
1

Issues in Building Real-Time
Applications

郭大維教授
ktw@cs.ccu.edu.tw

即時及嵌入式系統實驗室

(Real-Time and Embedded System Laboratory)
國立臺灣大學資訊工程系

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Introduction to Real-Time Systems
Checklist
⊕ What is a real-time system?
⊕ What is the way usually used to classify real-time

tasks?
⊕ What are the issues and research for real-time

systems?
⊕ Is there any misconception about real-time

computing?
⊕ Is our current software development

environments suitable to time-critical systems?
⊕ What kinds of software architectures are adopted

or considered in current time-critical systems?

2

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Introduction to Real-Time Systems
What is a real-time system?

Any system where a timely response by the
computer to external stimuli is vital!

Examples:
multimedia systems, virtual reality, games.
avionics, air traffic control, nuclear power
plant
stock market, trading system, information
access, etc.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

What is a Real-Time System?
Does the definition make every computer
a real-time computer?

Yes! It is if we need some response from a
computer within a finite time!!

Category of Real-Time Systems:
Hard Real-Time Systems - catastrophic if
some deadlines are missed.
Soft Real-Time Systems - otherwise.

3

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Issues in Real-time Computing
The field of real-time computing is especially rich in
research problems!

However, real-time computing systems often differ
from their counterparts in two ways:

More specific in their applications.
More drastic for their failures.

Real-Time Computing

Computing

For example, CPU
scheduling of tasks
with different
criticality!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Structure of A Real-Time System - An Example

A control system

Rates - sensors & actuators, peripheral, control
program
Phases - takeoff, cruise, and landing, etc.

sensors

actuators

environment
controlled
process

Task
Execution

Clock

Display

operator

4

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Task Classes
Ways to classify real-time tasks:

Predictability of their arrivals.
Periodic tasks have regular arrival times.
Aperiodic tasks have irregular arrival times.

• bounded inter-arrival time -> Sporadic tasks.

Criticality - consequences of non-timely executions.
Critical tasks should have timely executions

• Most of them are hard real-time transactions
Non-critical tasks are usually soft real-time tasks

• minimize miss ratio, minimize response time, maximize
values contributed to the system, etc.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Issues and Research
Software engineering

System architecture, e.g., event-driven, time-line, time-
driven, object-oriented, etc.
Network architecture, e.g., topology, predictability, and
controllability.
Fault-tolerance and reliability evaluation, etc.
Tools for prototyping, simulation, code synthesis.

Operating systems
Task assignment and scheduling
Communication protocols
Failure management and recovery
Clock Synchronization, etc.

5

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Issues and Research
Programming languages

Better control over timing
Proper interface to special-purpose devices

Database systems
Concurrency Control
Failure recovery
Availability
Query Optimization, etc.

Specification and verification
Expressiveness and complexity

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Issues for Programming
Environments

Loop size, timer granularity, imprecise
timer, sleep(), multi-programming, etc.
Sequential programs, parallel programs,
timely programs.
Client-server priority assignments -
priority inversion.
Verification, analysis, and testing.

6

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Issues for Programming
Environments

Loop
…...
Sensor();
……..
computation……
……..
t = time();
SleepTime := ReadyTime + PERIOD - t;
ReadyTime = ReadyTime + PERIOD;
Sleep(SleepTime);

EndLoop;

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Issues for Programming
Environments

The priority assignment for a Server TS?
Processes TH and TL
Priority Inversion

TS

TL

TH

TS

TL

TH

7

Software Architectures and Fault
Tolerance Issues for Real-Time
Applications

Source: C. Douglass Locke & Farnam Jahanian, RTCSA’96 Talks Presentation.

郭大維教授
ktw@cs.ccu.edu.tw

即時及嵌入式系統實驗室
(Real-Time and Embedded System Laboratory)

國立臺灣大學資訊工程系

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Software Architectures for
Real-Time Applications

Popular architectures:
Timeline (i.e., cyclic executive or frame-based)
Event-driven (with both periodic and aperiodic
activities)
Pipelined
Client-Server

Impacts
performance and life-cycle cost
critical design decisions such as synchronization
and exceptions.

No restriction on parallel processing.

8

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Timeline or Cyclic Executive
A major cycle consists of a non-repeating
set of minor cycles

Operations are implemented as
procedures.
The timer calls each procedure in the list.

No concurrency exists.
Very high life-cycle cost but very
predictable in run-time behavior!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Event-Driven
Characteristics:

Trigger schedulable tasks by I/O completion and
timer events.

Task Priority:
Determined by timing constraints, e.g., RMS, or by
semantic importance.

Ways to avoid synchronization is needed
for predictable response.
Processor utilization is preserved for
aperiodic events for response predictability.
Prone to event shower! Good for systems with
spare computation power!

9

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Pipelined
Characteristics:

Trigger schedulable tasks by I/O completion,
timer events, and inter-task messages.
The system can be described as a set of
pipelines of task invocations.

Task priority
Increasing task priorities in a unidirectional
pipeline will minimize message queue buildup.
Equal task priority setup is normal for bi-
directional pipelines.

Prone to event shower! Good for systems
with spare computation power!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Client-Server
Characteristics:

Trigger schedulable tasks by I/O completion,
timer events, and inter-task messages.
Control flow for an event stays at a node while
data flow is distributed.

Task priority
Priority inheritance is used ideally. Practically
task priorities are set equally, and message
priorities are used instead to avoid bottlenecks.

More message exchange but significantly
easier in debugging than pipelined systems.

10

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Fault Tolerance
Definition:

A real-time fault-tolerance system is a
system that can deliver its service even in
the presence of faults.

Timeliness versus Fault Tolerance
Possible Faults: Hardware/Software
errors, violation of timing constraints
because of the “environment”.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Fault Tolerance
Use redundancy to detect errors and
mask failures

Space Redundancy: replication of
physical devices.
Time Redundancy: repetition of a
computation or communication.
Information Redundancy: specific
encoding scheme, e.g., parity bit.

11

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Fault Tolerance
Real-time systems

Time is scare -> methods should trade
space/information redundancy for time.

Possible Structures:
Active replicas:

Each request is processed by all replicas, and their
results are “combined” to mask faults.

Passive replicas:
One primary and several backups.
Once the primary fails, a backup takes over.

Cooperating replicas/objects:
A client makes a request through a “broker” mechanism.

Introduction to
Real-Time Process
Scheduling

郭大維教授
ktw@cs.ccu.edu.tw

即時及嵌入式系統實驗室
(Real-Time and Embedded System Laboratory)

國立臺灣大學資訊工程系

12

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Introduction to Real-Time Process
Scheduling

Q: Many theories and algorithms in real-time process
scheduling seem to have simplified assumptions
without direct solutions to engineers’ problems. Why
should we know them?
A:

Provide insight in choosing a good system
design and scheduling algorithm.
Avoid poor or erroneous choices.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Introduction to Real-Time Process
Scheduling

Checklist
⊕ What do we really know about the rate monotonic (RM)

and the earliest deadline first (EDF) scheduling?
⊕ What is known about uniprocessor real-time scheduling

problems?
⊕ What is known about multiprocessor real-time

scheduling problems?
⊕ What task-set characteristics cause NP-hard?
⊗ What is the impact of overloads on the scheduling

results?
⊗ What do we really know about theories for off-line

schedulability such as the rate monotonic analysis?

13

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Introduction to Real-Time Process
Scheduling

Job Shop Scheduling

Independent Process Scheduling
(Liu & Layland, 1973, etc.)

Process Scheduling with
Non-Preemptable Resources

(Mok, 1983, Sha, Rajkumar, 1986, Baker, 1991, etc.)

Multiprocessor Process Scheduling
(Dhall, 1972-, etc.)

Process Scheduling with
End-to-End Delays
(Stankovic, Gerber, Lin, etc, since ?.)

Process Scheduling with
Probabilistic Guarantee
(Liu, Lehoczky, etc, since 1995.)

Time

Process Scheduling with
Realistic Task Characteristics

(Liu, Mok, etc, since 1996.)
Process Scheduling

with Multiple Resources
(??)

Sporadic Process Scheduling
(Sprunt, 1989, etc.)

Non-preemptable Scheduling
(Baruah, 1990-, etc.)

Rate-Based Scheduling
(Buttazzo, Liu, Brauah, Kuo, etc, since 1995.)

Introduction to Real-Time Process
Scheduling

Uniprocessor Process Scheduling

• Rate Monotonic Scheduling
• Earliest Deadline First Scheduling
• Priority Ceiling Protocol
• Important Theories

Reading: Stankovic, et al., “Implications of Classical Scheduling Results for Real-Time Systems,” IEEE Computer, June 1995, pp. 16-25.
Krishna and Shin, “Real-TimeSystems,” McGRAW-HILL, 1997.

Copyright: No reproducing of this material in any form is allowed unless a formal permission from Prf. Tei-Wei Kuo is received.

14

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Process Model
Periodic process

each periodic process arrives at a regular frequency - a
special case of demand.

r: ready time, d: relative deadline, p: period, c: maximum
computation time.

For example, maintaining a display
Sporadic process

An aperiodic process with bounded inter-arrival time p.
For example, turning on a light

Other requirements and issues:
process synchronization including precedence and
critical sections, process value, etc.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Performance Metrics
Metrics for hard real-time processes:

Schedulability, etc.
Metrics for soft real-time processes:

Miss ratio
Accumulated value
Response time, etc.

Other metrics:
Optimality, overload handling, mode-change
handling, stability, jitter, etc.
Combinations of metrics.

15

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Basic definitions:

Preemptive scheduling: allows process preemptions. (vs non-
preemptive scheduling)
Online scheduling: allocates resources for processes depending on
the current workload. (vs offline scheduling)
Static scheduling: operates on a fixed set of processes and produces
a single schedule that is fixed at all time. (vs dynamic scheduling)
Firm real-time process: will be killed after it misses its deadline. (vs
hard and soft real-time)
Fixed-priority scheduling: in which the priority of each process is
fixed for any instantiation. (vs dynamic-priority scheduling)

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Rate Monotonic Scheduling Algorithm
Assumptions:

all periodic fixed-priority processes
relative deadline = period
independent process - no non-preemptable resources

Rate Monotonic (RM) Scheduling Algorithm
RM priority assignment: priority ~ 1/period.
preemptive priority-driven scheduling.

Example: T1 (p1=4, c1=2) and T2 (p2=5, c1=1)

Time
T1 T2 T1 T2

0 1 2 3 4 5 6 7 8

16

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Rate Monotonic Scheduling
Algorithm

Critical Instant 1

An instant at which a request of the process have the
largest completion/response time.
An instance at which the process is requested
simultaneously with requests of all higher priority
processes

Usages
Worst-case analysis
Fully utilization of the processor power
Example: T1 (p1=4, c1=2) and T2 (p2=5, c1=2)

1 Liu and Layland, “Scheduling Algorithms for multiprogramming in a hard real-time Environment,” JACM, vol. 20, no. 1, January 1973, pp. 46-61.

Time
T1 T2 T1 T2

0 1 2 3 4 5 6 7 8

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Rate Monotonic Scheduling
Algorithm

Schedulability Test:
A sufficient but not necessary condition
Achievable utilization factor α

of a scheduling policy P -> any process set with total
utilization factor no more than α is schedulable.

Given n processes, α =
Stability:

Let processes be sorted in RM order. The ith process
is schedulable if

An optimal fixed priority scheduling algorithm

c

p
i

i

∑
()n n2 11/−

()c

p
ij

j
j

i i≤ −
=∑ 1

12 1/

17

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Rate Monotonic Scheduling
Algorithm

Rate Monotonic Analysis (RMA) 2

Basic Idea:
Before time t after the critical instance of process τi, a high

priority process τj may request amount of
computation time.

Formula:

A sufficient and necessary condition and many
extensions...

2 Sha, “An Intorduction to Rate Monotonic Analysis,” tutorial notes, SEI, CMU, 1992

Time

c
t

p
j

j













t

deadline of τi

t

pj













0

for some t in
 { | ,..., ; ,..., / }kp j i k p pj i j= =1 1

() i
i

j
j

ji dt
p
tctW ≤≤











= ∑ =1

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Rate Monotonic Scheduling
Algorithm

A RMA Example:
T1(20,100), T2(30,150), T3(80, 210), T4(100,400)
T1

c1 <= 100
T2

c1 + c2 <= 100 or
2c1 + c2 <= 150

T3
c1 + c2 + c3 <= 100 or
2c1 + c2 + c3 <= 150 or
2c1 + 2c2 + c3 <= 200 or
3c1 + 2c2 + c3 <= 210

T4
c1 + c2 + c3 + c4 <= 100 or
2c1 + c2 + c3 + c4 <= 150 or
....

Time

W3(t)

50 100 150 200

130

150

170

190

210

18

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Rate Monotonic Scheduling
Algorithm

RM was chosen by
Space Station Freedom Project
FAA Advanced Automation System (AAS)

RM influenced
the specs of IEEE Futurebus+

RMA is widely used for off-line analysis
of time-critical systems.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Earliest Deadline First Scheduling
Algorithm

Assumptions (similar to RM):
all periodic dynamic-priority processes
relative deadline = period
independent process - no non-preemptable resources

Earliest Deadline First (EDF) Scheduling Algorithm:
EDF priority assignment: priority ~ absolute deadline.
i.e.,arrival time t + relative deadline d.
preemptive priority-driven scheduling

Example: T1(c1=1, p1=2), T2(c2=2, p2=7)

Time
T1 T2

0 1 2 3 4 5 6 7 8
T1 T1 T1T2 T2

19

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Earliest Deadline First Scheduling
Algorithm

Schedulability Test:
A sufficient and necessary condition
Any process set is schedulable by EDF iff

EDF is optimal for any independent process
scheduling algorithms
However, its implementation has considerable
overheads on OS’s with a fixed-priority scheduler and
is bad for (transiently) overloaded systems.

c

p
j

j
j

i
≤

=∑ 1
1

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Priority Ceiling Protocol
Assumptions (as the same as RM for the first two):

all periodic fixed-priority processes
relative deadline = period
Non-preemptable resources guarded by semaphres

Basic Ideas and Mechanisms:
Bound the priority inversions by early blocking of
processes that could cause them, and
Minimize a priority inversion’s length by allowing a
temporary rise in the blocking process’s priority.

Contribution of the Priority Ceiling Protocol
Efficiently find a suboptimal solution with a clever
allocation policy, guaranteeing at the same time a
minimum level of performance.

20

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Priority Ceiling Protocol
Pre-requirements: nested critical sections!
Priority Ceiling Protocol (PCP):

Define a semaphore’s priority ceiling as the priority of
the highest priority process that may lock the
semaphore.
Lock request for a semaphore is granted only if the
requesting process’s priority is higher than the ceiling of
all semaphores concurrently locked by other processes.
In case of blocking, the task holding the lock inherits the
requesting process’s priority until it unlocks the
corresponding semaphore. (Def: priority inheritance)

1 Sha, Rajkumar, and Lehoczky, “Priority Inheritance Protocols: an Approach to Real-Time Synchronization,” IEEE Transactions on computers, Vol. 39, No. 9, Sept. 1990, pp. 1,175-1,185.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Priority Ceiling Protocol

A PCP Example: avoid deadlock

Timeτ1

Timeτ2

S1

t1
attempt to lock S2

S1,S2

t2

S1

t4

priority inheritance
unlock S1 and reset priority

S2 S1,S2

t6 t7

21

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Priority Ceiling Protocol

A PCP Example: avoid chain blocking

Timeτ0

Timeτ1

Timeτ2

S1

t1
attempt to lock S2

S1

t2

attempt to lock S2

S1

t3

t4

priority inheritance

S2

unlock S1 and reset priority

S2 S1,S2

t5 t6

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Priority Ceiling Protocol

A PCP Example: one priority inversion

Timeτ0

Timeτ1

Timeτ2

S1

t1
attempt to lock S2

S1,S2

t2

attempt to lock S1

S1

t3

t4

priority inheritance

S1

unlock S1 and reset priority

t5

S2 S1,S2

t6 t7

22

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Priority Ceiling Protocol
Important Properties:

A process is blocked at most once before it enters its critical
section.
PCP prevents deadlocks.

Schedulability Test of τi
worst case blocking time Bi - an approximation!

Let processes be sorted in the RM priority order

–– BSi = { τj | j > i & Max(s in Sj) (ceiling(s)) >= priority(τi)}
– Bi = Max(τj in BSi) |critical section|

– Sj = { S | semaphore S is accessed by τj }

()() /c

p

c B

p
ij

j

i i

i
j

i i+
+

≤ −
=

−∑ 1

1 12 1

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Priority Ceiling Protocol

Variations of PCP:
Stack Resource Policy - not permitted to start
unless resources are all available.

multi-units per resource
dynamic and fixed priority assignments

Dynamic Priority Ceiling Protocol
extend PCP into an EDF scheduler.

2 Baker, “Stack-Based Scheduling of Real-Time Processes,” J. Real-Time Systems, Vol. 3, No. 1, March 1991, pp. 67-99.
3 Chen and Lin, “Dynamic Priority Ceilings: A Concurrency Control Protocol for Real-time Systems,” J. Real-Time Systems, Vol. 2, No. 4, Nov. 1990, pp. 325-340.

23

Introduction to Real-Time Process
Scheduling

Multiprocessor Process Scheduling

• Important Theories
• Basic Approaches

Reading: Stankovic, et al., “Implications of Classical Scheduling Results for Real-Time Systems,” IEEE Computer, June 1995, pp. 16-25.
Krishna and Kang, “Real-TimeSystems,” McGRAW-HILL, 1997.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Multiprocessor Process Scheduling

Checklist
⊕ Understand the boundary between polynomial and NP-

hard problems to provide insights into developing
useful heuristics.

⊕ Understand the fundamental limitations of on-line
algorithms to create robust system and avoid
misconceptions and serious anomalies.

⊕ Know the basic approaches in solving multiprocessing
scheduling

Remark: It is the area which we have very limited knowledge
because of its complexity and our minimal experiences with
multiprocessor systems.

24

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Nonpreemptive Multiprocessor
Scheduling

Important Theorems1:
Conditions:

Single deadline, identical processors, ready at time 0
Theorems: (“_”-marked items causes NP-completeness!)

Processors Resources Ordering Computation Time Complexity
2 0 Arbitrary Unit Polynomial2

2 0 Independent Arbitrary NP-Complete3

2 0 Arbitrary 1 or 2 units NP-Complete3

2 1 Forest Unit NP-Complete3

3 1 Independent Unit NP-Complete3

N 0 Forest Unit Polynomial4

N 0 Arbitrary Unit NP-Complete5

1. Stankovic, et al., “Implications of Classical Scheduling Results for Real-Time Systems,” IEEE Computer, June 1995, pp. 16-25.
2. Coffman and Graham, “Optimal Scheduling for Two-Processor Systems,” ACTA Information, 1, 1972, pp.200-213.
3. Garey and Johnson, “Complexity Bounds for Multiprocessor Schedulingwith Resource Constraints,” SIAM J. Computing, Vol. 4, No.3, 1975, pp. 187-200.
4. Hu, “Parallel Scheduling and Assembly Line Problems,” Operating Research,, 9, Nov. 1961, pp. 841-848.
5. Ullman, “Polynomial Complete Scheduling Problem,” Proc. fourth Symp. Operating System Principles, ACM, 1973, pp. 96-101.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Preemptive Multiprocessor Scheduling

Theorem of McNaughton in 1959.
Goal: Compare preemption and non-preemption.
Conditions:

identical processors.
Theorem 0: Given the metric to minimize the weighted
sum of completion times, i.e., Sum(wjcj), there exists a
schedule with no preemption for which the
performance is as good as for any schedule with a
finite number of preemptions.
Note: It is NP-hard to find an optimal schedule! If the metric
is to minimize the sum of completion times, the shortest-
processing-time-first greedy approach is optimal.

McNaughton, “Scheduling with Deadlines and Loss Functions,” Management Science, Vol. 6, No. 1, Oct. 1959, pp.1-12.

25

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Preemptive Multiprocessor Scheduling

Theorem of Lawler in 1983.
Goal: Show that heuristics are needed for real-
time multiprocessor scheduling.
Conditions:

identical processors, different deadlines for
processes.

Theorem 0: The multiprocessing problem of
scheduling P processors with process
preemption allowed and with minimization of
the number of late processes is NP-hard.

Lawler, “Recent Results in the Theory of Machine Scheduling,” Mathmatical Programming: The state of the Art, A. Bachen et al., eds., Springer-Verlag, New York, 1983, pp. 202-233.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Preemptive Multiprocessor Scheduling
Theorems of Mok in 1983

Goal:Understand the limitations of EDF.
Conditions:

different ready times.
Theorem 0: Earliest-deadline-first scheduling is
not optimal in the multiprocessor case.
Example, T1(c=1,d=1), T2(c=1,d=2), T3(c=3,d=3.5), two
processors.
Theorem 1: For two or more processors, no deadline
scheduling algorithm can be optimal without complete
a priori knowledge of deadlines, computation times,
and process start times.

A.K. Mok, “Fundamental Design Problems of Distributed Systems for the Hard Real-Time Environment,” Ph.D. Thesis, Dept. of Electrical Engineering and Computer science, MIT, May 1983.

26

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Multiprocessor Anomalies

Theorem of Graham in 1976.
Goal:Notice anomaly and provide better design.
Conditions;

A set of processes is optimally scheduled on a multiprocessor
with some priority order, fixed execution times, precedence
constraints, and a fixed number of processors.

Theorem 0: For the stated problem, changing the
priority list, increasing the number of processors,
reducing execution times, or weakening the
precedence constraints can increase the schedule
length.

R. Graham, “Bounds on the Performance of Scheduling Algorithms,” Computer and Job Shop Scheduling theory, E.G. Coffman, ed., John Wiley and Sons, 1976, pp. 165-227.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Multiprocessor Anomalies

An Example

P1

P2

P1

P2

27

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Multiprocessor Scheduling -
Contemporary Approach

Motivation:
The multiprocessor scheduling problem is NP-hard
under any but the most simplifying assumptions.
The uniprocessor scheduling problem is usually
tractable.

Common Approach - 2 Steps
Assign processes to processors
Run a uniprocessor scheuling algorithm on each
processor.

Metrics:
Minimize the number of processors, fault tolerance, etc.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Multiprocessor Scheduling -
Contemporary Approach

However, the process assignment problem is again
NP-hard in most cases.
Heuristics:

Utilization balancing - balance workload of processors.1

Next-fit algorithm - used with RM. 2

Bin-packing algorithm - set with a threshold and used
with EDF 3, etc.

Other considerations:
precedence constraints, dynamic overload handling, etc.

1. J.A. Bannister and K.S. Trivedi, “Task Allocation in Fault-Tolerance Distributed systems,” Acta Informatica 20:261-281, 1983.
2. S. Davari and S.K. Dhall, “An On Line Algorithm for Real-Time Tasks Allocation,” IEEE Real-Time Systems Symposium, 1986, pp.194-200, Dhall’s Ph.D. thesis, UI.
3. D.S. Johnson, Near-Optimal Bin-Packing Algorithms,” Ph.D. thesis, MIT, 1974.

28

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Multiprocessor Scheduling
Current Research

Classification: Migration(/Partition) & Static or
Dynamic Priorities
Most Recent Results:

Utilization Bound = 42% by a bin-packing
partitioning approach (JRTS, 1999)
Utilization Bound = 37.482% by RM-US –
processes with a utlization > bound is given the
highest priority; otherwise RM is adopted.
Utilization Bound = m – [(m-1)*Umax] if Umax <=
0.5, where Umax = max Ui. Or Utilization Bound =
(m+1)/2+Umax if Umax > 0.5 – M-CBS (RTAS02)
Utilization Bound = 75% - EZDL (to appear)

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Papers to Study
J. Stankovic, M. Spuri, M.D. Natale, G.C.
Buttazo,”Implications of Classical Scheduling
Results for Real-Time Systems,” IEEE
Computer, 1995
C.L. Liu and J.W. Layland, “Scheduling
Algorithms for Multiprogramming in a Hard Real-
Time Environments,” Journal of ACM, 1973.
L. Sha, R. Rajkumar, J.P. Lehoczky, “Priority
Inheritance Protocols: An Approach to Real-
Time Synchronization,” IEEE Transactions on
Computers, 1990.
http://140.112.28.119

29

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Real-Time and Embedded System Lab, National Taiwan University.

Papers to Study
A.K. Mok, “The Design of Real-Time
Programming Systems Based on Process
Models,” IEEE Real-Time Systems
Symposium, Dec 1994.
T.W. Kuo, Y.H. Liu, K.J. Lin, “Efficient On-Line
Schedulability Tests for Priority Driven Real-
Time Systems," the IEEE Real-Time
Technology and Applications Symposium,
June 2000.
A.K. Mok, “A Graph-Based Computation Model
for Real-Time Systems,” IEEE International
Conference on Parallel Processing, Aug 1985.

