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Objectives
• To know essential topics on the 

design of:
– Embedded operating systems
– Real-time systems



Foreground/Background 
Systems

• The system consists of an infinite loop which calls 
modules to perform jobs. (a super loop)
– The background (or, task) level.

• Critical events are handled in ISR’s.
– The foreground (or, interrupt) level.

• An event-based approach. The system could be in 
an idle state if there is no event.

• Similar to Cyclic Executive.
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Critical Sections
• A portion of code must be treated 

indivisibly.
– To protect shared resources from 

corrupting due to race conditions.
– Could be implemented by using interrupt 

enable/disable, semaphores, events, 
mailboxes, etc.



Resources
• An entity used by a task.

– Memory objects 
• Such as tables, global variables …

– I/O devices. 
• Such as disks, communication transceivers.

• A task must gain exclusive access to a 
shared resource to prevent data (or I/O 
status) from being corrupted.
– Mutual exclusion. 



Multitasking
• The scheduler of an operating system 

switch the attention of CPU among several 
tasks.
– Tasks logically share the computing power of a 

CPU.
– Tasks logically execute concurrently.
– How much CPU share could be obtained by each 

task depends on the scheduling policy adopted.



Task
• Also called a thread or a process in practice. It is 

considered as an active/executable entity in a 
system.

• From the perspective of OS, a task is of a 
priority, a set of registers, its own stack area, 
and some housekeeping data.

• From the perspective of scheduler, a task is of a 
series of consecutive jobs with regular ready time 
(for periodic tasks).
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Task
• A task is basically an infinite loop for 

a real-time system.

• There are 5 states under uC/OS-2:
– Dormant, ready, running, waiting, 

interrputed.
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Context Switch
• It occurs when the scheduler decides to run a different 

task.

• The scheduler must save the context of the current task 
and then load the context of the task-to-run. 
– The context is of a priority, the contents of the registers, the

pointers to its stack, and the related housekeeping data.

• Context-switches impose overheads on the task executions.
– A practicable scheduler must not cause intensive context 

switches. Because modern CPU’s have deep pipelines and many 
registers.

• For a real-time operating system, we must know how much 
time it takes to perform a context switch.
– The overheads of context switch are accounted into high

priority tasks. (blocking time, context switch time…)



Kernels
• The kernel is a part of a multitasking system, it is 

responsible for:
– The management of tasks.
– Inter-task communication.

• The kernel imposes additional overheads to task execution.
– Kernel services take time.

• Semaphores, message queues, mailboxes, timing controls, and etc…
– ROM and RAM space are needed.

• Single-chip microcontrollers generally are not suitable to 
run a real-time kernel because they mostly have little RAM 
(e.g., 8KB of RAM).



Schedulers
• A scheduler is a part of the kernel. It is 

responsible for determining which task should run 
next.
– Preemptible or non-preemptible.

• Most real-time systems are priority based.
– Priorities are application-specific.

• The scheduler always gives the CPU to the 
highest-priority task which is ready to run.



Non-Preemptive Kernels
• Context switches occur only when tasks explicitly give up control 

of the CPU.
– High-priority tasks gain control of the CPU.
– This procedure must be done frequently to improve the responsiveness.

• Events are still handled in ISR’s.
– ISR’s always return to the interrupted task.

• Most tasks are race-condition free.
– Non-reentrant codes can be used without protections.
– In some cases, synchronizations are still needed.

• Pros: simple, robust. 

• Cons: Not very responsive.  There might be lengthy priority 
inversions.
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(1) A task is executing but gets interrupted.  

(2) If interrupts are enabled, the CPU vectors (i.e. jumps) to 
the ISR.  

(3) The ISR handles the event and makes a higher priority 
task ready-to-run. 

(4) Upon completion of the ISR, a Return From Interrupt
instruction is executed and the CPU returns to the 
interrupted task.

(5) The task code resumes at the instruction following the 
interrupted instruction.  

(6) When the task code completes, it calls a service provided 
by the kernel to relinquish the CPU to another task.  

(7) The new higher priority task then executes to handle the 
event signaled by the ISR. 



Preemptive Kernels
• The benefit of a preemptive kernel is the system 

is more responsive.
– uC/OS-2 (and most RTOS) is preemptive. 
– The execution of a task is deterministic.

• A high-priority task gain control of the CPU instantly when 
it is ready (if no resource-locking is done).

• ISR might not return to the interrupted task.
– It might return a high-priority task which is ready.

• Concurrency among tasks exists. As a result, 
synchronization mechanisms (semaphores…) must 
be adopted to prevent from corrupting shared 
resources.
– Preemptions, blocking, priority inversions.
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(1) A task is executing but interrupted.

(2) If interrupts are enabled, the CPU vectors (jumps) to the ISR.

(3) The ISR handles the event and makes a higher priority task 
ready to run. Upon completion of the ISR, a service provided by 
the kernel is invoked. (i.e., a function that the kernel provides is 
called).

(4)

(5) This function knows that a more important task has been made 
ready to run, and thus, instead of returning to the interrupted 
task, the kernel performs a context switch and executes the 
code of the more important task. When the more important task 
is done, another function that the kernel provides is called to 
put the task to sleep waiting for the event (i.e., the ISR) to 
occur.

(6)

(7) The kernel then sees that a lower priority task needs to 
execute, and another context switch is done to resume 
execution of the interrupted task.



Reentrant Functions
• Reentrant functions can be invoked 

simultaneously without corrupting any data.
– Reentrant functions use either local variables 

(on stacks) or synchronization mechanisms 
(such as semaphores).

void strcpy(char *dest, char *src)
{

while (*dest++ = *src++) {
;

}
*dest = NUL;

} 



Non-Reentrant Functions
• Non-Reentrant functions might 

corrupt shared resources under race 
conditions.
int Temp;

void swap(int *x, int *y)
{

Temp = *x;
*x   = *y;
*y   = Temp;

}
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while (1) {
   z = 3;
   t = 4;

   swap(&z, &t);
      {
         Temp = *z;
         *z   = *t;
         *t   = Temp;
      }
   .
   .
   OSTimeDly(1);
   .
   .
}

Temp == 3!

Temp == 1

Temp == 3
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while (1) {
   x = 1;
   y = 2;

   swap(&x, &y);
      {
          Temp = *x;

          *x   = *y;
          *y   = Temp;
      }
   .
   .
   OSTimeDly(1);
}

OSIntExit()
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(1) When swap() is interrupted, TEMP contains 1.

(2)

(3) The ISR makes the higher priority task ready to run, so 
at the completion of the ISR, the kernel is invoked to 
switch to this task. The high priority task sets TEMP to 3 
and swaps the contents of its variables correctly. (i.e., 
z=4 and t=3).

(4) The high priority task eventually relinquishes control to 
the low priority task be calling a kernel service to delay 
itself for one clock tick.

(5) The lower priority task is thus resumed. Note that at this 
point, TEMP is still set to 3! When the low priority task 
resumes execution, the task sets y to 3 instead of 1.



Non-Reentrant Functions
• There are several ways to make the 

code reentrant:
– Declare TEMP as a local variable.
– Disable interrupts and then enable 

interrupts.
– Use a semaphore.



Round-Robin Scheduling
• Adopted when no “priority” is adopted or tasks have the 

same priority.
– Most traditional operating systems utilize RR scheduling.

• The scheduler checks if a context switch should be made 
every quantum.
– A quantum is a pre-determined amount of time.

• Context switch occurs when:
– The current task has no work to do.
– The current task completes.
– The quantum for the current task is exhausted.

• Most real-time operating systems require every task has an 
unique priority. As a result, RR scheduling is not adopted by 
most RTOS.



Priorities
• Priorities reflect the criticality (importance) of tasks.

– The higher the priority, the lower the number is.

• Priorities are assigned by programmers (for most real-time 
schedulers).

• Priorities of tasks do not change under a static priority system.
– For example, under the RM scheduler.

• Priorities of tasks might dynamically reflect certain run-time 
criteria (and change) under a dynamic priority system.

– For example, under the EDF scheduler.

• Due to the adoption of resource-synchronization protocol, 
priorities might change even under a RM scheduler.



Priority Inversions
• A high-priority task is blocked if:

– It is currently running or ready-to-run.
– It can not gain control of the CPU because of a low-priority 

task.

• Such a phenomenon is also called a priority inversion.

• Low-priority tasks won’t be “blocked” by high-priority tasks.

• It is essential to properly control the number and interval 
of priority inversions.
– Priority inversion must be accounted into the schedulability

test.
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Priority Inversions
• Three major problems caused by resources-sharing must be 

properly handled under real-time systems.
– Unbounded priority inversions.
– Chain (and transitive) blocking.
– Deadlocks.

• Priority inheritance protocol (PIP) can avoid unbounded 
priority inversions.
– Priorities of tasks might change to reflect that high-priority 

tasks are blocked.

• Priority ceiling protocol (PCP) is a super-set of PIP, and PCP 
can avoid chain blocking and deadlocks.
– The blocking time is deterministic under the adoption of PCP.
– However, it is extremely hard to implement PCP in a RT scheduler.
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Assigning Task Priorities
• Priorities of tasks are assigned by programmers.

• For fixed-priority systems, RMS is optimal.
– On-line admission control exists for RMS:

• If deadline <> period, DMS is optimal.
– We have little knowledge on any efficient admission control for 

DMS.

• Pseudo-polynomial schedulability tests for RMS/DMS exist.
– However, they are too time-consuming for on-line 

implementations.

• Since RTOS’s rely on programmers to set priorities, as a 
result, admission control are mostly done by programmers. 



Assigning Task Priorities
• An efficient 

schedulability test for 
RMS only takes O(n) 
to complete for n 
tasks.
– O(1) for on-line 

admission control.

• As a rule of thumb, a 
real-time system 
should bound the total 
utilization under 70%.

)(nU
p
c

i

i ≤∑

0.693Infinity

..

..

..

0.7435

0.7564

0.7793

0.8282

1.0001

U(n) = n(21/n-1)Number of Tasks



Mutual Exclusion
• Mutual exclusion must be adopted to protect shared 

resources.
– Global variables, linked lists, pointers, buffers, and ring 

buffers.
– I/O devices.

• When a task is using a resource, the other tasks which are 
also interested in the resource must not be scheduled to 
run.

• Common techniques used are disable/enable interrupts, 
performing a test-and-set instruction, disabling scheduling, 
and using synchronization mechanisms (such as semaphores).



Mutual Exclusion
• Disabling/enabling interrupts:

– OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL()
– All events are masked since interrupts are disabled.
– Tasks which do not affect the resources-to-protect are 

also postponed.
– Must not disable interrupt before calling system 

services.

void Function (void)
{

OS_ENTER_CRITICAL();
.
.     /* You can access shared data in here */
.
OS_EXIT_CRITICAL();

}



Mutual Exclusion
• The test-and-set instruction:

– An atomic operation (a CPU instruction) to lock 
a guarding variable.

– It is equivalent to the SWAP instruction.
– Starvation might happen.

int lock=1;

swap(&flag,&lock);  /* corresponds to SWAP instruction */

if(flag == 1)
Locking is failed.
flag remains 1.

else
Locking is success.
flag is set as 1 after the swapping.
... critical section ...



Mutual Exclusion
• Disabling/Enabling Scheduling:

– No preemptions could happen while the scheduler is 
disabled.

– However, interrupts still happen.
• ISR’s could still corrupt shared data.
• Once an ISR is done, the interrupted task is always 

resumed even there are high priority tasks ready.
– Rescheduling might happen right after the scheduler is 

re-enabled.
– Higher overheads and weaker effects than 

enabling/disabling interrupts.

void Function (void)
{

OSSchedLock();
.     /* You can access shared data 
.        in here (interrupts are recognized) */
OSSchedUnlock();

}



Mutual Exclusion
• Semaphores:

– Provided by the kernel.
– Semaphores are used to:

• Control access to a shared resource.
• Signal the occurrence of an event.
• Allow tasks to synchronize their activities.

– Higher priority tasks which does not interested in the 
protected resources can still be scheduled to run.

OS_EVENT *SharedDataSem;
void Function (void)
{

INT8U err;
OSSemPend(SharedDataSem, 0, &err);
.     /* You can access shared data 
.        in here (interrupts are recognized) */
OSSemPost(SharedDataSem);

}



Mutual Exclusion
• Semaphores:

– OSSemPend() / OSSemPost()

– A semaphore consists of a wait list and an integer counter.

– OSSemPend:
• Counter--;
• If the value of the semaphore <0, the task is blocked and moved to 

the wait list immediately.
• A time-out value can be specified .

– OSSemPost:
• Counter++;
• If the value of the semaphore >= 0, a task in the wait list is 

removed from the wait list.
– Reschedule if needed. 



Mutual Exclusion
• Semaphores:

– Three kinds of semaphores:
• Counting semaphore (init >1)
• Binary semaphore (init = 1)
• Rendezvous semaphore (init = 0)

– On event posting, a waiting task is released 
from the waiting queue.

• The highest-priority task.
• FIFO (not supported by uC/OS-2)

– Interrupts and scheduling are still enabled 
under the use of semaphores.
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Mutual Exclusion

INT8U CommSendCmd(char *cmd, char *response, INT16U 
timeout)
{

Acquire port's semaphore;
Send command to device;
Wait for response (with timeout);
if (timed out) {

Release semaphore;
return (error code);

} else {
Release semaphore;
return (no error);

}
} 

• Example: use a semaphore to protect a RS-232 
communication port
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Mutual Exclusion
• Using a counting semaphore to synchronize 

the use of a buffer.

BUF *BufReq(void)
{

BUF *ptr;

Acquire a semaphore;
Disable interrupts;
ptr = BufFreeList;
BufFreeList = ptr->BufNext;
Enable interrupts;
return (ptr);

}

void BufRel(BUF *ptr)
{

Disable interrupts;
ptr->BufNext = BufFreeList;
BufFreeList = ptr;
Enable interrupts;
Release semaphore;

} 

**Red statements can be replaced 
by a binary semaphore. Here we 
disable/enable interrupts for the 
consideration of efficientcy.
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Mutual Exclusion
• Summary:

– Semaphores are versatile while concurrency is 
still guaranteed

• However, the overheads are relatively high.

– Interrupt enabling/disabling are suitable for 
very short critical sections since the overheads 
are very low.

• However, it kills the parallelism.



Deadlocks
• Tasks circularly wait for certain resources which are 

already locked by another tasks.
– No task could finish executing under such a circumstance.

• Deadlocks are intolerable in real-time systems since a bunch 
of tasks will miss their deadlines.

• Deadlocks in static systems can be detected and resolved in 
advance. 

• Deadlocks are not easy to detect and resolve in a on-line 
fashion.
– A brute-force way to avoid deadlocks is to set a timeout when 

acquiring a semaphore.
– The elegant way is to adopt resource synchronization protocols.

• Priority Ceiling Protocol (PCP), Stack Resource Policy (SRP)
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Synchronization
• Different from mutual exclusion, it is 

much like waiting for an event.
• If a semaphore is used, it must be 

initialized to 0.
– It is called unilateral rendezvous.
– Task Task, ISR Task

• Note that an ISR never cause itself blocked.
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Synchronization
• Two semaphores could be used to 

rendezvous two tasks.
– It can not be used to synchronize 

between ISR’s and tasks.
– For example, a kernel-mode thread 

could synchronize with a user-mode 
worker thread which performs 
complicated jobs.



Synchronization

TASK

POST PEND

TASK

POSTPEND

Task1()
{

for (;;) {
Perform operation;
Signal task #2;                   (1)
Wait for signal from task #2;     (2)
Continue operation;

}
}

Task2()
{

for (;;) {
Perform operation;
Signal task #1;                   (3)
Wait for signal from task #1;     (4)
Continue operation;

}
} 

** Semaphores are 
both initialized to 0



Event Flags
• Event flags are used when a task needs to synchronize with 

the occurrence of one or more events.

• A set of event can be defined by programmers, represented 
as a bitmap. (8,16, or 32 bits)

• A task can wait for anyone of (disjunctive, OR) or all of 
(conjunctive, AND) the defined events.

• An event can notify multiple tasks.

• If any high-priority task becomes ready, context-switch 
occurs (the highest-priority task is scheduled to run).

• uC/OS-2 supports SET/CLEAR/WAIT for event flags.
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Intertask communication
• A task/ISR might want to exchange data 

with another task/ISR.
– Mutual exclusion is needed for shared variable.

• If an ISR is involved in intertask
communication, the only way is to 
enable/disable interrupts.
– Why?



Message Mailboxes
• A mailbox is a data exchange between tasks.

– A mailbox consists of a data pointer and a wait-list.

• OSMboxPend():
– The message in the mailbox is retrieved.
– If the mailbox is empty, the task is immediately blocked and moved to 

the wait-list.
– A time-out value can be specified.

• OSMboxPost():
– A message is posted in the mailbox.
– If there is already a message in the mailbox, an error is returned 

(not overwritten).
– If tasks waiting for a message from the mailbox, the task with the 

highest priority is removed from the wait-list and scheduled to run.

• OSMboxAccept():
– If there is no message, return immediately instead of being blocked.



TASKPOST PEND
Mailbox

10
TASK



Message Queues
• A message queue consists an array of elements and a wait-list.

• Different from a mailbox, a message queue can hold many data 
elements (in a FIFO basis).

• As same as mailboxes, there can be multiple tasks pend/post to a 
message queue.

• OSQPost(): a message is appended to the queue. The highest-
priority pending task (in the wait-list) receives the message and is 
scheduled to run, if any.

• OSQPend(): a message is removed from the array of elements. If 
no message can be retrieved, the task is moved to the wait-list and 
becomes blocked.

• OSQAccept(): if there is no messages, return immediately instead 
of being blocked.



TASKISR POST PEND
Queue

Interrupt
0

10



Interrupts
• An interrupt is a hardware mechanism used to inform the CPU that

an asynchronous event had occurred.

• The CPU saves the context of the current running task and jumps 
to the corresponding service routine (ISR).

• Common interrupts: clock tick (triggering scheduling), I/O events, 
hardware errors. 

• Disabling interrupts affects interrupt latency. 

• The ISR processes the event, and upon completion of the ISR, the
program returns to

– The background for a foreground/background system
– The interrupted task for a non-preemptive kernel
– The highest priority task ready to run for a preemptive kernel



TIME

TASK

ISR #1

ISR #2

ISR #3

Interrupt #1

Interrupt #2

Interrupt #3



Interrupt Latency
• Real-time systems disable interrupts to 

manipulate critical sections of code and enable 
interrupts when critical section has executed.

• The longer interrupts disabled, the higher the 
interrupt latency is.

interrupt latency  = 
max. amount of interrupts are disabled  + 

Time to start executing the first instruction in the ISR



Interrupt Response
• Interrupt response: the time between the reception of the 

interrupt and the start of the user code that handles the 
interrupt – accounts for all the overhead involved in 
handling an interrupt

• For a foreground/background system and a non-preemptive 
kernel:
Response time = Interrupt latency + Time to save the CPU’s context

• For preemptive kernel
Response time = Interrupt latency + Time to save the CPU’s context + 
Execution time of the kernel ISR entry function

( to notify the kernel that an ISR is in progress and allows kernel to 
keep track of interrupt nesting, OSIntEnter( ) in uC/OS-2)



Interrupt Recovery
• The time required for the processor to return to the 

interrupted code.

• For a foreground/background system and a non-preemptive 
kernel:
Interrupt recovery 
= Time to restore the CPU’s context 

+ Time to execute the return from interrupt instruction

• For preemptive kernel:
Interrupt recovery 
= Time to determine if a higher priority task is ready 

+ Time to restore the CPU’s context of the highest priority task
+ Time to execute the return from interrupt instruction



ISR Processing Time
• ISRs should be as short as possible.

– there are no absolute limits on the amount of time for an ISR.

• If the ISR code is the most important code that needs to 
run at any given time, it could be as long as it needs to be.

• In most cases, the ISR should
– Recognize the interrupt
– Obtain data or status from the interrupting device
– Signal a task to perform a actual processing

• Overhead involved in signaling task 
– the processing of the interrupt
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Interrupt latency, response, 
and recovery

(Preemptive kernel)
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Non-Maskable
Interrupts

• NMI’s can not be disabled.
– They are generally reserved for drastic events, such as 

the power-source is almost exhausted.

• You can not use kernel services to signal a task in 
ISR’s of NMI’s.
– Since interrupts can not be disabled in the ISR of an 

NMI.
– The size of global variable under this situation must be 

atomic. (i.e., byte, word, dword)
– Or, we can trigger another hardware interrupt which’s 

ISR uses kernel services to signal the desired task.



Signaling a task from the 
ISR of an NMI

NMI
ISR ISR

Semaphore

TASKNMI Interrupt

Issues interrupt by writing
to an output port.

POST PEND



Non-Maskable
Interrupts

Interrupt latency
= Time to execute longest instruction

+ Time to start executing the NMI ISR 

Interrupt response
= Interrupt latency 

+ Time to save the CPU’s context

Interrupt recovery 
= Time to restore the CPU’s context 

+ Time to execute the return from interrupt instruction

• NMI can still be disable by adding external circuits.
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Clock Tick
• Clock tick is a periodically hardware event 

(interrupt) generated by a timer.

• The kernel utilize the timer to delay tasks and to 
periodically perform scheduling.

• The higher the tick rate, 
– the better the responsiveness is.
– the better the schedulability is. 

• Blocking due to clock tick resolution.
– the higher the overhead is.



Tick Interrupt

Tick ISR

All higher priority tasks
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20 mS
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Call to delay 1 tick (20 mS)Call to delay 1 tick (20 mS) Call to delay 1 tick (20 mS)

• A task delaying itself for one tick
• Higher priority tasks and ISRs execute prior to the task, 

which needs to delay for 1 tick 
• A jitter occurs.
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• The execution times of all higher priority tasks and 
ISRs are slightly less than 1 tick 

• As a result, if you need to delay at least one tick, you 
must  specify one extra tick
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• The execution times of all higher priority tasks and 
ISRs are more than 1 clock tick. 

• The task that tries to delay for 1 tick actually 
executes two ticks later and violates its deadline.



Memory Requirements
• Most real-time applications are embedded systems. Memory 

requirements must be analyzable.

• A preemptible kernel requires more RAM/ROM space.

• Code size (ROM) = kernel size + application size

• RAM requirements can be significantly reduced if
– Stack size of every task can be differently specified
– A separate stack is used to handle ISR’s. (uC/OS-2 doesn’t, DOS does)

• RAM requirement = application requirement + kernel requirement +
SUM(task stacks + MAX(ISR nesting))

• RAM requirement = application requirement + kernel requirement +
SUM(task stacks) + MAX(ISR nesting)

– If a separate stack is prepared for ISR’s.



Memory Requirements
• We must be careful on the usages of 

tasks’ stacks:
– Large arrays and structures as local 

variables.
– Recursive function call.
– ISR nesting.
– Function calls with many arguments.



Advantages and Disadvantages 
of Real-Time Kernels

• A real-time kernel (RTOS) allows real-time applications to be 
designed and expanded easily.

– Functions can be added without requiring major changes to the 
software.

• The use of RTOS simplifies the design process by splitting the 
application code into separate tasks.

• With a preemptive RTOS, all time-critical events are handled as 
quickly and as efficiently as possible.

• An RTOS allows you to make better use of your resources by 
providing you with valuable services – semaphores, mailboxes, 
queues, time delays, timeouts, etc.
- Extra cost of the kernel.
- More ROM/RAM space.
- 2 to 4 percent additional CPU overhead.
- Cost of the RTOS: $70 ~ $30,000 !
- The maintenance cost: $100 ~ $5,000 per year !
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