CIRGUIT GELLAR

THE MAGAZINE FOR COMPUTER APPLICATIONS

Robust Bootloader for FPGAS

Colin built his LoonBoard Unified Bootloader (LUB) to program Xilinx FPGAs. The LUB,
which takes only 207 words of program memory, can self-calibrate its internal RC oscillator.

My Atmel ATmega88-based
LoonBoard Unified Bootloader (LUB) is
a powerful bootloader capable of load-
ing both an FPGA bitstream and an
AVR file. What makes this bootloader
better than any of the other bootload-
ers out there?

Well, in short, it’s capable of pro-
gramming Xilinx FPGAs, it has a robust
communications protocol with CRCS,
it has redundant bootloader support,
and it can self-calibrate it’s internal RC
oscillator based on an external real-time
clock to enable 115,200-bps communi-
cations without a crystal. Did I men-
tion it takes only 207 words of program
memory? Plus it has a convenient three-
letter acronym for its name to make
sure you can confuse people instead of
speaking clear English!

DISAPPEARING ACT

The size of 207 words is a pretty
small bootloader, especially considering
that that includes both the FPGA loader
and AVR loader. The key is that, when
programming an FPGA, you need some-
where to store the programming file. I
used an Atmel AT45DB041B DataFlash
serial interface flash memory for this
project. It’s inexpensive, small (eight-
pin SOIC), and easy to use. Compared
to the 1.5 Mb that my FPGA uses,
the AVR’s 64-Kb programming file is
barely noteworthy.

The magic comes in here. The boot-
loader resident in the ATmega88 micro-
controller is less than 256 words; all it’s
able to do is load data from the
DataFlash memory into the AVR and
FPGA. During normal start-up, data is
loaded from the AT45DB041B to the
FPGA and program execution starts in
the ATmega88’s flash memory.

44 Issue 187 February 2006

There are set bootloader sizes for the
ATmega88, so the tinyloader fits in the
256-word space. (“Tinyloader” refers to
the program native to the ATmega88
AVR. “LUB,” “lub,” and “bootloader”
refer to the code loaded in the ATmega88
AVR for the purpose of bootloading.
“Lubloader” refers to the computer pro-
gram that is the user interface.) This
means there is room for expansion yet! If
you want to add some sort of encryption
that would prevent an attacker from
simply reading out the AT45DB041B,
there’s room for it.

When bootloading is requested, a
bootloader program is loaded from the
AT45DB041B memory into the
ATmega88’s flash memory. This boot-
loader isn’t restricted to work only in
the confines of the ATmega88’s boot-
loader section. Now the bootloader
can take up all the available applica-
tion space for the program. Instead of
downloading the file to the
ATmega88'’s code memory, the code is
downloaded to the AT45DB041B. The
tinyloader takes care of loading the
user program from the AT45DB041B
to the ATmega88’s application space.

DATAFLASH OVERVIEW

Atmel’s small DataFlash devices are
available in sizes ranging from 1 to
64 Mb. I used a 4-Mb AT45DB041B for
this project. The interface for program-
ming involves three pins: the master in
slave out (MISO) pin, the master out
slave in (MOSI) pin, and the serial
clock (SCK) pin. Atmel AVR devices
have the ability to talk to these
devices via their SPI ports.

DataFlash devices are organized in a
number of pages. Like any flash mem-
ory device, you can only erase or write

CIRCUIT CELLAR®

Circuit Cellar, the Magazine for Comy Applicati Rey

by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2006 Circuit
Cellar Inc. All rights reserved.

entire pages at one time. Each page is
a block of 264 bytes in the 4-Mb
device. To make this easier, the device
has two SRAM buffers. The advantage
here is that you can write to one
buffer and then tell it to transfer to
flash memory. While that’s writing,
you can start writing data to the next
SRAM buffer, which streamlines the
transfer considerably. In fact, the LUB
is faster than most other bootloaders.
It takes only about 3 s to download an
AVR file and 20 s to download an
FPGA file.

Reading from the DataFlash is easy.
You can set a start address, and then
read the entire DataFlash device in
one go. This is important because it
enables the tinyloader to ignore the
DataFlash’s paging setup (it only
reads).

Now if only I could get a big bag of
cash from Atmel for writing all of that.

FPGA START-UP

Now that you’ve got an idea of how
the LUB works, lets look at the technical
details. At start-up, the ATmega88’s
program will normally remain stored in
flash memory, so there is no need to
reprogram it. However, the FPGA has
its program stored in SRAM, which
means you need to configure it every
time you power up.

Kim Goldblatt outlines the pro-
gramming algorithm for the Xilinx
Spartan series of FPGAs in the appli-
cation note, “The Low-Cost, Efficient
Serial Configuration of Spartan FPGAs.”
Kim also describes the process of gen-
erating the programming files.

The algorithm used in the LUB was
designed to work with the Atmel
DataFlash parts. First, it sets the

www.circuitcellar.com

DataFlash to start reading from the
page that stores the FPGA bitstream.
Second, it pulses the PROGRAM pin
low for several clock cycles. Third, it
waits for the INIT line to go high.
Fourth, it clears the CCLK pin. Fifth,
it delays about 100 ps. Sixth, it pulses
SCK to the DataFlash to get 1 bit.
Seventh, it puts that bit on the DI line
of the FPGA. Eighth, it pulses CCLK
to the FPGA. And finally, if the
FPGA’s DONE pin is low, it jumps to
the sixth step. Otherwise it exits.

The application note doesn't tell
you how to use the convenient bit
file, which is generated by Xilinx ISE
to program your device. The docu-
ment does include information about
using the rawbits file, but it isn’t gen-
erated by default. The bit file is a
direct bitstream that you can down-
load to the FPGA without much pro-
cessing. Well, almost. There is some
text at the beginning of the file that
needs to be separated from the actual
raw binary to download. Luckily, it
has been reverse engineered. Some
detective work on your part will make
it easy to see.

Listing 1 is what the bit file looks
like in hex format with about 80 bytes
in it. The exact location isn’t con-
stant, but the format is. The 0x65
byte is followed by 4 bytes that indi-
cate the file size in bytes. In this
example, it’s 0x0002C01C, which is
180252 in decimal format.

For my Spartan-IIE with 200,000 gates,
that is the exact size for the configura-
tion file specified in the datasheet.
Because the configuration file size will
never use more than 3 bytes in this sys-
tem, the 0x65 0x00 combination can
be used as the synchronization byte.
Following this, 3 bytes are skipped, and
data loads in starting with the OxFF
byte and ending with the end of the file.
At the end of the file, several OxFF
bytes need to be shifted in.

tinyloader

Bootloader copy 1

Bootloader copy 2

@ootloader copyl) (Application code J

Figure 1—The upper left corner of the lubloader’s layout is
the current executable loaded in the ATmega88 microcon-
troller. The outside files are in the AT45DB041 DataFlash.
I'm in the process of updating bootloader copy 2.

For the LUB system, the bitstream
stored in the AT45DB041B is padded
with OxFFE. This means that the tiny-
loader doesn’t have to keep track of a 24-
or 32-bit counter. It doesn’t have to figure
out how many bytes have been put in the
system, how many more need to go, or
when to shift in extra OxFF. Instead, it
simply shifts bytes until the DONE pin
goes high. If the system must start when
the FPGA is incorrectly loaded, the INIT
pin can be checked as well. If the INIT
pin goes to a low state from a high state
while loading configuration memory,
the CRC embedded in the bitstream is
incorrect and the FPGA won't start.

AVR BOOTLOADING

Loading data from the ATmega88 is
fairly straightforward. In fact, the
ATmega88 datasheet includes an exam-
ple of how to write to the application
flash memory from the bootloader sec-
tion, which is copied almost exactly in
the tinyloader. The ATmega88 has a
flash memory setup arranged in pages,
just like the AT45DB041B. Each page
in the ATmega88, however, is only
64 bytes instead of 264 bytes. This
means it’s a simple procedure of copy-
ing a byte from the AT45DB041B to the
ATmega88’s flash page buffer until the
page is full, and then writing it.

SAFETY FIRST

Eventually, it comes time to update
the bootloader, which is ideally done
via the bootloader. This is normally a
risky process. If the bootloader update

to get the file size.

Listing 1— The bit file generated by Xilinx ISE is about 80 bytes. The 0x00 0x02 0xCO 0x1C is the file size
and can be used as synchronization. You can use OxAA 0x99 0x55... if you want, but you'll need to backtrack

0x65 0x00 0x02 0xCO 0x1C
OxFF OxFF OxFF OxFF OxAA
0x99 0x55 0x66 0x30 0x00

www.circuitcellar.com

CIRCUIT CELLAR®

fails, there’s no way to get back in the
bootloader to fix it. However, the LUB
solves this easily. The ATmega88’s
resident tinyloader is never updated
because it’s so simple. Instead, the
more complex bootloader is stored in
the DataFlash memory, where there is
room for a backup. Now there are two
bootloaders present, so you always
have a functional bootloader. The
process is shown in Figure 1.

At start-up, the tinyloader will ask
the computer which bootloader to
enter. If the first one doesn’t work, it’s
easy to ask the tinyloader to load the
backup bootloader, known as the “safe
mode” bootloader. The PC software
stops you from updating both boot-
loaders simultaneously, which should
stop you from causing any trouble.

The AT45DB041B DataFlash has a
hardware write protection feature. So,
you can be sure that faulty software
won’t have a big window in which it
could overwrite the AT45DB041B. To
ensure that data was reliably written to
the AT45DB041B, a checksum of the
AT45DB041B’s DataFlash content is per-
formed locally. This value is sent back to
the computer. This is considerably faster
than most bootloader verification, which
sends every byte back to the computer.
However, the checksum doesn’t ensure
that the proper data is written from the
DataFlash to the AVR or FPGA at start-
up, which is a possible point of failure.

COMPUTER COMMUNICATIONS

I needed a way of getting data from
the computer to the AT45DB041B
DataFlash, so I used a specialized pro-
tocol. The main feature is that it’s
optimized for the DataFlash because
each data packet is 264 bytes. This
made loading the AT45DB041B easy
because I could send data quickly to
fill up one page buffer, write the page,
and start sending data for the next
buffer. At 115,200 bps, my FPGA con-
figuration file takes about 15 to 20 s
to send over the serial port.

Having the ability to use all of the
ATmega88'’s bootloader space is impor-
tant. It’s easy to create a communica-
tions protocol using CRC-8 and other
such features for reliable data transmis-
sion. Normally, the added overhead in
code size wouldn’t be worth it, but

Issue 187 February 2006 45

[SYNC] [1] [LUB_SOT] [CRCS]

[SYNC] [1] [LUB_ACK] [CRCS]

[SYNC] [2] [LUB_SIGN_ON] [Minor Ver.] [CRCS]
[SYNC] [2] [LUB_ACK] [CRCS]

[SYNC] [3] [LUB_SEND_AVR] [CRCS8]

[SYNC] [3] [LUB_ACK] [CRCS]

[SYNC] [4] [LUB_ACK] [CRCS8]
262 more sets of data packets

[SYNC] [266] [LUB_NACK] [CRC8]

[SYNC] [266] [LUB_ACK] [CRC8]
[SYNC] [267] [LUB_EOT] [CRCS8]
[SYNC] [267] [LUB_ACK] [CRCS8]

PYAV L ALVt

[SYNC] [4] [LUB_264_DATA] [D1] [D2] ... [D263] [D264] [CRCS]

[SYNC] [266] [LUB_264_DATA] [D1] [D2] ... [D263] [D264] [CRCS]

[SYNC] [266] [LUB_264_DATA] [D1] [D2] ... [D263] [D264] [CRCS]

which is used for a precision
source to calibrate the inter-
nal oscillator.

SELF-CALIBRATION

Yet another feature of the
LUB system is that space-hog-
ging calibrations that only need
to be run occasionally can be
kept in the bootloader. In this

Figure 2—Typical LUB communication is simple. The right arrows
signify communication from the computer. The left arrows signify

communication from the LUB.

there’s no real penalty here. The fol-
lowing LUB packet isn’t anything too
special. It shows just the normal veri-
fication features such as packet num-
bers and CRC:

[SYNC] [Packet Number] [Packet Type]
[Data LSB] ... [Data MSB] [CRCS8]

The synchronization byte is used as
a simple start of packet. The packet
number starts at 1 for the first packet
and is 1 byte long. It rolls over to O for
more than 255 packets. The packet
type defines how many data bytes
should be expected. It also issues com-
mands. After every packet, an ACK or
NACK returns and tells the sender if
it needs to resend something.

This process of ACKing every packet
is useful for controlling the data rate.
The sender will send the next packet
of 264 bytes only after it receives an
ACK for the previous packet. This
means the receiver can wait until the
264 bytes have been processed and
stored before requesting the next pack-
et by ACKing the previous packet (see
Figure 2).

There is a common code base for both
the PC end and the AVR end. There is
a slight trade-off in speed, but the code
is much easier to maintain this way.

HARDWARE

I/O pins were scarce, so I used the
dedicated ADC channels in the
ATmega88’s TQFP package. I can easily
change to normal I/O pins if I need to
save some code size.

Figure 3 shows only the most
important section of the design. If you
use an external crystal, you don’t need
to worry about the real-time clock,

46 Issue 187 February 2006

example, there is no external
crystal. Instead, the internal RC
oscillator is calibrated against
a real-time clock that provides
a 4,096-Hz output signal. The target
frequency is 7.37 MHz, which enables
error-free data rate communication at
115,200 bps. After calibration, the value
is stored in the DataFlash, where it can
be read by the tinyloader and stored in
the OSCCAL register at every start-up.
The sharp-eyed among you are prob-
ably wondering if you’ll be left with a
dead system that can’t communicate
if power fails while you’re writing this
value. No! If the power fails, the
ATmega88 AVR will still have the boot-
loader code loaded into its flash memo-
ry. At the next start-up, the tinyloader
won't see valid data from the computer.
It will proceed to start the code in the
ATmega88. This code, which is the
bootloader, will calibrate the oscillator

and store it. Now you’ll have a system
that works. At that point you can finish
working with the bootloader. Whether
or not emulating a certain operating
system—an operating system for which
troubleshooting involves rebooting—is
advantageous is up to you.

GETTING THE BOOTLOADER

The entire LUB project is released
under the GNU General Public
License. If you distribute the binary
code, you must distribute the source
code. Remember, this just means the
bootloader sources and changes to the
PC program. The application you load
isn’t connected to the bootloader in
any way. So, there is no worry about
using it in a commercial application
for which you wouldn’t want to
release the source code.

When you download the source code,
youwll find it in two folders: PC and AVR.
The latter folder is separated into the
LUB and tinyloader folders. The AVR
targets will compile with any AVR-GCC
package such as WinAVR for Windows.
To change target AVRs, change both the
LUB and tinyloader make files. The rest
should be automatic. If you change the
make files, be sure to perform a “make
clean” and then “make” of the project.
Otherwise, the changes might not take.

U1

2.2k A RL3
2.2k R24
10k R25

10k

PROGRAY (226
ceLk (422
T (222
oone (424
00
ueelo XC2S200E
uis
—23qpCe/*RESET PCa/ADCE |oa—20
o pc1/pnct 24
o s pC2/pDC2 22 et
22 {nrer PC3/pDC3 25~ o i
auce pC4/p0CA 2220
PC5/ADCS SCL
7 139 PGA_DONE
—pBes/xTALL/TOSC ADCS 9 -CODONE_
CPROM_CS 8 fpcz
= PB7/XTAL2/TOSC2 .
PD/RXD RXDL
PD1/TXD TXDL
2 ono POZ/INTE [[PGA_LLLK
2 lano PO3/INT [
—uce PD4/XCK/To [—
uce Po5/T1 2
PD6/AING [0 R26
= pD7/AINg [PR PEN =
= 200 X
PBB/I1CP R27
PBL/0C1A [L
PB2/55/0C1B [a- 200 %
PB3/MOSI/0C2 (2 —MoST
PB4 /MISO [H5—MISO
PB5/SCK K
29 ATnegaB8—20A1 ucclm
Tok 12
R28 A
4 s R28 soL SCL PHZ/IRG
Hos1——4 so-2 MISO 2o —2 leoe oND
SCK K GNDZ
2qwRESET uCC £
s
*p o
AT450B0418

Q1
us | m— |
S{uecro XL 32.768KHz

—— uBACK X2

Wl

N

X1226

Figure 3—The LUB code runs from this schematic. I've included only the FPGA's programming interface pins. The
complete schematic for my LoonBoard video development system is posted on my web site (www.newae.com).

CIRCUIT CELLAR®

www.circuitcellar.com

resets, it will calibrate the inter-

nal oscillator and attempt to

communicate with the PC.

Next, use the lubloader soft-

ware to load the main LUB file

into the main and backup spaces

in the AT45DB041B. The proper

data is now in the DataFlash, but

there’s no way to load it from the

AT45DB041B into the ATmega88.

Lubloader options | Function

-P <port> Serial port device

-S Use Safe mode bootloader

-f <filename> Bit file to download.d to FPGA

-a <filename> Hex file to download to AVR

-q <filename> Hex file for new bootloader

-w <filename> Hex file for new Safe mode bootloader
v Verbose output, use -vv for more
-b <baudrate> Use data rate specified

-d Enters Debug mode in bootloader
-h Display this usage

Now, program the tinyloader

Table 1—There are several possible program options to pass to
the lubloader program. Of course, if you don't like what you see,

you can add your own!

The PC target should compile with
any GCC package in either Windows
or Linux. To change the target, you'll
have to change the code slightly.
There’s a hard-coded warning that will
come on if the AVR code is bigger
than the expected target size. This is
likely to change in the future.

USING THE BOOTLOADER

Using the LUB is fairly easy. The
PC software has been tested on Linux
and Windows, and it might work on
other platforms too. It’s loosely based
on the AVRDUDE open-source pro-
gramming utility.

The PC software is a command-line-
based software called lubloader. The
options you can pass to it are shown in
Table 1. When the software is running, it
will ask you to power cycle the attached
device. This forces a reset of the
ATmega88, which will make it execute
the tinyloader. An example of the FPGA
update process is shown in Figure 4.

One of the most useful options is the
-V, or verbose, option to tell you what
it is doing. Keep adding vs until you see
what you want. For example, -v adds
some debugging information such as file
names. -VVv adds information about each
packet sent. -vvvV prints

file into the AVR directly.
Program the fuses to jump to
the bootloader at reset and the
proper bootloader size. Run the
lubloader program with no arguments
to check if the system works and force
the ATmega88 to load the code from
the AT45DB041B.

You should now have a working boot-
loader system. The lubloader program’s
verbose outputs are extremely useful
when things aren’t working right.

FUTURE DIRECTION

I built the LUB because I wanted to
become independent of the expensive
configuration memory for FPGAs. There
are other advantages too. Now one inter-
face can program all the devices in your
system. This greatly simplifies field
upgrades.

I hope to add new features and support
devices to the LUB system. Remember
that the code is released under the
GNU GPL. Commercial use is not only
allowed, it’s encouraged (provided you
release any changes you make to the
core LUB system). Because the LUB
binary will be completely separate from
your application binary, this shouldn’t
be a problem.

The project is hosted on Sourceforge,
so you have all the standard features at
your disposal (e.g., CVS access and a
mailing list). Of course, it’s quiet right

each byte sent and received.

LOADING THE LUB

Before you start using the
LUB, you need to get all the

lubloader -P/dev/ttyUSO -f hardware_interface.bit

lubloader: Attempting to communicate with LoonBoard unified bootloader
lubloader: Power cycle device now to initiate LUB

lubloader: Sending FPGA bit file

1100% 21.75 s

Writing |

code into the AT45DB041B.
The process is straightforward.
First, load the main LUB file

lubloader: Instructing LUB to calculate CRC
lubloader: Program verify OK
lubloader: Resetting AVR and forcing load of new code

into the AVR directly and pro-
gram the fuses to use the inter-
nal oscillator. When the AVR

www.circuitcellar.com

Figure 4—This example sends a new FPGA file to the AT45DB041
and forces its load. The number of pound signs slowly increases and
the time counts up during programming.

CIRCUIT CELLAR®

now, but I don’t think the software is so
perfect that it will stay that way too long.

JMP 0X0000

Hopefully, you've found this boot-
loading approach to be as useful as I
have. Just one simple interface to load
your entire system. By using a low-
cost microcontroller and memory chip
that may already be on your system,
you can drive down the project’s cost
and keep a rich feature set. &l

Colin O'Flynn is an electrical engineering
student at Dalhousie University in
Halifax, Nova Scotia. He has been
interested in electronics for years. In
November 2005, he launched his com-
pany NewAE in an effort to reverse the
flow of money that he usually pours into
his projects and never sees again. You
may contact him at coflynn@newae.com.

PROJECT FILES

o download the code, go to ftp://ftp.
ircuitcellar.com/pub/Circuit_Cellar/
D006/187.

. Goldblatt, “The Low-Cost, Efficient
erial Configuration of Spartan FPGAs,”
ilinx, Inc., XAPP098, November 1998,
ww.xilinx.com/bvdocs/appnotes/xap
098.pdf.

[.UB Sourceforge project, http://lub
oader.sourceforge.net.

Xilinx, Inc., “Configuration and Readback
of the Spartan-II and Spartan-ITE

Families,” XAPP176, March 2002, www.
[ilinx.com/bvdocs/appnotes/xapp176.pdf

SOURCES

T45DB041 DataFlash and ATmega88
icrocontroller

tmel Corp.
ww.atmel.com

EIZZO Real-time clock

ntersil Corp.
ww.intersil.com

oonBoard video development system
ewAE
ww.newae.com

ww.xilinx.com

Issue 187 February 2006 51

ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2006/187
http://www.xilinx.com/bvdocs/appnotes/xapp098.pdf
http://lubloader.sourceforge.net
http://www.xilinx.com/bvdocs/appnotes/xapp176.pdf
http://www.atmel.com
http://www.intersil.com
http://www.newae.com
http://www.xilinx.com

