the PICC-Lite compiler is significantly (37%) larger than

the hand-written assembler version. As in the baseline example, this is due to the use of the apparently

innocuous „/‟ and „%‟ arithmetic operations in the C version.

And again, the non-optimised code generated by the HI-TECH C PRO compiler (running in „lite‟ mode) is

terrible – around three times as big as either of the assembler versions!

Summary

We have seen in this lesson that lookup tables can be effectively implemented in C as initialised arrays

qualified as „const‟, and that by using C expressions is it simple to extract more than one segment display

pattern from a single table entry, making it seem natural to use a single lookup table. We also saw that it was

quite straightforward to use timer-based interrupt-driven multiplexing to implement a multi-digit display,

without needing to be as concerned (as we were in the assembler versions) about how to store the values

being displayed.

Assembler / Compiler

Source code

(lines)

Program memory

(words)

Data memory

(bytes)

16F684 16F505 16F684 16F505 16F684 16F505

Microchip MPASM (non-BCD) 136 113 150 97 11 5

Microchip MPASM (BCD) 142 114 156 99 11 4

HI-TECH PICC-Lite 68 44 214 185 23 13

HI-TECH C PRO Lite 68 44 456 425 20 12

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_C_4.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 7: Driving 7-segment Displays Page 15

Thus, both examples could be expressed very succinctly in C, using either compiler, compared with the

assembler versions (the non-BCD assembler version is the basis for comparison for example 2):

Source code (lines)

Now that the examples are becoming a little more complex, the C source code is becoming very significantly

shorter than the assembler versions – less than half the length.

However, there is a potential cost associated with writing what seems to be short, simple code in C. For

example, it is easy to write an expression like „secs/10‟, without appreciating that this means that the

compiler has to generate code to perform a division, which is not very efficient. So we‟re now seeing a very

clear trade-off between ease of coding (shorter source code) and resource usage efficiency:

Program memory (words)

Data memory (bytes)

The optimising PICC-Lite compilers is generating code up to 43% larger than the assembler version, for the

3-digit example, and using more than twice as much data memory.

Although it would be possible to re-write the C programs so that the compilers can generate more efficient

code, to some extent that misses the point of programming in C. Of course it is useful, when using C, to be

aware of which program structures use more memory or need more instructions to implement than others

(such as including floating point calculations when it is not necessary), but if you really need efficiency, as

you often will with these small devices, it‟s difficult to do beat assembler.

The next lesson makes use of our new ability to display numeric values, covering analog-to-digital

conversion and simple arithmetic and arrays (revisiting material from midrange lessons 13 and 14).

Assembler / Compiler Count_7seg_x1 Count_7seg_x3

Microchip MPASM 60 136

HI-TECH PICC-Lite 25 68

HI-TECH C PRO Lite 25 68

Assembler / Compiler Count_7seg_x1 Count_7seg_x3

Microchip MPASM 66 150

HI-TECH PICC-Lite 78 214

HI-TECH C PRO Lite 107 456

Assembler / Compiler Count_7seg_x1 Count_7seg_x3

Microchip MPASM 4 11

HI-TECH PICC-Lite 8 23

HI-TECH C PRO Lite 6 20

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_8.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_13.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_14.pdf

	Introduction to PIC Programming
	Programming Midrange PICs in C
	Lesson 7: Driving 7-Segment Displays
	Lookup Tables and 7-Segment Displays
	HI-TECH C PRO or PICC-Lite
	Complete program

	Comparisons

	Interrupt-driven Multiplexing
	HI-TECH C PRO or PICC-Lite
	Complete program

	Comparisons

	Summary

