
Software
section

electronics for you • May 2009 • 85w w w . e f y m a g . c o m

sani theo

 Arindam Chakraborty,
Anandamoyee Sengupta, Sunanda
Chatterjee, Nilasish Acharya

Robotic Vision
Using Matlab

from top to bot-
tom and left to
right. That is, the
first component
‘r’ (the row) in-
creases down-

ward, while the second component ‘c’
(the column) increases to the right (see
Fig. 2). For example, the data for the
pixel in the third row, second column is
stored in the matrix element (3, 2). When
the syntax for a function uses ‘r’ and ‘c,’
it refers to the pixel coordinate system.
You can use Matlab matrix subscripting
to access the values of individual pixels.

Spatial coordinates. Consider a
pixel as a square patch. From this per-
spective, a location such as (3.3, 2.2) is
a spatial coordinate. Here, locations in
an image on a plane are described in
terms of ‘x’ and ‘y.’ When the syntax
uses ‘x’ and ‘y,’ it refers to the spatial
coordinate system. Fig. 3 shows the
coordinate convention of the spatial
coordinate system. Notice that ‘y’ in-
creases downward.

An image may be defined as a two-
dimensional f(x, y) function, where
‘x’ and ‘y’ are spatial coordinates, and
the amplitude of ‘f’ at any pair of co-
ordinates (x, y) is called the intensity
or gray level of the image at the point.
The finite discrete values of the coordi-
nates (x, y) and amplitude of ‘f’ are the
digital images.

An intensity image is a data matrix
whose values have been scaled to rep-
resent intensities. When the elements
of an intensity image are of class ‘uint8’
or class ‘uint16,’ they have integer val-
ues in the range [0, 255] and [0, 65535],
respectively. The class of the elements
used in this program is ‘uint8.’

Software program
After installing the Matlab software,
you will see its icon on your compu-

Building a robot is not only
a passion but also a dream
for most budding engineers.

Competitions and R&D in robotics are
already being encouraged in various
institutions in our country. This article
describes a visual sensor system used
in the field of robotics for identifica-
tion and tracing of the object. The
program is designed to capture a red
ball through a PC-based webcam using
Matlab software.

The article does not aim at design-
ing of electronic circuits and mechani-
cal parts of the robot. It describes image
capturing and processing techniques,
followed by an introduction to actual
robotic application to trace the red ball
using the serial COM port of the PC.

Robotic vision and control
The whole system of making a robot
to follow a red ball can be divided
into four blocks: image acquisition,
processing of image, decision-making
and motion control.

Image acquisition can be achieved
by using a PC-based webcam or a
digital video camera. This device will
capture the image and send it to the
camera processor for further process-
ing in the computer. Its main function
is to convert the light energy received
into electrical signals.

Image processing involves conver-
sion of RGB colour images into gray-
scale images, setting of threshold levels,
saturation of the features into binary
images and setting of cut-off values to
remove noise in the binary image.

Decision-making is done through
the software program and motion con-
trol through either software or constant

monitoring by the operator from the
keyboard.

Before going to the software pro-
gram in detail, let us see the coordinate
systems to understand the image ac-
quisition process.

Pixel coordinates. Generally, the
most convenient method for express-
ing locations in an image is to use pixel
coordinates. Here, the image is treated
as a grid of discrete elements, ordered

Fig. 1: Block diagram of the robotic vision and control system

Fig. 2: Pixel coordinates

Fig. 3: Spatial coordinates

software
section

86 • May 2009 • electronics for you w w w . e f y m a g . c o m

ter’s desktop. Run the software and the
screen shows the main Matlab applica-
tion window containing the following
sub-windows:

1. Command window. In this win-
dow, the user types Matlab commands
and expressions at ‘>>’ prompt and
the outputs of these commands are
displayed.

2. Workspace browser. This win-
dow shows variables defined in the
current session and also some informa-
tion about them.

3. Current directory. This window
displays contents of the current direc-
tory and its path.

4. Command history window.
This window contains a record of
the commands (including both cur-
rent and previous sessions) that the
user has entered in ‘Command’ win-
dow.

5. Others. There are one or more
windows which are shown only when
the user activates graphics.

Matlab has built-in adaptors to
access the camera. At the Matlab com-
mand prompt, write the ‘imaqhwinfo’

instruction and press ‘Enter’ key.
This instruction returns information
about all the adaptors available in the
system:
ans =

InstalledAdaptors: {‘winvideo’}

MATLABVersion: ‘7.0.1 (R14SP1)’

ToolboxName: ‘Image Acquisition

Toolbox’

ToolboxVersion: ‘1.7 (R14SP1)’

The ‘info=imaqhwinfo’ instruction
returns information about a specific
device accessible through a particular
adaptor.

The output of the ‘ info =
imaqhwinfo(‘winvideo’)’ instruction
is:
info =

AdaptorDllName:G:\MATLAB701\toolbox\

imaq\imaqadaptors\win32\

mwwinvideoimaq.dll’

AdaptorDllVersion: ‘1.7 (R14SP1)’

AdaptorName: ‘winvideo’

DeviceIDs: {1x0 cell}

DeviceInfo: [1x0 struct]

The output of the ‘dev_info =
imaqhwinfo(‘winvideo’, 1)’ instruc-
tion is:

dev_info =

DefaultFormat: ‘RGB24_640x480’

DeviceFileSupported: 0

DeviceName: ‘WebCam Vista #2’

DeviceID: 1

ObjectConstructor:

‘videoinput(‘winvideo’, 1)’

SupportedFormats: {1x11 cell}

Again, the ‘obj = videoinput(‘a
daptorname’, deviceID,’ format’)’
instruction constructs a video input
object where the ‘adaptorname’
string specifies the name of the
device adaptor that the object ‘obj’
is associated with. ‘deviceID’ is the
identifier of the device in numerical
number. If ‘deviceID’ is not speci-
fied, the first available device ID is
used. The ‘format’ string specifies
the video format for the object. If the
format is not specified, the device
default format is used. For example,
the output of the ‘obj=videoinput
(‘winvideo’, 1, ’RGB24_640×480')’
instruction will be:
Summary of Video Input Object Using

‘WebCam Vista’.

Acquisition Source(s): input1 is

available.

Acquisition Parameters: ‘input1’ is

the current selected source.

10 frames per trigger using the

selected source.

‘RGB24_640×480’ video data to be

logged upon START.

Grabbing first of every 1 frame(s).

Log data to ‘memory’ on trigger.

Trigger Parameters: 1 ‘immediate’

trigger(s) on START.

Status: Waiting for START.

0 frames acquired since starting.

0 frames available for GETDATA.

Binary images (B&W). A binary
image is a logical array of 0’s and
1’s. Numeric-array images consist-
ing of 0’s and 1’s are converted into
binary, with ‘1’ indicating white
colour (maximum intensity) and ‘0’
indicating black colour (minimum
intensity):
>>imBw=[1 0 1;0 0 1;1 1 0]

RGB images. A red, green and blue
(RGB) image is an MxNx3 array of
colour pixels, where each colour

Table I
Instructions for Image Acquisition

Instruction	 Descriptions

preview(obj) 	 Immediately activates a live image preview window for the video
	 input object ‘obj’.

closepreview(obj) 	 Closes the image preview window associated with image
	 acquisition object ‘obj’.

celldisp(c) or celldisp 	
(dev_info. SupportedFormats) 	 Recursively displays the contents of a cell array

start(obj) 	 The control starts capturing the frames. The frames captured
	 are stored in the memory. The control also obtains exclusive
	 use of the image acquisition device associated with the video
	 input object ‘obj’ and locks the device configuration. Starting an
	 object is a necessary first step to acquire image data.

triggerconfig(obj, ‘manual’) 	 Sets the trigger configuration. Here, ‘manual’ gets the image
	 only when the video is triggered.

set(obj, ‘FramesPerTrigger’, 1) 	 Sets the number of frames captured per trigger. Here only one
	 frame is captured per trigger.

set(obj, ‘TriggerRepeat’, Inf) 	 Sets the number of times for which the trigger can be repeated.

flushdata(obj) 	 Removes all data from the data acquisition engine and resets
	 the SamplesAvailable property to zero.

stop(obj) 	 Stops video capturing.

delete(obj) 	 Deletes the object ‘obj’

clear obj 	 Clears the memory buffer

Note: Inf- indicates that there can be any number of triggers we want. If we specify any number then we will have
to start the video capture again after we have finished triggering the specified number of times.

Software
section

electronics for you • May 2009 • 87w w w . e f y m a g . c o m

pixel is a triplet corresponding to
the red, green and blue components
of an RGB image at a specific spatial
location.

An RGB image may be viewed
as a stack of three gray-scale images
that, when fed into the RGB colour
monitors, produce a colour image.
Eight bits are used to represent the
pixel values of each component of
the image. Thus an RGB image cor-
responds to 24 bits.

Detection of the red ball
1. Capture a frame and store it in a
variable, say, ‘rgb_image’

2. Extract the red, green and blue
components of the images and store
them in variables fR, fG and fB:
fR= rgb_image (: , : , 1);%extracts

the red component.

fG= rgb_image (: , : , 2);%extracts

the green component.

fB= rgb_image (: , : , 3);%extracts

the blue component.

Here, fR, fG and fB are image ma-
trices. In Matlab, comments are written
after ‘%’ sign.

3. Next, find the red object in
the image. (R_THRESHOLD=)140,
(G_THRESHOLD=)105 and (B_
THRESHOLD=)100 are specif ic
numbers called ‘threshold.’ The
technique for finding these numbers
is described later on.

The following statement creates a
B&W image array ‘I’:
I= ((fR≥140) & (fG≤105) & (fB≤100));

That is, the result of logically ‘AN-
Ded’ image matrices fR, fG and fB is
stored in ‘I.’

If the following three conditions are
satisfied, the pixel value of the image is
set to ‘1’:

(i) fR≥140 if the value of the red
component of the pixel is greater than
140.

(ii) fG≤105 if the value of the green
component of the pixel is less than
105

(iii) fB≤100 if the value of the blue
component of the pixel is less than
100

4. Once you make the B&W im-

age, you will find that apart from the
region of your red ball there are also
some unwanted white regions in the
image. These unwanted white regions
are called ‘noise.’

Before you plot the centre of the
image, filter the noisy parts of the im-
age as follows:
Se = strel (‘disk’, 20); % creates a

flat, disk-shaped structuring element

with radius 20

B= imopen (I, se);%morphological

opening

Final= imclose (B, se);%morphological

closing

Morphological opening removes
those regions of an object which can-
not contain the structuring element,
smoothes object contours, breaks
thin connections and removes thin
protrusions. Morphological closing
also tends to smooth the contours
of objects besides joining narrow
breaks and filling long, thin gulfs
and holes smaller than the structur-
ing element:

5. Once you obtain the desired part,
find the centre of the ball.

The following statement computes
all the connected components in a bi-
nary image:
[L, n]= bwlabel(Final),

Here ‘n’ is the total number of con-
nected components and ‘L’ is the label
matrix. (Each connected component is
given a unique number.)

The following statement:
[r, c]= find (L= = K) % K= 1, 2 …n

returns the row and column indices for
all pixels belonging to the Kth object:

rbar= mean (n);
cbar= mean(c);
Variables ‘rbar’ and ‘cbar’ are the

coordinates of the centre of mass.
As you have already filtered the

image, the final image contains only
one white region. But in case there is
a computational fault due to exces-
sive noise, you might have two con-
nected components. So form a loop
from ‘1’ to ‘n’ using ‘for’ statement,
thus calculating the centre of mass
for all objects. The syntax is:
for K=1:n

If there are no components in a
frame, the control doesn’t enter the
loop and ‘rbar’ and ‘cbar’ remain
initialised to zero.

For checking the output on the
computer, use the following instruc-
tions:
imshow (rgb_image);

hold on

plot (cbar, rbar, ‘marker’, ‘ * ’,

Table II
Instructions for Image Processing

Instruction	 Description

im = imread(‘redball.jpg’) 	 Reads the JPEG image into an image array ‘im’

size(im) 	 Returns the row and column dimensions of an image; for example,
	 [m, n] = size (im);

imshow(im) 	 Displays the image on the Matlab desktop.

figure, imshow (im2) 	 Displays image ‘im2’ in another window; used when needed to display
	 two images in two different windows

imview(im) 	 Displays the image on the Matlab Desktop. It also shows the pixel value
	 at the corresponding mouse pointer

imwrite(A,filename,fmt) 	 Writes the image ‘A’ to the file specified by filename in the format
	 specified by ‘fmt’

tf = islogical(A) 	 Returns logic 1 (true) if ‘A’ is a logical array and logic ‘0’ (false)
	 otherwise

I = rgb2gray(RGB) 	 Converts the true-colour RGB image into the grayscale intensity image ‘I’

BW = im2bw(I) 	 Converts the intensity image ‘I’ into B&W

Note: 1. Syntax of the functions specified can be obtained from the Matlab Help.
2. If the image file is not in the current directory, the whole path of the file should be specified.
3. After every statement there should be a semicolon. Semicolon is given to suppress the output at the
command window.

software
section

88 • May 2009 • electronics for you w w w . e f y m a g . c o m

‘MarkerEdgeColor’, B);

These statements pop-up a
window where a ‘blue’ mark is plot-
ted on the detected centre of mass
of the red ball. They have been com-
mented out in the main program for
testing.

Plotting the position
of the object
The position of the red ball is plotted
as described below:

1. Divide the frame captured by
the camera (refer Fig. 4) into five
parts by means of points ‘x1’ and ‘x2’
on X-axis and points ‘y1’ and ‘y2’ on
Y-axis.

2. Calculate x1, x2, y1 and y2 by the
following method:

x1= x/2-numx; x2=x/2+numx
y1=y/2-numy; y2=y/2+numy
‘numx’ and ‘numy’ are arbitrary

numbers which you have to find out.
These depend on the size of your
ball. We have taken numx=120 and
numy=30 in our program.

Calculate the coordinates of the
centre of the frame, which is nothing
but (x/2, y/2). ‘x’ is the maximum
dimension of X-axis (in the program
it is 640) and ‘y’ is the maximum di-
mension of Y-axis (in the program it
is 480).

3 . Var ious
conditions for
detecting the po-
sition of the ball
are:

(i) If the ball
is in region 5, it
is at the centre
of the frame. The

robot should stop moving.
(ii) If the ball is in region 3, it is at

the left of the frame. The robot should
move left.

(iii) If the ball is in region 4, it is at
the right of the frame. The robot should
move right.

(iv) If the ball is in region 1, it is at
the upper part of the frame. The robot
should move forward.

(v) If the ball is in region 2, it is at
the lower part of the frame. The robot
should move backward.

Define the above conditions in
the code for decision making as given
below:

(i) cbar≥x1 (output either ‘0’ or ‘1’)
(ii) cbar≤x2 (output either ‘0’

or ‘1’)
(iii) rbar≤y2 (output either ‘0’ or ‘1’)
(iv) rbar≥y1 (output either ‘0’

or ‘1’)
4. If you consider these four con-

ditions to be four bits, you can easily

convert the information into a number
for easy computation. This can be done
by the following code:
e=((cbar>= x1)*2*2*2 % bit number 3

+(cbar<= x2)*2*2 % bit number 2

+(rbar>= y1)*2 % bit number 1

+(rbar<= y2)) % bit number 0

Thereafter, you can simply gener-
ate a simple switch-case code for out-
putting the appropriate data through
serial port, to control the external
device such as a robot.

The decision table derived from the
above conditions is shown in Table III.
‘X’ denotes a “don’t care” situation.
Some of the cases are imaginary in the
practical world. The robot will stop in
such situations.

For calculating the dimensions of
the frame, use the sizeof() function.
This function returns the size of the
frame.

Setting the RGB threshold
values
The red ball is of particular interest.
The steps for setting the RGB threshold
values of the red ball follow:

1. Take at least ten snaps of the red
ball at various angles (refer Fig. 5)

2. Read each image
3. Display the image by using ‘im-

view’ function
4. Note down the pixel values of

the red ball by placing the mouse
cursor at various portions of the
red ball. The threshold for red
c o m p o n e n t (R _ T H R E S H O L D)
should be the least value of the red
component found in the red ball.
The threshold for green compo-
nent (G_THRESHOLD) should
be the maximum value of the
green component found in the
red ball. The threshold for blue
component (B_THRESHOLD) should
be the maximum value of the blue
component found in the red ball.

In the screenshot shown in Fig. 5,
the least value of the red component
is ‘144.’ So R_THRESHOLD can be
taken as ‘144.’ The maximum value
of the green component is ‘115.’ So
G_THRESHOLD can be taken as ‘115.’

Table III
Decision Table

cbar ≥ x1	 cbar ≤ x2	 rbar ≥ y1	 rbar ≤ y2	B inary	 Decimal(e=)	 Move

0	 0	 0	 0	 0	 0	 X

0	 0	 0	 1	 01	 1	 X

0	 0	 1	 0	 10	 2	 X

0	 0	 1	 1	 11	 3	 X

0	 1	 0	 0	 100	 4	 X

0	 1	 0	 1	 101	 5	 Left

0	 1	 1	 0	 110	 6	 Left

0	 1	 1	 1	 111	 7	 Left

1	 0	 0	 0	 1000	 8	 X

1	 0	 0	 1	 1001	 9	 Right

1	 0	 1	 0	 1010	 10	 Right

1	 0	 1	 1	 1011	 11	 Right

1	 1	 0	 0	 1100	 12	 X

1	 1	 0	 1	 1101	 13	 Forward

1	 1	 1	 0	 1110	 14	 Backward

1	 1	 1	 1	 1111	 15	 Stop

Fig. 4: Captured frame

Software
section

electronics for you • May 2009 • 89w w w . e f y m a g . c o m

 >>fclose(ser);

Here the robot will be controlled
by seding the following codes to the
serial port:

1. Key ‘F’ for forward movement
2. Key ‘L’ for left movement
3. Key ‘R’ for right movement
4. Key ‘B’ for backward movement
Any other code will make the robot

stop. The code for implementing mo-
tion control of the robot is given at the
end of this article.

Testing steps
1. Install Matlab (minimum version:
Matlab 7.0.1(R14))

2. Install the camera along with
related software

3. Restart your computer
4. Run your camera software and

check the image captured by it
5. Take snaps of the red ball from

various angles and set the threshold
values

6. When all is right, open Matlab
software, go to ‘m.file’ from ‘file’
menu bar, type the code ‘Robotvision.
m’ (given at the end of the article)
and save it. Alternatively, copy the
Robotvision.m file from this month’s

EFY-CD
7. Click ‘run’ button in ‘Debug’

option
8. Hold the red ball in your hand

near the camera lens
9. Move the ball left, right, for-

ward and backward. This information
will be displayed on your screen. For
example, if you move the ball left,
you can see ‘move left’ command on
the screen

10. Now, place your camera on top
of your robot. The robot will trace the
red ball by itself

To check the serial-port data
communication, you can use a se-
rial-port monitor, which can be freely
downloaded from ‘www.download.
com/Free-Serial-Port-Monitor/3000-
2212_4-70394.html’

Caution. If you want to end execu-
tion of your program, go to the Matlab
command prompt and press ‘ctrl+c’
key. Thereafter, write ‘fclose(ser)’
against the prompt or else you will
not be able to access your serial port
further.

EFY note. The source code of
this article has been included in this
month’s EFY-CD.

The maximum value of the blue com-
ponent is ‘100.’ So B_THRESHOLD can
be taken as ‘100.’

Syntax of the functions specified
can be had from the Matlab Help. If
the image file is not in the current di-
rectory, specify the whole path of the
file. A semicolon is given after every
statement to suppress the output at the
command window.

Motion control of the robot
The computer processes the image of
the red ball and sends out five different
data through its serial COM port. The
data depends on the location of the red
ball, viz, upper, lower, left, right and
centre of the frame, as captured by the
camera.

Place the PC-based (USB-based)
camera in front of the robot, so that it
acts as a visual sensor.

You have to design a robot that
connects to the serial port of your PC.

Program the serial port as follows:
1. obj = serial(‘port’); creates a

serial-port object associated with the
serial port specified by the port. If the
port does not exist or if it is in use,
you will not be able to connect the
serial-port object to the device. The
syntax is:
>>ser=serial(‘COM1’);

2. obj = serial(‘port’,’Property
Name’,PropertyValue,...); creates a
serial-port object with the specified
property names and property values. If
an invalid property name or property
value is specified, an error is returned
and the serial-port object is not created.
The syntax is:
>> ser= serial(‘COM1’,’BaudRate’,

9600,’DataBits’,8);

3. fopen(obj); before you can
perform a read or write operation,
‘obj’ must be connected to the de-
vice with the fopen function. The
syntax is:
>>fopen(ser);

4. fprintf(ser,’data’); sends data to
the serial port. The syntax is:
>>fprintf(ser,’F’);

5. fclose(obj); disconnects ‘obj’ from
the device. The syntax is:

Fig. 5: Screenshot of the red ball

software
section

90 • May 2009 • electronics for you w w w . e f y m a g . c o m

robotvision.m
%*************************************
% Red Ball Tracker – Robot Vision
% Software used Matlab 7.0.1(R14)
% Algorithim used RGB Colour Detection
%*************************************
% SOME LINES HERE ARE COMMENTED OUT FOR
FASTER PROCESSING.THE READER SHOULD UN-
COMMENT THEM WHEN NEEDED

clear;
clc % Clearing Matlab desktop
vid=videoinput(‘winvideo’,1,’RGB24_
640X480’); % Defining the video input
object
set(vid,’FramesPerTrigger’,1); % Setting
frames per trigger
% preview(vid); %////// Showing the
video of the moving Ball(TO BE USED %
% WHILE TESTING)

pause(10);% Waiting for a certain time
for the system to get initialised
rgb_image = getsnapshot(vid); % Storing
Image in an array variable
[a b c]= size(rgb_image); % Determining
the size of the captured frame.
y=a;
x=b;
% Defining Boundaries
x1=x/2-120;
x2=x/2+120;
y1=y/2-30;
y2=y/2+30;
ser=serial(‘COM1’); % Defining the speci-
fied COM Port to be used
fopen(ser); % starting serial

Communication,opening serial port
while(1)
 rgb_image = getsnapshot(vid); %
storing image in an array variable
 flushdata(vid); %Flushing the buffer
 rbar=0;
 cbar=0;
 e=0;
 fR=rgb_image(:,:,1);fG=rgb_
image(:,:,2);fB=rgb_image(:,:,3);% Stor-
ing RGB components of the image in
seperate arrays
 I=((fR>=140) & (fG<=105) &
(fB<=100)); % Converting the RGB Image
into binary image///Detecting only the
red component
 % Following are the steps For De-
tecting the red ball
 se=strel(‘disk’,20);
 B=imopen(I,se);
 final=imclose(B,se);
 [L,n]=bwlabel(final);
 %imshow(rgb_image); %////THIS IS TO
BE USED ONLY WHILE TESTING
 %hold on % ////THIS IS TO BE USED
ONLY WHILE TESTING
 for k=1:n
 [r,c]=find(L==k);
 rbar=mean(r);
 cbar=mean(c);
 %plot(cbar,rbar,’Marker’,’*’,’
MarkerEdgeColor’,’B’,’MarkerSize’,20)
%////THIS IS TO BE USED ONLY WHILE TEST-
ING
 e=(((cbar>=x1)*2*2*2) +
((cbar<=x2)*2*2) + ((rbar>=y1)*2) +

(rbar<=y2)) % Converting to decimal
number
 end
 % Decision Making Conditions
 switch (e)
 case 5
 disp(‘Move
left’),fprintf(ser,’L’);
 case 6
 disp(‘Move
left’),fprintf(ser,’L’);
 case 7
 disp(‘Move
left’),fprintf(ser,’L’);
 case 9
 disp(‘Move right’),fprintf
(ser,’R’);
 case 10
 disp(‘Move right’),fprintf
(ser,’R’);
 case 11
 disp(‘Move right’),fprintf
(ser,’R’);
 case 13
 disp(‘Move forward’),fprin
tf(ser,’F’);
 case 14
 disp(‘Move
back’),fprintf(ser,’B’);
 otherwise
 disp(‘Stop Moving’),fprint
f(ser,’S’);
 end
end
fclose(ser); % closing serial port



