
© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 1

Introduction to PIC Programming

Programming Midrange PICs in C

by David Meiklejohn, Gooligum Electronics

Lesson 3: Introduction to Interrupts

As we saw in midrange lesson 6, the interrupt facility available on midrange PICs is especially useful,

making it much easier to implement regular “background” tasks (such as refreshing a multiplexed display –

see for example baseline lesson 8) and allow programs to respond in a timely manner to external events,

without having to sit in a busy-wait, or polling loop. Both of these applications of interrupts are

demonstrated in this lesson.

This lesson revisits the material from midrange lesson 6, introducing external and timer interrupts (driven by

Timer0) and some of their applications, such as running background tasks and switch debouncing,.

As usual, the examples are re-implemented using the “free” C compilers from HI-TECH Software: PICC-

Lite and HI-TECH C
1
 (in “Lite” mode), and for each, the memory usage and code length is compared with

that of assembler, to demonstrate the trade-offs involved.

In summary, this lesson covers:

 Introduction to interrupts on the midrange PIC architecture

 Interrupt handling, using the HI-TECH C compilers

 Timer-driven interrupts

 Debouncing single switches with timer-driven interrupts

 External interrupts on the INT pin

with examples for HI-TECH C and PICC-Lite.

Note that this tutorial series assumes a working knowledge of the C language; it does not attempt to teach C.

Interrupts

An interrupt is a means of interrupting the main program flow in response to an event, so that the event can

be handled, or serviced. The event (referred to an interrupt source) can be internal to the PIC, such as a

timer overflowing, or external, such as a change on an input pin.

When the interrupt is triggered, program execution immediately jumps to an interrupt service routine (ISR),

which, in the midrange PIC architecture, is always located at address 0004h (the “interrupt vector”).

The HI-TECH C compilers hide this detail; if a function is defined with the qualifier „interrupt‟, the

compiler considers it to be an interrupt service routine, and places it at the correct address, automatically. Of

course, this means that, on midrange PICs, the „interrupt‟ qualifier can only be used with one function, as

there is only one interrupt vector in the midrange architecture.

1
 PICC-Lite was bundled with versions of MPLAB up to 8.10. HI-TECH C (earlier known as “HI-TECH C PRO”) was

bundled with MPLAB 8.15 and later, although you should download the latest version from www.htsoft.com.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_8.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf
http://www.htsoft.com/

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 2

The ISR must save the current processor state, or context (i.e. the contents of any registers which the ISR

will modify, such as W and STATUS), service the interrupt, and then restore the context before returning to

the main program. In this way, the main program will never “notice” that the interrupt has happened – the

interrupt will be completely transparent, except for whatever action the interrupt service routine was intended

to perform.

Again, the HI-TECH C compilers take care of this implementation detail, automatically adding appropriate

context save and restore code to the „interrupt‟ function.

Timer0 Interrupts

Timer0 can be used to regularly generate

interrupts, which can be used to drive

“background” tasks, such as:

 Generating a regular output;

for example flashing an LED.

 Monitoring and debouncing inputs

Meanwhile, a “main program” can continue to

perform other “foreground” tasks.

The examples in this section illustrate these

techniques, using the circuit from lesson 2,

shown on the right.

Example 1a: Flashing an LED

To begin, we‟ll simply flash an LED, without attempting to make it flash at exactly 1 Hz.

We saw in midrange lesson 4 that, given a 1 MHz instruction clock with maximum prescaling (1:256), the

longest period that Timer0 can generate is 256 × 256 × 1 µs = 65.5 ms.

Therefore, if we configured the PIC to use a 4 MHz clock, and set up Timer0 in timer mode with a 1:256

prescaler, TMR0 would overflow (rollover from 255 to 0) every 65.5 ms.

If we then enabled Timer0 interrupts, the interrupt would be triggered on every TMR0 overflow, i.e. every

65.5 ms. So the interrupt service routine (ISR) would be called every 65.5. ms.

If the ISR toggled an LED every time it was called, the LED would change state every 65.5 ms – it would

flash with a period of 65.5 ms × 2 = 131 ms, giving a frequency of 7.6 Hz.

Having an LED flash as 7.6 Hz is not ideal, but the flashing is visible (just), and that‟s the slowest flash rate

we can generate with the simple approach described above. So we‟ll start there.

The assembler code in midrange lesson 6 configured the port and Timer0, before enabling the Timer0

interrupt by setting the T0IE (Timer0 interrupt enable) and GIE (global interrupt enable) bits in the INTCON

register:

 ; configure interrupts

 movlw 1<<GIE|1<<T0IE ; enable Timer0 and global interrupts

 movwf INTCON

The interrupt service routine began by saving the processor context, and then reset, or cleared, the Timer0

interrupt flag (T0IF) to show that this Timer0 overflow event has been handled – if this is not done, the

interrupt would immediately re-trigger, as soon as the ISR has exited.

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_2.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_4.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 3

The interrupt service routine then toggled the LED, indirectly, by toggling the bit corresponding to the LED

in a shadow register:

 movf sGPIO,w ; only update shadow register

 xorlw 1<<nLED

 movwf sGPIO

This was done to avoid potential read-modify-write problems (described in baseline lesson 2).

Finally, the ISR restored the processor context, before exiting and returning control to the main program.

The body of the main program then had only a single task to perform – to repeatedly copy the contents of the

shadow register to the GPIO port, to make the changes made within the ISR visible (literally!):

;***** Main loop

loop ; continually copy shadow GPIO to port

 movf sGPIO,w

 banksel GPIO

 movwf GPIO

 ; repeat forever

 goto loop

HI-TECH C implementation

As mentioned above, the HI-TECH C compilers hide much of the complexity associated with handling

interrupts, such as saving and restoring the processor context.

The interrupt service routine is implemented as a function, defined with the qualifier „interrupt‟.

For example:

void interrupt isr(void)

Note that the interrupt function should be declared as type void, and must not take any parameters, because it

is never explicitly called from anywhere – nothing is passed to it, and nothing is returned. It just “happens”,

whenever an interrupt is triggered. The name of the interrupt function is not important; you don‟t have to

call it „isr‟.

Since direct parameter passing isn‟t possible, any data passed between the ISR and the main program must

be held in global variables (declared outside any function), so that both the interrupt function and main()

(and any other functions) can access them.

In this example, the variable holding the shadow copy of GPIO is accessed by both the ISR and the main

program, so it must be declared as a global variable, before main() or the interrupt function:

/***** GLOBAL VARIABLES *****/

unsigned char sGPIO; // shadow copy of GPIO

Since we don‟t need to worry about saving or restoring the processor context, the HI-TECH C version of the

ISR can be very simple:

void interrupt isr(void)

{

 // handle Timer0 interrupt

 T0IF = 0; // clear interrupt flag

 // toggle LED

 sGPIO ^= 1<<nLED; // only update shadow register

}

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 4

In the main program, we configure the port and Timer0, as we have done before:

 // setup ports

 GPIO = 0; // start with LED off

 sGPIO = 0; // update shadow

 TRISIO = ~(1<<nLED); // configure LED pin (only) as an output

 // setup Timer0

 OPTION = 0b11010111; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----111 prescale = 256 (PS = 111)

 // -> increment every 256 us

The symbol „nLED‟ had been defined previously, to help make the code more maintainable:

// Pin assignments

#define nLED 2 // flashing LED on GP2

(The „n‟ prefix used here indicates that this is a numeric constant; this is simply a convention, and you can

choose whatever naming style works for you.)

Having configured the port and timer, we‟re ready to enable the Timer0 interrupt, which, as we saw above, is

done by setting the T0IE and GIE bits in the INTCON register.

This could be done by:

 // configure interrupts

 T0IE = 1; // enable Timer0 interrupt

 GIE = 1; // enable global interrupts

However, HI-TECH C defines a macro, „ei()‟, which is intended to be used to enable interrupts globally,

and is equivalent to writing „GIE = 1‟. Similarly, there is a „di()‟ macro, used to disable all interrupts,

equivalent to „GIE = 0‟.

So, in keeping with the HI-TECH C conventions, the Timer0 interrupt should be enabled by:

 // configure interrupts

 T0IE = 1; // enable Timer0 interrupt

 ei(); // enable global interrupts

Finally, we need to continually copy the shadow register to GPIO, which can be done by:

 // Main loop

 for (;;) {

 // continually copy shadow GPIO to port

 GPIO = sGPIO;

 }

Complete program

Here is how these code fragments fit together, for HI-TECH C PRO or PICC-Lite:

* *

* Description: Lesson 3, example 1a *

* *

* Demonstrates use of Timer0 interrupt to perform a background task *

* *

* Flash LED at approx 7.6 Hz (50% duty cycle) *

* *

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 5

* *

* Pin assignments: *

* GP2 - flashing LED *

* *

**/

#include <htc.h>

/***** CONFIGURATION *****/

// ext reset, no code or data protect, no brownout detect,

// no watchdog, power-up timer enabled, 4MHz int clock

__CONFIG(MCLREN & UNPROTECT & BORDIS & WDTDIS & PWRTEN & INTIO);

// Pin assignments

#define nLED 2 // flashing LED on GP2

/***** GLOBAL VARIABLES *****/

unsigned char sGPIO; // shadow copy of GPIO

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // setup ports

 GPIO = 0; // start with LED off

 sGPIO = 0; // update shadow

 TRISIO = ~(1<<nLED); // configure LED pin (only) as an output

 // setup Timer0

 OPTION = 0b11010111; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----111 prescale = 256 (PS = 111)

 // -> increment every 256 us

 // configure interrupts

 T0IE = 1; // enable Timer0 interrupt

 ei(); // enable global interrupts

 // Main loop

 for (;;) {

 // continually copy shadow GPIO to port

 GPIO = sGPIO;

 } // repeat forever

}

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

 // handle Timer0 interrupt

 T0IF = 0; // clear interrupt flag

 // toggle LED

 sGPIO ^= 1<<nLED; // only update shadow register

}

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 6

Comparisons

Once again, it is worth comparing the length of the source code (ignoring comments and white space) versus

program and data memory used by code generated by each language/compiler (MPASM assembler, HI-

TECH PICC-Lite and C PRO in “Lite” mode), to illustrate any trade-offs between programmer efficiency

and resource-usage efficiency. Longer source code implies more time spent by the programmer writing the

code, and more time spent debugging or maintaining the code. Understanding these trade-offs, and the

relative value of your time versus device cost (having less efficient code means that you may need a bigger,

more expensive, device to hold it), is key to whether you choose to develop in C or assembler.

Flash_LED-50p-int-fast

In this case, the C source code is only around a third as long as the assembler source, reflecting the extent to

which HI-TECH C is able to make some of the details of implementing interrupts (saving and restoring

context, reset code jumping past the interrupt vector) transparent. Using interrupts with HI-TECH C is much

easier than in assembler!

The code generated by the PICC-Lite compiler, with optimisation enabled, is barely any larger than the

hand-written assembly version, demonstrating that there does not always have to be any real “downside” to

using C – in this example we have much shorter code, fewer details to contend with, and no real penalty in

code size or data memory use.

Of course, HI-TECH C PRO can always be expected to generate much larger code when running in “Lite”

mode, which does not perform any optimisation.

Example 1b: Slower flashing

The LED in the last example flashed at around 7.6 Hz. Since the longest possible interval between Timer0

interrupts is 65.5 ms (with a 4 MHz processor clock), to flash the LED any slower, we can‟t toggle it on

every interrupt; we have to skip some of them. That means counting each interrupt, and only toggling the

LED when the count reaches a certain value.

A simple way to implement this, if we are not concerned with exact timing, is to use an 8-bit counter, and to

let it reach 255 before toggling the LED when it overflows to 0.

If, every time an interrupt is triggered by a Timer0 overflow, the ISR increments a counter, we‟re essentially

implementing a 16-bit timer, based on Timer0, with TMR0 as the least significant eight bits, and the counter

incremented by the ISR being the most significant eight bits.

If the ISR increments the counter whenever Timer0 overflows (every 256 ticks of TMR0), and it toggles the

LED whenever the counter overflows (every 256 interrupts), the LED is being toggled every N × 256 × 256

(where N is the prescale ratio) instruction cycles.

Assuming a 1 MHz instruction clock, LED will be toggled every N × 256 × 256 µs = N × 65.536 ms.

We can make the LED flash at close to 1 Hz by choosing N = 8 (prescale ratio of 1:8). The resulting toggle

period is 8 × 256 × 256 µs = 524.3 ms, giving a flash rate of 0.95 Hz – close enough!

Assembler / Compiler
Source code

(lines)

Program memory

(words)

Data memory

(bytes)

Microchip MPASM 47 34 3

HI-TECH PICC-Lite 16 36 5

HI-TECH C PRO Lite 16 68 7

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 7

HI-TECH C implementation

To implement the Timer0 overflow counter, we‟ll need a variable to store it in.

Since this variable only needs to be used by the interrupt service routine, to be consistent with good modular

programming practice, we should make it private to (defined within) the interrupt function:

void interrupt isr(void)

{

 static unsigned char t0cnt = 0; // counts timer0 overflows

 // (body of ISR goes here)

}

Note that this variable is defined as being „static‟; this is very important. The counter must retain its

value between interrupts, so that it can be incremented by successive interrupts. To ensure that the counter

continues to exist, preserving its value, outside the interrupt function, it must be defined as „static‟.

Note also that it the counter variable is initialised, as part of its definition. You might think that, because the

definition is within the interrupt function, that this initialisation (clearing the counter) will happen every time

an interrupt occurs, losing the value of the counter. But no – all static variables are initialised only once, by

the start-up code generated by the C compiler, before the main() function starts executing.

We then need to add instructions to the ISR to increment this counter, and toggle the LED only when it

overflows back to zero:

 // toggle LED every 256 interrupts (524 ms)

 ++t0cnt; // increment interrupt count (every 2.048 ms)

 if (t0cnt == 0) // if count overflow (every 524 ms),

 sGPIO ^= 1<<nLED; // toggle LED (using shadow register)

This could have been written more succinctly as:

 // toggle LED every 256 interrupts (524 ms)

 if (++t0cnt == 0) // increment count; if overflow (every 524 ms),

 sGPIO ^= 1<<nLED; // toggle LED (using shadow register)

Whether you choose to sacrifice readability to save a line of source code is a question of personal style.

Here is the complete ISR, with these changes:

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

 static unsigned char t0cnt = 0; // counts timer0 overflows

 // handle Timer0 interrupt

 T0IF = 0; // clear interrupt flag

 // toggle LED every 256 interrupts (524 ms)

 ++t0cnt; // increment interrupt count (every 2.048 ms)

 if (t0cnt == 0) // if count overflow (every 524 ms),

 sGPIO ^= 1<<nLED; // toggle LED (using shadow register)

}

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 8

And finally the configuration of Timer0 needs to be changed, to select a 1:8 prescaler:

 // setup Timer0

 OPTION = 0b11010010; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----0--- prescaler assigned to Timer0 (PSA = 0)

 //-----010 prescale = 8 (PS = 010)

 // -> increment every 8 us

With these changes to the code in the first example, the LED will flash at a much more sedate 0.95 Hz.

Example 1c: Flashing an LED at exactly 1 Hz

What if we needed (for some reason) to flash the LED at exactly 1 Hz, given an accurate 4 MHz processor

clock? As discussed in detail in midrange lesson 6, there are a number of pitfalls inherent in trying to use

Timer0 to generate a cycle-exact time base.

But as we saw, these problems can be overcome, relatively easily.

To use Timer0 to provide a precise time base to drive an interrupt:

 Do not use the prescaler (assign it to the watchdog timer).

 Do not load a fixed start value into the timer.

Instead, add an offset to the current timer value, making the timer “skip forward” by an appropriate

amount, shortening the timer cycle from 256 counts to whatever period you require.

 Adjust the offset to allow for the fact that the timer is inhibited for two cycles after it is written, and

that the timer increments once (if no prescaler is used) during the add instruction.

This means that the offset to be added must be 3 cycles larger than you may expect, to achieve a

given timer period.

In the example in midrange lesson 6, we used the following assembler code:

 movlw .256-.250+.3 ; add value to Timer0

 banksel TMR0 ; for overflow after 250 counts

 addwf TMR0,f

to make Timer0 overflow after 250 cycles, instead of the usual 256 cycles (with no prescaler). This was

done after every Timer0 overflow (i.e. within the interrupt service routine), so that the interrupt is triggered

precisely every 250 instruction cycles (every 250 µs, given a 4 MHz processor clock).

Toggling the LED every 500 ms means toggling after every 500 ms ÷ 250 µs = 2000 interrupts.

This means that the ISR must be able to count to 2000, so that it can toggle the LED after 2000 interrupts.

In the assembler version, this was realised by using two 8-bit variables, one counting interrupts to create a 10

ms time base, the other counting these 10 ms intervals to generate the 500 ms period we need.

But since we‟re using C here, we may as well take advantage of its ability to easily work with larger

quantities, and simply use a single 16-bit variable to count interrupts.

HI-TECH C implementation

Since the timer overflow counter is only accessed by the interrupt service routine, it should be defined within

the interrupt function, as was done in the last example:

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 9

void interrupt isr(void)

{

 static unsigned int cnt_t0 = 0; // counts timer0 overflows

 // (body of ISR goes here)

}

Note that, because this variable needs to be able to count up to 2000, it is defined as a (16-bit) int, instead

of an (8-bit) char.

To make the Timer0 interrupt occur every 250 cycles, instead of the usual 256, we need to add an

appropriate offset to TMR0, within the ISR, as follows:

 TMR0 += 256-250+3; // add value to Timer0

 // for overflow after 250 counts

It is then a simple matter to count interrupts and toggle the LED after 500 ms (2000 counts):

 // toggle LED every 500 ms

 ++cnt_t0; // increment interrupt count (every 250 us)

 if (cnt_t0 == 500000/250) { // if count overflow (every 500 ms),

 cnt_t0 = 0; // reset count

 sGPIO ^= 1<<nLED; // toggle LED (using shadow register)

Finally, in the initialisation part of the main program, we need to configure Timer0 with no prescaler, which

we could write as:

 OPTION = 0b11001000; // configure Timer0:

 //--0----- timer mode (T0CS = 0)

 //----1--- no prescaling (PSA = 1)

 // (prescaler assigned to WDT)

 // -> increment every 1 us

But since there are only two bits being set or cleared, and HI-TECH C allows us to access them easily by

name, this is more naturally written as:

 T0CS = 0; // select timer mode

 PSA = 1; // no prescaler (assigned to WDT)

 // -> increment TMR0 every 1 us

With these modifications in place, the LED will now flash with a frequency of exactly 1 Hz, assuming that

the processor clock is exactly 4 MHz (which, since we are using the internal RC oscillator, it will not be the

case; it‟s not that accurate. Nevertheless, the LED flashes every 4,000,000 processor cycles, precisely).

Complete program

Here is how the code fragments above fit together:

/**

* Description: Lesson 3, example 1c *

* *

* Demonstrates use of Timer0 interrupt to perform a background task *

* *

* Flash LED at exactly 1 Hz (50% duty cycle) *

* *

* *

* Pin assignments: *

* GP2 - flashing LED *

* *

**/

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 10

#include <htc.h>

/***** CONFIGURATION *****/

// ext reset, no code or data protect, no brownout detect,

// no watchdog, power-up timer enabled, 4MHz int clock

__CONFIG(MCLREN & UNPROTECT & BORDIS & WDTDIS & PWRTEN & INTIO);

// Pin assignments

#define nLED 2 // flashing LED on GP2

/***** GLOBAL VARIABLES *****/

unsigned char sGPIO; // shadow copy of GPIO

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // setup ports

 GPIO = 0; // start with LED off

 sGPIO = 0; // update shadow

 TRISIO = ~(1<<nLED); // configure LED pin (only) as an output

 // configure Timer0

 T0CS = 0; // select timer mode

 PSA = 1; // no prescaler (assigned to WDT)

 // -> increment TMR0 every 1 us

 // configure interrupts

 T0IE = 1; // enable Timer0 interrupt

 ei(); // enable global interrupts

 // Main loop

 for (;;) {

 // continually copy shadow GPIO to port

 GPIO = sGPIO;

 } // repeat forever

}

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

 static unsigned int cnt_t0 = 0; // counts timer0 overflows

 // service Timer0 interrupt

 // TMR0 overflows every 250 clocks = 250 us

 // (only Timer0 interrupts are enabled)

 //

 TMR0 += 256-250+3; // add value to Timer0

 // for overflow after 250 counts

 T0IF = 0; // clear interrupt flag

 // toggle LED every 500 ms

 ++cnt_t0; // increment interrupt count (every 250 us)

 if (cnt_t0 == 500000/250) { // if count overflow (every 500 ms),

 cnt_t0 = 0; // reset count

 sGPIO ^= 1<<nLED; // toggle LED (using shadow register)

 }

}

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 11

Comparisons

Here is the resource usage summary for the “Flash an LED at exactly 1 Hz” programs:

Flash_LED-50p-int-1Hz

Again, the C source code is only a third as long as the assembler source, while the code generated by the

PICC-Lite compiler, with optimisation enabled, is barely any larger than the hand-written assembly version.

Example 2: Flash LED while responding to input

Now that we have a timer-driven interrupt flashing the LED on GP2 at 1 Hz, that flashing will continue, “on

its own”, independently of whatever the main program code is doing. This is the main reason for using a

timer interrupt to drive a background process like this; once the process is set up, you do not need to worry

about maintaining it in the main code. It may seem complex to set up the interrupt code, but, once done, it

makes your main code much easier to write.

To illustrate this, we can re-implement example 2 from lesson 2, where we the LED on GP1 is lit whenever

the pushbutton is pressed, while the LED on GP2 continues to flash steadily at 1 Hz.

HI-TECH C implementation

In lesson 2, we used this simple piece of code to read the pushbutton and light the LED on GP1 only when it

is pressed:

 sGPIO &= ~(1<<1); // assume button up -> LED off

 if (GPIO3 == 0) // if button pressed (GP3 low)

 sGPIO |= 1<<1; // turn on LED on GP1

 GPIO = sGPIO; // update GPIO

In the main loop in example 1, above, we are doing nothing but copy the shadow register to GPIO:

 for (;;) {

 // continually copy shadow GPIO to port

 GPIO = sGPIO;

 } // repeat forever

All we need do, then, is to insert the pushbutton-handling code into the main loop:

 for (;;) {

 // check and respond to button press

 sGPIO &= ~(1<<nB_LED); // assume button up -> LED off

 if (BUTTON == 0) // if button pressed (GP3 low)

 sGPIO |= 1<<nB_LED; // turn on indicator LED

 // continually copy shadow GPIO to port

 GPIO = sGPIO;

 } // repeat forever

Assembler / Compiler
Source code

(lines)

Program memory

(words)

Data memory

(bytes)

Microchip MPASM 64 49 5

HI-TECH PICC-Lite 22 52 7

HI-TECH C PRO Lite 22 92 7

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_2.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_2.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 12

And of course you could add any other code to the main loop, in the same way. There is no need to be

“aware” of the interrupt-driven process; it runs quite independently.

The symbols used here were defined as:

#define nB_LED 1 // "button pressed" indicator LED on GP1

#define nF_LED 2 // flashing LED on GP2

#define BUTTON GPIO3 // pushbutton on GP3

The only other change that has to be made to the code in example 1 is to configure both GP1 and GP2 as

outputs:

 TRISIO = ~(1<<nB_LED|1<<nF_LED); // configure LED pins (only) as outputs

No changes are needed within the interrupt service routine.

Complete program

Although the changes to the code in example 1 are minor, here is how they fit together:

/**

* *

* Description: Lesson 3, example 2 *

* *

* Demonstrates use of Timer0 interrupt to perform a background task *

* while performing other actions in repsonse to changing inputs *

* *

* One LED simply flashes at 1 Hz (50% duty cycle). *

* The other LED is only lit when the pushbutton is pressed. *

* *

* *

* Pin assignments: *

* GP1 - "button pressed" indicator LED *

* GP2 - flashing LED *

* GP3 - pushbutton *

* *

**/

#include <htc.h>

/***** CONFIGURATION *****/

// int reset, no code or data protect, no brownout detect,

// no watchdog, power-up timer enabled, 4MHz int clock

__CONFIG(MCLRDIS & UNPROTECT & BORDIS & WDTDIS & PWRTEN & INTIO);

// Pin assignments

#define nB_LED 1 // "button pressed" indicator LED on GP1

#define nF_LED 2 // flashing LED on GP2

#define BUTTON GPIO3 // pushbutton on GP3

/***** GLOBAL VARIABLES *****/

unsigned char sGPIO; // shadow copy of GPIO

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // setup ports

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 13

 GPIO = 0; // start with LEDs off

 sGPIO = 0; // update shadow

 TRISIO = ~(1<<nB_LED|1<<nF_LED); // configure LED pins (only) as outputs

 // configure Timer0

 T0CS = 0; // select timer mode

 PSA = 1; // no prescaler (assigned to WDT)

 // -> increment TMR0 every 1 us

 // configure interrupts

 T0IE = 1; // enable Timer0 interrupt

 ei(); // enable global interrupts

 // Main loop

 for (;;) {

 // check and respond to button press

 sGPIO &= ~(1<<nB_LED); // assume button up -> LED off

 if (BUTTON == 0) // if button pressed (GP3 low)

 sGPIO |= 1<<nB_LED; // turn on indicator LED

 // continually copy shadow GPIO to port

 GPIO = sGPIO;

 } // repeat forever

}

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

 static unsigned int cnt_t0 = 0; // counts timer0 overflows

 // service Timer0 interrupt

 // TMR0 overflows every 250 clocks = 250 us

 // (only Timer0 interrupts are enabled)

 //

 TMR0 += 256-250+3; // add value to Timer0

 // for overflow after 250 counts

 T0IF = 0; // clear interrupt flag

 // toggle LED every 500 ms

 ++cnt_t0; // increment interrupt count (every 250 us)

 if (cnt_t0 == 500000/250) { // if count overflow (every 500 ms),

 cnt_t0 = 0; // reset count

 sGPIO ^= 1<<nF_LED; // toggle LED (using shadow register)

 }

}

Comparisons

Here is the resource usage summary for the “Flash an LED while responding to a pushbutton” programs:

Flash+PB_LED-int

Assembler / Compiler
Source code

(lines)

Program memory

(words)

Data memory

(bytes)

Microchip MPASM 65 52 5

HI-TECH PICC-Lite 27 55 7

HI-TECH C PRO Lite 27 101 8

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 14

Once again, the C source code is less than half as long as the assembler source, while the code generated by

PICC-Lite, with optimisation enabled, is barely any larger than the hand-written assembly version.

Example 3: Switch debouncing

Lesson 1 demonstrated one widely-used method of addressing the problem of switch bounce, which was

expressed in pseudo-code as:

count = 0

while count < max_samples

 delay sample_time

 if input = required_state

 count = count + 1

 else

 count = 0

end

The change in switch state is only accepted when the new state has been continually seen for at least some

minimum period, for example 20 ms. This debounce period is measured by incrementing a count while

sampling the state of the switch, at a steady rate, such as every 1 ms.

We saw in midrange lesson 6 that this counting algorithm can be readily implemented in an interrupt service

routine, which regularly samples the switch and increments a counter whenever the current (or raw) state of

the switch is different from the last accepted (or debounced) state.

That is, if the switch is in a different state from what it used to be, maybe it has “really” changed, or maybe

this is just a glitch, or perhaps it‟s bouncing, so let‟s check a few more times to be sure. When it‟s been

stable in the new state for some time, we accept this new state as being “real”, and consider the switch to

have been debounced.

Although you could have the ISR respond to and act upon switch changes, but this isn‟t normally done

unless the event has to be responded to very quickly; it is generally best to keep the interrupt handling code

short, so that the ISR finishes quickly, in case another, perhaps more important, interrupt is pending.

Instead, the ISR would normally use a flag to signal to the main program that an event (such as a change in

switch state) has occurred. The main program then polls this flag and responds to the event when it is ready

to do so.

In this case, we would need a „switch state has changed‟ flag.

We also need a flag, or variable, to hold the “debounced”, or most recently accepted state of the switch input.

The ISR can then periodically compare the current “raw” switch input with the saved “debounced” input, to

determine whether the switch state has changed.

This approach has the advantage that switch changes are detected quickly, while the main program does not

have to respond to them immediately.

HI-TECH C implementation

In the assembler example in midrange lesson 6, the variables holding the debounced pushbutton state and the

pushbutton changed flag were defined as:

PB_dbstate res 1 ; bit 3 = debounced pushbutton state

 ; (0 = pressed, 1 = released)

PB_change res 1 ; bit 3 = flag indicating pushbutton state change

 ; (1 = new debounced state)

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_1.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 15

This definition allocates a whole byte for each variable, even though only a single bit is needed in each case.

Bit 3 was used to simplify the assembler code.

However, HI-TECH C provides a „bit‟ data type, so we may as well make use of it, to simplify the C code,

and to allow the compiler to pack these variables into a single byte of data memory (or not, as it sees fit – an

advantage of C being that we don‟t have to be concerned with these implementation details
2
).

Since these variables will be updated in the ISR and accessed in the main program, they must be defined as

global variables, along with the shadow copy of GPIO:

/***** GLOBAL VARIABLES *****/

unsigned char sGPIO; // shadow copy of GPIO

bit PB_dbstate; // debounced pushbutton state (1 = released)

bit PB_change; // pushbutton state change flag (1 = changed)

There is, however, one limitation with the way that bit variables are implemented in HI-TECH C – they

cannot be initialised as part of their definition.

That is, we cannot write:

bit PB_dbstate = 1; // debounced pushbutton state (1 = released)

bit PB_change = 0; // pushbutton state change flag (1 = changed)

Instead, they must be initialised separately, as part of the initialisation code, before interrupts are enabled (so

that they have the correct values when the ISR first runs):

 // initialise variables

 PB_dbstate = 1; // initial pushbutton state = released

 PB_change = 0; // clear pushbutton change flag (no change)

Since the debounce counter is only used within the ISR, it should be defined as being private to (within) the

interrupt function, along with the timer overflow counter:

 static unsigned char t0_cnt = 0; // counts timer0 overflows

 static unsigned char db_cnt = 0; // debounce counter

Once again, these variables must be defined as being „static‟, so that their values will be preserved

between interrupts.

It is a good idea to define the debounce period as a constant, to make it easier to adapt the code for switches

with different characteristics:

#define MAX_DB_CNT 20/2 // maximum debounce count =

 // debounce period / sample rate

 // (20 ms debounce period / 2 ms per sample)

(of course it would be cleaner still to define the debounce period and sample rate as constants, and to derive

the maximum debounce count and sample timing from them – but in a short program like this it‟s not

difficult to see how these things relate to each other, especially if it is documented in comments, as above).

2
 This is also a disadvantage of C – by not being aware of how the C compiler builds various constructs, we may not

realize that we‟re doing things in an inefficient way.

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 16

The debounce routine must be run at some regular interval by the ISR. In the example in midrange lesson 6,

an interval of 2 ms was used, so we‟ll do the same here, by incrementing and then testing a counter whenever

the Timer0 interrupt is serviced:

 // sample switch every 2 ms (8 interrupts x 250 us)

 ++t0_cnt; // increment interrupt count (every 250 us)

 if (t0_cnt == 2000/250) // until 2 ms has elapsed

 {

 // debounce code goes here

 }

Within the debounce routine, we must first determine whether the raw pushbutton state has changed since it

was last debounced. Since we are using bit variables, this can be written very simply:

 // compare raw pushbutton with current debounced state

 if (BUTTON == PB_dbstate) // if raw state matches last debounced state,

 {

 // pushbutton has not changed state

 }

 else

 {

 // pushbutton has changed state

 }

Where previously the symbol „BUTTON‟ had been defined as:

// Pin assignments

#define nB_LED 1 // indicator LED on GP1

#define BUTTON GPIO3 // pushbutton on GP3 (active low)

Having determined whether the pushbutton‟s raw state has changed, we need to deal with both possibilities,

as allowed for in the if / else structure above.

If the pushbutton is still in the last debounced state, all we need to do is reset the debounce counter:

 db_cnt = 0; // reset debounce count

Otherwise, the pushbutton‟s state has changed. We need to see whether the change is stable, by counting the

number of successive times we‟ve seen it in this new state, and then check whether the maximum count has

been reached, to determine whether the switch really has changed state (and has finished bouncing):

 ++db_cnt; // increment debounce count

 if (db_cnt == MAX_DB_CNT) // when max count is reached

 {

 // accept new state as changed

 }

If we‟re accepting that the pushbutton really has changed state, we need to update the variables and flags to

reflect this:

 PB_dbstate = !PB_dbstate; // toggle debounced state

 db_cnt = 0; // reset debounce count

 PB_change = 1; // set pushbutton changed flag

The main program can then poll this PB_change flag, to see whether the button has changed state:

 if (PB_change == 1)

 {

 // pushbutton has changed state

 }

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 17

But since this variable is a binary flag, the code can be more clearly written as:

 if (PB_change)

 {

 // pushbutton has changed state

 }

If the button has changed state, we then need to refer to the PB_dbstate variable, to see whether it the

new state is “up” or “down” (pressed); we only want to toggle the LED when the button is pressed, not when

it is released, so we could write:

 if (PB_change)

 {

 // pushbutton has changed state, so check for button press

 if (PB_dbstate == 0)

 {

 // pushbutton has been pressed (low)

 }

 }

Or, if you prefer, you can write this much more succinctly as:

 if (PB_change && !PB_dbstate)

 {

 // button state has changed and is pressed (low)

 }

Once again, it‟s a question of personal style. A good C compiler will generate the same code in both cases.

Once we‟ve determined that the button has been pressed, we can toggle the LED, using the shadow copy of

GPIO, as we‟ve done before:

 sGPIO ^= 1<<nB_LED; // toggle indicator LED (using shadow)

And finally, now that we‟ve detected and responded to the button press, we need to clear the state change

flag, to be ready for the next change:

 PB_change = 0; // clear button change flag

And that‟s all.

It‟s relatively complex, compared with the equivalent code in the example in lesson 2, but most of that

complexity is “hidden” in the ISR; the code in the main program loop is quite simple, making it easier to do

more within the main program, without having to poll and debounce switches – something that the ISR can

take care of in the background.

Complete program

Here is the complete “toggle an LED on pushbutton press” program:

/**

* Description: Lesson 3, example 3 *

* *

* Demonstrates use of Timer0 interrupt to implement *

* counting debounce algorithm *

* *

* Toggles LED when the pushbutton is pressed (high -> low) *

* *

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_2.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 18

* Pin assignments: *

* GP1 - indicator LED *

* GP3 - pushbutton (active low) *

**/

#include <htc.h>

/***** CONFIGURATION *****/

// int reset, no code or data protect, no brownout detect,

// no watchdog, power-up timer enabled, 4MHz int clock

__CONFIG(MCLRDIS & UNPROTECT & BORDIS & WDTDIS & PWRTEN & INTIO);

// Pin assignments

#define nB_LED 1 // indicator LED on GP1

#define BUTTON GPIO3 // pushbutton on GP3 (active low)

/***** CONSTANTS *****/

#define MAX_DB_CNT 20/2 // max debounce count = debounce period / sample rate

 // (20 ms debounce period / 2 ms per sample)

/***** GLOBAL VARIABLES *****/

unsigned char sGPIO; // shadow copy of GPIO

bit PB_dbstate; // debounced pushbutton state (1 = released)

bit PB_change; // pushbutton state change flag (1 = changed)

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // setup ports

 GPIO = 0; // start with LED off

 sGPIO = 0; // update shadow

 TRISIO = ~(1<<nB_LED); // configure LED pin as output

 // configure Timer0

 T0CS = 0; // select timer mode

 PSA = 1; // no prescaler (assigned to WDT)

 // -> increment TMR0 every 1 us

 // initialise variables

 PB_dbstate = 1; // initial pushbutton state = released

 PB_change = 0; // clear pushbutton change flag (no change)

 // configure interrupts

 T0IE = 1; // enable Timer0 interrupt

 ei(); // enable global interrupts

 // Main loop

 for (;;)

 {

 // check for debounced button press

 if (PB_change && !PB_dbstate) // if PB state changed and pressed (low)

 {

 sGPIO ^= 1<<nB_LED; // toggle indicator LED (using shadow)

 PB_change = 0; // clear button change flag

 }

 // continually copy shadow GPIO to port

 GPIO = sGPIO;

 } // repeat forever

}

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 19

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

 static unsigned char t0_cnt = 0; // counts timer0 overflows

 static unsigned char db_cnt = 0; // debounce counter

 // service Timer0 interrupt

 // TMR0 overflows every 250 clocks = 250 us

 // (only Timer0 interrupts are enabled)

 //

 TMR0 += 256-250+3; // add value to Timer0

 // for overflow after 250 counts

 T0IF = 0; // clear interrupt flag

 // Debounce pushbutton (every 2 ms)

 // use counting algorithm: accept change in state

 // only if new state is seen a number of times in succession

 // sample switch every 2 ms (8 interrupts x 250 us)

 ++t0_cnt; // increment interrupt count (every 250 us)

 if (t0_cnt == 2000/250) // until 2 ms has elapsed

 {

 t0_cnt = 0; // reset interrupt count

 // compare raw pushbutton with current debounced state

 if (BUTTON == PB_dbstate) // if raw state matches debounced state,

 {

 db_cnt = 0; // reset debounce count

 }

 else // else raw pushbutton has changed state

 {

 ++db_cnt; // increment debounce count

 if (db_cnt == MAX_DB_CNT) // when max count is reached

 { // accept new state as changed:

 PB_dbstate = !PB_dbstate; // toggle debounced state

 db_cnt = 0; // reset debounce count

 PB_change = 1; // set pushbutton changed flag

 // (polled and cleared in main)

 }

 }

 }

}

Comparisons

Here is the resource usage summary for the “toggle an LED on pushbutton press” programs:

Toggle_LED-count-int

The C source code is once again less than half as long as the assembler source. But in this example, the

efficiency of hand-written assembler becomes a little more apparent, with the code generated by PICC-Lite

Assembler / Compiler
Source code

(lines)

Program memory

(words)

Data memory

(bytes)

Microchip MPASM 87 68 7

HI-TECH PICC-Lite 39 82 10

HI-TECH C PRO Lite 39 140 8

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 20

being 20% larger. That‟s not really a significant difference, but it‟s much bigger than in the earlier (and

simpler) examples.

Example 4: Switch debouncing while flashing an LED

Since the previous example on switch debouncing was built on the framework of the earlier LED flashing

examples, it‟s not difficult to add the LED flashing code back into the interrupt service routine, showing how

a single timer-driven interrupt can be used to schedule multiple concurrent tasks.

In the assembler example in midrange lesson 6, a variable was used in the Timer0 interrupt service routine to

count periods of 2 ms each (the debounce sample period), to generate a 500 ms time base, used to toggle the

LED. This method (building on the existing 2 ms time base) was used in order to simplify the code, with

only one additional 8-bit variable being needed.

HI-TECH C implementation

Although we could take the same approach – adding a single 8-bit variable to count 2 ms periods – the ease

of handling 16-bit quantities in C means that there is little reason to do so. If you were really hard pressed to

fit your variables into the available data memory, you might consider ways to save a byte here and there,

although in that case, you‟re probably better off either using a bigger PIC or programming in assembler.

We‟ll continue to take approaches which seem comfortable and natural from a C perspective, even if they are

not necessarily the most efficient – because the emphasis when programming in C is a little different from

programming in assembler.

So, as we did for the 1 Hz flashing example above, we‟ll define a static 16-bit variable, within the interrupt

function, for the counter used to generate the 500 ms time base:

 static unsigned char db_t_cnt = 0; // debounce sample timebase counter

 static unsigned char db_s_cnt = 0; // debounce sample counter

 static unsigned int fl_t_cnt = 0; // LED flash timebase counter

Note that the counter variables from the previous example have been renamed, for clarity and consistency;

we now have two counters, generating two independent time bases within the same timer interrupt service

routine, so it needs to be clear which is which.

And then, either before or after the debounce routine in the ISR, we need to add some code to increment the

counter to generate the 500 ms time base, and flash the LED:

 ++fl_t_cnt; // increment interrupt count (every 250 us)

 if (fl_t_cnt == 500000/250) // until 500 ms has elapsed

 {

 fl_t_cnt = 0; // reset interrupt count

 sGPIO ^= 1<<nF_LED; // toggle LED (using shadow register)

 }

Complete interrupt service routine

Most of the code is the same as the previous example, except for the counter variable definition and

initialisation, shown above. The main loop is unchanged. But here is the new interrupt service routine, so

that you can see how the LED toggling code fits in after the debounce routine:

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

 static unsigned char db_t_cnt = 0; // debounce sample timebase counter

 static unsigned char db_s_cnt = 0; // debounce sample counter

 static unsigned int fl_t_cnt = 0; // LED flash timebase counter

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 21

 // service Timer0 interrupt

 // TMR0 overflows every 250 clocks = 250 us

 // (only Timer0 interrupts are enabled)

 //

 TMR0 += 256-250+3; // add value to Timer0

 // for overflow after 250 counts

 T0IF = 0; // clear interrupt flag

 // Debounce pushbutton (every 2 ms)

 // use counting algorithm: accept change in state

 // only if new state is seen a number of times in succession

 //

 // sample switch every 2 ms (8 interrupts x 250 us)

 ++db_t_cnt; // increment interrupt count (every 250 us)

 if (db_t_cnt == 2000/250) // until 2 ms has elapsed

 {

 db_t_cnt = 0; // reset interrupt count

 // compare raw pushbutton with current debounced state

 if (BUTTON == PB_dbstate) // if raw state matches debounced state,

 {

 db_s_cnt = 0; // reset debounce count

 }

 else // else raw pushbutton has changed state

 {

 ++db_s_cnt; // increment debounce count

 if (db_s_cnt == MAX_DB_CNT) // when max count is reached

 { // accept new state as changed:

 PB_dbstate = !PB_dbstate; // toggle debounced state

 db_s_cnt = 0; // reset debounce count

 PB_change = 1; // set pushbutton changed flag

 // (polled and cleared in main)

 }

 }

 }

 // Flash LED (toggle every 500 ms)

 //

 ++fl_t_cnt; // increment interrupt count (every 250 us)

 if (fl_t_cnt == 500000/250) // until 500 ms has elapsed

 {

 fl_t_cnt = 0; // reset interrupt count

 sGPIO ^= 1<<nF_LED; // toggle LED (using shadow register)

 }

}

Comparisons

Here is the resource usage summary for the “flash LED while toggling on pushbutton press” programs:

Flash+Toggle_LED

Assembler / Compiler
Source code

(lines)

Program memory

(words)

Data memory

(bytes)

Microchip MPASM 98 77 8

HI-TECH PICC-Lite 45 104 12

HI-TECH C PRO Lite 45 164 8

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 22

The C source code continues to be less than half as long as the assembler source. However, the efficiency of

hand-written assembler is becoming more apparent as the code becomes more complex, with the code

generated by PICC-Lite now being 35% larger than the assembler version.

However, it‟s interesting to note that the HI-TECH C PRO compiler generates code which uses no more data

memory than the assembler version, even when running in “Lite” mode – despite the comments above about

not necessarily choosing to the most efficient approach for variable size in the C version.

External Interrupts

Although polling input pins for changes is effective in many cases, especially in user interfaces, where the

human user won‟t notice a delay of a few milliseconds before a button press is responded to, some situations

require a more immediate response.

For a very fast response to a digital signal, the external interrupt, INT (which shares its pin with GP2) can be

used. This pin is edge-triggered, meaning that an interrupt will be triggered (if enabled) by a rising or falling

transition of the input signal.

Example 5: Using a pushbutton to trigger an external interrupt

To demonstrate how to implement external

interrupts, we can toggle an LED whenever the

external interrupt is trigged by a pushbutton

press, using the circuit from midrange lesson 6,

shown on the right.

As explained in that lesson, the capacitor

connected across the switch is used, in

conjunction with the two resistors, to debounce

the pushbutton, because it is difficult to

implement software debouncing for an edge-

triggered interrupt, while retaining a fast

response.

This simple RC filter approach can be used

because the 12F629‟s INT input is a Schmitt

trigger type, as explained in baseline lesson 4.

The assembler code in midrange lesson 6 configured the external interrupt, so that it would be triggered by a

falling edge (high → low transition) on the INT pin (caused by the pushbutton being pressed), by clearing the

INTEDG bit in the OPTION register:

 ; configure external interrupt

 banksel OPTION_REG

 bcf OPTION_REG,INTEDG ; trigger on falling edge

It then enabled the external interrupt, by setting the INTE bit in the INTCON register:

 ; configure interrupts

 movlw 1<<GIE|1<<INTE ; enable external and global interrupts

 movwf INTCON

(and we must also set GIE, as always, to globally enable interrupts)

Within the ISR, the only actions which needed to be taken were to clear the INTF interrupt flag (to indicate

that the external interrupt has been serviced) and to toggle the LED on GP1:

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_4.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 23

 bcf INTCON,INTF ; clear interrupt flag

 ; toggle LED

 movlw 1<<nB_LED ; toggle indicator LED

 xorwf sGPIO,f ; using shadow register

The shadow register was copied to GPIO in the main loop, as in the earlier examples.

HI-TECH C implementation

Implementing these steps using HI-TECH C is quite straightforward, being very similar to what we have

done before.

Firstly, to select the type of transition to trigger the external interrupt:

 // configure external interrupt

 INTEDG = 0; // trigger on falling edge

Then to enable the external interrupt:

 // configure interrupts

 INTE = 1; // enable external interrupt

 ei(); // enable global interrupts

And finally to service the external interrupt:

 INTF = 0; // clear interrupt flag

 // toggle LED

 sGPIO ^= 1<<nB_LED; // only update shadow register

Complete program

Here is how these code fragments (along with code from the previous examples) fit together:

* Description: Lesson 3, example 5 *

* *

* Demonstrates use of external interrupt (INT pin) *

* *

* Toggles LED on GP1 *

* when pushbutton on INT is pressed (high -> low transition) *

* *

* *

* Pin assignments: *

* GP1 - indicator LED *

* INT - pushbutton (active low) *

* *

**/

#include <htc.h>

/***** CONFIGURATION *****/

// ext reset, no code or data protect, no brownout detect,

// no watchdog, power-up timer enabled, 4MHz int clock

__CONFIG(MCLREN & UNPROTECT & BORDIS & WDTDIS & PWRTEN & INTIO);

// Pin assignments

#define nB_LED 1 // indicator LED on GP1

/***** GLOBAL VARIABLES *****/

unsigned char sGPIO; // shadow copy of GPIO

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 24

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // setup ports

 GPIO = 0; // start with LED off

 sGPIO = 0; // update shadow

 TRISIO = ~(1<<nB_LED); // configure LED pin as output

 // configure external interrupt

 INTEDG = 0; // trigger on falling edge

 // configure interrupts

 INTE = 1; // enable external interrupt

 ei(); // enable global interrupts

 // Main loop

 for (;;)

 {

 // continually copy shadow GPIO to port

 GPIO = sGPIO;

 } // repeat forever

}

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

 // Service external interrupt

 // Triggered on high -> low transition on INT pin

 // caused by externally debounced pushbutton press

 //

 INTF = 0; // clear interrupt flag

 // toggle LED

 sGPIO ^= 1<<nB_LED; // only update shadow register

}

Comparisons

Here is the resource usage summary for the “toggle LED on external interrupt” programs:

Toggle_LED-ext_int

Once again, for a simple interrupt-based program, the C source code is only about a third as long as the

assembler source, while the code generated by PICC-Lite continues to be barely any larger than the hand-

written assembly version.

Assembler / Compiler
Source code

(lines)

Program memory

(words)

Data memory

(bytes)

Microchip MPASM 45 32 3

HI-TECH PICC-Lite 16 35 5

HI-TECH C PRO Lite 16 67 7

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 25

Example 6: Multiple interrupt sources

So far we‟ve only used a single interrupt source, but it is common for more than one source to be active; for

example, one or more timers scheduling background tasks, while servicing events such as external interrupts.

To demonstrate this, we can combine the

two interrupt sources used in this lesson,

with a Timer0 interrupt flashing one LED,

while the external interrupt is used to

toggle another LED.

This means adding an LED to the circuit

in the previous example, as shown on the

right.

We‟ll flash the LED on GP0 at 1 Hz, and

toggle the LED on GP1 whenever the

pushbutton is pressed, as we did in

midrange lesson 6.

The program in the example in midrange

lesson 6 was put together by re-using

routines from the previous LED flashing

and external interrupt examples.

Of course, both interrupt sources had to be enabled:

 ; enable interrupts

 movlw 1<<GIE|1<<T0IE|1<<INTE ; enable external, Timer0

 movwf INTCON ; and global interrupts

And code had to be added to the interrupt service routine, checking the interrupt flags to determine which

source had triggered the interrupt, and then branching to the appropriate service handler:

 ; *** Identify interrupt source

 btfsc INTCON,INTF ; external

 goto ext_int

 btfsc INTCON,T0IF ; Timer0

 goto t0_int

 goto isr_end ; none of the above, so exit

In this way, only one interrupt source will be serviced, each time an interrupt was triggered. If more than

one interrupt is pending (more than one interrupt flag is set), another interrupt will triggered, immediately

after the ISR exits, and the next interrupt source will be serviced the next time the ISR is run.

Since only one source was to be serviced when an interrupt was triggered, a „goto‟ instruction was added to

the end of each service handler, to skip to the end of the ISR:

For example:

ext_int ; *** Service external interrupt

 ; Triggered on high -> low transition on INT pin

 ; caused by externally debounced pushbutton press

 ;

 bcf INTCON,INTF ; clear interrupt flag

 ; toggle "button pressed" LED

 movlw 1<<nB_LED ; toggle indicator LED

 xorwf sGPIO,f ; using shadow register

 goto isr_end

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf
http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_A_6.pdf

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 26

HI-TECH C implementation

When checking for multiple interrupt sources, using C, it seems most natural to use a series of „if‟

statements, each testing an interrupt flag, and executing the corresponding service handler if that interrupt

flag is set.

For example:

 // Service all triggered interrupt sources

 if (INTF)

 {

 // External interrupt handler goes here

 }

 if (T0IF)

 {

 // Timer0 interrupt handler goes here

 }

With this structure, every pending interrupt source will be serviced when an interrupt is triggered. This is

different from the assembly version given above, where only one source is serviced per interrupt.

The C version is perhaps clearer and has slightly less overhead (since fewer interrupts may be triggered

overall), but in practice the difference is negligible.

In both approaches, the highest priority interrupt source should be serviced first – in this case we consider an

external interrupt to more important (should be serviced more quickly) than a timer overflow, but that‟s

something only you can decide, in the context of your application.

The actual interrupt handlers are the same as before, so they are easy to “plug in” to this framework.

The only other addition needed is to enable all the interrupt sources:

 // configure interrupts

 T0IE = 1; // enable Timer0

 INTE = 1; // enable external interrupt

 ei(); // enable global interrupts

Complete program

Here is the complete “toggle LED via external interrupt while flashing LED via timer interrupt” program, so

that you can see how these pieces fit together:

* Description: Lesson 3, example 6 *

* *

* Demonstrates handling of multiple interrupt sources *

* *

* Toggles LED on GP1 when pushbutton on INT is pressed *

* (high -> low transition triggering external interrupt) *

* while LED on GP0 flashes at 1 Hz (driven by Timer0 interrupt) *

* *

* Pin assignments: *

* GP0 - flashing LED *

* GP1 - indicator LED *

* INT - pushbutton (active low) *

**/

#include <htc.h>

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 27

/***** CONFIGURATION *****/

// ext reset, no code or data protect, no brownout detect,

// no watchdog, power-up timer enabled, 4MHz int clock

__CONFIG(MCLREN & UNPROTECT & BORDIS & WDTDIS & PWRTEN & INTIO);

// Pin assignments

#define nF_LED 0 // flashing LED on GP0

#define nB_LED 1 // indicator LED on GP1

/***** GLOBAL VARIABLES *****/

unsigned char sGPIO; // shadow copy of GPIO

/***** MAIN PROGRAM *****/

void main()

{

 // Initialisation

 // setup ports

 GPIO = 0; // start with LEDs off

 sGPIO = 0; // update shadow

 TRISIO = ~(1<<nB_LED|1<<nF_LED); // configure LED pins as output

 // configure Timer0

 T0CS = 0; // select timer mode

 PSA = 1; // no prescaler (assigned to WDT)

 // -> increment TMR0 every 1 us

 // configure external interrupt

 INTEDG = 0; // trigger on falling edge

 // configure interrupts

 T0IE = 1; // enable Timer0 interrupt

 INTE = 1; // enable external interrupt

 ei(); // enable global interrupts

 // Main loop

 for (;;)

 {

 // continually copy shadow GPIO to port

 GPIO = sGPIO;

 } // repeat forever

}

/***** INTERRUPT SERVICE ROUTINE *****/

void interrupt isr(void)

{

 static unsigned int fl_t_cnt = 0; // LED flash timebase counter

 // Service all triggered interrupt sources

 if (INTF)

 {

 // External interrupt

 // Triggered on high -> low transition on INT pin

 // caused by externally debounced pushbutton press

 //

 INTF = 0; // clear interrupt flag

 // toggle LED

 sGPIO ^= 1<<nB_LED; // only update shadow register

 }

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 28

 if (T0IF)

 {

 // Timer0 interrupt

 // TMR0 overflows every 250 clocks = 250 us

 // (only Timer0 interrupts are enabled)

 //

 TMR0 += 256-250+3; // add value to Timer0

 // for overflow after 250 counts

 T0IF = 0; // clear interrupt flag

 // Flash LED (toggle every 500 ms)

 //

 ++fl_t_cnt; // increment interrupt count (every 250 us)

 if (fl_t_cnt == 500000/250) // until 500 ms has elapsed

 {

 fl_t_cnt = 0; // reset interrupt count

 sGPIO ^= 1<<nF_LED; // toggle LED (using shadow register)

 }

 }

}

Comparisons

Here is the resource usage summary for the “toggle LED via external interrupt while flashing LED”

programs:

Flash+Toggle_LED-ext_int

In this example, the code generated by PICC-Lite continues to be remarkably efficient, being barely any

larger than the hand-written assembly version, while the C source code remains less than half as long as the

assembler source.

Summary

These examples have demonstrated that the HI-TECH C compilers can be used to implement interrupts, in a

very straightforward way. Because the compilers take care of many of the details, such as saving and

restoring processor context, transparently, the C source code can be quite simple and succinct, as illustrated

by the code length comparisons:

Source code (lines)

Assembler / Compiler
Source code

(lines)

Program memory

(words)

Data memory

(bytes)

Microchip MPASM 77 61 5

HI-TECH PICC-Lite 29 62 7

HI-TECH C PRO Lite 29 107 7

Assembler / Compiler Ex 1a Ex 1c Ex 2 Ex 3 Ex 4 Ex 5 Ex 6

Microchip MPASM 47 64 65 87 98 45 77

HI-TECH PICC-Lite 16 22 27 39 45 16 29

HI-TECH C PRO Lite 16 22 27 39 45 16 29

© Gooligum Electronics 2009 www.gooligum.com.au

Midrange PIC C, Lesson 3: Introduction to Interrupts Page 29

The C source code is significantly less than half the length of the assembler source in each example.

The PICC-Lite compiler was able to generate highly optimised code for the simpler examples, coming very

close to the efficiency of hand-written assembler in many cases:

Program memory (words)

However, the resource efficiency of assembler was more apparent in the examples involving more complex

algorithms (the debouncing code in examples 3 and 4), where PICC-Lite generated code 20 – 35% larger

than the assembler equivalent.

Once again, we see that the programs generated by the C compilers consistently use more data memory than

the assembler versions:

Data memory (bytes)

Of course this is not an important issue in these small examples, where, even in example 4, the C programs

are using a maximum of 12 out of 64 bytes of data memory available on the 12F629.

The next lesson covers “interrupt on change”, sleep mode, and the watchdog timer.

Assembler / Compiler Ex 1a Ex 1c Ex 2 Ex 3 Ex 4 Ex 5 Ex 6

Microchip MPASM 34 49 52 68 77 32 61

HI-TECH PICC-Lite 36 52 55 82 104 35 62

HI-TECH C PRO Lite 68 92 101 140 164 67 107

Assembler / Compiler Ex 1a Ex 1c Ex 2 Ex 3 Ex 4 Ex 5 Ex 6

Microchip MPASM 3 5 5 7 8 3 5

HI-TECH PICC-Lite 5 7 7 10 12 5 7

HI-TECH C PRO Lite 7 7 8 8 8 7 7

http://www.gooligum.com.au/tutorials/midrange/PIC_Mid_C_4.pdf

	Introduction to PIC Programming
	Programming Midrange PICs in C
	Lesson 3: Introduction to Interrupts
	Interrupts
	/Timer0 Interrupts
	Example 1a: Flashing an LED
	HI-TECH C implementation
	Complete program
	Comparisons

	Example 1b: Slower flashing
	HI-TECH C implementation

	Example 1c: Flashing an LED at exactly 1 Hz
	HI-TECH C implementation
	Complete program
	Comparisons

	Example 2: Flash LED while responding to input
	HI-TECH C implementation
	Complete program
	Comparisons

	Example 3: Switch debouncing
	HI-TECH C implementation
	Complete program
	Comparisons

	Example 4: Switch debouncing while flashing an LED
	HI-TECH C implementation
	Complete interrupt service routine
	Comparisons

	External Interrupts
	Example 5: Using a pushbutton to trigger an external interrupt
	HI-TECH C implementation
	Complete program
	Comparisons

	Example 6: Multiple interrupt sources
	HI-TECH C implementation
	Complete program
	Comparisons

	Summary

