D

AN
Chapter-3 Kernel

Structure

Dr. Li-Pin Chang
Real-Time and Embedded System Lab.
National Taiwan University %

~—

Objectives %
e To understand what a task Is.

e To learn how uC/0S-2 manages tasks. <
 To know how an ISR works.

 To learn how to determine the
percent CPU your application Is using.

Sl

The uC/0S-2 Flile
Structure

Application Code (Your Code!)

Processor independent
implementations

*Scheduling policy
*Event flags
*Semaphores
*Mailboxes

*Event queues

*Task management
*Time management
*Memory management

Application Specific
Configurations

OS_CFG.H

Max # of tasks
Max Queue length

uC/0OS-2 port for processor specific codes

Software

Hardware

CPU

Timer

Source Avallability x
e Download the source code of uC/0

web site http://140.112.28.99/me

2 from the “course” section of the <

 The password for extraction Is
“tzuchiang”

S

Critical Sections %
e A critical section is a portion of code that is no

T
safe from race conditions.
— Because of the use of shared resources. <

 They can be protected by interrupt
disabling/enabling interrupts or semaphores.

— However, the use of semaphores imposes a more
significant amount of overheads.

— A RTOS kernel itself mostly use interrupts
disabling/enabling to protect critical sections. (why?)

 Once Interrupts are disabled, neither context
switches nor any other I1SR’s can occur.

S

Critical Sections %
 The interrupt latency is a vital specification of an

RTOS.

— Interrupts should be disabled as short as possible to
Improve the responsiveness.

— It must be accounted as a blocking time in the
schedulability analysis.

o Interrupt disabling must be used carefully:

— E.g., If OSTimeDlIy() is called with interrupt disabled,

the machine might hang! .

OS _ENTER_CRITICALQ;
. /* Critical Section */
OS_EXIT_CRITICALQ;

Critical Sections %
 The states of the processor must be carefully maintained

across multiple calls of OS_ENTER_CRITICAL() /
OS_EXIT_CRITICALJ().

maintenance of process states:
— Interrupt enabling/disabling instructions.
— Interrupt status save/restore onto/from stacks.

— Processor Status Word (PSW) save/restore onto/from
memory variables.

 There are three possible implementations for the <

 Interrupt enabling/disabling can be done by various way:
— In-line assembly.
— Compiler extension for specific processors.

Y

Critical Sections

OS_CRITICAL _METHOD=1
Interrupt enabling/disabling instructions.
The simplest way, however, this approach does not <

have the sense of “save” and “restore”,

Interrupt statuses might not be consistent across
kernel services/function calls!!

{ ““““ '{
disable_interrupt(); .- disable_interrupt();
a_kernel_service(Q;" critical section
e, enable_interrupt();
..... }

Interrupts are now
implicitly re-enabled!

Critical Sections %
« OS CRITICAL METHOD=2

* Processor Status Word (PSW) can be <
saved/restored onto/from stacks.

— PSW'’s of nested interrupt
enable/disable operations can be exactly
recorded In stacks.

#define OS_ENTER_CRITICAL() \

asm(““PUSH PSW™) ; _)
asm(“DI1™); Some compilers might

not be smart enough to
adjust the stack pointer

“ #define OS_EXIT_CRITICALQO \ after the processing of
§ asm(““POP PSW™) ; in-line assembly.

Critical Sections

« OS CRITICAL METHOD=3

 The compiler and processor allow the PSW to be
saved/restored to/from a memory variable. <

void foo(arguments)

{
0S_CPU_SR cpu_sr;

- - OS_ENTER_CRITICAL()]‘
P

: disable_interruptsQ);

/* critical section */

, E.._ .. .%S_EXFF_CRlTlCALO ’

Tasks %
« A task iIs an active entity which could do

some computations.

 Under real-time systems, a task is <
typically an infinite loop.
void YourTask (void *pdata) (@D ‘
{
for (5;) { @
/* USER CODE */
..Call_one of uC/0S-11’s serviges:
: OSMboxPend() ;
: 0SQPend(); .
: 0SSemPend() ; : ;
: 0STaskDel (0S_PRIO_SELF); E Delay itself f(_)r
: 0STaskSuspend(0S_PRIO_SELF); next event/period,
: OSTimeDly(); ;
OSTAMeDIYHNSNO); so that other
7% "USER "CODE ">/ tasks can run.

Tasks %
« UC/0OS-2 can have up to 64 priorities.

— Each task must associate with an unique priority.
— 63 and 62 are reserved (idle, stat). <

o Insufficient number of priority will damage the
schedulability of a real-time scheduler.

— The number of schedulable task would be reduced.
» Because there is no distinction among the tasks with the
same priority.
» For example, under RMS, tasks have different periods but
are assigned with the same priority.

* It is possible that all other tasks with the same priority
are always issued before a particular task.

— Fortunately, most embedded systems have a limited
< number of tasks to run.

S

Tasks %
e A task Is created by OSTaskCreate()

or OSTaskCreateExt(). <
i

 The priority of a task can be changed
by OSTaskChangePrio().

e A task could delete 1tself when done.

void YourTask (void *pdata)
{

/* USER CODE */
“ OSTaskDel(OS_PRIO_SELF);
N } The priority of
the current task

//I\

¢

Task States
Dormant: Procedures residing on RAM/ROM is not an task unless

you call OSTaskCreate() to execute them.
— Actually no tasks correspond to the codes.

— A task is ready once it is created.

Running: A ready task is scheduled to run on the CPU .
— There must be only one running task.
— The task running might be preempted and become ready.

Ready: A task is neither delayed nor waiting for any event to occur. <

Waiting: A task is waiting for certain events to occur.

— Timer expiration, signaling of semaphores, messages in mailboxes, and
etc.

ISR: A task is preempted by an interrupt.
— The stack of the interrupted task is utilized by the ISR.

Task States

OSMBoxPost() OSMBoxPend()
0SQPost() 0SQPend()
0SQPostFront()
0STaskDel 0SSemPost() 0SSemPend()
0 OSTaskResume() OSTaskSuspend()
OSTimeDlyResume() OSTimeDly()
OSTimeTick() OSTimeDlyHMSM()
OSTaskCreate()
OSTaskCreateExt Osstart()
askCreatebxt) OSIntEXxit() Interrupt

0S_TASK_SW()

RUNNING

vwis Preempted /
OSTaskDel()

OSintExit()

DORMANT

OSTaskDel() OSIntEXxit()

-

N

Task States
A task can delay itself by calling OSTimeDly() or OSTimeDIyHMSM().

— The task is placed in the waiting state.
— The task will be made ready by OSTimeTick().
* Itis the clock ISR, you don’'t have to call it explicitly from your code. <

A task can wait for an event by OSFlagPend(), OSSemPend(),
OSMboxPend(), or OSQPend().

— The task remains waiting until the occurrence of the desired event. (or timeout)

The running task is always preempted by ISR’s, unless interrupts are
disabled.

— ISR’s could make one or more tasks ready by signaling events.
— On the return of an ISR, the scheduler will check if rescheduling is needed.

Once new tasks become ready, the next highest priority ready task is
scheduled to run (due to occurrences of events, timer expirations).

It no task is running and all tasks are not in the ready state, the idle task
executes.

X%

Task Control Blocks (TCB) %
« A TCB is a main-memory-resident data structure

used by to maintain the state of a task when it is
preempted. <

e Each task is associated with a TCB.
— All valid TCB’s are doubly linked.
— Free TCB’s are linked in a free list.

e The contents of a TCB Is saved/restored when a
context-switch occurs.

— Task priority, delay counter, event to wait, location of
the stack.

— CPU registers are stored in the stack rather than in the
TCB.

/\

{//

#endit
struct os_tcb *0STCBNext;
struct os_tcb *0STCBPrev;
#if (OS_Q EN && (0S MAX QS >= 2)) |] 0S MBOX EN || OS SEM EN

typedef struct os _tcb {
0S_STK *0OSTCBStkPtr;
#i1Tf 0S_TASK CREATE_EXT EN
void *OSTCBEXtPtr;
0S_STK *0STCBStkBottom;
INT32U OSTCBStkSize;
INT16U OSTCBOpt;
INT16U OSTCBId;

OS_EVENT *0STCBEventPtr;
#endi
#if (0OS_Q EN && (0S_MAX QS >= 2)) || 0S _MBOX EN
void *0STCBMsg;
#endi F
INT16U OSTCBDly;
INT8U OSTCBStat;
INT8U OSTCBPrio;
INT8U OSTCBX;
INT8U OSTCBY;
INT8U OSTCBBiItX;
INT8U OSTCBBitY;
: #1Ff OS_TASK DEL _EN
BOOLEAN OSTCBDelReq;
#endi F

} OS TCB;

Task Control Blocks (TCB) %
.OSTCBStkPtr contains a pointer to the current TOS for the task.

— Itis the first entry of TCB so that it can be accessed directly from
assembly language. (offset=0)

extension.
— Set OS _TASK CREATE_EXT_EN to 1.
— The pointer is set when OSTaskCreateExt() is called

.OSTCBEXtPtr is a pointer to a user-definable task control block <
— The pointer is ordinarily cleared in the hook OSTaskDelHook(). ‘

.OSTCBStkBottom is a pointer to the bottom of the task’s stack.

.OSTCBStkSize holds the size of the stack in number of elements
instead of bytes.

— The element size is the macro OS_STK.
— Total stack size is OSTCBStkSize*OS_STK bytes
— .OSTCBStkBottom and .OSTCBStkSize are used to check stack.

//n

¢

Task Control Blocks (TCB) %

-
i
-

(&)

]
=
o

(@)
=

=

o

-

(@)]
4

O

©

-
p)

&4 Bottom of Stack (BOS)

Free Space <

Current TOS, points to
«— the newest element.

Space in use

4= Top of Stack (TOS)

VA

Task Control Blocks (TCB) x
.OSTCBOpt holds “options” that can be passed to OSTaskCreateExt()

— OS_TASK OPT_STK_ CHK: stack checking is enable for the task being
created.

— OS_TASK OPT_STK CLR: indicates that the stack needs to be cleared
when the task is created.

— OS _TASK OPT_SAVE_FP: tells OSTaskCreateExt() that the task will be
doing floating-point computations. Floating point processor’s registers must
be saved to the stack on context-switches.

.OSTCBId: holds an identifier for the task.

.OSTCBNext and .OSTCBPrev are used to double link OS_TCBs
.OSTCBEVEventPtr is pointer to an event control block.
.OSTCBMSsg is a pointer to a message that is sent to a task.
.OSTCBFlagNode is a pointer to a flagnode.

.OSTCBFlagsRdy maintains which event flags make the task ready.

.OSTCBDIy is used when:
— atask needs to be delayed for a certain number of clock ticks, or
— atask needs to pend for an event to occur with a timeout.

.OSTCBStat contains the state of the task. (O is ready to run)
-.OSTCBPrio contains the task priority.

(
<
3

[// A

Task Control Blocks (TCB) %
« .OSTCBX .OSTCBY .OSTCBBIitX and .OSTCBBItY

— They are used to accelerate the process of making a task ready to run
or make a task wait for an event.

OSTCBBi1tY = OSMapTbl[priority >> 3];
OSTCBX = priority & 0x07;
OSTCBBi1tX = OSMapTbl[priority & 0x07];

OSTCBY = priority >> 3; <

.OSTCBDelReq is boolean used to indicate whether or not a task
request that the current task to be deleted.

« OS MAX TASKS is specified in OS_CFG.H
— # OS_TCBs allocated by y C/0S-11

e OSTCBTDI[] : where all OS_TCBs are placed.

e When uy C/0S-11 is initialized, all OS_TCBs in the table are linked
in a singly linked list of free OS_TCBs

<&

Task Control Blocks (TCB)

When a task is created, the OS_TCB pointed to by
OSTCBFreelList is aSS|gned to the task, and OSTCBFreeLlst
Is adjusted to point the next OS_TCB in the chain.

D

\

of free OS_TCB.

A

When a task is deleted, its OS_TCB is returned to the list <

An OS_TCB is initialized by the function OS_TCBInit(),
which is called by OSTaskCreate().

OSTCBTHI[0]

OSTCBThI[1]

OSTCBThI[OS_MAX_TASKS+OS_N_SYS_TASKS-1]

OSTCBTbI[2] \

OSTCBFreeList —» osTCBNext®

—>

OSTCBNext®

—>

OSTCBNext¢— —— —— —— —P

OSTCBNexi®

—» 0

AR __
INT8U OS_TCBInit (INT8U prio, OS_STK *ptos, OS_STK *pbos, INT16U id, INT32U stk_size, void *pext, INT16U

opt)
{
#iFf OS_CRITICAL _METHOD == /* Allocate storage for CPU status register */
OS_CPU_SR cpu_sr;
#endi T
0S_TCB *ptchb; Get a free TCB from
the free list
A ptcb = OSTCBFreeList; /* Get a free TCB from the free TCB list */
if (ptcb = (0S_TCB *)0) {
v OSTCBFreeList = ptcb->0STCBNext; /* Update pointer to free TCB list */
| 0S EXIT CRITICALQ);
ptcb->0STCBStkPtr = ptos; /* Load Stack pointer in TCB */
ptcb->0STCBPrio = (INT8U)prio; /* Load task priority into TCB */
ptcb->0STCBStat = OS_STAT_RDY; /* Task iIs ready to run */
ptcb->0STCBDly = 0; /* Task i1s not delayed */
#i1T OS_TASK_CREATE_EXT_EN > O
ptcb->0STCBEXtPtr = pext; /* Store pointer to TCB extension */
ptcb->0STCBStkSize = stk _size; /* Store stack size */
ptcb->0STCBStkBottom = pbos; /* Store pointer to bottom of stack */
ptcb->0STCBOpt = opt; /* Store task options */
ptcb->0STCBId = id; /* Store task ID */
#else
pext = pext; /* Prevent compiler warning if not used */
stk_size = stk_size;
pbos = pbos;
opt = opt;
id = id;
#endi T
#1T OS_TASK_DEL_EN > O
ptcb->0STCBDelReq = 0S_NO_ERR;
#endi T
ptcb->0STCBY prio >> 3; /* Pre-compute X, Y, BitX and BitY */

ptcb->0STCBBitY

ptcb->0STCBX

ptcb->0STCBBi tX
S \

OSMapTbl [ptcb->0STCBY] ;
prio & 0Ox07;
OSMapTbl [ptcb->0STCBX] ;

#if OS_EVENT_EN > O

ptcb->0STCBEventPtr = (OS_EVENT *)O; /* Task is not pending on an event */
#endif

#if (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (OS_MAX_FLAGS > 0) && (0S_TASK_DEL_EN > 0)

ptcb->0STCBFlagNode = (OS_FLAG_NODE *)0; /* Task is not pending on an event flag */
#endif
#if (OS_MBOX_EN > 0) || ((0S_Q EN > 0) && (0S_MAX_QS > 0))

ptcb->0STCBMsg = (void *)0; /* No message received */
#endif
#if OS_VERSION >= 204 . .

OSTCBIni tHook(ptch) ; User-defined hook is
#endif called here.

OSTaskCreateHook(ptch); /* Call user defined hook */

4 OSTCBPrioTbl[prio] = ptcb;
ptcb->0STCBNext = OSTCBLiSt; =r=us., /* Link into TCB chain */

ptcb->0STCBPrev (0S_TCB *)0; .
if (OSTCBList = (0OS_TCB *)0) { EA/,,—/F’ﬁ TCB list ::]
OSTCBList->0STCBPrev = ptcb; J

} :

OSTCBList = ptcb; sass=*’

OSRdyGrp |= ptcb->0STCBBitY; /* Make task ready to run */
v OSRdyTbl[ptcb->0STCBY] |= ptcb->0STCBBitX;

| OS_EXIT_CRITICALQ);
return (0OS_NO ERR);
}

0S_EXIT_CRITICALQ); Ready list
return (0S_NO_MORE_TCB);

!

Ready List %
 Ready list is a special bitmap to reflect which task is

currently in the ready state.
— Each task is identified by its unique priority in the bitmap.

efficiently locate the highest-priority ready task.

— The designer decides to trade some ROM space for an

A primary design consideration of the ready list is how to <
improved performance. ‘

 Ifalinear list is adopted, it takes O(n) to locate the
highest-priority ready task.
— It takes O(log n) if a heap is adopted.

— By the design of ready list of uC/0S-2, it takes only O(1).

* Note that the space consumption is much more than other
approaches.

* It also depends on the bus width.

N

X%

OSRdyGrp Ready List
110lo/ololololo] OSTCBPrioThI]
OSRdyThl[] 0 Fl){
0/00/0/0/0/00 ; o
0/00/0/0/ 000 ; "
0/0,0/0/ 0000 i ol
0/|0/0]/0]/0|0|0]0 !
————————————®»|0/0/0]/0|0|0|0]O i
> 0/0/0/0|0|0|0]O |
» 0/0/0/0/0/0/0|0 |
> 1/1/0/0/0/00]0 :
0
—e [0OS_LOWEST_PRIO]
OSTaskSt at () OSTaskl dl e()
0S TCB 0OS TCB
OSTCBStkPtr OSTCBStkPtr
OSTCBEXxtPtr = NULL OSTCBEXxtPtr = NULL
OSTCBStkBottom OSTCBStkBottom
OSTCBStkSize = stack size OSTCBStkSize = stack size
. OSTCBId = OS_LOWEST_PRIO OSTCBId = OS_LOWEST_PRIO
OSTCBLIist ———» 0sTCBNext p | OSTCBNext
OSTCBPrev OSTCBPrev

OSPri oCur
CSPr i oH ghRdy
OSTCBCur
OSTCBHI ghRdy
OSTi e

OSl nt Nest i ng
OSLockNest i ng
oSG xSwet r
OSTaskCtr
OSRunni ng
OSCPUUsage
Csl dl eCtr Max
oSl dl eCir Run
osldleCr

OSSt at Rdy

0
0
NULL
NULL

0

W

OSTCBEventPtr = NULL
OSTCBMsg = NULL

OSTCBDy = 0

OSTCBStat = 0S_STAT_RDY
OSTCBPrio = 0S_LOWEST_PRIO-1
OSTCBX =6

OSTCBY =7

OSTCBBItX = 0x40

OSTCBBItY = 0x80

OSTCBDelReq = FALSE

Task Stack

[0S_LOWEST_PRIO - 1] <

OSTCBEventPtr = NULL
OSTCBMsg = NULL

OSTCBDy =0

OSTCBStat = 0S_STAT_RDY
OSTCBPrio = 0S_LOWEST_PRIO
OSTCBX =7

OSTCBY =7

OSTCBBItX = 0x80

OSTCBBItY = 0x80
OSTCBDelReq = FALSE

4,
47

Task Stack

A

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]

OSRdyGrp
.ﬂ.----ﬂ OSRdyTbl[OS_LOWEST_PRIO /8 + 1]
L Highest Priority T7

Task Priority #

Task's Priority

Lowest Priority Task
nn (Idle Task)

Bit position in OSRdyTbI[OS_LOWEST PRIO /8 + 1]

“ Bit position in OSRdyGrp and
N Index into OSRdyTbI[OS_LOWEST_PRIO /8 + 1]

OSMapThbl

Index

Bit mask (Binary)

0

00000001

00000010

00000100

00001000

00010000

00100000

01000000

N~N|jolo|hr~|WIN|E

10000000

Bit O in OSRdyGrp is 1 when any bit in OSRdyTbl[O] is 1.
Bit 1 in OSRdyGrp is 1 when any bit in OSRdyTbl[1] is 1.
Bit 2 in OSRdyGrp is 1 when any bit in OSRdyTbl[2] is 1.
Bit 3 in OSRdyGrp is 1 when any bit in OSRdyTbl[3] is 1.
Bit 4 in OSRdyGrp is 1 when any bit in OSRdyTbl[4] is 1.
Bit 5 in OSRdyGrp is 1 when any bit in OSRdyTbl[5] is 1.
Bit 6 in OSRdyGrp is 1 when any bit in OSRdyTbl[6] is 1.
Bit 7 in OSRdyGrp is 1 when any bit in OSRdyTbl[7] is 1.

*Make a task ready to run: ‘

OSRdyGrp
OSRdyTDbl[prio > 3] |= OSMapTbl[prio & 0x07];

|= OSMapTbl[prio > 3]J;

*Remove a task from the ready list:
IT ((OSRdyTDbl[prio >»> 3] &= ~OSMapTbl[prio & 0x07]) == 0)

OSRdAyGrp &= ~OSMapTDbl[prio >> 3];

%s this code do?

If ((OSRdyTbl[prio > 3] &= ~OSMapTbl[prio & 0x07]) == 0)

OSRdyGrp &= ~OSMapTbl[prio > 3];
How about this:
char x,y,mask;

Coding style? x
{

X = prio & 0x07,

y = prio > 3;
mask = ~(OSMapTblI[x]); // a mask for bit clearing
IF((OSRAyTDbI[x] &= mask) == 0)// clear the task’s bit
{ // the group bit should be cleared too
mask = ~(OSMapTDbl[y]); // another bit mask...
“— OSRdyGrp &= mask; // clear the group bit
}

D

mov
mov
and
lea
add
mov
mov
not
mov
mov
sar
lea
add
mov
and
mov
or
Jjne
mov
mov
sar

add
mov

Coding Style?

al,byte ptr [bp-17]
ah,0

ax, 7

dx,word ptr [bp-8]
ax,dx

bx,ax

al ,byte ptr ss:[bx]
al

dl,byte ptr [bp-17]
dh,0

dx,3

bx,word ptr [bp-16]
dx, bx

bx,dx

byte ptr ss:[bx],al
al ,byte ptr ss:[bx]
al ,al

short @1@86
al,byte ptr [bp-17]
ah,0

ax,3

dx,word ptr [bp-8]
ax,dx

bx,ax

al ,byte ptr ss:[bx]
al

byte ptr [bp-18],al

mov
and
mov
mov
mov
sar
mov
mov
mov
lea
add
mov
mov
not
mov
mov
mov
lea
add
mov
and
mov
or
jne
mov
mov
lea
add
mov
mov
not
mov

al ,byte ptr [bp-17]
al,7

byte ptr [bp-19],al
al ,byte ptr [bp-17]
ah,0

ax,3

byte ptr [bp-20],al
al ,byte ptr [bp-19]
ah,0

dx,word ptr [bp-8]
ax, dx

bx , ax

al ,byte ptr ss:[bx]
al

cl,al

al ,byte ptr [bp-19]
ah,0

dx,word ptr [bp-16]
ax, dx

bx,ax

byte ptr ss:[bx],cl
al ,byte ptr ss:[bx]
al ,al

short @1@142

al ,byte ptr [bp-20]
ah,0

dx,word ptr [bp-8]
ax, dx

bx,ax

al ,byte ptr ss:[bx]
al

cl,al

-
1

—
b

e
T
Q

o
=

INT8U const OSUn

i

*/
*/
*/
*/
*/
*/
*/
*/

/* 0x00 to OxOF
/* 0x10 to Ox1F

/* 0x20 to Ox2F
/* 0x30 to Ox3F
/* 0x40 to Ox4F
/* 0x50 to OX5F
/* 0x60 to OX6F
/* 0x70 to OX7F
/* 0x80 to Ox8F
/* 0x90 to Ox9F
/* OXAO to OXAF
/* 0xBO to OxBF
/* OxCO to OXCF
/* 0xDO to OxDF
/* OXEO to OXEF
/* OXFO to OXFF

OC0O00000000000O0O0O0
™ v v v v v v e A A A A A A A
OC0O000000000000O0O0
NNNNNNNNNNNNNNNN
OC0O0000000000000O0
™ v 4 v v 4 4 v v A A A A A A A
O0O0O000000000000O0
OC0O0000000000000O0
™ v 4 4 v v v 4 v v A A A A A A
O00000000000000O0
NaNaNNaNNNNNNNNNNNN
OC0O0000000000000O0
™ v 4 v v 4 v+ v e d v A A A A A
OC0O0000000000000O0
O OTIOITNTINST O IO

~—

This matrix is used to Iocate\

>
0
o
53
c g
Wa
m
Sn
a9
.ﬂg
=
Y=
((b)
h
)
¥4
% . -
= g
g 9
e
o =
= %)
T 0
._& —
@ @)
< =
= o
h..a
0§ 2
re
28 3
= >
S o |
S ©
(b}
L2 S

For example, if 00110010 is

OSUnMapTbI[OSRdyTbl[y]];
(y << 3) + X;

NX

given, then ‘1’ is returned/

= prio

~——

Task Scheduling x
 The scheduler always schedules the highest-

priority ready task to run .

« Task-level scheduling and 1SR-level scheduling
are done by OS_Sched() and OSIntExit(),
respectively.

— The difference is the saving/restoration of PSW (or
CPU flags).

e o A

e UC/0S-2 scheduling time is a predictable amount
of time, I.e., a constant time.

— For example, the design of the ready list intends to
achieve this objective.

S

Ao

void 0SSched (void)

{
INT8U vy;
OS_ENTER_CRITICALQ);
iIT ((OSLockNesting | OSIntNesting) == 0) { (@D
Yy = 0SUnMapTbl [OSRdyGrp]; (2
OSPrioHighRdy = (INT8U)((y << 3) + OSUnMapTbl[OSRdyTbl[y]l]D): ()
iIT (OSPrioHighRdy "= OSPrioCur) {)
OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];)
OSCtXSWCtr++;)
OS_TASK_SWQ); (6)
+
+
OS_EXIT_CRITICALQ);
} <

(1) Rescheduling will not be done if the scheduler is locked or
an ISR is currently serviced (why?).

(2) Find the highest-priority ready task.
(3) [Ifitis not the current task, then
(4) ~(6) Perform a context-switch.

S

Task Scheduling %
A context switch must save all CPU registers and PSW of

the preempted task onto its stack, and then restore the
CPU registers and PSW of the highest-priority ready task
from its stack. <

o Task-level scheduling will simulate that as if
preemption/scheduling is done in an ISR.

— OS_TASK SW() will trigger a software interrupt. (why?)

— The interrupt is directed to the context switch handler
OSCtxSw(), which is installed when uC/OS-2 is initialized.

* Interrupts are disabled during the finding of the highest-
priority ready task to prevent another 1SR’s from making
some tasks ready.

S

Task Level Context
Switch
By default, context switches are
handled at interrupt-level, therefore <
!

task-level scheduling will invoke a
software interrupt to simulate that.

— Hardware dependent, porting must be
done.

S

Low Priority Task
OS_TCB

OSTCBCur —

Low Memory

High Priority Task

OS TCB \
OSTCBHighRdy —* °

stack Growth

&
<«

High Memory

Low Memory
CPU
o SP
R4 R4 < ‘
R2 RD
R1 R1
PC
PC PSW
PSW
High Memory

Low Priority Task
OS_TCB

OSTCBCur —

"

»

/

Low Memory

v

R4

d

High Priority Task

OSTCBHighRdy —

-

stack Growth

R3

R2

R1

PC

PSW

—

High Memory

. SP

R4

R3

R2

R1

PC

PSW

OS TCB \

Low Memory <

RA < ‘

R3

R2

R1

PC

PSW

High Memory

Low Priority Task

OS_TCB

_®

/

Low Memory

High Priority Task

OS_TCB \
OSTCBHighRdy —3| - e
OSTCBCuUr —

v

R4

stack Growth

R3

R2

R1

PC

PSW

High Memory

Low Memory
CPU |
SP* e
R3 R3
Rz R2
R1 < R
PC
P;SN ~ PSW
High Memory

Locking and Unlocking
the Scheduler
 OSSchedLock() prevent high-priority ready tasks from being

scheduled to run while interrupts are still recognized.
 OSLockNesting keeps track of the number of OSSchedLock() has

« 0OSSchedLock() and OSSchedUnlock() are used in pairs. <
been called. (how? why?) ‘

o After calling OSSchedLock(), you must not call kernel services
which might cause context switch, such as OSFlagPend(),
OSMboxPend(), OSMutexPend(), OSQPend(), OSSemPend(),
OSTaskSuspend(), OSTimeDly, OSTimeDIyHMSM() until
OSLockNesting == 0. Or the system will be locked up.

« Sometimes we disable scheduling but with interrupts are still
recognized because we hope to avoid lengthy interrupt latencies
,\‘\Wlthout introducing race conditions.

<Xz

OSSchedLock() %

void O0OSSchedLock (void)
{

#1T OS_CRITICAL_METHOD == /* Allocate storage for CPU status register */
OS_CPU_SR cpu_sr;
#endif
iIT (OSRunning == TRUE) { /* Make sure multitasking is running
0S_ENTER_CRITICALQ); ‘
1T (OSLockNesting < 255) {/* Prevent OSLockNesting from wrapping back to O*/

OSLockNesting++; /* Increment lock nesting level

}
OS_EXIT_CRITICALQ);

OSSchedUnlock()

void O0SSchedUnlock (void)

{
#if OS_CRITICAL_METHOD == 3
OS_CPU_SR cpu_sr;
#endi T
1T (OSRunning == TRUE) { /*
0S_ENTER_CRITICALQ);
1T (OSLockNesting > 0) { /*
OSLockNesting--; /*
if ((OSLockNesting == 0) &&
(OSIntNesting == 0)) { /7*
OS_EXIT_CRITICALQ);
0S_Sched(); /*
} else {
0S_EXIT_CRITICALQ);
e
} else {
OS_EXIT _CRITICALQ;
) }
N}

N\

Make sure multitasking iIs running

Do not decrement if already O
Decrement lock nesting level

See

See

if sched. enabled and not an ISR

iIT a HPT is ready

A

/* Allocate storage for CPU status register */

(
<

The Idle Task x
« The idle task is always the Vvoid OS_Taskldle (void *pdata)

lowest-priority task and {
can not be deleted or #1Tf OS_CRITICAL METHOD ==

suspended by user-tasks. OS_CPU_SR cpu_sr;
#Hendif

« To conserve power
dissipation, you can issue a data = pdata: ‘
HALT instruction in the 'r;or) {p ’
idle task. OS_ENTER_CRITICAL();

OSldleCtr++;

« Do not call delay, suspend OS_EXIT_CRITICAL();
services in OSTaskldleHook();
OSTaskldleHook()! }

}

S

The Statistics Task x
 Itis created by uC/0OS-2, and it executes every second to

compute the percentage of CPU usage.

o OSStatlnit() must be called before OSStart() is called. <
e Witha OS LOWEST_PRIO -1 priority.
void main (void) ‘
{
oSInit(); /* Initialize uC/0S-11 (OH*/
/* Install uC/0S-11"s context switch vector */
/* Create your startup task (for sake of discussion, TaskStart()) (2)*/
OSStart(); /* Start multitasking)*/
¥
void TaskStart (void *pdata)
{
/* Install and initialize pC/0S-11"s ticker 4>/
OSStatInit(); /* Initialize statistics task B/
/* Create your application task(s) */
for (G3) {
/* Code for TaskStart() goes here! */
s

¢

The Statistics Task %

Highest Priority 0S_LOWEST PRIO -1 0S_LOWEST PRIO
main() TaskStart() 0STaskStat() OSTaskldle()
{ osmit(); (@ { { {
Install context switch vector; (2)
Create TaskStart(); (3)
osStart();
\ Scheduler . .
} 4 P it uc/0S-11"s ticker; (5)
* osStatInit(): (6)
T 0STimeDly(2);)
‘ Scheduler P while (0SStatRdy == FALSE) { (8) ‘
e i e Bt il s }: - OSTimeDly(2 seconds); (©O))
2 ticks | Scheduler for (--
After 2 ticks > Orogic’i%eétrﬂ; (10)
* D) }
T G G 63
————————— imeDly(1 second);
2 seconds | scheduler > o ek
1 second % After 1 second ’
ffffffffffff OSldleCtrMax = OSldleCtr; (15)
0SStatRdy = TRUE; (16)
for (G5) {
v Task code;
“ ***************** Yy for (55) { o
} } Compute Statistics; (17)
§ }

The Statistics Task %
(7) TaskStart: delay 2 ticks—> transfer CPU to the stat task

to do some Initializations.

(9) OS_TaskStat: delay 2 seconds-> yield the CPU to the
task laskStart and the idle task.

(13) TaskStart: delay 1 second-> let the idle task to count
OSIdIleCtr Tor 1 second. (note that the stat task is still not
delayed).

(15) TaskStart: on the timer expiration in (13), now OSldleCtr
contains the value can be reached in 1 second.

e Notes:

— Since OSStatinit() assume that the idle task will count the
OSOdleCtr at full CPU speed, you must not install an idle hook
before calling OSStatinit().

— After the stat task is initialized, it is OK to install a CPU idle
hook and perform some power-conserving operations, since the
idle task entirely consumes the CPU power just for the purpose
of being idle.

//// A

(
<

The Statistics Task %
« By calling OSStatlInit(), we've got how high the idle counter

can reach in 1 second (OSIdleCtrMax).

actual idle counter and the OSldleCtrMax.

——————————————

 The percentage of CPU usage can be calculated by the <

This term is always

under integer
________________ operation

OCPUUsagey, =| 100 _C_)_SS(_jI_(;,_C_tt:Mé)_(

OSCPUUSsage,,, =100x (1 'ngg('ﬁ; }\/
r ax : : ﬂ

OSldleCtr This term might overflow
OSCPUUsage,,, =| 100 03 dleCt Max under fast processors!
(100 J (42,949,672)

\

D

The Statistics Task x
#if OS_TASK STAT _EN>O for (;;) {

void OS_TaskStat (void *pdata) OS_ENTER_CRITICAL();
{ OSlIdleCtrRun = OSldleCtr;
#if OS_CRITICAL_METHOD == run = OSldleCtr;
OS CPU_SR cpu_sr; OSldleCtr =0L;
#endif OS_EXIT_CRITICAL(;
INT32U run; If (max > 0L) {
INT32U max; usage = (INT8S)(100L - run / max);
INT8S usage; IT (usage >= 0) { ‘
OSCPUUsage = usage,
} else {
pdata = pdata,; OSCPUUsage = 0;
while (OSStatRdy == FALSE) { }
OSTimeDly(2 * OS_TICKS_PER_SEC); } else {
} OSCPUUsage = 0;
max = OSldleCtrMax / 100L,; max = OSldleCtrMax / 100L;
}
OSTaskStatHook();
“ OSTimeDIly(OS_TICKS_PER_SEC);
}

D }

Interrupts under uC/0S-2 \%
e UC/OS-2 requires an ISR written In

assembly, 1T your compiler does not

support in-line assembly. <
YourlSR:
Save all CPU registers; (1)
Call OSIntEnter() or, increment OSIntNesting directly; (2) ‘
I F(OSIntNesting == 1) 3)
OSTCBCur->OSTCBStkPtr = SP; (4)
Clear the interrupting device; (5)
Re-enable interrupts (optional); (6)
Execute user code to service ISR; (7)

Call OSIntEXxit(); (8)

0 Restore all CPU registers; (9)
% Execute a return from interrupt instruction; (10)

Interrupts under uC/0S-2 x
(1) Inan ISR, uC/0OS-2 requires that all CPU

registers are saved onto the interrupted task.

— For processors like Motorola 68030 _, a different stack
Is used for ISR.

— For such case, the stack pointer of the interrupted task
can be obtained from OSTCBCur (offset 0).

(2) Increase the interrupt-nesting counter counter.

(4) If it is the first interrupt-nesting level, we
Immediately save the stack pointer to OSTCBCur.

< — We do this because a context-switch might occur.

S

Interrupts under uC/0S-2 x
(8) Call OSIntEXxit(), which checks if we are in the

Inner-level of nested interrupts. If not, the
scheduler is called. <

— A potential context-switch might occur.
— Interrupt-nesting counter is decremented.

(9) On the return to this point, there might be
several high-priority tasks ran by the CPU.

— Since uC/0S-2 is a preemptive kernel.

(10) The CPU registers are restored from the stack
and the control is returned to the interrupted
< Instruction.

§Ll

Time

Task Response

Interrupt Request (1
(1) /OS-llor your application
has interrupts disabled.

\ 2)

7 A 7777

7 7
7000
7,000
7000000

No New HPT or,
OSLockNesting T Q

Vectoring
(3)
Saving Context

(4)
Notify kernel:
OSIntEnter() or,

OSIntNesting++ User ISR code

(5)

Return from interrupt

(9)
' |Restore context
(8)
Notify kernel: OSIntExit

(7)

6

Notify kernel: OSIntExit
(10)

Restore context

(11)

Return from interrupt
(12)

77
K000

Interrupt Response

ISR signals a tas

7
7700000702

Interrupt Recovery <—

Task Response

Interrupts under uC/0S-2 \%
void OSIntEXxit (void)
{ I'f scheduler is not

OS_ENTER_CRITICAL(); locked and no interrupt
IT ((--OSIntNesting | OSLockNesting) == 0) { nesting
OSIntExitY = 0SUnMapTbI[OSRdyGrp];
OSPrioHighRdy = (INT8U)((OSIntEXitY <« 3) +
OSUnMapTbI[OSRdyTbI[OSIntEXitY]]); | If there is another high-
it (OSPFIOHIghRdy I= OSPriOCUF) { \ priority task ready |
OSTCBHighRdy = OSTCBPrioTbl[OSPrioHighRdy];
OSCtxSwCtr++, ‘

OSIntCtxSw();
} A context switch
} is performed.

OS_EXIT_CRITICAL();

} void OSIntEnter (void)
{
OS_ENTER_CRITICAL();
Note that OSIntCtxSw() is called 8§Ir|151;(l\ll(?rStg1lg:jl-';ICAL _
instead of calling OS_TASK_SW() } — — 03

because the ISR already saves
the CPU registers onto the stack.

//// A

delays and timeouts.

* You must enable ticker interrupts after
multitasking is started.
— In the TaskStart() task in the examples.
— Do not do this before OSStart().

Clock Tick x
« A time source is needed to keep track of time

e Clock ticks are serviced by calling OSTimeTick()
from a tick ISR.

e Clock tick ISR is always a port (of uC/0S-2) of a
CPLli. Since we have to access CPU registers in the
tick ISR.

Ny

Clock Tick

void OSTicklSR(void)
{

Save processor registers;

Call OSIntEnter() or increment OSIntNesting;

I F(OSIntNesting == 1)
OSTCBCur->OSTCBStkPtr = SP;

Call OSTimeTick();

Clear interrupting device;

Re-enable interrupts (optional);

Call OSIntExit();

Restore processor registers;

Execute a return from interrupt instruction;

void OSTimeTick (void)

{
OS_TCB *ptch;

For all TCB’s

OSTimeTickHook();

if (OSRunning = TRUE) {
ptcb = OSTCBList;
IWhI|e (ptcb->0OSTCBPrio = OS_IDLE_PRIO) {
OS_ENTER_CRITICALY();
It (ptcb->OSTCBDIy = 0) {
if (--ptcb->OSTCBDIly == 0) {
if ((ptcb->OSTCBStat & OS_STAT_SUSPEND) == OS_STAT_RDY) {
OSRdyGrp |= ptcb->OSTCBBItY;
OSRdyTbl[ptcb->OSTCBY] |= ptcb->OSTCBBItX;
} else {

ptcb->OSTCBDly = 1; I the delay-counter
} reaches zero, make the

} task ready. Or the task
remains waiting.

Decrement delay-counter if needed ’

}
ptcb = ptcb->0OSTCBNext;

OS_EXIT_CRITICAL();

%

4

Clock Tick x
« OSTimeTick() i1s a hardware-independent

routine to service the tick ISR.

decrementing of .OSTCBDly.

— Constant time to determine If a task should be
made ready.

— Linear time to put a task in the list.
— Compare it with the approach of uC/0S-2?

Sl

e A delta-list is more efficient on the <

Clock Tick

IN the tick ISR to a user task:

void OSTickISR(void)

{ void TickTask (void *pdata)

Save processor registers; {
Call OSIntEnter() or increment OSIntNesting;
IF(OSIntNesting == 1)
OSTCBCur->OSTCBStkPtr = SP;

post 2 s [
Post a ‘dummy’ message (e.g. (void *)1) - =~ mess?d

to the tick mailbox;

Call OSIntExit(); }
Restore processor registers;

N Execute a return from interrupt instruction;

NI

pdata = pdata;
for (;;) {
_ » OSMboxPend(...);
OSTimeTick();
OS_Sched();

}

Do the rest of
the work

|

e You can also move the bunch of code

(
<

\ 4

0STCBStkPtr 0STCBStkPtr 0STCBStkPtr 0STCBStkPtr
OSTCBExtPtr OSTCBExtPtr OSTCBEXtPtr OSTCBEXtPtr
0STCBStkBottom 0STCBStkBottom 0STCBStkBottom 0STCBStkBottom
0STCBStkSize 0STCBStkSize 0STCBStkSize 0STCBStkSize
oSTcate oSTcate L | SSicate I

H R lext lext lext -— = lext
OSTCBFreeList OSTCBPrev OSTCBPrev 0STCBPrev 0STCBPrev
OSTCBEventPtr OSTCBEventPtr OSTCBEventPtr OSTCBEventPtr
0STCBMsY 0STCBMsgY 0STCBMsg 0STCBMsg
OSTCBDly OSTCBDly OSTCBDly OSTCBDly
0STCBStat 0STCBStat 0STCBStat 0STCBStat
OSTCBPrio OSTCBPrio OSTCBPrio OSTCBPrio
0STCBX 0STCBX 0STCBX 0STCBX
0STCBY 0STCBY 0STCBY 0STCBY
OSTCBBitX OSTCBBitX OSTCBBitX OSTCBBitX
OSTCBBitY OSTCBBitY OSTCBBitY OSTCBBitY
0STCBDelReq 0STCBDelReq 0STCBDelReq 0STCBDelReq

\4

4»0

uC/0S-2 Initialization x
!

D 0S_MAX_EVENTS >
OS_EVENT OS_EVENT OS_EVENT OS_EVENT
OSEventFreeList ——»| OstventPtr | ostventPtr —f———®| osEventPtr —f—®— — — ——P>| OSEventtr —F—P ()
0SEventTbl[] 0SEventTbl[] OSEventTbl[] OSEventThI[]
OSEventCnt OSEventCnt OSEventCnt OSEventCnt
OSEventType OSEventType OSEventType OSEventType
O0SEventGrp 0SEventGrp OSEventGrp OSEventGrp
D 0S_MAX_QS >
0S_Q 0S_Q 0S_Q 0S_Q
OSQFreeList — | osptr ———————p| osgptr ———f——®| osgptr ————f—»— - - ——»| osgppr—————» 0
OsQstart 0sQStart 0sQStart 0sQStart
0SQEnd 0SQEnd 0SQEnd 0SQEnd
0SQIn 0SQIn 0SQIn 0SQIn
0sQout 0SQout 0SQout 0SQout
0SQSize 0SQSize 0SQSize 0SQSize
OSQEntries OSQEntries 0SQEntries OSQEntries
> 0S_MAX_MEM_PART >
0S_MEM 0S_MEM 0S_MEM 0S_MEM
8§MemAddr 8§MemAddr ggMemAddr ggMemAddr
i —p MemFreeList +——p» MemFreeList +——p» MenFreeList —Pp— — — —p MemFreeList +—p»
OSMemFreeList OSMemBIkSize OSMemBIkSize OSMemBIkSize OSMemBIkSize 0
0SMemNBIks 0SMemNBIks 0SMemNBIks 0SMemNBIks
OSNFree OSNFree OSNFree OSNFree

D

\

OSRdyGrp

100 0lolololo

OSPri oCur
OSPr i oH ghRdy
OSTCBCur

OSTCBHi ghRdy
OSTi e

CSI nt Nest i ng
OSLockNest i ng
OSCt xSwCt r
OSTaskCtr
OSRunni ng
OSCPUUsage
CSl dl eCt r Max
CSl dl eCtr Run
oSl dleCtr
OSSt at Rdy

[0S_LOWEST PRIO-1]
[OS_LOWEST_PRIO]

Ready List
OSTCBPrioTbl[]
OSRdyThl[] D Fﬂ
00000000 —
0/0/00/0/00]0 : Y
0/0/0/0/0/00/0 "
0/0/0/0/0 000 |
> 0 0/0/0/0/0/0]/0 |
>0 0/0/0/0/0/0]/0 |
» 0 0/0/0/0/0/0]/0 |
» 1/1/0/0/0/0/0/0 0
0
——
OSTasksSt at () OSTaskl dl e()
0S TCB 0S TCB
OSTCBStkPtr OSTCBStkPtr
OSTCBEXxtPtr = NULL OSTCBEXxtPtr = NULL
OSTCBStkBottom OSTCBStkBottom

OSTCBList ——»

0

W

OSTCBStkSize = stack size
OSTCBId = 0S_LOWEST_PRIO
OSTCBNext

OSTCBPrev

OSTCBEventPtr = NULL
OSTCBMsg = NULL
OSTCBDIy =0

OSTCBStat = 0S_STAT_RDY
OSTCBPrio = 0S_LOWEST_PRIO-1
OSTCBX =6

OSTCBY =7

OSTCBBItX = 0x40
OSTCBBItY = 0x80
OSTCBDelReq = FALSE

OSTCBStkSize = stack size
OSTCBId = OS_LOWEST_PRIO
OSTCBNext

%

OSTCBPrev

OSTCBEventPtr = NULL
OSTCBMsg = NULL
OSTCBDly =0

OSTCBStat = OS_STAT_RDY
OSTCBPrio = 0S_LOWEST_PRIO
OSTCBX =7

OSTCBY =7

OSTCBBItX = 0x80
OSTCBBItY = 0x80
OSTCBDelReq = FALSE

Task Stack

47
<7

Task Stack

Starting uC/0OS-2 \%
 OSInit() initializes the data structures

for uC/0S-2 and creates OS_Taskldle().

highest-priority ready task and then
executes a return from interrupt
Instruction.

— 1t never returns to the caller of OSStart()
(i.e., main()).

S

« OSStart() pops the CPU registers of the <

OSInit(); /* Initialize uC/0S-11 */
Create at least 1 task using either OSTaskCreate() or OSTaskCreateExt();

OSStart(); /* Start multitasking! OSStart() will not return */

}

void OSStart (void)

{

INT8U v;

INT8U Xx;

If (OSRunning == FALSE) {
y = OSUnMapTbl[OSRdyGrp];
X = OSUnMapTbI[OSRdyTbl[y]];
OSPrioHighRdy = (INT8U)((y <« 3) + X);
OSPrioCur = OSPrioHighRdy;
OSTCBHighRdy = OSTCBPrioTblI[OSPrioHighRdy];
OSTCBCur = OSTCBHighRdy;

OSStartHighRdy(); Start the highest-
priority ready task

Starting uC/0OS-2 \%
!

OSRdyGrp Ready List
CSTi e - oL 1]olololofolol1] OSRAyTHI
OSIntNesting = 0 y
OSLockNesting = 0 ol1lolololololo
OSCt xSwWCt r =0
OSTaskCt r =3 00000000
OSRunni ng = TRUE 0/0/0]/0/0J0]0]0
OSCPUUsage =0
oSldleCtrvax = OL 0001010000
osldleCtrRun = OL 0/0/0/0]/0]0/0]0 _
oSl dleCtr = OL > (01/0/0/010/01/0]0 OSTCBPrioThI[]
OSSt at Rdy = FALSE » olololololololo 2 Fﬂ
. 0 2]
OSPr i oCur =6 > 1/1]/0/0/0/0]0]0 —
OSPri oH ghRdy = 6 s o
* [6]
|
|
|
|
|
|
|
:
0
0
0
° [OS_LOWEST_PRIO - 1]
——e [0S_LOWEST_PRIQ]
YouAppTask() OSTaskSt at () OSTaskl dl e()
\ 0s 1B 0s TCB 0s TCB
—— | OSTCBStkPH OSTCBStkPtr OSTCBStkPt
OSTCBC_ur OSTCBEPIr = NULL OSTCBEXPY = NULL OSTCBEXPI = NULL
—p OSTCBStkBott OSTCBStkBott OSTCBStkBott
OSTCBnghRdy OSTCBSIkSiozeO? stack size OSTCBStkSiozeoin stack size OSTCBSIkSiOzeO;ﬂ stack size
. OSTCBId =6 OSTCBId = OS_LOWEST_PRIO OSTCBId = OS_LOWEST_PRIO
OSTCBList —————» 0sTCBNext OSTCBNext » | osTCBNext
OSTCBPrev « OSTCBPrev « OSTCBPrev
/ OSTCBEventPtr = NULL OSTCBEventPtr = NULL OSTCBEventPtr = NULL
OSTCBMsg = NULL OSTCBMsg = NULL OSTCBMsg = NULL
O OSTCBDly =0 OSTCBDly =0 OSTCBDly =0
OSTCBStat = 0S_STAT_RDY OSTCBStat = OS_STAT_RDY OSTCBStat = OS_STAT_RDY
OSTCBPrio = 6 OSTCBPrio = 0S_LOWEST_PRIO-1 OSTCBPrio = OS_LOWEST_PRIO
OSTCBX =6 OSTCBX =6 OSTCBX =7
OSTCBY =0 OSTCBY =7 OSTCBY =7
OSTCBBItX = 0x40 OSTCBBItX = 0x40 OSTCBBItX = 0x80
OSTCBBItY = 0x01 OSTCBBItY = 0x80 OSTCBBItY = 0x80
OSTCBDelReq = FALSE OSTCBDelReq = FALSE OSTCBDelReq = FALSE
< <« <«
<
< <«
Task Stack
Task Stack

Task Stack

!

Summary x
* In this chapter, you should learn that:

— What a task is, how uC/OS-2 manages a task,
and related data structures. <

— How the scheduler works, and the detailed
operations done in context switches.

— The responsibility of the idle task and the
statistics task and how they works.

— How interrupts are serviced in uC/0S-2.
— The initialization and starting of uC/0S-2.

