
Chapter-3 Kernel
Structure

ChapterChapter--3 Kernel 3 Kernel
StructureStructure

Dr. LiDr. Li--Pin ChangPin Chang
RealReal--Time and Embedded System Lab.Time and Embedded System Lab.

National Taiwan UniversityNational Taiwan University

Objectives
• To understand what a task is.
• To learn how uC/OS-2 manages tasks.
• To know how an ISR works.
• To learn how to determine the

percent CPU your application is using.

The uC/OS-2 File
Structure
Application Code (Your Code!)

Processor independent
implementations

•Scheduling policy
•Event flags
•Semaphores
•Mailboxes
•Event queues
•Task management
•Time management
•Memory management

Application Specific
Configurations

OS_CFG.H

•Max # of tasks
•Max Queue length
•…

uC/OS-2 port for processor specific codes

CPU Timer

Hardware
Software

Source Availability
• Download the source code of uC/OS-

2 from the “course” section of the
web site http://140.112.28.99/me

• The password for extraction is
“tzuchiang”

Critical Sections
• A critical section is a portion of code that is not

safe from race conditions.
– Because of the use of shared resources.

• They can be protected by interrupt
disabling/enabling interrupts or semaphores.
– However, the use of semaphores imposes a more

significant amount of overheads.
– A RTOS kernel itself mostly use interrupts

disabling/enabling to protect critical sections. (why?)

• Once interrupts are disabled, neither context
switches nor any other ISR’s can occur.

Critical Sections
• The interrupt latency is a vital specification of an

RTOS.
– Interrupts should be disabled as short as possible to

improve the responsiveness.
– It must be accounted as a blocking time in the

schedulability analysis.

• Interrupt disabling must be used carefully:
– E.g., if OSTimeDly() is called with interrupt disabled,

the machine might hang!
{

.
OS_ENTER_CRITICAL();
. /* Critical Section */
OS_EXIT_CRITICAL();
.

}

Critical Sections
• The states of the processor must be carefully maintained

across multiple calls of OS_ENTER_CRITICAL() /
OS_EXIT_CRITICAL().

• There are three possible implementations for the
maintenance of process states:
– Interrupt enabling/disabling instructions.
– Interrupt status save/restore onto/from stacks.
– Processor Status Word (PSW) save/restore onto/from

memory variables.

• Interrupt enabling/disabling can be done by various way:
– In-line assembly.
– Compiler extension for specific processors.

Critical Sections
• OS_CRITICAL_METHOD=1
• Interrupt enabling/disabling instructions.
• The simplest way, however, this approach does not

have the sense of “save” and “restore”.
• Interrupt statuses might not be consistent across

kernel services/function calls!!

{
.
disable_interrupt();
a_kernel_service();
.
.

}

{
.
disable_interrupt();
critical section
enable_interrupt();
.

}

Interrupts are now
implicitly re-enabled!

Critical Sections
• OS_CRITICAL_METHOD=2
• Processor Status Word (PSW) can be

saved/restored onto/from stacks.
– PSW’s of nested interrupt

enable/disable operations can be exactly
recorded in stacks.
#define OS_ENTER_CRITICAL() \

asm(“PUSH PSW”);
asm(“DI”);

#define OS_EXIT_CRITICAL() \
asm(“POP PSW”);

Some compilers might
not be smart enough to
adjust the stack pointer
after the processing of

in-line assembly.

Critical Sections
• OS_CRITICAL_METHOD=3
• The compiler and processor allow the PSW to be

saved/restored to/from a memory variable.

void foo(arguments)
{

OS_CPU_SR cpu_sr;

.
cpu_sr = get_processor_psw();
disable_interrupts();
.
/* critical section */
.
set_processor_psw(cpu_sr);
.

}

OS_ENTER_CRITICAL()

OS_EXIT_CRITICAL()

Tasks
• A task is an active entity which could do

some computations.
• Under real-time systems, a task is

typically an infinite loop.
void YourTask (void *pdata) (1)
{

for (;;) { (2)
/* USER CODE */
Call one of uC/OS-II’s services:
OSMboxPend();
OSQPend();
OSSemPend();
OSTaskDel(OS_PRIO_SELF);
OSTaskSuspend(OS_PRIO_SELF);
OSTimeDly();
OSTimeDlyHMSM();
/* USER CODE */

}
}

Delay itself for
next event/period,

so that other
tasks can run.

Tasks
• uC/OS-2 can have up to 64 priorities.

– Each task must associate with an unique priority.
– 63 and 62 are reserved (idle, stat).

• Insufficient number of priority will damage the
schedulability of a real-time scheduler.
– The number of schedulable task would be reduced.

• Because there is no distinction among the tasks with the
same priority.

• For example, under RMS, tasks have different periods but
are assigned with the same priority.

• It is possible that all other tasks with the same priority
are always issued before a particular task.

– Fortunately, most embedded systems have a limited
number of tasks to run.

Tasks
• A task is created by OSTaskCreate()

or OSTaskCreateExt().
• The priority of a task can be changed

by OSTaskChangePrio().
• A task could delete itself when done.

void YourTask (void *pdata)
{

/* USER CODE */
OSTaskDel(OS_PRIO_SELF);

} The priority of
the current task

Task States
• Dormant: Procedures residing on RAM/ROM is not an task unless

you call OSTaskCreate() to execute them.
– Actually no tasks correspond to the codes.

• Ready: A task is neither delayed nor waiting for any event to occur.
– A task is ready once it is created.

• Running: A ready task is scheduled to run on the CPU .
– There must be only one running task.
– The task running might be preempted and become ready.

• Waiting: A task is waiting for certain events to occur.
– Timer expiration, signaling of semaphores, messages in mailboxes, and

etc.

• ISR: A task is preempted by an interrupt.
– The stack of the interrupted task is utilized by the ISR.

Task States

RUNNINGREADY

OSTaskCreate()
OSTaskCreateExt()

Task is Preempted

OSMBoxPend()
OSQPend()

OSSemPend()
OSTaskSuspend()
OSTimeDly()
OSTimeDlyHMSM()

OSMBoxPost()
OSQPost()
OSQPostFront()
OSSemPost()
OSTaskResume()
OSTimeDlyResume()
OSTimeTick()

OSTaskDel()

DORMANT

WAITING

OSStart()
OSIntExit()

OS_TASK_SW()

OSTaskDel()

OSTaskDel()

Interrupt

OSIntExit()

ISR

OSintExit()

Task States
• A task can delay itself by calling OSTimeDly() or OSTimeDlyHMSM().

– The task is placed in the waiting state.
– The task will be made ready by OSTimeTick().

• It is the clock ISR, you don’t have to call it explicitly from your code.

• A task can wait for an event by OSFlagPend(), OSSemPend(),
OSMboxPend(), or OSQPend().

– The task remains waiting until the occurrence of the desired event. (or timeout)

• The running task is always preempted by ISR’s, unless interrupts are
disabled.

– ISR’s could make one or more tasks ready by signaling events.
– On the return of an ISR, the scheduler will check if rescheduling is needed.

• Once new tasks become ready, the next highest priority ready task is
scheduled to run (due to occurrences of events, timer expirations).

• If no task is running and all tasks are not in the ready state, the idle task
executes.

Task Control Blocks (TCB)
• A TCB is a main-memory-resident data structure

used by to maintain the state of a task when it is
preempted.

• Each task is associated with a TCB.
– All valid TCB’s are doubly linked.
– Free TCB’s are linked in a free list.

• The contents of a TCB is saved/restored when a
context-switch occurs.
– Task priority, delay counter, event to wait, location of

the stack.
– CPU registers are stored in the stack rather than in the

TCB.

typedef struct os_tcb {
OS_STK *OSTCBStkPtr;

#if OS_TASK_CREATE_EXT_EN
void *OSTCBExtPtr;
OS_STK *OSTCBStkBottom;
INT32U OSTCBStkSize;
INT16U OSTCBOpt;
INT16U OSTCBId;

#endif
struct os_tcb *OSTCBNext;
struct os_tcb *OSTCBPrev;

#if (OS_Q_EN && (OS_MAX_QS >= 2)) || OS_MBOX_EN || OS_SEM_EN
OS_EVENT *OSTCBEventPtr;

#endif
#if (OS_Q_EN && (OS_MAX_QS >= 2)) || OS_MBOX_EN

void *OSTCBMsg;
#endif

INT16U OSTCBDly;
INT8U OSTCBStat;
INT8U OSTCBPrio;
INT8U OSTCBX;
INT8U OSTCBY;
INT8U OSTCBBitX;
INT8U OSTCBBitY;

#if OS_TASK_DEL_EN
BOOLEAN OSTCBDelReq;

#endif
} OS_TCB;

Task Control Blocks (TCB)
• .OSTCBStkPtr contains a pointer to the current TOS for the task.

– It is the first entry of TCB so that it can be accessed directly from
assembly language. (offset=0)

• .OSTCBExtPtr is a pointer to a user-definable task control block
extension.

– Set OS_TASK_CREATE_EXT_EN to 1.
– The pointer is set when OSTaskCreateExt() is called
– The pointer is ordinarily cleared in the hook OSTaskDelHook().

• .OSTCBStkBottom is a pointer to the bottom of the task’s stack.

• .OSTCBStkSize holds the size of the stack in number of elements
instead of bytes.

– The element size is the macro OS_STK.
– Total stack size is OSTCBStkSize*OS_STK bytes
– .OSTCBStkBottom and .OSTCBStkSize are used to check stack.

Task Control Blocks (TCB)

Space in use

Top of Stack (TOS)

St
ac

k
gr

ow
in

g
di

re
ct

io
n

Free Space

Bottom of Stack (BOS)

Current TOS, points to
the newest element.

Task Control Blocks (TCB)
• .OSTCBOpt holds “options” that can be passed to OSTaskCreateExt()

– OS_TASK_OPT_STK_CHK: stack checking is enable for the task being
created.

– OS_TASK_OPT_STK_CLR: indicates that the stack needs to be cleared
when the task is created.

– OS_TASK_OPT_SAVE_FP: tells OSTaskCreateExt() that the task will be
doing floating-point computations. Floating point processor’s registers must
be saved to the stack on context-switches.

• .OSTCBId: holds an identifier for the task.
• .OSTCBNext and .OSTCBPrev are used to double link OS_TCBs
• .OSTCBEVEventPtr is pointer to an event control block.
• .OSTCBMsg is a pointer to a message that is sent to a task.
• .OSTCBFlagNode is a pointer to a flagnode.
• .OSTCBFlagsRdy maintains which event flags make the task ready.
• .OSTCBDly is used when:

– a task needs to be delayed for a certain number of clock ticks, or
– a task needs to pend for an event to occur with a timeout.

• .OSTCBStat contains the state of the task. (0 is ready to run)
• .OSTCBPrio contains the task priority.

Task Control Blocks (TCB)
• .OSTCBX .OSTCBY .OSTCBBitX and .OSTCBBitY

– They are used to accelerate the process of making a task ready to run
or make a task wait for an event.

• .OSTCBDelReq is boolean used to indicate whether or not a task
request that the current task to be deleted.

• OS_MAX_TASKS is specified in OS_CFG.H
– # OS_TCBs allocated by μC/OS-II

• OSTCBTbl[] : where all OS_TCBs are placed.

• When μC/OS-II is initialized, all OS_TCBs in the table are linked
in a singly linked list of free OS_TCBs

OSTCBY = priority >> 3;
OSTCBBitY = OSMapTbl[priority >> 3];
OSTCBX = priority & 0x07;
OSTCBBitX = OSMapTbl[priority & 0x07];

Task Control Blocks (TCB)
• When a task is created, the OS_TCB pointed to by

OSTCBFreeList is assigned to the task, and OSTCBFreeList
is adjusted to point the next OS_TCB in the chain.

• When a task is deleted, its OS_TCB is returned to the list
of free OS_TCB.

• An OS_TCB is initialized by the function OS_TCBInit(),
which is called by OSTaskCreate().

0OSTCBFreeList OSTCBNext OSTCBNext OSTCBNext OSTCBNext

OSTCBTbl[0] OSTCBTbl[1] OSTCBTbl[2]

OSTCBTbl[OS_MAX_TASKS+OS_N_SYS_TASKS-1]

INT8U OS_TCBInit (INT8U prio, OS_STK *ptos, OS_STK *pbos, INT16U id, INT32U stk_size, void *pext, INT16U
opt)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */

OS_CPU_SR cpu_sr;
#endif

OS_TCB *ptcb;

OS_ENTER_CRITICAL();
ptcb = OSTCBFreeList; /* Get a free TCB from the free TCB list */
if (ptcb != (OS_TCB *)0) {

OSTCBFreeList = ptcb->OSTCBNext; /* Update pointer to free TCB list */
OS_EXIT_CRITICAL();
ptcb->OSTCBStkPtr = ptos; /* Load Stack pointer in TCB */
ptcb->OSTCBPrio = (INT8U)prio; /* Load task priority into TCB */
ptcb->OSTCBStat = OS_STAT_RDY; /* Task is ready to run */
ptcb->OSTCBDly = 0; /* Task is not delayed */

#if OS_TASK_CREATE_EXT_EN > 0
ptcb->OSTCBExtPtr = pext; /* Store pointer to TCB extension */
ptcb->OSTCBStkSize = stk_size; /* Store stack size */
ptcb->OSTCBStkBottom = pbos; /* Store pointer to bottom of stack */
ptcb->OSTCBOpt = opt; /* Store task options */
ptcb->OSTCBId = id; /* Store task ID */

#else
pext = pext; /* Prevent compiler warning if not used */
stk_size = stk_size;
pbos = pbos;
opt = opt;
id = id;

#endif

#if OS_TASK_DEL_EN > 0
ptcb->OSTCBDelReq = OS_NO_ERR;

#endif

ptcb->OSTCBY = prio >> 3; /* Pre-compute X, Y, BitX and BitY */
ptcb->OSTCBBitY = OSMapTbl[ptcb->OSTCBY];
ptcb->OSTCBX = prio & 0x07;
ptcb->OSTCBBitX = OSMapTbl[ptcb->OSTCBX];

Get a free TCB from
the free list

#if OS_EVENT_EN > 0
ptcb->OSTCBEventPtr = (OS_EVENT *)0; /* Task is not pending on an event */

#endif

#if (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (OS_MAX_FLAGS > 0) && (OS_TASK_DEL_EN > 0)
ptcb->OSTCBFlagNode = (OS_FLAG_NODE *)0; /* Task is not pending on an event flag */

#endif

#if (OS_MBOX_EN > 0) || ((OS_Q_EN > 0) && (OS_MAX_QS > 0))
ptcb->OSTCBMsg = (void *)0; /* No message received */

#endif

#if OS_VERSION >= 204
OSTCBInitHook(ptcb);

#endif

OSTaskCreateHook(ptcb); /* Call user defined hook */

OS_ENTER_CRITICAL();
OSTCBPrioTbl[prio] = ptcb;
ptcb->OSTCBNext = OSTCBList; /* Link into TCB chain */
ptcb->OSTCBPrev = (OS_TCB *)0;
if (OSTCBList != (OS_TCB *)0) {

OSTCBList->OSTCBPrev = ptcb;
}
OSTCBList = ptcb;
OSRdyGrp |= ptcb->OSTCBBitY; /* Make task ready to run */
OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;
OS_EXIT_CRITICAL();
return (OS_NO_ERR);

}
OS_EXIT_CRITICAL();
return (OS_NO_MORE_TCB);

}

User-defined hook is
called here.

Priority table

TCB list

Ready list

Ready List
• Ready list is a special bitmap to reflect which task is

currently in the ready state.
– Each task is identified by its unique priority in the bitmap.

• A primary design consideration of the ready list is how to
efficiently locate the highest-priority ready task.
– The designer decides to trade some ROM space for an

improved performance.

• If a linear list is adopted, it takes O(n) to locate the
highest-priority ready task.
– It takes O(log n) if a heap is adopted.
– By the design of ready list of uC/OS-2, it takes only O(1).

• Note that the space consumption is much more than other
approaches.

• It also depends on the bus width.

OSTCBStkPtr
OSTCBExtPtr = NULL
OSTCBStkBottom
OSTCBStkSize = stack size
OSTCBId = OS_LOWEST_PRIO
OSTCBNext
OSTCBPrev
OSTCBEventPtr = NULL
OSTCBMsg = NULL
OSTCBDly = 0
OSTCBStat = OS_STAT_RDY
OSTCBPrio = OS_LOWEST_PRIO-1
OSTCBX = 6
OSTCBY = 7
OSTCBBitX = 0x40
OSTCBBitY = 0x80
OSTCBDelReq = FALSE

OSTCBStkPtr
OSTCBExtPtr = NULL
OSTCBStkBottom
OSTCBStkSize = stack size
OSTCBId = OS_LOWEST_PRIO
OSTCBNext
OSTCBPrev
OSTCBEventPtr = NULL
OSTCBMsg = NULL
OSTCBDly = 0
OSTCBStat = OS_STAT_RDY
OSTCBPrio = OS_LOWEST_PRIO
OSTCBX = 7
OSTCBY = 7
OSTCBBitX = 0x80
OSTCBBitY = 0x80
OSTCBDelReq = FALSE

0 0

0
0
0

0
0

0
0
0
0
0

[OS_LOWEST_PRIO]
[OS_LOWEST_PRIO - 1]

[0]
[1]
[2]
[3]
[4]
[5]
[6]

OS_TCB OS_TCB
OSTaskStat() OSTaskIdle()

OSTCBPrioTbl[]

OSTCBList

OSPrioCur = 0
OSPrioHighRdy = 0
OSTCBCur = NULL
OSTCBHighRdy = NULL
OSTime = 0L
OSIntNesting = 0
OSLockNesting = 0
OSCtxSwCtr = 0
OSTaskCtr = 2
OSRunning = FALSE
OSCPUUsage = 0
OSIdleCtrMax = 0L
OSIdleCtrRun = 0L
OSIdleCtr = 0L
OSStatRdy = FALSE Task Stack Task Stack

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0
OSRdyGrp

OSRdyTbl[]

Ready List

01234567

89101112131415

1617181920212223

2425262728293031

3233343536373839

4041424344454647

4849505152535455

5657585960616263

Task Priority #

Lowest Priority Task
(Idle Task)

Highest Priority Task

X

Y

OSRdyTbl[OS_LOWEST_PRIO / 8 + 1]01234567

OSRdyGrp

[7]

[6]

[5]

[4]
[3]

[2]

[1]

[0]

0 0 Y Y Y X X X

Bit position in OSRdyTbl[OS_LOWEST_PRIO / 8 + 1]

Bit position in OSRdyGrp and
Index into OSRdyTbl[OS_LOWEST_PRIO / 8 + 1]

Task's Priority

100000007

010000006

001000005

000100004

000010003

000001002

000000101

000000010

Bit mask (Binary)Index

Bit 0 in OSRdyGrp is 1 when any bit in OSRdyTbl[0] is 1.
Bit 1 in OSRdyGrp is 1 when any bit in OSRdyTbl[1] is 1.
Bit 2 in OSRdyGrp is 1 when any bit in OSRdyTbl[2] is 1.
Bit 3 in OSRdyGrp is 1 when any bit in OSRdyTbl[3] is 1.
Bit 4 in OSRdyGrp is 1 when any bit in OSRdyTbl[4] is 1.
Bit 5 in OSRdyGrp is 1 when any bit in OSRdyTbl[5] is 1.
Bit 6 in OSRdyGrp is 1 when any bit in OSRdyTbl[6] is 1.
Bit 7 in OSRdyGrp is 1 when any bit in OSRdyTbl[7] is 1.

OSRdyGrp |= OSMapTbl[prio >> 3];
OSRdyTbl[prio >> 3] |= OSMapTbl[prio & 0x07];

if ((OSRdyTbl[prio >> 3] &= ~OSMapTbl[prio & 0x07]) == 0)
OSRdyGrp &= ~OSMapTbl[prio >> 3];

•Make a task ready to run:

•Remove a task from the ready list:

OSMapTbl

What does this code do?

char x,y,mask;

x = prio & 0x07;
y = prio >> 3;
mask = ~(OSMapTbl[x]); // a mask for bit clearing
if((OSRdyTbl[x] &= mask) == 0)// clear the task’s bit
{ // the group bit should be cleared too

mask = ~(OSMapTbl[y]); // another bit mask…
OSRdyGrp &= mask; // clear the group bit

}

if ((OSRdyTbl[prio >> 3] &= ~OSMapTbl[prio & 0x07]) == 0)
OSRdyGrp &= ~OSMapTbl[prio >> 3];

Coding style?

How about this:

The author writes:

mov al,byte ptr [bp-17]
mov ah,0
and ax,7
lea dx,word ptr [bp-8]
add ax,dx
mov bx,ax
mov al,byte ptr ss:[bx]
not al
mov dl,byte ptr [bp-17]
mov dh,0
sar dx,3
lea bx,word ptr [bp-16]
add dx,bx
mov bx,dx
and byte ptr ss:[bx],al
mov al,byte ptr ss:[bx]
or al,al
jne short @1@86
mov al,byte ptr [bp-17]
mov ah,0
sar ax,3
lea dx,word ptr [bp-8]
add ax,dx
mov bx,ax
mov al,byte ptr ss:[bx]
not al
and byte ptr [bp-18],al

mov al,byte ptr [bp-17]
and al,7
mov byte ptr [bp-19],al
mov al,byte ptr [bp-17]
mov ah,0
sar ax,3
mov byte ptr [bp-20],al
mov al,byte ptr [bp-19]
mov ah,0
lea dx,word ptr [bp-8]
add ax,dx
mov bx,ax
mov al,byte ptr ss:[bx]
not al
mov cl,al
mov al,byte ptr [bp-19]
mov ah,0
lea dx,word ptr [bp-16]
add ax,dx
mov bx,ax
and byte ptr ss:[bx],cl
mov al,byte ptr ss:[bx]
or al,al
jne short @1@142
mov al,byte ptr [bp-20]
mov ah,0
lea dx,word ptr [bp-8]
add ax,dx
mov bx,ax
mov al,byte ptr ss:[bx]
not al
mov cl,al
and byte ptr [bp-18],cl

Coding Style?

INT8U const OSUnMapTbl[] = {
0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x00 to 0x0F */
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x10 to 0x1F */
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x20 to 0x2F */
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x30 to 0x3F */
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x40 to 0x4F */
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x50 to 0x5F */
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x60 to 0x6F */
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x70 to 0x7F */
7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x80 to 0x8F */
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0x90 to 0x9F */
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xA0 to 0xAF */
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xB0 to 0xBF */
6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xC0 to 0xCF */
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xD0 to 0xDF */
5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, /* 0xE0 to 0xEF */
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 /* 0xF0 to 0xFF */

};

y = OSUnMapTbl[OSRdyGrp];
x = OSUnMapTbl[OSRdyTbl[y]];
prio = (y << 3) + x;

•Finding the highest-priority task
ready to run:

This matrix is used to locate
the first LSB which is ‘1’, by

given a value.

For example, if 00110010 is
given, then ‘1’ is returned.

Task Scheduling
• The scheduler always schedules the highest-

priority ready task to run .

• Task-level scheduling and ISR-level scheduling
are done by OS_Sched() and OSIntExit(),
respectively.
– The difference is the saving/restoration of PSW (or

CPU flags).

• uC/OS-2 scheduling time is a predictable amount
of time, i.e., a constant time.
– For example, the design of the ready list intends to

achieve this objective.

void OSSched (void)
{

INT8U y;
OS_ENTER_CRITICAL();
if ((OSLockNesting | OSIntNesting) == 0) { (1)

y = OSUnMapTbl[OSRdyGrp]; (2)
OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]]); (2)
if (OSPrioHighRdy != OSPrioCur) { (3)

OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy]; (4)
OSCtxSwCtr++; (5)
OS_TASK_SW(); (6)

}
}
OS_EXIT_CRITICAL();

}

(1) Rescheduling will not be done if the scheduler is locked or
an ISR is currently serviced (why?).

(2) Find the highest-priority ready task.
(3) If it is not the current task, then
(4) ~(6) Perform a context-switch.

Task Scheduling
• A context switch must save all CPU registers and PSW of

the preempted task onto its stack, and then restore the
CPU registers and PSW of the highest-priority ready task
from its stack.

• Task-level scheduling will simulate that as if
preemption/scheduling is done in an ISR.
– OS_TASK_SW() will trigger a software interrupt. (why?)
– The interrupt is directed to the context switch handler

OSCtxSw(), which is installed when uC/OS-2 is initialized.

• Interrupts are disabled during the finding of the highest-
priority ready task to prevent another ISR’s from making
some tasks ready.

Task Level Context
Switch

• By default, context switches are
handled at interrupt-level, therefore
task-level scheduling will invoke a
software interrupt to simulate that.
– Hardware dependent, porting must be

done.

OSTCBCur

Low Priority Task

Stack Growth

Low Memory

High Memory

R4
R3
R2
R1
PC

PSW

Low Memory

High Memory

OSTCBHighRdy
OS_TCB OS_TCB

High Priority Task

R4
R3
R2
R1

PC
PSW

CPU
SP

OSTCBCur

Low Priority Task

Stack Growth

Low Memory

High Memory

R4
R3
R2
R1
PC

PSW

Low Memory

High Memory

OSTCBHighRdy
OS_TCB OS_TCB

High Priority Task

R4
R3
R2
R1

PC
PSW

CPU
SP

R4
R3
R2
R1
PC

PSW

OSTCBCur

Low Priority Task

Stack Growth

Low Memory

High Memory

R4
R3
R2
R1
PC

PSW

Low Memory

High Memory

OSTCBHighRdy
OS_TCB OS_TCB

High Priority Task

R4
R3
R2
R1

PC
PSW

CPU
SP

R4
R3
R2
R1
PC

PSW

Locking and Unlocking
the Scheduler

• OSSchedLock() prevent high-priority ready tasks from being
scheduled to run while interrupts are still recognized.

• OSSchedLock() and OSSchedUnlock() are used in pairs.

• OSLockNesting keeps track of the number of OSSchedLock() has
been called. (how? why?)

• After calling OSSchedLock(), you must not call kernel services
which might cause context switch, such as OSFlagPend(),
OSMboxPend(), OSMutexPend(), OSQPend(), OSSemPend(),
OSTaskSuspend(), OSTimeDly, OSTimeDlyHMSM() until
OSLockNesting == 0. Or the system will be locked up.

• Sometimes we disable scheduling but with interrupts are still
recognized because we hope to avoid lengthy interrupt latencies
without introducing race conditions.

OSSchedLock()
void OSSchedLock (void)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */

OS_CPU_SR cpu_sr;
#endif

if (OSRunning == TRUE) { /* Make sure multitasking is running */
OS_ENTER_CRITICAL();
if (OSLockNesting < 255) {/* Prevent OSLockNesting from wrapping back to 0*/

OSLockNesting++; /* Increment lock nesting level */
}
OS_EXIT_CRITICAL();

}
}

OSSchedUnlock()
void OSSchedUnlock (void)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */

OS_CPU_SR cpu_sr;
#endif

if (OSRunning == TRUE) { /* Make sure multitasking is running */
OS_ENTER_CRITICAL();
if (OSLockNesting > 0) { /* Do not decrement if already 0 */

OSLockNesting--; /* Decrement lock nesting level */
if ((OSLockNesting == 0) &&
(OSIntNesting == 0)) { /* See if sched. enabled and not an ISR */

OS_EXIT_CRITICAL();
OS_Sched(); /* See if a HPT is ready */

} else {
OS_EXIT_CRITICAL();

}
} else {

OS_EXIT_CRITICAL();
}

}
}

The Idle Task
• The idle task is always the

lowest-priority task and
can not be deleted or
suspended by user-tasks.

• To conserve power
dissipation, you can issue a
HALT instruction in the
idle task.

• Do not call delay, suspend
services in
OSTaskIdleHook()!!

void OS_TaskIdle (void *pdata)
{
#if OS_CRITICAL_METHOD == 3

OS_CPU_SR cpu_sr;
#endif

pdata = pdata;
for (;;) {

OS_ENTER_CRITICAL();
OSIdleCtr++;
OS_EXIT_CRITICAL();
OSTaskIdleHook();

}
}

The Statistics Task
• It is created by uC/OS-2, and it executes every second to

compute the percentage of CPU usage.

• OSStatInit() must be called before OSStart() is called.

• With a OS_LOWEST_PRIO – 1 priority.
void main (void)
{

OSInit(); /* Initialize uC/OS-II (1)*/
/* Install uC/OS-II's context switch vector */
/* Create your startup task (for sake of discussion, TaskStart()) (2)*/
OSStart(); /* Start multitasking (3)*/

}
void TaskStart (void *pdata)
{

/* Install and initialize µC/OS-II’s ticker (4)*/
OSStatInit(); /* Initialize statistics task (5)*/
/* Create your application task(s) */
for (;;) {

/* Code for TaskStart() goes here! */
}

}

The Statistics Task

main()
{
 OSInit(); (1)
 Install context switch vector; (2)
 Create TaskStart(); (3)
 OSStart();

}

TaskStart()
{

 Init uC/OS-II's ticker; (5)
 OSStatInit(): (6)
 OSTimeDly(2); (7)

 OSIdleCtr = 0; (12)
 OSTimeDly(1 second); (13)

 OSIdleCtrMax = OSIdleCtr; (15)
 OSStatRdy = TRUE; (16)

 for (;;) {
 Task code;
 }
}

OSTaskStat()
{

 while (OSStatRdy == FALSE) { (8)
 OSTimeDly(2 seconds); (9)
 }

 for (;;) {
 Compute Statistics; (17)
 }
}

OSTaskIdle()
{

 for (;;) {
 OSIdleCtr++; (10)
 }

 for (;;) {
 OSIdleCtr++; (14)
 }

Scheduler

Scheduler

Scheduler
After 2 ticks

After 1 second
Scheduler

Highest Priority OS_LOWEST_PRIOOS_LOWEST_PRIO - 1

2 ticks

1 second
2 seconds

(4)

(11)

The Statistics Task
(7) TaskStart: delay 2 ticks transfer CPU to the stat task

to do some initializations.
(9) OS_TaskStat: delay 2 seconds yield the CPU to the

task TaskStart and the idle task.
(13) TaskStart: delay 1 second let the idle task to count

OSIdleCtr for 1 second. (note that the stat task is still not
delayed).

(15) TaskStart: on the timer expiration in (13), now OSIdleCtr
contains the value can be reached in 1 second.

• Notes:
– Since OSStatinit() assume that the idle task will count the

OSOdleCtr at full CPU speed, you must not install an idle hook
before calling OSStatInit().

– After the stat task is initialized, it is OK to install a CPU idle
hook and perform some power-conserving operations, since the
idle task entirely consumes the CPU power just for the purpose
of being idle.

The Statistics Task
• By calling OSStatInit(), we’ve got how high the idle counter

can reach in 1 second (OSIdleCtrMax).

• The percentage of CPU usage can be calculated by the
actual idle counter and the OSIdleCtrMax.







 −×=

axOSIdleCtrM
OSIdleCtrOSCPUUsage 1100(%)







 ×

−=
axOSIdleCtrM

OSIdleCtrOSCPUUsage 100100(%)



























−=

100

100(%) axOSIdleCtrM
OSIdleCtrOSCPUUsage

This term is always 0
under integer

operation

This term might overflow
under fast processors!

(42,949,672)

The Statistics Task
#if OS_TASK_STAT_EN > 0
void OS_TaskStat (void *pdata)
{
#if OS_CRITICAL_METHOD == 3

OS_CPU_SR cpu_sr;
#endif

INT32U run;
INT32U max;
INT8S usage;

pdata = pdata;
while (OSStatRdy == FALSE) {

OSTimeDly(2 * OS_TICKS_PER_SEC);
}
max = OSIdleCtrMax / 100L;

for (;;) {
OS_ENTER_CRITICAL();
OSIdleCtrRun = OSIdleCtr;
run = OSIdleCtr;
OSIdleCtr = 0L;
OS_EXIT_CRITICAL();
if (max > 0L) {

usage = (INT8S)(100L - run / max);
if (usage >= 0) {

OSCPUUsage = usage;
} else {

OSCPUUsage = 0;
}

} else {
OSCPUUsage = 0;
max = OSIdleCtrMax / 100L;

}
OSTaskStatHook();
OSTimeDly(OS_TICKS_PER_SEC);

}
}

Interrupts under uC/OS-2
• uC/OS-2 requires an ISR written in

assembly, if your compiler does not
support in-line assembly.

YourISR:
Save all CPU registers; (1)
Call OSIntEnter() or, increment OSIntNesting directly; (2)
If(OSIntNesting == 1) (3)

OSTCBCur->OSTCBStkPtr = SP; (4)
Clear the interrupting device; (5)
Re-enable interrupts (optional); (6)
Execute user code to service ISR; (7)
Call OSIntExit(); (8)
Restore all CPU registers; (9)
Execute a return from interrupt instruction; (10)

Interrupts under uC/OS-2
(1) In an ISR, uC/OS-2 requires that all CPU

registers are saved onto the interrupted task.
– For processors like Motorola 68030_, a different stack

is used for ISR.
– For such case, the stack pointer of the interrupted task

can be obtained from OSTCBCur (offset 0).

(2) Increase the interrupt-nesting counter counter.

(4) If it is the first interrupt-nesting level, we
immediately save the stack pointer to OSTCBCur.
– We do this because a context-switch might occur.

Interrupts under uC/OS-2
(8) Call OSIntExit(), which checks if we are in the

inner-level of nested interrupts. If not, the
scheduler is called.
– A potential context-switch might occur.
– Interrupt-nesting counter is decremented.

(9) On the return to this point, there might be
several high-priority tasks ran by the CPU.
– Since uC/OS-2 is a preemptive kernel.

(10) The CPU registers are restored from the stack
and the control is returned to the interrupted
instruction.

Interrupt Request

TASK TASK

Vectoring

Saving Context

Notify kernel:
OSIntEnter() or,
OSIntNesting++ User ISR code

Notify kernel: OSIntExit()

Restore context

Notify kernel: OSIntExit()

Restore context

Return from interrupt

Return from interrupt

TASK

Interrupt Response

Interrupt Recovery

Interrupt Recovery

湣/OS-IIor your application
has interrupts disabled.

Time

ISR signals a task

No New HPT or,
OSLockNesting > 0

New HPT

Task Response

Task Response
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Interrupts under uC/OS-2

void OSIntEnter (void)
{

OS_ENTER_CRITICAL();
OSIntNesting++;
OS_EXIT_CRITICAL();

}

void OSIntExit (void)
{

OS_ENTER_CRITICAL();
if ((--OSIntNesting | OSLockNesting) == 0) {

OSIntExitY = OSUnMapTbl[OSRdyGrp];
OSPrioHighRdy = (INT8U)((OSIntExitY << 3) +

OSUnMapTbl[OSRdyTbl[OSIntExitY]]);
if (OSPrioHighRdy != OSPrioCur) {

OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];
OSCtxSwCtr++;
OSIntCtxSw();

}
}
OS_EXIT_CRITICAL();

}

If scheduler is not
locked and no interrupt

nesting

If there is another high-
priority task ready

A context switch
is performed.

Note that OSIntCtxSw() is called
instead of calling OS_TASK_SW()

because the ISR already saves
the CPU registers onto the stack.

Clock Tick
• A time source is needed to keep track of time

delays and timeouts.

• You must enable ticker interrupts after
multitasking is started.
– In the TaskStart() task in the examples.
– Do not do this before OSStart().

• Clock ticks are serviced by calling OSTimeTick()
from a tick ISR.

• Clock tick ISR is always a port (of uC/OS-2) of a
CPU. Since we have to access CPU registers in the
tick ISR.

Clock Tick
void OSTickISR(void)
{

Save processor registers;
Call OSIntEnter() or increment OSIntNesting;
If(OSIntNesting == 1)

OSTCBCur->OSTCBStkPtr = SP;
Call OSTimeTick();
Clear interrupting device;
Re-enable interrupts (optional);
Call OSIntExit();
Restore processor registers;
Execute a return from interrupt instruction;

}

void OSTimeTick (void)
{

OS_TCB *ptcb;

OSTimeTickHook();

if (OSRunning == TRUE) {
ptcb = OSTCBList;
while (ptcb->OSTCBPrio != OS_IDLE_PRIO) {

OS_ENTER_CRITICAL();
if (ptcb->OSTCBDly != 0) {

if (--ptcb->OSTCBDly == 0) {
if ((ptcb->OSTCBStat & OS_STAT_SUSPEND) == OS_STAT_RDY) {

OSRdyGrp |= ptcb->OSTCBBitY;
OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBitX;

} else {
ptcb->OSTCBDly = 1;

}
}

}
ptcb = ptcb->OSTCBNext;
OS_EXIT_CRITICAL();

}
}

}

For all TCB’s

Decrement delay-counter if needed

If the delay-counter
reaches zero, make the
task ready. Or the task

remains waiting.

Clock Tick
• OSTimeTick() is a hardware-independent

routine to service the tick ISR.

• A delta-list is more efficient on the
decrementing of .OSTCBDly.
– Constant time to determine if a task should be

made ready.
– Linear time to put a task in the list.
– Compare it with the approach of uC/OS-2?

Clock Tick

void TickTask (void *pdata)
{

pdata = pdata;
for (;;) {

OSMboxPend(...);
OSTimeTick();
OS_Sched();

}
}

void OSTickISR(void)
{

Save processor registers;
Call OSIntEnter() or increment OSIntNesting;
If(OSIntNesting == 1)
OSTCBCur->OSTCBStkPtr = SP;

Post a ‘dummy’ message (e.g. (void *)1)
to the tick mailbox;

Call OSIntExit();
Restore processor registers;
Execute a return from interrupt instruction;

}

• You can also move the bunch of code
in the tick ISR to a user task:

Post a

message

Do the rest of
the work

uC/OS-2 Initialization
OSTCBStkPtr
OSTCBExtPtr
OSTCBStkBottom
OSTCBStkSize
OSTCBId
OSTCBNext
OSTCBPrev
OSTCBEventPtr
OSTCBMsg
OSTCBDly
OSTCBStat
OSTCBPrio
OSTCBX
OSTCBY
OSTCBBitX
OSTCBBitY
OSTCBDelReq

OS_TCB

0OSTCBFreeList

OS_MAX_TASKS

0OSEventFreeList

OS_MAX_EVENTS
OS_EVENT OS_EVENT OS_EVENT OS_EVENT

OSQPtr
OSQStart
OSQEnd
OSQIn
OSQOut
OSQSize
OSQEntries

OSEventPtr
OSEventTbl[]
OSEventCnt
OSEventType
OSEventGrp

OSTCBStkPtr
OSTCBExtPtr
OSTCBStkBottom
OSTCBStkSize
OSTCBId
OSTCBNext
OSTCBPrev
OSTCBEventPtr
OSTCBMsg
OSTCBDly
OSTCBStat
OSTCBPrio
OSTCBX
OSTCBY
OSTCBBitX
OSTCBBitY
OSTCBDelReq

OS_TCB

OSTCBStkPtr
OSTCBExtPtr
OSTCBStkBottom
OSTCBStkSize
OSTCBId
OSTCBNext
OSTCBPrev
OSTCBEventPtr
OSTCBMsg
OSTCBDly
OSTCBStat
OSTCBPrio
OSTCBX
OSTCBY
OSTCBBitX
OSTCBBitY
OSTCBDelReq

OS_TCB

OSEventPtr
OSEventTbl[]
OSEventCnt
OSEventType
OSEventGrp

OSEventPtr
OSEventTbl[]
OSEventCnt
OSEventType
OSEventGrp

OSEventPtr
OSEventTbl[]
OSEventCnt
OSEventType
OSEventGrp

OSTCBStkPtr
OSTCBExtPtr
OSTCBStkBottom
OSTCBStkSize
OSTCBId
OSTCBNext
OSTCBPrev
OSTCBEventPtr
OSTCBMsg
OSTCBDly
OSTCBStat
OSTCBPrio
OSTCBX
OSTCBY
OSTCBBitX
OSTCBBitY
OSTCBDelReq

OS_TCB

0OSQFreeList

OS_MAX_QS
OS_Q OS_Q OS_Q

OSQPtr
OSQStart
OSQEnd
OSQIn
OSQOut
OSQSize
OSQEntries

OSQPtr
OSQStart
OSQEnd
OSQIn
OSQOut
OSQSize
OSQEntries

OSQPtr
OSQStart
OSQEnd
OSQIn
OSQOut
OSQSize
OSQEntries

OSMemAddr
OSMemFreeList
OSMemBlkSize
OSMemNBlks
OSNFree

0OSMemFreeList

OS_MAX_MEM_PART
OS_MEM

OSMemAddr
OSMemFreeList
OSMemBlkSize
OSMemNBlks
OSNFree

OS_MEM OS_MEM OS_MEM

OSMemAddr
OSMemFreeList
OSMemBlkSize
OSMemNBlks
OSNFree

OSMemAddr
OSMemFreeList
OSMemBlkSize
OSMemNBlks
OSNFree

OS_Q

OSTCBStkPtr
OSTCBExtPtr = NULL
OSTCBStkBottom
OSTCBStkSize = stack size
OSTCBId = OS_LOWEST_PRIO
OSTCBNext
OSTCBPrev
OSTCBEventPtr = NULL
OSTCBMsg = NULL
OSTCBDly = 0
OSTCBStat = OS_STAT_RDY
OSTCBPrio = OS_LOWEST_PRIO-1
OSTCBX = 6
OSTCBY = 7
OSTCBBitX = 0x40
OSTCBBitY = 0x80
OSTCBDelReq = FALSE

OSTCBStkPtr
OSTCBExtPtr = NULL
OSTCBStkBottom
OSTCBStkSize = stack size
OSTCBId = OS_LOWEST_PRIO
OSTCBNext
OSTCBPrev
OSTCBEventPtr = NULL
OSTCBMsg = NULL
OSTCBDly = 0
OSTCBStat = OS_STAT_RDY
OSTCBPrio = OS_LOWEST_PRIO
OSTCBX = 7
OSTCBY = 7
OSTCBBitX = 0x80
OSTCBBitY = 0x80
OSTCBDelReq = FALSE

0 0

0
0
0

0
0

0
0
0
0
0

[OS_LOWEST_PRIO]
[OS_LOWEST_PRIO - 1]

[0]
[1]
[2]
[3]
[4]
[5]
[6]

OS_TCB OS_TCB
OSTaskStat() OSTaskIdle()

OSTCBPrioTbl[]

OSTCBList

OSPrioCur = 0
OSPrioHighRdy = 0
OSTCBCur = NULL
OSTCBHighRdy = NULL
OSTime = 0L
OSIntNesting = 0
OSLockNesting = 0
OSCtxSwCtr = 0
OSTaskCtr = 2
OSRunning = FALSE
OSCPUUsage = 0
OSIdleCtrMax = 0L
OSIdleCtrRun = 0L
OSIdleCtr = 0L
OSStatRdy = FALSE Task Stack Task Stack

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0
OSRdyGrp

OSRdyTbl[]

Ready List

Starting uC/OS-2
• OSInit() initializes the data structures

for uC/OS-2 and creates OS_TaskIdle().

• OSStart() pops the CPU registers of the
highest-priority ready task and then
executes a return from interrupt
instruction.
– It never returns to the caller of OSStart()

(i.e., main()).

Starting uC/OS-2
void main (void)
{

OSInit(); /* Initialize uC/OS-II */
.
Create at least 1 task using either OSTaskCreate() or OSTaskCreateExt();
.
OSStart(); /* Start multitasking! OSStart() will not return */

}

void OSStart (void)
{

INT8U y;
INT8U x;
if (OSRunning == FALSE) {

y = OSUnMapTbl[OSRdyGrp];
x = OSUnMapTbl[OSRdyTbl[y]];
OSPrioHighRdy = (INT8U)((y << 3) + x);
OSPrioCur = OSPrioHighRdy;
OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];
OSTCBCur = OSTCBHighRdy;
OSStartHighRdy();

}
}

Start the highest-
priority ready task

OSTCBStkPtr
OSTCBExtPtr = NULL
OSTCBStkBottom
OSTCBStkSize = stack size
OSTCBId = OS_LOWEST_PRIO
OSTCBNext
OSTCBPrev
OSTCBEventPtr = NULL
OSTCBMsg = NULL
OSTCBDly = 0
OSTCBStat = OS_STAT_RDY
OSTCBPrio = OS_LOWEST_PRIO-1
OSTCBX = 6
OSTCBY = 7
OSTCBBitX = 0x40
OSTCBBitY = 0x80
OSTCBDelReq = FALSE

OSTCBStkPtr
OSTCBExtPtr = NULL
OSTCBStkBottom
OSTCBStkSize = stack size
OSTCBId = OS_LOWEST_PRIO
OSTCBNext
OSTCBPrev
OSTCBEventPtr = NULL
OSTCBMsg = NULL
OSTCBDly = 0
OSTCBStat = OS_STAT_RDY
OSTCBPrio = OS_LOWEST_PRIO
OSTCBX = 7
OSTCBY = 7
OSTCBBitX = 0x80
OSTCBBitY = 0x80
OSTCBDelReq = FALSE

0

0
0
0

0
0
0
0
0
0

[OS_LOWEST_PRIO]
[OS_LOWEST_PRIO - 1]

[0]
[1]
[2]
[3]
[4]
[5]
[6]

OS_TCB OS_TCB
OSTaskStat() OSTaskIdle()

OSTCBPrioTbl[]

OSTime = 0L
OSIntNesting = 0
OSLockNesting = 0
OSCtxSwCtr = 0
OSTaskCtr = 3
OSRunning = TRUE
OSCPUUsage = 0
OSIdleCtrMax = 0L
OSIdleCtrRun = 0L
OSIdleCtr = 0L
OSStatRdy = FALSE

OSPrioCur = 6
OSPrioHighRdy = 6

Task Stack Task Stack

OSTCBStkPtr
OSTCBExtPtr = NULL
OSTCBStkBottom
OSTCBStkSize = stack size
OSTCBId = 6
OSTCBNext
OSTCBPrev
OSTCBEventPtr = NULL
OSTCBMsg = NULL
OSTCBDly = 0
OSTCBStat = OS_STAT_RDY
OSTCBPrio = 6
OSTCBX = 6
OSTCBY = 0
OSTCBBitX = 0x40
OSTCBBitY = 0x01
OSTCBDelReq = FALSE

0

OS_TCB
YouAppTask()

OSTCBList

Task Stack

OSRdyGrp

OSRdyTbl[]

Ready List

0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 1

OSTCBHighRdy
OSTCBCur

Summary
• In this chapter, you should learn that:

– What a task is, how uC/OS-2 manages a task,
and related data structures.

– How the scheduler works, and the detailed
operations done in context switches.

– The responsibility of the idle task and the
statistics task and how they works.

– How interrupts are serviced in uC/OS-2.
– The initialization and starting of uC/OS-2.

