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Passive Components and Parasitic Effects

• Capacitors.
• Resistors.
• MOS transistor as a pseudo-resistor.
• Diodes.
• Parasitic channels.
• Latch-up.
• Gate protection.
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xJ

WL bottom area capacitor; Cja [fF/µm2]
periphery capacitor Cjp [fF/µm]

• total capacitor: C = WLCja + 2(W + L) Cjp

JUNCTION CAPACITORS

- Seldom used as functional devices, but... always present as parasitic
- Associated with a leakage current (generation in depleted region)
- Voltage dependent.

• Source and drain diffusions: p+n or n+p

• unilateral abrupt junction: C ~ (V+ΦB)-1/2

• Well-substrate capacitor
• gradual junction: C ~ (V+ΦB)-1/3

• parasitic only for "moving wells":
- separate floating well e.g.: S-follower, differential pair.
- CB capacitor of vertical bipolar transistors.

PA-1
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CONDUCTIVE LAYERS - OXIDE CAPACITORS

Silicon

SiO2
top plate

bottom plate

Al C

C' tox

- always associated with a parasitic capacitor C' with respect to substrate
- negligible leakage current (or any lower plate)
- not or only slightly voltage-dependent
- small temperature dependency

• only possible structure in basic Si-gate
• good control of ratios (matching)

• standard solution for analog processes
• requires special added poly layer
• small mismatch ( <10-3 feasible)
• uses one pair of interconnect layers
• as parasitic capacitor: dominated by lateral
fields in submicron processes.

C
schematic cross-section:

PA-2

• Metal-Polysilicon capacitor:

• Double polysilicon capa.:

• Metal-metal capacitor:
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GATE-OXIDE CAPACITOR PA-3

0.5 HF without S and D

1

0 2 4 6-2-4-6-8

VG[V]

C/COX

accumulation p inversion n

n-channel MOS

VG C

VT0

• Transistor structure used for its gate capacitance

• large value of specific capacitor (0.3 to 10nF/mm2)
• available in any CMOS process
• at least one D or S diff. needed to permit fast modulation of inversion layer
• the dip in the C(VG) curve must be avoided by:

- gate bias for inversion or
- gate bias for accumulation: use p-channel in n-well connected to V-
- using additional p+ or n+ diffusion under the gate

(additional step in process)
• always somewhat voltage dependent (except with p+ or n+ diffusion)
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n p

p+

yz

x0
t L

I V

W

∫
t

0
• thus: V/I = R = Rs with 1/Rs = σ(z)dzL

W

• buried well: larger Rs but larger V-dependency and parasitic capa.

RESISTORS PA-4

• layers characterized by their sheet resistivity Rs
• associated with a distributed parasitic capacitor

• Diffused layers: isolated by a pn-junction: leakage and parasitic capa.
• non salicided n+ or p+ (S and D) layer: Rs=10 to 100 Ω
• well layer: slightly nonlinear and bias-voltage dep.: Rs=0.5 to 5 KΩ

• Layers on oxide: perfect galvanic isolation

I = W ∫ Jx dz = W∫ σ(z)Ex dz = W ∫ σ(z) dz
0

t

0

t V
L 0

t
• If L»W, t, then:

buried n-well
• polysilicon (non salicided): Rs=10 to 100 Ω
• lightly doped polysilicon: Rs > 100 K Ω
• metal or salicided silicon: very low Rs.

• Drift current of maj. carriers, local conductivity σ(z) = qµnnn or qµppp•
∫
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TRANSISTOR USED AS A RESISTOR

V
VG

VDVS

I
= I

V

R

• Define: V = VD -VS with VD = V0 + kV and VS = V0 - (1-k)V

• Then: I = βV [VG -VT0 -nV0 + n(0.5 - k)V ] nonlinear term

• Temperature variations of β and VT0 have opposite effects on R.
• compensation may be calculated to occur (see TR-32) for:

In linear mode: I = β(VD -VS)[VG - VT0 - (VD+VS)]n
2

1 2
-1-2

k=0.5

nV
VG-VT0-nV0

k=1

k=0I

• slope 1/R = β(VG -VT0 -nV0)

• Best case: k=0.5 (VS and VD symmetrical / V0)

• linear I(V) for |V|<2(VG -VT0 -nV0)/n

VG -VT0 -nV0 = (VG0-2φF) = 0.2 to 0.4Vn-0.5
α

PA-5
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PA-6

• From the transistor model : ISD =±(IF - IR) = ±IS [ f (VG, VS) - f (VG,VD)]

• Assumption: VG=constant

then, ISD(VS,VD) may be expressed as a

is linear for currents and can replace its resistive prototype

• Pseudo-conductance G*=1/R* = IS/V0 ∝ W/L; thus...

• Pseudo Ohm's law ISD =G* (VS* -VD*) with...

• Pseudo-ground (0-ref. for V*) for f(VG,V) negligible
(this side of the transistor saturated)

• Definition: Pseudo-voltage V* = ±V0 f(VG,V)
where V0 is an arbitrary positive scaling voltage

• Precision is degraded by short-channel effects.

f(VG,VS)

VG = constant

weak
inversion

strong inversion
f(VG,VD)

VS VD

±Qi
Cox

β
IS

V

• Any network of MOS transistors connected by S and D with same VG

+ is for p-channel, - for n-channel

[1, 2, 3, 7, 8]
MOS TRANSISTOR OPERATED AS A PSEUDO-RESISTOR
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R* R* R*
R* R* R* R*

R* R* R*
V- (logic "1")

bo b1

bo
b2

b1 b2
I0 I0/2 I0/4

2I0

I0∑bi 2-i
pseudo-
ground

•• Pseudo-resistive implementation (by p-channel transistors):

R R R

R2R 2R 2R

bo b1 b2

2I0
I0 I0/2 I0/4

I0∑bi 2-iground
virtual ground

PA-7EXAMPLE OF APPLICATION: R-2R D/A CONVERTER

•• Standard resistive circuit (example for 3 bit):

•• For best precision: • strong inversion
• non-saturated devices (avoid pseudo-ground)

[4,5]
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PA-8

• G* controllable by VG separately for each pseudo-resistor
• Range of current: 103 to 106 for...range of voltage: 7 to 14UT only.

• If f(VG,V) « 1 at both ends of channel weak inversion

• pseudo-voltage V* = ±V0 exp

• pseudo-conductance G* = controllable by VG
IS
V0

VG - VT0
nUT

exp

-V
UT independent of VG

• New definitions:

•Then: f(VG,V) = separable in VG and V
VG-VT0

nUT
exp -V

UT
exp

• Control of G* by a current:

TC
control current IC

reference Vref(common) VB
VA

T ⇒ G* = 1/R* = GC =
IC

Vref*
*

TC ≡ T

0*

n-type local substrate (p-ch. transistors)

PSEUDO-RESISTORS IN WEAK INVERSION [2, 3, 7, 8]
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p+ n+ p

np+ n+ ppp++
main current

Si

poly.Si

p+ n+
oxide

pp+ n+

DIODES AVAILABLE IN CMOS PA-9

• Junction source (or drain)/common substrate
• one grounded terminal
• maximum reverse 2 to 20 volts

• Junction source (or drain)/local well
• only exists as the BE junction of a vertical bipolar

- collector current (p+ to p) dominates
- one grounded terminal (p-substrate)
- thus: not a floating p+n diode

• Lateral p+n+ junction (when allowed)
• very low breakdown voltage
• one grounded terminal

• Lateral junction in polysilicon
• non ideal I(V) characteristics
• floating diode
• excellent isolation from substrate (oxide)
• only available in some processes (bi-doped poly)

[6]

• Well-substrate diode: largest breakdown voltage
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PARASITIC CHANNELS

n+p
VA<VP* VB

n+

VC>VP*p+

n+p
VA<VP*

VB
n+

VC>VP*

poly. or lower metal

• When the potential of some interconnection becomes too high, it may
induce inverted channels underneath the thick (field) oxide:

• For VA=0, inversion occurs for VB>VT0*
• Threshold VT0* of thick-oxide (field) MOS structures limits VBmax
• This limit may be overcome in two ways:

• Channel stopper: p+ diffusion in p
(or n+ in n) to prevent inversion:

• Shielding: by lower layer
connected to local substrate:

PA-10

n+p

VA<VP*=
VB

n+

VC>VP*
VB-VT0*

n*

interconnect layerinverted channel
(pinched right side

in this particular case) depleted zone
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LATCH-UP

V-
n+ well anchor

n-well
p+ substrate

anchor

V+

Ip

In

Vn1(Rn1) Vn2(Rn2)Vp2(Rp2) Vp1(Rp1)

+-

p-substrate

p+ n+

electron flux
hole flux

sources• Principle of phenomenon:

• 4-layer structure which can latch-up to a large current if the p+n and
n+p junctions are forward biased

• Equivalent circuit:
Rn1

Rn2

Rp1

Rp2

Vn1

Vn2

Vp1

Vp2

Ip
In

V+
I

VB

Ip/ββp

In/ββn

Tn

Tp

CJ

V-

PA-11
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VJ
ββpββn-1

1
Rp1

ββp
Rn1

In > ( + )ββn

I = In+Ip > [ (ββn+ 1) + (ββp+ 1)]VJ
ββpββn-1

ββp
Rn1

ββn
Rp1

Thus:

• Now if: ββp»1, ββn«1 but ββpββn»1 with Rp1, Rn1 same order of magnitude:

In >
VJ
Rn1

Ip > VJ ( + )1
ββnRn1

1
Rp1

• then: and

VB > the larger of Rn2Inlim+ VJ and Rp2Iplim+ VJ

LATCH-UP: MINIMUM ("HOLD") CURRENT AND VOLTAGE

• Minimum current I: value of I corresponding to open-loop gain =1

• Hypothesis: Vn1=Vp1=VJ ("junction voltage")
• Yields:

• Minimum voltage VB is increased by Rn2 and Rp2:

PA-12

and
VJ

ββpββn-1
1

Rn1

ββn
Rp1

Ip > ( + )ββp



E. Vittoz, 2015

Passive Components and Parasitic Effects

LATCH UP: TRIGGER MECHANISMS
• Current across reverse-biased pn junction by

• breakdown ( breakdown voltage may be reduced at surface)
• transient : CJ dV/dt.

• Lateral current in substrate:
• from input protections
• collector current of bipolar to substrate.

LATCH-UP PREVENTION

• Increase hold current Imin:
• reduce Rp1 and/or Rn1: - minimize distance p+n+

- anchor diffusion all around well
- recover Ip under well (epi. p on p+ subst.).

• reduce of ββn: - increase distance n+ source to n-well.
• Increase VBmin: follows increase of Imin thus, increase Rp2 and/or Rn2
• Suppress the latched-up state:

• ββpββn < 1 by increase of Imin.
• limit current below Imin
• limit voltage below VBmin.

PA-13
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V- V+

p+ diffusion

n+ diffusion
n-well

to circuit

from pad

p n
p+ p+ p+ p+n+n+

V- V+
V+

V-

R
polysilicon

pad

to circuit

• Full industrial protection:(example):

p substrate
n+ n+ p+

p substrate V-
pad

• Simple protections (not valid for production)
• diffusion-substrate diode:

(conduction/breakdown)

n+ p+
p substrate

n+

channel

• thick-oxide transistor
(conduction junction/channel)

GATE PROTECTIONS

• Mandatory for each input (output) pad to avoid gate destruction
(max field in SiO2 : ~ 7.108V/m)

PA-14

• p+ ring connected to V- to collect substrate current
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