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Preface

This book was written for practicing engineers: for system engineers who
must know the capabilities and limitations of phaselock, for equipment
design engineers who build phaselock circuits, and for equipment users
who must understand the operation of their equipment. For these readers
the book discusses basic principles of phaselock operation, typical prac-
tices of phaselock engineering, and selected applications of phaselock to
various problems.

Long mathematical derivations have been avoided on the premise that
they are of little interest to the practicing engineer. Instead, I have tried to
outline the underlying assumptions and methods employed in derivations
and have stressed practical results. For those readers who may be inter-
ested in further details, I have listed numerous references.

On the other hand, I have avoided producing a circuits cookbook.
Specific circuits quickly become obsolete; furthermore, very little funda-
mental understanding can be gained from a collection of circuit recipes. I
have tried to stress physical understanding of basic phenomena as much as
possible.

Nonetheless, because many aspects of phaselock can be expressed only
in mathematical terms, the largest part of the material is presented here in
that form. As a consequence, the reader must have some mathematical
background. For fullest understanding of the subject some familiarity with
transfer functions in the Laplace transform notation, a background in
feedback or servo theory, and a nodding acquaintance with noise and
spectral analysis of stochastic processes are needed. The results and
applications are presented so that a less well-prepared reader can under-
stand them, but the minimum prerequisites are necessary for a full under-
standing of the detailed basic principles.

This philosophy underlay the first edition of this book, which was well
received by its intended audience. In the years since its publication much
has happened in the phaselock world. Better analyses have been per-
formed, new circuits have arisen (and old ones have faded away), more
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viii Preface

applications have appeared, and my own understanding of phaselock has
improved substantially. Thus the time seems ripe for a new edition.

The reader will find additional analytical tools and improved explana-
tions of the fundamentals of the subject. Moreover, the material on
applications has been expanded greatly. I hope the profession finds this
book to be as useful as its predecessor.

I have benefited from the wise counsel of J. L. Dautremont, Jr.,
W.C.Lindsey, A.J. Mallinckrodt, L. Eaton, L. M. Hershey, J. J. Spilker, Jr.,
J. F. Heck, C. E. Krehbiel, K. Wong, and F. Chethik, each of whom
reviewed one or more chapters. Their expert critiques have made this book
better than it would have been through my unaided efforts.

FLoYD M. GARDNER

Palo Alto, California
April 1979
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Chapter One

Introduction

1.1 NATURE OF PHASELOCK
A phaselock loop contains three basic components (Figure 1.1):

1. A phase detector (PD).
2. A loop filter.

3. A voltage-controlled oscillator (VCO), whose frequency is controlled by
an external voltage.

The phase detector compares the phase of a periodic input signal against
the phase of the VCO; output of the PD is a measure of the phase
difference between its two inputs. The difference voltage is then filtered by
the loop filter and applied to the VCO. Control voltage on the VCO
changes the frequency in a direction that reduces the phase difference
between the input signal and the local oscillator.

When the loop is locked, the control voltage is such that the frequency of
the VCO is exactly equal to the average frequency of the input signal. For
each cycle of input there is one, and only one, cycle of oscillator output.
One obvious application of phaselock is in automatic frequency control
(AFC). Perfect frequency control can be achieved by this method, whereas
conventional AFC techniques necessarily entail some frequency error.

To maintain the control voltage needed for lock it is generally necessary
to have a nonzero output from the phase detector. Consequently, the loop
operates with some phase error present; as a practical matter, however, this
error tends to be small in a well-designed loop.

A slightly different explanation may provide a better understanding of
loop operation. Let us suppose that the incoming signal carries information
in its phase or frequency; this signal is inevitably corrupted by additive
noise. The task of a phaselock receiver is to reproduce the original signal
while removing as much of the noise as possible.
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Phase
detector
Input o Loop
signal -1 filter
~y
vCo

Figure 1.1 Basic phaselock loop.

To reproduce the signal the receiver makes use of a local oscillator
whose frequency is very close to that expected in the signal. Local
oscillator and incoming signal waveforms are compared with one another
by a phase detector whose error output indicates instantaneous phase
difference. To suppress noise the error is averaged over some length of
time, and the average is used to establish frequency of the oscillator.

If the original signal is well behaved (stable in frequency), the local
oscillator will need very little information to be able to track, and that
information can be obtained by averaging for a long period of time,
thereby eliminating noise that could be very large. The input to the loop is
a noisy signal, whereas the output of the VCO is a cleaned-up version of
the input. It is reasonable, therefore, to consider the loop as a kind of filter
that passes signals and rejects noise.

Two important characteristics of the filter are that the bandwidth can be
very small and that the filter automatically tracks the signal frequency.
These features, automatic tracking and narrow bandwidth, account for the
major uses of phaselock receivers. Narrow bandwidth is capable of reject-
ing large amounts of noise; it is not at all unusual for a PLL to recover a
signal deeply embedded in noise.

1.2 HISTORY AND APPLICATION

An early description of phaselock was published by de Bellescize!* in 1932
and treated the synchronous reception of radio signals. Superheterodyne
receivers had come into use during the 1920s, but there was a continual
search for a simpler techriique; one approach investigated was the synchro-
nous, or homodyne, receiver.

*Superscript numbers indicate references listed at the end of each chapter.
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In essence, this receiver consists of nothing but a local oscillator, a
mixer, and an audio amplifier. To operate, the oscillator must be adjusted
to exactly the same frequency as the carrier of the incoming signal, which
is then converted to an intermediate frequency of exactly 0 Hz. Output of
the mixer contains demodulated information that is carried as sidebands
by the signal. Interference will not be synchronous with the local oscillator,
and therefore mixer output caused by an interfering signal is a beat-note
that can be suppressed by audio filtering.

Correct tuning of the local oscillator is essential to synchronous recep-
tion; any frequency error whatsoever will hopelessly garble the informa-
tion. Furthermore, phase of the local oscillator must agree, within a fairly
small fraction of a cycle, with the received carrier phase. In other words,
the local oscillator must be phaselocked to the incoming signal.

For various reasons the simple synchronous receiver has never been used
extensively. Present-day phaselock receivers almost invariably use the
superheterodyne principle and tend to be highly complex. One of their
most important applications is in the reception of the very weak signals
from distant spacecraft.

The first widespread use of phaselock was in the synchronization of
horizontal and vertical scan in television receivers®. The start of each line
and the start of each interlaced half-frame of a television picture are
signaled by a pulse transmitted with the video information. As a very
crude approach to reconstructing a scan raster on the TV tube, these pulses
can be stripped off and individually utilized to trigger a pair of single-
sweep generators.

A slightly more sophisticated approach uses a pair of free-running
relaxation oscillators to drive the sweep generators. In this way sweep is
present even if synchronization is absent. Free-running frequencies of the
oscillators are set slightly below the horizontal and vertical pulse rates, and
the stripped pulses are used to trigger the oscillators prematurely and thus
to synchronize them to the line and half-frame rates (half-frame because
United States television interlaces the lines on alternate vertical scans).

In the absence of noise this scheme can provide good synchronization
and is entirely adequate. Unfortunately, noise is rarely absent, and any
triggering circuit is particularly susceptible to it. As an extreme, triggered
scan will completely fail at a signal-to-noise ratio that still provides a
recognizable, though inferior, picture.

Under less extreme conditions noise causes starting-time jitter and
occasional misfiring far out of phase. Horizontal jitter reduces horizontal
resolution and causes vertical lines to have a ragged appearance. Severe
horizontal misfiring usually causes a narrow horizontal black streak to
appear.
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Vertical jitter causes an apparent vertical movement of the picture. Also,
the interlaced lines of successive half-framés would so move with respect to
one another that further picture degradation would result.

Noise fluctuation can be vastly reduced by phaselocking the two oscilla-
tors to the stripped sync pulses. Instead of triggering on each pulse, a
phaselock technique examines the relative phase between each oscillator
and many of its sync pulses and adjusts oscillator frequency so that the
average phase discrepancy is small. Because it looks at many pulses, a
phaselock synchronizer is not confused by occasional large noise pulses
that disrupt a triggered synchronizer. The flywheel synchronizers in pres-
ent-day TV receivers are really phaselocked loops. The name “flywheel” is
used because the circuit is able to coast through periods of increased noise
or weak signal. Substantial improvement in synchronizing performance is
obtained by phaselock.

In a color television receiver, the color burst is synchromzed by a
phaselock loop.?

Spaceflight requirements inspired intensive application of phaselock
methods. Space use of phaselock began with the launching of the first
American artificial satellites. These vehicles carried low-power (10 mW)
CW transmitters; received signals were correspondingly weak. Because of
Doppler shift and drift of the transmitting oscillator, there was consider-
able uncertainty about the exact frequency of the received signal. At the
108-MHz frequency originally used, the Doppler shift could range over a
+3-kHz interval.

With an ordinary, fixed-tuned receiver, bandwidth would therefore have
to be at least 6 kHz, if not more. However, the signal itself occupies a very
narrow spectrum and can be contained in something like a 6-Hz band-
width.

Noise power in the receiver is directly proportional to bandwidth.
Therefore, if conventional techniques were used, a noise penalty of 1000
times (30 dB) would have to be accepted. (The numbers have become even
more spectacular as technology has progressed; transmission frequencies
have moved up to S-band, making the Doppler range some *+75 kHz,
whereas receiver bandwidths as small as 3 Hz have been achieved. The
penalty for conventional techniques would thus be about 47 dB.) Such
penalties are intolerable and that is why narrowband, phaselocked, track-
ing receivers are used.

Noise can be rejected by a narrowband filter, but if the filter is fixed the
signal almost never will be within the passband. For a narrow filter to be
usable it must be capable of tracking the signal. A phaselocked loop is
capable of providing both the narrow bandwidth and the tracking that are
needed. Moreover, extremely narrow bandwidths can be conveniently
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obtained (3 to 1000 Hz are typical for space applications); if necessary,
bandwidth is easily changed.

For a Doppler signal the information needed to determine vehicle
velocity is the Doppler frequency shift. A phaselock receiver is well-
adapted to Doppler recovery, for it has no frequency error when locked.
(The effect of phase errors is covered in later chapters.)

1.3 OTHER APPLICATIONS

The following applications, further discussed elsewhere in the book, repre-
sent some of the current uses of phaselock.

1. One method of tracking moving vehicles involves transmitting a co-
herent signal to the vehicle, offsetting the signal frequency, and retrans-
mitting back to the ground. The coherent transponder in the vehicle must
operate so that the input and output frequencies are exactly related in
the ratio m/n, where m and n are integers. Phaselock techniques are
often used to establish coherence.

2. A phaselocked loop can be used as a frequency demodulator, in which
service it has superior performance to a conventional discriminator.

3. Noisy oscillators can be enclosed in a loop and locked to a clean signal.
If the loop has a wide bandwidth, the oscillator tracks out its own noise
and its output is greatly cleaned up.

4. Frequency multipliers and dividers can be built by using PLLs.

5. Synchronization of digital transmission is typically obtained by phase-
lock methods.

6. Frequency synthesizers are conveniently built as phaselock loops.

1.4 PHASELOCK LITERATURE

The first edition of this book (published in 1966) contains a bibliography
of about 160 entries. That was a nearly complete listing of the literature at
the time it was compiled, but it quickly became outdated because of the
high level of activity in the field. A 1973 bibliography* contained over 800
entries, so there must be over 1000 phaselock papers published by now
(1978).

Clearly it is no longer practical to include a lengthy bibliography in this
book, nor is it necessary. References cited in the text provide a guide to
selected papers. A sampling of noteworthy papers has been reprinted in
Ref. 5.
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There are other books on phaselock, and the serious student ought to be
aware of them. Blanchard® has written an introductory text that specializes
in the problems of phaselocked receivers. He provides many numerical
examples and graphical plots that are of value to the reader.

Viterbi has been a pioneer in the nonlinear analysis of phaselock loops;
his papers have been collected in Ref. 7. Many portions of the present
book owe their inspiration to his lead. The mathematical level of his
approach is quite advanced, so most engineers will find learning easier
from the present book or from Blanchard’s book.

Massive assaults on difficult problems are found in the two works by
Lindsey® and Lindsey and Simon.® A serious professional ought to be
conversant with these works, but the casual user of phaselock is likely to
have difficulty in extracting the information needed for ordinary engineer-
ing projects. A researcher can use these books as a gold mine of powerful
analysis techniques and as a guide for extracting the last tiny measure of
performance out of a PLL needed in demanding service. -

The specialist should also be aware of the books by Van Trees'® and
Klapper and Frankle,"' which relate the phaselock loop to application as a
demodulator of frequency modulation.

1.5 ORGANIZATION OF BOOK

A certain amount of mathematics, network theory, and stochastic
processes background is needed for an adequate understanding of phase-
lock and therefore a very brief summary and review of the pertinent
material is given in Appendix A.

Fundamentals of phaselock are presented in Chapters 2 to 7 and
applications are found in Chapters 8 to 11. The basic notion of transfer
function of a linear loop is introduced in Chapter 2, along with definitions
of loop parameters and identification of important configurations of prac-
tical loops.

Noise, in both linear and nonlinear regimes, is expounded in Chapter 3.
Tracking performance is discussed in Chapter 4 and methods of bringing
the loop into lock are found in Chapter 5.

Implementation problems in the loop components, namely loop filter,
phase detector, and VCO, are discussed in Chapter 6. The design engineer
ought to become familiar with this material before attempting any but the
simplest of circuits.

Loop optimization is treated in Chapter 7, as well as in other portions of
the book.
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Chapter 8 is devoted to some of the problems that arise in phaselocked

receivers and other long-loop configurations. Phaselocked modulators and
demodulators are treated in Chapter 9, locked oscillators and synthesizers
are the subject of Chapter 10, and a brief survey of the phaselock aspects

of

synchronizers for digital data is given in Chapter 11.
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Chapter Two

Loop Fundamentals

2.1 BASIC TRANSFER FUNCTIONS

Let us consider an elementary loop consisting of a phase detector (PD), a
loop filter, and a voltage-controlled oscillator (VCO) as in Figure 2.1. The
graphical symbols of the figure are frequently encountered and are used
throughout this book.

The input signal has a phase of §,(¢), and the VCO output has a phase
8,(r). For the present we assume that the loop is locked, that the phase
detector is linear and that the PD output voltage is proportional to the
difference in phase between its inputs; that is,

v, =K,(6,—-86,) 21

where K, is called the phase-detector gain factor and is measured in units of
volts per radian.

Phase error voltage v, is filtered by the loop filter. Noise and high-
frequency signal components are suppressed; also, the filter helps to
determine dynamic performance of the loop. Filter transfer function is
given by F(s).

Frequency of the VCO is determined by the control voltage v,. Devia-
tion of the VCO from its center frequency is Aw=K,v, where K, is the
VCO gain factor and has units of rad/sec-V. Since frequency is the
derivative of phase, the VCO operation may be described as db,/dt=K,v,.
By taking Laplace transforms we obtain

L[i’%}mo‘,(s)% 20) 22)
therefore,
0,(s)= K2
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0, Figure 2.1 Phaselock loop: basic block
VvCO diagram.

In other words, the phase of the VCO output is linearly related to the

integral of the control voltage.
By using Laplace notation* the following equations are applicable:

Vi(s)= Kd[ 0,(s)—0,(s)] ) (23)
V.(s)=F(s)Vy(s) (24)
0,(s)= 5—’:@ (2.5)
Combination of these equations results in the basic loop equations
00(3) — — KoKdF(S)
806) ~ HO= YK KRG 26)
oi(s)—oo(s) - 02(5) - s 1
ORI O Ry o v R B
K 0, 0.
v (5= SN, - 2D @8

where H(s) is the closed-loop transfer function.
Before proceeding further, it is necessary to specify the loop filter F(s).

2.2 SECOND-ORDER LOOP

Two widely used loop filters are shown with their respective transfer
functions in Figure 2.2. The passive filter is quite simple and is often

*Notation example: V(s) & I[uv(f)). Similar relations apply to the other quantities.
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Figare 22 Filters used in second-order loop: (a) passive filter; (b) active filter;
(c) alternative active filter. Both active filters have the same transfer function. The first active
circuit is the one most often used, but the alternative form is sometimes more convenient.

satisfactory for many purposes. The active filter requires a high-gain DC
amplifier but provides better tracking performance, as is shown in
Chapter 4.

For the passive filter the closed-loop transfer function is

K,K,(s1,+1)/7

29
s2+s(1+ K,K;,) /7 + K, K,/ 29)

K H\(s)=

For the active filter, after accommodating the phase reversal of the
amplifier, the closed-loop transfer function is found to be

K, K (st +1)/7, (2.10)

Hy(s)=
2(s) s’+s(K, K1, /1) + K, K,/ 1,
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provided that amplifier gain is very large. These transfer functions may be
rewritten as

H\(s)= 2.9a
1(s) s2428w,s +w? (2.92)
2¢w 5+ w?
Hy(s)=—""— 2.10a
2(s) s+ 28w,s +w? ( )

in which, drawing on servo terminology, w, is the natural frequency of the
loop and { is the damping factor.

Passive filter Active filter
w"=( Koxd)'/z w,.=(£’-&)m
Ty T
) o) 2555 e
7,=(R;+ R)C =R,C
7,=R,C T,=R,C

We observe that the two transfer functions are nearly the same if
1/K,K,<1, in the passive filter. It becomes apparent later that the active
filter is close to an ideal towards which we strive and that the passive filter
is an imperfect imitation.

Because the highest power of s in the denominator of the transfer
function is 2, the loop is known as second-order loop. This form of
second-order loop is widely applied because of its simplicity and good
performance.

According to servo terminology, the #ype of a loop is a number equal to
the number of perfect integrators within the loop. Any PLL is at least a
Type I loop because of the perfect integrator in the VCO. If the loop filter
contains one perfect integrator, then the loop is Type II; a second-order
PLL with a high-gain active filter approximates a Type II loop, whereas a
PLL with passive filter is Type I. The alternative form of active filter in
Figure 2.2 emphasizes the presence of the integrator.

The magnitude of the frequency response of a high-gain loop for several
values of damping factor is plotted in Figure 2.3. It can be seen that the
loop performs a lowpass filtering operation on phase inputs.
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Figure 23 Frequency response of a high-gain second-order loop.
Error response of the loop is also of interest. For a high-gain,* second-

order loop the error response is

6,(s) 52
= 2.12
0(s) $*+2¢w,s+w? (2.12)

whereas for a low-gain loop

0.(s) s(s+w?/K,K;) s[s+1/7]
- - @2.13)
0(s) S?+2%ws+w}  SP+20w,s+w?

Error response is plotted in Figure 2.4 for a high-gain loop with ¢ =0.707.
A highpass characteristic is obtained; that is, the loop tracks low-frequency
changes but cannot track high frequencies.

The transfer function H(s) has a well-defined 3-dB bandwidth, which we
label ws4p. There is generally very little reason to be interested in w,4p of a
PLL, but its relation to w, is presented here to provide a comparison with a
familiar concept of bandwidth. By setting | H(jw)|>*=0.5 and solving for w

*A high-gain loop has cither a passive filter with X, K, 1 or an active filter with |4|r,37,.
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wsap =, 27+ 122+ 1P +1

Typical values are plotted in Figure 2.5 for a high-gain loop.

we find that

2.3 LOOP GAIN; NOTATION

The open-loop transfer function (open-loop gain) of any PLL, not just one
of second order, is

— KoKdF(s)

G(s) p (2.14)
whereby the closed-loop transfer function is
-_G@)
H(s)= 1+ G() (2.15)
We define the DC gain of the loop as
K,=K,K,F(0) (2.16)

which has dimensions of frequency (i.e., time™"') in radians per second. (A
reason for choosing the subscript v is given in Chapter 4.) It is demon-
strated later that good performance of the loop usually requires a large
value for K. Transfer function F(s) of the loop filter is a rational function
of the form

gls—2z)(s=2) - (s=2,)

SN EE R PPy Cr N Fey ey

for an nth-order PLL. If the filter is to be realizable, m cannot exceed n—1
(Appendix A). The factor g is a multiplicative constant. If m=n—1 (as
occurs often in PLLs), then g= F(0).

When F(s) is expanded in partial fractions, the open-loop gain may be
written as

n—1
G(s)=—’s$[a,+ b ;"—_%} @2.17)
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assuming, temporarily, that all poles are simple with residues g;,,. We
choose to give K the name of loop gain; K has the dimensions of radian
frequency and is shown presently to be an important parameter of a PLL.
The dimensionless quantity a, is zero if m is less than n— 1, while q, =1if
m=n-—1.

The above definition of K is unambiguous only if a,=1. If a,=0 the
rules are incomplete and K is not properly defined. The most important
PLLs are designed for a, =1 (that is, equal number of poles and zeros in
the loop filter). Rather than attempt a universal definition of X, it proves
more convenient to treat other conditions case by case. Judicious defini-
tion of K provides a simple basis for comparing loops with different forms
of transfer functions.

Examples

1. Second-order PLL, passive lag—lead filter

2. Second-order PLL, active filter

sto+1
5Ty

G(s)=—% 141 =_Ii(1+ﬂ)
5T 5T, s

F(s)=




16 Loop Fundamentals

3. An nth-order PLL with all open-loop poles at s=0 and n—1 arbitrary
Zeros

: K, 2,5 9
G(s)= s(1+ p +S2+ +s"-‘)
K(s" '+a," %+ ---a,)

H(s)=
(<) s"+K(s" '+ ay" i+ a,)

The last example illustrates how to deal with multiple, coincident poles
at the origin.

24 OTHER LOOP ORDERS

The reader should not conclude that second-order is the only loop order
that may be used. It is certainly the most prevalent, but there are applica-
tions in which some other loop order is acceptable or even necessary.

A first-order loop is obtained if the filter is omitted, that is, F(s)=1.
Loop gain is simply K=K K,= K  and a,=1. The closed-loop transfer
function is

K

= (2.18)

H(s)=

so the loop gain is the only parameter available to the designer. The
first-order loop has a 3-dB bandwidth of K rad/sec. If it is necessary to
have large DC gain (often needed to ensure good tracking), then the
bandwidth must also be large. Therefore, narrow bandwidth and good
tracking are incompatible in the first-order loop; for this reason it is not
often used.

Another simple filter is provided by an RC lag network (Figure A.4),
which has the transfer function

1
st+1

From the previous section we note that a, =0, so the rules do not directly
provide a definition of K. It is convenient to define K= K K, just as in a
first-order loop. Then a,=1/7 and the loop transfer function is

Ka,

—_— 2.20
s*+ays+ Ka, (2.20)

H(s)=
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The denominator is of second degree, so, strictly speaking, the loop
qualifies as a second-order loop. In later chapters it becomes apparent that
this particular type of loop might best be regarded as a modified first-order
loop, despite the presence of two poles in its transfer function.

We can define w,=VKa, and {=3Va,/K and obtain the loop
transfer function

2

W,
H(s)= ——2 2.21
(<) 2428w, 5 +w? (221)

There are two circuit parameters available (r and K), whereas usually
three loop parameter specifications must be met (w,, {, and K,). Obviously,
the three loop parameters cannot be chosen independently. If it is neces-
sary to have large DC gain and small bandwidth, the loop will be badly
underdamped and transient response will be poor.

A very similar condition is found in servomechanisms; in the simplest
servos damping becomes very small as gain increases. The solution to the
servo problem is to employ tachometer feedback or to use lag-lead
compensation. The latter expedient is commonly used in phaselock loops
and results in the filters of Figure 2.2, which were analyzed earlier. Because
the lag-lead filter has two independent time constants, the natural
frequency and damping can be chosen independently. Furthermore, DC
gain can be made as large as may be necessary for good tracking.

The lag pole-frequency of an active filter approaches zero and practi-
cally is somewhat vague, since amplifier gain is likely to have large
tolerances (see Section 6.1). A better description for the active filters of
Figure 2.2 might be proportional-plus-integral control, another term
borrowed from the servo field. The configurations of Figures 2.24 and 2.2b
emphasize the lag-lead character of the loop filter of a second-order loop,
while Figure 2.2¢ emphasizes the proportional-plus-integral control char-
acter. Both viewpoints are equally valid.

In a passive filter, we necessarily have 7, >7,, but no such restriction
exists in an active filter. It is possible and reasonable to have gain, rather
than attenuation, in the active loop filter at high frequencies.

There are situations in which a third-order loop provides useful perfor-
mance characteristics not obtainable with a simpler loop. Accordingly, it is
sometimes used in special applications.

It is seen in Chapter 4 that the third-order loop is most useful if the two
poles of its filter are at the origin, that is, if the loop filter contains two
cascaded integrators. In this case the transfer function of the loop is (using
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the notation of Section 2.3)

K(s*+ a,s +as)

H(s)=
(<) S+ K(s*+ a5 +a;)

(2.22)

Complex zeros are permitted as is illustrated in Chapter 7.

It is rare that a loop is constructed with an order higher than third. One
reason is that there has been little need for higher-order loops in the
applications in which phaselock techniques are most commonly employed.
Also, the closed-loop parameters of high-order, active networks tend to be
overly sensitive to changes of gain and circuit components. Finally, it is
more difficult to stabilize a high-order loop, whereas the second-order
loop, as commonly built, is unconditionally stable. (Parasitic circuit ele-
ments often cause a loop intended to be second order to be actually of
much higher order. It is usually expedient to treat such a loop as basically
second order and handle the parasitic effects as perturbations. Examples
are given in Chapter 8.)

25 ROOT-LOCUS PLOTS

Considerable insight into the behavior of a phaselocked loop can be
attained by determining the locations of the poles of the closed-loop
response. These poles change their locations as the loop gain is changed.
The path that the poles trace out in their migrations in the complex s-plane
is known as the root-locus plot. A major advantage of the root-locus
method is that the plot can be determined graphically and relatively
quickly by working solely from the locations of the known open-loop poles
and zeros and utilizing a few simple rules.*

Typically, the locus is drawn for the full range of gain variation, from
zero to infinity. The plot starts (zero gain) on the open-loop poles and
terminates (infinite gain) on the open-loop zeros (some of which may be
located at infinity). Open-loop transfer function for any PLL is

— KoKdF(s)

; (2.23)

G(s)
Thus open-loop poles always include one at the origin besides the poles of
F(s). The open-loop zeros are the zeros of F(s) and a zero at infinity due to
the 1/s term.

*For an extensive description of root-locus methods see J. G. Truxal, Automatic Feedback
Control System Synthesis, McGraw-Hill, New York, 1955. Chap. 4.
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As might be expected, the first-order loop [ F(s)=1] has the simplest root
locus. There is a single open-loop pole at the origin and a single zero at
infinity, and the closed-loop pole moves along the negative real axis from
zero to infinity as the gain increases.

A loop that uses only a lag filter F(s)=(st+1)~' has two open-loop
poles, one at zero and one at s= —1/1, and two zeros at infinity. The root
locus is sketched in Figure 2.6a. Initially, the poles move toward each
other on the negative real axis. When they meet halfway, they become a
complex conjugate pair and move toward infinity along a vertical line at
s=—1/2r. It may be seen that damping becomes very small as gain
increases.

The benefit obtainable from a lead term may be seen in Figure 2.65.
Here, too, the poles migrate together and become complex when they

Jw

K,Kq=1/47
-1/ =1/2r

Fs)=@r+ 7!

(a)

sty + 1

F(s) = T

(b)
Figure 2,6 Root-locus plots for second-order loops: (a) lag filter; (b) lag-lead filter.
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Figure 2.7 Root locus plot of third-order loop.

meet. However, because of the finite zero, the complex portion of the locus
is now a circle centered at —1/7,. Damping is small for moderately small
gains, but beyond a minimum point damping increases with increasing
gain. With sufficiently high gain, the locus eventually returns to the real
axis and the loop is overdamped. One branch of the locus terminates at the
finite zero; the other terminates at infinity.

The plot of Figure 2.6b is for a passive loop filter. If the loop filter were
a perfect integrator (an idealized active filter), both poles would originate
at the origin, and the radius of the circle would be 1/7,. Otherwise the plot
would be little altered.

It is common practice to design second-order loops with a damping
factor {=1/ V2 =0.707, in which case the closed-loop poles lie on radial
lines located at +45° from the negative real axis. With an active filter, for
which the root-locus circle passes through the origin of the s-plane, these
poles are located at (—1+;1)/7,. Thus the poles are located on the same
vertical line as the zero; furthermore, w,,=\/§ /7, Similarly, if {=0.5, it
turns out that w,=1/7,, and a circle of radius 1/, centered at the origin
passes through both poles and the zero. If { =1, the poles are coincident on
the negative real axis and w,=2/7,.

A third-order loop has two zeros and two poles in its loop filter, which
leaves four parameter choices open to the designer. It is shown in Chapter
4 that the third-order loop is most useful if both filter poles are at the
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origin. Purely for convenience we also assume that the zeros are coincident
at s= —1/7,. Figure 2.7 shows the root locus of this specific loop. Because
it is especially easy to compute and plot, this particular locus was chosen
for illustration*; however, the general characteristics of the plot are fairly
typical of any third-order loop that would be considered useful.

One feature of the plot is striking; the locus enters the right half-plane
for low values of gain, and the loop is unstable for that condition. This is
in direct contrast to the first- and second-order loops, which were uncondi-
tionally stable for all values of gain. When a third-order loop is used, the
gain must be prevented from falling into the unstable region.

2.6 BODE PLOTS

Another useful tool in the study of PLLs is the Bode plot, which is a pair of
graphs displaying the polar components of G(jw), the open-loop transfer
function (see Appendix A). Several loop parameters appear as distinctive
points on the graphs. Also, Bode plots are well suited for experimental
analysis of loop stability (see Chapter 8).

The Bode plot for a first-order loop is shown in Figure 2.8. The only
frequency-selective term arises from the integration action of the VCO; the
magnitude plot is a straight line (on the log—log scale) with slope of —6
dB/octave and the phase is constant at —90°. Since a VCO is present in
every PLL, the Bode plot of the VCO is embedded in the plot of any
higher-order loop.

Gain crossover (the frequency at which |G|=1, i, 0 dB) of the
first-order loop occurs at w= K, the loop gain of Section 2.3. The straight
line and its crossover completely define the linear dynamics of the first-
order loop.

Insertion of a simple lag filter (2.19) into the loop causes a break in the
magnitude curve to —12 dB/octave for frequencies above w=1/7, as in
Figure 2.9. The break usually is placed at a frequency beyond crossover so
as to obtain a satisfactory value of damping. If the break is at crossover,
then damping is {=0.5. If the break is at a frequency below crossover,
damping is less than 0.5: a condition that one ordinarily tries to avoid.

Gain crossover of the —6 dB/octave line segment (or its extension)
occurs at w= K. Phase is —90° at low frequencies but approaches —180°
at high frequencies. The additional phase lag is 45° at the break frequency.

*Furthermore, several designers of third-order loops have chosen this configuration in their
designs.
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Bode plots for the important second-order loops are shown in Figure
2.10. At very low frequencies, the VCO integration is dominant so the
amplitude slope is —6 dB/octave and the phase is —90°. The pole of the
loop filter introduces another lag: at w=1/A4r, for an active filter and at
w=1/7, for a passive filter. Slope becomes —12 dB/octave and phase
approaches —180°

If the gain of the active filter were infinite—if the filter contained an
ideal integrator—the filter pole would be at zero frequency, so the slope
would start at —12 dB/octave and the phase at —180°. It is often
convenient and justified to aproximate the gain as infinite and to draw the

Bode plot accordingly.

Log IG !
~ _1
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fitter N\
|
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| |
| |
I |
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I |
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Figure 2,10 Bode plot of a second-order loop with lag-lead filter.
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Figure 2.11 Bode plot of a third-order loop.

The stabilizing zero introduces a lead that causes the slope to revert to
—6 dB/octave and the phase to approach —90° for high frequencies. The
break in slope occurs at w=1/7,.

Natural frequency w, is the frequency at which the extension of the —12
dB/octave segment crosses the unity-gain ordinate. Placing the lead break
at the unity-gain point yields damping {=0.5. Since smaller damnirg is
rarely wanted, the break almost invariably is placed above unicy gain

Crossover of the final —6 dB/octave segment (or its extension if
damping should be less than 0.5) occurs at a frequency w= K=2¢w,. The
parameter K appears often in the chapters that follow.

As a last example, Figure 2.11 shows the Bode plot for the third-order
loop whose root locus is shown in Figure 2.7. Because the loop filter now
contains two ideal integrators, the low-frequency slope is — 18 dB/ octave
and the phase is —270°. Two lead zeros are needed to break the slope to
-6 dB/octave at high frequencies; the zeros are arbitrarily shown as
coincident. Gain crossover again occurs at w= K.




Chapter Three

Noise Performance

A major attraction of the phaselock loop is its ability to cope with large
amounts of noise. Analyses of the effects of noise are presented in this
chapter.

3.1 LINEAR ANALYSIS

We consider the phase detector to be a perfect multiplier with two inputs
v,(1) and v,(¢). Its output is K, v,v,, where K, is a constant with dimen-
sions of volts™'. (Phase detectors are frequently modeled as multipliers,
partly for analytical convenience and partly because many practical phase
detectors are good approximations to multipliers; see Chapter 6.)

We let one input to the multiplier consist of a sinusoidal signal plus
stationary, gaussian, bandpass noise:

v(t)=V,sin(w;z+8,)+n(?) 3.1)
The other input to the multiplier comes from the VCO* and has the form
v,(1)=V, cos(w;z+8,) (32)

For purposes of this chapter the input phase §, is assumed to be time
invariant. The effects of time-dependent §, are presented in the next
chapter.

Treatment of 4, is somewhat less straightforward. Temporarily we also
assume 8, to be time invariant, but that condition clearly does not occur in
a real loop. Noise accompanying the signal causes the VCO phase to

*Note that v; and v, are really 90° out of phase with one another. The input has been written
as a sine and the VCO voltage has been written as a cosine. The two phases §; and 6, are
based on these quadrature references. It is typical of multiplier-type phase detectors that the
VCO locks in quadrature to the incoming signal, so the notation is arranged in anticipation of
this fact.

25



26 Noise Performance

fluctuate; determining the statistics of those fluctuations is the objective of
this section.

To proceed we assume a fictitious open-loop condition whereby noise
cannot reach the VCO. Furthermore, VCO frequency is assumed to be
exactly equal to the signal frequency and #, is assumed to be time
invariant, though arbitrary. In essence, we restrict attention to the phase
detector alone for the first part of the analysis. Later, the loop is closed
and time-dependent 8, is admitted.

The bandpass input noise can be expanded (Appendix A) into two
quadrature, independent components to give

n(t)=n,(t)cosw;t — n(t)sinw; (3.3)
whereupon the output of the multiplier is found to be

vd(t) = Kmvi(t)vo(t)
=1K,V,V,sin(6,—8,)+ 3 K,n.V,cos,+ 3 K, V,nsind,

+1K,V,V,sin (2wt +6,+6,)+ 3K, V,n.cos (2wt +6,)
— 1K, V,n sin(2w,t+46,) (34)

The product consists of three low-frequency terms and three terms at twice
the input frequency. Our interest is in the difference-frequency terms, so
the double-frequency terms are discarded for this analysis.

In practice, filtering or other expedients must be applied to suppress the
double-frequency ripple. It is ignored here, but ripple is a serious dis-
turbance in many applications and substantial effort is often needed to
eliminate it. Chapter 6 contains some examples of ripple-reduction tech-
niques.

Now we define K, =1K, V,V, (justification is provided presently), so the
multiplier output, after the ripple is discarded, becomes

K,
v,=K,sin(6,—6,)+ nV cosé,+ f sind, (3.9
Next we define n’(¢) as
oy N8 ny(1)
n'(f)= —V—cos0o A ——~siné, (3.6)

5 R

which is a dimensionless quantity [as opposed to n(f), which has dimen-
sions of volts].
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Output of the phase detector is thereby simplified to
vy=K[sin(6,—8,)+n'(2) ] 3.7

An exact equivalent circuit of the phase detector is shown in Figure 3.1.
The phase detector output consists of the linear superposition of a signal
term K, sin(d,— §,) and a noise term K, n'(#). No linearizing approximation
has yet been imposed.

The signal-linearizing approximation invariably made requires that
(9,—9,) be small so that sin(d,—8,)=~0,— 0, and the useful output of the
phase detector is approximated by K,(0,—48,), as in Chapter 2. We note
that K, is proportional to input-signal level. Therefore, if the input-signal
amplitude varies, K, and all loop parameters dependent on loop gain also
vary.

Linearization is necessary to permit analysis in terms of transfer func-
tions and spectral densities. Note that removal of the sinusoidal signal
nonlinearity has no influence on the equivalent noise n’(¢). Linearization
with respect to noise proves to be more subtle.

But first, let us develop some of the statistical properties of n’(f). From
Appendix A, it can be concluded that n’ has zero mean. (Explicit depen-
dence on ¢ is dropped for notational convenience.) If 8, is assumed to be
time invariant, though arbitrary, the variance of n’ is

o2= 712- (n2 cos,+ n? sin¥,+2 n.n, sind, cosd,) (3.8)

5

where the overbar symbolizes the averaging operation.

From Appendix A we have n?=n2=n?=g? and n.n,=0. Moreover,
cos?d, +sin’f, =1, so
o= ;22 (39)
()
sin () K, |y, (2)

6, ()
Figure 3.1 Noise equivalent circuit of phase detector.
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Intensity of the equivalent noise is rotationally invariant; it does not
depend on the value of §,. [The same result obtains if 6, is time varying,
provided ,(¢) is independent of n'(¢). Independence is assured if the
feedback loop is open; however in the normal, closed-loop condition, noise
clearly affects VCO phase, so the two cannot be strictly independent. It
has been usual to assume that 8, and n’ are approximately independent,
provided that the bandwidth* of the phaselock loop is much smaller than
the bandwidth of the input noise. This is a restrictive assumption that is
avoided here. In consequence, the result of our analysis will apply to any
arbitrary noise-spectrum and is not confined to white-noise conditions.]

Now we examine the spectrum of n’, which is obtained by finding the
autocorrelation function and taking the Fourier transform (Appendix A).
From (3.6), the autocorrelation of n’ is

HRIED =~ {0080, Al ) +sinl, n{E)A )

5

+sin, cosd,[ n(1)n(t;) + n(t))n(1) 1} (.10

But, from Ref. 1, p. 162, we have n(#,)n,(t,)= — n,(¢,)n.(2,) so the cross
terms of (3.10) add up to zero. Since the noise is stationary, the autocorre-
lation depends only on the difference 7=1, —t,. Denoting autocorrelation
by R(7), we find the autocorrelation of n’ to be

R(7)= % [ R,o(7)cos8, + R,(r)sin’0, ] G.11)

s

Taking Fourier transforms, the spectrum of n’ is

0,(1) =~z [ Bl Ne0sl,+ 2, (f)sin0] (312)

However, ®,.(f)=90,.(f)=®,(,—f)+®,(f;+f), where ®,(f) is the one-
sided spectral density of the bandpass input noise n(f). (Note that f is
nonnegative because we are considering one-sided spectra. Also, fi=
w;/27.)

The spectrum of n’ reduces to

L
V2

s

0,(f)=—; [®(fi—N)+Du(fi+])] (3.13)

*Loop bandwidth is defined in (3.17).
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For the special case of white noise, ®,(f) =N, V2/Fz, so the spectrum of
n’ becomes

2N,
V2

®,(f)= (3.13a)

s

The only assumptions underlying these results are that the input noise is
bandpass, stationary, gaussian noise and that the VCO phase is time
invariant, though otherwise arbitrary. Under these assumptions, n’ must be
gaussian. So far there has been no linearizing approximation with respect
to noise.

(Noise output of the phase detector is K,n'(r). Such an output could be
caused by the additive noise, as described, or it could be caused by an
input phase disturbance sind,(f)=n'(r). If 8, is small enough, the
sinusoidal nonlinearity can _be neglected and the variance of the fictitious
input phase disturbance is §2=02 =o?/ V2. Input signal to noise ratio is
SNR;=V?/202, so the input phase variance is approximated by §2=
1/2SNR,. That is the jitter to be expected if one were to measure the phase
difference between a clean signal and one corrupted by noise, under
conditions of large signal-to-noise ratio. This relation is used later in
establishing a definition for signal-to-noise ratio of the phaselock loop.)

(In light of the duality between n’ and 4,, it is sometimes useful to
consider n’ to be an angle disturbance, with units of radians—a dimension-
less quantity. Then the spectral density ®,. can be considered to have units
of rad’/Hz.)

The assumption of time-invariant §, has implied an open loop; if the
loop were closed, the noise would frequency modulate the VCO and 6,
would fluctuate in random fashion. Our eventual goal in this analysis is to
determine the properties of the fluctuations of §,.

The phase detector is nonlinear, so the fed-back fluctuations intermod-
ulate with the incoming signal plus noise. Completely general analysis is
blocked by this nonlinearity; all useful results require simplifying ap-
proximations.

The most common simplification is to assume noise is small enough that
(6,—8,) remains small and that the PD can be regarded as linear. Under
these conditions, the intermodulation products may be neglected and a
linearized phaselock loop, with simple, additive noise n’(f), may be consid-
ered, as shown in Figure 3.2
~ From Figure 3.2 it becomes evident that n’'(¢) is simply additive to the
~ input-signal phase ;. In Chapter 2 a transfer function H(jw) is derived,
- which relates 8, to 8;; the same transfer function relates 8, to n’(¢). Spectral
 density ®,, of the VCO phase is related to the spectrum of n’ by the
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Figure 3.2 Block diagram of linearized loop.
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- Lo Ui-N+e+DIHGDE (14

s

Variance of the output phase is

02 = [“oNIHGOY  rad® (3.15)
0

where, as usual, w=2xf.

In general, the integral of (3.15) is cumbersome to evaluate. However, it
simplifies radically in the important special case of white input noise. If
®,(f)= N, (V2/Hz) for all frequencies of interest, then (3.15) becomes

2N,

V2

2
ono =

k "\ H(j2af )P df (3.16)

The integral of (3.16) defines the noise bandwidth of the loop and com-
monly is given the symbol B, .

B.= [T e (3.17)

Therefore, if the input noise applied to the loop is white, the phase
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variance is given by the very simple formula

7 = 2N,B, _ W:B,
no — V2 = Ps

5

rad? (3.18)

where P, is the signal power in watts and W, is the noise power spectral
density in W/Hz.

The integral of (3.17) has been evaluated explicitly for several common
varieties of loop transfer functions and the resulting expressions for noise
bandwidth are shown in Table 3.1 (refer to Chapter 2 for definitions of
notation). Notice that B, has dimensions of Hertz, despite the fact that K,
a,, and w, are given in radians per second.

The central role of the loop gain K in establishing B, is evident from the
table. It is intriguing to see that addition of a simple lag filter to a
first-order loop does not affect the noise bandwidth; this is one reason for
regarding the second-order loop with lag filter as a modified first-order
loop rather than a genuine second-order loop.

Noise bandwidth of the popular high-gain, second-order loop is plotted
against damping in Figure 3.3. Minimum noise bandwidth is achieved for

=1. Noise bandwidth does not exceed the minimum by more than 25%
(1 dB additional jitter) for any damping between 0.25 and 1.0.

Table 3.1 Noise Bandwidths of Common Loops

Loop Description Noise Bandwidth, B, (Hz)
First order iK
Second order:
Simple lag filter 1K
K+a,+1
Passive lag—lead filter 1=t /T /7

K+l/‘T|

=%K(l+a—12) if K>1/7, and ay»1/7,

Active lag-lead filter {K(l + EI%) or %w,,( ¢+ Ilf)
Third order:

Two zeros; all open-loop K+a2—

poles at origin ik DAY T4

azK— as
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Figure 33 Loop noisc bandwidth (for high-gain, second-order loop).

Signal-to-noise ratio (SNR) is a useful engineering concept and it is
often helpful to define one for the phaselock loop. Definition of input
signal-to-noise ratio SNR, is straightforward; it is merely the ratio of input
signal power to input noise power.

By contrast, there is no “signal” within the PLL; normal tracking is
about a null. Also, loop “noise” is a function of the point at which the
measurements are performed—there is no unique definition. As a result,
loop signal-to-noise ratio SNR, must be defined arbitrarily and is a
fictitious quantity without firm physical meaning.

In this book SNR, is defined by analogy among phase jitters. The input
phase jitter, for large SNR;, was found to be

- 1
2 -
0z 7SNK, (3.19)
By analogy, we define SNR, arbitrarily from
— 1
7
0. 7SNR, (3.20)
Then, using (3.18), we arrive at
P v2/2
=t = 21
SNR.=58, W, 2B,N, (3:21)
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Equation 3.21 is taken as the definition of loop signal-to-noise ratio for all
values of SNR,, large or small. However, (3.18) and (3.20), which were
used in generating (3.21), are valid only for large SNR,. Nonlinear
operation (at small SNR,) is considered later in the chapter.

[Another common definition of loop signal-to-noise ratio is P,/ B, W;; it
and (3.21) are equally valid and equally arbitrary. Care must be taken in
reading phaselock literature to ascertain which definition is used by the
author.]

Despite the fictitious nature of SNR,, it is possible to endow it with a
useful conceptual meaning. Let us consider that the loop acts as a band-
pass filter around the received signal. The filter is centered at the
frequency of the signal and has a noise bandwidth of B, on each side of
center for a total equivalent input bandwidth of 2B, . Thus, for white noise
of spectral density W,, the total noise power that enters the loop is ZBL
watts. The ratio of s1gnal power to this value of n01se power is our
definition (3.21) of SNR,.

Like all bandwidths in this book, B, is a one-sided bandwidth (see
Appendix A). One might reasonably and properly call 2B, the double
sideband noise bandwidth of the loop; 2B, is one-sided. The distressing,
though common, practice of describing 2B, as the two-sided noise band-
width is improper, especially in conjunction with one-sided noise spectra.

3.2 NONLINEAR OPERATION
Observed Behavior

When a PLL is monitored in the laboratory, the phase jitter of the VCO
is observed to be more than is predicted by (3.18) and (3.20), as SNR, is
reduced below about 4 dB. See curve a in Figure 3.4. The discrepancy
should cause no surprise, since the linear analysis was based on an
assumption of small phase error in the loop, but the actual error at low
SNR, is not small. The linear analysis fails when its underlying assump-
tion is violated.

Another phenomenon appears at low SNR, ; the oscillator phase occa-
sionally slips one or more cycles as compared to the signal. A large noise
event, in effect, knocks the loop temporarily out of lock and tracking
returns to equilibrium 7 cycles away from its original condition (n=
*1, 2, etc.). Frequency of slipping is a very steep function of SNR,, as
shown in Figure 3.5. Cycle slips are particularly destructive to operations
in which every cycle counts, such as Doppler velocity measurements or
recovery of digital clock timing (Chapter 11). Slips are also important to
the understanding of phaselocked FM demodulators (Chapter 9).
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A third phenomenon emerges if SNR; is reduced sufficiently; the loop
drops out of lock and stays out. Control of the VCO is lost; its frequency
wanders off from the signal frequency. Although both phenomena have
often been lumped together under the name loss of lock, drop lock is
qualitatively distinct from repeated cycle slips.

The drop-lock SNR, typically is in the vicinity of 0 dB, although
extreme care with loop components may extend the dropout point 1 to 2
dB lower. An observer gets the impression that the loop at low SNR, is
staggering (because of repeated cycle slips) and eventually everything
seems to collapse as lock is lost completely. Reacquisition of lock is nearly
impossible after dropout, unless SNR; is raised substantially (to about 3 to
6 dB).

Experience of the drop-lock phenomenon led to the concept of a noise
threshold of the PLL; that is, the loop falls out of lock if SNR, is below the
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- “threshold” level. The idea of threshold was given support at one time by
- quasi-linear analysis.>>

Later, it gradually became apparent that well-built loops could hold lock
below the analytical threshold, whereupon it was realized that the predic-
ted threshold was a feature of the approximations in the analysis and not
of a real PLL. Despite the incorrect prediction of threshold, the quasi-
. linear method—and its modifications®*—provides a simple method of
. adequate engineering accuracy for predicting phase jitter in a practical
| operating range of SNR;.
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Presently accepted nonlinear analyses do not reveal a noise threshold
(see next section). Current opinion holds that drop lock arises from a
complicated nonlinear interaction between the noise-caused phase jitter
and small biases and DC offsets arising from imperfections of the loop
components, especially the phase detector (see Chapter 6). The imperfec-
tions are circuit specific and are usually unpredictable,.even after the
circuit is built. In general, drop lock would be very difficult to analyze and
any analysis would be difficult to apply.

Analytical difficulties aside, this viewpoint sees drop lock as a techno-
logical problem and not inherent to the PLL, as such. If the viewpoint is
correct, drop lock can, in principle, be pushed to lower signal-to-noise
ratios by improvements in the loop components.

By contrast, analyses described in the sequel predict cycle slipping
characteristics very well. Moreover, the cycle-slip predictions are for ideal
loops, so no relief can be obtained from improvements in loop compo-
nents. -

Nonlinear Analysis of Phase Error

In a linear system, a gaussian input gives rise to a gaussian output.
Therefore, our earlier assumptions of linear operation of the loop and of
gaussian input noise imply that the VCO phase jitter would be gaussian. A
gaussian process is completely defined by its autocorrelation function or,
equivalently, its spectral density as derived in (3.14). Variance is readily
found from either one.

Response of a nonlinear system to a gaussian stimulus is generally
nongaussian and the second-order statistics do not define the process
completely. Nonlinear analysis of a PLL has been concerned with deriving
the nongaussian probability density function (pdf) of the phase error,
computing the phase variance from the pdf, and investigating the statistics
of cycle slipping.

The analytical simplicity of transfer functions is lost in a nonlinear
system. Analysis of a nonlinear system is much more difficult and de-
mands a higher level of mathematical sophistication than linear analysis.
The treatment here presents a summary of the results of the various
nonlinear analyses, a treatment that is more than sufficient for most
engineering purposes. (In fact, linear analysis will suffice for the great bulk
of engineering design problems.) References are provided for those who
are interested in the detailed mathematics.

Viterbi’s exact analysis® of the first-order loop has provided much
insight and many useful tools for understanding nonlinear operation. First,
one must recognize that cycle slips cause the phase error (4,—46,) to be a
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growing quantity and ultimately unbounded; that is, phase error, as it has
been defined so far, is nonstationary, so our well-honed tools of stationary
analysis are not applicable directly.

To avoid this problem, we define a new phase variable

¢=(8,—0,) modulo 27 (3.22)

so that, although (#,—46,) can take on any value from —oo to + oo, the
value of ¢ is bounded since (3.22) means (0,—6,)=¢+2nm, where n is
chosen to cause ¢ to lie in the interval (— =, 7).

This definition of ¢ implies that all cycles of a sine wave look alike and
cannot readily be distinguished from one another. Cycle slips are neglected
by this definition and they must be treated separately. Most laboratory
instruments operate modulo 27 and therefore yield ¢ rather than 8,—46,;
the concept agrees well with normal practice, despite any initial impres-
sions of peculiarity. -

It turns out that ¢ is stationary (in the steady state, after any transients
have died out), which allows us to apply stationary statistics. Let us denote
the probability-density function of ¢ as p(¢); this is found as the steady-
state solution of a nonlinear, stochastic partial-differential equation known
as the Fokker-Planck equation. Bypassing details’ we have

exp (pcos¢)
21,(p)

where p=2SNR,; and I,(p) is the modified Bessel function of the first kind
and zero order.®

(Equation 3.23 is valid only if the static phase error ¢=0. See Chapter 4
for an explanation of static phase error. See Ref. 12 for p(¢) if $+0.)

The density (3.23) approaches gaussian for large SNR,, thereby agreeing
with the linear analysis. At very small SNR,, p(¢) approaches a uniform
density over (— r,7), which is characteristic of the phase of random noise.

Variance of the phase error can be found by numerical evaluation of

o = [ oP(e)ds (3.24)

p(®)= o] <= (3.23)

The result, phase variance reduced modulo 2, is plotted in curve b of
Figure 3.4. The exact variance agrees with the linear analysis for large
SNR, and approaches 72/3 for very small SNR;. (The variance of a
random variable, uniformly distributed over (— =, ), is 72/3.)

Knowledge of variance is useful but is insufficient by itself because cycle
slipping is evaded in its computation. Statistics of cycle slipping are an
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important attribute of PLL operation at low SNR,, as is the phase
variance.

By means of manipulations on the Fokker-Planck equations, Viterbi
derives an expression for the average time T,y between cycle slips. From a
condition of zero phase error, T,y is the average time required for the loop
phase error to reach 2 for the first time. If slipping occurs primarily as
single, isolated slips, then the frequency of cycle slips is 1/ T,y If slips
cluster—as may happen in a second- or higher-order loop— then Ty and
the slip rate are not quite so simply related.

For the first-order loop with zero static phase error

7’pl }(p)
Tooy=—2-~ 3.25
AV 2 BL ( )

which is approximated for large p by
T N
Tav=-—¢xp(2 3.26
w75 xP(20) (3:26)

A plot of T,y from (3.25) is shown as curve b in Figure 3.5; the
straightness shows that (3.26) is acceptable for all practical SNR;.

In addition, time between slips is exponentially distributed; that is, the
probability that the loop will slip within T sec, starting from zero error, is

P(T)=1—exp(—T/Tay) (3.27)

This distribution is well confirmed by computer simulations and labora-
tory measurements on both first- and second-order loops.

Viterbi’s results apply exactly to a first-order loop with sinusoidal phase
detector and additive, white, gaussian noise. The first-order pdf (3.23) and
variance also apply,”® without modification, if a simple lag filter of the
form F(s)=(s7+1)~! is inserted into the loop, provided static phase error
is zero.

Fokker-Planck equations can be written for the true second-order loop,
but explicit, exact solutions have been unattainable. The second-order loop
is technologically the most important configuration, so there is a strong
motivation to determine its statistics for low SNR, . Experimental measure-
ments of p(¢) and ¢ are reported in Ref. 7. The measured variance is
shown as experimental points (curve a) of Figure 3.4. We can draw two
significant conclusions:

1. Exact nonlinear analysis of the first-order loop is in close agreement
with measured performance of the second-order loop for SNR, in
excess of 0 dB, that is, for any useful value of SNR;.
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2. Approximate linear analysis yields good accuracy if SNR, is in excess
of 5-6 dB.

Because of the practical importance of a second-order PLL, numerous
approximate analyses have been devised.”'* These analyses generally
involve clever assumptions and heroic mathematics.

Among the several methods, Lindsey’s approach'>!® starts with the
Fokker-Planck equation, so it yields approximations to the pdf and slip
statistics as well as phase variance. He provides substantial detail in the
form of charts and formulas. His prediction of variance is shown as curve ¢
in Figure 3.4. The approximation is clearly very close to the measured
results, albeit slightly pessimistic. Similar agreement is found in comparing
the measured pdf against the predicted value.

Lindsey’s analysis predicts that the phase variance will have a weak
inverse dependence on damping factor {; that is, jitter is slightly worse for
small damping, given the same loop bandwidth B, and same SNR;. The
prediction is borne out by simulation results.'”> However, if SNR, exceeds
unity—as it must in a useful loop—then the spread between light damping
(£=10.35) and a first-order loop ({=c0) is small and may be neglected for
most purposes.

Several investigators have studied slipping in a second-order PLL by
means of computer simulation and by measurements on physical loops in
the laboratory. A summary of their published results is given in Figure 3.5.

It is evident that slipping becomes somewhat worse if damping is small.
The first-order loop has infinite damping so its slip time T, is greater
than that of any second-order loop of the same noise bandwidth.

(The experimental curves suffer from statistical fluctuations due to a
finite number of samples in the measurements and from ad hoc redefini-
tions of the meaning of “slip.”’® Some caution must be exercised in
applying the data.)

Predictions of T,y for a second-order loop are given by formulas
developed (at great effort) by Lindsey'?!? and Tausworthe,'”'® predictions
in fairly close agreement with the experiments. Since the formulas are
cumbersome and since their derivation necessarily involved approxima-
tions, the practicing engineer will usually find the curves of Figure 3.5 to
be a more convenient guide to slip behavior.

Inspection of the data points of Figure 3.5 shows a reasonably good fit
to a straight line when they are plotted on a logarithmic ordinate. This
means that T,y is approximately exponentially dependent on SNR,.
Curves b and ¢ of the figure represent boundary limits that encompass all
the configurations that have been explored. Curve b is the exact result for a
first-order loop and is described by (3.25) and (3.26). Curve ¢ is from
simulation of a second-order loop with damping 0.707; its level is thought
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to be somewhat pessimistic. The points of c are well fitted by an empirical
relation (valid only for zero static-phase error)

B, T,y=exp(7mSNR,) (3.28)

It appears to be reasonable to use (3.26) and (3.28) as upper and lower
bounds on Tyy.

Some numbers are of interest. If we let B, =20 Hz, at SNR, =1 (0 dB)
(3.28) predicts T,y = 1.16 sec, which would be very poor performance. Use
of (3.26) predicts T,y =2.1 sec, which is also very poor.

Now let us consider SNR, = 10; the lower bound on T,y is predicted to
be 2.2 10" sec or about 70,000 years. (We assume, without any experi-
mental verification, that the exponential relation can be extrapolated to
large SNR.)

Miscellaneous Features

The most important descriptors of nonlinear operation are the pdf and
variance of the phase error, reduced modulo 2, and the slip statistics. This
information has been presented for a loop that is unstressed by any other
phase error, such as may be caused by steady phase error or angle
modulation. Chapter 4 discusses the origins of such phase errors and how
they may be reduced.

The presence of a static phase error causes the phase jitter to increase
and the presence of noise causes any static phase error to increase from its
no-noise level. An appealing physical insight is provided by the approxi-
mate analysis of Blanchard.? Other analyses are given in Refs. 12, 13, and
19. '

As might well be imagined, presence of a phase error increases the
propensity to cycle slipping. The effect of a static phase error is expounded
in Refs. 12, 13, 16-18, 20, and 25. Virtually no information exists on
slipping in the presence of time-varying phase error.

Observations of cycle slips have revealed that the slips of a first-order
loop are almost always single, isolated events. Therefore, the rate of cycle
slipping r, is simply the reciprocal of the mean time to first slip: 7, =
1/T,y-

In a second-order loop, the slips tend to bunch in bursts; the average
number of slips per burst increases with worsening SNR, . See Refs. 15, 16,
22, and 23. No good physical explanation has been advanced for this
behavior, although explanation of a related phenomenon is attempted in
Chapter 4. The slip rate 7,71/ T,y in a second-order loop.

All of the foregoing nonlinear analysis, simulation, and measurement
applies only to white noise. In practice, “white” means that the bandwidth
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of the input noise is large compared to the noise bandwidth 2B, of the
PLL. The Fokker-Planck approach is inapplicable to analysis with narrow-
band noise. In consequence, we are unable to predict cycle slipping for
narrowband noise inputs. In Chapter 9, it is seen how this restriction has
impeded understanding of phaselocked FM demodulators.

Hess®* has devised an approximate analysis of cycle slipping in a
first-order loop exposed to bandlimited noise. His formulas are confirmed
by measurements of cycle slipping on laboratory PLLs.

All of the foregoing has assumed that gaussian noise was applied to the
PLL; different noise statistics require modified analysis. A limiter is often
used in front of a phase detector, making the noise statistics decidedly
nongaussian. Discussion of the effect of a limiter in the nonlinear region of
loop operation may be found in Refs. 13, 21, and 24. Effect of a limiter in
the linear region is examined in Chapter 6.

Finally, the known information on nonlinear operation is confined to
first- and second-order loops; there is almost nothing published on higher-
order loops. Since the third-order loop is of some practical importance, this
lack of data is a barrier to fully understood design. The only present
expedient is to assume that a third-order loop behaves much the same as a
second-order loop of the same noise bandwidth.
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Chapter Four

Tracking

4.1 LINEAR TRACKING

To study tracking we examine the phase error 8, that results from a
specified input 4. A small phase error is usually desired and is considered
to be the criterion of good tracking performance. If the error should
become so large that the VCO skips cycles, the loop is considered to have
lost lock, even if only momentarily. The problems of unlock behavior are
considered in a later section. Here the concern is with tracking in a locked
loop with phase error small enough to justify an assumption of linearity.

Steady-State Errors

Phase error (in the frequency domain) is given by (2.7) as

50.(s)
0.(5)=———— 4.1

(s) s+ K,K,F(s) (1)
The simplest to analyze are the steady-state errors remaining after any
transients have died away. These errors are readily evaluated by means of
the final value theorem of Laplace transforms, which states

lim y(#)= lim sY(s) 4.2)
1—00 5s—0

That is to say, the steady-state value of a function in the time domain is
readily determined from inspection of its transform in the frequency
domain.

Application of the final value theorem to the phase-error equation yields

2

0.
lim 6,(1)= lim — 25 (4.3)
t—00

s—0 s+ K K, F(s)

43
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As a first example, let us consider the steady-state error resulting from a
step change of input phase of magnitude Af. The Laplace transform of the
input is therefore ,(s)=A8/s, which may be substituted into (4.3) to give

sAG
s+ K K,,,F(s)

[provided that F(0) > 0). In other words, the loop will eventually track out
any change of input phase; there is no steady-state error resulting from a
step change of phase.

For another example, let us examine the steady-state error resulting
from a step change of frequency of magnitude Aw. Input phase is a ramp,
0(1)=Awt, so 8(s)=Aw/s*. Substitution of this value of @, into (4.3)
results in

hm 0.(1)=

Aw Aw
_>o s+ K, K, F(s) KoKdF(O)

6,= lim 6,(1)= (4.4)

The product K, K, F(0) is often called the velocity constant or DC loop gain
and is denoted by the symbol K. Those familiar with servos will recognize
it as the velocity-error coefficient. Note that K, has the dimensions of
frequency.

Incoming signal frequency almost never agrees exactly with the free-
running (zero control voltage) frequency of the VCO. As a rule there is a
frequency difference Aw between the two. The frequency difference may be
due to an actual difference between the transmitter and receiver or it may
be due to a Doppler shift. In either case the resulting phase error is often
called the velocity error, loop stress, or static phase error and is given by

0==— (4.4a)

A heuristic derivation of (4.4) provides better physical insight. The
control voltage needed to retune the VCO by an amount Aw is Aw/ K. In
the steady state, the control voltage v, = v,F(0), where v, is the DC output
of the phase detector. But phase detector output is produced by a phase
error 8,=v,/K, Therefore, to produce the necessary control voltage
requires the phase error 8, =Aw/ K, K,F(0) as in (4.4).

Let us evaluate K, for the second-order loop. Two types of loop filter are
considered in Chapter 2: a passive filter and an active filter. For the
passive filter F(0)=1, whereas for the active filter F(0)=A, where 4 is the
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DC gain of an operational amplifier. Assuming that K K, is the same in
both cases, we see that K, will be much larger and 6, much smaller if an
active filter is used. (Voltage gains of 107 to 107 are typical.) As a practical
matter, it is not difficult, in most cases, to make A large enough that 8, is
no more than a few degrees for the maximum frequency difference
encountered.

We can now see the reason for the predominance of second-order loops.
Since signal frequency almost invariably is unequal to the free-running
frequency of the VCO, a nonzero control voltage is needed to tune the
VCO and hold the loop in lock. The integrator in the loop filter of a
second-order loop generates the necessary control voltage while still per-
mitting small phase error. Moreover, the large integrator gain can be
obtained simultaneously with small noise bandwidth, an impossible combi-
nation in a first-order loop.

Next, let us suppose that the input frequency is linearly changing with
time at a rate of A rad/sec?; that is, 6,(f)=3Awr. Such-input behavior
might arise from accelerated motion between transmitter and receiver,
from change of Doppler frequency during an overhead pass of a satellite,
or from sweep-frequency modulation. Transformed phase is 8,(s)=A&/ s>,
and it can be shown that phase error will grow without bound if K is
finite.

However, let us suppose that an active loop filter is used and that K, is
large enough that static phase error (4.4a) is negligible for the largest
frequency excursions to be accommodated. Under this assumption an ideal
integrator, with infinite K, is a good approximation to the actual filter.
Then from (2.12) the phase error in a second-order loop may be written as

0.(s)= _i(s)___ 4.5)

s2428w,s +w?

By use of (4.2) this leads to the acceleration error (sometimes called
dynamic tracking error or dynamic lag)

Ao
8. = lim 8,(1)= i 46
« e (1) Pt $2 428w, s+ w? (46)
0,=22  rad (4.7)

W}

It is possible to obtain (4.7) from physical considerations. We apply a
DC voltage v, to the integrator of the loop filter. Integrator output is
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v.()=10,(0)+ v,t/7,, so the rate of change of VCO frequency is Aw=
K,v,/7,. The DC voltage v, must be generated by a phase error 0.=
v,/ K,, which, when substituted into the expression for frequency rate,
gives A=K, K,0,/7,. But, from (2.11), K,K,/7,=w;, whereupon (4.7)
follows.

It is sometimes necessary to track an accelerating phase without incur-
ring steady-state tracking error. Let us determine the form of F(s) needed
to reduce 8, to zero. The expression for final value acceleration error is

(4.8)

8, = lim Ao
¢ 50 s[s+ K, K,F(s) ]

For 6, to be zero, it is necessary that F(s) have the form Y(s)/s% where
Y(0)%0. The factor 1/s? implies that the loop filter must contain two
cascaded integrators. Closed-loop response then has a polynomial of third
degree in its denominator, and the loop is of third order.- Because of this
property of eliminating the steady-state acceleration error, a third-order
loop is sometimes very useful in tracking satellites and missiles.®

In a second-order loop, it is necessary to employ a large natural
frequency, and therefore, large noise bandwidth, to handle a rapidly
changing input frequency. By going to third order, the frequency rate can
be accommodated in a loop with small noise bandwidth.

One other steady-state error is ever present. It is caused by unwanted
DC offsets in the active filter and in the phase detector. The loop acts to
produce a DC null, including the effect of offset, so the phase error needed
to counteract the offset is simply the offset voltage divided by K,, the PD
gain factor. Further discussion of offsets is found in Chapter 6.

Translent Response

Besides steady-state behavior, it is often necessary to determine the
transient phase error caused by particular inputs. The signal phases consid-
ered in the last section are:

1. A step of phase, A# rad.
2. A step of frequency (phase ramp), Aw rad/sec.
3. A step of acceleration (frequency ramp), Aw rad/ sec’.

For these inputs, the L-transformed input phase is Af/s,Aw /s, and
Aé/s? respectively. To compute phase errors each input is substituted into
(4.1) and inverse L-transforms are then computed (or looked up in tables)
to determine time response.
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In a first-order loop, the resulting transient phase errors are simple
exponentials:

Afe~ X (phase step)

A_;: (1-e~ K (frequency step)
Aw Kkt

—123 (Kt+e ™—1) (frequency ramp)

Note that the frequency-ramp response increases with time and that linear
bounds are eventually passed. The analyses in this section are all predi-
cated on a linear approximation and all fail if the loop is driven into a
nonlinear region.

The analytic expressions for phase error of a high-gain, second-order
loop are given in Table 4.1 and are plotted in Figures 4.1 to 4.3. The plots
are from Hoffman’s monograph,' which contains many additional useful
plots of similar nature.

A third-order loop can be treated in the same manner, but the published
results’® are few and are widely scattered. The reason lies partly in the
far-greater popularity of the second-order loop, but also in the extra
complexity of third order. There are three loop parameters in a third-order
loop, so many pages of figures would be needed to present the same kind
of data as in, for example, Figure 4.2.

As a rough rule of thumb, one can assume that the peak error of a
third-order loop in response to any of the three input variations discussed
here would be about the same as that of a second-order loop with the same
bandwidth and similar positions of the dominant poles. The differences
arise in the steady-state errors and in the detailed transient behavior.

Sinusoidal Modulation

Next, let us investigate loop behavior in the presence of an angle-
modulated input signal. For sinusoidal phase modulation

0.(t)=A8sinw,,t 4.9

and for sinusoidal frequency modulation

0.()= % cosw,, (4.10)
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Figure 4.1 Phase error 6,(f) due to a step in phase Af. From Ref. 1 by permission of L. A.
Hoffman.
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Figure 4.2 Transient phase error §,(¢) due to a step in frequency Aw. (Steady-state velocity
error, Aw/ K,,, neglected.) From Ref. 1 by permission of L. A. Hoffman.

49



50 Tracking

14 1T I L1 T T
1.3 LI[ | A o N !
=03/ N
12 + b =05 \\ '
| I N
| ; ™
L1{+ AT T or0r
1.0 1 . A .
09|+ ayAVanpZe BESsELY e
| ’ [ / %/ [~ -
3308 SRR 4% g ]
LYy | [ = 1
: // 1/ /f—l.o 1]
5 o6 il/, 3 /L
* 05 {/// 8220
oaf L
0.3 H+ 44 ‘ R
e T =50
02 f*/: - {;
01|+ 1 % 1
0 Tl RN ]
0 1 2 3 4 5 6 7 8
wnt
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acceleration error, Aw/w? included. Velocity error, Awt/K,, neglected.) From Ref. 1 by
permission of L. A. Hoffman.

where A# is peak phase deviation, Aw is peak frequency deviation, and w,,
is modulating frequency.

Phase error is sinusoidal and may be calculated simply as the steady-
state frequency response of (2.7). Examples are shown in Figures 4.4 to 4.6.

Error response to phase modulation is a highpass function of modulating
frequency, as shown in Figure 44. At low frequencies, the response
amplitude rises at 6n dB/octave for an nth-order loop. (This statement
assumes perfect integrators in the loop filter. For real filters, the slope must
break to 6 dB/octave at sufficiently low frequencies.) At high modulating
frequencies, the loop is unable to follow the modulation so the full
modulation phase appears as error at the phase detector. Accordingly, the
high-frequency asymptote in Figure 4.4 is constant at 0 dB.

The curves of Figure 4.4 are sketches; the examples are different-order
loops that have the same bandwidth in some sense. It is apparent that, for
any frequency within the loop bandwidth, a higher-order loop tracks the
modulation better than a lower-order loop does.

Error response to sinusoidal FM is shown in Figure 4.5 for three
different kinds of loops. We note that the high-frequency asymptote is the
same for all loops; the response differences lie at low frequencies within
the loop bandwidth. The rolloff at high frequencies occurs solely because
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loop). By permission of L. A. Hoffman.

input phase deviation Af=Aw/w,, is inversely proportional to modulating
frequency.

The curves of Figure 4.5 have all been drawn for loops with equal loop
gain K. We see that the first-order loop has a lowpass response in
accordance with its one-pole transfer function, while the second-order loop
is more effective at tracking out the lower frequencies.

A loop with a simple lag filter has the same asymptotes as those of a
first-order loop with the same gain, but there is a response rise—error
amplification—in the vicinity of the band edge, particularly for small
damping factors. Performance of the lag loop, despite its second-order
transfer function, is clearly much closer to a first-order loop than to that of
true second order. If small phase error is needed, then a lag loop is likely
to be a poor choice, even worse than a first-order loop.

Figure 4.6 shows phase error in response to FM, plotted against natural
frequency and damping of a high-gain, second-order loop. Phase error is
maximum at a modulating frequency equal to natural frequency «,, where
peak amplitude is Aw/2{w, =Aw/ K, irrespective of damping. Furthermore,
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the phase shift between phase error and the frequency-modulating wave
passes through zero at w=w,. These properties are sometimes used as the
basis for experimental measurement of w,.

4.2 NONLINEAR TRACKING: LOCK LIMITS

All the preceding material on tracking and phase error is based on the
assumption that the error is sufficiently small, thus allowing the loop to be
considered linear in its operation. This assumption becomes progressively
less useful as error increases until finally the loop drops out of lock, and
the assumption becomes worthless. In this section the linear assumption is
discarded, and the limiting conditions for which a loop holds lock are
investigated.

Steady-State Limits

The first topic considered is the input frequency range over which the
loop will hold lock. In (4.4a) the linear approximation of phase error due
to a frequency offset is shown to be §,=Aw/K, However, for a
sinusoidal-characteristic phase detector the true expression should be

Aw
sinf = — 4.11
v KJ ( )

The sine function cannot exceed unit magnitude; therefore, if Aw>K,,
there is no solution to this equation. Instead, the loop falls out of lock and
the phase-detector voltage becomes a beat-note rather than a DC level.
Hold-in range of a loop may therefore be defined as

Awy=*K, (4.12)

Equation (4.12) states that the hold-in range can be made arbitrarily
large, simply by using very high loop gain. Of course, this cannot be
entirely correct because some other component in the loop will then
saturate before the phase detector; that is to say, to achieve any given
frequency deviation of the VCO some definite control voltage is needed.
However, the loop amplifier (if one is used) has some maximum voltage it
can deliver and the VCO has some maximum voltage it can accept. If
either of these limits is exceeded, the loop unlocks. It is not uncommon to
find active loops with such high gain that the amplifier will saturate when
static phase error is only a few degrees.
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Dynamic error in a second-order loop was previously (4.7) approximated
as 6,=Ad/w?l. The correct expression for a phase detector with a
sinusoidal characteristic should be

sinf, = (4.13)

&8

from which it may be deduced that the maximum permissible rate of
change of input frequency is

Ad=w? (4.14)

n

If the input rate should exceed this amount the loop will fall out of lock.

Many phase detectors have greater linear spans and larger maximum
output than the sinusoidal characteristic of (4.11). Several examples are
shown in Figure 4.7. All curves of Figure 4.7 are shown with the same
slope at 8, =0, which means that the different PDs all have the same gain
factor K. Circuits that provide these and other extended characteristics
are described in Chapter 6.

Increased PD output capability provides a larger tracking range—larger
lock limit—than is obtainable from a sinusoidal PD. (Of course, the
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Table 4.2 Lock-Limit Extension

PD Type Extension Factor
Sinusoidal 1
Triangular %
Sawtooth T
Sequential phase/frequency 27

extended range of the PD is helpful only if the limit is set by the PD and
not by some other nonlinearity, such as clipping in the operational ampli-
fier.) Tracking extension of each of the types shown in Figure 4.7 is given
in Table 4.2. Hold-in (4.12) and rate limits (4.14) are both extended by the
same factor.

Transient Limits: Phase-Plane Analysis

Figure 4.2 demonstrates that transient error can be much larger than
steady-state error, implying that a loop can be pulled out of lock on a
transient basis by an input change that could be tracked easily in the
steady state. This section examines a number of such transient conditions.

Most phase detectors are periodic and so cannot distinguish a phase step
of A@+2mn from one of Af. Therefore, in the absence of other stress, an
ordinary loop should never lose lock when subjected to a phase step,
irrespective of magnitude or loop order.

A frequency step can break the lock. A first-order loop loses lock if, and
only if, the frequency error exceeds the hold-in limit of (4.12), for a
sinusoidal PD.

To study transient performance of a second-order loop, it is useful to
introduce the phase-plan portrait. A description of phase planes, in general
terms, is found in Truxal?, and Viterbi* has specialized it to the PLL.

The dynamics of a second-order loop may be described by a pair of
first-order, nonlinear differential equations in the independent variable of
time and the dependent variables of phase error 6, and frequency error 0'3.
One can eliminate the time variable between the equations and arrive at a
single, second-order, nonlinear differential equation that relates phase and
frequency errors. )

Solutions of the second-order equation are in terms of 8, versus §,; these
can be plotted in the phase plane, which has 6, and 6, as its coordinates.
(Solutions cannot be obtained analytically; computer assistance is needed.)
A plot of a single solution in the phase plane is known as a phase-plane
trajectory. A family of trajectories is known as a phase-plane portrait. A
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trajectory shows the dynamic behavior of a loop as it settles (or fails to
settle) towards equilibrium,

Figure 4.8 is a sketch of one particular phase-plane portrait for a
sinusoidal phase detector and critical damping. Different portraits are
obtained, depending on loop damping, phase-detector characteristic, loop
stress, or signal modulation. The best source of portraits may be found in
Viterbi’s original report,® if accessible. His book* contains the same
portraits, but at an inconveniently reduced scale. Blanchard’s book> has a
few of the portraits on a larger scale. Many of the specific results that
follow in this section and in the next chapter were obtained by use of the
portraits in Ref. 3. Phase-plane analysis is central to the understanding of
nonlinear dynamics of second-order loops.

The phase-plane portrait of a PLL with periodic phase detector is itself
periodic with period 2« in the variable §,, but it is aperiodic in §,. The
pattern repeats indefinitely along the phase axis; two complete cycles are
shown in Figure 4.8. -

Trajectories proceed clockwise only, as shown by the flow arrows.
Intersection of trajectories can occur only at singular points, which can be
either stable or unstable. Equilibrium occurs at a stable singularity, which

Frequency error 6, /K
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3n 57
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Figwe 48 Phase-plane portrait, { = 1, sinusoidal PD.
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is called a stable node if the loop is overdamped or a stable focus if it is
underdamped.? Equilibrium is the steady-state tracking condition reached
after infinite time.

The unstable singularity is called a saddle point; the loop state cannot
remain at a saddle point indefinitely because any slight disturbance sets it
on an active trajectory.

A trajectory that terminates on a saddle point is called a separatrix. The
separatices of Figure 4.8 are indicated by heavy curves. (The designation
“separatrix” should apply only in the 2 interval in which the trajectory
terminates on the saddle point and not all the way back into the infinite
past.)

If a trajectory lies between the two separatrices, it will terminate at the
equilibrium point of that particular 2« interval. If a trajectory lies outside
the separatrices, the loop slips one or more complete cycles before arriving
at equilibrium.

We are now ready to consider transients in a second-order loop. First,
let us consider a loop with infinite DC gain. In principle, this kind of loop
can never lose lock permanently. If a large frequency step is applied, the
loop unlocks, skips cycles for a while, and then locks up once again. The
phase error is a ringing oscillation for a number of cycles corresponding to
the number of cycles skipped.

There is some frequency-step limit below which the loop does not skip
cycles but remains in lock; we denote this limit as the pull-out frequency
and give it the label Awpg. If we assume that the loop is at equilibrium at
the instant the frequency step is applied, then the pullout limit is simply
the intercept of the separatrix with the 8, =0 axis. Using the portraits of
Ref. 3, the pullout limit for a sinusoidal PD is found to have the values
indicated in Figure 4.9. These data points fit the empirical relation

Awpo=18w,($+1) (4.15)

for { between 0.5 and 1.4.

The phase portrait can also be used to determine peak phase error for
large steps of frequency. For Aw=Awpo, the peak phase error is 180°.
However, the error increases rapidly as soon as it exceeds 90° and
therefore the frequency step causing 90° peak error is only slightly less
than Awpg. Figure 4.10 shows the situation for the special case of {=0.707.

Time history along any trajectory not too close to a singular point can
be obtained from time mark curves called isochrones.’ These are omitted
from Figure 4.8 for clarity of explanation. It is also possible to obtain time
intervals by graphical methods.?

A phase plane is applicable only to a second-order loop (or a degenerate
phase plane to a first-order loop). A third-order loop has three state
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Figure 49 Pull-out frequency of high-gain, second-order loop. Sinusoidal PD.

variables—phase, frequency, and frequency rate—so it must have a three-
dimensional phase space to represent it completely. Presentation of such a
space is very difficult to achieve in two dimensions. As a result, we know
much less about the transient response of third-order loops than we do
about that of second-order loops. Viterbi,* Gupta,® and Tausworthe and
Crow’ have made attempts at solving the problem, but much more remains
to be learned.

Modulation Limits

We must also be concerned with hold-in problems when the input signal
is angle modulated. If the modulation index is excessive, a PLL is unable
to remain locked to the signal.

It is useful to distinguish between carrier tracking loops in which the
modulation spectrum is entirely outside the loop bandwidth and modula-
tion tracking loops in which the modulation spectrum is inside the loop
bandwidth. The first type is useful primarily for demodulation of small-
index PM signals, while the second is needed to accommodate large-index
FM or PM signals.

In the carrier-tracking loop the modulation must be restricted so that
there actually is a carrier to track. If sinusoidal phase modulation of peak
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deviation @ is applied, the carrier strength is proportional to the zero-order
Bessel function J,(9). This function passes through its first zero for §=2.4
rad (137°). Experiments have demonstrated. that lock is lost very close to
that first null.

As deviation is increased beyond 2.4 rad, lock is regained and is held
until deviation reaches the next null of J, at §=5.5 rad. In principle, a
carrier-tracking loop loses lock on a sinusoidally modulated signal only in
the immediate vicinity of the carrier nulls and holds lock for all other
modulation indices.

Behavior of a modulation-tracking loop cannot be explained nearly so
easily.'® To introduce the problem, let us imagine a laboratory experiment
in which a sinusoidally modulated signal (PM or FM) is applied to a PLL
with sinusoidal phase detector. We require that the loop gain K be very
much larger than the modulation frequency w,, (that is, the modulation
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frequency is well inside the loop bandwidth; if otherwise, high-frequency
effects intervene and the explanation becomes even more difficult).

The PD output voltage is observed on an oscilloscope and the modula-
tion index is varied, starting at small deviation. At small deviation the
observed wave shape is sinusoidal, as would be expected. Amplitude of the
PD output increases with increasing deviation. If the deyiation is made too
large, the loop begins slipping cycles and severe distortion appears on the
scope face (slip details are given later).

However, the PD output appears to remain nearly sinusoidal—nearly
undistorted—from small index all the way up to the break-lock condition.
This behavior is rather surprising, since we know that the PD operates well
into its nonlinear region before break lock is reached. How can there be
low-distortion operation in a nonlinear device? The answer, of course, is
that negative feedback cancels out most of the distortion at the PD output,
provided that loop gain is large at the modulation frequency. Reduction of
distortion is a familiar property of feedback loops in general that is shared
by the PLL in particular.

If the PD output is almost undistorted, then the peak phase error must
increase as the inverse sine of the deviation, to a good approximation. In
other words, we find that the distortion expected because of the PD
nonlinearity appears in the phase error 6, but not in the PD output
v;= K;sing,. This allows us to determine the wave shape of the phase error
as a function of the peak PD output.

If the PD output is sinusoidal, then it must be of the form v ()=
ak;sinw, t, where a is a factor between 0 and 1. Maximum possible output
voltage from a sinusoidal phase detector is K, V, so a is the ratio of peak
output to maximum-possible output. Furthermore, v(0)= K;sinb,(¢), from
which we find (valid in the first quadrant)

0,(t)=arcsin(asinw, 1) (4.16)

Examples for several values of a are plotted in Figure 4.11. Considerable
distortion of 4, is evident for large values of a, but the curves for v, are all
sinusoidal.

Once it is recognized that v, is substantially undistorted, it becomes a
simple matter to establish the modulation limits. Knowing the input
modulation, we can find v, by modification of 27 to

Vi(s)=K,[1-H(s) 16.(s) (4.17)

where (s) is the L-transform of the phase modulation on the signal.
laking the inverse L-transform of (4.17) yields v,(), from which the peak
/alue v,, can be determined.
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Figure 4.11 Phase error in sinusoidal PD. Input signal is sinusoidally angle modulated with
frequency w,,. (—) phase error 8,(f). (——-) PD output, v(1)/ K, off)=aK sinw,i=
K, sind(1).

The loop remains in lock if v, <K, and slips cycles if the calculated
value of v,, > K. (This criterion is applicable to a sinusoidal PD and must
be modified for other PD characteristics.)

Maximum-possible output of the sinusoidal PD is K, volts. Feedback
maintains v, almost undistorted right up to the maximum and then the
loop fails abruptly as its capability is exceeded.

If modulation is sinusoidal with modulating frequency w, and peak
frequency deviation Aw, then the deviation limit is found to be'°

Aw=K (first-order loop; w,, < K) (4.18a)
o2
Aw= :oL (second-order loop; w,, <w,) (4.18b)

Modulation limits have also been worked out for frequency modulation
by a gaussian message'® with a baseband spectrum flat from DC to a
cutoff frequency B, Hz and rms deviation o, Hz. Gaussian signals have
unbounded peaks, so there is some small probability that the loop will
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occasionally slip a cycle no matter how small the rms deviation. As an
engineering tool, we invoke the concept of crest factor and give it the
symbol y. We choose y such that the instantaneous deviation is less than
yo; almost all the time. A value of y=3.5 has been found as a good
empirical fit to laboratory observations of modulation unlock.

Using these concepts, the lock limits for gaussian modulation are found

to be'®

27

K . K
%= Sy (flrst-order loop; B, < 5 ) (4.19a)
V3 o2
O (second-order loop; B, < o ) (4.19b)

o ==
7 4n™B,

Detailed behavior of the loop at the unlock threshold is rather curious.'!
If modulation is sinusoidal, the PD output remains virtually sinusoidal for
any deviation up to the lock limit. An infinitesimal increase beyond the
limit causes a drastic change in the PD output.

For a first-order loop (Figure 4.12) large spikes suddenly appear. Each
spike represents the slip of one cycle. Slip spikes occur only while the
instantaneous deviation is beyond the lock limit and the loop relocks as
soon as the deviation returns within the loop bounds. A single spike
appears for each modulation peak if the overmodulation is slight, while
additional spikes appear in bursts as the overmodulation is increased.

(a)

(b)
Figure 4.12 Modulation waveforms from PD: (a) in lock; () first-order PLL, unlocked.
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Behavior of a second-order loop is quite different. Phase-detector output
is sinusoidal right up to the lock limit, but an infinitesimal increase of
deviation causes the loop to go completely out of lock and only a beat-note
appears at the PD output. It is impossible to adjust the deviation to obtain
the single spikes of Figure 4.12. (These statements apply only if the
modulation frequency is much less than the natural frequency of the loop.)
Why should a second-order loop behave so differently from a first-order
loop?

The answer is not entirely clear, but some insight is gained when we
realize that the peak phase error does not occur at the peak of the
frequency-modulation cycle (as in the first-order loop). Instead, peak phase
error coincides with maximum rate of change of frequency, which corre-
sponds to zero instantaneous deviation for sinusoidal modulation. In fact,
the sinusoidal unlock criterion (4.18b) can be shown to be the same as
Aé=w?, which is the sweep-rate limit for a second-order loop (4.14).

Why does the loop not relock as soon as the modulation cycle has
passed through the region of excessive frequency rate? (After all, the
first-order loop relocks as soon as the region of excessive frequency
deviation has been passed). That question has not yet been answered
satisfactorily. However, the signal and the VCO are in frequency agree-
ment only at the instant of maximum frequency rate and the loop cannot
lock there if the rate is excessive. At other points in the cycle, the rate is
lockable, but the frequency difference between signal and VCO prevents
locking. Chapter 5 provides a better appreciation of this matter, but there
is room for an improved explanation.

As a final comment, note that the feedback of the PLL makes it
attractive as an FM demodulator. The feedback causes the baseband-
recovered signal to remain largely undistorted right up to unlock, even
though the phase detector itself is a nonlinear device and the phase error is
distorted. Further discussion of FM demodulators is found in Chapter 9.
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Chapter Five

Acquisition

In all the preceding chapters, it is assumed tacitly that the loop is already
in lock. But a loop starts out in an unlocked condition and must be
brought into lock, either by its own natural actions or with the help of
auxiliary circuits. The process of bringing a loop into lock is called
acquisition and is the subject of this chapter. -

5.1 CHARACTERIZATION

If the loop acquires lock by itself, we call the process self-acquisition and if
it is assisted by auxiliary circuits, the process is called aided acquisition.
Self-acquisition is often a slow and unreliable process. Although a PLL is
an excellent tracking device, it tends to be rather clumsy in acquisition.
Therefore, acquisition-aid circuits are commonly used and it is not unusual
to find them constituting half of the total circuitry in representative PLLs.

An nth-order loop contains n integrators, which can be ideal (such as the
VCO), near-ideal (as in an active filter), or imperfect approximations (as in
a passive filter). With each integrator there is associated a state variable of
the loop: phase, frequency, frequency rate, and so on. To bring the loop
into lock, it is necessary to set each of the state variables—each of the
integrators—to be in close agreement with the corresponding parameters
of the input signal. Therefore, we should speak of phase acquisition,
frequency acquisition, and so forth, up to n forms of acquisition for an
nth-order loop. (In most instances we restrict our attention to just two or
three state variables; some of the storage elements in the loop contribute
only high-frequency poles and can be neglected.) Frequency acquisition
has received the most attention, but the other state variables are also
important, sometimes critically so.

Acquisition is inherently a nonlinear phenomenon; we must use nonlin-
ear analysis throughout and cannot ease the way with linear approxima-
tions.

65



66 Acquisition
5.2 PHASE ACQUISITION

Under ordinary conditions, phase is self-acquired. Study of phase acquisi-
tion leads to better understanding of the overall acquisition problem and
provides guidance if aided phase acquisition is needed.

First-Order Loop

It is instructive to begin with analysis of a first-order loop. To show
performance, we derive the nonlinear differential equation of the loop and
analyze its meaning.

We let w; be the input frequency (assumed constant) and let w, be equal
to the free-running frequency of the VCO so that the instantaneous
frequency of the VCO is w,+ K,v,. Voltage v,=K,sinf, is the error
voltage out of the phase detector.

Input phase is ;¢ and output phase is

0,=w,t+ f’Kooddt +4,(0)
0
t .
=w,t+ f K, K, sind, dt +6,(0) (5.1)
0

Phase error is

0,=0,—0,=wt—w,t— f 'Ksin8,dt—6,(0) (5.2)
0

We let w;—w,=Aw and differentiate to obtain
6,=Aw— Ksind, (5.3)

This is the nonlinear differential equation of the first-order phaselock loop.
The loop is locked only if 6, is zero, by definition of lock. However, we
must determine whether the converse is true: that if §,=0 the loop is
necessarily locked.

The hold-in limit is obtained directly from (5.3); if 4,=0, then sing, =
Aw/K. Because sinf, cannot exceed unity, the loop can lock only if
Aw/K<1. .

It is useful to divide (5.3) by K and then plot 8,/ K versus §,, as in Fig-
ure 5.1.* From the figure it may be seen that, if [Aw/ K| <1, there are two

*This analysis follows a similar one by Viterbi.!> Figure 5.1 is a degenerate phase-plane
portrait.

L i e e
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21— .
A—;’. — sin 0,

—2

Figure 5.1 Phase-plane plot of first-order loop (Aw/K=0.5).

points (nulls) in each interval of 2 for which 6, goes to zero. At a null the
frequency difference between input and VCO is zero.

Adajacent nulls are of opposite slope. To analyze the behavior of the
loop, let us suppose that the operating point is slightly displaced from one
of the nulls. For one of negative slope the sign of 8, drives 8, toward the
null. (As an example, if phase displacement is slightly negative from a
negative-slope null, the sign of , is positive and 6, must necessarily
increase—in the direction toward the null) Conversely, a displacement
from one of the positive-slope nuils will drive the state of the loop away
from the null. Thus the negative-slope nulls are stable and the positive-
slope nulls are unstable. Arrows show the direction of phase change.

Prior to lock §, is nonzero, which means that 6, must change (increase or
decrease) monotonically. For this reason 6, must eventually take on the
value of one of the stable nulls (provided, of course, that Aw<K). When 6,
reaches a stable null, the loop is locked and 8, remains fixed at the static
error.

Because every cycle has a stable null, §, cannot change by more than
one cycle before locking. Thus there is no cycle skipping in the lock-up
process. The time required to lock up depends on the intial values of phase
and frequency, but, as a rough rule of thumb, it will be on the order 3 /K
sec.

Exact settling time can be found® by integration of the differential
equation 5.3. (Exact closed-form integration is possible for the first-order
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Figure 5.2 Transient phase errors in first-order PLL.

loop but not for second or higher orders.) Some example phase transients
are shown in Figure 5.2 for Aw=0 and several values of ,(0). If 8, is small,
the loop operation is almost linear and the phase waveforms are nearly
exponentials with time constant 1/ K. If 8, is large, the waveforms diverge
substantially from a simple exponential and settling times increase from
those attained by an exponential of the same initial phase error.

If the initial phase error is very close to the unstable nuli, the phase can
dwell near the null for an extended time, as illustrated by the two upper
curves of Figure 5.2. This dwell phenomenon has been dubbed the hangup
effect* and can be extremely troublesome in applications where rapid
acquisition is needed with high reliability.

(Hangup is illustrated for a noisefree, first-order loop with sinusoidal
phase detector and zero frequency error. Despite intuitive notions to the
contrary, changing any or all of these conditions does not eliminate
hangup. Specifically, hangup is aggravated by noise or other disturbances;
second- or higher-order loops are equally subject to hangup; using an
extended phase-detector characteristic (e.g., sawtooth) can alleviate
hangup, but not eliminate it; and offsetting the frequency merely shifts the
location of the unstable null, as shown in Figure 5.1. The full causes of
hangup and some remedies are presented in Ref. 4.)

Lock-In

If signal frequency is close enough to VCO frequency, a PLL locks up
with just a phase transient; there is no cycle slipping prior to lock. The
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frequency range over which the loop acquires phase without slips is called
the lock-in range of the PLL.

In a first-order loop, the lock-in range is equal to the hold-in range; the
loop self-acquires any signal that it can hold.

The same is not true of second- or higher-order loops; the lock-in range
is invariably less than the hold-in range. Moreover, there is a frequency
interval, smaller than the hold-in interval and larger than the lock-in
interval, over which the loop will acquire lock after slipping cycles for a
while. This intermediate interval is called the pull-in range and is discussed
in the next section.

Lock-in is self-acquisition of phase by a PLL and is the subject of this
section.

To assure stable tracking, it is common (though not universal) practice
to build loop filters with equal numbers of poles and zeros. The lag-lead
filter for the familiar second-order loop (see Chapters 2 and 4) has one
pole and one zero. An inherent property of any such filter is that its
frequency response is asymptotically flat, with zero phase, at high
frequencies. An example for the second-order loop is sketched in Figure
5.3.

We denote the high-frequency asymptotic response by F(e0). In the
lag-lead filter F(oo)=r,/, irrespective of whether the filter is active or
passive and, if active, irrespective of the DC gain of the amplifier.

At high frequencies the loop is indistinguishable from a first-order loop
with gain K=K, K,F(c0). As a fair approximation, we can say that the
higher-order loop has the same lock-in range as the equivalent-gain,
first-order loop.

Log |F(s}l

Fle) = I—f—+

Neop—————————

-

|

|

1

1

2
Log w
Figure 53 Frequency response of loop filter.



70 Acquisition

Loop gain is introduced in Section 2.3. For any loop whose filter has
equal numbers of poles and zeros the gain is defined as K= K K, F(o0)—
which is exactly the gain of the equivalent first-order loop. In fact, the
definition of loop gain was deliberately chosen to make this relation be
true.

The lock-in limit of a first-order loop is equal to the loop gain. We argue
here that a higher-order loop has nearly the same lock limit. Denoting the
lock limit as Aw,,

Aw,~+K (5.4)

is a useful engineering approximation for lock-in range.

Equation 5.4 is obtained under assumption of a sinusoidal phase-
detector characteristic. Presumably, an extended PD characteristic (Figure
4.2) would also extend the lock limit. )

The argument leading to (5.4) is a simplification of the real behavior of a
PLL. In a higher-order loop it is not possible to determine whether the
loop will or will not slip cycles, before locking, on the basis of initial
frequency error alone; all initial state variables must be examined. In a
second-order loop, the variables are frequency and phase; they are studied
with the aid of a phase-plane portrait.

When inspecting the phase plane (e.g., Figure 4.8), we see immediately
that the whole concept of lock-in is oversimplified. A second-order loop
locks without slips if the initial state falls between the separatrices. Since a
separatrix is a sinuous boundary, there is no natural way to define exactly
any unique lock-in frequency.

One might arbitrarily define the average ordinate of the positive sep-
aratrix as the lock-in frequency. Or, the definition might be the separatrix
ordinate at §,=0 or at §,= — 180°. Examination of Figure 4.8, or the more
numerous set of portraits in Ref. 1, suggests that (5.4) is a conservative
estimate of lock-in range.

Despite its vague reality, lock-in range is a useful concept for engineer-
ing calculations and in analyses presented in later paragraphs.

Alded Phase Acquisition

Unless hangup is a problem, phase usually is self-acquired if the phase
detector has any of the usual characteristics (e.g., Figure 4.7). However,
there are some signal types for which the phase-detector characteristic has
only a small active region; over most of the phase-error interval, the PD
output is zero. An example is shown in Figure 5.4.
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Figure 5.4 Phase-detector characteristic for gated-pulse or PRN signal. §=1 (PRN signal);
d=T/1, (pulsed signal); T=pulse or chip width; ¢, =pulse or code repetition interval.

A pseudo-random noise (PRN) signal® is one kind that yields such a PD
characteristic, and a gated pulse train is another. (The phase detector for
the latter might be a radar range gate.)

A loop of this sort can acquire phase only if the initial phase error falls
into the active region of the PD. If the initial error lies in the dead portion
of the PD characteristic, there is no error information of any kind
available to the loop, so acquisition can occur only by accident of phase
drift. Likelihood of acquisition would be very poor if the PRN code were
long or if the pulse duty cycle were short.

To assure acquisition, the equipment performs a phase search over all
phases. When the active region of the PD is encountered, the loop locks up
and the search is discontinued. Application of a phase search constitutes
aided acquisition of phase.

A continuous phase sweep is the same as a frequency offset in the VCO
and is usually an easy way to implement a phase search. If the phase rate
(frequency offset) is too large, the search will sweep right through the
active region without stopping and go on into the next dead region. There
is a rate limit that must not be exceeded if acquisition is to be successful.

Acquisition with a second-order loop is analyzed by means of a phase-
plane portrait. Gilchriest® has investigated the PRN signal and Gardner
(unpublished) has examined the gated pulse train. They have found, for a
PD characteristic of the kind shown in Figure 5.4 and for damping factors
of 0.75 or greater, that the maximum phase rate is given by

Af~B,8  cycles/sec (5.5)

where B, is the noise bandwidth defined in Chapter 3, and § is the pulse
duty ratio. For the PRN signal, § =1. As might be expected, changing the
shape of the PD characteristic has substantial influence on the allowable
phase sweep rate. Moreover, smaller damping reduces the allowable rate.
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5.3 FREQUENCY ACQUISITION

Acquisition of frequency ordinarily is more difficult, is slower, and re-
quires more design attention than does phase acquisition. In consequence,
the literature has concentrated largely on frequency acquisition, to the
point that “acquisition” is almost synonymous with “frequency acquisi-
tion.” Furthermore, the study of frequency acquisition has been devoted
mainly to the second-order loop, partly because of its technological impor-
tance, but also because of the greater difficulties of analyzing higher-order
loops. Discussion in this section concentrates mostly on second-order
loops.

Self-acquisition of frequency is known as frequency pull-in, or simply,
pull-in. Pull-in tends to be slow and often unreliable, so a number of aided
frequency-acquisition techniques have been devised, including frequency
sweeping, frequency discriminators, and bandwidth-widening methods.

Pull-in

Pull-in, particularly in a loop with very narrow bandwidth, is fascinating
to watch. When the signal is first applied, the loop is not locked and only a
beat-note appears at the output of the PD. Frequency of the beat-note
slowly decreases—the VCO frequency slowly approaches that of the signal
—until the lock limit is reached, whereupon the loop snaps into lock
without any further cycle slipping.

Pull-in behavior may be understood by recognizing that the beat-note is
reduced in amplitude by the loop filter but is not suppressed completely.
An attenuated beat-note, with peak amplitude K,F(o0) is applied to the
VCO control terminal, causing the VCO to be frequency modulated at the
beat frequency. (Throughout this analysis we assume that the PD has a
sinusoidal characteristic and the loop filter has constant response at high
frequencies, as in Figure 5.3.) Therefore, the PD output is the low-
frequency multiplier product of a sine wave and a frequency-modulated
wave. Since the modulating frequency is equal to the beat frequency, the
beat-note waveform could hardly be sinusoidal.

Richman® has derived the waveform of the beat-note for a first-order
loop by integrating the differential equation (5.3) of the loop. The explicit
equation describing the waveform is cumbersome and does not provide
much insight into the problem. However, a plot of the wave-form, as in
Figure 5.5, is very revealing, and the nonsinusoidal character of the
beat-note is evident. Moreover, and vitally important, the positive and
negative excursions are obviously unequal in area; therefore, the phase-
detector output must contain a DC component even before lock is ob-
tained. It is the presence of this component that allows pull-in to occur.
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Figure 5.5 Typical beat-note wave shape, first-order loop, Aw/K=1.10.
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Once the existence of a DC component is recognized, an alternative
explanation of its presence aids understanding; that is, the beat-note, of
fundamental frequency Aw, frequency modulates the VCO whose center
frequency is w,. This modulation generates FM sidebands in the VCO
output at frequencies w;, =w, + kAw, where k takes on all integer values. In
the phase detector this modulated output is multiplied by the sinusoidal
input with frequency w;,.

The difference signal out of the phase detector consists of individual
signals at all the frequencies w; —w, = w; —w, — kAw. Recall, however, that
Aw=w;—w, and, therefore, w,—w,=w,—k(w;,—w,)=(1—k)}w;,—w,). The
individual signal corresponding to k=1 has a frequency of zero, that is,
k=1 corresponds to a DC component. Relevant spectra are shown in
Figure 5.6.

w

Signal

VCO (no FM)

FM sidebands spaced Aw

fi S

VCO (with FM)

Figure 5.6 Pull-in spectra.



74 Acquisition

AC path 7,
{Beat—note) T
Signal
Wy
Yp vy
1—I(') dt
DC path i

v(_‘
v, = w, + Koy

v=w; — VY,

Figure 5.7 Pull-in model of second-order loop.

We give this DC component the name pull-in doltage and denote it by
the symbol v,. '

In a first-order loop the effect is not of much value; if the initial
difference frequency exceeds the lock-in frequency the magnitude of the
DC component is insufficient to pull into lock. However, the average
difference frequency is reduced; even the first-order loop tends to pull
toward lock, despite the fact that it will not reach lock.

The second-order loop includes an integrator in its loop filter. This
integrator builds up an increasing output in response to a DC input; the
accumulated output (delivered to the VCO) can greatly exceed the magni-
tude of the filtered beat-note that modulates the VCO. As the integrator
output builds up, the VCO frequency is adjusted toward the direction of
lock. If the initial difference frequency is not too great, the loop will
eventually lock up.

Approximate formulas for pull-in time and for pull-in limits may be
obtained by following a method originated by Richman.’ We consider the
loop to be representable as in Figure 5.7. There is a high-frequency path
from PD to VCO with flat gain of 7,/7, and a low-frequency path that
contains an integrator. For the present, we regard the integrator as perfect.

Output of the phase detector consists of an AC beat-note and the DC
pull-in voltage u,. For analysis purposes, we pretend that the AC portion
passes only through the high-frequency path and is completely suppressed
in the integrator path. (There is little pretense involved for high-enough
beat frequencies.) Likewise, we assume that the DC pull-in voltage is
passed mainly by the integrator and only a negligible portion goes through
the high-frequency path. This is an accurate approximation for time
intervals appreciably larger than the time constant 7,.
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Input frequency is w;, free-running frequency of the VCO is w,, and
initial frequency difference is Aw=w,—w,. Average frequency (average
over a beat cycle) of the VCO during pull-in is denoted », and is given by
v,=w,+ K,v,, where v, is the output of the integrator. Any change in v, or
v, is negligible over the time of a single beat cycle. Average frequency error
over a short time is » =cw; — »,. If the loop is to pull in, rather than lock in,
we require |Aw|>K.

Pull-in voltage is a function of ». Richman has integrated the differential
equation of a first-order loop and found its pull-in voltage to be

v,,=1<,,[%— (T”()’-l ] (5.6)

for |»| > K. (In a first-order loop, » = Aw since the integrator is omitted.) We

use the same formula for pull-in voltage of a second-order loop, a reason-

able expedient under the assumptions that have been imposed.
Combining the various equations about the low-frequency loop gives

K, (¢
”=Aw_TrTj(; v, dt (5.7)

which is differentiated to give the equation

dv Kovp
i . (5.8)
We substitute (5.6) for v, and separate differentials to obtain
ds
di=— ki1 (5.9)

z o]

recognizing that K, K,/1,=K/7,.

Pull-in time 7, is defined as the time required for the average frequency
error to change from the initial condition » = Aw to the lock hmit = K. We
find 7, by integrating (5.9) between the limits of Aw and X.

If we assume that Aw> K, then the result is

(80)’r; _ (Aw)’
K? 2¢w?

n

T,~ (5.10)
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Because of the approximations, this formula should not be applied if Aw is
either very large (near Awp)* or very small (near Aw,). It is best applied in
the midrange and should be considered as the time required to pull in from
the initial offset to a beat frequency equal to Aw, (at which time the loop
quickly locks in). For the special case of a high-gain loop with $=0.707,
the pull-in time is

2 2
Tp= 27(Aw) ~ 42(4f) sec (5.11)
256 B} B}

A narrowband loop can take a very long time to pull in. For example,
for a situation in which Af=1kHz and B, = 10Hz, pull-in time would be 1
hr and 10 min, which is intolerably long for almost any application.

If the loop filter contains a perfect integrator, pull-in will be accom-
plished no matter how large the initial frequency error. (This statement
neglects clipping limits of the integrator; the loop clearly cannot pull in a
signal that requires excessive control voltage to the VCO. Also, it is
assumed that there are no unwanted DC offsets within the loop that would
counteract the pull-in voltage and cause the VCO frequency to be pushed
out instead.) In a real loop filter, the DC gain is some finite number F(©0),
and if v, is small enough—if the initial frequency error is large enough—
the loop cannot pull in. The largest frequency for which the loop can still
pull into lock is called the pull-in limit and is represented by Aw,.

To derive the pull-in limit, we replace the perfect integrator in Figure 5.7
by an imperfect integrator with DC gain F(0)— F(o0). [The DC gain of the
entire loop filter is F(0), while the DC gain of the high-frequency path is
F(0). Therefore, the DC gain of the low-frequency path must be F(0)—
F(0).]

Let us assume that |Aw|>Aw, so that the loop cannot pull in. The phase
detector still generates a pull-in voltage v,, which is amplified by the factor
F(0)— F(c0) and is applied to the VCO where it causes a steady-state
frequency change of K[ F(0)— F(o0)]v,. The steady-state frequency error is

v=Aw— Ko[ F(0)— F(c0) ]y, (5.12)

Substituting (5.6) for v, and remembering that K,=K,K,F(0) and K=
K, K, F(0) we obtain

v=Aw—(K,,—K)[—VIE— (T”()z—l } (5.13)

*Awp is the pull-in limit and is derived presently.
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Equation 5.13 can be solved for the steady-state frequency error. A real
solution is found if Aw> K(2K,/K—1)"/2% A smaller value of Aw leads to
complex roots of (5.13), which means that no real final frequency error
satisfies (5.13). We conclude that the loop pulls in for smaller values of Aw.

Because of the many approximations that have been made, the
boundary is accurate only for a high-gain loop, in which K > K. There-
fore, an approximate formula for pull-in limit is

Aw,~V2K,K (5.14)

We see that, in principle, the pull-in range can be made as large as may be
needed simply by using a large DC gain K,. Moreover, the large pull-in
can be achieved with as narrow a noise bandwidth as necessary; the two
parameters are independent.

Formula 5.10 for pull-in time is valid only if the initial frequency error is
substantially larger than the loop gain K and substantially smaller than the
pull-in limit. Richman obtains improved formulas that describe the pull-in
time for all conditions, including initial frequency error near either of the
bounds. The results are much more cumbersome than (5.10).

A great many investigators have investigated pull-in. Viterbi"-? examined
the problem through limit cycles in the phase plane and arrived at
essentially the same results given here.

The foregoing results apply only to loops with sinusoidal phase detec-
tors. Mengali’ summarizes work by other authors on extended PD char-
acteristics and arrives at general formulas for pull-in time and range that
take the PD characteristic into account. As might be expected, an extended
PD characteristic provides an extended pull-in range and faster pull-in
time.

Meer® investigated extended PD characteristics and, also, higher-order
loops. He derived the pull-in voltages associated with triangular and
sawtooth PDs and observed that these are larger than for sinusoidal PDs.

In a third-order loop, there are two integrators in the low-frequency
path; the double-integrated pull-in voltage has parabolic, rather than
linear, growth. As a result, pull-in is faster in a third- or higher-order loop
than it is for a second-order loop.

Let us assume that both integrators are ideal and that Aw> K. Following
Meer’s analysis, but using the notation of Section 2.3, we find pull-in time
for a third-order loop to be ‘

T\~ = (5.15)
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(If both zeros of the loop filter are coincident at s= —1/7,, then 1/Va,
=1,.) Pull-in time for the third-order loop varies as the first power of
initial frequency error, rather than Aw? as in a second-order loop (5.10).

Unfortunately, frequency pull-in to zero beat does not assure rapid
phaselocking in a third-order loop. Equation 5.15 indicates the time
needed to accumulate the correct tracking charge on the frequency integra-
tor in the loop filter, but the charge on the frequency-rate integrator will be
wrong at that time. It is entirely likely that the stored charge on the first
integrator will force the second integrator to continue to charge, rather
than stop at the proper frequency. If that should happen, the VCO
frequency overshoots the correct equilibrium, pull-in voltage reverses
polarity, and the pull-in action heads for equilibrium from the opposite
direction.

In other words, the approach to lock can be oscillatory and (5.15) only
tells the time to the first passage through zero frequency error, not to
phaselocking. Lock is not possible until the charge on the first integrator
dwindles to the correct value needed for equilibrium tracking.

On the other hand, in the vicinity of zero frequency error, the high-
frequency path through the loop filter has a strong locking action. If that
locking force can overcome the frequency-slewing force from the first
integrator, then the loop will lock at first passage and will not oscillate
about frequency equilibrium. The work of Tausworthe and Crow’ suggests
that lock occurs on first passage if the closed-loop poles are overdamped
and oscillatory acquisition occurs if the poles are underdamped. Further
investigation is needed to gain a better understanding.

The pull-in limit analysis leading to (5.14) depends only on the DC and
AC loop gains and not on the loop order. Therefore, pull-in range should
be independent of order, a deduction that is corroborated in Meer’s paper.

The analyses and references presented above deal only with high-gain
loops having loop filters with equal numbers of poles and zeros. The
analyses fail badly if these conditions are violated. Chapter 8 shows some
unfortunate consequences of additional poles within the loop.

Greenstein'® examines pull-in range (but not time) for low-gain, second-
order loops and also the loop with a simple lag filter. He avoids analytical
approximations by processing the exact loop equations on a computer. His
results agree with those of the other investigators for high-gain loops—the
condition of most practical interest—and are much more accurate for
low-gain loops.

Pull-in can be a painfully slow process in a narrowband loop, so there
have been several attempts to speed it up. Hiroshige'' has devised nonlin-
ear switching circuits that allow more frequency-error reduction per beat
cycle than is achieved in an ordinary loop. Pull-in time is reduced substan-
tially, but there has been little practical application of the technique,
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perhaps because more potent methods, which use the same amount of
extra circuitry, are available.

Runge'? has found that a combination of phaselocking and injection
locking improves the pull-in behavior. (An oscillator is injection locked by
adding the incoming signal directly into the oscillator’s tuned circuit.
Injection locking is described by a nonlinear differential equation identical
to that for the first-order phaselocked loop.'%) Signal injection can often be
accomplished with minimal additional circuitry and may be attractive
from that standpoint. In fact, if care is not taken in physical layout of the
circuits, injection may be difficult to avoid.

From the many papers on the subject, a casual reader might get the
impression that pull-in is the dominant applied method of frequency
acquisition. Actually, one could argue that pull-in is more interesting than
it is practical. Besides its slowness, pull-in can be defeated by unwanted,
but unavoidable, DC offsets arising in the phase detector (Chapter 6) or it
can be converted to push-out or false locking by excess poles or delays
within the loop (Chapter 8). There is virtually no information available on
pull-in behavior in the presence of significant noise.

In the author’s experience, pull-in is practical only in a comparatively
benign environment: where noise is small, bandwidth is large enough to
permit rapid action, and the loop circuits are simple, so extra poles are
avoided. In more challenging applications, pull-in is almost always found
to be unsatisfactory or unusable and some form of aided acquisition is
needed. Forms of aided frequency acquisition are discussed on the follow-

ing pages.
Frequency Sweeping

Improved frequency acquisition can be attained by sweeping the
frequency of the VCO, thereby searching for the signal frequency. If the
search is applied correctly, the loop will lock up as the VCO frequency
sweeps into coincidence with the signal. Lock-up inhibits further change of
VCO frequency, so the sweep process is self-terminating.

From the earlier discussion on hold-in in the presence of a frequency
ramp it should be evident that the sweep rate must not be excessive. We
show earlier that the loop cannot hold lock if the sweep rate Ad exceeds
w?. If a loop cannot hold lock on a signal, it certainly will be unable to
acquire lock. Therefore, an absolute maximum limit on the allowable
sweep rate is Ao < w? (for a PD with sinusoidal characteristic).

Viterbi"2 has investigated acquisition problems by means of phase-plane
trajectories. He discovered that acquisition is not certain, even if Acb<w,f
and the loop is noisefree. If Aw becomes somewhat larger than «w?/2, there
is a possibility that the VCO can sweep right through the input frequency
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Figure 5.8 Probability of sweep acquisition. Second-order loop; ¢ =0.707; no noise.

without locking. The chance of locking or nonlocking depends on the
random initial conditions of frequency and phase. Viterbi’s phase-plane
trajectories were used to compute the probability of locking graphically,
and it is plotted against sweep rate in Figure 5.8. These results apply
directly only to the special case of a high-gain, second-order loop with
¢=0.707. However, qualitatively similar behavior should be expected for
other damping factors.

Further qualitative information on sweep acquisition behavior is availa-
ble from the simulation study'* by Frazier and Page.* Their paper indi-
cates that for fixed natural frequency and sweep rate the probability of
lock improves as damping increases. See Figure 5.9, which seems to imply
that the loop should be heavily damped, at least until it is locked.

Such a conclusion is premature; loop-noise bandwidth varies with damp-
ing even though natural frequency is fixed (refer to Figure 3.3). On the
basis of fixed-noise bandwidth, the largest value of w, (and therefore the
largest maximum sweep rate) occurs for {=0.5. Yet the probability of
acquiring lock at sweep rates less than w? improves as damping increases.
There is some value of { that provides best acquisition performance; the
exact value is not known, but it probably lies between 0.7 and 1.0.

*There is a numerical error by a factor of 1.4 that runs throughout their paper, making
quantitative interpretations difficult.
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So far we have assumed that the loop is essentially noisefree. In actuality
noise is always with us and must be taken into account. Simple intuition
leads us to expect that noise will make it more difficult to acquire a signal;
it would be useful if this difficulty could be expressed by a number.

Frazier and Page’s experiments provide empirical data that suggest that
sweep rate should be reduced by a factor of [1—(SNR;)~ 172 if an
acceptably high probability of acquisition is to be maintained in the
presence of noise. This expression predicts that acquisition becomes impos-
sible at 0 dB signal-to-noise ratio in the loop. Experience suggests this
conclusion to be optimistic.

Combining the disparate fragments of information and the author’s
experience, a better preliminary design value for sweep rate might be

Ai=1w?[1-2(SNR,)™"?] (5.16)

in combination with {=0.7 to 1.0. This choice implies that sweep acquisi-
tion is impossible below 6-dB SNR,, which is a somewhat conservative
statement but not drastically wrong. Experimental adjustment from these
values can provide refinement, if needed.

Because of the nonlinearity, sweep acquisition has defied satisfactory
analysis in the presence of significant noise. For those who want more
quantitative results than are given here, Blanchard'® reports on an exten-
sive series of laboratory measurements that relate sweep speed, signal-to-
noise ratio, and probabilities of correct acquisition and false alarm.
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The results given here and in the reference section apply to a loop with
sinuoidal phase detector. A different PD characteristic can be expected to
produce different sweep capabilities; the matter does not appear to have
been investigated. (In Chapter 6, it is shown that a sinusoidal characteristic
is usually the only kind possible if the input SNR is very small.)

Sweep can be applied to a second-order loop in a very simple and
elegant manner. Some workers have built separate sawtooth generators
that add a sweep voltage directly into the VCO, but this approach is
unnecessarily complicated and arises from inadequate understanding of
the state variables of the loop.

A far better approach is to insert a constant slewing current into the
integrator of the loop filter. Integrated output is a ramp that is applied to
the VCO, causing the frequency to sweep. Slope of the ramp is determined
by the time constant of the integrator and the magnitude of the current.
Circuit details are shown in Figure 5.10.

The slew current is inserted at the junction of R, and C, not directly into
the summing junction of the operational amplifier. If the current were
applied directly to the op amp, there would be an output step component
(in addition to the desired ramp) of I R, whenever the slew current was
turned on or off. The step could cause the loop to jump out of lock,
depending on the circuit parameters.

It
V. = V0l + =

W, = 8, + KoV
Kol
C
Figure 5.10 Frequency sweep circuit.
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When the loop locks, the integrator has exactly the right charge needed
to hold the VCO at the signal frequency. The loop overcomes the injected
slewing current by means of a DC output from the PD, which, in turn, is
produced by a dynamic-lag phase error (Chapter 4).

After lock has been achieved, the phase error constitutes a loop stress
that impairs tracking capability in the presence of noise or other dis-
turbances. It may be advisable to shut off the slew current once lock has
been verified. (Lock detectors are described later in this chapter.) Slew
shutoff is particularly necessary if the signal is subject to fast fading; the
sweep circuit could carry off the VCO frequency in the event of a fade and
the entire sweep range would have to be searched before the signal could
be reacquired.

However, the decision to shut off the slew does not have to be particu-
larly fast. The loop does hold lock with the slew applied so a sufficient
time can be taken for lock verification to assure a reliable decision.

The simplicity described so far and the freedom to perform a leisurely
lock verification is offered only with a closed-loop sweep. One could also
perform an open-loop sweep,'’ but it then becomes necessary to detect
frequency agreement very rapidly, and then quickly shut off the sweep
and close the loop. In principle, the sweep rate is no longer restricted by
the ramp tracking limits of the loop, but the need for reliable measurement
of frequency coincidence in the presence of noise still places limits on
rates.

An ingenious variant on closed-loop search is shown in Figure 5.11. The
loop filter doubles as a low-frequency sweep oscillator. A positive-feedback
network causes the active filter to oscillate at some low frequency while the

Feedback
network

~y

Figure 5.11 Positive-feedback sweep.
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loop is out of lock. When the sweep encounters the signal frequency and
the loop has locked, there is so much negative feedback around the
phaselock loop that the local positive feedback around the op amp is
overcome and the oscillation is suppressed; so the loop tracks normally.

The feedback can be through a Wien bridge or a phase-shift network or
other similar, broadly selective network. Sinusoidal sweep waveforms are
most likely, so use of this circuit entails more search time than does a
linear sweep waveform. Amplitude of the sweep is set by the clipping limits
of the op amp.

Sweep can also be applied to third-order loops. Since the third-order
loop is supposed to be better able to track a frequency ramp, one might
expect that a faster sweep should be possible. Unfortunately, the extra
complexity of the third-order loop has so far prevented discovery of a
practical method of achieving the supposed improvement.

On the contrary, there is fear among designers that acquisition with a
closed third-order loop might be unstable, and various expedients to avoid
instability are often encountered. One solution is to employ open-loop
search, as mentioned earlier. This search requires fast recognition of zero
beat and immediate closing of the loop; these are tricky operations
although they have been accomplished successfully.

Another solution is to search with a closed second-order loop and then
insert the additional loop integrator after lock has been achieved. Search
rate cannot be any greater than allowed for the second-order loop. Taus-
worthe and Crow® show that the third-order poles should be overdamped
to assure retaining lock through the loop-switching operation.

No recognition has been given to the fact that a third-order loop must
acquire three variables: phase, frequency, and frequency rate. It may be
necessary to engage in a two-dimensional search for both frequency and
frequency rate. (Phase presumably is self-acquired.) This subject needs
more investigation.

Discriminator-Alded Frequency Acquisition

If the input signal-to-noise ratio is large enough, a frequency discrimina-
tor can be used in a conventional automatic frequency control loop to
bring the VCO frequency close to that-of the signal. Phaselocking occurs
when the frequency error is brought within the lock limit.

A typical block diagram and the linearized loop equations are shown in
Figure 5.12. The phase loop has little effect when out of lock; the VCO is
controlled almost exclusively by the frequency loop. After locking, the
phase loop dominates because it has much larger DC gain (infinite, in fact,
because of the phase-integrating property of the VCO) and the discrimina-
tor can then be disconnected if desired.
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Figure 5.12 Discriminator-aided frequency aoquisifibn.

If a second-order transfer function is an appropriate choice for the PLL,
then a first-order loop is appropriate for the frequency loop; that is, the
loop filter for the frequency loop would be a simple integrator, without any
lead zero. The two loops could share the same operational integrator, as
shown in Figure 5.13.

After phaselock has occurred, it can be shown'® that the overall loop is
still of second order and that the frequency path adds to the damping. One
could leave the discriminator connected permanently and merely weight
the relative contributions of phase and frequency detectors so as to obtain
the desired damping.

w;, 8

Disc. -

Figure 513 Discriminator-aided second-order loop.
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A sweep operation can proceed satisfactorily with a poor input signal-
to-noise ratio because the PLL is a coherent device and can recover a
signal buried in noise. By contrast, a discriminator is an incoherent device
and cannot distinguish between signal and noise. Its average output tends
to be the average frequency of signal plus noise: approximately the
centroid of the total spectrum applied to the discriminator. If noise
dominates, the discriminator output is determined almost entirely by the
noise properties and the signal is suppressed. A discriminator can be used
only under conditions where it provides useful information on signal
frequency, which ordinarily means the input signal must exceed the noise.
No good analysis exists to provide quantitative insight into the problem.
As a rule of thumb, one should be cautious if the input SNR is less than
+6 dB and should be very concerned—perhaps to the point of abandon-
ing the discriminator—if input SNR is less than 0 dB.

For a second-order loop, we have shown that pull-in time is proportional
to the square of the initial frequency difference and it is reasonable to
argue that sweep time is proportional to the first power of frequency
difference. If a linear discriminator is used, then it can be shown' that the
discriminator-aided frequency-acquisition time is proportional to the loga-
rithm of the frequency error. Where applicable, discriminator aiding is the
fastest available method of frequency acquisition.

Conventional circuits (e.g., Foster-Seely, pulse averaging, etc.) can be
used for the discriminator, but better alternatives exist. Instead of a
measurement of absolute frequency, the acquisition discriminator should
provide an indication of the frequency difference between the incoming
signal and the VCO; a frequency-difference discriminator is needed.

Richman® describes a frequency-difference discriminator, which he calls
the quadricorrelator. A block diagram and pertinent equations are shown in
Figure 5.14. The input bandpass signal is translated to two quadrature
baseband components by the pair of multipliers (mixers, phase detectors)
driven by the oscillator. Baseband lowpass filters establish the frequency-
difference range over which the circuit will operate. (Richman also in-
cluded highpass sections in the baseband filters to disconnect the quadri-
correlator automatically for very small frequency differences at which the
PLL takes control.)

One of the filtered baseband channels is differentiated and then multi-
plied by the other channel. The product contains a DC component
proportional to the frequency difference between signal and oscillator,
including the proper sign. It provides an excellent frequency-difference
indication. (There is also a sinusoidal ripple component of equal amplitude
at double the difference frequency. This can be a serious nuisance if the
quadricorrelator were to be used as an FM demodulator, but the difference
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Figure 5.14 Quadricorrelator (frequency-difference detector).

frequency goes to zero when the phase loop locks, so the ripple vanishes
when the quadricorrelator is used as an acquisition aid.)

Circuitry for the quadricorrelator might seem rather complex, but ap-
pearances are deceptive. One of the input phase detectors is also used as
the main phase detector for the associated PLL and the other input phase
detector could double as the coherent amplitude detector described
shortly. The oscillator, of course, is also part of the PLL. Therefore, only
the filters, differentiator, and third multiplier are additional components
that are charged to frequency acquisition.

Another form of frequency aid is provided by the popular sequential
phase-frequency detector described in Chapter 6. It develops a constant
DC output when the loop is out of lock. Amplitude is independent of
frequency error, but the sign of the output shows whether the VCO
frequency is higher or lower than the signal. The phase detector thereby
applies a slew voltage to the loop filter, so the response is more like a
sweep than a discriminator. The method is attractive because all the
components are built into an inexpensive integrated circuit.

5.4 DIVERSE MATTERS

There are several items, such as lock indicators, variable-bandwidth
methods, and loop memories that are more or less associated with the
subject of acquisition but do not fit into a neat heading of their own. They
are grouped together in this section.



88 Acquisition

Lock Indicators

A method of lock indication employed almost universally is the quadra-
ture phase detector, also known as the auxiliary phase detector or the
coherent amplitude detector, as shown in Figure 5.15. The quadrature phase
detector has the received signal applied as one input and a 90°, phase
shifted version of the VCO as the other. The main phase detector has an
output voltage proportional to sinf,, whereas the quadrature output is
proportional to cos#,. In the locked condition 6, is small, and so cosf,~1.
When the loop is unlocked, the outputs from both phase detectors are
beat-notes at the difference frequency, and the DC output is almost zero.

Thus the filtered output of the quadrature detector provides a useful
indication of lock. The magnitude of the output voltage, relative to that
obtained from a noisefree stable input, provides a measure of the quality of
lock. (If 8, jitters, the average of cosd, is less than unity.) When used in this
manner, the smoothed voltage is sometimes known as the-“correlation”
output.

It is also possible to use the same voltage as a source of coherent AGC
control voltage. This topic has been analyzed by Victor and Brockman'’
and is covered further in Chapter 8 of this book.

The output-smoothing filter is a vital part of a practical lock indicator.
Without smoothing, the indication will flicker on and off because of noise,
giving false indications of lock or loss of lock. If there is excessive
smoothing, the lock, or unlock, indication is delayed unduly from the time
of its actual occurrence. A compromise amount of smoothing is required.
Tausworthe'® has performed a detailed analysis of the problem and has
produced design curves.

Input )
signal ["main snn()i Loop
PD filter
_—__(f\_l)vco
%.
) cos .
uad Ve | Smoothing Lock
— QPD fiter [ indication

Figure 5.15 Typical lock indicator.
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Wide Bandwidth Methods

Speed of acquisition—by pull-in by sweep, or by discriminator aiding—
is improved by widening the loop bandwidth. A loop can be built to have a
large bandwidth for rapid acquisition and a much narrower bandwidth for
good tracking in the presence of noise. It should be apparent that increase
of bandwidth can be successful only if signal-to-noise ratio is sufficiently
large. If the bandwidth change brings the loop close to threshold, acquisi-
tion is not likely.

Bandwidth may be changed by any of several methods. A straight-
forward approach is to switch loop filter components. (It is usually
advisable to switch the resistors only; if a new capacitor were switched in,
the integrator charge weould be disturbed, and the switching process might
cause loss of lock.)

Bandwidth can also be changed by switching the loop gain. Richman'®
has compared filter switching and gain switching and has- devised some
useful approaches.

The switching command signal can be the lock indication voltage from
the quadrature phase detector. When the loop is out of lock, the absence of
indication voltage permits the switches to be in their wideband position.
When the loop locks, the indication voltage appears and forces the
switches into their narrowband position.

If coherent AGC is employed, the same effect can be obtained without
switches. In the unlocked condition there is no AGC voltage and the signal
level at the phase detector is large. When the loop locks, AGC voltage
appears and reduces the applied signal voltage. Since phase detector gain
—and therefore, loop gain—is proportional to signal level, the loop
bandwidth and damping both decrease automatically when the loop locks;
no switches are needed.

Memory

In the absence of disturbance the VCO of a second-order loop tends to
remain close to its locked frequency in the event of a signal dropout. When
the signal returns, reacquisition by lock-in or pull-in should be very rapid.
Thus the loop has a frequency memory. Frequency information is stored in
the form of charge in the integrator. When signal drops out, the loop opens
and the discharge time constant of the integrator is |4|R,C. (See Figure 2.2
for nomenclature.) The gain 4 is unity in a passive loop, so the memory
evaporates fairly quickly. However, in an active loop 4 can be very large,
and one would expect long holding times.

This expectation is only partly met in actual equipment. Any real DC
amplifier will have some offset and drift, and any real phase detector will
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have some small DC output (due, for example, to imperfect balance),
particularly if there is a noise input. These drifts, unbalances, offsets, and
rectified noise all combine to form a small slewing voltage that is in-
tegrated and drives the VCO away from its proper frequency.

A first-order loop has a volatile phase memory. Upon signal dropout,
the VCO phase immediately begins to drift off from its locked condition at
a rate equal to the frequency difference between the signal and the
free-running VCO. In other words, the VCO instantly reverts to its free-
running frequency when the signal disappears.

Because it has frequency memory, a second-order loop retains its phase
information much better than a first-order loop.

A third-order loop has frequency-rate memory, in addition to frequency
and phase memories. The third memory can be helpful if input frequency
is changing during a signal fade.

REFERENCES

1. A. J. Viterbi, Acquisition and Tracking Behavior of Phase-Locked Loops, External Publica-
tion No. 673, Jet Propulsion Laboratory, Pasadena, CA, July 1959.

2. A. J. Viterbi, Principles of Coherent Communication, McGraw-Hill, New York, 1966,
Chap. 3.

3. D. Richman, “Color Carrier Reference Phase Synchronization Accuracy in NTSC Color
Television,” Proc. IRE, Vol. 42, pp. 106—133, January 1954,

4. F. M. Gardner, “Hangup in Phase-Lock Loops,” IEEE Trans., COM-25, pp. 1210-1214,
October 1977.

5. S. W. Golomb, L. D. Baumert, M. F. Easterling, J. J. Stiffler, and A. J. Viterbi, Digital
Communications with Space Applications, Prentice-Hall, Englewood Cliffs, NJ, 1964.

6. C. E. Gilchriest,“ Pseudonoise System Lock-in", JPL Research Summary No. 36-9, Vol. 1,
pp- 51-54, July 1, 1961.

7. U. Mengali, “Acquisition Behavior of Generalized Tracking Systems in the Absence of
Noise,” IEEE Trans., COM-21, pp. 820-826, July 1973.

8. S. A. Meer, “Analysis of Phase-Locked Loop Acquisition: A Quasi Stationary Ap-
proach,” IEEE Conv. Rec., Vol. 14, Pt. 7, pp. 85-106, 1966.

9. R. C. Tausworthe and R. B. Crow, Practical Design of Third-Order Phase-locked Loops,
Report 900-450, Jet Propulsion Laboratory, Pasadena, CA, April 27, 1971.

10. L. J. Greenstein, “Phase-Locked Loop Pull-in Frequency,” IEEE Trans., COM-22, pp.
1005-1013, August 1974.

11. K. Hiroshige, “A Simple Technique for Improving the Pull-in Capability of Phase-Lock
Loops,” IEEE Trans., SET-11, pp. 40-46, March 1965.

12. P. K. Runge, “Phase-Locked Loops with Signal Injection for Increased Pull-in Range and
Reduced Output Phase Jitter,” IEEE Trans., COM-24, pp. 636-643, June 1976.

13. R. Adler, “A Study of Locking Phenomena in Oscillators,” Proc. IEEE. Vol. 61, pp.
1380-138S, October 1973.

14. J. P. Frazier and J. Page, “Phase-Lock Loop Frequency Acquisition Study,” IRE Trans.,
SET-8, pp. 210-2217, September 1962.




References 91

15. A. Blanchard, Phase-Locked Loops, Wiley, New York, 1976, Chapter 11.

16. F. M. Gardner, “Acquisition of Phaselock,” Conference Record of the International Con-
Jerence on Communications. Vol, 1, pp. 10-1 to 10-5, June 1976.

17. W. K. Victor and M. H. Brockman, “The Application of Linear Servo Theory to the
Design of AGC Loops,” Proc. IRE, Vol. 48, pp. 234-238, February 1960.

18. R. C. Tausworthe, “Design of Lock Detectors,” JPL SPS, 37-43, Vol. 11, pp. 71-75, Jet
Propulsion Laboratory, Pasadena, CA, January 31, 1967.

19. D. Richman, “DC Quadricorrelator: A Two Mode Sync System,” Proc. IRE, Vol. 42, pp.
288-299, January 1954.



Chapter Six

Loop Components

An elementary PLL consists of a phase detector, a loop filter and a
voltage-controlled oscillator. Design of each component is discussed in this
chapter. To give a thorough presentation of phase detectors, it is necessary
to introduce the elementary properties of limiters as well.

6.1 LOOP FILTERS

In the early days of phaselock, DC amplifiers were unreliable, costly, and
subject to excess drift. Equipment designers were compelled to avoid DC
amplifiers and therefore used only passive filters. For this reason, much of
the literature implies that a passive filter is somehow the “natural” filter
configuration, while the idea of an active filter often gets short shrift.

Yet, it is shown repeatedly in the preceding chapters that a high-gain
loop with an active filter will outperform a passive-filter loop in almost all
respects. It should be obvious by now that loop filters (for second- or
higher-order loops) ought to contain ideal integrators; an operational
integrator is a good approximation to ideal, but a passive filter is only a
pale imitation. Better performance almost always will be obtained through
use of an active filter.

The old prejudice against DC amplifiers is no longer valid. Integrated-
circuit, solid-state DC amplifiers of excellent reliability are available at
remarkably low cost. Offset and drift of a good op amp are better than can
be achieved in the phase detector. An active filter often leads to simpler
overall circuitry even though the filter circuit must contain an amplifier.

In short, active filtering should be given consideration for nearly all
applications. This book has been written with the tacit assumption that an
active filter is the norm and that a passive filter is an inferior substitute
that one accepts—along with degradation of performance—only for com-
pelling reasons.
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Loop Filters

Large DC gain can be obtained using a passive filter cascaded with a
DC amplifier; in principle, the same K, can be achieved in this manner as
by using an active filter. Why is an active filter the better choice?

The two filter configurations are shown in Figure 6.1. The same phase
detector with gain K, and the same VCO with gain K, is used in both
configurations. We define the amplifier gains as 4,(f) and 4,(f) for the
passive and active filters, respectively. Amplifiers are frequency dependent
with 3-dB bandwidths of f, and f,. Gains at DC must be identical to have
identical K, = K K A, soA 0)=4,00)=4.

The two configurations differ sngmflcantly in the sizes of passive compo-
nents needed to realize any specified values of natural frequency and
damping. By use of (2.11), the design formulas for the lag time constants
are:

K, KA
Tp= o2
KoK
Tig=—52 6.1
W

n

It is immediately evident that 7, is 4 times as large as 7,, a factor that
can be overwhelming if 4 is large and bandwidth is small.

Next, we observe that each amplifier introduces an extra pole into the
PLL. (We assume that the amplifier response can be approximated by a
single-pole model.) The pole corner frequency is at f, for the passive filter
but at f, AR, /(R, + R,) for the active filter. For equal locations of the extra
PLL pole, the active filter allows the amplifier pole to be at a much lower
frequency. Deleterious effects of extra poles are explained in Chapter 8.

Finally, we note that the amplifier gain in the passive filter has a direct
effect on natural frequency and damping, while amplifier gain in the active
filter has no influence on these loop parameters. Amplifier gain in the
passive loop must be set with some accuracy (e.g., + 10%), but in the active
loop it is only necessary that the gain exceed some minimum established
by requirements on K. Gain tolerance is much looser for the active loop.

Circuit precautions must be observed when using active filters. An op
amp usually has DC gain of 10* to 10® or even more, depending on type.
There inevitably is DC offset in the circuit, arising mainly from the phase
detector, although the amplifier also contributes. When the loop is out of
lock, there is no signal-generated DC output from the PD to counteract the
offset. Therefore, the offset is integrated until, eventually, the amplifier is
driven to its saturation limit.
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b)
Figure 6.1 Loop filter comparison: (a) passive filter with DC amplifier. (b) active filter.

Amplifier characteristics change at saturation; appearance of a signal at
the loop input may not be sufficient to bring the amplifier out of satura-
tion. In other words, self-acquisition—frequency pull-in—can be impaired
by saturation.

An aided acquisition technique, such as frequency sweep or discrimina-
tor assistance, prevents saturation. Sweep circuits are designed to reverse
direction at the sweep limits, which are chosen within the amplifier
saturation limits. The aiding voltage or slew current must be sufficient to
overcome any circuit offset. Avoidance of saturation is yet another reason
to use aided frequency acquisition instead of pull-in.

If a particular application absolutely prohibits aided frequency acquisi-
tion, then saturation can be avoided by providing DC feedback around the
amplifier. The product of closed-loop DC gain and equivalent input offset
must be less than the amplifier clipping level. Choice of the resulting DC
gain is a compromise between degradation of PLL tracking performance
and the initial frequency error caused by amplified DC offset.

Another, more subtle, difficulty can arise because the typical op amp is
not capable of handling high-frequency signals of large amplitude. Instead,
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it goes into slew limiting. This may not cause a problem under locked
conditions, but the op amp must also cope with the beat-note that is
present when the loop is still out of lock.

If slew limiting were symmetrical on positive and negative half-cycles,
there still would be no difficulty. However, slew limiting is not symmetri-
cal; there is, in effect, some rectification of the beat-note. The resulting DC
component could aid frequency acquisition or oppose it with equal proba-
bility. To avoid acquisition problems, the op amp selected should avoid
slew limiting for any beat-note that might be encountered.

A related effect arises from the ripple output of the phase detector. In
Chapter 3 we identify a PD output at double the signal frequency and then
ignore it in the noise performance analysis. Other types of phase detectors
can produce more severe forms of ripple. Whatever the form of the ripple,
it can rarely be ignored in real hardware.

Specifically, a low-frequency op amp cannot tolerate much high-
frequency or square-wave ripple at its input. Some measures must be taken
to suppress the ripple before it reaches the amplifier. Several low-ripple
phase detectors are identified later in this chapter. Another expedient is to
place ripple filters between the phase detector and the op amp. Simple,
lowpass filters are used in some applications, while notch filters have been
used in others.

6.2 VOLTAGE-CONTROLLED OSCILLATORS

There are many requirements placed on VCOs in different applications.
These requirements are usually in conflict with one another, and therefore
a compromise is needed. Some of the more important requirements include
the following;:

. Phase stability (Spectral purity).

. Large electrical tuning range.

. Linearity of frequency versus control voltage.

. Large gain factor (K,).

Capability for accepting wideband modulation.
Low cost.

N VA WN -

The requirement for phase stability is in direct opposition to all the other
five requirements. To obtain any of the wideband features we must
inevitably sacrifice phase stability.
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Osclllator Types

The four types of VCO in common use are given below in order of
decreasing stability:

1. Crystal oscillators (VCXO).

2. Resonator (LC, coaxial, or cavity) oscillators.
3. RC multivibrators.

4. YIG-tuned oscillators.

In today’s technology the stablest oscillators are those using high-Q,
vacuum-mounted, 2.5- or 5.0-MHz, fifth-overtone, 4T-cut crystals. Refer-
ence 1 provides a review and a large bibliography.

A circuit commonly used (Figure 6.24) is a variation on the familiar
Pierce crystal oscillator.>®> The crystal is operated as an inductance, and
capacitors C, and C, adjust the amount of feedback. A varactor diode
provides a small variation of C, and causes a pulling of the oscillation
frequency.

The tuning range of this circuit is very small when high-Q crystals are
used. To obtain a greater range it is common practice to use ordinary
AT-cut crystals in their fundamental series-resonant mode* in the circuits
of Figures 6.2b and 6.2c. The varactor is in series with the crystal and
effectively varies the resonant frequency over a greater range than is
possible in the Pierce circuit. Other oscillator circuits are described in
Ref. 4.

Figure 6.2c shows some circuit details that contribute to good perfor-
mance and are applicable to other oscillator configurations.

o The varactors are connected in series opposing. Therefore, if the RF
voltage should exceed the DC bias, forward current will be blocked by
whichever diode is still reverse biased.

« A series inductance L, is used to tune the varactor capacitance to series
resonance at the crystal frequency. This inductance permits operation
both above and below the crystal resonant frequency. (Without the
inductance, the varactor can only pull the crystal to higher frequencies,
where the crystal reactance is inductive.)

o A parallel inductance L, tunes out the parallel capacitance of the crystal.
Analysis of the equivalent circuit of the crystal and its tuning elements
demonstrates that this measure increases the tuning range of the oscilla-
tor.

*Overtone crystals have a narrower pulling range than fundamental crystals.
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« Reactances in the crystal and LC series network tend to be large. To
avoid dissipative losses, the isolation resistor R, must also be large.
Better isolation may be attainable from RF chokes.

Speed of response of oscillation frequency to a changing control voltage
is often thought to be restricted by the bandwidth of the crystal; this is
incorrect. In fact, frequency will change just as quickly as the capacitance
of the varactor can be changed. This change depends only on the control
voltage actually applied to the varactor, a voltage that is response re-
stricted by the RC lowpass filter composed of the isolation resistor and the
varactor capacitance. Fast response of a VCXO—much faster than is
characteristic of the crystal bandwidth—is entirely feasible if proper care
is taken in the drive circuits.

Phase-stability is enhanced by a number of factors:

1. High Q in the crystal and circuit.
2. Low noise in the amplifier portion.
3. Temperature stability.

4. Mechanical stability.

The precision 5-MHz crystals mentioned have an unloaded Q of ap-
proximately 2X 10°. Other crystals can be expected to have unloaded Q’s
in the range of 10,000 to 200,000. Circuit losses inevitably degrade the
intrinsic Q of the crystal alone; these losses must be minimized for best
performance. In a series-mode crystal the driving and load impedances
should be as small as possible to avoid degradation of Q.

Much of the phase jitter of an oscillator arises from noise in the
associated amplifier. The transistor (or other device) should be operated in
a low-noise condition and, of course, a low-noise transistor should be used.
High-frequency thermal and shot noise contribute significantly to the jitter
but flicker (1/f) noise is predominant in many applications. Treatment of
flicker noise is deferred to later pages.

To obtain a good signal-to-noise ratio in the oscillator (and therefore
low jitter) it seems reasonable to operate the circuit at a high RF power
level. There is a competing effect, however; excessive vibration. of the
crystal drives it into nonlinear modes of mechanical damping and the Q is
thereby reduced. As a result, there is an optimum drive level for any
crystal. Powers of 10 to 500 uW are typical; these levels are usually much
smaller than the maximum rated power that is established on heat dissipa-
tion limitations.

Crystal parameters are temperature sensitive; to obtain best phase
stability, temperature transients and fluctuations should be avoided.
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A quartz crystal is an accelerometer; vibration, shock, or even changes
of attitude in a gravitational field will cause frequency changes.

When wide tuning range becomes more important than stability, other
oscillator types must be used. Rumor tells that X-cut crystals in parallel-
mode circuits have been employed in very wide range VCXOs, but as far
as is known extreme tuning limits of 0.25 to 0.5% of oscillator frequency
are all that has been achieved.

If a wider range is needed, an LC oscillator must be used. In this
application, the standard Hartley, Colpitts, and Clapp circuits make their
appearance. Tuning may be accomplished by means of a varactor,
although saturable inductors have also been used.

When stability is of little importance, large tuning range is needed, and
when low cost is a factor, relaxation oscillators such as multivibrators are
used. The upper operating frequency of practical relaxation oscillators has
been limited to a few tens of megahertz. Linearity of frequency versus
control voltage (or current) can be excellent. Multivibrators are available
at very low cost as packaged integrated circuits (IC). Stability and linearity
of the IC versions have generally been inferior to discrete-circuit multi-
vibrators.

A multivibrator contains a rundown circuit (i.e., a capacitor driven by a
controllable current), a voltage pickoff device, and a switch. Frequency of
operation is established by the time needed for the capacitor voltage to run
down from an initial condition set after switching to the trigger point set
by the pickoff device. Phase jitter is caused largely by noise displacement
of the pickoff threshold.

Time displacement caused by noise is inversely proportional to the slope
of the rundown voltage; a high-frequency multivibrator has less time jitter
than a low-frequency unit employing exactly the same circuit except for
timing capacitor. Therefore, to obtain improved phase jitter, it is useful to
operate a multivibrator at a frequency Nf,, where f, is the desired output
frequency, and divide the output by N. Time jitter is preserved in a
frequency divider circuit, but phase jitter is reduced by a factor of N. This
scheme improves the phase jitter by a factor of N over that obtained from
a multivibrator operating directly at f,.

At microwave frequencies, Y/G-tuned Gunn oscillators have become
popular. They are capable of very large tuning ranges, have highly linear
tuning characteristics, and provide useful output power. They are very
noisy compared to crystal or LC oscillators, so relatively large bandwidths
must be used to lock them. (See next section for relation between band-
width and residual noise.)

Tuning of the YIG sphere is accomplished by altering a magnetic field;
magnetic devices are notoriously slow to respond. A large coil is used to
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establish the bulk of the magnetic field and a small “tickler” coil is used to
accommodate fast input modulation. The large coil cannot change flux
rapidly, and the small coil cannot change frequency very far, by compari-
son to the large coil; but, between them, they provide the large range and
fast response that is needed.

Oscililator Phase Noise

Oscillator noise—also called short-term instability or phase jitter—is an
extensive topic. Discussion of the problem and further bibliographies may
be found in Refs. 5 and 6. Attention here is restricted to the effects of
noise on phase-error fluctuations in a phaselocked loop, a very small
portion of the subject.

Let us consider the loop model of Figure 6.3. The oscillator is taken to
be a perfect, jitter-free oscillator with a phase output of ¢,, followed by an
internal disturbance source that adds a phase jitter ¢,. Phase delivered to
the external oscillator output terminal is §,=¢, +¢,.

Phase of the input signal is §; and the phase error in the closed loop is
0,=6,—4d,. If the input signal is noisefree, then the tracking error can be
shown (by the methods of Chapter 2) to be

Op(s)=[1-H(s) ][ 0:(s) —¢u(5)] (6.2)

Phase noise on the incoming signal and on the local VCO affect tracking
error in the same manner (except for sign, which is immaterial for our
purposes). The development here is in terms of ¢, only, but identical
results apply to fluctuating 6,.

8; vd
»{ F(s)
6o
I'— ———————————— -1 Ve
| |
I
| % |
L (Dt (Dt
I I
| #n |
-\ d

Noisy VCO
Figure 6.3 Oscillator noise model.
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Strictly speaking, a random function such as ¢, does not have a Laplace
transform, so (6.2) is merely symbolic. More correctly, the spectrum of the
phase error is

P, (w)=|1-H (W)@, (w) rad?/Hz (6.3)
and the variance of the phase error is

L

72 —
0”_2':7

j(') “l1- H@)P®,(w)do  rad® (6.4)

where ®,(«) is the one-sided spectral density of the phase noise ¢, in units
of rad?*/Hz.

For various reasons, it is more common to consider the spectrum of the
frequency fluctuations @, (w) instead of phase spectrum. The two spectra
are formally related by @ (w)=w?® (), where the units of @, are (rad/
sec)’/Hz.

Oscillators are afflicted by disturbances of various kinds; these are
described presently. The loop tries to track out the disturbances. To
minimize the tracking error, the factor |1 — H(w)|* should be as small as
possible, which means the loop bandwidth should be as large as possible.
This is an intuitively logical conclusion; the loop is better able to track
disturbances if it has a large bandwidth.

Loop error is the untracked disturbance. To calculate variance of the
error, it is only necessary to substitute expressions for loop transfer
function and disturbance spectral density into (6.4).

Typical forms of oscillator noise spectra are shown in Figure 6.4. In
addition to the exhibited continuous spectrum, there can also be discrete
spectral components arising from power-supply hum or interference from
other signals.

Starting at the high-frequency end of the noise spectrum disposes of the
simplest explanations first. Any physical circuit has a high-frequency band
limit imposed by parasitic effects. Noise from any source falls off in the
cutoff region, assuring a finite noise-variance contribution from high
frequencies.

Noise in the next-lower region originates from white noise, primarily in
the amplifiers and output circuits following the oscillator. It results in a flat
phase-noise spectrum that is equivalent to a parabolically rising frequency-
noise spectrum. The source of this disturbance is simple, additive noise of
the familiar variety.

Phase flicker appears at somewhat lower frequencies. It is distinguished
by a phase-noise spectrum that varies approximately as 1 /f. Phase flicker
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Figure 64 Oscillator noise spectra. Hachure marks indicate regions of nonstationary or
nonexistent autocorrelation.

originates from flicker noise intermodulation in nonlinear circuits, such as
frequency multipliers,’ that are outside the oscillator feedback loop.

At this point we begin to encounter mathematical difficulties. There
exists no Fourier transform of the 1/f phase flicker spectrum, so the
autocorrelation function does not exist. Since spectral density is formally
defined as the Fourier transform of the autocorrelation, the meaning of the
“spectrum” is not clear. The same problem will plague us as we examine
lower-frequency portions of the disturbances. Suffice it to say that labora-
tory instruments called “spectrum analyzers” give outputs consistent with
Figure 6.4 and that formally using the questionable spectra in (6.4) gives
no difficulty in most cases. [For the phase flicker spectrum it is necessary
to invoke high-frequency cutoff to arrive at finite jitter from (6.4).]

Spectra whose existence is questionable are indicated by hachure marks
in Figure 64.

Moving one step lower in frequency, we next encounter flat frequency
noise that could be generated, for example, by white noise added into the
control terminal of the VCO. Phase is the integral of frequency; the
integral of white noise is a sort of random walk and is not stationary. Since
we have defined spectral density only for stationary processes (Appendix
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A), the phase spectrum of flat frequency noise is not defined properly.
However, using the formal relation ®,=®,/w? does not lead to difficulty
in the PLL with this form, so we overlook the mathematical peculiarities.

At the lowest frequency range—closest to the oscillator carrier
frequency—lies frequency flicker noise. It has been the source of much
puzzlement and is still rather mysterious.

Its existence has been known for many years, but its causes are unclear.
Thermal and shot noise are explained very well as the random motion of
electrons, but there is no similar explanation of flicker noise.

Flicker noise arises as a low-frequency disturbance in almost all active
electronic devices, but there is no widely accepted explanation of the
mechanism that transfers the low-frequency noise into RF phase fluctua-
tions. (There is even significant flicker noise in a quartz crystal itself,'? but
that does not explain frequency flicker in other types of oscillators.)

The frequency flicker noise that appears to be present in all oscillators
causes the frequency noise spectrum to have the form

0,(0)=N(2) 65)

where N, is the spectral density in (rad/ sec)?/Hz, measured at a frequency
w,. Exponent x is a number in the vicinity of 1.

The spectrum (6.5) is very troublesome mathematically. First of all, its
Fourier transform does not exist, so flicker noise does not have an
autocorrelation function. Next, variance of a quantity is given by the
integral of its spectrum over all frequencies from zero to infinity. The
integral of (6.5) is improper at both limits for some values of x. For any x
less than 2, the integral diverges at high frequencies. However, that
problem can be accommodated by imposing the high-frequency cutoff; no
circuit can have infinite bandwidth. Also, the PLL responds to the phase
jitter, whose spectrum is 1/w? times that of the frequency spectrum.
Therefore, the upper limit does not cause any trouble in analysis of a
phaselock loop, even without an upper cutoff.

If x> 1 then the integral of (6.5) diverges at the zero-frequency limit
also. This is much more troublesome than high-frequency divergence. A
low-frequency cutoff might be imposed to obtain tractable analysis, but
where should a cutoff frequency be placed? Measurements® show the 1/f*
slope continuing to frequencies at least as low as 1 cycle /month. There is
no evidence that a cutoff exists in nature.

How does a PLL respond to frequency flicker in its oscillator? Inserting
a frequency flicker spectrum into (6.4) and remembering that ®,(w)=
® (w)/w?, we arrive at infinite phase-error variance for any PLL with
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finite X,. In other words, when our model is applied to a real PLL, the
analysis predicts that the loop cannot remain locked if the VCO has flicker
noise.

We are faced with a paradox. On the one hand, measurements on
oscillators show flicker noise very clearly and almost universally. On the
other hand, experience tells us that PLLs lock very well and are only
mildly perturbed by oscillator noise.

Something is wrong with the model, or with the interpretation thereof. It
is hoped that the mathematical difficulty can be resolved in the future. In
the meantime, how is the effect of flicker noise to be treated in PLLs that
must be built now?

Analysis of the first-order loop appears to be hopeless with the present
model. Existing analyses®!! lead either to an infinite variance or to a
variance that grows logarithmically with duration of observation time.
Experience does not confirm these predictions, although it is conceivable
that the growth rate is so small as to escape notice.

An engineering solution is feasible for a second- or higher-order loop. If
the loop filter contains a perfect integrator, (6.4) has a finite result, even
when confronted with a flicker spectrum. Good prediction of experimental
observations is obtained if the integrator is assumed to be perfect.

Assuming a second-order loop with perfect integrator, and assuming
x=1, we calculate phase jitter from (6.4) and (2.12) to be

leo
47(2B,)

— Nwo,
4} = 47:w3f(§ )= 58($) (6.6)
where g($)= (£ +1/48)/($) (by using Table 3.1) and
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The functions f({) and g({) are plotted in Figure 6.5. For a loop of
specified noise bandwidth B,, the minimum flicker jitter is obtained for a
slightly overdamped condition ({ = 1.14). These results coincide with those
obtained by Gray and Tausworthe.’
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Equation 6.6 shows variance to be inversely proportional to the square
of bandwidth. If bandwidth is made too small, the phase error exceeds the
linear limits that implicitly underlie all of this analysis and the results
become inaccurate. Further narrowing of the bandwidth causes the loop to
lose lock. One simple measure of oscillator stability is the narrowest loop
bandwidth at which lock still holds.

The inverse-square dependence of variance on bandwidth is a con-
sequence of assuming x =1. If x departs somewhat from unity, the expo-
nent of bandwidth dependence departs somewhat from —2.

Low-Flicker Design
Inasmuch as the origin of flicker noise is not properly understood, its

alleviation is more an art than a science. The following paragraphs furnish
a brief synopsis of the state of the art.
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All components should exhibit low noise; the most critical components
are the active devices used to provide gain for positive feedback in the
oscillator. One might think that low-noise-figure, high-frequency transis-
tors would be most appropriate but this is an incorrect assumption.
Small-junction devices exhibit greater flicker noise than devices with
junctions of larger area; however, the reasons are obscure. A high-
frequency power transistor with large emitter area might be the best choice
of bipolar transistor.

There is also evidence that junction field-effect transistors are better
since they tend to have lower flicker noise than bipolar devices. Insulated-
gate field transistors are much poorer and should be avoided.

At the time of this writing, discrete devices (both bipolar and FET) have
lower noise than integrated circuits.

The essential elements of a feedback oscillator consist of a selective
network and a sustaining amplifier. In simple oscillators, the oscillation
level is established by signal limiting in the amplifier. - Impedances of a
limiting amplifier are indeterminate and time varying, a condition that can
adversely affect the selective network. Stability is improved by separating
the sustaining amplifier from the limiting function so that only constant,
stable, low-loss impedances are presented to the selective network.*

Fluctuations of the parameters of the sustaining amplifier cause
frequency instability, even when operated in a linear manner. Negative
feedback has a stabilizing effect.’

Flicker noise in a transistor is concentrated in the audio and subaudio
frequency range. How do such low-frequency disturbances get transferred
to sidebands of the RF oscillator frequency? There must be intermodula-
tion between the low-frequency flicker noise and the high-frequency oscil-
lation to produce the sidebands. Second-order nonlinearities in the oscilla-
tor would be particularly conducive to intermodulation.'?

‘To avoid intermodulation, a linear sustaining amplifier is needed. If this
reasoning is correct, an oscillator with automatic level control, rather than
limiting, ought to exhibit less flicker noise.

If the level is set by limiting (for convenience and simplicity of the
circuit), then one would expect least flicker noise intermodulation from a
symmetrical clipper, which has only odd-order nonlinearity. In any clipper
the AM-to-PM conversion factor must be small.

6.3 PHASE DETECTORS

Two broad categories of phase detectors can be distinguished: multiplier
circuits and sequential circuits. Multipliers generate the useful DC error
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output as the average product of the input-signal waveform times the
local-oscillator waveform. Operation of an ideal multiplier is described in
Chapter 3. Multipliers are zero memory devices. A properly designed
multiplier is capable of operation on an input signal buried deeply in noise.

A sequential phase detector generates an output voltage that is a
function of the time interval between a zero crossing on the signal and a
zero crossing on the VCO waveform. Other details of the waveform do not
contribute to the output.

Sequential phase detectors contain memory of past crossing events. They
can generate PD characteristics that are difficult or impossible to obtain
with multiplier circuits. Because a sequential circuit operates on waveform
edges, it can be intolerant of missing or extra crossings; in consequence, it
often has poorer noise-handling capability than a multiplier.

Sequential PDs are usually built up from digital circuits (flip flops, gates)
and operate with binary, rectangular input waveforms. Accordingly, they
are often called “digital” phase detectors and the loops they are used in are
often called “digital” phaselock loops. This terminology is incorrect; the
output of a sequential PD is an analog quantity and the loops are analog
loops. Examples of true digital loops are given later to illustrate correct
usage of the term “digital.”

Multipliers

If both inputs to an ideal multiplier are sinusoidal, the useful DC output
is proportional to the product of the amplitudes of the two inputs and to
the cosine* of the phase difference between them. The multiplier produces
the scalar product of the two input phasors (see Chapter 3 for analysis).

In addition, there is an unwanted, sinusoidal ripple at double the input
frequency and with amplitude equal to the maximum available DC output
level. Ripple must be suppressed to prevent unwanted sidebands from
appearing on the VCO.

Multiplication can be implemented physically by means of a four-
quadrant analog multiplier. Such devices are available as monolithic in-
tegrated circuits or as encapsulated packages or can be built from discrete
devices. Good performance can be obtained, although usable operating
frequencies tend to be low and cost tends to be high.

A true multiplier provides a useful analytical model for a phase detector,
but it is rarely found in actual equipment. Instead, a switching phase
detector is far more popular.

*The phase difference is 90° when the phase error is zero.
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Let us suppose that the sinusoidal VCO drive to a multiplier phase
detector is replaced by a square wave of the form

v,(#)=sgn[cos(w;it+4,)] (6.8)
where the signum function is defined as

sgn(x)=1, x>0
=-1, x<0 (6.9)

The square wave is periodic and can be expanded in a Fourier series as
4 1 1
v,(f)= - |cos (w;t+0,)— 3¢0s (w2 +6,)+ 5cos S(w;z+8,)+ ... ]

(6.10)

Output of the multiplier is the sum of each individual term of the Fourier
series multiplied by the input signal.

Very often the input signal and noise are bandlimited to a narrow
spectrum around the carrier frequency; no harmonics are present at the
input. In this case, it is easy to show that the only multiplier product
containing a low-frequency (near-DC) component is the one associated
with the fundamental frequency of the square wave. All other products
only contribute high-frequency ripple.

We let the input signal be v(¢)= V,sin(w;? + 8,). The average value (DC
component) of the product v,v,, where v, is given in (6.10), is

o= V,sin(6,-0,) 6.11)

Using the notation of Chapters 2 and 3, K, =2V, /. In other words, the
useful output is identical to that which would have been obtained if the
VCO drive were sinusoidal, with amplitude 4/7. The circuit produces
exactly the same DC signal and exactly the same low-frequency noise as
the equivalent phase detector with sinusoidal drive.

But multiplication by a unit-amplitude square wave is equivalent to
periodic switching of the polarity of the input; the multiplier can be
replaced, without penalty (except for ripple waveform), by a polarity
switch. Since a switch is much simpler and less expensive to build than a
linear multiplier, the most common multiplier type of phase detector is
really a switching device.

The foregoing describes a full-wave switching PD; it generates output on
both halves of the switching cycle. Half-wave circuits gate the input signal
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v(f) on, say, the positive halves of the switching cycle and produce zero
output on the negative halves. Waveforms of half-wave and full-wave PDs
are shown in Figure 6.6.

Average output of a half-wave PD is

V. r—8,+=
=5t [ sin (w1 +8) d(w,f)

- _2; —0,—7n/2
V.
= 7‘sin (6,—86,) (6.12)

which is exactly half the output obtained from a full-wave PD.

Output amplitude from a switching PD is proportional to the input
signal amplitude but independent of the amplitude of the switching volt-
age.

Examination of the half-wave waveforms of Figure 6.6 reveals that the
fundamental ripple frequency is now at the signal frequency, and the
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nonsinusoidal waveforms change with alterations in phase error; ripple is
more difficult to suppress. One measure to reduce ripple is to employ
full-wave circuits rather than half-wave circuits, as shown at the bottom of
Figure 6.6.

Examples of switching PD circuits are given in Figure 6.7. Many other
circuits and devices can be used. The examples show only bipolar transis-
tors and diodes; it is also possible to use field-effect transistors (both
junction and insulated-gate transistors), mechanical switches, or opto-
electronic devices.

A number of low-cost, prepackaged circuits make excellent phase detec-
tors. One example is the integrated-circuit balanced modulator as shown in
Figure 6.8. Both single-balanced and double-balanced configurations are
used.

Figure 6.9 shows waveforms in the single-balanced circuit of Figure 6.8.
In addition to the ripple typical of a full-wave phase detector, there is also
a square wave of peak amplitude I at the signal frequency, which is much
worse than the normal ripple. The square-wave portion of the ripple must
be filtered before it enters the output amplifier.

A double-balanced circuit is equivalent to two single-balanced circuits
connected together. Polarity of connections is such that the collector-cur-
rent gaps evident in Figure 6.9 are filled in and the ripple becomes
identical to that of a full-wave switching PD, as in Figure 6.6.

Phase-detector gain of the single-balanced circuit is

2, RgR.

Va= 7Rg )R + R,

(6.13)

while that of the double-balanced circuit is exactly twice as great. (Equa-
tion 6.13 was obtained under the assumptions that the input signal plus
noise does not overload the input transistors; that current gain hﬁ_, of all
transistors is very large; that internal emitter resistance is included in R.;
and that symmetrically located circuit components are perfectly matched.)

The balanced-modulator PDs have differential, balanced outputs with a
common-mode DC offset. Most loop-filter circuits require a single-ended
input with zero offset. Figure 6.8 shows the differential-to-single-ended
conversion performed by a separate operational amplifier. This function
can also be accomplished by a current mirror on the same chip.'

Prior to the advent of well-balanced integrated circuits, use of an active
phase detector was precluded by severe problems of DC offsets. The
circuits of Figure 6.8 could never be successful using discrete components.
Excellent matching of like components on a single IC chip achieves
balances that are unimaginable with separate active components. Even so,
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great care must be taken to achieve close balance between external
components and to have low-impedance, well-balanced switching drive if
DC offset is to be held to small values.

Another popular circuit is the diode ring of Figure 6.10. These units are
sold in large quantities at low cost under the name of double-balanced
mixers. They have wide bandwidths, are available over an extremely large
frequency range (they operate well at frequencies far above the capabilities
of transistor PDs), impose little burden on the designer, and provide good
performance.

Accurate analysis is difficult. If the diodes are assumed to be ideal and if
the signal voltage is much smaller than the switching voltage, then opera-
tion is closely the same as any full-wave switching PD." These conditions
are often violated, so the existing analyses are approximations.
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Figure 6.10 Diode-ring phase detector.

Provided that the signal voltage is substantially smaller than the switch-
ing voltage, the output characteristic takes the form

V,=V,,sin(8,—0,) (6.14)

where ¥, is proportional to the signal amplitude. (If signal and switching
amplitudes are near equal, the PD characteristic becomes triangular'®
instead of sinusoidal.) Typical values of V,, range up to 0.3 to 0.4 V. Since
most VCOs require much larger control voltages, a DC amplifier is almost
always needed in the loop filter; the diode ring did not become feasible as
a PD until good DC amplifiers were developed.

A standard ring is usually specified for 5 mW of sinusoidal drive from a
50-ohm source. Since the diodes are a nonlinear load, and since the
time-averaged load is not necessarily matched, the specification is the
available power and not the actual power delivered. A DC offset on the
order of 1 mV is typical.

If the signal is immersed in noise, the total signal plus noise must be well
below the switching drive level if clipping is to be avoided. “High level”
circuits, in which two or more diodes are connected in series in each arm
of the ring, can accept larger switching drive and therefore larger input
signals. Maximum-possible output voltage V,, should be proportional to
the number of series diodes.
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The diode ring is not really characterized very well for phase-detector
service. It is fortunate that the circuit is tolerant of a fairly wide range of
operating conditions.

A PD circuit that was once very common—it was considered the
phase-detector circuit—is shown in Figure 6.11. The hybrid transformer
forms the vector sum and vector difference of the two input signals; these
are converted to DC signals by the diode rectifiers. The useful output is the
difference between the two rectified voltages.

Analysis'®!” shows that the output is proportional to the sine of the
phase error and is a function of the two input amplitudes. If ¥,>V,, then
¥, is proportional only to ¥, and is independent of V,. This feature is
found in many different PD circuits, including the diode ring presented
above.

Ripple is reduced from that encountered in switching PDs because of
the nonlinear filtering action in the RC loads of the peak detectors.

Popularity of this circuit has declined with the advent of good ICs and
the packaged rings. Since output is a small difference between two large
DC voltages, balance is a critical adjustment if DC offset is to be avoided.
It is much easier to buy a well-balanced circuit than to build one from
discrete components.

However, the basic circuit should not be dismissed entirely. It has the
potential of operating over a frequency range from audio to light. The
“transformer” could be realized with a coaxial hybrid junction, or a
waveguide magic-T, or even an optical device. Detectors need not be diode
rectifiers; they could also be bolometers, thermocouples, or photodiodes.
There is still 2 niche for the circuit at frequencies above the capability of
diode rings.

Sample-and-hold phase detectors are sometimes encountered.'® A sam-
pler is merely a switch that is driven by a short pulse. Signal value at the
instant of the pulse is stored on a capacitor until the next sample is taken.
If the signal is sinusoidal, the PD characteristic is also sinusoidal, with
maximum DC output equal to the peak signal amplitude.

Figure 6.11 Diode rectifier phase detector.
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Sample-and-hold PDs are used to lock to harmonics of the sampling
rate, to suppress ripple, or in applications where the signal appears in short
bursts for which “gated phase detection” is better terminology. Harmonic
operation is discussed later.

If noise is absent, and if the input signal does not carry angle modula-
tion, then the sampling always occurs at the same point of the input
waveform from one cycle to the next. The DC value (near zero for
equilibrium tracking) does not change. Except for possible sharp spikes at
sampling times, due to switch imperfections, the voltage on the storage
capacitor remains constant; ripple is suppressed completely.

Analysis of a sampled loop is not accomplished readily by the L-trans-
form methods of Chapter 2; it is necessary to use z-transforms instead.
Response of a sampled loop, and its stability, differs from the continuous-
loop behavior presented in this book.'*?

Nonsinusoldal PD Characteristics

We have examined many different PD circuits and in each case have
arrived at a sinusoidal PD characteristic (DC error voltage versus phase
error). One might think that a sinusoid is a common property of the
different circuits.

Actually, the shape of the characteristic depends on the applied wave-
forms, not necessarily on the circuit. If rectangular waveforms are applied
at both inputs of any multiplier or switching PD, the output characteristic
becomes triangular. This result comes out of exactly the same circuit that
produces a sinusoidal characteristic when presented with a sinusoidal
input.

If waveforms are rectangular, digital circuits can be used in place of
analog circuits. The digital-circuit equivalent of a multiplier phase detector
is an exclusive-OR gate. Average DC output is a triangular function of the
phase error, while the ripple waveform is rectangular with a duty cycle that
depends on phase error. Note that the output is an analog quantity despite
the fact that a digital circuit and digital input waveforms are used.

The DC characteristic of a sampled PD is exactly the waveform of the
input signal. Almost any desired" characteristic can be obtained by ap-
propriate shaping of the input. For example, a rectangular PD characteris-
tic occurs if the signal has a rectangular waveshape.

(A rectangular PD characteristic has infinite slope at zero phase error,
which implies infinite loop gain. Nonlinear analysis as a bang-bang,
sampled loop is thereby imposed upon us. The nonlinear loop can be very
useful despite the analytical difficulties.)
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Figure 6.12 Phase-detector characteristics: (a) sinusoidal; (b) tnangular (c) sawtooth; (d)
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A sawtooth characteristic results from sampling a sawtooth input wave-
form, but that characteristic is more readily obtained from sequential PDs,
as is explained in the next section.

Sketches of several simple PD characteristics are shown in Figure 6.12.

There are PD circuits that produce nonsinusoidal PD characteristics
even when fed with sinusoidal inputs. The best known is Tanlock*"*

which is implemented as in Figure 6.13. Its PD characteristic is given by

(1+y)siné,

Va=K4 1+ycosé,

(6.15)

which is plotted for several values of y in Figure 6.14a. The dimensionless
factor y is selected between 0 and 1. If y=0 we have the ordinary
sinusoidal PD. If y > 1 the loop becomes unstable (actually, the division
fails).

Tanlock interconnects a pair of conventional phase detectors to produce
an extended PD characteristic—one that has a wider linear region and
permits better hold-in and tracking performance.

The analog divider in a Tanlock circuit tends to be an awkward item; it
is mechanizéd by placing an analog multiplier in the feedback path of an
operational amplifier. Dynamic range and stability problems must be
overcome.
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Figure 6.13 Modified phase detectors: (@) Tanlock phase detector; (4) detector-product
phase detector.

The nuisance of a divider can be avoided by a circuit that generates

(1-ycos4,)

= (6.16)

V,=K;sind,

by means of an extra (cosine) phase detector and an analog multiplier. As
shown in Figure 6.14b, its linearity extension is not as good as that of
Tanlock.
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Figure 6.15 Phase feedback.

A third circuit® (Figure 6.15) feeds back the PD output voltage into a
phase modulator, thereby reducing the phase error between the two signals
actually applied to the phase detector. Its range extension is shown in
Figure 6.14c. Remarkably, feeding the PD output voltage through an ideal
differentiator into the VCO control terminal has exactly the same effect as
phase feedback.?*

These complex nonsinusoidal circuits are rarely used. One reason is that
a sawtooth characteristic is readily obtained with very simple sequential
circuits, as described in the next section. A sawtooth is superior in linearity
and range extension to any of the illustrated characteristics.

Another reason, which is explored later in the chapter, is that noise
degenerates any extended characteristic. If the signal is immersed in noise,
the PD characteristic approaches sinusoidal irrespective of its shape for
signal alone.

A sinusoidal PD characteristic has the same magnitude of slope at the
unstable null at 180° as it does at the stable null at 0° (see Figure 5.1). The
same is true for a triangular or rectangular characteristic or any PD with
even symmetry about its peak output. Feedback polarity with this type of
PD is immaterial; the loop selects automatically whichever of the two nulls
provides negative feedback.

An extended PD characteristic (sawtooth, Tanlock, etc.) has unequal
magnitudes of slope at the two nulls. To assure stable tracking about the
desired null, the polarity around the entire loop must be correct. Reverse
polarity forces the loop to try to track about the wrong null.
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Sequential Phase Detectors

This important class of circuits operates on the zero crossings of the
signal and local oscillator; any other characteristics of the waveforms are
ignored. For reliable operation of the circuits, the waveforms are usually
clipped to a rectangular shape.

Average output is proportional to the time interval between a level
transition of the signal and a transition of the VCO waveform. The circuit
must have some memory to measure the time difference.

The simplest sequential PD is an ordinary RS flip flop. Negative
transitions on one input set the flip flop to a true state and negative
transitions on the other input reset it to the false state. Typical waveforms
are shown in Figure 6.16 and the PD characteristic—a sawtooth—is in
Figure 6.17.

We denote by 8, the phase difference between input signal and VCO
output. Useful output is the DC average on one output terminal of the flip
flop and is denoted by ¥,. For 0<8,< 2,

V,=Vy8, 6.17)
d
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Figure 6.16 Flip-flop phase-detector waveforms.
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Figure 6.17 Flip-flop phase-detector characteristic.

where Vy is defined in Figure 6.16. The linear range is centered at
6,=180°, rather than at 90° as found in multiplier PDs. Equilibrium
tracking is ordinarily centered around 180°, so the DC offset of V; /2
must be cancelled out with an appropriate bias circuit.

(Digital integrated circuits are manufactured without regard to small
noise voltages that might appear on the high or low logic levels of
individual devices. If low circuit noise—high spectral purity—is needed,
then it is advisable to use the digital circuit to drive a low-noise, discrete-
component analog gate to produce the actual DC output. Offset bias can
be compensated in the auxiliary gate.)

Ripple is clearly a square wave at the signal frequency and has a duty
ratio that depends on phase error.

The flip flop need not be operated at the actual input frequency; digital
counters can divide the input frequency by a factor N.2° The linear phase
range of the PD, referred to the input phase, becomes 27N, which is in
strong contrast to the much smaller range achievable with a sinusoidal,
multiplier PD.

Let us suppose that the input signal fails. Then the next VCO negative
transition will reset the flip flop and it stays reset until the signal returns.
The loop interprets the steady reset condition as a large phase error and
attempts to correct it by lowering the VCO frequency. Eventually, the loop
filter or VCO is pushed against a saturation limit and remains in this
condition.

Signal failure illustrates a general problem of sequential phase detectors;
the circuit tends to be intolerant of missing or extra transitions. This
behavior should be contrasted to that of multipliers in which the transition,
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as such, has little influence; the total integrated waveform determines the
DC output. We see later how this transition-sensitive property affects PD
operation in the presence of noise.

The problem caused by input signal failure is easily remedied in the
simple flip flop: simply arrange the circuit so that the VCO transitions
toggle the flip flop rather than reset it.>* Then if the input fails, the flip flop
toggles back and forth between the two logic levels with a 50% duty ratio,
which the loop interprets as zero phase error. The loop then tends to
remember its existing state and is prepared to quickly reacquire the signal
upon its return. ‘

A widely used sequential PD of greater complexity is shown in Fig-
ure 6.18. It consists of four flip flops plus additional logic and is available
in several versions as a single-chip integrated circuit.2%?’ It is called a
phase-frequency detector (PFD) because it also provides an indication of
frequency error when the loop is out of lock.

The PFD has two output terminals, labeled U and D. The low (pulled-
down) condition is active; the high condition is inactive on each terminal.

R
(signal)

2 F-
:

-, )

v
(vco)

Figure 6.18 Phase-frequency detector.
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Figure 6.19 Duty ratio of phase-frequency detector.

Both U and D can be high simultaneously, but not low. Duty ratio, d;, or
dp, is the fractional time either terminal is in the low condition.

We denote the phase difference between signal and VCO as 8,; the duty
ratios as a function of 4, are sketched in Figure 6.19. Several unique
properties can be seen:

e Active phase range is +360°, which is double that of other PDs. It is
linear over the entire range.

e The PD characteristic is aperiodic, whereas all others have been periodic
in 4,.

s If the loop is unlocked, only one output terminal—U or D, as ap-
propriate—pulls down into the active condition. The low terminal indi-
cates the direction of frequency error and thereby automatically provides
sweep-frequency acquisition capability.

 Both outputs are quiescent at the equilibrium tracking point 6,=0. In
the near vicinity of equilibrium, one or the other output pulls down with
small duty cycle; the ripple is only a narrow pulse at the input frequency.
Narrow pulses are much easier to filter than square waves.

o There may be some crossover distortion in the PD characteristic around
6,=0.
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Operation of the circuit can be analyzed by examining the 12 different
logic states possible and the transitions between the states caused by the
two inputs. Operation in a locked condition can be followed exhaustively
by such an analysis.

In the unlocked condition, the analysis indicates that one terminal (U or
D, depending on the sign of the frequency difference) will remain high as
long as the loop is out of lock and the other terminal switches back and
forth between levels in a manner determined by the frequency and phase
differences. One might consider that a sort of chopped beat-note appears
at the active terminal.

General characteristics of the beat-note are obscure; sequential state
analysis provides the fine details, but a broader overview remains hidden
in the details. A duty ratio of 50%, on the average, might be expected
intuitively. One fact is certain: the active terminal does not simply clamp
low as might be inferred from casual reading of the manufacturers’
literature. -

Note that the detector provides an average slew signal to the loop filter
when out of lock. The acquisition aid provided therefore is akin to
frequency sweeping and not discriminator aiding nor improved pull-in (see
Chapter 5).

If a signal transition is missing, or if an extra one appears, the PFD
interprets this event as a loss of lock and tries to reacquire lock. Since it
has its own memory, the effects of an extra (missing) transition propagate
for more than one cycle. If the loop is tracking with small error, a missing
transition will cause a very large error voltage to appear for a short time. It
is clear that the PFD is intolerant of missing or extra transitions; the
implications for operation in noise are considered presently.

6.4 LIMITERS

An introduction to limiters is needed before we examine the effects of
noise on phase-detector operation. We restrict our attention to an ideal,
bandpass, hard limiter. It is bandpass because a narrowband filter, centered
at the signal frequency, precedes it. A hard limiter has an input voltage v;
and output

v, =V, sgn(v,) (6.18)

which is a rectangular waveform that preserves the locations of the zero
crossings of the filtered input. A zonal filter may follow the limiter to
remove all harmonics and pass only the fundamental band.
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Limiter action can be analyzed for an input consisting of a sinusoidal
signal plus gaussian noise.®~*° Various interesting properties are revealed
by the analysis.

Output power from the limiter is constant, irrespective of input signal-
to-noise ratio. Since the output waveform is a square wave of constant
amplitude, this result is hardly surprising; the only effect of noise is to
cause jitter of the zero crossings of the square wave. However, the output
power in each zone (that is, harmonic band—fundamental, third
harmonic,* fifth harmonic, etc.) is constant irrespective of input SNR.

In the absence of noise, the fundamental output is a sine wave with
amplitude 4¥, /7. When noise is added to the input, the output signal
level must decrease because the total output signal plus noise is held
constant; noise suppresses the signal in a limiter. Signal suppression is
given the symbol a and is a function of the input signal-to-noise power
ratio p;, as measured in the passband of the input filter. We interpret « as
the ratio of the fundamental signal amplitude at finite p, to the amplitude
4V, /=, which obtains in the absence of noise. Signal suppression is given

by
=V [1(§)+1(§))e
z"/# (6.19)

*A symmetrical limiter does not produce even harmonics.
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where I, and I, are modified Bessel functions; the ratio a is plotted in
Figure 6.20. The approximate formula is more than accurate enough for
engineering calculations.

The gain K, of a multiplier-type phase detector is proportional to the
applied signal voltage. If the signal voltage is suppressed by a factor a,
then K, is reduced similarly. Therefore, loop gain and bandwidth are a
function of input signal-to-noise ratio if a limiter precedes the phase
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Figure 6.21 SNR performance of an ideal bandpass limiter. (@) Output versus input. (b)
Noise degradation. (SNR; =p,.)
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detector. Suppression is a major effect of a limiter and must be taken into
account in the loop calculations.

Output signal-to-noise ratio SNR,, in the fundamental zone is also very
interesting. Analyses show that the output SNR, is degraded by no more
than 1.05 dB at very low input SNRs and shows an improvement of 3 dB
at very large input SNRs! Its behavior is plotted in Figure 6.21.

These SNR, results are correct but cannot be applied uncritically to the
analysis of PLLs, contrary to early thinking. The 3-dB improvement was
the first item to be recognized as unrealistic; even though a limiter does
indeed improve SNR, by 3 dB for large input SNRs, that improvement
does not accrue in any way as reduced phase jitter in the PLL.

High-SNR improvement reflects the suppression of the AM component
of noise; the limiter has no influence on the PM component. Since PLL
jitter depends only on phase, not amplitude, the suppression of AM noise
does not improve loop tracking.

Moreover, jitter degradation at low input SNR is not as bad as 1.05 dB.
The limiter spreads the noise spectrum of the input® so that the output
spectrum of the fundamental zone has relatively increased density in the
tails and decreased density at the center of the spectrum. A narrowband
PLL passes mainly the central portion of the spectrum, so noise degrada-
tion is less than 1.05 dB. The true degradation depends on the input filter
shape, the post filter, and the PD configuration. Further discussion is
deferred to the next section.

6.5 NOISE EFFECTS ON PHASE DETECTORS

Noise has many adverse effects on operation of phase detectors. One arises
from the unavoidable DC offsets in the loop, particularly in the PD itself.
Offsets arise from uncompensated biases, unbalanced circuits, rectified
noise, incidental frequency discrimination, and a host of even more
esoteric sources. Offset is usually dependent on temperature, frequency,
SNR, and time.

If a limiter is used, the signal amplitude is suppressed at low input SNR.
If limiting is not used, the signal amplitude must be small so that signal
plus worst-case noise does not overload the PD. In either case, the
noise-caused offset increases with worsening SNR.

If the useful output of the PD is so small that it cannot overcome the
offset, tracking fails and the loop loses lock. This occurrence is dubbed
phase-detector threshold and is caused by unavoidable defects in the
circuits rather than any inherent property of a PLL. Nonetheless, any real
phase-detector circuit has such defects and they must be taken into
account in the design.
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Figure 6.22 Noise degradation of rectangular PD characteristic.

A poorly balanced phase detector might exhibit PD threshold for input
SNR of about —20 dB, while a well-designed circuit might tolerate —30
dB. Painstaking design efforts are needed to obtain satisfactory operation
below about —25 dB. Methods of controlling input SNR are given in
Chapter 8.

Another effect is the degeneration of a nonsinusoidal PD characteristic
to a sinusoidal characteristic in the presence of large input noise. Pouzet !
has proven that any periodic PD* characteristic loses its noisefree shape
and tends towards sinusoidal as the input SNR becomes small. Figure 6.22
shows an example for a rectangular characteristic, but similar changes®">?
occur for any of the other common shapes.

Shape of a PD characteristic at arbitrary SNR can be calculated by
Pouzet’s analysis. Physical insight is gained by realizing that the phase of
signal plus noise fluctuates randomly about the mean phase, which is that
of the signal alone. Useful DC output may be regarded as the fluctuating
input phase averaged over the nonlinear noisefree PD characteristic.

We represent the mean phase error by 8, and the noisefree PD character-
istic by C(8,). The phase fluctuation caused by the noise is designated 8
and has probability density p(#), a function of p,. The resultant phase of

*The sequential phase-frequency detector has an aperiodic characteristic; its degeneration in
large noise is unknown.
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signal plus noise is §, — 6. Average DC output of the phase detector is
ViBo)= [ C(0,~8)p(8)d (6.20)

where @ is taken modulo 2.

Expressed in this manner, the DC output V, is seen to be the convolu-
tion of the noisefree characteristic C(4,) by the input phase probability
density p(6). In the absence of noise, the phase density is a delta function
8(#) and the DC output reduces to V,(8,, cc). When noise is present, the
convolution causes the DC output to be a smeared and diminished version
of C(8,).

If p(@)=p(—0), as is true if the input noise is gaussian, and if C(4,)=
— C(—4,), then the null at §,=0 will not shift with varying input SNR. If
C(8,) is not odd-symmetric, then the null can shift—a highly unsatisfac-
tory occurrence. -

Not only does noise cause the PD characteristic to degenerate towards
sinusoidal, but the slope at the null is reduced; this is signal suppression
and is described explicitly in Section 6.4 for a sinusoidal PD preceded by a
limiter. To find suppression for other characteristics, one differentiates
(6.20) with respect to #, and evaluates the integral at §, =0. From Pouzet’s
paper one can infer that suppression in any ordinary PD will not deviate
radically from that found for the sinusoidal PD.

The various piecewise-linear characteristics all require that a limiter
precede the phase detector. A triangular characteristic is obtained if the
square-wave limiter output is unfiltered and is used to drive a switching
phase detector. A sawtooth characteristic is obtained if the unfiltered
limiter output drives a suitable sequential PD, while a rectangular char-
acteristic results if the unfiltered limiter output is sampled synchronously.

The characteristic is sinusoidal if either input to a PD is sinusoidal. This
can occur if the input bandpass signal is not limited, if the limiter output is
filtered to remove harmonics, or if the VCO drive to the PD is sinusoidal.
All three alternatives yield identical performance.

We state earlier that a limiter degrades signal-to-noise ratio for small p;.
Phase jitter of the PLL must also be worsened, but by an amount other
than the total SNR loss. Jitter increase depends on the shapes of the PD
characteristic and the input bandpass filter. Pouzet has calculated the
increase for various conditions; his results are summarized in Table 6.1.
The numbers shown represent the asymptotic increase of jitter for very low
input SNR.

Very little loss is incurred with a sinusoidal PD or even a triangular or
rectangular PD, especially if the input filter is single tuned. (It becomes
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Table 6.1 PLL Jitter Increase Due to Limiter (For p,<1)

Bandpass Filter

PD Type Single-Tuned Rectangular

(dB) (dB)
Sinusoidal 0 0
(No limiter)
Sinusoidal 0.25 0.65
(With limiter)
Triangular 03 0.7
Rectangular 0.36 0.97
Sawtooth 29 29

apparent in Chapter 8 that single-tuned filters are preferable for other
reasons as well.) However, there is a severe loss with a sawtooth character-
istic. Since the actual characteristic degenerates to sinusoidal anyhow, it is
difficult to justify the use of a sawtooth PD if the input signal is normally
immersed in the noise. Similar results ought to be anticipated from any
other extended PD characteristic.

As a final topic, we reconsider sequential phase detectors. It is explained
earlier that these devices, and most particularly the phase-frequency detec-
tor, can be intolerant of extra or missing zero crossings. Large noise can
induce extra or missing crossings; in general, the number of crossings
depends on the noise spectrum and the signal-to-noise ratio.3® If the
number of crossings per second departs from the signal frequency, the
phase-frequency detector acts as though the loop is out of lock and tries to
slew the VCO frequency to bring the loop back to “lock.” At the very least,
the wrong number of crossings will cause an additional bias of the PD
output and, if the number of crossings is sufficiently wrong, tracking will
fail entirely. A sequential PD should be used in a noisy environment only
with great caution and for well-justified reasons.

This problem is mitigated if the noise spectrum is shaped so that the rate
of noise crossings is equal to the signal frequency. A spectrum with
arithmetic symmetry about the signal frequency has the desired property.

6.6 DIGITAL IMPLEMENTATIONS

Despite the occasional appearance of digital circuits, particularly in
sequential phase detectors, all the foregoing material has dealt with analog
PLLs. To be classified as digital, a loop ought to have at least these two
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properties:

1. Output phase is generated in discrete increments, not as a continuous
function.
2. Error signal is generated as a digital number, not as an analog voltage.

Many loops obeying these criteria have been built; a sampling of the
literature may be found in Refs. 34-40.

Digital PLLs come in a great variety of forms and can be applied where
analog loops are difficult or impossible. Methods of analysis differ widely
from the analog methods presented in this book. When the subject ma-
tures, another book of this size could probably be written on digital
implementations alone.

Rather than attempt to explain digital loops in any detail, we restrict the
presentation here to a couple of brief examples. Much of the underlying
analysis of digital loops remains to be performed. h

Figure 6.23 is a block diagram of a rather complex digital PLL; the
actual digital operations might be performed by a computer. Operation is
as follows:

o Input is sampled at a fixed sampling rate, not generally synchronous
with the signal frequency. To avoid aliasing*! at this point, the sampling
rate should exceed double the bandwidth of the input.

o Samples are quantized and converted into digital numbers in the analog-
to-digital convertor (ADC).

Sampler

Signal / | apc : Multiplier : Ref(i:lt:(r;we
] A ﬂ

Sinewave (
routine

]

Timing

Figure 623 Complicated digital PLL.
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« Digital signal samples are mutiplied by digital samples of a sine wave of
computed phase. Care must be taken to avoid trouble from aliasing of
ripple. Multiplier output is equivalent to PD output from an analog PLL.

o A digital filter takes the place of the analog filters discussed heretofore
and also the integrator associated with the analog VCO.

« Output of the digital filter is the phase of the digital “VCO.” Note that
the familiar analog components tend to merge with one another in a
digital implementation.

.« Output of the “VCO” is computed in a sine wave routine and is used to

multiply the digitized input samples.

The foregoing example is rather complicated and cannot be imple-
mented casually. It has the advantage that the incoming signal can be
recorded in digital form, on tape for example, and then processed later at a
more convenient time and place. Imperfections of tape recorders (primarily
flutter) often obstruct recording and playback of analog signals.

A second example, by contrast, is extremely simple, as seen in Figure
6.24. It consists only of a sampler, a counter, and a fixed-rate clock
oscillator. The sampler operates virtually synchronously with the input
signal and merely samples the input polarity. From previous discussion, we
recognize that the PD characteristic is rectangular and the loop works in a
bang-bang mode. Again, sampling rate must be sufficient to avoid aliasing.

Input frequency is f, oscillator frequency is f,, and the counter counts
down the oscillator frequency to f,/N, in the absence of loop feedback.
The loop is designed for f, /N =f.

The counter is arranged so that its count is advanced or “bumped” by
one increment if the sample is positive and retarded by one increment if

Fixed
oscillator

+ Retard

Signal 1 sampler + N

— Advance

A

Sampling pulses
Figure 6.24 Simple digital PLL.
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the sample is negative. Each time the counter runs down to zero, it
generates a sampling pulse. Phase at the counter output changes in
increments of 1/N cycle. (Bump increments within the counter can be
smaller.*®) Output phase has been quantized, thereby creating a source of
phase jitter not present in an analog loop.

The simplified digital loop can be shown to be similar to a nonlinear,
first-order, analog PLL. The illustrated method of shifting output phase is
very popular among digital PLLs and is variously called a digital phase
shifter or an incremental phase shifter. Simple digital PLLs of this sort are
well suited for realization as special-purpose digital hardware.
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Chapter Seven

Optimization of Loop
Performance

Two general principles may be abstracted from the preceding chapters:

1. To minimize output phase jitter due to external noise.the loop band-
width should be made as narrow as possible.

2. To minimize transient error due to signal modulation, to minimize
output jitter due to internal oscillator noise, or to obtain best tracking
and acquisition properties, the loop bandwidth should be made as wide
as possible.

These principles are directly opposed to one another; improvement in
one type of performance can come only at the expense of degrading the
other, and therefore some compromise between the two is always neces-
sary. Almost always there is a compromise that is “best” in some sense;
this compromise is called “optimum.”

It must be recognized that there is no unique optimum result that applies
under all conditions. On the contrary, there are many possible results,
depending on the criteria of performance, the nature of the input signal,
and any restrictions placed on loop configuration.

The best-known optimization is that derived by Jaffe and Rechtin'
following the Wiener method.* Their criterion of loop performance is the
mean-square loop error

2= 92 +\2E2 (7.1)
where 0_"2‘J is the phase jitter due to noise (3.18), and E2 is a measure of the

*Details of the Wiener method are far beyond the scope of this book. For an extensive
exposition of the subject, see Y. W. Lee, Statistical Theory of Communication, Wiley, New
York, 1960, Chaps. 14-17.
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total transient error:
E3= [ “02(1)dt (12)
(i

where 6,() is the instantaneous phase error in the loop due to transients.
The quantity A is a Lagrangian multiplier that establishes the relative
proportions of noise and transient error that are to be permitted. [Notice
that A2 has dimensions of (time)~'—that is, frequency.]

In the Wiener optimization method the known quantities are the spectra
of the signal and noise, whereas the criterion of performance is the
mean-square error 32. The result of the method is a description of an
“optimum” filter whose output provides a minimum mean-square error.

Jaffe and Rechtin have assumed white noise and three different types of
modulation at the input: phase step, frequency step, and frequency ramp.
For each condition they arrive at an optimum loop transfer function H(s)
and the corresponding transfer function for the loop filter F(s). Results are
summarized in Table 7.1.

For the three different types of input the optimum filter types are first-,
second-, and third-order loops, respectively; the Wiener method specifies
optimum filter shape as well as bandwidth. In the optimum second-order
loop (of greatest interest because of its widespread usage) damping factor
is {=0.707. The optimum third-order loop has complex zeros, which are
not usually convenient to mechanize nor well-suited for reliable acquisi-
tion.

Note that optimum bandwidth is a function of the input signal-to-noise
ratio. To minimize the total error the loop should be capable of measuring

Table 7.1 Wiener— Optimized Loops

Optimum
Input Optimum H(s) F(s) Bandwidth*
Phase Step
«, 1 wy _ 2P_‘ 172
8(H=A8 SFo, K, w,—Ao}\( Wo)
Frequency step
2 2, 2P \1/2
8(t) =Bt WE+V2 @, W2+ V2 w,s w§=Aw}\( A )
W2+ V2 w,s+52 K, Kys W,
Frequency ramp
0.0)= Adr? W3+ 2035 + 20,82 @3+ 2035 + 20552 ol AwA( 2P, )‘/ 2
! 2 03 +203s + 20,52+ 53 K, K,s? ? W,

* P, =input signal power; W,=input noise spectral density (one-sided).
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SNR and readjusting its bandwidth for optimum performance. To perform
this optimum adaptation exactly would be a complex and difficult task; as
far as is known, there has never been a serious attempt at perfect adapta-
tion.

One reason for the lack of effort is that Jaffe and Rechtin discovered
that near-optimum adaptation may be achieved by very simple means,
namely, use of a bandpass limiter before the phase detector. In Chapter 6,
it is shown that the presence of a limiter causes loop bandwidth and
damping to vary as a function of input SNR. This variation is not
optimum (damping should remain constant, and the variation of w, should
have a different form), but it is sufficiently close to optimum to be useful.
Limiters are widely used in sensitive phaselock receivers.*

It is of interest to observe that the definition of E} given here is such
that steady-state error must be zero. If this were not true, E} would be
infinite. If some other definition of transient error were to be used (e.g.,
peak error), it is probable that different optimum results would be ob-
tained.

The Wiener analysis is strictly applicable only to linear systems; to apply
it to the phaselock loop requires that the linear approximation be made.
Furthermore, Jaffe and Rechtin’s exact results are applicable only if noise
is white, when the input is one of the three specific types listed here, and
when the error criterion is that given in (7.1); all this is to say that we have
so far shown only an optimum (or rather three optimum loops) and not the
optimum loop, even in the restricted category of Wiener filters.

In practice, when narrow bandwidth is needed, a second-order loop is
the type most commonly used. A first-order loop necessitates a major
sacrifice of hold-in range and has poor phase-slope properties, whereas a
third-order loop is more complicated and harder to analyze and can
become unstable if not treated properly. (However, both first- and third-
order loops have their uses in which they substantially outperform the
second-order loop.) For the remainder of this chapter we restrict ourselves
to the second-order loop and give examples of the different optimizations
that are possible.

Let us suppose that the natural frequency is determined by some
well-defined dynamic feature of the input signal. For example, a satellite
signal exhibits a very definite rate of change of Doppler frequency; if a
limit is placed on the permissible acceleration error, w, is immediately

*1t should be possible to obtain similar performance from wideband (noncoherent) AGC, for
the same phenomenon of signal suppression occurs. There is a slight advantage in favor of
wideband AGC because the limiter causes SNR degradation and the AGC does not.
Coherent AGC, on the other hand, maintains signal level constant at the phase detector and
therefore has no adaptive bandwidth properties.
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fixed. Given this value of w,, what value of damping factor results in the
least phase jitter due to noise? The answer, referring to Figure 3.3, is
obviously {=0.5, for this is the value that minimizes noise bandwidth.

For another possibility, let us suppose that noise bandwidth is fixed by,
say, restrictions on the maximum allowable phase noise jitter. What value
of damping will permit the largest frequency step Aw without the loop
being pulled out of lock, even temporarily? In Table 3.1 the noise band-
width is shown to be

n-3{evd)
and (4.15) approximates pull-out frequency as

Awpo=1.8w,({+1)
Elimination of w, between these equations yields

_ 36B,(§+1)
Ay

By differentiating Awp with respect to {, setting the derivative equal to
zero, and solving, we obtain {=0.81 as the damping that maximizes
pull-out frequency. This maximum value is Awpo~25.82B, rad/sec. Pull-
out frequency is 5.79B; at {=0.707, 540B, at {=0.5, and 5.76B, at
${=1.0, so that it is hardly worthwhile to bother to optimize pull-out as
such.

This finding tends to illustrate a common property of optima: the
performance criterion quantity tends to change very slowly near the
optimum, so that there is no need to adjust the loop to attain exactly the
best performance. The extremum is usually quite broad.

These examples, plus others gleaned from the preceding chapters, are
summarized in Table 7.2.

Hoffman? has derived another optimization that appears to be of value.
A phaselock receiver is often required to track an accelerating transmitter
(either true acceleration of a missile or apparent acceleration of a satellite)
with a second-order loop. What acceleration error*—and, therefore, what
loop bandwidth—should be used to achieve “optimum” performance?

First it is necessary to arrive at a criterion of performance. Equations 7.1
and 7.2 cannot be applied because the nonzero, steady-state acceleration

(13)

*If acceleration error is a serious problem, consideration should be given to a third-order loop
to reduce the steady-state error to zero.
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Table 7.2 Optimization of Damping in Second-Order Loops

Criterion Constraint Parameter {
Minimize noise bandwidth

B, (Table 3.1) w, fixed 0.5
Minimize pull-in time

T, (5.10) B, fixed 0.707
Maximize sweep rate B, fixed 0.7-1.0
Maximize pull-out B, fixed 0.81
Minimize flicker jitter B, fixed 1.14

error would lead to an infinite integrated-square transient error. Hoffman
used noise threshold as his criterion. His definition of threshold is an
empirical relation taken from Martin® according to which at threshold

8,+00,,= (7.9)

ST |

where 6, is the acceleration error (4.7), 8,, is the rms noise jitter in the loop
(3.18), and ¢ is a confidence factor that takes account of the fact that peak
noise considerably exceeds the rms value. Equation 7.4 states that
threshold error is exceeded if the sum of the individual errors exceeds 90°.
The quantity to be optimized is the input signal power P,. From the
discussion of behavior of 8,, in Chapter 3 and (3.20), an expression of

7=t (7.5)
" = SNR, '

may be deduced. (For SNR, >10, £2=0.5; for SNR, =1, £2~1. The
factor £ is itself a function of SNR,, but we regard it here as essentially
constant.)

From (3.21), SNR, = P, /2B, W,, where W, is the input noise density.
Equation 7.4 may now be written as

(1.6)

s

w. 1/2

Using Table 3.1 and (4.7), we may eliminate B, from (7.6), leaving

Aol - o

0,+af
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Solving for signal power required at threshold yields

242 A 1
R e

When P, is minimized with respect to ,, the surprising result is that
6,=7/10 (i.e., 18°), independent of o, & {, or W, This exact result
depends on two approximations: that (7.4) is the definition of threshold
and that £ is constant. An exact analysis, if one should ever be discovered,
would probably yield a somewhat different result, but presumably not very
different.

Calculation of the minimum P, still requires that a confidence factor o
be specified and a suitable value for { be deduced. The latter, which might
require an iterative process, is complicated by the fact that the functional
dependence of £ on SNR, is not known within limits closer than about *1
dB. Also, refer to Chapter 3 for a discussion of fundamental difficulties in
defining §,,. .

From (7.8) it may be seen that P, can also be minimized with respect to
damping factor; the optimum value is clearly {=0.5. Hoffman arbitrarily
uses {=0.707 and thereby obtains a threshold power that is higher than
optimum by 0.26 dB.

Hoffman’s approach suggests another possible optimization to be used
when acceleration error in a second-order loop must be considered. We
suppose that SNR, is reasonably large (>10) and let the criterion of
performance be

2_p2 2_(A‘b)2 ll— i
2=6;+40, = +
a no w: Ps

o) ‘ B, W,
16 B} Py
which is to be minimized with respect to B, and {. It is immediately
evident that the optimum damping is { =0.5 and that the usual differentia-
tion will yield

_ P(A0)
Y7

!

B}

(7.10)

for optimum loop-noise bandwidth.
We end the chapter with one more example that may be useful. Let us
suppose that the signal transmitter is essentially stationary with respect to
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the receiver so that dynamic phase errors may be neglected: a situation
that could occur in tracking a synchronous satellite. The dominant dis-
turbances are from additive white noise (3.18).and frequency flicker in the
VCO (6.6). We seek the loop design that minimizes total phase error
fluctuation

32=92 + 6?2 (7.11)

Setting { =1.14 minimizes the flicker contribution and gives

W,B N
$2= Lk +3.1x107220% (1.12)
s BL

Optimum bandwith is found to be

Nl("oPs
w.

4

B}=62x10"2 HZ? (7.13)

The following points summarize this chapter:

1. There is no uniquely optimum loop, nor is there a unique optimization
procedure.

2. A criterion of performance must be defined. This criterion depends on
the conditions of operation of the loop and the requirements placed on
it. From the examples given here it may be seen that no general rule can
be used in establishing the criterion.

3. Once an optimum is found, it is not usually necessary to adjust the loop
parameters exactly to their optimum values. It is common for an
extremum to be quite broad: in fact, to such an extent that moderate
departure from optimum parameters has little adverse effect on loop
performance.
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Chapter Eight

Phaselock Receivers
and Transponders

A simplified block diagram of a superheterodyne phaselocked receiver is
shown in Figure 8.1. The incoming signal at frequency f, is mixed with a
heterodyning local injection at frequency f, derived from a harmonic of the
VCO at frequency f,/ N. Intermediate frequency (IF) is f;= fl —for fH—fis
depending on whether low-side or high-side injection is used.

The IF amplifier may be entirely conventional, but its filtering and
amplifying properties are shown in separate boxes here. A fixed oscillator
at frequency f, is compared against IF amplifier output in a phase
detector; the loop is closed through the loop filter, VCO, frequency
multiplier, and mixer. In the locked condition it is necessary that f;=f,;
the input frequency therefore is f,=f,+f, or f,—f, for low-side or high-
side injection, respectively.

Simple phaselock loops of the kind treated in earlier chapters are often
known as short loops, while the more complex loop of Figure 8.1 is called a
long loop, for obvious reasons.

Presence of the new elements—particularly the frequency multiplier and
IF filter—can have a substantial effect on the performance and analysis of
the loop. In preceding chapters gain of the VCO (K, rad/sec-V) has been
considered a property of the VCO itself, not including any subsequent
multiplications. When a multiplier is used, the deviation of the VCO is
increased by the multiplying factor N before injection into the mixer.
Effective VCO gain is therefore really NX,. When a multiplier is used, K,
must be replaced by NK, wherever it appears in any equation.

8.1 EFFECTS OF IF FILTER

Inclusion of the IF filter can have much more far-reaching effects. We
discuss phase-slope, noise, analysis of the filter, loop stability, and possibil-
ity of false locks.

144




Effects of IF Filter 145

h Mixer £} Biafgass | IF amplifier F(s)
1
f
Frequency LN f-\
multiplier \'\_J/
x N VvCOo
Figure 8.1 Phaselock receiver.
Phase-Slope

A narrowband IF filter necessarily has a steep phase-slope. If the
frequency of the signal passing through the filter changes, the phase shift
of the signal also changes. Such phase variations cause an error in the
interpretation of any information being carried by signal phase; Doppler
shift is an example.

In the receiver shown in Figure 8.1 the intermediate frequency in the
locked-loop condition is constrained to be exactly equal to the frequency
of the fixed oscillator that feeds the phase detector. For this reason,
although the IF filter may itself have a steep phase-slope, the IF signal
suffers no phase change as the input RF signal frequency changes.

In other mechanizations of phaselock receivers no fixed oscillator is
used. Instead, a low harmonic of the VCO is injected into the phase
detector, and the intermediate frequency is variable—although not nearly
so much as the input frequency. Under these circumstances the signal
suffers some phase change; the tolerable amount of change must be taken
into account in the receiver design.

Nolse

The effect of the IF amplifier on noise is best treated by means of an
example. Let us suppose a signal could arise anywhere within a 500-kHz
range and that the loop is designed for B, =25 Hz (2B, =50 Hz). In a
simple loop, not including an IF filter, the input bandwidth to the loop
would have to be at least 500 kHz merely to pass the input signal.
Signal-to-noise ratio in the 500-kHz bandwidth would be 40 dB lower than
SNR in the loop.
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At nominal loop threshold of 0 dB the input SNR would be —40 dB.
However, threshold of typical phase detectors is on the order of —30 dB,
and conservative design would have them operate at no worse than —20
dB. With the wide input bandwidth, imperfections of the phase detector
will limit obtainable performance, whereas properly designed equipment
should be limited by inherent properties of a loop.

The typical solution to this problem is to utilize an IF bandpass filter
that is much narrower than the required full input bandwidth. If, for
example, an IF passband of 2.5 kHz were used, the SNR at the input to
the phase detector would be only 17 dB below loop SNR, and at nominal
loop threshold the phase detector would be some 13 dB above its
threshold.

It should be evident that as soon as a reasonable margin against phase
detector threshold has been obtained there is little to be gained by
narrowing the IF bandwidth any further. Not only is a narrower filter
more costly, but it can make the loop oscillate. The problem of loop
stability is discussed in some detail in the following paragraphs.

IF Filter Analysis

It is first necessary to determine a method of bringing the IF bandpass
filter into the loop analysis. To this end, let us consider the hypothetical
test setup of Figure 8.2. We wish to determine the effect of the filter on the
modulation of the test signal. Specifically, the amplitude and phase of
the modulation output compared with the modulation input, as a function
of modulation frequency, are desired. The result, which can be considered
as a modulation transfer function denoted F,(s), is stated but not proved.
If (1) the filter has a narrow, symmetrical passband, (2) the signal genera-
tor is tuned to the center frequency of the filter, and (3) the modulation
deviation is very small, the approximate modulation transfer function is

PM Signal Filter Phase
generator under test demodulator

Amplitude
@ and phase
test set
Modulating
signal
Wm

Figure 82 Measurement of modulation transfer function.
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obtained by translating the actual filter transfer function to zero frequency
and discarding the response at negative frequencies. This translation is
shown in Figure 8.3.

Now let us suppose the open-loop response of the loop of Figure 8.1
were to be measured (at least conceptually, if not in actual practice) by
opening the loop somewhere in its low-frequency portion and applying a
low-frequency sinusoidal test signal. Total open-loop response would con-
sist of the product of the normal response of the loop G(s) and the
modulation transfer function of the IF filter, or F,,(s)G(s).

Stability

If the IF filter response (and therefore the modulation transfer function)
is known analytically, the effect on loop response can be studied by means
of a root-locus plot. Perhaps the most important filter from a practical
viewpoint is a single-tuned circuit with 3-dB bandwidth of-w, rad/sec. The
equivalent modulation transfer function has a single pole at s= —wg/2;
the analysis to follow applies equally well to a short loop with an extra pole
at the same location.

A root-locus plot for a second-order loop is shown in Figure 2.6. The
closed-loop poles first trace out a circle for small to moderate loop gain
and then remain on the negative real axis as gain increases further. One

Y]
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<
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Figure 83 Modulation transfer characteristics of bandpass filter: () bandpass transfer
function; (b) equivalent modulation transfer function.
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root approaches infinity, while the other root approaches the open-loop
zero at s=—1/7,.

It proves to be convenient to normalize the gain as K7, and to define
b=r1,wy/2 as the normalized location of the extra pole.

The extra pole is on the negative real axis. We consider, at first, that it is
far out—the IF filter has large bandwidth as compared to the PLL—so b
is large. As loop gain increases, the extra pole migrates inward and
eventually meets the outer PLL pole moving outward. As gain increases
further, these two poles become complex with their locus asymptotic to a
vertical line at st,= —0.5(b— 1). (These results are obtained by standard
methods of root-locus analysis that are not detailed here.)
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Figure 84 Root loci of nominal second-order loop with additional lowpass pole at s=
— b/7,. (Tick marks indicate values of K7,.)
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Representative loci are shown in Figures 8.4 and 8.5. If b is large, the
extra pole does not have a great effect on the loop dynamics. Extremely
large gain can lead to high-frequency ringing of the transient response, but
normal values of gain produce a well-behaved loop.

If b is small, there is substantial change in performance. For b less than
9, the poles are underdamped for all values of gain; the extra pole splits
open the basic circle as shown in Figure 8.5. The loop goes unstable if
b<l.

If a second IF pole were added to the loop, the complex asymptotes of
the locus would be at +60° angles to the real axis. Consequently, the locus
eventually enters the right half plane and the loop oscillates for large
enough gain.

Behavior of a third-order loop should be essentially similar to that of a
second-order loop. An extra pole at s= —wy /2 opens up the closed locus,
and the complex asymptotes are along a vertical line located at

jwT,

Figure 8.5 Root loci (expanded scale).
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where 7, and 7, are the time constants of the lead terms of F(s), assuming
real zeros.

Oftentimes the response of the IF filter is not known analytically and
only measured data are available, in which case a Bode plot can be used to
analyze stability.

To provide an example, Figure 8.6 shows a response scaled from actual
measurements on a crystal filter. The equivalent modulation transfer
response is shown in Figure 8.7 along with the Bode plot of an opened
second-order loop. Bandwidth of the IF filter (3 dB) is 240 rad/sec,
whereas the loop has been arbitrarily chosen with 1/7,=10 rad/sec. Loop
gain has been selected so that {=0.707. Therefore, w,=V2 /1,=14.1
rad/sec. (In terms of cycle bandwidth B, =7.5 Hz, and full IF bandwidth
=38 Hz.)

The Bode plot shows a phase margin of 30° and a gain margin of 6 dB.
Although the loop is stable, its response will surely vary from that expected
in the absence of the IF filter. If loop gain is fixed (by AGC or limiter) so
that it cannot exceed the value used for the example, the stability margins
are probably adequate but not ample. However, if the gain of the example
is a threshold gain and increases of gain are to be expected with improved
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Figure 8.6 Example of frequency response of crystal filter.
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Figure 8.7 Bode plot of loop containing crystal IF filter.

signals, the gain margin is completely inadequate. If the gain doubles, the
loop will oscillate. A more conservative design would use a substantially
wider IF filter bandwidth.

Faise Locks

Even if the loop is stable, a narrow IF filter can cause acquisition
difficulties in the form of false locks. Frequency search halts and the loop
appears to lock at a frequency that bears no obvious relation to the input
frequency. Until the source of false lock is recognized, the phenomenon
can be a disturbing and mystifying experience.

It is shown shortly that false lock is an aberration of the pull-in
mechanism and that it, or the related problem of frequency pushing, is
almost inevitable in some degree in a PLL that includes extra filtering.
Existence of false lock is another reason not to rely on pull-in as the
frequency-acquisition method.

Other investigations of false lock have been performed by Develet',
Johnson,? and Tausworthe.> The approximate analysis presented here
follows a slightly different approach.
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Let us consider an unlocked loop with input ¥sinw;¢ and VCO output
V, cosw,t. Phase detector output is a beat-note at a frequency Aw,=w; —w,.
If Aw, is sufficiently larger than the loop gain K, the beat-note will be
nearly sinusoidal and take the form K, sinAw;z.

In passing through the loop, the beat-note is attenuated by a factor
7(Aw,) and phase shifted by an angle y(Aw,). Frequency-modulating volt-
age applied to the VCO is nK,sin(Aw;t+y), so the VCO output is
(approximately)

K K
v,(1)=V, cos[wot— 1Tﬁdcos(Awit+ ¥) 8.1)

The spectrum (Figure 5.6) of v,(#) consists of a carrier line at w, and an
infinite series of sideband lines at frequencies w, + kAw,. The line for k=1
is at a frequency of w, + (w; — w,) =w;, which is exactly the input frequency.
Using a Fourier-series analysis, the VCO component at «;-is found to be

° Aw,

1

VJ,[ M]sin(w,-t+¢) 82)

where J,(+) is the first-order Bessel function of the first kind.
When this line is multiplied, in the phase detector, against the input
signal ¥, sinw;t, the resulting DC component is

K KK,
V,,=%V,V,,K,,,J,[" :d}c0s¢=K¢I,[nA:’_d]cos¢ (8.3)

]

where K, is as defined in Chapter 3.
In the standard second-order loop and for large enough Aw; we have
n=1,/7, and y=0. Since K, K7,/ 7 =K, (8.3) becomes

V=K, [ - ] (84)

{H

Equation 8.4 is an approximation to the pull-in voltage v, of (5.6); the two
expressions agree asymptotically for large frequency difference and dis-
agree by less than 10% if |Aw,|>2K.

Now let us suppose that additional filtering is added into the standard
loop. It is very difficult to avoid adding at least one extra pole for ripple
filtering, the operational amplifier in an active filter contributes at least
one more pole, and a third pole in the VCO control line is virtually
inescapable. If a long loop is used, the filters in the IF amplifier contribute
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additional equivalent lowpass poles. Up to a dozen extra poles are not at

all unusual.
We define a relative attenuation coefficient

K, K,
=2 .5
M= (85)
In the standard loop, n'=1: departure of %' from unity describes the
magnitude response of any additional filtering within a physical loop.

Accordingly, (8.4) is modified to

’

V,= K,,,Jl[ % ] cosy (8.6)

The pull-in voltage of the standard loop (8.4) is multiplied by the cosine of
the added phase shift. For K/Aw;<1 (the only region of validity for the
approximations of this analysis) the Bessel function is approximated by

K| 10K
J'[ Aw; ]_2( Aw,-) (87)

so the pull-in voltage is further reduced by a factor 7'
A suitable approximation for pull-in voltage, including the effects of
additional filtering, is

7" K,K
Vo~ 2A:. cosy (8.8)

If " and ¢ can be found, the pull-in and false-lock properties of the loop
may be calculated from (8.8).

(Strictly speaking, the abbreviated analysis presented above applies
directly only to a short loop. When the analysis is modified to take account
of a long loop, the DC output of the PD can be estimated simply by
cascading the equivalent modulation transfer function F,(s) with the
actual loop filter F(s) and calculating a new 71’ and ), provided that the
bandpass amplifier is linear. If the bandpass circuit contains a limiter,
the bandpass contribution to ¢ is unaffected by the nonlinearity, but the
contribution to n is more complicated. At large SNR the limiter tends to
wipe off any influence on 5 contributed by bandpass networks preceding
the limiter.)
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Figure 8.8 Loop pull-in characteristics showing effect of excess phase shift: (a) standard
loop only; (b) excess phase ¥ =(7/3)Aw;/ K).

As an example, we let phase be y=(7/3)Aw;/K) and n'=1, a fair
approximation to the IF filter and PLL shown in Figures 8.6 and 8.7.
Using this expression for ¢, the DC phase-detector output is plotted in
Figure 8.8b.

Immediately evident in the plot are nulls of the pull-in voltage corre-
sponding to the zeros of cos ¥, nulls that do not occur in the standard loop
(Figure 8.8a). For small Aw,, the polarity of ¥, is unchanged from that of
the standard loop, so pull-in occurs correctly, albeit more weakly because
of the reduced amplitude of V.

However, if the frequency difference is somewhat outside the first null
the polarity of ¥, is reversed from standard and pull-in no longer proceeds
normally. Instead, the reversed polarity causes the loop to push out away
from the correct lock frequency. Pushing continues until the frequency
difference increases to coincide with the second null, which is a stable
tracking point of false lock. Phaselock is certainly not achieved at the
false-lock null, but the loop is unable to move itself away from false lock.
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A false lock can be very confusing to an operator. Output from the loop
phase detector will have zero DC component, whereas the quadrature PD
(correlation detector) will show a DC output, indicating that lock has been
achieved. If coherent AGC is used, the magnitude of the quad PD output
is likely to be correct for indicating lock. An oscilloscope connected to the
PD output will show the presence of a beat-note, but onlyif noise is small
enough. In fact, it is possible that a false lock may go completely unrecog-
nized—until post-fight data reduction comes up with some ridiculous
Doppler shift.

Obviously, false locks should be avoided. One method of avoidance is to
use an IF filter of sufficient bandwidth. Another is to recognize that phase
shift, for a given bandwidth, increases as the number of resonant circuits in
the filter increases. If only a single-tuned circuit is used, maximum phase
shift is 90° and there is no finite spurious null. With two tanks (two poles
in the equivalent low pass modulation transfer function) the maximum
phase shift is 180° and the only finite spurious nulls are unstable.

Rough sketches of pull-in voltage for various numbers of poles are
shown in Figure 8.9. Actual false locks are encountered only if there are
four or more poles in the lowpass equivalent filter. Numerous poles are
found in filters with very steep skirts—the so-called rectangular filters.
Evidently such filters are not entirely suitable for use in a phaselock
receiver.

A conservative design would utilize only one or two poles. (A single
quartz crystal conveniently provides one equivalent pole.) Actually, there
are certain to be other band-restricting elements within the loop, and there
will always be more excess phase shift than is provided by the recognizable
poles. The main IF filtering should be kept simple to provide some margin
against these secondary effects, not all of which are easily predicted. -

The generated DC voltage becomes very small as |Aw,;| becomes large.
As a result the effective phase-detector gain also becomes small. This trend
is reinforced by the selectivity of the IF filter, which reduces the signal
amplitude if Aw;#0. With reduced gain, the loop bandwidth is also
smaller.

It is demonstrated in Chapter 4 that the maximum trackable frequency
sweep rate depends on bandwidth; a narrowband loop can track only a
slowly varying frequency. Therefore, if acquisition is performed by sweep
techniques, it may be possible to sweep so rapidly that the false locks will
be unable to hold, but, nevertheless, slowly enough to succeed in acquiring
correct lock. This possibility is complicated by any limiters or AGC that
may be used and by IF signal-to-noise ratio encountered.

The foregoing analysis takes into account only the normal signal path
through the loop. Unfortunately, bitter experience has shown that insidious
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Aw;

Figure 89 Loop pull-in characteristics. Numerals indicate equivalent number of extra
lowpass poles in loop.

paths often contribute more to false lock than does the obvious main path.
Beat-note coupling through an inadequately isolated power supply line is a
particular offender.

Sideband Locks

Another improper lock is possible if the input signal is modulated by a
periodic message waveform. This causes discrete sidebands to appear
about the carrier frequency and the PLL may be able to lock to a sideband
instead of the carrier. Sideband lock is particularly likely if the loop
bandwidth is less than the sideband-to-carrier spacing.

Sideband lock is a normal attribute of a PLL and does not arise from a
departure from normal, as does false lock. (There is no relation between
sideband lock and false lock other than the fact that both are unwanted.)




Automatic Gain Control 157

It must be guarded against whenever there is a possibility of periodically
modulated signals.

Anti-sideband-lock methods vary depending on the application; no
generally valid remedy can be prescribed. Some workers*® have used
discriminator-aided acquisition to obtain correct frequency before phase-
locking; this method is feasible only when the input SNR is reasonably
large in the bandwidth of the discriminator. Some applications permit the
modulation to be shut off until phase lock has been acquired. In other
circumstances the carrier frequency is known with sufficient accuracy that
the VCO can be set or swept within a range that includes the carrier but
not the sidebands. Still other conditions might require a complicated,
real-time analysis of the received signal to determine the correct lock line.

If the signal is amplitude modulated, a limiter removes the offending
sidebands, leaving only the carrier for the loop to acquire.

8.2 AUTOMATIC GAIN CONTROL

A receiver designer almost always includes provisions for automatic gain
control (AGC) in a receiver. Among the various reasons for such a practice
are the following:

. To control phaselock loop bandwidth.

. To avoid overload.

. To provide an indicator of signal level.

. To aid in providing a reliable indicator of lock.

. To standardize signal level in auxiliary channels (e.g., AM demodula-
tors or antenna angle-tracking circuits).

VbW N

The first reason is valid only in the absence of a limiter. If, as is
common, a limiter is employed, it is the limiter that controls loop band-
width, and the AGC (in most configurations) has no effect.

Avoidance of overload is probably the most important reason and is
considered in some detail in this section.

Providing signal level indication may seem to be a trivial purpose, but a
level indication is often needed, and measurement of AGC control voltage
is a convenient way of obtaining it.

A loop lock indication is frequently needed for proper system operation,
and use of AGC may be needed to obtain a reliable indication; the reason
for this statement is examined briefly in later paragraphs.

We distinguish between “coherent” and “incoherent” (also called
“wideband”) AGC. The incoherent automatic gain control is derived
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conventionally by rectifying the output of an IF amplifier. Rectified
voltage is proportional to the total output of the amplifier—the sum of
signal, noise, and interference (if any). If noise exceeds the signal, as it may
in typical phaselocked receivers, the rectified voltage is determined pri-
marily by the noise.

Control voltage for coherent automatic gain control is obtained from a
quadrature phase detector (QPD, see Figure 5.15) in which the DC
component is proportional to signal alone. Noise causes fluctuations in the
control voltage but contributes a negligible DC component. By suitable
filtering after the phase detector the fluctuations can be reduced to any
arbitrarily small level. As a consequence, the control voltage is propor-
tional only to the signal and is independent of noise, even if noise at the
PD input greatly exceeds the signal.

Overload

To explain the overload problem it is useful to have a hypothetical,
though typical, receiver as an example. A double conversion receiver is
shown in simplified block form in Figure 8.10 with three AGC pickoff
locations indicated. Two are incoherent and the third is coherent. Note
that AGC must be generated before the limiter and not after.

To be able to assign numbers to the example, we suppose that receiver
noise figure is 10 dB so that receiver noise power is —184 dBW in the
bandwidth 2B, =10 Hz. Using (3.21) and assuming that the receiver
threshold occurs when signal-to-noise ratio in the loop is 0 dB, we
calculate the threshold sensitivity to be — 184 dBW. Coherent AGC can be
made operative at any signal level for which the loop locks.

At receiver threshold the output signal from the second IF amplifier is
23 dB below the noise level; from the first IF amplifier it is 50 dB below

Coherent Low-pass
AGC filter

Third

Lo

Incoherent AGC Incoherent AGC Quad
AGC rectfier AGC rectifier PO
Furst Second
RF preselector First on
BW = 15 MHz IF a’mphhev S::f:’d {F amphfier Limtter
BW =1 MHz BW = 2kHz
Loop bandwidth ~)) Second
B, = 5Hz L0
" Loop l
filter I
vCo

Figure 8.10 Hypothetical receiver showing pertinent bandwidths and AGC pickoff locations.
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the noise level. These outputs obviously cannot provide signal-related,
rectified voltages under weak signal conditions. For a wide range of useful
signals conventional incoherent AGC is determined solely by noise. To
obtain signal-related gain control, coherent detection is essential.

If only coherent AGC is used, no AGC is generated until the receiver
has acquired lock. Once lock has been obtained, the likelihood of signal
overload is small, but until then it is possible that the receiver might be
overloaded. To prevent strong signal overload from occurring before
lock-up, designers sometimes provide two-mode AGC: both coherent and
incoherent AGC detectors. Actual control is exercised by whichever detec-
tor generates the strongest output voltage. In the unlocked condition only
the incoherent detector could possibly have control, whereas the coherent
detector would take over once lock had been established.

It has already been indicated several times that limiters are commonly
used in phaselocked receivers. A limiter is constantly in an overloaded
condition; therefore, why should there be concern if stages preceding the
limiter also overload? The answer lies in the detailed design of any
particular receiver. If, in fact, the various stages act as good limiters when
they are overloaded, we need not be unduly concerned with strong signal
overload; the receiver would probably tolerate it.

Difficulties arise, however, because little or no thought is ordinarily
given to the nature of overload behavior in the design of IF amplifiers.
Rather than limit cleanly, an amplifier might very well oscillate, block,
squeg, or detune when heavily overloaded. As a consequence, the signal
would be damaged, and severe lock-up difficulties might be experienced.
The problem can be avoided by suitable design of the individual IF stages,
but it is also avoided by a two-mode AGC. Of the two solutions, the
second is often the simpler.

Under conditions of very weak signal there is no signal-caused overload,
but the noise exceeds the signal, with the resulting possibility of noise
overload. In a sensitive receiver, it is usual that the largest voltages to be
handled by the IF amplifiers occur under the weakest signal conditions.
The signal is deeply buried in noise; since the coherent AGC holds signal
to a standard level, the noise grows very large. Circuits intended to be
linear must be designed not to saturate on the weak-signal noise.

Lock Indicatlon

A positive indication of lock is often required in a receiver. In principle,
AGC has nothing to do with any lock indicator—an indication could be
obtained from a quadrature phase detector operating on the same signal as
the loop phase detector. In most receiver configurations, however, the
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signal level (without AGC) at the detector would be variable over a wide
range as the input signal varied. Because output from the quadrature PD is
proportional to signal, the magnitude of the lock indication voltage would
be highly variable.

The DC output of the QPD must be applied to some decision device
that provides a “locked” or “unlocked” message to the outside world. Such
a device is difficult to build if the decision level has a widely variable
magnitude.

If coherent AGC is used, the problem disappears. Operation of the AGC
is such as to maintain DC output of the QPD constant for all signals, as
long as the receiver is locked. In the unlock condition, the DC output is
zero (or at least very small). A fixed decision level is entirely adequate, and
no dynamic range problems develop.

The IF amplifiers driving the QPD and the QPD itself must not
overload if the level indication is to be correct. Since, in a typical receiver,
the noise level can be substantially larger than a weak sigmal, the signal
level delivered to the QPD will probably have to be fairly small, or else
noise will overload the amplifier. Further amplification (DC) following the
QPD and filter is often needed.

AGC Bandwidth

Speed of response of the AGC loop is a question that has not been
explored in any depth in the existing literature. For deep-space missions
where signal strength changes very slowly, it has been the practice to build
AGC with a very slow response®. Typically, the AGC noise bandwidth

is much narrower than the phaselock loop bandwidth (by as much as
1000 to 1).With such a great disparity of bandwidths, noise fluctuations
remaining in the AGC loop have a negligible effect on the tracking loop.

There are situations in which signal level can change rapidly and
drastically. If AGC response is too slow, the receiver gain does not
compensate quickly enough, and a signal reduction appears, in effect, to be
a complete dropout. As a result, the receiver loses lock. Obviously, the
AGC response must be fast enough to follow any large variations of the
signal.

If AGC response is fast, its noise bandwidth must be correspondingly
wide, and the receiver gain therefore fluctuates with the noise. One would
expect these gain fluctuations to have some effect on phaselock tracking,
but there has been no analysis to predict the nature of the effect. Some
fragmentary experimental evidence suggests that the reaction on the track-
ing loop is small; however, more work is needed.
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A word on stability of AGC loops is also in order. If a narrow IF filter,
with bandwidth comparable to the AGC loop bandwidth, is included
within the AGC loop, it is entirely likely that the loop will oscillate. The
problem is similar to oscillation of the tracking loop caused by the same
phenomena, as is explained earlier in this chapter.

8.3 COHERENT TRANSPONDERS

A transponder receives a signal, processes it in some manner, and retrans-
mits the signal at increased power. A transponder is said to be coherent if
its transmitted frequency f, is a rational multiple of its received frequency
f; that is, f,=(m/n)f, where m and n must be integers. With this
definition of coherence, there are exactly m cycles out for every n cycles
that enter the transponder. The frequency received at the ground can be
multiplied by n/m and the result can be compared against the frequency
originally transmitted from the ground; their difference is the two-way
Doppler shift.

Early coherent transponders often used n=1; thus the output frequency
was a harmonic (usually the second) of the input. A transponder of this
type need not be phaselocked to be coherent. Our interest here is in an
offset transponder in which neither m nor n is unity. The output frequency
is offset—usually by a relatively small amount—from the input frequency.
Coherence in offset transponders is almost always obtained by means of
phaselock techniques.

A block diagram of a typical phaselocked transponder is shown in
Figure 8.11. Double superheterodyne conversion is illustrated in the re-
ceiver portion, but single or triple conversion receivers operate on the same
principles. All mixer and phase-detector injection voltages are obtained as
harmonics of a single local oscillator, and the output frequency is also a
harmonic of the same oscillator. It is now shown that if the loop is locked
the output will be coherent with the input.

Operation of the first mixer may be described by the equation

L=NLEh (89)
operation of the second mixer is given by,
h=N S, 2 (8.10)

and the phaselock requirement is
fi=N;/, (8.11)
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Figure 8.11 Phaselock transponder.

where nomenclature is defined in Figure 8.11 and the choice of plus or
minus signs depends on whether low-side or high-side injection, respec-
tively, is used. A combination of these three equations and elimination of
the two intermediate frequencies results in

L =fH(N =N, = N;)

Because the transmitted frequency is f,=N,f,, the ratio of output
frequency to input frequency is

fi_ N,
'f’:' N,=N,*N, (8.12)

which is a rational number. Therefore, by our previous definition, the
transponder is coherent if it is locked.

In a practical transponder the multiplication ratios are often chosen with
the result that N,, N,, and N, have many common prime factors that
permit the individual frequency multipliers to be combined to a substantial
degree. The three individual multipliers tend to coalesce into one string of
multipliers with three output taps.

It is common practice to set N;=0.5 and use a frequency divider instead
of a multiplier at this location. A parametric divider’, a regenerative
divider%’, or, if the VCO frequency is low enough, a binary counter,* is
often employed. At first appearance such design seems rather odd—why

*Binary dividers have fast transitions that are likely to induce spikes onto power and ground
lines. The spike rate or a harmonic thereof is likely to fall at one of the internal frequencies
and therefore cause unacceptable interference in a sensitive receiver.
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use a divider? The reason is clear if we suppose that a multiplier is used
instead; in particular, assume that N;=1, so that the VCO and second IF
are at the same frequency. Any physical multiplier has some output at its
fundamental frequency as well as at its desired harmonic, and the output
of the N, multiplier contains a small component at frequency f,. However,
that component is in the center of the second IF passband and is strongly
amplified by the second IF amplifier. This feed-around signal will surely
interfere with proper operation of the loop, and it is entirely possible that
the loop will actually lock to itself. If we make N,=0.5 and provide large
reverse-direction attenuation between divider and VCO, no component of
the second IF will be able to loop around and cause self-lock.

The various multiplier factors and the overall translation ratio must be
chosen with strong consideration given to possible interference effects that
might arise from harmonics, mixer products, and so on. A widely used
ratio is m/n=240:221; one way to achieve that ratio is to set N, =108,
N,=3, N;=0.5, and N,=120. -

£
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Figure 8.12 Phasclock transponder with fixed second IF.
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The intermediate frequencies in Figure 8.11 are not fixed; instead, they
vary as the input frequency varies, although over smaller limits. Phase-
slope of the IF filters must be small enough so that the changing frequency
will not produce a significant Doppler error.

The second intermediate frequency is held fixed in the configuration of
Figure 8.12. Phaselock imposes f,=f./(N,+ N,N,), independent of the
fixed frequency f,. The fixed oscillator is incoherent with the incoming
signal, the first IF, or the VCO; f, is cancelled by adding N, f, into the
second mixer and subtracting N, f, at the phase detector. An arrangement
of this kind allows greater flexibility in selection of internal frequencies.
For the same reasons as before, the third multiplier is usually chosen as
N;=0.5.
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Chapter Nine

Phaselocked Modulators
and Demodulators

Phaselocked demodulators for amplitude modulation (AM), phase mod-
ulation (PM), and frequency modulation (FM) are widely used. Coherent
demodulation of AM or PM is almost always accomplished with the help
of a phaselocked loop; phaselocked FM demodulators can achieve lower
thresholds than conventional FM discriminators.

Angle modulators (PM and FM) are sometimes mechanized by means of
phaselocked loops. Transfer functions and performance features are pre-
sented here.

The PLLs treated in this chapter are used mainly for processing analog
signals, although they could also handle some forms of digital modulation.
For descriptions of PLLs that are specialized for digital signals, see
Chapter 11.

9.1 PHASELOCKED MODULATORS

There are numerous methods of producing phase modulation or frequency
modulation. In one method the baseband message is inserted into the
low-frequency portion of a PLL so as to phase modulate or frequency
modulate the VCO.* Center-frequency stability is established by the fixed
oscillator that serves as a stable reference. Locking forces the average VCO
frequency to be equal to the reference frequency. The loop tracks out
frequency drift of the VCO.

*The distinction between PM and FM is artificial; both might be termed angle modulation
and treated in a unified manner. In this chapter, the term “PM” implies small phase
deviation, with a remanent carrier present, whereas “FM™ has no such implications. The
distinction is more apparent in the modulator and demodulator configurations than in the
signals themselves.

165



166 Phaselocked Modulators and Demodulators

VP
(PM)

Reference
oscillator

F(s)

Modulated
output

O—;

vco (FM)
Figure 9.1 Phaselock angle modulation.

A block diagram of an angle-modulated PLL is shown in Figure 9.1.
Phase modulation is accomplished by adding the modulating voltage v, to
the output of the phase detector ¥,. The loop attempts to maintain the
sum ¥, + ¥, at a null; this is possible only if a phase error generates a V,
that cancels V,. Phase error arises from phase modulation of the VCO,
which is the purpose of the circuit.

By use of the transfer-function methods of Chapter 2, the VCO phase
modulation caused by the voltage ¥, is found to be*

KFG)V,(s) _ V,(s)
6:(s)= STKKFe) - K 10 (©.1)

Modulation sensitivity of the circuit is 1/K, rad/V. Since H(s) is a
lowpass function, the loop bandwidth must be larger than the highest
modulation frequency to avoid linear distortion.

The phase detector characteristic must be linear to avoid nonlinear
distortion of the modulation. Nonlinearity of the VCO is reduced by
feedback; VCO nonlinearity is tolerable if loop bandwidth is sufficiently
larger than modulating frequency.

Frequency modulation is produced by adding a baseband voltage v
into the VCO control terminal along with the output of the loop filter.
Output phase modulation is readily shown to be

K, Vi(s)

0,(s)= m 9.2)

*From Figure 9.1, reference phase §, is assumed constant and may be ignored. Also, we
temporarily assume N=1,
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Output frequency modulation is the derivative of the phase:

dB,(1)

2,(0)==% ©3)
which, when L-transformed, becomes
Q,(s)=s8,(s) (9.4)
Therefore, the transfer function from V; to &, is
sK,V/(s)
B e — -_ 9.
Qa(s) s + KoKdF(s) Ko I/f[ 1 H(s)] ( 5)

Since 1 — H(s) is a highpass function, the loop bandwidth (highpass corner
frequency) must be smaller than the lowest modulation frequency. The

- phaselocked frequency modulator cannot generate a constant frequency
- offset.

To avoid nonlinear distortion, the VCO control characteristic must be

. linear. Feedback compensates for nonlinearity of the PD characteristic.

Output phase deviation (for either PM or FM) appears as a phase error

' at the phase detector. Since the phase detector has limited range, it is not

possible to obtain a large modulation index (peak phase deviation) with
the circuit in solid blocks in Figure 9.1. Extended-range PDs (see Chapter
6) are of some help, but the best of these detectors restricts the phase
deviation to less than 27 rad, peak.

To achieve a larger modulation index, one could operate the VCO at an
integer harmonic N of the input reference frequency and divide the VCO
frequency by N (dashed block in Figure 9.1) before applying it to the
phase detector. In this manner the peak phase error is 1/ N times the peak
deviation. Arbitrarily large indices can be generated by making N
sufficiently large.

9.2 PHASELOCKED DEMODULATORS

Phaselocked loops are used for demodulation of many kinds of modulated
signals. Applications include:

« Coherent amplitude detectors (product detectors).
o Phase demodulators (PM detectors).
« Frequency demodulators (FM discriminators).
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Figure 9.2 shows pickoff points in a PLL for recovery of each type of
modulation and establishes nomenclature for the discussion to follow.

PLL Response to AM

We let the input signal be amplitude modulated, that is,
0,,(1) =V, x(¢) sin(w;1 +6,) (9.6)

where x(7) is arbitrary, dimensionless amplitude modulation and the other
symbols are the same as in Chapter 3.

The phase detector is conveniently modeled as a multiplier that gener-
ates the product of v,, and the VCO output. Discarding double-frequency
terms, the PD output is found to be

v,(8) = K;x(r)sind, 9.7)

‘Only the average (DC) output of the phase detector is useful in establish-
ing phaselock; any fluctuating components are just potential sources of
tracking disturbance. The average value of V, is

avg[ v,(1)] =avg[ x(1)] K,sin, (9.8)

There is useful output—the loop is able to lock—only if ¥ = avg[x(1)]z0.
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The modulation must have a DC component for a discrete carrier
component to be present. An ordinary PLL needs a carrier component to
which it can lock. Conversely, an ordinary PLL is unable to lock to a
suppressed-carrier signal. (See Chapter 11 for methods of nonlinear regen-
eration of a carrier from a signal that has none.)

We represent the modulation as x(7)= x'(¢)+ X, where x" has zero mean
and X#0. Phase detector output becomes

o) =[ x'(1)+ X ] K,sin8, (9.9)

But, if the loop is phaselocked and is tracking properly, then §,~0 and
there is near-zero output from the phase detector, irrespective of the
properties of x’(z). Therefore, to a first approximation, a PLL does not
respond to AM that might be present on its input.

(For a more concrete example, let us consider sinusoidal AM applied to
a perfectly tuned first-order PLL, so the loop equations are, discarding
double-frequency terms:

v, ()= V,(1+ msinw,,t) sin(w;? +6,)
v,(t)= K, (1+ msinw,,t)sin(8,—4,)

@, _
dt =R,0y

We let ,=0 and recollect that K,K,= K. Combining the above equations
yields the differential equation of the loop

do

i K(1+ msinw,?)siné,
or rearranging
da, .
snd, ~ K(1+ msinew,,t)dt

Integrating both sides gives

ln[tan—p—"}= —Kt+(2§

> )coswmt+C

m
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where C is a constant of integration. Taking exponentials
6 mK
tan > =exp(— Kt) exp( —Cos w,,,t) expC
2 W,

which vanishes for large 1.

Therefore, if a PLL ultimately tracks with zero phase error, the presence
of amplitude modulation does not alter the equilibrium condition nor does
it introduce any phase modulation of the VCO. If steady-state phase error
is not zero, there is a complicated, nonlinear interaction between modula-
tion and phase error that arises again when we consider FM demodula-
tors.)

Coherent Amplitude Detector

Following the development of Chapter 3, we consider that the input to
the PLL of Figure 9.2 consists of an amplitude-modulated signal plus
additive, narrowband, gaussian noise:

Ou(1)= X(1) V,sin(w, + 8) + n.() cos(w;t + 8,) — n, (1) sin(e,t +86,)
(9.10)

We multiply the input by a 90° phase-shifted version of the VCO output
(Figure 9.2)

0,() = V,sin(w;t +8,) (9.11)

whereupon the difference-frequency output of the multiplier is

n(1) . n(1)
7Z smoe—Tcos0,]

vdq(t)=Kd[x(t)cos0,+ (9.12)

where §,=6,— 0, and K, is as defined in Chapter 3.
If the VCO is tracking properly, then 6, is nearly zero, so the output of
the coherent amplitude detector (CAD) is, closely,

n(t
vdq(t)de[x(t)— %J (9.13)
which consists of the linear sum of the desired amplitude modulation plus
the component of noise modulation that lies in phase with the signal. The
quadrature noise component and moderate amounts of phase modulation
are rejected. The CAD performs amplitude demodulation.
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Amplitude demodulation could also be performed by a simple envelope
detector, provided that x(¢) is always positive. If x(f) becomes negative
(“overmodulation” in radio-engineering parlance), then an envelope detec-
tor generates severe distortion.

The coherent amplitude detector imposes no such restriction; it repro-
duces x(f) without distortion, even if x(#) reverses polarity. Moreover, the
CAD will even demodulate a suppressed-carrier signal, provided there is
some means of generating a properly phased local reference—some means
of locking the VCO to the proper phase (see Chapter 11.)

Coherent amplitude detectors are also used for low-distortion demodula-
tion of single-sideband (SSB) and vestigial sideband (VSB) signals.! A
remanent pilot carrier must be transmitted with the signal if the local
carrier reference is to be phaselocked (as is essential for coherent demod-
ulation of VSB).

A major advantage of a CAD lies in its linear processing of signal and
noise. Its output is the linear superposition of signal and noise, irrespective
of the input signal-to-noise ratio; there is no intermodulation between the
two.

From (9.10) the input signal-to-noise ratio is (remembering that n=n?)

SNR,= 12—~ (9.19)

SNR, = ————- =2SNR, (9.15)

Equation (9.15) holds for all values of SNR;.

In consequence of the linear processing of noise, it is equally effective to
filter out noise, either prior to the CAD by means of a bandpass filter or
after it by means of a baseband filter. Since a baseband filter is typically
much easier to implement than the equivalent bandpass filter, that option
is often extremely valuable to a designer.

Predetection and postdetection filtering are equally effective because the
CAD does not degrade the signal-to-noise ratio. By contrast, an envelope
detector causes a characteristic squaring loss for small SNR,. Under condi-
tions of low input SNR the output is proportional to (SNR,); for each
1-dB loss at the input, there is a 2-dB loss at the output of the envelope
detector.?

If SNR, is appreciably larger than unity, the CAD and the envelope
detector have the same SNR,. At small SNR,, use of an envelope detector
imposes a substantial penalty. See Figure 9.3 for a comparison of the
performances of the coherent and incoherent detectors.
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Figure 93 AM detector comparison. Vertical distance between curves is squaring loss in
decibels.

Phase Demodulation

We assume that the input signal is phase modulated:
v, (1) =V, sin[ w1 +0,(1)] (9.16)

where 6,(¢) is the phase modulation. If the peak phase excursion is small
enough that the PLL remains in its linear domain, then the linear transfer-
function analysis of (2.3) and (2.7) applies and the output of the phase
detector can be represented as

VA= KIS e | 9.17)

The bracketed quantity can be shown to have the characteristics of a
highpass filter (see Figure 2.4 for an example) whose value approaches
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unity for large values of s=jw. In other words, phase modulation of
sufficiently high frequency appears, unaltered, at the output of the loop
phase detector.

Origin of the highpass action is readily understood from physical reason-
ing. The loop tracks low-frequency modulation and fails to track modula-
- tion frequencies that are outside its bandwidth; it is a carrier-tracking loop,
| as defined in Chapter 4. Output of the phase detector is a measure of the
| untracked phase error, so high-frequency modulation components appear
there, unchanged by the loop dynamics. A lower-frequency component is
reduced by the feedback factor at that frequency.

Carrier-tracking coherent PM systems must be designed so that the
demodulator loop does not suppress the modulation. Subcarriers are often
employed to move the information spectrum outside the PLL bandwidth. A
| subcarrier also moves the signal information away from low-frequency
noise and drift disturbances of the VCO. See Chapter 6.
| Undistorted demodulation is achieved if the peak phase excursion re-
' mains within the linear portion of the phase-detector characteristic. To
enhance linearity, an extended-range detector, as is described in Chapter 6,
might sometimes be useful. However, since all PD characteristics revert to
 sinusoidal for low SNR,, the sinusoidal characteristic is of great impor-
tance.

Distortion can be tolerated in some applications; demodulation to a
subcarrier might be one example. The phaselock loop demands that the
- signal contain a trackable carrier, but the modulation index is otherwise

- unrestricted.

§  We assume that the modulation is sinusoidal with a modulating
frequency w,, that is outside the bandwidth of the loop. Modulated input
phase is

8(1)=Afsinw,! (9.18)

The loop is unable to track the modulation, so phase error 6,=0; and the
output of the phase detector is

vy(£)= K,sin(Afsinw,,¢) (9.19)

which is a nonlinear function of the modulation.

Some examples of distorted output waveforms are given in Figure 9.4 for
various choices of peak deviation Ad. Distortion clearly worsens as Ad
becomes larger. The plots all are for a zero mean value of 6,; any phase
offset would cause asymmetric distortion.
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Figure 94 Typical phase demodulator waveforms. Sinusoidal phase detector. 6,(r)=
Afsina,,r.

It is sometimes useful to select A@ so as to maximize the fundamental
modulation-frequency output from the phase detector. Equation 9.19 is
periodic, so it can be expanded in a Fourier series of sinusoids; the Fourier
coefficient of the nth harmonic is the nth-order Bessel function J,(A#). The
coefficient of the fundamental is J,(Af), which has its maximum at
A§=103° (1.8 rad). Remanent carrier amplitude is proportional to Jy(A#).

More-efficient signal design is achieved if the subcarrier has a square
waveform instead of a sinusoidal waveform. Amplitude of the fundamental
component of the subcarrier recovered from the demodulator is
(4/7) sinA@ and the amplitude of the remanent carrier is proportional to
cosAd. Peak of the square-wave phase deviation is A@. Figure 9.5 shows
the modulation and carrier coefficients for sinusoidal and square modula-
tion plotted against Ad. For equal levels of carrier suppression, the square
wave provides larger amplitude of recovered subcarrier at the PM demod-
ulator.

If the modulation consists of multiple tones, nonlinearity causes inter-
modulation® between the tones, as well as the production of harmonics. It
is entirely possible for IM products to be stronger than some of the
recovered tones.

Design of a PM communications link*® is a complex matter; the
foregoing paragraphs give only a few examples of some of the problems
that may arise.

A coherent phase demodulator does not generate intermodulation be-
tween signal and noise, despite the modulation distortion. Therefore, it is
capable of working deeply into noise without any squaring loss penalty. It
shares this property with the coherent amplitude detector, a fact that
should be no surprise since the two demodulators have identical circuits
and differ only in the phase of the local reference.
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Figure 9.5 Phase modulation parameters.
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Frequency Demodaulation

Let us suppose that a frequency-modulated input signal is applied to a
PLL. For the loop to remain in lock, it is necessary that the frequency of
the VCO track the incoming frequency very closely. Frequency of the
VCO is proportional to the control voltage (v, in Figure 9.2) so the control
voltage must be a close replica of the modulation on the signal. Modula-
tion may therefore be recovered from the VCO control voltage. This is the
principle of the phaselocked FM demodulator—or phaselocked demodula-
tor (PLD), for short. The PLD is a modulation-tracking loop*, as defined in
Chapter 4.

By use of the linear analysis of Chapter 2, the transfer function relating
control voltage V.(s) to signal phase modulation §(s) is found to be

s60,(s) K, F(s) _ s0,(s) H(s)
s+K K,F(s) K,

V.(s)= (9.20)

We denote the instantaneous frequency modulation by m(?) in radians per
second. Phase and frequency modulations are related by m(t)=dl(t)/ dt,

*A modulation-tracking loop can aiso be used to demodulate large-deviation PM. Control
voltage v, is an analog of frequency modulation but the original phase modulation can be
retrieved by integrating v,.
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since frequency is simply the derivative of phase. Taking Laplace trans-
forms we obtain

L{m(t)}=M(s)=50(s) (9.21)
and substituting into (9.20) gives
M(s)H(s)

(-]

V()= (9:22)

which shows the transfer function between frequency modulation and the
resulting VCO control voltage. The recovered message is equivalent to the
original message, filtered by the closed-loop transfer function H(s) and
scaled by the VCO gain factor K. If the loop is linear and if its bandwidth
is large enough compared to the message bandwidth, v(?) is a faithful
reproduction of m(r). -

To avoid distortion, it is evident that the VCO control characteristic
must be linear, since K, appears directly in (9.22); that is, K, must truly be
a constant and not a function of v,.

Phase-detector gain enters (9.22) only through its influence on H(s)—
which is significant only at higher modulation frequencies, since H(0)=1
irrespective of K. For this reason, and because of the reduction of PD
distortion by feedback that is noted in Chapter 4, low-distortion operation
is possible with a nonlinear phase detector.

Avoidance of linear filtering distortion, avoidance of nonlinear PD
distortion®, and, indeed, the very ability to maintain track (Chapter 4) are
all enhanced by large bandwidth of the PLL. These interrelated reasons all
point to a loop bandwidth that is much larger than the message bandwidth.
It becomes apparent later that the loop bandwidth should actually be
substantially larger than the RF bandwidth of the modulated signal, a
conclusion that is not obvious at this point.

FM Nolse

We let the frequency modulation be sinusoidal with peak deviation Af
Hz and modulating frequency f, Hz. Therefore,

m(t)=2mAfsin2nf, t (9.23)

and the input signal becomes

v, ()=V, sin(w,-t + %f- cos2xf, t) (9.29)
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so the PLD output signal is

v.(2)= —I%ZwAf sin 27f,,t (9.25)
where it has been assumed that H(;27f,)~=1; that is, the loop does not
filter the modulation appreciably.

Preceding the demodulator is a bandpass filter centered at the signal
frequency w; and with noise bandwidth B; Hz. The filter is assumed to
have sufficient bandwidth, amplitude flatness, and phase linearity to cause
negligible distortion to the signal. A lower-bound constraint is B; >2Af and
practical bandwidths are usually substantially larger.

White, gaussian noise of one-sided density N, V2/Hz is added to the
signal at the filter input. Signal-to-noise power ratio at the filter output is

V2
Pi=2BN,

(9.26)

This quantity is the so-called carrier-to-noise ratio (CNR) that appears
throughout the FM literature.

The effect of noise in a PLL is represented in Chapter 3 as an additive
noise generator n'(f), with spectral density ®,(w) rad?/Hz, inserted into
the linearized phase detector (Figure 3.2 and equations 3.6 and 3.13). If the
bandpass filter has a rectangular passband (not a necessary assumption)
and p,>>1 (necessary to assure linearity) then ®,(w)=2N,/ V2 for 0<w<
7B, and is zero otherwise.

By use of the transfer-function methods of Chapters 2 and 3, the spectral
density of noise appearing in the control voltage v, is found to be

Y

& () =[*®,(e)] ﬂ%zﬂ)'— V2/Hz (9.27)
If ®, is flat, the bracketed term has the familiar parabolic spectrum
associated with FM noise.

Signal and noise of the control voltage are processed through an external
lowpass post filter. We assume the passband to be rectangular with cutoff
frequency equal to the modulating frequency f,. The recovered modula-
tion is passed without loss, but all higher-frequency components of noise
are suppressed completely.

We assume that |H(j27f)] is flat from DC to f,,. Noise intensity at the
output of the post filter is given by

3
3 . 1 r2af, _ 1 [ 2N, | (2=f,) )
ot=5- fo ®_(w)dw —27[ i3 V: o (9.28)
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Output signal-to-noise ratio is given by the mean square of (9.25)
divided by (9.28) or

_3APV2 _3MBp,
AN 2

If Af=B;/2 (the maximum deviation that remains within the input filter)
and we define B=Af/f,,, then

SNR, (9.29)

SNR,=387%, (9.30)

which is the classical expression of FM improvement factor.”® This result is
exactly the same as that obtained for a conventional frequency discrimina-
tor. For large CNR a PLD has noise performance identical to that of
ordinary discriminator circuits.

To achieve the FM improvement, a conventional discriminator must be
preceded by a limiter. Ordinary discriminator circuits are amplitude sensi-
tive and the limiter is essential to suppress the AM component of noise.

The PLD furnishes the FM improvement without employing a limiter.
In effect, the PLL ignores the component of noise that lies in phase with
the signal and is disturbed only by the quadrature component. It is
demonstrated in the next section that a limiter worsens threshold perfor-
mance; ability to deliver FM improvement without incurring limiter loss is
one motive for using a phaselocked discriminator in place of a conven-
tional circuit.

9.3 FM THRESHOLD

The ideal performance of (9.29) is achieved at high CNR, but below some
minimum CNR—known as the threshold—the output SNR, deteriorates
very rapidly with further reduction of CNR. This section is devoted to an
exposition of the threshold effect.

The reader should be forewarned that no good quantitative theory has
yet been devised for the explication of threshold of a PLD. Operation of
the loop is in the nonlinear region, but the nonlinear methods reported in
Chapter 3 are inadequate to cope with a PLL subjected to bandlimited
additive noise simultaneously with modulation. (Existing Fokker-Planck
methods are restricted to treatment of white input noise.)

Here we attempt a heuristic explanation of PLD threshold based on
experimental evidence and laboratory experience. The explanations are
inadequate in that the threshold CNR cannot be predicted nor can the
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optimum loop configuration be calculated. However, sufficient informa-
tion is given so that an engineer can optimize design parameters by
experiment.

Threshold Characterization

Excessive deterioration of output SNR, is the best-recognized manifesta-
tion of FM threshold, as sketched in Figure 9.6. At high CNR the output
SNR, is linearly proportional to CNR, as per (9.29). [Although (9.29) was
derived for sinusoidal modulation, similar expressions can be obtained for
any other modulation format.] The SNR, versus CNR curve has unit slope
on log-log coordinates for large CNR.

At threshold CNR there is a break in the slope, and the curve is much
steeper for low CNR. Since the curve is continuous, an exact break point is
difficult to recognize. It is usual to take the point of 1-dB deterioration
from the extended straight line as the formal definition of threshold CNR,
but that choice is entirely arbitrary.

Threshold performance of an ideal frequency discriminator is taken as a
reference against which to compare other devices. An ideal discriminator
produces an output baseband voltage that corresponds to the rate of

Slope = 1

SNR, (dB)

/7

[
|
|
|
1
I
|
|
I
!/Threshold CNR

‘ CNR (dB)
Figure 9.6 FM threshold effect on SNR,.
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change of phase of the bandpass process applied to its input: the instanta-
neous frequency of signal-plus-noise. The phase is that of the resultant of
the desired signal plus added noise. An ideal discriminator is insensitive to
AM components of signal or noise; performance of well-designed, conven-
tional limiter—discriminator circuits presumably is very close to ideal.

The term “ideal” in no way implies “optimum” in this context. All good
discriminators have the same performance at large CNR, but the ideal
discriminator does not have the lowest threshold. If a discriminator has a
lower threshold than ideal, it is said to be an extended-threshold demodula-
tor. An example of threshold extension is sketched in Figure 9.6.

A phaselocked demodulator is valuable because it offers threshold
extension, as compared to an ideal discriminator, with a relatively simple
circuit. The amount of extension is not predictable by any existing theory
and depends on signal parameters; very roughly, a few decibels of im-
provement are achieved in typical applications.

Output SNR, of an ideal discriminator can be calculated from an exact
analysis®!® by Shimbo that was produced after a long series of approxi-
mate analyses by earlier authors. Difficulty of the problem is perhaps best
illustrated by the fact that the exact analysis was not published until some
45 years after the nature of FM was recognized.!!

In many applications the SNR, below threshold is of little interest
because normal operation occurs almost exclusively at CNRs above
threshold. (The disturbances accompanying below-threshold operation are
often much more disruptive than might be expected from SNR, considera-
tions alone; their nature is described shortly.) It is often sufficient, for
signal design and link budget purposes, to be able to predict the threshold
CNR. :

The prediction of threshold could, of course, be performed by evaluation
of Shimbo’s equations, but an approximate method by Rice® is easier to
use and also has concepts that aid understanding of the PLD.

Output of a below-threshold discriminator can be observed to contain
large-amplitude, short-duration spikes or clicks (to use Rice’s term). These
clicks appear only very rarely above threshold. More-frequent appearance
of clicks is a manifestation of the onset of threshold.

Note the wording of the last sentence. It is not stated that clicks cause
threshold or that clicks are the only manifestation of below-threshold
operation; neither would be true. Nonetheless, the threshold CNR can be
predicted with good accuracy if the average click rate can be calculated.

A click results when noise causes the resultant of signal plus noise to
take on (or lose) one complete cycle as compared to the signal alone. A
phaser diagram (Figure 9.7) illustrates the generation of clicks. The phaser
reference is chosen so that the signal remains fixed at 0° and constant
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Figure 9.7 Phaser diagram of click generation.

amplitude while the noise adds to the signal with random, fluctuating
amplitude and phase. The resultant traces out a continuous trajectory in
the complex plane. A cycle is gained or lost—a click is generated—every
time the trajectory encircles the origin.

A click is possible only if instantaneous noise exceeds the signal ampli-
tude and if the phase of the noise goes through opposition with the phase
of the signal. In the vicinity of threshold, the noise amplitude associated
with a typical click event is likely to be just slightly stronger than the
signal, so the click trajectory is likely to pass very close to the origin; that
is, amplitude of the resultant often can be expected to be small in the
middle of a click passage.

Under conditions of near-cancellation of signal by the noise, a small
change of noise phase can cause a large change of resultant phase.
Therefore, a click trajectory can sweep around the origin very rapidly,
much more quickly than might be suggested by the restricted bandwidth of
the input filter. These features of amplitude and phase have considerable
bearing on the response of a PLD.

Clicks may also be examined by means of phase and frequency wave-
forms, as in Figure 9.8. In the absence of noise, the fixed-signal phaser of
Figure. 9.7 produces a constant resultant phase of 0°. Small noise causes
small phase fluctuations about zero, while a click causes the resultant
phase waveform to have a 27 step (Figure 9.8a).
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Figure 98 Click waveforms: (a) phase; (b) frequency.

Frequency is the time derivative of phase—the rate of rotation of the
resultant phaser—and is sketched in Figure 9.85. Small phase noise
produces small frequency noise, while a phase step produces a large
frequency spike; this is the spike or click that is heard in an audio message
or observed in the laboratory.

Click waveforms vary widely; the only property they have in common is
that each has an area of 27 or an integer multiple thereof. Polarity of a
click pulse depends on whether a cycle is lost or gained. An individual
pulse is essentially unipolar.

Clicks usually occur rapidly compared to the reciprocal of baseband
signal bandwidth. To calculate the influence of clicks on output SNR,, it is
useful to approximate the waveform as an impulse with area 27. An
impulse has a flat spectrum extending down to DC and with substantial
energy in the baseband.

Figure 9.8 also shows a large phase disturbance that does not cause a
click: a nonclick. We see that the peak frequency output of the nonclick is
much smaller than that of a completed click. More significantly, the
frequency pulse associated with a nonclick is a doublet—which has its
energy concentrated at high frequencies and falls off to zero at DC. A
doublet causes much less disturbance to a lowpass system than does a
unipolar pulse.

If average click rate is known, the contribution to output noise can be
calculated.%® The CNR at which clicks increase total noise one decibel
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above that calculated by (9.28) alone is the formal definition of threshold.
There is substantial energy in a click, so threshold occurs at a surprisingly
small click rate.

Rice® has determined the click rate for an ideal discriminator. It is a
function of CNR, input passband shape, and modulation parameters. Use
of his formulas provides a good prediction of threshold of an ideal
discriminator.

Application to PLD

Unfortunately, no one has yet been able to analyze the output click rate
of a phaselocked demodulator. The click concept gives some physical
insight into the operation of a PLD, but a quantitative theory has been
unattainable. This section summarizes the author’s qualitative understand-
ing of the problem, based on largely unpublished experimental work.
(Smith'21? has pursued a PLD approach similar to that presented here, but
neglecting the input filter.)

First, let us examine a complete block diagram of phaselocked FM
demodulator, as in Figure 9.9. It is comprised of an input bandpass filter, a
phase detector, a loop filter, a VCO, and lowpass post filter. All five
elements are essential to proper operation of the PLD. Nonetheless, many
earlier publications have ignored the input and output filters completely.

The post filter contains the deemphasis networks, correction for linear-
filter distortion by the PLL transfer function, and the main baseband
filtering of the recovered message. This filtering is needed to achieve the
FM improvement of (9.30). However, the post filter processes the signal
only after it is recovered from the PLL; it clearly can have no influence on
tracking performance and therefore does not affect threshold. Neglect of
the post filter is justified in a study of threshold phenomena.

On the other hand, neglect of the input filter is competely wrong. It is
commonplace to think of a PLL as a narrowband device that combats
noise by means of its narrow bandwidth. This is a misconception when

Signal Bandpa
plus andpass Messa
——»1  input F(s) Post |- outge
Noise filter filter
input

OPLL

Figure 99 Phaselocked FM demodulator.
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applied to a PLD where the loop bandwidth must be rather large. In fact,
the loop bandwidth is likely to be considerably larger than the RF signal
bandwidth.

The input filter must be wide enough to avoid excessive distortion of the
message; this is a very complex subject in itself and is not treated here. A
lower bound on input bandwidth is established by Carson’s rule:

B> 2(Af+1£,) (9.31)

which is appropriate for sinusoidal modulation, or, a modified version
B, >2(B,,+ ;) (9.32)

which is appropriate for gaussian modulation with lowpass bandwidth B,,
rms frequency deviation o, and “crest factor” y (Chapter 4).

Experiments show that the best choice of loop bandwidth (discussed
below) is substantially larger than the Carson’s rule bandwidth. We can
expect that the loop bandwidth will exceed the input-filter bandwidth in a
well-designed loop so the loop provides no appreciable linear filtering of
the RF noise. The only significant noise reduction is provided by the input
filter. For this reason, the input filter should be as narrow as possible,
consistent with signal-distortion specifications. A wider filter admits extra
noise, thereby degrading performance.

This statement has been tested by experiment. The results show conclu-
sively that excess bandwidth of the input filter increases the threshold of
the PLD. The amount of degradation depends on the degree of bandwidth
excess; some measured results are shown in Figure 9.10 for sinusoidal
modulation and a first-order loop.

If frequency deviation goes out to the edges of the input filter passband,
we must be concerned with the response in the edges. Most filters roll off
gradually at frequencies away from center; frequency deviation of the
signal imposes a corresponding amplitude variation on the filter output.
This incidental AM is quite noticeable as a scalloping of the signal
envelope applied to the PLL.

To a first approximation, the PLL output is insensitive to amplitude
effects. However, when we look more closely, we recognize that the loop
gain is proportional to signal amplitude so the scalloping produces an
instantaneous reduction in gain. In consequence, the tracking ability of the
PLL is impaired and the loop is less capable of tracking the modulation
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Figure 9.10 Threshold increase due to excessive input bandwidth. Unity relative bandwidth
corresponds to (9.31). Ordinate shows additional signal power needed at threshold because of
widened bandwidth.

excursions. Therefore, the scalloping worsens the threshold, particularly in
a first-order loop where maximum loop stress occurs at maximum
frequency deviation (see section on Modulation Limits in Chapter 4. A
desirable bandpass filter would have a flat response over the entire
frequency-deviation range.

If an input filter is good for use with a PLD it is presumably also good
with a conventional discriminator. Using identical input filters, a PLD can
exhibit a lower threshold than a conventional discriminator. How does the
improvement come about?

Signal plus noise at the filter output will have click events as described
above. The average rate of clicks is given by Rice’s analysis. An ideal
discriminator, by definition, demodulates every one of the clicks in the
signal applied to it. A PLL is unable to follow some of the clicks, so its
output remains closer to the original message than the output of an ideal
discriminator. It is this inability to follow some of the input clicks that
accounts for the improved threshold of a PLD."

Why does the PLL fail to follow some clicks? One reason is that the PLL
is a limited-bandwidth element and a typical click is quite fast; the loop
often cannot move quickly enough to follow the click around the circle.
The sluggishness is emphasized when the noise nearly cancels the signal so
that amplitude of the resultant is very small as the trajectory whips around
the origin. In the vicinity of threshold-CNR most click events are
assogiated with small amplitudes of the resultant.

A small amplitude means reduced gain of the PLL and therefore
reduced ability to follow the resultant phasor. Reduction of gain is a
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nonlinear effect that, in this instance, apparently improves the threshold
behavior.

We are now in a position to see why a limiter would worsen threshold
performance. An ideal hard limiter holds the amplitude of the resultant
phasor constant, irrespective of any possible cancellation of signal by
noise. If amplitude is large as the trajectory goes around the circle, the
PLL is better able to follow and more input clicks are demodulated than
when a limiter is omitted.

Hess'* has shown the deleterious effects of a limiter by experiment and
by approximate analysis. Minimizing threshold demands that a limiter be
omitted. Therefore, any PD characteristic that implicitly uses a limiter—
sawtooth, rectangular, triangular, or any sequential PD—should be
avoided (Chapter 6).

Sometimes one encounters the notion that PLD threshold is somehow
“caused” by the nonlinearity of the phase detector and that the threshold
could be avoided—or at least reduced—if only a linear PD were possible.
This is not the case. Instead, we argue here that the reduced threshold of a
PLD is at least partly due to the nonlinearity of the PD and that a linear
PD would yield the same threshold as an ideal discriminator.

Most real PDs have a periodic characteristic, whereas a linear PD would
have some means of counting cycles and therefore has a straight-line
characteristic extending to infinity in both directions. In equilibrium, both
types of PD cause the loop to track close to the PD null.

What happens when a fast input click appears? Let us assume that the
loop is too slow to follow the click immediately and just consider behavior
after the click has ended. The periodic PD ignores the cyclic increment
and the loop continues to track as if the click had never occurred.
However, the linear PD recognizes that an extra cycle has been ac-
cumulated, so it produces an output corresponding to a phase error of 2.
The loop servos out that error by retarding the VCO phase by 2« in order
to return to the PD null. In other words, the PLD with a linear PD is
unable to ignore input clicks and eventually tracks them all, even if quite
slowly. A linear PD is just as bad as an ideal discriminator. The periodic
nonlinearity of a real PD contributes, in part, to the improved threshold
performance of a PLD.

Clearly, to ignore as many input clicks as possible, the loop bandwidth
should be as narrow as possible. If the bandwidth were very large the loop
would follow all input clicks and performance would be the same as that
of an ideal discriminator.

On the other hand, bandwidth must not be too narrow or else modula-
tion will cause cycle slipping even in the absence of noise (Chapter 4). A
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loop that is overstressed by excessive modulation is very sensitive to slips
induced by small noise disturbances.

At the demodulator output a cycle slip is indistinguishable from a
demodulated input click; for convenience they are all called output clicks.
It seems reasonable to suppose that a compromise bandwidth will mini-
mize the output click rate.

Figures 9.11 through 9.13 show representative click-rate data gathered'’
on a second-order loop. Table 9.1 gives the experimental parameters. Click
rate was measured by instrumentation described in Ref. 16. Each data
point represents 100 sec of accumulating output clicks. (Data gathering is
painfully slow.)

Figure 9.11 plainly bears out the prediction of an optimum loop band-
width. Substantial improvement in click rate can be obtained by choosing
the proper loop bandwidth. Or, stated negatively, a large penalty is
incurred if the wrong bandwidth is used.

Figure 9.12 shows a broad click-rate minimum for -damping in the
vicinity of 1 to 2. Other data suggest that a choice of 1 to 1.5 ought to be
good, in general.

Click-rate curves of Figure 9.13 are plotted versus CNR, with natural
frequency as a parameter. The solid black curve labeled n, is a plot of
Rice’s® prediction of click rate of an ideal discriminator with the same
modulation parameters and the same input filter. Data points for a
wideband PLL (40 kHz) agree very closely with the Rice prediction,
confirming the statement that a wideband PLL has the same threshold as
an ideal discriminator.

The solid straight line labeled 77 shows the click rate that will increase
output noise of (9.28) by 1 dB. Threshold is formally defined by the
intersection of A and an actual click-rate curve. Intersection for the
optimum-bandwidth PLL is some 2.5 dB lower than that for the ideal
discriminator.

Choice of optimum bandwidth is strongly dependent on modulation
parameters; it is a priori knowledge of message statistics that permits
threshold reduction. Design of a conventional discriminator virtually
ignores message statistics, thereby incurring a threshold penalty. On the
other hand, a conventional discriminator is relatively insensitive to changes
of message statistics, whereas the PLD is affected adversely and perhaps
catastrophically.

A second-order loop is not necessarily the configuration that provides
minimum threshold. If modulation index is small (as in the examples
showm), then a first-order loop has nearly the same performance (as long
as any steady frequency offset is small compared to loop bandwidth K). If
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Figure 9.11 Optimization of loop natural frequency; {=1.

modulation index is large, then a higher-order loop tracks with less phase
error (Figures 4.4 and 4.5). Experiments have shown second-order loops
outperform first-order loops for large modulation index.

The experimental data shown here (Table 9.1 and Figures 9.11 to 9.13)
were taken for a moderately small modulation index. Threshold extension
of a PLD improves, relative to an ideal discriminator, as the modulation
index increases.
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Formal Optimization

A PLD is not the optimum FM demodulator but only an approximation
] thereto. The optimum demodulator would examine the entire message,
even if it were of infinite duration, before producing the maximum a
posteriori (MAP) estimate of the message. Viterbi'” and Van Trees'® give
excellent discussions of MAP estimation applied to FM demodulation.

The integral equation of the MAP estimator is nearly identical to that of
a phaselock loop; the only difference is in the limits of integration. On
paper the difference seems trivial, but the PLL must track in real time—
work with zero lag—and it cannot wait for the end of message before
starting to process the signal.

Because of the close resemblance between integral equations, many
investigators have hoped that the PLL would be a good approximation to
the MAP demodulator. Better approximations can be obtained from
complex digital schemes'®-?2 but these are not PLLs.

AlthGugh we are barred from achieving the ultimate MAP performance,
we can still ask, What is the optimum, zero-lag, stable PLD? To permit
mathematical tractability, it is common to assume linear operation of the
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Table 9.1 Click-Rate Experimental Parameters

Modulation type: gaussian
Modulation spectrum: essentially flat from DC to 2.4 kHz (B,,=2.4 kHz)
Deviation: o,=1485 Hz
Spectral occupancy, equation 9.32: 2(B,, + yo;)=15.2 kHz, for y=3.5
Input bandwidth: 152 kHz, ~1 dB
18.3kHz, —3dB
24 kHz, —30dB
16.4 kHz, noise bandwidth
Noise bandwidth 2B, of “optimum” PLL: 27.5 kHz (w,/27=3.5kHz; {=1)

180
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PLL and to determine the optimum realizable* Wiener filter. Viterbi
warns, emphatically, that this procedure does not lead to the MAP
performance, nor does it lead necessarily to the optimum PLD. Nonlinear
behavior cannot be inferred from linearized analysis.

The Wiener procedure makes use of signal and noise spectra in arriving
at the optimum loop transfer function H, (w). If the frequency modulation
is stationary, it can be represented by a modulation spectrum @,,(w) with
units of (rad/sec)’/Hz. Formally, the spectrum of the resulting phase
modulation of the transmitted signal is ®,,(w)/w? rad?/Hz.

(A message need not be stationary. If it is not, the spectrum ®,, does not
exist and the Wiener procedure must be modified. Even if the frequency
modulation is stationary, the phase modulation can be nonstationary, so
the phase-modulation spectrum might not exist, rigorously speaking. How-
ever, the formal spectrum @, /w? serves our purposes adequately.)

Noise is represented by the equivalent baseband noise n’(¢), which has a
spectral density ®,(w)rad?/Hz (see Chapter 3). Since the PLL is preceded
by a bandpass filter with significantly narrow bandwidth, the density &,
cannot even be approximated as white. It is important that the actual
spectrum, as detailed in Chapter 3, be used in any analysis.

By using material from Chapters 3 and 4 and Appendix A, it can be
shown that the linearized approximation to the phase error variance is

az=if°°[|1 H(jw)[ "'( )+<I>()|H(_1w)| do  (9.33)

€ 2'”0

The Wiener optimum filter H,(w) minimizes this phase variance.

Derivation of the optimum realizable Wiener filter is a tedious matter
but is well covered in the literature.*?6 If the two spectra can be
represented as rational functions in w? (almost any spectrum of engineer-
ing interest can be closely approximated in this manner), then the Wiener-
optimized loop transfer function is

1
(®,+9,/?)"

H,(w)=

o, /w? *
((I)n, o, /wz) — ] (9.34)

where the superscripts + and — indicate that only the poles and zeros in
the upper or lower halves, respectively, of the complex w plane are to be

taken.

*The unconstrained, optimum Wiener filter has infinite lag and is therefore unrealizable.
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If either spectrum is of high order in w? (as happens when the roll-off
slope is steep), then H (w) is also of a high-order transfer function and will
be inconvenient to implement.

If ®,,(0)=0, then the formally derived optimum loop filter has a zero at
the origin, cancelling the integrator action of the VCO. We must not forget
the lessons of Chapter 4; there always are phase and frequency offsets that
can only be accommodated by unimpaired integration. The loop cannot
phaselock if the integration is cancelled. Optimum loop design must take
account of the offsets as well as the message spectrum.

The optimum Wiener filter minimizes loop-phase-error variance in the
linear region of operation. However, our concern is in minimizing
threshold; does the Wiener filter accomplish that also? No analytic method
sheds any light on the question—we do not know how to analyze the PLL
accurately in the threshold region. Only experiment is available to the
investigator.

Few reports of experimental testing of Wiener-optimized loops can be
found in the literature. By gleaning among several obscure sources, it was
discovered that the linearly derived Wiener filter in fact does not minimize
the threshold. At best, it is a starting point for an empirical search for the
minimum-threshold PLD.

The potential complexity of a Wiener filter is often unacceptable. A
simpler approach is to use a loop of ordinary form (for example, a
standard second-order loop) and then minimize the threshold by adjusting
the loop parameters (e.g., damping and natural frequency in the second-
order loop).

An analytic approach could be attempted by explicitly writing H(jw) in
terms of its parameters in (9.33) and then minimizing by proper choice of
parameters. If the spectra of modulation and noise are at all complex, the
minimization must be accomplished by means of computer search
methods.

Such a search was tried with a second-order loop and spectra as
described in Table 9.1. The following results were obtained:

» Calculated values of phase-error variance were an oscillatory function of
natural frequency, suggesting that any automatic computation proce-
dures might get into difficulty.

e The minima were extremely shallow. This comes about because of the
narrowband filter preceding the PLL; widening loop bandwidth beyond
that of the filter bandwidth adds very little additional noise.

* Experiment did not agree at all well with the calculations. The natural
frequency producing minimum click rate in the laboratory did not
correspond with the natural frequency that yielded minimum calculated
variance.




FM Threshold 193

Before concluding that linearized phase variance is a poor way to
approach PLD threshold optimization let us examine one other method.
We represent the loop transfer function in polar form

H(jw)=|H|e¥ (9.35)

where the frequency dependence of the polar components has been
suppressed for notational convenience. Substituting (9.35) into (9.33) and
performing some algebra, we obtain the variance as

1 o ®,
2= | [(1—2|H|cos¢+|H|2)F+(I>,,,|H|2 do  (936)

Irrespective of |H|, the variance will be minimized if cos ¢ =+1. (The
same condition arises in the derivation of the optimum, Wiener, unrealiz-
able, infinite-lag filter.2%) That is, =27k, where k=...—2,-1,0,1,2,....

Amplitude and phase response of a network are closely related; they
cannot be specified separately.”’ Assuming a minimum-phase network and
oversimplifying somewhat, the phase condition implies that the amplitude
response has a slope of 24k dB/octave. From the discussion accompany-
ing (9.22) we know that flat amplitude response is needed in the frequency
range that includes the modulation spectrum, so a choice of k=0 deserves
attention.

In conventional PLLs that have equal numbers of poles and zeros in the
loop filter to control damping and stability, the amplitude response is flat
for low frequencies and falls off at —6 dB/octave at high frequencies. The
phase is zero at DC and approaches —90° asymptotically for high
frequency.

A realizable network with zero phase at all frequencies must also have
constant amplitude response at all frequencies; no finite-bandwidth PLL
could have such response. Neglecting any parasitic elements, the rolloff of
a conventional loop is due to the integrator action of the VCO; if that
could be overcome, a phase near 0° could be achieved over a much larger
frequency range than is accomplished in an ordinary loop.

By building a loop with proportional plus integral plus derivative control
we achieve asymptotically zero phase at high, as well as low, frequencies.
Such a loop is shown in Figure 9.14 (compare against Figure 2.2) and its
Bode plots are shown in Figure 9.15.

Novick and Klapper?®*? have arrived at essentially the same configura-
tion, but starting from the phase-feedback circuit of Figure 6.14. They
have devised a variance-minimization algorithm and have found minimum
variance if Kr,7;/7,=1 (notation is shown in Figure 9.14). Therefore, at
high frequencies |G| approaches 1 and |H| approaches 0.5. Phase of the
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Figure 9.14 PLL with derivative control added.

closed-loop approaches zero at high and low frequencies but must exhibit a
lag in the vicinity of the break in open-loop amplitude slope. Zeros of G or
H could be complex.

Since response is flat at high frequencies, the noise bandwidth of this
circuit would be infinite. Yet the authors report a significant lowering of
threshold from a conventional PLL. If the technique proves to be generally
applicable it could be an important advance in the PLD art. More work is
needed; in particular, a physical explanation of the cause of the improve-
ment would be valuable.

The informed reader will object to the inclusion of an ideal differentia-
tor, which is a nonphysical network. Any approximation must eventually
flatten off from the +6 dB/octave response of a differentiator, which
mears that the ultimate high-frequency phase of the closed loop cannot be
zero after all; it must be at least —90°. Note that this conclusion is based
entirely on theoretical limits of realizable networks and does not rest on
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the inevitability of additional rolloffs caused by unwanted parasitic ele-
ments. No information exists, at the present time, on the degree of
perfection required—on the permissible location of the unavoidable
pole(s)—of the practical differentiator.

Imperfections of real differentiators can be circumvented by using the
phase-feedback phase detector instead of a differentiator. The loop trans-
fer functions will be similar to those shown in Figure 9.14.
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9.15 Bode plots of PLL with derivative control added: (a) open loop (compare
Figure 2.10), () closed loop.
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PLD Threshold: A Summary

e An input filter is an integral part of a PLD and should not be neglected.

« Bandwidth of the input filter should be the minimum consistent with
acceptable message distortion. A larger bandwidth entails a threshold
penalty.

 Amplitude response of the input filter should be substantially flat over
the full range of frequency deviation to avoid interaction with PLL gain.

e A limiter is not needed in a PLD and its inclusion raises threshold level.

e Bandwidth of the PLL must be substantially larger than that of the
message and probably larger than that of the input filter.

e For any loop configuration, there exists an optimum loop bandwidth
that yields a minimum output click rate. The optimum is a weak function
of the input CNR and a strong function of modulation conditions.
Present methods are inadequate to determine the optimum analytically;
experiment with the actual signal and hardware to be used is perhaps the
best approach open to the design engineer.

« If a second-order loop is employed, experiment suggests that damping of
about 1 to 1.5 is optimum.

e A standard second-order loop is not likely to be the optimum filter
configuration or even the best practical configuration.

 Wiener optimization of a linearized loop appears not to offer guidance to
the practical minimum-threshold PLD.

« Adding derivative control seems to be helpful, but a physical explanation
of its effect is lacking.

e Much more work remains to be done.
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Chapter Ten

Locked Oscillators
and Synthesizers

A phaselocked loop includes a locked oscillator, by definition. It may seem
redundant to devote a separate chapter to locked oscillators in a book on
PLLs. Nonetheless, there are applications in which the primary objective
of the PLL is to lock an oscillator, usually to improve its stability. Some of
those applications are presented here.

A frequency synthesizer generates a large number of different output
frequencies, all related to a single, highly stable reference source. Phase-
locked synthesizers are the most popular type. Some elements of the
principles of phaselocked synthesizers are described in this chapter.

10.1 OSCILLATOR STABILIZATION

There are two diametrically opposed varieties of oscillator stabilization:
narrowband and wideband. In the first, a narrowband PLL is employed as
a filter to clean up another oscillator or other signal that is accompanied
by noise. In the second, a noisy oscillator is phaselocked to a clean
reference to stabilize the locked oscillator.

Crystal oscillators used as frequency standards have their best long-term
frequency stability if they are operated at extremely low RF power levels
(crystal aging is slower at the low levels). However, as is noted in Chapter
6, best short-term phase stability is obtained at an intermediate power
level, where the RF signal is much greater than the circuit noise.

The best results are obtained if two separate oscillators are used: a very
low-level one for good long-term stability and a second oscillator, phase-
locked to the first, operated at a higher power level for good short-term
stability. Bandwidth of the loop should be as narrow as possible, consistent
with maintaining reliable lock, and output is taken from the locked
oscillator.

198
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Using the loop is equivalent to passing the phase noise of the first
oscillator through an extremely narrow filter to reduce it substantially. The
same technique is useful for cleaning up the output of frequency synthe-
sizers in which harmonics and multiplier products are often present.

Microwave oscillators with usefully large power output can be built with
transistors, klystrons, backward-wave tubes, IMPATT or TRAPATT di-
odes, or Gunn diodes. Electronic tuning is accomplished by changing
operating biases on the active device, by using a varactor diode, or by
using a magnetically variable YIG resonator. These diverse oscillators
share a common trait of poor phase stability. Without additional stabiliza-
tion, they are unusable in narrowband applications.

An effective method of stabilization is to lock the microwave oscillator
to a harmonic of a stable, low-frequency source, such as a crystal oscilla-
tor. The loop tracks out the phase fluctuations of the locked oscillator (see
Chapter 6), so the output has the stability of the frequency-multlplled
reference source.

One configuration of oscillator stabilization is shown in Figure 10.1. The
only novel element is the frequency multiplier needed to obtain the proper
harmonic of the stable low-frequency source. Often the multiplier is
incorporated into the phase detector itself (see next section). Large num-
bers of such phaselocked oscillators are sold as complete packages with
acquisition circuitry included. The packages are widely used for trans-
mitters and for receiver local oscillators in fixed-frequency service. A
phaselocked source is usually more economical of power than a multiplier
string of equal output power.

In a laboratory instrument, it is necessary to be able to operate at many
different frequencies, ideally over a large, continuous band. This is accom-
plished by the heterodyne stabilizer or lockbox of Figure 10.2. A sample of
microwave output is heterodyned against the Nth harmonic of a stable
reference oscillator at frequency f, to generate a mixer product at the
intermediate frequency. This is filtered, amplified, perhaps limited or
otherwise level controlled, and applied to a phase detector where it is
compared in a phase against a low-frequency oscillator at frequency f,.

Microwave
oscillator

f,
‘ :: }—b X N F(s) -—>< :: >— f?utp;:];;

Reference
source

Figure 10.1 Locked microwave oscillator.
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Figure 10.2 Heterodyne stabilizer.

The DC output of the PD is filtered and used to phaselock the microwave
oscillator.

Harmonic mixers are wideband devices and produce a great many
harmonics of the reference oscillator. (A harmonic comb generator might
be used to enhance the operation of the mixer alone.) The circuit is
designed to operate at any of the harmonics in a specified range of
frequencies; the loop locks to any one of those harmonics, which are
spaced f, apart. Finer coverage is obtained by varying f, or even f,.

A harmonic mixer is typically inefficient, so the desired IF output is
weak as compared to the two RF input levels. Low amplitude is easily
remedied by an ordinary IF amplifier, provided that the IF signal ampli-
tude does not drop too close to the noise level. Since IF amplifiers are
simpler to build and less costly than efficient, high-order harmonic genera-
tors, this is an effective method of harmonic locking. Furthermore, it is
easier to build phase detectors at a reasonable intermediate frequency than
in the microwave region.

Total phase noise of the locked oscillator is a filtered combination of the
jitter of the unlocked microwave oscillator, the reference oscillator, and
circuit noise. (Noise contributions of the f, oscillator often can be ne-
glected.) Oscillator noise is analyzed in Chapter 6 and additive noise is
analyzed in Chapter 3.

We designate the phase noise spectrum of the unlocked microwave
oscillator as ®,(w) rad’/Hz, the phase noise spectrum of the reference
oscillator as ®,(w), and the spectrum of the ‘equivalent additive noise as
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®,(w). If the IF noise may be considered white with spectral density N,
V?/Hz, then @, =2N,/ V? rad’/Hz, where V, is the peak amplitude of the
IF signal. Oscillator jitter spectra usually must be obtained experimentally
or from manufacturer’s specification.

The phase noise spectrum of the locked oscillator becomes

®,(w)=(®, +N2® )| H(jw)?+|1- H(jw)’®, rad’/Hz (10.1)

The factor N2 appears because X N multiplication magnifies phase excur-
sions of the reference oscillator by N times.

Given the three noise spectra, the design task is to choose the transfer
function to minimize output noise. Practically, the loop is almost always of
second order, so the designer must select damping and natural frequency
to minimize jitter.

The performance criterion is not uniquely specified. Sometimes one tries
to minimize total jitter over a large bandwidth, but other applications place
greater weight on minimizing the spectral density at a spot frequency. If
the three constituent spectra are known analytically, then (10.1) or its
integral can be minimized on w, and {. More likely, the spectra will not be
known, so experimental adjustment of loop parameters will be needed to
find optimum performance.

If the microwave oscillator is particularly noisy or if the reference is
especially stable, the optimum bandwidth might be quite large. Typical
units have bandwidths K /27~20 kHz on up to 1 MHz or so. As is noted
in Chapter 8, an actual feedback loop has many more roll-off elements
than are wanted. It is necessary to assure stability of the loop, and a
satisfactorily stable design could be appreciably narrower than the ideal
optimum derived solely from the noise spectra.

Along with destabilizing the loop, extra poles and delays are likely to
induce peaking of the loop response, causing minor lobes to appear on an
otherwise unimodal oscillator noise spectrum.

10.2 HARMONIC LOCKING

An oscillator often must be locked to a harmonic of the input reference
frequency. The preceding section illustrates methods employing frequency
multipliers to generate the harmonic in a straightforward manner. Another
popular technique (Figure 10.3) utilizes frequency dividers to reduce the
oscillator frequency to that of the reference. The technique is especially
attractive at frequencies low enough to permit the use of digital counters as
the dividers.
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Figure 10.3 Harmonic locking by division.

As in any harmonic generator, the phase jitter at the output includes a
component equal to N times that portion of the reference jitter that passes
through the loop transfer function. Also, if there is closed-loop baseband
noise v, at the PD output, then the corresponding VCO phase jitter is
Nv,/ K, assuming that the spectrum of v, lies inside the loop bandwidth.
If N is large, the output jitter can be unacceptable, even for respectably
small values of reference jitter or v,. Extreme measures are sometimes
needed to suppress stray circuit noises that are ordinarily negligible.

Harmonic locking can also be obtained without any distinct frequency
multipliers or dividers in the circuit; the harmonics are produced by the
phase detector itself. In a multiplier-type phase detector (Chapter 6) the
useful DC output is the average product of the two inputs; DC output is
possible only if both inputs have a component at the same frequency. It is
not necessary that both inputs have the same fundamental frequency—
only that they contain a common harmonic. Moreover, it is not essential
that the actual input waveform contain the harmonic; it could also be
generated by nonlinearity of the phase detector.

In consequence of this property of multipliers, a phase detector is
capable, in general, of generating locking DC outputs for frequencies
Nf, = Mf,, where M and N are integers. In the previous circuits M has been
unity and only integer harmonic locks have been obtained. It is entirely
possible to have M+ 1 and thereby obtain fractional harmonic locks. The
integer harmonic locks are best known; if either PD input is sinusoidal,
only integer-harmonic locks are possible.
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As an example, we consider a simple full-wave switching phase detector
(Figure 6.5) in which M =3 and N=1. (Locking is to a subharmonic of the
reference, but harmonic locking could be obtained by switching the PD
from the reference so that N=3 and M=1.) Waveforms are shown in
Figure 10.4.

Close inspection of the waveforms reveals the following facts regarding
the PD output:

e Areas of positive and negative portions of the output waveform are
unequal, which means that a DC component is present. Relative phase
shift between the two inputs would alter the amount of DC—in this
case, sinusoidally. The DC versus phase characteristic is repetitive in the
period of the common harmonic.

e Only a comparatively small portion of the output waveform contributes
to the useful DC (compare Figure 6.5) so the maximum possible DC
amplitude is small. In general, high-order harmonics produce small
locking voltages.

¢ The lowest beat-frequency component is at the difference frequency
between the two inputs f.— f;. The beat-note can be much more promi-
nent than the locking DC.

These results are typical of all harmonic PDs and are not specific to the
example.

A conventional switching PD, driven with symmetrical square waves on
both inputs, works only for odd values of M and N; a symmetrical square
wave contains only odd harmonics. To operate on even integers, the
waveforms must be asymmetrical and must contain appropriate even
harmonics. A sampling PD works on any harmonic, since an impulse
sampling train contains all harmonics of the sampling rate.

Reference 7\ yaN yaN /\ PN N\ 2z
TN N N NS NS \A
| | | | |
V.CO —
in ]

}
|
|
PD \'/\ JAaVa YA VAN yavyaN N
out ~ V¥V \/ | 4 N\ V N 14 \/ |

Figure 104 1/3-harmonic phase detection.
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Conventional PDs are found in locked oscillators as in Figure 10.1, with
multiplication of 3, 5, or even 7 times accomplished in the phase detector.
If higher ratios are used, not only does the locking voltage become small,
but there could be a problem in selecting the correct harmonic.

Fractional-harmonic locking is more likely to appear as an unwanted
effect than to be attempted deliberately. Spurious locking at ratios as high
as 17: 18 have been observed experimentally. Making one input sinusoidal
prevents all fractional-harmonic locks. If sinusoids are not feasible (many
applications using digital components require square waveforms), then
frequency-aiding acquisition circuits (Chapter 5) can often overcome the
relatively weak spurious lock.

Despite the fact that they are usually detrimental, fractional-harmonic
locks do offer some promise of a low-cost method of producing fractional
harmonics. It might not be a bad solution for a specialized, fixed-
frequency synthesizer.

The above discussion is centered on multiplier-type phase detectors, but
simple flip-flop sequential PDs can also be shown to produce harmonic
lock voltages—both integer and fractional. A general explanation of the
multiplier action was easily given, but it is more difficult to generalize
about sequential operations. However, tracing the waveforms of any
specific sequential PD will quickly show its harmonic-lock properties.

Note that the sequential phase-frequency PD (Chapter 6) ought not
support harmonic locking because the built-in frequency slewing should be
capable of overcoming any harmonic lock voltages that could be gener-
ated.

10.3 TRANSLATION LOOPS

A frequency translator shifts an input frequency f; to an output frequency
f, % f,. The benefits of translating by means of a PLL may be seen from an
example. Let us suppose we wished to offset a 30-MHz signal by 1 kHz.
One way to accomplish this would be by means of conventional single-
sideband techniques, but good suppression of carrier and rejected sideband
would depend on critical circuit adjustments.

A phaselock offset could be completely noncritical if obtained as shown
in Figure 10.5. In this technique a VCO, whose uncontrolled frequency f, is
close to the desired output, is heterodyned with the incoming frequency f;;
the beat-note is close to the desired offset f,. This beat is compared with an
oscillator whose frequency is exactly f,, and the loop is closed back to the
VCO so that the mixer beat-note is locked to the offset oscillator.

At first appearance, it would seem that phaselock has completely
eliminated the residual carrier and unwanted sidebands that remain in
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L=hith Figure 10.5 Translation loop.

conventional SSB techniques. Such perfection is not actually obtainable;
any phase-detector ripple will modulate the VCO and produce unwanted
sidebands in the output. If a full-wave phase detector is used, the inpui
carrier, in principle, will not appear, and the dominant sidebands will be at
fi*f, and f,23f,. If a half-wave phase detector is used, the first-order
sidebands will be at f, and f; +2f,; the undesired sideband at f,¥f, is
second order.

Ripple may be reduced to any desired extent by means of brute-force,
noncritical lowpass filtering in the loop filter. Such filtering usually re-
quires a narrowing of loop bandwidth. In essence, the unwanted sidebands
are filtered by the PLL itself.

Notch filters are sometimes used; they combine large atienuation, at a
fixed frequency, with small phase shifts at low frequencies within the loop
bandwidth. Notch filters, when applicable, can be more effective than
simple filters and may permit a larger loop bandwidth.

A phase detector with low inherent ripple (e.g., sample and hold PD or
sequential phase-frequency PD; see Chapter 6) may be more effective than
any practical filtering in suppressing ripple.

The loop of Figure 10.5 is capable of locking to either of the two
sidebands f, + f, or f,—f,. In most instances a specific sideband is wanted
and the other is an undesired image. Provision must be made to avoid
locking to the image.

If the VCO is unable to tune to the image, the problem vanishes. More
generally, if the VCO can tune both to the desired signal and to the image,
then other measures must be taken to avoid image lock.
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Figure 10.6 Image-rejecting PLL. (Waveform equations in Table 10.1.)

One approach is to use an image-rejecting phase detector as shown in
Figure 10.6. This circuit is a variation on conventional single-sideband
mixers and is applicable in any long loop where image rejection is needed.

The input signal at frequency f, is heterodyned to the offset or IF
frequency in a pair of identical mixers. Filters select the desired difference
frequency and reject the unwanted mixer products: in particular, the sum
frequency. Because the two mixers have quadrature local drive, the two IF
outputs are 90° apart in phase. (The same 90° relation could be achieved
with a single mixer and a 90° phase-splitting network at the intermediate
frequency. However, it is often convenient to produce quadrature drives
using binary counters as in Figure 10.7.)

=

4-’;; 2

@ o 180°
+ 2 e
180°

90°
——

- 270°
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Figure 10.7 Quadrature outpu‘s by means of digital counters.
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Table 10.1 Waveform Equations* of Image-Rejecting PLL

Uiy = Sin(wlt + 0[)
U, =2sin(w, ¢ +6,)
v,p =2cos(w,?+48,)
va =COS[(w1 _wo)t + 01 - 00]
Omp = Sin[(“’l - wo)t + 01 - 00]
Vs = 2Sin(wbt + 0b)
Uyn =2cos((0b’ + ob)
L7 =Sin[(w| W, +w,,)t + 01 - 00 + 9b]
_Sin[(wl —w, —w,,)t + 0] - 00 - 0b]
Uy = sin[(wl —w, +w,,)t + 01 - 00 + 0,,]
+Sin[(w| — W, -—wb)t+ 01 - 00 - 0b]
O+ =(vap + v40)=2sinf(w; — w, + @)t + 6, — 8,+ 6]
=2sin(f, — 8, + 0,) at lock. Selects f,=f, + f,.
0g— = (05 — Ug4) =2sin[(w; ~ @, —wp)t + 8, — 6, — 6,]
=2sin(8, — 6, — 0,) at lock. Selects f,=f, — f;.

*Notation is defined in Figure 10.6.

Each IF signal drives a phase detector whose other input comes from the
offset oscillator at frequency f,. A 90° phasing is imposed between the f,
drive voltages to the two phase detectors.

Individual phase detectors have outputs at sum and difference frequen-
cies, as shown in the waveform equations of Table 10.1. At lock either the
sum frequency or the difference frequency of the PD goes to zero. In an
ordinary loop, lock occurs at either zero-beat condition. In the image-
rejecting PLL, adding or subtracting the two PD outputs cancels out either
the difference- or sum-frequency component, respectively. Lock can occur
only at the remaining component. High-side or low-side translation is
determined by selecting sum or difference of the PD outputs.

Perfect cancellation is impossible to achieve, so a weak lock may still be
possible at the image frequency. Acquisition aiding, such as rapid sweep, is
needed to override locking to the weak image.

If the phase detectors are perfect multipliers and if the two inputs to
each PD are sinusoidal, then the image-rejecting connection suppresses the
double-frequency ripple.""? This feature permits loop bandwidth to exceed
the input frequency f,—an impossible condition in a conventional loop.

As an interesting curiosity, if the input can be furnished as a two-phase
signal, the image-rejecting PLL can track even if the input frequency f,
goes through zero. One mechanization is shown in Figure 10.8.
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A complete image-rejecting PLL is often overly elaborate for merely
avoiding lock to the unwanted sideband. A simple quadrature phase
detector (Figure 5.15) has one polarity of output for lock on the upper
sideband and the opposite polarity on the lower sideband. This polarity
information can be furnished to acquisition-aiding circuits to prevent the
loop from locking up at the wrong sideband.

104 FREQUENCY SYNTHESIZERS

A block diagram of a basic phaselocked synthesizer is shown in Figure
109. The synthesizer contains a reference source at frequency Jf and a
VCO at frequency f,. The reference frequency is divided by an integer N
and the VCO frequency is divided by M; the two divided waves are then
compated in a phase detector. Phaselocking imposes the condition of
f./N=f,/ M, so the output frequency is locked to a rational fraction of the
reference.
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Figure 109 Basic phaselocked synthesizer.
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Long-term stability and accuracy of the output frequency therefore are
the same as that of the reference multiplied by M /N. Short-term stability
is that of the reference times M/ N if loop bandwidth is large and it is that
of the VCO if loop bandwidth is small. The phaselocked synthesizer offers
a means of generating a large number of highly accurate output frequen-
cies at low cost.

Frequency selection is performed by changing the divider ratios M and
N. Digital counters are used almost exclusively in this service; many clever
counting schemes have been devised.?

Output frequency of the basic synthesizer is selectable in increments of
£,/ N, which is the frequency at which phase comparison is performed.
Loop bandwidth must be substantially smaller (assuming a conventional
PLL and not an image-rejecting circuit) to suppress ripple adequately and
to assure loop stability. If the desired increments are small, then the loop
bandwidth must be extremely small.

On the other hand, a large loop bandwidth is preferred so as to achieve
rapid acquisition and to stabilize short-term jitter of the VCO. A severe
conflict can arise between these competing goals.

One method that sometimes alleviates the conflict is shown in Figure
10.10. The VCO frequency is P times the output frequency of f.M/NP.
Frequency increments of f,/ NP are obtained, but the phase comparison is
performed at a frequency of f,/N. The bandwidth conflict is relieved by a
factor of P at the cost of operating the VCO dividers at P times the
frequency required in the basic configuration. The technique is an eco-
nomical solution to a serious problem, but limitations on counter speed
inhibit its general application.
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The multiple loops of Figure 10.11 combine harmonic loops, output
division, and translation loops to avoid the conflicts of the basic loop. As
shown, the example uses the same comparison frequency f,/N at each
phase detector, but this is neither necessary nor particularly desirable.

If we assume that all mixers select the difference product and that
fi>1,/ P, and f,>f;/ P, then the output frequency is

_/t M, M,
f‘_ﬁ M1+—I-,-2—+ PP (10.2)

The output frequency is selectable in increments of (f,/N)X1/P,P,.
More loops can be added to achieve even smaller increments without
reducing the comparison frequency. The lower loops might all be con-
structed as identical modules for ease of manufacturing.

Mixers produce many unwanted output products as well as the one
desired component. Existence of unwanted products raises the possibility
of spurious components in the synthesizer output or even locking to the
wrong frequency. Although not obvious from the diagram, presence of
mixers also reduces the possible range of output frequencies.

A major design problem in synthesizers is to select internal frequencies
so that mixer products do not cause adverse effects. That task is eased by
the arrangement of Figure 10.11 in that each mixer is contained within and
is filtéred by its own loop. The mixer from one loop does not insert its
output—either desired component or undesired component—directly into
any other loop. The associated loop acts as a tracking filter for the desired




Frequency Synthesizers 211

A h
@__> N 2 F,(s) ,——)@-——*—> Output

+ M, MI;(E'

]
P

4 | F,(s) @

\
+ M, Mi;er
A

Fy(s) —»@——4

+M3

Figure 10.11 Multiple-loop synthesizer.

mixer product and suppresses all others in an amount depending on the
loop bandwidth and transfer function. Ripple must be taken into account
as in Section 10.3.

Another possible arrangement, shown in Figure 10.12, in essence, pro-
vides a vernier effect. The output frequency can be shown to be

A
hi= (N+1)

(M|+M2)+y' (10.3)

If M,+ M, is maintained constant, then changing M, by one will change
the Sutput frequency by an increment of f,/ N(N + 1). Additional loops can
be stacked into the system to obtain even smaller increments. The M-
divider settings are not independent as in (10.2); rapid computation of the
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Figure 10.12 Vermnier loop synthesizer.

correct M values for a specific frequency may be troublesome in a
multiloop synthesizer.

All the preceding counters operate on an integer subharmonic of their
input frequency. There is one pulse out for each M input pulses.

It is also possible to arrange counter circuits such that there are L pulses
out for M input pulses!; the circuit multiplies by L/M. If the input
frequency is f, then the counter output frequency is Lf;,/ M, which is the
comparison frequency for the PLL. However, by changing L, frequency
increments of f;/ M can be obtained.

The L/ M counter is a base-M counter that counts by increments of L
instead of 1. Bilevel output depends on whether the count is greater than
or less than N /2. The counter operates cyclically modulo M rather than
resetting upon overflow.

Unfortunately, the L output pulses are not evenly spaced and cannot be
if L and M are relatively prime. In effect, there is inherent phase modula-
tion of the output pulse train. Spectral analysis* shows that all harmonics
of f,/ M are present at the counter output, with Lf,/ M being the strongest.
If M is large, the unwanted harmonics might be suppressed to acceptably
small levels.

A synthesizer is usually a complex machine and many problems arise in
its design. Spectral purity is always a goal and often demands extraor-
dinary efforts to achieve. Oscillator noise is described in Chapter 6, the
magnifying effects of harmonic locking are discussed in Section 10.1, and
external additive noise is described in Chapter 3. Noise also arises within




Frequency Synthesizers 213

loop components such as op amps, phase detectors, and dividers. Digital
circuits produce switching noise. Power supplies contribute unwanted hum.
Mixers generate unwanted sidebands. Phase detectors have ripple in their
outputs (Chapter 6).

These problems can be attacked in various ways. Out-of-band external
disturbances are suppressed by the filtering action of the PLLs themselves;
this is one of the major features of phaselocked synthesizers. In-band
disturbances must be treated by suppressing the disturbance at its source
—a task that, demands painstaking care to find and reduce all noise
sources and skill on the part of the designer to devise circuits that
introduce little disturbance (for example, phase detectors with small ripple;
synthesizer configurations with modest divider ratios to minimize phase-
jitter magnification). Good out-of-band filtering must be supported by
excellent shielding and isolation of circuits operating at different frequen-
cies.

Another problem is achieving fast acquisition of the correct lock
frequency in each loop. Speed of acquisition depends on loop bandwidth
—which is a strong reason to utilize a large comparison frequency.
Acquisition aids (Chapter 5) help obtain fast, reliable lock. Since the
intended frequency is known (in contrast to locking to an incoming signal
of unknown frequency), a synthesizer often applies an analog pretuning
voltage to the VCO to set the frequency nearly correct even before lock is
obtained. This expedient reduces the frequency-search interval, thereby
improving acquisition speed and avoiding possible frequencies of improper
lock. (False locks and sideband locks are discussed in Chapter 8 and
harmonic locks are discussed in Section 10.2. Improper locking can also
occur if a signal from one circuit leaks through to another circuit because
of inadequate shielding or isolation.)

Synthesizer design cannot be given justice in a small space; several
books®>”? provide vastly more detail plus a large bibliography. A good
survey of synthesizer types and problems is given in Ref. 8. Perusal of the
references will show that the synthesizer types presented here constitute
only one of many types that have been used, even among the restricted
class of phaselocked synthesizers. At the time of this writing, the phase-
locked synthesizer with digital counters is by far the most popular of all.

Because the circuit uses digital counters, probably a “digital” phase
detector (phase-frequency detector of Chapter 6), and perhaps even digital
mixers**, the synthesizers shown in Figures 10.9 to 10.12 are often called
“digital” synthesizers. The designation is a misnomer; these are really
analog loops. See Section 6.6 for a discussion of the requisite features of a

*Digital mixers—really D flip flops—encounter timing difficulties and are not recommended
in high-performance applications.
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true digital PLL. A digital synthesizer generates a sequence of digital
numbers (which may be converted to analog form) by means of a dif-
ference equation®'® or a table lookup'!, or by other techniques not yet
known. It does not have a continuously running VCO for its output nor
does it have an analog quantity as its error measurement, both of which
are found in the counter phaselocked synthesizers.
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Chapter Eleven

Data Synchronizers

To an ever-increasing extent, information is being transmitted in digital
formats. Very often, the data are transmitted synchronously: that is, in
continuous, uniform pulse streams. Optimum detection of the data requires
a local clock generator that is in close phase agreement with the received
pulse train. :

A data stream often must be modulated onto a carrier frequency before
it can be transmitted over the communications channel. The most-efficient
modulation methods are coherent; they make use of the phase information
of the carrier. Optimum demodulation requires a local carrier source at the
receiver whose phase is in close agreement with that of the received signal.

The receiver circuits that generate the receiver carrier and clock wave-
forms are known as the carrier and clock synchronizers. Their location
within a typical receiver is shown in Figure 11.1. Phaselock loops are
widely used in these synchronizers.

Analog
Bandpass baseband Digits
signal in signal _ Data out
Trom RF Demodulator detector
circuits \
——t—=q Data
Reference | . 1 strobe Clock
carrier y Prefilter | out
| S | e
Carrier Clock
synchronizer synchronizer

Figure 11.1 Digital recciver illustrating locations of synchronizers.
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11.1 GENERAL PRINCIPLES

Efficient modulation techniques suppress the carrier completely; all trans-
mitted energy resides in the data sidebands and none is “wasted” on a
discrete carrier component. (If a reliable carrier component is present, then
the carrier-tracking loops of earlier chapters can be used and the
suppressed-carrier methods discussed here are superfluous.)

Efficient data pulse streams contain no discrete component at the clock
frequency. For example, standard, square-waveform, random, non-return-
to-zero (NRZ) signaling actually has a spectral null at the clock frequency.

All the narrowband PLLs considered so far require a discrete signal
component at the frequency to be tracked. Since such a component is
absent from efficient data signals, a conventional PLL will fail to track and
is incapable of acting as a data synchronizer.

Suitable nonlinear circuits can regenerate a carrier or clock, respectively,
from a data signal that contains neither. Therefore, a nonlinear regenerator
is an integral portion of a data synchronizer; this particular nonlinearity
has not appeared in the PLLs studied up to now.

Two different general configurations of regenerator are shown in Figure
11.2. In one approach (Figure 11.2a) the regenerator is an entirely separate

Input Nonlinear
signal device | Fts)

©

Clock or
carrier out

(a)

Input Nonlinear
phase F(s)
detector

]

signal

(")
-/
Clock or
carrier out
(b)

Figure 11.2 Nonlinear regenerator configurations: (a) separate nonlinearity; (b) nonlinear
phase detector.
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circuit; it regenerates the desired carrier or clock, which is then tracked in
the normal manner by an ordinary PLL.

In the other method, the phase detector itself contains additional nonlin-
earities that produce a useful error voltage from a data signal lacking
carrier or clock component. Figure 11.2b shows the general configuration,
and specific examples are given below.

(The separate nonlinearity does not require a PLL; a narrow bandpass
filter could be used instead. Filters have been used to avoid the hangup of
PLLs' when fast acquisition is needed (see Chapter 5) and also are found
in large numbers in the telephone network.2 A PLL can provide automatic
compensation for frequency drift of either the signal or circuit components
—a benefit not easily obtained with a simple filter circuit.)

The following steps must be taken in the design of a synchronizer:

e Devise a suitable nonlinearity for the specific task at hand.
o Identify disturbances and analyze performance.
e Select PLL parameters.

Numerous examples of nonlinear circuits are given in the following pages.
Although the list could hardly be complete, there is enough to provide
guidance to a designer.

The second step is the most difficult. Many disturbances are identified
here, but the reader needing analysis details is referred to the literature.
The essential nonlinearity usually makes analysis very difficult.

Loop parameters are selected much as for a conventional loop as is
described earlier in the book. Once performance analysis has been accom-
plished, loop-parameter selection is comparatively simple.

11.2 CARRIER SYNCHRONIZERS

To introduce carrier synchronizers, it is useful to restrict our initial
attention to binary signaling with rectangular NRZ bit waveforms: binary
phase shift keying (BPSK). More general formats are considered afterward.
If the data bit is a 1, the bandpass signal is transmitted with a phase of
+90°; if the data bit is a zero, the signal phase is —90°. Each pulse is
exactly T secs in duration and the pulses are 7' secs apart. If equal
numbers of 1s and Os are transmitted, the carrier is completely suppressed.
If the baseband data stream waveform is represented as m({), the trans-
niitted signal is

o,(£) = m(t)sin(w;t +8) (11.1)
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where «; is the carrier frequency and 4, is the signal phase, as defined in
the previous chapters.

Circuit Configurations

There are three types of carrier synchronizers known at this time: the
squaring loop,’ the Costas loop,* and the remodulator® (or inverse modulator
or reverse modulator or unmodulator). Block diagrams and operating
equations are shown in Figures 11.3 to 11.6.

The squaring loop is the easiest to understand. Its nonlinear element is
conveniently modeled as a square-law device, so the output of the nonlin-
earity is

0, () =m*(t)sin® (w,2 +6) = 3 m*(1)[ 1 - cos (2w,t+26))]  (11.2)

A conventional PLL, operating at double the carrier frequency, locks to
the second-harmonic component of (11.2) and the VCO output is divided
by 2 to provide the desired reference carrier at the signal frequency. A
second-harmonic component exists for any message waveform for which
avg(m?)#0.

Alternatively, let us consider the nonlinearity to be a frequency doubler.
Input consists of either of two phasers at +90°, as sketched in Figure 11.3.
Frequency doubling also doubles the phase of each of the two phasers so
that they fall on top to each other at +180°, at the doubler output. The

Frequency
doubler

m(t) sin w; ¢t m?(t) cos 2w;t
——3=1 BPF = ()2 7®—> F(s)

1
BW > T
) 2(0,‘ C
Input-signal Y
phasers at w;
Phasers out of + 2
+90° frequency doubler
at 2w,~ lw‘_
+180°
——q——— - |
Local carrier:
0 or 180° equally likely
—90° (To demodulator)

Figure 113 Squaring loop.
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input phasers, on the average, cancel one another, so there is no carrier
component at the input. The output phasers add up in phase to produce a
strong second harmonic.

The divide-by-2 following the VCO can operate in either of two phases,
determined by the random starting state of the divider. Because of this
phase indeterminancy, it is impossible to decide whether the current bit is
supposed to be a 1 or a 0 without further information.

This observation introduces us to the fundamental ambiguity of all
phase-shift modulation techniques; if the information is transmitted in N
different phases, there is an N-fold ambiguity in the data recovery. The
ambiguity is not a defect of the squaring loop—or other carrier synchro-
nizer—but is inherent to suppressed-carrier, phase-shift keying. It can only
be resolved by special encoding or other information carried in the
message. Ambiguity-resolution methods are not described here.

Two versions of a remodulator, or inverse modulator, are shown in
Figures 11.4 and 11.5; they are minor rearrangements of one another and
have identical performance. In Figure 11.4, the incoming signal is demod-
ulated and the message waveform m(f) is recovered. This baseband wave-
form is used to remodulate the incoming signal; if the waveforms are
rectangular and time aligned, then the remodulation removes the modula-
tion completely, so the technique is also sometimes called modulation
removal. Output of the balanced modulator has a pure carrier component
at the input frequency and the PLL tracks that component.

Demodulator
Input m(t—ty) cos (6, — G,)
LPF

signal
m(t) sin (w;t +0;)

To bit detector

sin (w; t +6,) cos (o, £ +6,)

Phase

F
) detector

vCco
m2(t — tg) sin 2(6; — 6,)

2(p — i . ) 0. —6
m(t — tg) sin (w;t+0;) m2(t 1) sin (w;t +6,) cos (0;=00)

Balanced
modulator

Figure 114 Remodulator.
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Figure 115 Inverse modulator. (Terms “remodulator” and “inverse modulator” are used
interchangeably and indiscriminantly.)

The version of Figure 11.5 is slightly different in that the remodulator
imposes the recovered message modulation on the VCO output so that
both inputs to the phase detector are identically modulated. When taking
the low-frequency product of two such waveforms, we find a DC compo-
nent of the same amplitude as if the inputs had no modulation.

The demodulator, the balanced-modulator or remodulator, and the
phase detector are all modeled as ideal multipliers. Some factors of 2 have
been neglected in the equations given in Figures 11.3 to 11.5. Often the
same circuit element is used in all three places, for example, a diode-ring
modulator (Figure 6.9.)

Note that the DC output from the phase detector is proportional to
sin 2(,— 4,); there are two stable tracking points for each cycle of input.

Following the demodulator there is a lowpass filter (LPF) that passes the
baseband recovered signal and rejects noise and double-frequency mixer
products. Unless there is adequate bandpass filtering prior to the demod-
ulator, it is essential to use a LPF to keep the baseband output well above
noise. (The filter, whether bandpass or lowpass, must have sufficient
bandwidth to pass the message without excessive distortion.)

Any physical filter necessarily has delay, denoted ¢;. The waveforms
multiplied together at the balanced modulator (Figure 11.4) or the phase
detectot (Figure 11.5) must be time aligned. Otherwise the respective
modulations are not well-correlated and the available DC output of the
phase detector is reduced. If time misalignment is as great as one full pulse




Carrier Synchronizers 221

interval, the correlation falls to zero and no useful output is available from
the PD.

To compensate for the filter delay, a fixed-delay #, is inserted into the
signal path before the signal is applied to the multiplier. Delay placement
is shown in Figure 11.4 and 11.5. Besides compensating for the filter delay,
it is necessary that w,z,=k for the circuit phasing be correct, where k is
an integer.

A block diagram of a Costas loop is shown in Figure 1.6. It can be
derived from a series of passband-to-baseband transformations on a re-
modulator circuit. The nonlinear elements are all modeled as ideal multi-
pliers; diode rings, or the equivalent, can be used at the two input
multipliers, but a well-balanced baseband circuit is needed for the third
multiplier.

Qualitative operation can be visualized as follows: In the absence of
modulation, the Q arm acts as a conventional PLL, with the usual PD
error voltage being developed at the output of the Q-arm multiplier. When
modulation is present, the polarity of the Q-arm output reverses each time
that the modulation changes sign; average output is zero (for random data)
irrespective of the phase error.

The I-arm multiplier produces a signal in quadrature to that from the Q
arm. If phase is nearly correct for tracking, then the /-arm output is the
data message. This is used for reversing the Q-arm voltage in the third
multiplier, thereby wiping out the polarity reversals that invalidated the
Q-arm output as an error voltage. Third-multiplier output is proportional
to sin 2(6, — 8,), just as in the remodulator or squaring loop.

Demodulated

I arm m(t) cos (6; —6,) bit stream
——»@— LPF —

1
BW)ﬁ.

2 sinfw;t +0,)

Input signal | ~ Fls)
—————g h $ 2
m(t) sin {w; t+6;) L”_.z_(.‘_) sin 2(6, — 6,)

90°

2 cos (w, t+0,)
b c D Q arm LPF m(t) sin (6; —6,)

Figure 11.6 Costas loop.




222 Data Synchronizers

Multiphase Synchronization

All circuits considered so far have been restricted to binary modulation,
but modified versions of the three circuits are used for multiphase com-
munications formats. Four-phase examples are shown in Figures 11.7 to
11.9. Technology is still evolving for circuits dealing with more than four
phases.

A X N multiplier is shown in Figure 11.7. Its operation is understood,
for rectangular pulses, by simple extension of the squaring loop. For
rounded pulses, the desired coherent Nth harmonic is regenerated by
intermodulation among the data sidebands. At least Nth-order intermod-
ulation is required to produce the carrier. If the message-waveform band-
width is sufficiently restricted, then the circuit may fail to regenerate a
carrier on some data patterns. (One such pattern would cause the signal
phase to advance continually by 1/N cycle for each symbol; the circuit
interprets this as an unmodulated signal displaced by 1/NT Hz from the
correct carrier frequency, where T is the symbol interval.)

Block diagrams of four-phase remodulators and Costas loops are shown
in Figures 11.8 and 11.9. In a four-phase transmission, independent
messages x(¢) and y(f) modulate the two quadrature components of the
carrier so the transmitted signal can be represented as

0,(#) = x(¢) cos(w;2+6,) —y(#)sin (w;z + 6,) (11.3)

After the usual multiplications and trigonometric identities, the low-
frequency output of the phase detector for either the remodulator or the

i
_neut 1 gpr YN ® FGs)
w;
Nw,-
+ N

Reference
carrier w;

Figure 11.7 X N multiplier.
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Costas loop (they are the same) is found to be
v ()= xsinf, +ycosf,]sgn [ xcosd, —ysind, ]
—[xcos0,—ysin0,]sgn[xsin0e+ycos0,_,] (11.4)
where 6,=6,—6, and sgn( ) is the hard-limiting operation.

If the message waveforms are rectangular, the average DC outputs can
be calculated as

V,=siné, —45° <0, < +45°
= —cos#, 45° <4, <135°
= —sind, 135° <6, <225° (11.5)
=cos¥, 225°<8,<315° )

This characteristic is illustrated by the solid curve of Figure 11.10. It
approaches very close to being a sawtooth.

If bandwidth is limited, the pulses cannot be rectangular and the
near-sawtooth of Figure 11.10 is modified. Calculations are difficult for

as

p—

Pp——
p—
_-’/

/-180 -135 -90 —45 0 45 90 135 180

Figure 11.10 Phase-detector characteristic of four-phase remodulator or Costas loop.

A 6, (deg)
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rounded pulses (very difficult if the pulses overlap, as they do in a
narrowband transmission), but the tendency is for the discontinuities and
sharp peaks of the sawtooth to be rounded off, as shown by the dashed
curve of Figure 11.10. Noise also causes rounding of the sawtooth: a
reversion to sinusoidal as explained in Chapter 6.

A stable lock can be achieved at any of four different phases: 0, =90, or
180°. There is an inherent fourfold ambiguity that must be resolved by
other means.

The limiters shown in Figures 11.8 and 11.9 are essential for the correct
operation of the circuits. If linear amplifiers were substituted for the
limiters, the circuits would fail to regenerate the desired local carrier.

To regenerate a carrier from a suppressed-carrier, four-phase signal
requires at least a fourth-order nonlinearity in the regenerator. Lacking a
nonlinear device at the position of the remodulator or Costas limiters,
there would be only second-order nonlinearity in the circuit, from the
multipliers, and no carrier could be obtained. -

A third-order, or any higher odd-order, baseband nonlinearity could be
substituted, but the limiter is the easiest to construct.

The Costas loop and remodulator, either two-phase or four-phase,
include the data demodulator as part of the circuit. A demodulator is
entirely separate if a X N multiplier is used instead.

In essence, both the remodulator and the Costas loop remove modula-
tion by multiplying by the demodulated message waveform in analog form.
Better noise rejection is possible if the message value is optimally detected
and the digital message value is used for the modulation-removal multi-
plication. This type of synchronizer is said to be decision directed* and has
less noise-caused jitter of the reference carrier because the operation of bit
degeg%ion rejects noise better than the simpler analog-multiplication cir-
cut™ "’

Additional delays are needed to compensate for the delay of the data-
detection circuit; delays must be inserted into the Costas loop as well as
the remodulator. Note that the delays and the demodulator lowpass filters
are within the feedback loop and must be taken into account when
considering stability. Note also that the remodulator really has two feed-
back loops, which makes for interesting problems in analyzing the dynamic
performance.

A decision-directed circuit cannot acquire the carrier until the clock has
been acquired and may not be able to acquire the clock until the carrier
has been acquired. Decision-directed synchronizers may not be acceptable
if fast acquisition is required.

*Alternate terminologies are data aided and decision feedback.
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Carrier Synchronizer Performance

In general, analysis of a synchronizer is very difficult because of the
presence of the nonlinear regenerator. An example analysis is carried out
in Appendix B for the simplest case: a squaring loop with an ideal
square-law nonlinearity. The results obtained there are used to point up
features that are common to all carrier synchronizers.

Under certain restrictive conditions,* the noise-caused VCO jitter of a
squaring loop is approximated by (B.23)

2B, N N _B.
o 2 L "0 i o™i
(2 ) _4( l:2 )(1 132 )

=4( 2BLN")(1+%)— ) rad? (11.6)

where the recovered carrier phase is §,, the VCO phase in a squaring loop
is 20,, N, is the spectral density of white, gaussian input noise in V2/Hz, V,
is the amplitude of the input signal, B; is the bandwidth of the input
bandpass filter in hertz, 2B, is the double sideband noise bandwidth of the
PLL, and p,=V?/2N,B; is the signal-to-noise ratio in the input filter.

The quantity within the first set of parentheses is recognized as the jitter
variance of an ordinary PLL from (3.18). Jitter variance of a squaring loop
is 4(1+1/2p,) times as large as that of an ordinary PLL tracking a pure
carrier of the same amplitude in the same noise. The factor of 4 in the
variance (it is only X2 in the rms jitter) arises because of the phase
magnification effect of the frequency doubler; the amplitude of any phase
disturbance that occurs at the fundamental frequency is doubled at the
second harmonic.

Phase magnification appears only in the PLL at 2«w;; it does not affect
the recovered carrier phase at w; directly. In the squaring loop, the VCO
frequency is divided by 2, thereby removing the magnification from the
recovered carrier. But the PLL must track the magnified phase; its locking
ability is necessarily impaired by the magnification. Where a simple PLL
might be able to hold lock down to 0-dB loop SNR, a squaring loop can be
expected to lose lock around +6 dB.

{In terms of (11.6), lock will probably fail if (2 ,)? exceeds approxi-
mately 0.5 rad’. Appreciable cycle slipping is incurred for SNRs above
loss-of-logk.]

*Do not apply (11.6) before reading Appendix B, which explains the conditions.
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In the second set of parentheses we see an increase of jitter caused by
squaring loss. This term arises because of intermodulation of noise by itself
in the squarer; at low input SNR, the noise-times-noise term comes to
dominate. No such term exists in the simple PLL of Chapter 3. In the
squaring loop, the jitter increases by 2 dB for each 1 dB of SNR reduction
at small enough levels of input SNR. This phenomenon occurs even for
small jitter, with the PLL within its linear region; it is inherent to the
nonlinear regenerator and is not caused by the PLL per-se.

Identically the same effects occur for a Costas loop or a remodulator.
Although VCO jitter in these two configurations is the same as recovered-
carrier jitter, the PD characteristic is proportional to sin 24, so the PD has
only half the dynamic range of the conventional PLL. Loss of lock can be
expected in the vicinity of SNR; = +6 dB.

In an N-phase synchronizer, the jitter can be represented as

(NG,,)* =N?

2B, N, g
( 122 : )LN(pi) (1L.7)
where N2 shows the N-fold phase magnification and Ly(p;) is the loss
caused by noise intermodulation. Phase magnification elevates loss of lock
by 20 log,, N dB as compared to a simple PLL.

Intermodulation loss depends on N, p;, and the nature of the regenerator
nonlinearity. There can be a substantial difference between different
nonlinearities.>® Some typical losses are given in Table 11.1 for the special
case of an Nth-law nonlinear element.’

Examples of jitter from (11.7) are plotted in Figure 11.11 for 2B, =
B; /1000, a rather narrow choice of loop bandwidth, but not atypical. The
curves are parallel at large input SNR; their vertical separation in that
region arises from the X N phase magnification. Upward curvature at
s:nall SNR is caused by the noise intermodulation. Clearly both effects

Table 11.1 Intermoduiation Losses of N th-Law Regenerators

N Ly(p;)
1 1
1
2 l+§E
3 1+24+ 2
- p; 3p,~2
4 1+246,3

o pF 297
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Figure 11.11 Synchronizer jitter example. (B;/2B,=1000, N=order of nonlinearity in
regenerator.)

combine to degrade tracking severely as compared to the conventional
PLL. In particular, a synchronizer is not able to hold lock nearly so far
down into the noise as can a simple carrier-tracking loop of the same
bandwidth.

Synchronizer performance improves if input signal-to-noise ratio p, can
be increased. A designer has the synchronizer filters—the bandpass filter
for a X N multiplier or the baseband filters for a Costas loop or remodula-
tor—available as a design parameter. If filter bandwidth is too large,
excess noise is admitted and p, is unnecessarily small. If filter bandwidth is
too small, the filter cuts off too much of the useful signal spectrum and p,
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is again too small. There is an optimum choice of filter that will maximize
i

Layland'® has shown that the optimum filter approaches the signal-
matched filter asymptotically for small ratios of signal density to noise
density. That is, if we let the pulse wave shape received at the filter input
be denoted by p(¢) and let its Fourier transform be P(jw) and the input
noise is white, then the optimum filter Y(jw) is approximated* by | Y(jw)]?
=|P(jw)|*. This result applies directly to the baseband filters of the Costas
loop or remodulator and the bandpass equivalent applies to a X N syn-
chronizer. Just exactly this filter is often optimum for data detection, so the
same filter serves both purposes—synchronization and detection—simul-
taneously and optimally.

In many digital communications systems, multiple, identical channels
are close in frequency. The equipment must be designed to avoid adjacent-
channel interference (ACI). Experience and simulations have demonstrated
that ACI must be strongly excluded from the nonlinear regenerator of the
carrier synchronizer or else significant performance degradation will be
incurred.

Regenerators in the Costas loop and remodulator are protected against
ACI by baseband filters, while a X N multiplier relies on the bandpass
filter. The fact that baseband filters are often easier to build might be one
reason to prefer a baseband configuration to the X N multiplier, particu-
larly if the carrier frequency is very large compared to the symbol rate.

Numerous papers®”!!~!7 provide alternate and deeper analyses of carrier
synchronizers. By applying Fokker-Planck methods, it is possible to obtain
the probability density of the jitter and cycle-slip statistics. Probability
density, in turn, can be used to calculate the effect on data error probabil-
ity. Most of the literature is specialized to rectangular signaling pulses.

As a concluding remark, be warned that a carrier synchronizer may be
able to lock to data-related sidebands at frequencies spaced k/NT Hz
from the carrier'®2! (k= +1, +2,...). If the initial carrier frequency uncer-
tainty prior to lock includes any of these side frequencies, the reference
output might very well get locked to the sideband instead of the desired
carrier frequency.

*More precisely, if ® (w) is the spectral density of the input signal prior to filtering, the SNR
at the output of the squarer is maximized if the bandpass filter is

) ,(w)
| Y(w)P= @) +N, /3

~

Computer simulations indicate that jitter is not very sensitive to moderate departures from the
-optimum filter.
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The origin of sideband lock is most easily seen in a squaring loop,
although the cause is essentially the same in any configuration. Output of
the squarer is m*(f)cos2w;?, after the DC terms are discarded. Either
because of the filtering or because of the way it was originally generated
and transmitted, m(¢r) does not have a rectangular wave shape. In con-
sequence, the envelope of the signal applied to the squarer is not constant
but varies with the data pattern (See Figure B.1.) It can be demonstrated?!
that m*(r) contains discrete spectral lines at DC and at harmonics of the
symbol rate.

The DC component multiplies cos2w,t to produce the desired double-
frequency carrier, while the symbol-rate components produce coherent
sidebands spaced 1/T apart. Given sufficient signal-to-noise ratio, the
PLL can lock to any of these sidebands. After division by 2, frequencies of
the reference carrier lock are spaced by 1/27. (For an N-phase system, the
reference carrier locks are spaced by 1/NT.)

Some protection against sideband locks is obtained by placing a hard
limiter between the bandpass filter and the squarer. A perfect limiter
would eliminate the data-related envelope variations.

Two difficulties prevent complete effectiveness of a limiter. Firstly, the
envelope variations include complete nulls for each phase reversal (Appen-
dix B). Only a perfect hard limiter can limit on vanishingly small input,
and any physical circuit is less than perfect. Therefore, the envelope
variation cannot be suppressed completely.

Secondly, if the signal is not centered in the filter passband there is
AM—PM conversion due to asymmetrical transmission through the filter
(see Appendix B). The PM sidebands so generated are not affected by a
limiter.

Another antisideband approach is to utilize a frequency discriminator to
aid correct acquisition (Chapter S). The resemblance of a Costas loop to a
quadricorrelator is marked (compare Figures 5.14 and 11.6). The two
detector circuits can be combined so as to share components. In fact,
simply using different filters in the two arms of the Costas loop produces a
frequency-aiding constituent in the loop error voltage.?!

11.3 CLOCK SYNCHRONIZERS

In contrast to the small number of carrier synchronizer types, there is a
very large number of clock synchronizer configurations, and new ones
appear regularly. Several examples are chosen to illustrate the operation of
clock synchronizers. Although enough is known of the subject to permit
design of very good circuits, a better understanding is still needed.
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Bandwidth Regimes

Clock synchronizers can be categorized according to the bandwidth of
the communications system. We distinguish wideband and narrowband
signaling regimes. Clock-synchronizer designs for the two regimes are
significantly different: they face different problems; there have been two
disjoint sets of investigators; and the authors of the existing literature are
divded into two camps. Examples of papers dealing with wideband clock
recovery may be found in Refs. 23 to 29 while narrowband examples are in
Refs. 22 and 30 to 36.

We assume that the digital information is transmitted by weighted
pulses, each with identical shape and spaced uniformly by 7 secs. Informa-
tion is carried in the weighting (e.g., 1 weights for binary transmission).
This section deals with baseband pulses, but it is to be understood that
they might very well have been retrieved by demodulating a passband
signal. -

The characteristics of the two regimes are given in Table 11.2.

Signal Representation

A baseband data pulse stream may be represented as
> a,p(t—nT) (11.8)

where g, is the data weighting applied to the nth pulse and p(¢) is the shape
of each pulse. If the data are binary, a,= * 1. The g, take on more than
two values if the data are nonbinary.

Maximum Likelihood Trackers

If the pulse waveform is strictly confined to the interval T [i.e., p(£)=0
for ¢ outside the interval (0, 7)), then there is an optimum clock timing
known variously as the maximum likelihood (ML) estimate™®2 or the
maximum a posteriori (MAP) estimate.’® The usual derivation of the
optimum estimate assumes an open-loop search and measure implementa-
tion, which impractically assumes that the phase holds stable once the
optimum estimate has been found. Also, the derivation does not provide a
ready evaluation of the errors in the estimate.

Ordinarily it is necessary to use a closed-loop tracking synchronizer to
accomodate relative phase drift between the incoming signal and the local
clock. Stiffler® and Mengali®® have devised tracking synchronizers that
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Table 11.2 Signaling-Bandwidth Regimes

Wideband Regime
Bandwidth occupancy greatly exceeds the signaling rate 1/T

Signaling pulses are essentially confined to single symbol interval
T. Pulses may be, but need not be, rectangular

Dominant disturbance is usually white, additive, gaussian noise. In
some applications, jamming or other cochannel interference
may be dominant

Coding may be used on the digital message, implying that input
SNRs might be quite low

Examples of wideband links may be found in military and deep
space communications

Narrowband Regime

Bandwidth occupancy is very small, approaching the Nyquist limit
of 1/2T Hz in baseband or 1/T Hz in double-sideband
modulated signals

Pulse shapes spread over many symbol intervals T; pulses overlap.
Rectangular shape is not even a good approximation

Dominant disturbance is often from overlapping pulses, known
variously as intersymbol interference (ISI) (in communications
systems) and pulse crowding (in playback of digital magnetic
recordings). Signal-to-noise ratios are often large (e.g., 30 dB
minimum is typical in some telephone-line applications),
although small SNRs are also encountered

converge to the ML estimate and which, it is hoped, should have much the
same phase error statistics. (Because the mechanizations of the open- and
closed-loop synchronizers are so very different, it is impossible that they
would"have identical statistics. If the errors are small—the condition of
most practical interest—we would hope that the error variances would be
nearly the same.)
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Figure 11.12 Clock synchronizer based on maximum-likelihood estimate.

Mengali’s tracker is shown in Figure 11.12; there is a distinct resem-
blance to a Costas loop.* In the upper arm the incoming signal is
correlated, symbol-by-symbol, with a stored replica of the signal pulse
shape. The correlator is sampled at T-sec intervals and the integrator in the
correlator is discharged (“dumped”) immediately after each sample.

(Once the timing is properly aligned, the upper correlator provides
optimum filtering for detection of the data value. The correlator samples
can be used for data decisions.)

In the lower arm, the incoming signal is correlated against a stored
replica of the derivative of the signal pulse shape. Output of this correlator
is also sampled at T-sec intervals and the integrator is then dumped
instantaneously in preparation for the next integration interval. When the
local timing agrees with that of the incoming signal, the average output of
the lower correlator is zero; when there is a timing error, the lower
correlator output departs from zero.

If the incoming pulses were all of the same polarity, the polarity of the
lower correlator would show the direction of the timing error. However,
the incoming data have random signs, so the lower correlator has random
polarity of samples.

*This resemblance is not accidental; the Costas loop is an approximation to a tracking ML
estimator of carrier phase.®
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The samples from the upper arm contain the data-sign information, so
multiplying the two arm outputs together removes the data randomness
and provides a signal containing error-sense information. This is-then
treated in the same manner as the error voltage in an ordinary PLL or a
Costas loop; the loop is closed through the usual loop filter and VCO and,
for this synchronizer, a pulse generator as well.

The tanh nonlinearity arises out of the ML derivation and is approxi-
mated by a soft limiter. In fact, if SNR is large, it is well approximated by
a hard limiter, while for small SNR the approximation is best if the path is
linear.

Mengali has analyzed the circuit of Figure 11.12 for white noise, for
p(0)=p(T)=0 (an important restriction, as we see later), for large SNR,
for B, T, and for a hard limiter. His result is

._ TB,

o= (11.9)

where e=71/T, 7 is the timing error, r= E, /N, is the input SNR defined in
data terms, N, is the one-sided noise density, E, is the energy per signal
pulse, b=T’E;/ E,, and E; is the energy of p(t)=dp(t)/dt.

T
Ep=j; pX(t)dt

T,

By use of a raised-cosine signal pulse, the results of (11.9) were com-
pared against a report of Monte Carlo simulations?® for the maximum-
likelihood estimator. The tracker phase variance was roughly 20% worse
than optimum, a minor degradation. Analytical prediction of the optimum
is difficult and there does not appear to be any numerical evaluation other
than Ref. 23.

For engineering purposes, (11.9) might be regarded as a lower bound on
the achievable jitter from a tracking clock synchronizer. Furthermore,
Figure 11.12 provides a guide to the intelligent implementation of a
wideband synchronizer.

Mengali’s analysis breaks down for a rectangular pulse shape since
p(0)#0 and p(T)#0. The ML timing estimate for a rectangular pulse
exists, but the circuit of Figure 11.12 cannot find it. This is unfortunate
becausé of the practical importance of rectangular signal pulses. Other ad
hoc schemes must be employed.
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Early-Late Gates

An early gate—late gate synchronizer is very popular for rectangular
pulses; one example is shown in Figure 11.13. Many variations are possi-
ble?*%?7; the example shown here is one of the easiest to explain, has been
employed frequently, and is convenient to mechanize.

The heart of the circuit consists of a pair of gated integrators, each
performing its integration over a time interval of 7/2 sec. Integration by
the early gate occurs in the T/2 sec preceding the nominal location of data
transitions, while the late gate integrates during the 7/2 sec immediately
following the transitions. Gate intervals adjoin one another but do not
overlap. If timing error is zero, the data transitions fall exactly on the
boundary between early and late gates. Illustrative waveforms are shown
in Figure 11.14,

If timing error is not zero, a transition falls not on the boundary but
within one or the other of the gates. Since signal polarity changes within
the gate containing a transition, the associated integration reaches a lesser
magnitude than when the transition is external to the gate. Comparison of
magnitudes of the two integrations gives an indication of timing error.

We denote the timing error by 7 (|7| <T/2). Useful gate output is the
integrated value that has been accumulated after 7/2 sec; that is, the

Early gate
Vamm =\
T Sample Full—
T —>1 and —>1 wave
7172 hold  |Xke| rectifier
A Clock
out
+
Bit stream Timing Fls)
A Ea,,p(t —nT) Vi 4
a,=t1
A
1 T2 Sample Full—
> f —>> and =1 wave
T r hold xer|  rectifier
\ , /
- . Late gate

Figure 11,13 Early gate-late gate synchronizer. Suitable for rectangular pulses.
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Figure 11.14 Waveforms of early-late gate (rectangular input).

integrator is sampled after the integration has been completed. The loop
does not see the integration details that precede the sample. We designate
the samples as x,; and x,,;, where k is a counting index on a sequence of
data pulses. Sample values are

1 pr+ir 1
=— t)at; =
e T1£+(k—§)rs( ) et TI'[r+kT

3 e (o)

where T, is the time constant of the integrators and the incoming binary
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signal is
s()=V, ap(t—nT) (11.11)
n

The pulse p(?) is taken as rectangular, with duration 7.
For 7> 0, the integration sample values are

| 4
X g = Tj [(%T—— 'r)ak_l+ak]

V. aT
ka:_TfkT (11.12)
Similar forms obtain for r <0. In practical analog circuits, the samples are
held for a time g7 (¢< 1)*, their magnitudes are compared and then
dumped, and the cycle repeats. From the waveforms of Figure 11.14, it
may be seen that the held samples are compared sequentially, not simulta-
neously; this expedient leads to simple circuitry but causes a strong ripple
at the bit rate frequency.

The error from a pair of samples is

Y=gl = %L (for all 7)
v
= 71[|(§T— 1)a,_+a1|=3T|g|]  (forr>0) (11.13)

Average error voltage applied to the loop is
V.=4E(») (11.14)

where E( ) indicates statistical average. Sample values depend on data
sequence and timing error as shown in Table 11.3

Table 11.3 Error Sample Values (7>0)

Data Sequence »wT;/V,
Q. _1=4ay 0
ay_7a; 21, (0<7<iT)

2r—T; AT<r<3T)
and similarly for r <0

-

*In Figure 11.14, g¢=0.5.
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We see that a nonzero error signal is generated only when a transition
occurs between bits. This behavior is typical of most practical signal
formats and synchronizer types because timing information is carried only
in the data transitions. In the absence of a transition, no timing informa-
tion is present and the voltage ought to be zero.

If there should be a long run of data without transitions, no error
information is supplied to the loop for the duration of the run. Phase of the
VCO will drift off from its correct position because of noise and circuit
offsets. If the run is long enough, compared to the drift rate, the loop
eventually slips one or more clock cycles. A clock slip is ordinarily a
serious matter since it also destroys frame synchronization; sensible data
cannot be retrieved until frame sync has been reacquired once again.

Probability of a transition between bits is labeled 4 and is often called
the transition density of the bit stream. For random binary data, 4=0.5 but
long runs without transitions are possible. System designers often must
select signal designs that guarantee sufficient transition density, even over
fairly short runs.

Extending Table 11.3 to negative timing errors and taking transition
density into account yields an average error voltage

—qV.d
V,= qu T (I71<57)
- 4‘;{1(,_%T) (AT<r<1iT) (11.15)
V.d
=5 (e+iT)  (SiT>> —4T)

which is a periodic, triangular characteristic, as sketched in Figure 11.15.

There can be variations on the basic scheme, mainly in the timing of the
gates. Shorter gate times can be used—an expedient that might improve
noise performance but that introduces dead regions when the timing error
is such that the transitions fall into neither gate. An extreme example is
shown in Figure 5.4.

If the gates are shorter than 7/2 they need not adjoin one another. In
this case a portion of the dead zone is introduced into the region of the
tracking crossover. Dead zones at the tracking null usually impair feed-
back stability and are to be avoided if at all possible.

Gate intervals longer than 7'/2 seconds are possible; the gates would
have to overlap to accomodate the longer durations.?®
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Figure 11.15 Average error output of early-late gate.

Noise analysis of a nonlinear synchronizer circuit is a formidable under-
taking. Stiffler® has produced a semilinear analysis that includes the
effects of squaring loss. Simon has analyzed overlapping gates’’ by
Fokker-Planck methods and therefore obtains slip probability as well as
error variance. There does not appear to be any complete nonlinear
analysis published for the arrangement of Figure 11.13.

By imposing extreme simplifications, it is possible to perform an ap-
proximate linear analysis of the same form as that in Chapter 3. The
approximations are valid only if the input signal-to-noise ratio is large.
This condition is often, but not always, attained in practical communica-
tions systems.

Let us consider the individual gated integrators, where superposition of
signal and noise still applies; that is, the contributions of signal and noise
to the integrated values can be considered separately and merely summed
together. Input to the integrators is s(#)+ n(z), where s(¢) is defined in
(11.11) and n(¢) is white, gaussian, zero-mean noise of one-sided spectral
density N, V?/Hz.

Following Papoulis*’ the noise variance of integrated samples is

N,T

T (11.16)
1

E(xjg)=E(x%.)=

where x,, represents the noise contribution to the kth sample, either early
or late, as indicated by the final subscript. We assume that timing error is
zero, so the magnitude of the signal integration is ¥, T /2T, for all samples.
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Each sample is applied to a full-wave rectifier whose output will be
|V, T/2T,+ x,4)-

For a large enough signal-to-noise ratio, the first term almost always
exceeds the second, so the rectifier output can be approximated as
V.T/2T, + x,, sgnx,, where x, is the data value within the gate interval.
By making this approximation, we neglect the squaring loss inherent to all
rectifiers. At low signal-to-noise ratio the loss is not negligible so the
analysis would no longer be valid.

We define X, = x,, sgnx,, which is really the noise samples with random
(data-related) reversals of polarity. Since the signal and noise are indepen-
dent of one another statistics of x,,k are identical to those of x,. In
particular, E(%2)= E(x%)=N,T/4T}.

Signal components of the integrator output tend to cancel (they should
cancel exactly if timing error is zero), while noise components are com-
pletely independent and add on a power basis. Phase detector output can
be represented as :

v.d
o — qT, ++ qn, +ripple (11.17)

where n, = %, - — X, ; henceforth ripple is neglected. Ripple must be dealt
with by the designer and can be troublesome in actual practice. It does not
enter into the analysis of additive noise effects.

We define n; = nl,; dI s
qv.d
T,

1

(11.17a)

Op =

Note that n has dimensions of time and may be regarded as an additive
source of timing error introduced into the loop in a manner analogous to

the introduction of n’ of Chapter 3.
From its definition, we know that n; has zero mean and its variance is

(2) =) Bl =5 75 [ECGEe) B3]
- 21;}:2 (11.18)

The following noise properties were used in obtaining the result:
E(% g X)) =0 E(f,,kf,,j) =0 (for k#j)

“ 2
x:k =(xy580%) = xfk
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Noise samples occur at regular intervals of 7/2 sec. Samples are
independent, so their spectrum is flat over the Nyquist band 0 to 1/ T Hz.
Spectral density of the noise samples is

o= E(n) _ N, T

"= /T~ 2vid (sec)*/Hz (11.19)

This noise propagates through the loop, is filtered by the closed loop
transfer function, and causes a time jitter At of the VCO output.
As in Chapter 3, the time jitter can be approximated as

E[Ar*]=®,.B,  sec (11.20)

The approximation assumes B, T<1.
It is convenient to normalize the timing jitter to the bit interval whence

A’T 2 _ NoBL
E[(T) ]- s (11.21)

is the variance of fractional timing error introduced by the additive noise.
Transition-Tracking Loop

The early—late gate loop acts to place the boundary between the two
gates exactly at the transition instant. Departure from that timing gener-
ates the loop error signal.

It is also possible to produce an error signal by using a single gate that
straddles a transition. If the transition is exactly centered within this
midphase gate, integration over the gate interval is zero. If the transition is
not centered, then the integration produces a positive or negative error
output.

Sense of the error must be determined according to the direction of the
transition. Also, if there is no transition, then no information has been
presented and the integrator output must be ignored. Transition detection
and direction sensing can be performed by conventional detection of the
data bits (in an inphase integrate-and-dump circuit) and by digital logic
operations on the current detected bit and its predecessor.

Lindsey and Tausworthe’®?® invented a scheme that implements the
opefations outlined above and have called it the digital data-transition
tracking loop: * digital”, because it was built largely from digital hardware.
A complete description can be found in Refs. 26 and 28 and a detailed
nonlinear analysis is in Ref. 29. Characterization of operation is far better
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than for the early—late gate. It is not clear that either method has
significant performance advantage over the other when both are optimized.

Other Wideband Synchronizers

The delay-line multiplier of Figure 11.16 is attractive in its simplicity,
provided that the input signal-to-noise ratio is large. Analysis shows that
the output of the multiplier contains a discrete spectral component at the
clock frequency. Amplitude of the regenerated clock depends on the pulse
waveform and the delay time #,. For rectangular pulses, it can be shown
that the clock-component amplitude is maximized if ¢,=T/2.*

Not only can the delay-line multiplier regenerate a clock from a base-
band bit stream, but it also works on a passband PSK signal. Output
amplitude is proportional to cosw;t,, where w; is the carrier frequency of
the incoming signal. Frequency and delay must be chosen such that
|cosw;z,}~ 1. Otherwise the amplitude of the regenerated clock is reduced;
particularly destructive effects occur if |w;7,|=7/2.

Examination of waveforms of the delay-line multiplier would show that
its output consists of a unipolar pulse (rectangular, of duration 7/2, if the
signaling pulses are rectangular and 1,= T/2) at the location of each data
transition and is zero otherwise. Noise is neglected in that description.
Spectral analysis?? of the resulting pulse train yields the clock-rate compo-
nent.

The delay-line multiplier is just one form of transition detector. Any
circuit that generates a unipolar pulse at each signal crossing is a transition
detector. The resulting sequence of unipolar pulses will contain a clock-
rate component. Figure 11.17 shows a couple of transition detectors that
have seen use in various applications.

In recovery of bit timing from magnetic recording media—tapes, discs,
and drums—the signal-to-noise ratio is usually large, so additive noise has
little influence. One common scheme is to hard limit the playback signal
and utilize a special form of sequential phase detector (Chapter 6) to
determine the timing error. Operation of the sequential PD must be such
that output is zero in the absence of a transition. In particular, a phase-
frequency detector is rarely applicable.

Sequential phase detectors are notorious for fractional-harmonic locks
(Chapter 10); the designer should be alert to the possibility of their
occurrence.

Playback speed of tape machines is not constant; the data stream is
frequency modulated by speed variations known as flutter. To detect the

*If pulses are sufficiently bandlimited—specifically, Nyquist pulses with no energy outside
the band 0 to 1/ T Hz—then the clock amplitude is maximized for #;=0.
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Figure 11.16 Delay-line multiplier. This system also works with PSK IF input.

data properly, it is necessary that the local recovered clock have much the
same flutter as the data stream. Therefore, the clock synchronizer needs
to have sufficient bandwidth to track most of the flutter modulation. If the
synchronizer fails to track the flutter—if the loop bandwidth is too small
—then the flutter appears as timing error in the data detection. For high
data rates, the data phase excursions could easily correspond to several
symbol intervals on typical machines, which would be disastrous if not
tracked out.

All the synchronizers shown in this chapter—clock and carrier, wide-
band and narrowband--are implemented in analog circuits. Digital im-
plementation is also possible and may even be preferable, especially for
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Figure 11.17 Transition detectors: (a) differentiator; () crossing trigger.
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low-rate clock synchronizers. Examples may be found in Refs. 38 and 39;
the latter contains a sizable bibliography.

Narrowband Synchronizers

The outstanding feature of bandlimited pulse trains is that the individual
pulses overlap one another. Overlap can extend over many pulse intervals
in truly narrowband systems.

Because of the overlap, correlators or gated integrators are unsatisfac-
tory for data decision filtering or for clock regenerator circuits. If gate time
is restricted to one symbol interval, the tails of the current pulse are lost
and there is interference from tails of neighboring pulses. If gate time
spans more than one pulse interval, there is even worse interference from
other pulses. Narrowband receivers almost invariably use filters rather
than correlators; data detection is accomplished by samplmg the filter
output.

To avoid intersymbol interference (ISI) the pulses are given a Nyquist
shaping®® whereby the tails of one pulse go through zero at the sampling
times of all other pulses. Nyquist shaping works very well to eliminate ISI
at sample times in the data detection circuits, but it is not sufficient to
eliminate the effects of ISI on the clock synchronizer. In general, the
recovered clock wave has a jitter component caused by ISI. Since the jitter
is caused by the data pattern it has been called pattern noise or pattern
Jjitter. In many applications it predominates over the additive noise and can
be the major concern of a synchronizer designer.

To introduce the problems of narrowband synchronizers, we consider a
separate regenerator of the general type suggested in Figure 11.2a4. (The
same behavior obtains with the nonlinear phase-detector type of regenera-
tor, but the explanation is easier with a separate nonlinearity.) Henceforth
we neglect additive noise.

Output of the regenerator can be written as

v,(t)=Asinw,t + a(t) sinwt + b(t) cos w,? (11.22)

where w, =27/ T is the clock frequency, A4 is the amplitude of the regener-
ated clock (to which the PLL locks), and a(f) and b(t) are random,
zero-mean disturbances caused by the data and ISL

The PLL locks to the first term. If tracking is accomplished without
phase error (see Chapter 4), then the loop does not see a(#). If there is a
phase error 6,, the PD output contains a term a(f)sinf, as well as
b(t)cosh,. To avoid interference from a(f), the inphase component, the
loop phase error should be kept very small.
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Figure 11.18 Quadrature spectra from clock regenerator. (H(f)[* shows transmission
through PLL.)

Statistics of a(¢) and b(¢) are very difficult to determine. No general
solution, applicable to all pulse shapes, exists. However, some special
cases, simulations, and hardware experience all point to a curious result,
which is now discussed.

The nonlinearity spreads the spectra; if the data spectrum extends
roughly from O to 1/27, the spectra of a(f) and b(f) extend from 0 to
about 1/T. This kind of behavior is typical of even-order nonlinearities
and is not restricted to clock synchronizers. The in-phase spectrum @,(f)
tends to be an ordinary, lowpass spectrum: a spread and somewhat
distorted version of the data spectrum, as in Figure 11.18. The quadrature
spectrum ®,(f) is quite different; it is small or zero at zero frequency and
rises monotonically as frequency increases, at least out to the high-
frequency rolloff.

Transfer function of the PLL plots as a narrowband, lowpass filter
concentrated near zero frequency in Figure 11.18. Quadrature density is
small and not flat within the loop passband; simple formulas used previ-
ously for white noise are not applicable.

One consequence of the shape of @, is that the phase variance it causes
rises as a steep function of loop bandwidth. For white noise, the variance
would be directly proportional to B,, but the quadrature pattern jitter can
go as B} or B}, depending on pulse shape and nature of the nonlinearity.
Prudence requires that the bandwidth be kept small, even if additive noise
is negligible.

Another consequence is that the resulting jitter has high-frequency
content, much greater than ordinarily anticipated. One particular, formal
analysis® predicts that the jitter could be infinite for the usual PLL in
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which the loop rolloff is only —6 dB/octave. The ill effects of the
high-frequency content can be suppressed by including an extra pole in the
PLL, presumably at a frequency well beyond the open-loop gain crossover.
“Infinite” variance is a manifestation of potential cycle slips, but these are
ameliorated by the extra pole.

Faced with the spectra of Figure 11.18, it is evident why the’steady loop
phase error must be kept small. If tracking error is zero, only the quadra-
ture disturbance contributes to jitter and its density is small within the PLL
bandwidth. If tracking error does not vanish, some of the in-phase dis-
turbance is cross-coupled into a quadrature disturbance that generates
phase jitter. Since the in-phase disturbance is relatively large within the
PLL passband, small amounts of cross coupling can cause large increases
of jitter.

Existence of quadrature disturbances means that phase modulation is
included in the regenerated clock wave. An alternative view is that the zero
crossings of the regenerated clock wave are not equispaced. The latter
condition is an inevitable feature of data pulse trains whose bandwidth is
too narrow to satisfy Nyquist’s second criterion.** As a corollary, if the
bandwidth is wide enough to avoid pulse overlap, then it should be
possible to avoid quadrature disturbances, which is the reason that pattern
jitter can be of less concern in wideband systems than in narrowband
systems.

We should not conclude that overlapping pulses must necessarily be
afflicted with pattern jitter. Firstly, Nyquist’s second criterion does not
forbid pulse overlap; it only requires some minimum bandwidth condi-
tions. The corollary does not include all pulse trains that meet the second
criterion. More broadly, pattern jitter is associated with clock regeneration
from data pulses, which must have at least one nonzero sample to convey
information. We see below that it is possible to modify the pulse shape to
suppress all pattern jitter, but the modified pulsé is not the same one used
for data detection.

Before pursuing jitter suppression, it is instructive to illustrate some of
the nonlinear regenerators used with narrowband systems.

Full-wave rectifiers are commonplace because of their simplicity (Figure
11.19). Input can be a baseband pulse stream or else the envelope varia-
tions of a passband signal can be rectified. (Bandlimited data signals
always have envelope variations caused by the data modulation. In many
practical modulation formats the envelope variations contain a spectral
line at the clock frequency—or a related harmonic. A clock waveform is
easily regenerated by simple rectification of the incoming passband signal.)

An infinite variety of rectifier characteristics are possible. Most common
are the square-law rectifier and the absolute-value “linear” rectifier. Practi-
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Figure 11.19 Clock rectifiers: (a) baseband input; (5) passband input.

cal circuits usually fall in between square law and absolute value. Up to 2
dB less jitter is obtained with the absolute-value characteristic, as com-
pared to square law, for most input signal-to-noise ratios of interest.®*! The
square-law rectifier is prominent in the literature because it is mathemati-
cally the most tractable.

The zero-crossing detector of Figure 11.17b can also be used as a
narrowband regenerator.

Another possibility is the sampled-derivative detector of Figure 11.20,
which aligns the strobe pulse with the peak of the signaling pulse. Such
alignment is optimum for data detection if the signal pulse is symmetric
about its peak; other alignment might be superior for asymmetric pulses.

A modification of the derivative circuit, which separates the regenerator
from the phase detector and avoids sampling, is shown in Figure 11.21.

Analysis of zero-crossing and of peak-sampling regenerators may be
found in Ref. 30, discussion of square-law rectifiers is given in Ref. 34, and
analysis of associated PLL matters is found in Refs. 35 and 36.

Each regenerator has at least a quadratic nonlinearity. Some have
higher-order or “harder” nonlinearities. (If the nonlinearity is discontinu-
ous, it cannot be represented by a power series and we cannot speak of the
order of such a function.) Nyquist baseband pulses occupy a bandwidth
(1+k)/2T, where k is known as the rolloff factor or excess-bandwidth
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factor. For a quadratic regenerator, it can be shown that the amplitude of
the regenerated clock wave is proportional to k. Therefore, a quadratic
regenerator cannot produce a clock from minimum-bandwidth, Nyquist
pulses, for which k=0. If k is small—as imposed in some restricted-
bandwidth applications—then a quadratic nonlinearity is inadequate.

The square-law rectifier and the simple derivative-product regenerator,
without a limiter, of Figure 11.21 have only quadratic nonlinearities. An
absolute-value rectifier, a fourth-law rectifier,? a derivative circuit with a
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" Figure 1121 Derivative-product regenerator.
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limiter or bit detector in one arm, and a zero-crossing detector are all
examples of harder nonlinearities.

Each of the example regenerators suffers from pattern jitter for any
excess bandwidth less than 100%. Pattern jitter worsens as bandwidth
becomes more constricted. The difficulty lies not so much in the circuit
itself as in the pulse shapes applied to the nonlinear regenerator. Nyquist
pulses are well suited for optimum data detection, but they are poorly
adapted for clock recovery. It turns out that modification of the pulse
shape by means of a linear filter can suppress the jitter.

Franks and Bubrouski®® have shown that inserting a suitable prefilter
before the clock regenerator can suppress the pattern jitter entirely.
Nyquist pulses are delivered to the data detector, but differently shaped
pulses are supplied to the regenerator. To suppress pattern jitter, given a
square-law rectifier as the regenerator element, requires that the spectrum
of the prefiltered baseband pulse train be symmetrical about 1/27, half
the symbol rate, and that it be bandlimited to the interval (1/4T, 3/4T). It
is also necessary that the PLL be bandlimited to 1/7, which is very large
compared to practical bandwidths, and that the PLL operate with zero
static phase error to avoid cross-coupling of amplitude fluctuations.

Nyquist shaping provides the high-frequency band limitation needed for
the desired spectrum, so a feasible prefilter is a highpass filter to shape the
low-frequency portion of the spectrum. Not only does the prefilter
suppress pattern noise, but it also reduces the influence of low-frequency
components of additive noise. Simulations®! indicate that quite simple
prefilters provide most of the improvement that is theoretically attainable
and that complex filters are not necessary.

Prefilters can also be applied to derivative circuits (Figures 11.20 and
11.21) with similar benefits.*'

A prefilter is successful if all input pulses have the same shape. If
different pulse shapes are intermixed or if the channel is nonlinear, thereby
causing distortion that varies with data pattern, then a prefilter cannot
provide full benefit.

11.4 AFTERWORD
Two final comments are in order:

¢ This chapter only touches briefly on some high points of synchronizers
for digital communications. There remain large areas that have not even
been mentioned. A whole book could be written on the subject of
synchronizers.

¢ Much remains to be learned, even concerning the topics considered here.





