
Low Power Option of Ambit BuildGates
Synthesis and Cadence PKS

Product Version 4.0.8
May 2001

 2000-2001 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this
document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 1-800-862-4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission statement,
this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or
distributed in any way, without prior written permission from Cadence. This statement grants you permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s customer
in accordance with, a written agreement between Cadence and its customer. Except as may be explicitly set
forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties
as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does
not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any
liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS

Contents
Preface . 7

About This Manual . 7
Other Information Sources . 7
Syntax Conventions . 8

Text Command Syntax . 8

1
Introduction . 10

Power Issues in the Electronics Industry . 11
Overview of the LPS Design Flow . 11
Design Stages of Power Reduction . 13
Running the LPS Option . 14

LPS Option License . 14
Using the ac_shell Command Line . 15
Using the Graphical User Interface . 15
LPS-PKS Limitations . 15

2
Before Running the LPS Option . 16

Power Consumption . 17
Static Power Dissipation . 17
Dynamic Power Dissipation . 18
How LPS Models Power Dissipation . 19

Power Estimation . 20
How Power Estimation Works . 21
Performing Power Calculations . 21
The TCF File . 23

Library Requirements . 28
Library File Examples . 30

Sample .lib File Containing a Cell-Based Power Table . 30
May 2001 3 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Sample .lib File Containing an Arc-Based Power Table . 31
Sample .tlf File Containing a Power Table . 31
Sample .lib files Containing a 3D Power Table . 32
Sample Simulation Library . 34

3
Using Power Optimizations . 35

Power Optimization . 36
Prerequisites . 36
Register-Transfer Level (RTL) Transformations . 36
Clock Gating . 37
Clock Gating Multi-Clock Domains Under DFT Settings . 41
Controllability . 41
Controllability Examples . 42
Observability . 44
Observability Examples . 47
Sleep Mode . 48
Gate-Level Power Optimization . 51
Power Analysis . 57

4
LPS Graphical User Interfaces. 60

The Module and Schematic Views of Power . 61
The Schematic View of Power . 64
Generating Power Reports . 68
Setting General Preferences . 70
Viewing Probability and Toggle Count Information . 73

5
The Basic Power Optimization Flow. 76

Overview of the Low Power Synthesis (LPS) Design Flow . 77
Before You Start the LPS Flow . 78
Step 1: Reading in the Library . 78

Terms and Concepts You Should Be Familiar With . 78
May 2001 4 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Commands Used . 78
Step 2: Reading in the Design . 79

Terms and Concepts You Should Be Familiar With . 79
Commands Used . 79
Optional and Alternate Steps . 79

Step 3: Exploring Power at the RTL . 80
Terms and Concepts You Should Be Familiar With . 80
Commands Used . 80
Optional and Alternate Steps . 82

Step 4: Reading In a Toggle Count Format (TCF) File . 83
Terms and Concepts You Should Be Familiar With . 83
Prerequisite . 83
Commands Used . 83
Optional and Alternate Steps . 83

Step 5: Getting Power Numbers (Optional) . 88
Terms and Concepts You Should Be Familiar With . 88
Commands Used . 88

Step 6: Committing Logic and Performing Gate-Level Power Transformations 89
Terms and Concepts You Should Be Familiar With . 89
Commands Used . 89
Optional and Alternate Steps . 89

Script Example . 90

6
Alternate Power Flows . 91

Sleep-Mode Only Flow . 92
Sample Sleep-Mode Only Flow Script . 92

Clock-Gating Only Flow . 93
Sample Clock-Gating Only Flow Script . 93

Gate-Level Power Optimization Only Flow . 94
Sample Gate-Level Power Optimization Only Flow Script . 94

Flow for Applying Different Transformations Per Module . 96
Sample Script for the Different Transformations Per Module Flow 96

DFT-LPS Flow . 98
Sample DFT-LPS Observability Flow Script . 98
May 2001 5 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Tips for the DFT-LPS Flow . 98
LPS-PKS Flow . 100

Sample LPS-PKS Flow Script . 100
CT-PKS Power Flow . 101

Sample CT-Gen Power Flow Script . 101

7
Troubleshooting . 102

General LPS Problems and Limitations . 103
When Conditions . 103
Clock-Gating and Sleep-Mode Options Still Set After do_remove_design 103

LPS-DFT Flow Problems . 104
Using the ctrl_before_latch Option Before check_dft_rules 104
TDRC Violations When Using check_dft_rules . 104
Flip-Flops Do Not Have Output Nets . 105
Top Level Flip-Flop Cannot Connect To Any Scan Chain . 105
The Observability Flip-Flop Is In a Different Scan Chain . 106
An Observability Tree Is Outside the Sub-Module . 106
Warning When Setting Clock-Gating Options . 106
Problem Setting Test Mode Port . 106
Error Associating Test Ports With Multiple Clock Domains 107

8
Glossary . 108
May 2001 6 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Preface

This preface contains the following sections:

■ About This Manual on page 7

■ Other Information Sources on page 7

■ Syntax Conventions on page 8

About This Manual

This manual describes how to run the Cadence® Low Power Synthesis (LPS) option for
Ambit® BuildGates® Synthesis and Cadence® Physically Knowledgeable Synthesis (PKS).
See Chapter 5 of the Command Reference for Ambit® BuildGates® Synthesis and
Cadence® PKS for details on the LPS text commands. To use this manual, you should be
familiar with IC power consumption concepts and issues and with the BuildGates Synthesis
software.

Other Information Sources

For more information about LPS and other related products, you can consult the sources
listed here.

■ Command Reference for Ambit® BuildGates® Synthesis and Cadence® PKS

■ Ambit® BuildGates® Synthesis User Guide

■ Test Synthesis for Ambit® BuildGates® Synthesis and Cadence® PKS

■ PKS User Guide

■ Timing Analysis for Ambit® BuildGates® Synthesis and Cadence® PKS

The LPS option and the BuildGates Synthesis software may be used with other tools during
the design flow. The following documents provide information about these tools.

■ Cadence® Silicon Ensemble™ Place-and-Route Reference
May 2001 7 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Preface
Syntax Conventions

This section provides the Text Command Syntax used in this document.

Text Command Syntax

The list below describes the syntax conventions used for the LPS documentation.

Important

Command names and arguments are case sensitive. User-defined information is
case sensitive for Verilog designs and, depending on the value specified for the
global variable hdl_vhdl_case , may be case sensitive as well.

literal Nonitalic words indicate keywords that you must enter literally.
These keywords represent command or option names.

argument Words in italics indicate user-defined arguments or information
for which you must substitute a name or a value.

| Vertical bars (OR-bars) separate possible choices for a single
argument.

[] Brackets denote optional arguments. When used with OR-bars,
they enclose a list of choices from which you can choose one.

{ } Braces are used to indicate that a choice is required from the list
of arguments separated by OR-bars. You must choose one from
the list.

{ argument1 | argument2 | argument3 }

One exception is when braces contain a instructions to provide
more optional information for the argument. For example, this
argument:

-instance { list_of_instances }

 allows you to specify multiple instances. The list must be
enclosed in braces, with instances separated by a space. Do not
use braces if you only have one object to specify.
May 2001 8 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Preface
... Three dots (...) indicate that you can repeat the previous
argument. If the three dots are used with brackets (that is,
[argument]...) , you can specify zero or more arguments. If
the three dots are used without brackets (argument ...) , you
must specify at least one argument, but can specify more.

The pound sign precedes comments in command files and
examples.
May 2001 9 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
1
Introduction

This chapter contains background information about power consumption, an overview of the
Low Power Synthesis (LPS) option of Ambit® BuildGates® Synthesis and Cadence® PKS,
and information about launching the LPS option in both tools:

■ Power Issues in the Electronics Industry on page 11

■ Overview of the LPS Design Flow on page 11

■ Design Stages of Power Reduction on page 13

■ Running the LPS Option on page 14

❑ LPS Option License on page 14

❑ Using the ac_shell Command Line on page 15

❑ Using the Graphical User Interface on page 15

❑ LPS-PKS Limitations on page 15
May 2001 10 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Introduction
Power Issues in the Electronics Industry

With the remarkable success and growth of personal computing devices, consumer
electronics, and wireless communication systems, there is an urgent demand is for high-
speed computation and complex functionality. However, average power consumption has
become a critical design concern. Because of shrinking chip size, the current density per unit
area is also increasing. A related issue is the high cost of packaging and cooling strategies
of high-performance processors, such as 500-1000 MHz clocks.

These issues shift focus from design performance and area concerns to a need for lower
power and consideration for power dissipation. The challenge is to meet these needs without
compromising overall chip performance. Power consumption in design modules must be
identified and their power consumption must be reduced. These are the goals of LPS.

To summarize, these are a few of the reasons power has become a critical issue in chip
design:

■ Shrinking geometry, which in turn increases current density.

■ Increasing clock frequency.

■ Growing cost of packaging and cooling.

■ Need for longer battery life for portable and handheld electronic devices.

■ Necessity of integrating more functions to improve system performance.

Overview of the LPS Design Flow

Conventional low power design flow involves error-prone RTL modifications and time
consuming iterations, as shown in (A) of Figure 1-1 on page 12. In the first step, designers
manually create a power-conscious RTL code based on personal estimates. After
synthesizing the RTL code, they try to minimize power in the design based on the given timing
constraints. In the final step of estimating power, designers often discover that their power
requirements are not met. They have to go back to the first, second, or third step to fix the
problems.
May 2001 11 Product Version 4.0.8

Saman
Sticky Note
هوشيار،بهوش ،اگاه ،باخبر،ملتفت ،وارد

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Introduction
Figure 1-1 The Conventional (A) Versus Cadence (B) LPS Design Flow

The Cadence LPS design flow provides both power estimation and optimization capabilities
that also consider timing and area constraints. As shown in (B) of Figure 1-1 on page 12,
designers begin with developing their RTL code. However, unlike the conventional low power
design flow, designers do not have to worry about power in this step because the second step
does the work for them. In the second step, LPS explores thousands of RTL transformations
for reducing power in the design. Then, after synthesizing the RTL code, LPS minimizes the
power by committing the RTL transformations and performing gate-level power optimizations
while satisfying the timing constraints.

Estimate Power

Synthesize RTL

Develop RTL

Explore Low
Power RTL

Synthesize RTL

Commit RTL
Transformations

(B) The Cadence LPS Design Flow(A) The Conventional Low Power Design Flow

Develop Power-
Conscious RTL

Optimize for
Timing and Power
May 2001 12 Product Version 4.0.8

Saman
Highlight

Saman
Highlight

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Introduction
Design Stages of Power Reduction

There are distinct design stages where power can be reduced:

■ System level

The highest level in the design stage to address power reduction. One way to reduce
power at this level is to:

❑ Put the whole block of the design to sleep.

■ Architectural level

At this stage, you are looking at how to manage the system power. There are three ways
you can do this:

❑ Create a balance between extra flip-flops/muxes and through-put (pipelining).

❑ Minimize fanout by weighing the use of a local bus versus a global bus.

❑ Reduce the number of larger drivers across blocks by using local decoding.

■ RTL and gate level

There are two ways of addressing power at this stage:

❑ Make a choice for state coding — gray coding versus binary coding.

❑ Reduce the output glitch power by selecting either the Moore machine or Mealy
machine.

■ Physical analysis level

You can still work on power reduction at this stage, but there is far less space for doing so.

At each of these design stages, you make trade-offs between accuracy and potential power
savings. The following graphic illustrates these trade-offs at the various levels:
May 2001 13 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Introduction
Figure 1-2 Power Reduction Trade-offs at Different Design Stages

The LPS option can be used during the RTL, gate, and physical levels.

Running the LPS Option

You can run the LPS option with the BuildGates Synthesis or Cadence PKS command line or
their graphical user interfaces (GUIs).

LPS Option License

To run LPS option in the ac_shell , pks_shell , or GUI environments, you must first have
an available envisia_lowPower_option license. Without an LPS option license, power
commands and GUIs are not enabled.

Note: You must also have the BuildGates Synthesis or Cadence PKS license. The licenses
are, respectively, Ambit_BuildGates and Envisia_PKS .

Accuracy Potential Power Savings

System

Architectual

RTL

Gate

Physical
May 2001 14 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Introduction
Using the ac_shell Command Line

In BuildGates Synthesis, enter the following command at the UNIX prompt to run the LPS
option:

ac_shell -power

To run the LPS option in the Cadence PKS environment, enter the following command at the
UNIX prompt:

ac_shell -pks -power

Note: The prompt changes to pks_shell .

For more information about using ac_shell , see the Command Reference for Ambit
BuildGates Synthesis and Cadence PKS.

Using the Graphical User Interface

To launch the LPS option in BuildGates Synthesis from the GUI, enter the following command
at the UNIX prompt:

ac_shell -gui -power

To run the LPS option in the Cadence PKS GUI, enter the following command at the UNIX
prompt:

ac_shell -pks -gui -power

For more information about using the GUI, see the Ambit BuildGates Synthesis User
Guide.

LPS-PKS Limitations

You can run all LPS commands and options in Cadence PKS, but, because LPS performs
power optimizations based on the Wire Load Model (WLM), there are two post-placement
command exceptions:

■ You can not run the do_optimize command using the -power and -pks options at
the same time. Each option works with this command on its own.

■ The do_xform_optimize_power command does not have a -pks option to allow it to
run within Cadence PKS.

Note: Commands that you can run after placement are the power analysis commands—
get_power and report_power —and the power-conscious timing optimization command
do_xform_optimize_slack -power .
May 2001 15 Product Version 4.0.8

Saman
Highlight

Saman
Highlight

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
2
Before Running the LPS Option

This chapter provides details the basics of power consumption and calculations , as well as
library requirements for running the LPS option with BuildGates Synthesis and Cadence
PKS.

■ Power Consumption on page 17

❑ Static Power Dissipation on page 17

❑ Dynamic Power Dissipation on page 18

❑ How LPS Models Power Dissipation on page 19

■ Power Estimation on page 20

❑ Obtaining Switching Activities on Nets on page 21

❑ Performing Power Calculations on page 21

❑ Performing Power Calculations on page 21

❑ Path-Based Internal Power on page 22

❑ The TCF File on page 23

■ Library Requirements on page 28

❑ Supported TLF Power Statements on page 29

❑ Sample .lib File Containing a Cell-Based Power Table on page 30

❑ Sample .lib File Containing an Arc-Based Power Table on page 31

❑ Sample .tlf File Containing a Power Table on page 31

❑ Sample .lib files Containing a 3D Power Table on page 32

❑ Sample Simulation Library on page 34
May 2001 16 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
Power Consumption

Power consumption for a circuit includes two general types of power: static and dynamic
power.

Static Power Dissipation

Static power is generally dependent on the state of the cell. Static power dissipation can be
defined as power that is lost while a circuit’s signals are not actively switching.

Static power dissipation includes

■ Leakage power caused by sub-threshold leakage current in CMOS circuits

Figure 2-1 Leakage Power

This is a characteristic of a technology cell, so leakage power values are obtained from
the technology library.

Also, LPS supports state-dependent leakage power, which is specified in the cell
description section of your .lib file

■ Standby power dissipation caused by the DC current being continuously drawn from
power to ground

This type of power dissipation is insignificant for CMOS circuits, so LPS ignores it.

Note: LPS currently works only with CMOS technology.

Input

Output

n-well

p-substrate

p+ n+ n+ p+ p+p+
May 2001 17 Product Version 4.0.8

Saman
Highlight

Saman
Highlight

Saman
Highlight

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
Dynamic Power Dissipation

The overall dynamic power of a cell is based on the effects of voltage and temperature, load,
input slew rate, as well as the cell’s state. Dynamic power dissipation is defined as power lost
while a circuit is actively switching at a given frequency.

Dynamic power dissipation includes these two types of power:

■ Short-circuit power

Dissipated when a short exists between the voltage supply and ground rails created
during output transitions that cannot be instantaneously turned on and off.

Figure 2-2 Short Circuit Power

This is a subset of the broad category of internal power, which is defined as all power
dissipated within a cell.

■ Switching power (or capacitive load power)

The power required to switch the entire load. The capacitive load includes internal
capacitance, capacitance of the net, and the capacitance of the input pins. Power
consumed by the internal capacitance is modeled as part of the cell power.

Note: The Cadence LPS design flow does not account for power consumption caused by a
Partial Transition.

Vin Vout

Isc

V
Vout Vin

t

Isc

t

May 2001 18 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
How LPS Models Power Dissipation

LPS uses the following power types to model power dissipation:

1. Leakage power

2. Internal power

This consists of the short-circuit power and switching power of the internal cell.

3. Capacitive load power (net power) is calculated with the following equation:

1/2 CV 2 * TR

Where:

1/2 is not dependent on the Duty Cycle.

C is capacitance, with pico Farads as the default units.

V is supply voltage, displaying in volts.

TR is the Toggle Rate, which is stored as nanoseconds and outputs power results in
milliwatts.

Note: LPS does proper scaling of the time unit. So, if you read in your first technology library
with nano secondsas the default timing unit and then give a different unit for toggle counts in
your TCF file, LPS scales the results.
May 2001 19 Product Version 4.0.8

Saman
Highlight

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
Power Estimation

LPS estimates power at the gate level in your design, giving you the ability to characterize
and evaluate various design alternatives. This means you can make design tradeoffs
between performance and power.

When LPS calculates power estimates, it takes the following inputs into account:

■ A TLF (.tlf) or ALF (.alf) file. See Ambit Library Format (ALF) File on page 108 for
more information about ALF.

See Supported TLF Power Statements on page 29 for more details about the supported
power statements for the TLF file and Sample .tlf File Containing a Power Table on
page 31 for an example of a power table section in a TLF file.

See the Timing Library Format Reference for details on the power statements.

■ Power models in the technology file (TLF or ALF)

Currently, the table format model and constant values are supported.

■ Slew from the timing analysis engine

■ Net capacitance estimates from the BuildGates synthesis electrical system

■ Switching activity on each net

This could be a toggle count format (TCF) file (See Generating A Toggle Count Format
(TCF) File on page 27 for more information) or using the probabilistic technique to
calculate the activities (See The Probabilistic Technique For Computing Switching
Activities on page 21 for more information).
May 2001 20 Product Version 4.0.8

Saman
Highlight

Saman
Highlight

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
How Power Estimation Works

Power estimation consists of two steps:

1. Obtaining Switching Activities on Nets

2. Performing Power Calculations

Obtaining Switching Activities on Nets

In this step, LPS reads in the net switching activities and stores them as assertions on nets.
Assertions are toggle count values and probabilities taken from The TCF File. The switching
activities of the new nets created during optimization are incrementally computed whenever
the power of that net is required. See The Incremental Switching Activity Calculation on
page 21 or The Probabilistic Technique For Computing Switching Activities on page 21 for
more details on how switching activities are calculated by LPS.

The Incremental Switching Activity Calculation

LPS monitors changes in the circuit. Whenever there is a query on a net, LPS checks for an
assertion and returns that value if the assertion exists. If an assertion does not exist for that
net, LPS looks for a previously calculated value. If there is no value, LPS recalculates the
value using the probabilistic technique. If there is an existing value, but the fanin cone has
changed, causing an invalidation of the value, LPS recalculates the value.

The Probabilistic Technique For Computing Switching Activities

To compute the switching activity of an internal node, LPS uses the probabilistic technique for
propagating the switching activities from the nodes containing the asserted values. If none of
the logic nodes in the fanin cone contain assertion values, LPS assumes default values on
the primary inputs and outputs of sequential elements. The default value of signal probability
is 0.5, and the default value of the toggle count is half the clock frequency driving the node.
If a node is not driven by a clock, the toggle count is assumed to be zero. The probabilistic
technique takes Spatial Correlation into consideration; but because LPS does not propagate
across sequential elements, Temporal Correlation is not considered.

Performing Power Calculations

The following equations demonstrate how cell-based internal power calculations are
performed by the LPS tool:
May 2001 21 Product Version 4.0.8

Saman
Highlight

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
Ptotal = Leakage Power(Pleak)+Internal Power(Pint)+Load Power(Pl)

Where:

Pleak = ∑Pleak (cell)

Pint = ∑Pint (cell)

Instance_level internal power

Pint(cell) = ∑TR(Y)*Φ(C(Y),S)

Y is an output node of the cell

TR(Y) is the toggle rate of the Y output of the cell

C(Y) is the load capacitance of output Y

Φ(C(Y) , S) is obtained from the lookup table in the technology library.

S is a statistical measure of the slew of the inputs causing a toggle on Y.

Path-Based Internal Power

LPS estimates the number of time each arc is activated based on the switching activity
information of the input and output pins of the cell. It then calculates the dynamic power based
on that and the power models in the library.

For example:

Rise_Power = ∑ #transition (xi^->y^) * Power_table (xi^->y^, CL, Slewxi^) +

∑ #transition (xiv->y^) * Power_table (xiv->y^, CL, Slew xiv)

Fall_Power = ∑ #transition (xi^->yv) * Power_table (xi^->yv, CL, Slewxi^) +
#transition (xiv->yv) * Power_table (xiv->yv, CL, Slewxiv) }

Pin+ = Rise_Power + Fall_Power
May 2001 22 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
The TCF File

A Toggle Count Format (TCF) file contains net or pin switching activities, as well as signal
probabilities. The TCF file can be flat or hierarchical.

TCF File Syntax

In the TCF file, blocks delimited by { and } have the following form:

$BLOCK_ID ("$BLOCK_NAME")
"$PROPERTY_NAME" : "$PROPERTY_VALUE" ;
}

$BLOCK_ID can have the following values:

■ tcffile

❑ There can only be one tcffile in a TCF file and it must be the topmost block. You
do not have to set the $BLOCK_NAME for the tcffile block.

❑ tcfversion indicates the version of the format.

❑ generator indicates the creator of the file.

❑ genversion indicates the version of the creator.

❑ date indicates day and time that the file was generated.

❑ duration indicates the total simulation time.

❑ unit indicates the simulation time unit.

■ instance must specify either a flat or hierarchical instance. It must correspond to an
instance in the netlist. For a hierarchical instance in the netlist, the instance block
contains all the blocks for the instances within the hierarchical instance. The
$BLOCK_NAME for an instance block is the instance name. Currently, there is no
property defined for the instance block.

■ net must specify a block for a list of nets of a hierarchical instance or of the top level
module. It must contain a list of properties which correspond to the nets of a hierarchical
instance or the top level module. The name of the property is the name of the net, and
the value is the total toggle count and the signal probability.

■ pin must specify a block for a list of pins of a flat instance or ports of a hierarchical
instance. It must be contained within an instance block. The block has the properties of
the pins of the instance. The name of the property is the name of the pin. The value is
the total toggle count and the signal probability. For a hierarchical instance, the pin block
contains the switching information for the ports of the instance.
May 2001 23 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
Note: The hierarchical names are with respect to the module name provided in
toggle.count.report. If no module name is provided, LPS points to what is specified in
toggle.count.

Flat TCF File Example

By default, the creator of TCF file generates the hierarchical format. However it can also
generate a flat version TCF file. A flat TCF file reports the net names and portnames with the
absolute path from the top module. Unlike the hierarchical TCF file, the flat TCF file has only
one instance block, one net block and one pin block. For the pin and net block, the pin
name and the net name must be the full hierarchical name.

The following is the flat TCF file for the same design used in A Hierarchical TCF Example For
a Gate-Level Netlist.

tcffile () {

 tcfversion : "1.0";

 generator : "BGPower Verilog PLI";

 genversion : "1.0";

 date : "Wed Aug 9 16:45:44 2000";

 duration : "1.501000e+05";

 unit : "ns";

 instance () {

 net () {

 "p_22gat_10_" : "0.587916 739";

 }

 pin () {

 "i_12/Z" : "0.566029 747";

 "n_n1/B" : "0.516522 475";

 "hier1/i_0/Z" : "0.773700 478";

 "hier1/n_n0/Z" : "0.433971 747";

 "hier1/n_n0/A" : "0.517588 521";

 "hier1/n_n0/D" : "0.516522 475";

 "hier1/i_0/A" : "0.487675 488";

 "hier1/i_0/B" : "0.492405 493";

 "n_n1/A" : "0.504664 506";

 }

 }

}

May 2001 24 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
A Hierarchical TCF Example For a Gate-Level Netlist

A hierarchical TCF file reports the activity in the hierarchically. Each net or pin’s activity is
reported inside the block corresponding to the hierarchical instance it belongs to.

Following are graphics of a simple gate netlist followed by its corresponding hierarchical TCF
file:
May 2001 25 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
tcffile () {

 tcfversion : "1.0";

 generator : "BGPower Verilog PLI";

 genversion : "1.0";

 date : "Wed Aug 9 16:20:07 2000";

 duration : "1.501000e+05";

 unit : "ns";

 instance() {

 net() {

 "p_22gat_10_": "0.587916 739";

 }

 instance("n_n1") {

 pin() {

 "B" : "0.516522 475";

 "A" : "0.504664 506";

 }

 }

 instance("i_12") {

 pin() {

 "Z" : "0.566029 747";

 }

 }

 instance("hier1") {

 instance("i_0") {

 pin() {

 "Z" : "0.773700 478";

 "A" : "0.487675 488";

 "B" : "0.492405 493";

 }

 }

 instance("n_n0") {

 pin() {

 "Z" : "0.433971 747";

 "A" : "0.517588 521";

 "D" : "0.516522 475";

 }

 }

 }

 }

}

May 2001 26 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
Generating A Toggle Count Format (TCF) File

You can generate a toggle count format (TCF) file by using a simulator with a VCD conversion
script (as seen in (A) of Figure 2-3) or by using PLI routines linked to a Verilog simulator (as
shown (B) of Figure 2-3).

Figure 2-3 Methods of Generating a Toggle Count Format (TCF) File

See Step 4: Reading In a Toggle Count Format (TCF) File on page 83 for more details about
each method for generating a TCF file.

RTL/
Gate Level
Design

Simulator

VCD
Conversion
Executable

TCF
File

Verilog
Simulator

PLI
Routines

TCF
File

(A) (B)

Cadence Low
Power Synthesis
(LPS)
May 2001 27 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
Library Requirements

In order to perform power estimation for your design, you must provide the following:

■ Synthesis libraries

❑ A .lib or .alf file containing either a cell-based or arc-based power table

A cell-based power table is described at the cell group level of the library. An arc-based
power table describes power consumed by a transition on an arc. See Library File
Examples on page 30 for further detail.

Note: In addition to the traditional 2D lookup table support, LPS now has 3D (or 3rd

dimension) library support which is the capacitance of an additional output pin. This
output pin is described using the equal_or_opposite_output construct in your
.lib file and the OTHER_PINS construct in your .tlf file.

In the case of your .lib file, the three variables of the 3D power template are:

input_transition_time

total_ouput_net_capacitance

equal_or_opposite_output_net_capacitance or total_output2_net_capacitance

❑ A .tlf file containing an energy table.

The energy model includes the following:

 INPUT_SLEW_AXIS

 LOAD_AXIS

 LOAD2_AXIS

See Sample .tlf File Containing a Power Table on page 31 for details.

RTL Power
Exploration

Switching
Activity

Power
Estimation

Timing
Analysis

Power/Timing
Optimization Library
May 2001 28 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
■ A simulation library

See Sample Simulation Library on page 34 for details.

Supported TLF Power Statements

Here is a list of power statements supported or not supported in TLF 4.3.

Table 2-1 Supported TLF Power Statements

Power Statement Supported

CELL_SPOWER Yes

PIN_POWER Yes

VOLT_MULT_power Yes

TEMP_MULT_power Yes

PROC_MULT_power Yes

SUPPLY_CURRENT No

GROUND_CURRENT No

WAVETABLE No

SC_ENERGY Yes

INTERNAL_ENERGY Yes

TOTAL_ENERGY Yes

VOLT_MULT_parameter Yes

TEMP_MULT_parameter Yes

PROC_MULT_parameter Yes
May 2001 29 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
Library File Examples

Sample .lib File Containing a Cell-Based Power Table
power_lut_template(pwr_lu_ramp_6_1.8200_fanout_10_3.8817) {

 variable_1 : input_transition_time;

 index_1 ("0.0050, 0.0150, 0.0450, 0.1350, 0.4050, 1.2150");

 variable_2 : total_output_net_capacitance;

 index_2 ("0.0038, 0.0076, 0.0152, 0.0304, 0.0607, 0.1214, \

 0.2428, 0.4857, 0.9714, 1.9427");

}

cell (AND2A) {

 ...

 internal_power (pwr_lu_ramp_6_1.8200_fanout_10_3.8817) {

 related_outputs : "Z";

 related_inputs : "B A";

 values ("0.2697, 0.2688, 0.2703, 0.2833, 0.3031, 0.3488, \

 0.4468, 0.6488, 1.0401, 1.8267", \

 "0.5271, 0.5196, 0.5112, 0.5143, 0.5242, 0.5468, \

 0.6283, 0.8204, 1.2051, 1.9851", \

 "1.1475, 1.1400, 1.1217, 1.1050, 1.0918, 1.0979, \

 1.1497, 1.3022, 1.6605, 2.4273")

 }

}

May 2001 30 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
Sample .lib File Containing an Arc-Based Power Table
cell (AND2A) {

 pin (Z) {

 internal_power() {

 rise_power(POWER_DEFAULT_C_INT) {

 index_1 (" 0.2180, 0.8120, 1.2080, 1.6040, 2.0000 ");

 index_2 (" 0.0059, 0.0234, 0.0468, 0.0934, 0.1401,

 0.1867, 0.2334 ");

 values ("0.04778, 0.05298, 0.05595, 0.05999, 0.06251,

 0.06366, 0.06348 ",\

 ...

 "0.09101, 0.09485, 0.09742, 0.10114, 0.10362,

 0.10495, 0.10516 ");

 }

 fall_power(POWER_DEFAULT_C_INT) {

 ...

 }

 related_input : "A" ;

 }

 ...

}

Sample .tlf File Containing a Power Table
CELL(NR2L

 ...

 ENERGY_Model(PowerRiseModel0

 (Spline

 (INPUT_SLEW_AXIS 0.218000 0.812000 1.208000 1.604000 2.000000)

(LOAD_AXIS 0.005900 0.023400 0.046800 0.093400 0.140100 0.186700 0.233400)

 data

 ((0.047780 0.052980 0.055950 0.059990 0.062510 0.063660 0.063480)

 ...

 (0.091010 0.094850 0.097420 0.101140 0.103620 0.104950 0.105160)

)

)

)

 ENERGY_Model(PowerFallModel0

 ...

)
May 2001 31 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
 ...

 PATH(A => COUT 01 01 INTERNAL_ENERGY(PowerRiseModel0))

 PATH(A => COUT 10 10 INTERNAL_ENERGY(PowerRiseModel0))

 PATH(CIN => SUM 01 10 INTERNAL_ENERGY(PowerFallModel5))

 PATH(CIN => SUM 10 10 INTERNAL_ENERGY(PowerFallModel5))

)

)

Sample .lib files Containing a 3D Power Table

Example 1

Note: In this example, variable_3 in this sample could also be
total_output2_net_capacitance .

power_lut_template(energy_template_7x3x3) {

 variable_1 : input_transition_time;

 variable_2 : total_output_net_capacitance;

 variable_3 : equal_or_opposite_output_net_capacitance;

 index_1 ("1000, 1001, 1002, 1003, 1004, 1005, 1006");

 index_2 ("1000, 1001, 1002");

 index_3 ("1000, 1001, 1002");

 }

internal_power() {

 rise_power(energy_template_7x3x3) {

 index_1 ("0.0500, 0.1000, 0.4000, 0.9000, 1.4000, 2.0000, 3.0000");

 index_2 ("0.00060, 0.15000, 0.51000");

 index_3 ("0.00060, 0.15000, 0.51000");

 values (\

 "0.3635, 0.3765, 0.3545", "0.3823, 0.3705, 0.3475", "0.3820, 0.3785,
0.3475", \

 ...

 "0.7706, 0.7545, 0.7325", "0.7636, 0.7505, 0.7285", "0.7634, 0.7595,
0.7285");

 }

ENERGY_Model(PowerRiseModel2

 (Spline

 (INPUT_SLEW_AXIS 0.050000 0.100000 0.400000 0.900000 1.400000 2.000000
3.000000)

 (LOAD_AXIS 0.000600 0.150000 0.510000)
May 2001 32 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
 (LOAD2_AXIS 1000.000000 1001.000000 1002.000000)

 data

 (

 (.....)

)

)

)

Example 2

In this cell example, the third axis is the capacitance of QN, which is specified using the
equal_or_opposite_output format.

Note: The equal_or_opposite_output in this example is a construct of the
internal_power group of the .lib file. In Example 1 on page 32,
equal_or_opposite_output_net_capacitance was used, which is a construct in the
power_lut_template definition in the.lib file. For more details, see the Synopsys
Library Compiler documentation.

pin(Q) {

 direction : output;

 capacitance : 0.0;

 function : "IQ";

 internal_power() {

 related_pin : "CK";

 equal_or_opposite_output : "QN";

 rise_power(energy_template_7x3x3) {

 index_1 ("0.1000, 0.3000, 0.5000, 1.2000, 2.0000, 3.5000, 5.1000");

 index_2 ("0.00060, 0.15000, 0.51000");

 index_3 ("0.00060, 0.15000, 0.51000");

 values (\

 "0.1151, 0.1117, 0.0944", "0.1140, 0.1058, 0.0884", "0.1137, 0.1123,
0.0874", \

 "0.1146, 0.1112, 0.0932", "0.1136, 0.1053, 0.0872", "0.1132, 0.1118,
0.0872", \

 "0.1138, 0.1105, 0.0927", "0.1128, 0.1046, 0.0867", "0.1125, 0.1111,
0.0867", \

 "0.1143, 0.1109, 0.0931", "0.1132, 0.1050, 0.0871", "0.1129, 0.1115,
0.0871", \

 "0.1143, 0.1108, 0.0937", "0.1132, 0.1050, 0.0867", "0.1128, 0.1114,
0.0867", \

 "0.1190, 0.1110, 0.0935", "0.1134, 0.1050, 0.0875", "0.1130, 0.1115,
0.0865", \
May 2001 33 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Before Running the LPS Option
 "0.1193, 0.1111, 0.0936", "0.1134, 0.1051, 0.0876", "0.1131, 0.1121,
0.0866");

 }

Sample Simulation Library
‘delay_mode_path

‘suppress_faults

‘enable_portfaults

‘timescale 1 ns / 10 ps

‘celldefine

module ND2A (Z, A, B);

output Z;

input A, B;

 parameter CMOS_TO_TTL = 0;

 parameter CLOAD$Z = 0;

 nand #(0.0, 0.0) (Z, A, B);

specify

 (A => Z) = (0.0153:0.0190:0.0259, 0.0201:0.0250:0.0340);

 (B => Z) = (0.0193:0.0240:0.0327, 0.0266:0.0330:0.0449);

endspecify

endmodule

‘endcelldefine

‘nosuppress_faults

‘disable_portfaults
May 2001 34 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
3
Using Power Optimizations

This chapter provides detailed background about how the various LPS optimizations work to
minimize the power in your design.

■ Clock Gating on page 37

■ Clock Gating Multi-Clock Domains Under DFT Settings on page 41

■ Controllability on page 41

❑ Controllability Examples on page 42

■ Observability on page 44

❑ Observability Examples on page 47

■ Sleep Mode on page 48

■ Gate-Level Power Optimization on page 51
May 2001 35 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Power Optimization

Figure 3-1 Power Optimization

The primary goal of the Low Power Synthesis (LPS) option is to minimize the power of the
design without compromising the specified frequency and other design goals.

In addition to RTL power techniques, power optimization is performed on combinational logic
blocks, with some techniques also targeted at reducing the power of sequential elements.
See Gate-Level Power Optimization on page 51 for more information on these techniques.

Prerequisites

If switching activities are not provided for the primary inputs and register boundaries, default
values are assumed. Though not required, switching activities of internal nodes (if present)
also aid in optimization. The internal node switching activities can be calculated with the LPS
option using a probabilistic technique.

Register-Transfer Level (RTL) Transformations

At the RTL, there is generally higher power savings than at the gate-level. RTL
transformations can determine which part of a circuit is computing results that are used and
which are not. These determinations are made in a given clock cycle. Any sequential or
functional unit that is found not to be computing anything useful during a clock cycle can be
shut off by either clock-gating or sleep-mode transformations.

RTL Power
Exploration

Switching
Activity

Power
Estimation

Timing
Analysis

Power/Timing
Optimization Library
May 2001 36 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Clock Gating

Data is loaded into registers very infrequently in many designs, but the clock signal switches
at every clock cycle. This drives a large capacitive load, making clock signals a major source
of dynamic power dissipation.

Gating a group of flip-flops that are enabled by the same control signal reduces unnecessary
clock toggles.

Power consumption is lowered by using clock gating because

■ Power is not consumed during the idle period because the register is shut off by the
gating function.

■ Power is saved in the clock circuitry.

■ The logic on the enable circuitry in the original design is removed.

The clock gating technique consists of the following three steps:

1. Exploration

Identifying periods of inactivity in the registers, as well as the set of registers for clock
gating.

2. Insertion

Putting in gating logic for clocks in the inactive periods identified during the exploration
phase.

3. Commitment

Committing gating logic based on power savings, performing timing checks for the setup
and hold times of the gated clocks, and removing gating logic where timing constraints
are violated or if there is no possible power savings.

Figure 3-2 illustrates how clock gating can help improve the circuit’s power.
May 2001 37 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Figure 3-2 Clock Gating

During RTL exploration, LPS identifies all the clock-gating candidates and creates one gating
logic per register bank. LPS also creates an empty module called LPS_CG_EN_0 that has
only one input port connected to the enable signal for the clock gating. This allows LPS to
remember the clock-gating candidates and their corresponding enable functions after timing
optimization. In this way, LPS is able find the gating logic and make decisions later about
commitment based on timing and power information.

HDL Coding Style for Clock Gating

In LPS, registers that are conditionally loaded are considered for clock gating. This condition
is used for gating the clock.

Examples of conditional statements and their impact on LPS clock gating follow.

Clock

Enable

Data
Data

1
Enable

Gated
Clock

Gating
Function
May 2001 38 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Example 1

module ex1(in, out, en, clk);

input en, clk;

input [10:0] in;

output [10:0] out;

reg [10:0] out;

always @(posedge clk) begin

 if (en)

 out <= in;

end

endmodule

In Example 1, signal en is used for gating clk , but, if it is written differently, LPS will not insert
clock-gating logic. See Example 1a.

Example 1a

module ex1a (in, out, en, clk);

 input in, clk;

 input [10:0] in;

 output [10:0] out;

 output [10:0] out;

 always @(posedge clk) begin

 if(en) begin

 out <= in;

 end else begin

 if (!en)

 out <= out;

 end

 end

 endmodule

In this example, the register out is always loading data, so LPS will not gate the clock.
May 2001 39 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Example 2a

Generally, LPS inserts gating on incomplete case statements. Cadence recommends not
completing cases for unreachable states by using default statements.

module ex2(state, clk);

 input clk;

 output [2:0] state;

 reg [2:0] state;

 always @(posedge clk)

 case (state)

 3’b000 : state <= 3’b001;

 3’b001 : state <= 3’b010;

 3’b010 : state <= 3’b011;

 3’b011 : state <= 3’b100;

 3’b100 : state <= 3’b000;

 endcase

 endmodule

In this case, the registers are gated when the state belongs to 3’b101 - 3’b111 , but, if you
make the case complete by adding default construct , LPS will not clock gate it.

Example 2b

module ex2(state, clk);

 input clk;

 output [2:0] state;

 reg [2:0] state;

 always @(posedge clk)

 case (state)

 3’b000 : state <= 3’b001;

 3’b001 : state <= 3’b010;

 3’b010 : state <= 3’b011;

 3’b011 : state <= 3’b100;

 3’b100 : state <= 3’b000;

 default : state <= state;

 endcase

 endmodule

In this case, LPS will not insert clock gating because it is a full case statement.
May 2001 40 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Gating Cell Criteria

The data input of the gating cell must meet the following criteria:

■ It must be stable before the clock input makes a transition from the controlling value to
the non-controlling value (setup time).

■ It must be stable after the clock input returns to a controlling value (hold time)

Note: The setup and hold times can be changed using the set_clock_gating_check
command. See Chapter 6 of the Command Reference for details.

Inserting Non-Latch Gating Logic

If you choose, LPS can insert non-latch gating logic when doing clock gating. Use the
set_clock_gating_options -no_latch command. See Chapter 5 of the Command
Reference for details.

Clock Gating Multi-Clock Domains Under DFT Settings

Multi-Clock Domains

LPS supports design flows with multiple clock domains. Each clock domain refers to the logic
in a given DFT clock domain. A DFT clock domain refers to all registers driven by the physical
clock pin after being propagated through buffers, inverters, clock splitters (using the
set_dft_transparent command), and any existing gated clocks (using the test_mode
signal command set to bypass them).

Note: When there is a complex gate on the clock network, the clock is propagated through
the gate if it reduces to a buffer or inverter under the DFT settings, such as
set_test_mode_setup and set_dft_transparent .

Controllability

Adding gating logic to your design means the clock signal cannot be controlled for Test
Synthesis, resulting in a potential reduced fault coverage for the design. The controllability
feature of the LPS option improves the test coverage by adding controllability logic, as well as
Observability logic.
May 2001 41 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Controlling Clock Domains

You can have different test control signals associated with each clock domain. There are two
ways LPS does this:

■ Automatically

LPS creates test ports and connects these test ports to the corresponding controling
portion of clock-gating logic.

■ Manually

You can use existing test control ports by assigning them to the clock domains, using the
set_test_mode_setup command.

You can have an association by clock or test pin. If grouped by test pin, you could have more
than one clock domain (clk1 , clk2 , ...) controlled by the same test pin. If grouped by clock,
you have only one clock domain, such as clk2 , controlled by one test pin.

Controllability Examples

Controllability and Observability Logic

The following flow:

read_alf or read_tlf

read_verilog or read_vhdl

do_build_generic

Set timing constraints

set_test_mode_setup Test_Mode 1

set_clock_gating_options -control Test_Mode

do_xform_optimize_generic -clock_gate

do_xform_map -hier

check_dft_rules

do_xform_connect_scan -hier

is represented in Figure 3-3 on page 43.
May 2001 42 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Figure 3-3 Controllability and Observability Logic

Different Test_Mode Ports for Different Clock Domains
set_test_mode_setup Test_Mode_1 1 -clock clk_1

set_test_mode_setup Test_Mode_2 1 -clock clk_2

set_test_mode_setup Test_Mode_2 1 -clock clk_3

See Chapter 4 of the Command Reference for more information about using the
set_test_mode_setup command.

Controllability and Observability on Different Domains
set_clock_gating_options -control -observe -domain [dft_doman | clock_net]

or

set_clock_gating_options -control Test_Mode_1 -observe -domain_all

In the second case, one test_mode port, Test_Mode_1 , controls all domains.

See Chapter 5 of the Command Reference for more information about using the
set_clock_gating_options command.

En1

clk1

Test_Mode

En2

clk2

Test_Mode

D Q

D Q

LPS_CG_OBS

Observability
Port
May 2001 43 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Automatically Creating Test_Mode Ports

To set one test_mode port for all clock domains, use the set_clock_gating_options
command this way:

set_clock_gating_options -auto_test_port -control

To create one test_mode port per clock domain, use the set_clock_gating_options
command this way:

set_clock_gating_options -auto_test_port -control -domain clock_net

See Chapter 5 of the Command Reference for more information about using the
set_clock_gating_options command.

Glitch-Free Gating Logic
set_clock_gating_options -ctrl_before_latch -control Test_Mode_1
-domain [dft_domain | clock_net]

Note: You can also use the -ctrl_before_latch option with observability logic:

set_clock_gating_options -ctrl_before_latch -control Test_Mode_1
-domain [dft_domain | clock_net] -observe -obs_style register

Observability

Observability is possible through both ports and registers. The LPS option works with Test
Synthesis to put registers into a scan chain and they are observed there, instead of adding
more observability ports.

Creating Observability Registers

Use the following command and options to create observability registers:

set_clock_gating_options -control -observe -domain clock_net -obs_style register
-xor_depth

Note: Observability registers are only possible with clock_net set as the domain.

See Script Example of Creating Observability Registers on page 47 to see how observability
fits into an LPS flow and see Chapter 5 of the Command Reference for more details about
using the set_clock_gating_options command.
May 2001 44 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Creating Module-Based Observability Registers

You can avoid the creation of an observability port in any hierarchical module by using the
set_clock_gating_options command to create module-based observability registers,
as seen here:

set_clock_gating_options -control -observe -domain clock_net
-obs_style reg_module

LPS completes the observability logic for an observability domain in the register of that
module.

See Script Example of Creating Module-Based Observability Registers on page 47 to see
how observability fits into an LPS flow and see Chapter 5 of the Command Reference for
more details about using the set_clock_gating_options command.

How LPS Makes Clock-Gating Latches Observable

There are many ways to make clock-gating latches observable. The two main methods LPS
uses are:

■ Adding observability ports

New ports are created up to the top level module, which is connected to the output of the
top of the xor tree. If the xor tree is the tree for everything, the observability logic is xored
together.

You can have just one observability port created for the whole design or have multiple
ports created, where each port is associated with one clock domain or one control signal
domain.

You can do this with options included with the set_clock_gating_options
command. See Chapter 5 of the Command Reference for details.

■ Adding observability flip-flops.

Instead of creating new observability ports, flip-flops are connected to the output of the
xor trees. So, when you add scan chains, these flip-flops become part of the scan chain.
This means that the clock-gating logic is observable. The same clock driving the clock
gating cells will also drive the newly-added flip-flops.
May 2001 45 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
How LPS Traces Back the Clock Net

There are two ways in which LPS can trace back the clock net:

■ Automatically

The set_test_mode_setup command reduces the combinational logic to inverters
and buffers under the dft test setting so that the clock net can be traced back.

■ Manually, where you specify a way to trace back by using the set_dft_transparent
command.

You would typically use this method for tracing back the clock net if you have IP blocks
or sequential modules in your design.

How LPS Inserts Registers

LPS inserts registers in these cases:

■ If the xor tree has reached the depth as set by the -xor_depth option of the
set_clock_gating_options command.

■ When the xor tree has the depth less than the user-defined limit:

❑ If the clock is not defined beyond that module.

❑ At the top module if there are no more observability nets to be inserted.

■ In the same hierarchy if reg_module is set.

If there are n observability points in an observability domain, then the depth is lg2n. The depth
or number of levels from the observability point to the output of the xor tree is bounded by the
xor depth.

So, if your xor_depth value is set to 5 (the default), a register could be inserted at 4 if LPS
cannot find a clock beyond the depth of 4.

Note: LPS tries to create a balanced binary XOR tree, so the depth is lgn .

Clock Polarity and Observability Registers

By default, the clock phase of observability registers created by LPS have the opposite clock
polarity of the driving registers. If this is not the behavior you want, use the -same_polarity
option of the set_clock_gating_options command:

set_clock_gating_options -control -observe -domain clock_net
-obs_style [register | reg_module] -same polarity
May 2001 46 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Observability Examples

Script Example of Creating Observability Registers
read_alf or read_tlf

read_verilog or read_vhdl

do_build_generic

Set timing constraints

set_test_mode_setup Test_Mode_1 1 -clock clk1

set_test_mode_setup Test_Mode_2 1 -clock clk2

set_test_mode_setup Test_Mode_2 1 -clock clk3

set_clock_gating_options -control -domain clock_net

set_clock_gating_options -observe -obs_style register

do_xform_optimize_generic -clock_gate

do_xform_map -hier

check_dft_rules

do_xform_connect_scan -hier

Script Example of Creating Module-Based Observability Registers
read_alf or read_tlf

read_verilog or read_vhdl

do_build_generic

Set timing constraints

set_test_mode_setup Test_Mode_1 1 -clock clk1

set_test_mode_setup Test_Mode_2 1 -clock clk2

set_test_mode_setup Test_Mode_2 1 -clock clk3

set_clock_gating_options -control -domain clock_net

set_clock_gating_options -observe -obs_style reg_module

check_dft_rules

do_xform_optimize_generic -clock_gate

do_xform_map -hier

do_xform_connect_scan -hier
May 2001 47 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Sleep Mode

Although clock gating is very effective in reducing the dynamic power dissipation of a digital
circuit, it is restricted to saving power on sequential elements and clock circuitry only.

One such case of restricted power savings is shown in Figure 3-4 on page 48. Figure 3-4 (A)
shows an RTL description of a simple digital system, where register C takes the result of the
multiplier whenever enable is on. This means that the power dissipated or consumed by the
multiplier is wasted because it keeps doing useless computations when it is the result of the
register B that is needed by the output register. Also, because the multiplier is one of the most
power consuming function units, the total amount of power wasted is quite significant.

Clock gating cannot be used in Figure 3-4 (A) because the output of input register B is always
used by either the multiplier or the comparator. One solution to this problem is to shut down
the function unit when its results are not used. To do this, LPS performs sleep mode analysis.
As seen in (B) of Figure 3-4 on page 48, LPS inserted ANDgates to stop the signal transitions
at the inputs of the multiplier. The result is that no dynamic power dissipation occurs when
result of the multiplier is not needed.

Figure 3-4 Sleep Mode Transformation

Register A Register B Register A Register B

*

*

1 0 1 0

Register C Register C

Gate Gate

(A) Before sleep mode (B) After sleep mode

Enable Enable
May 2001 48 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Sleep Mode Transformation Challenges and Benefits

The biggest challenge of RTL transformations is that they are best performed at the RTL,
when accurate power and timing information is not available. Because of the inaccuracy of
power estimation at the RTL, sleep mode transformations performed at the RTL may actually
lead to a power increase of the whole chip. More importantly, performing sleep-mode
transformations at RTL may result in a final gate-level implementation that violates timing
constraints, even though the design meets timing without the transformations. Although the
tool could undo the sleep mode logic, LPS would have been forced to work unnecessarily on
the “wrong” critical paths and then make an extra effort to optimize the “real” critical paths
after undoing the unneeded transformations.

The Sleep Mode Transformation Process

LPS uses a two-phase approach to solving the RTL transformation challenges:

■ An exploration phase at the RTL level

■ A commitment phase at the gate level

Sleep-Mode Exploration

During the exploration phase, a functional and structural analysis of the Control Data Flow
Graph (CDFG) is performed to identify potential sleep-mode transformation candidates,
including arithmetic units, functional blocks, and even entire logical hierarchical blocks.
Control logic necessary for shutting down these candidates is also identified. Candidates and
control logic are then “marked” on the gate-level netlist. No actual implementation is
performed in this phase because inserting the logic at this phase might increase the timing
or power. The commitment of these transformations is delayed until gate-level optimization
has been done and accurate power and timing information is available.

Sleep-Mode Commitment

In the commitment phase, a decision of whether to commit each individual transformations is
made based on whether the power is reduced without violating the timing constraints. If a
sleep-mode candidate violates the timing constraints, LPS can modify the original control
logic to partially commit the transformation to meet the timing constraints with some power
savings, instead of blindly removing the gating logic without any power savings. This
technique also saves runtime.
May 2001 49 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
HDL Coding Style Examples for Sleep Mode

The following two writing style examples demonstrate how different HDL coding styles may
produce different results in LPS.

Example 1

In this example, LPS determines that the condition for the results of the adder being useful is
(en[1] & en[0]) and the condition for the results of the subtractor being useful is also
(en[1] & en[0]) .

module a (en,in1, in2, in3, clk, out);

input clk;

input [1:0] en;

input [7:0] in1,in2, in3;

output [7:0] out;

reg [7:0] out,y;

always @(posedge clk)

 if (en[1]) begin

 y = in2 + in3;

 if (en[0])

 out = y-in1;

 end

endmodule

Example 2

For this example, due to the case statement, the condition for the results of the adder and the
subtractor being useful is en = 11 which is logically the same as in the Example 1.
May 2001 50 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
module a (en,in1, in2, in3, clk, out);

input clk;

input [1:0] en;

input [7:0] in1,in2, in3;

output [7:0] out;

reg [7:0] out;

wire [7:0] y;

assign y = in2 + in3;

always @(posedge clk)

 case(en)

 2’b11 : out = y-in1;

 endcase

endmodule

In Example 2, however, the condition en[1]&en[0] is taken directly from the corresponding
logic in the netlist as it is expressed as a single entity in the case statement. In Example 1,
the condition en[1]&en[0] is computed by LPS and the logic is stored in the extracted sleep
mode module. As a result, LPS is able to do partial sleep mode commitment for Example 1,
when it is required. Therefore, to benefit from the full power of LPS sleep mode optimization,
Cadence recommends breaking down conditions in if statements if it is feasible to do so.

Gate-Level Power Optimization

During gate-level power optimization, transformations performed to minimize the power in
your design are as follows:

■ Gate Sizing on page 52

■ Pin Swapping on page 53

■ Buffer Removal on page 53

■ Gate Merging on page 53

■ Slew Optimization on page 54

■ Logic Restructuring on page 55

These LPS optimization techniques work with the timing analysis engine to identify trade-off
points in the power delay curve. When combined with the various effort levels, you can
choose between faster runtime or a better quality result in terms of power.
May 2001 51 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Gate Sizing

Gate sizing is the process of changing the CMOS gate size, smaller or larger, so the total
power is minimized without violating timing constraints. The goal is to find the gate size that
consumes the least power. In general, reducing the size of a gate leads to a decrease in
power and an increase in delay.

The overall internal cell power of a gate consists of:

❑ Leakage power

❑ Short-circuit power

❑ Power consumed by parasitic capacitance

Sizing the gate reduces the short-circuit power and power consumed by parasitic
capacitance. Gate sizing could, however, increase the short-circuit power of the fanout logic
because the slew of the output signal could increase when this transformation is performed.
LPS makes tradeoffs between the gate sizing and the increase of power due to slew in order
to optimally reduce the power of the design.

Figure 3-5 on page 52 demonstrates the importance of gate selection for gate sizing to
maximize power savings.

Figure 3-5 Gate Sizing

0.5

0

0

0

0

AND2C

AND2C

Power: 1.2 uW
Slack: 0.3 ns

0.0

0

0
0

0

AND2C

AND2A

Power: 0.7 uW
Slack: 0.0 ns

0.0

0

0

0

0

AND2A

AND2C

Power: 1.1 uW
Slack: 0.0 ns

(A)

(B)

(C)
May 2001 52 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Pin Swapping

Pin swapping matches nets connected to the symmetric pins so power dissipation can be
minimized. Pins with higher capacitance are matched with nets that have lower switching
activity. Figure 3-6 on page 53 shows how pin swapping works.

Pin swapping can actually increase the delay of the design if not done carefully. LPS finds the
optimal configuration that reduces power without affecting timing.

Figure 3-6 Pin Swapping

Buffer Removal

Sometimes timing optimization adds buffers to shield the critical path from a high capacitive
load. During timing optimization, the critical path itself might shift. This results in unnecessary
buffers on noncritical paths.

While these unnecessary buffers are removed as a postprocessing step, only a limited
number can be removed without violating timing. So, in order to maximize savings for power,
the power optimizer removes unnecessary buffers that drive highly active nets.

Note: The power optimizer selectively removes power-driven buffers that minimize the power
without violating timing constraints.

Gate Merging

A major portion of dynamic power consists of driving the capacitive load of a net. A significant
amount of that power can be saved by dissolving the net because the dynamic power of a net
is proportional to the switching activity of the net. This savings is achieved by merging the
gates on either side of the net. See Figure 3-7 on page 54 to see an example of gate merging.

Note: Although gate merging eliminates the power loss on the net, it could increase the
internal power of the new gate. LPS makes the correct tradeoffs.

Power = 1.0 mW Power = 0.7 mW
May 2001 53 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Figure 3-7 Gate Merging

Slew Optimization

The internal power of a cell depends largely on the slew of the input signals. During that time,
power is drained from the design power rails to ground. If a signal has a large slew, driving
the signal through a buffer improves the signal’s slew and reduces the overall power of the
cells driven by the signal.

See Figure 3-8 on page 55 for an example of how slew optimization works during timing-
constrained power optimization. LPS has the capability of reducing slew. The challenge is in
choosing the set of gates to be buffered. LPS performs a detailed analysis to identify the
optimal partition that will reduce power as much as possible without violating timing.

a

b

c

Power = 0.95mW

a

b

c

Power = 0.85mW
May 2001 54 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Figure 3-8 Slew Optimization

Logic Restructuring

Logic restructuring is different from other transformations performed during power
optimization. Unlike gate merging, buffer removal, and other small local transformations that
do not make significant changes to the circuit structure, logic restructuring actually changes
the topological structure and internal functions of a circuit without compromising the circuit’s
functional integrity.

Figure 3-9 on page 56 shows a circuit before logic restructuring. Signal A has the lowest
switching activity among all inputs. Although the final output of the circuit has a low switching
activity, the two internal nodes are highly active, causing the bulk of switching power
dissipation.

Power = 2.0µW Power = 1.8µW

Buffer to
reduce
May 2001 55 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Figure 3-9 Circuit Before Logic Restructuring

Figure 3-10 on page 56 shows how logic restructuring can find a more efficient circuit
implementation that cannot be done by other power optimization transformations. The new
circuit dissipates much less power than the original circuit shown in Figure 3-9 because the
logic functions at the two internal nodes are now less active.

Figure 3-10 Circuit After Logic Restructuring

D

C

B

A

D

C

A

B

May 2001 56 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Power Analysis

LPS has both a text mode and GUI mode of power analysis.

Text-Mode Power Analysis

There are two LPS commands for reporting power analysis:

■ report_power

■ get_power

See Chapter 5 of the Command Reference for syntax details.

Example of a Text-Mode Power Report

If you entered the following command syntax:

report_power -net [find -net top_en]

Your power report would look something like this:

Figure 3-11 Sample Power Report

Where:

■ Module is the module or instance name.

■ Net is the name of the net.

■ Probability is the probability of the named net being logic ‘1’ during the simulation
capture period.

■ Trans.Den. is the toggle count during the simulation capture period (transition
density).

top

Module | Net | Probability | Trans. Den | Capacitance | Power (mw)

| top_en | *0.5001 | *2.001e-03 | 0.1844 | 2.009e-03
May 2001 57 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations

r

■ Capacitance is the same capacitance unit as specified in your library.

■ Power is the power consumption, represented in milliwatts (mW).

■ The asterik (*) denotes that the value comes from your TCF file. All other values
(without an asterik) are calculated by LPS.

GUI-Mode Power Analysis

The LPS GUI gives you:

■ Colorized module and schematic browsing

■ Schematic queries for instances and nets

■ Pie chart displays for instances and nets

■ Physical power map displays

■ Textual power reports

■ Power annotation on instances and nets

See Chapter 4 of this manual for GUI command details.

Example of a GUI-Mode Power Report

To obtain a power report on a net using the GUI,

■ Click the right mouse button on one net in the Schematic View of your design.

■ Select Power from the pulldown menu.

Figure 3-12 Sample GUI Power Analysis Report

Net power (top_en): prob (0.50015*), toggle rate (0.00200*), cap (0.18440), powe
(2.010000uW) <NAVIGATES-106>
May 2001 58 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Using Power Optimizations
Where:

■ The prob is the probability of the net being logic ‘1’ during the simulation capture period.

■ The toggle rate is the toggle count per simulation capture period. Also called transition
density.

■ The cap is the capacitance, specified in the same unit used in your library.

■ The power is the power consumption calculated by LPS.

■ The asterik (*) denotes that the value comes from your TCF file and is not calculated.
May 2001 59 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
4
LPS Graphical User Interfaces

This chapter provides an overview of the graphical user interfaces (GUIs) for the Low Power
Synthesis option of Ambit® BuildGates® Synthesis and Cadence® PKS:

■ The Module and Schematic Views of Power on page 61

❑ The Module Browser on page 61

❑ The Schematic View of Power on page 64

❑ Other Schematic Power Options on page 67

■ Generating Power Reports on page 68

❑ The Report Power Form on page 68

❑ Sample Power Report on page 69

■ Setting General Preferences on page 70

❑ Setting Power Preferences on page 70

❑ Setting Color Preferences on page 72

■ Viewing Probability and Toggle Count Information on page 73
May 2001 60 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
The Module and Schematic Views of Power

There are two ways to view power in the BuildGates Synthesis GUI:

■ The Module Browser

■ The Schematic View of Power

The Module Browser

The Module Browser displays the module hierarchy and instance paths in your design.

Figure 4-1 The Module Viewer

Module Browser
May 2001 61 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
The Module Browser provides these methods of viewing the power distribution in your design:

■ Color-coded letters for the power structure names

Colors used represent ten power levels ranging from level 0 (default: 00.00%) to level 9
(default: 20.00%). Colors and their corresponding power levels can be viewed using The
Power Level Legend form. To change the power levels, see Setting Color Preferences on
page 72.

■ Power values for instances in the structure

Values are displayed as either a percentage or an absolute value, depending on the
setting selected on the General Preferences – Power form.

See Setting Power Preferences on page 70 for more information.

■ The ability to display power structure viewed in the Schematic Viewer

Double-clicking your mouse on a power structure name in the Module Browser displays
the schematic equivalent view of it in the Schematic Viewer.

Note: These viewing methods are controlled by settings on the General Preferences form.

The Power Level Legend

The Power Level Legend form lets you view colors assigned to power levels being displayed
in the Module Browser and Schematic Viewer.
May 2001 62 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
Figure 4-2 Power Level Legend Form

There are three columns on the Power Level Legend form:

Color Displays the colors assigned to each layer. To change the power
level colors assigned to each level, see Setting Color
Preferences on page 72.

Level Displays the ten power levels from 0 (the lowest) to 9 (the
highest).

Value Displays the values assigned to each power level. By default,
level 0 is 00.00% and level 9 is 20.00%. To change these power
level values, see Setting Color Preferences on page 72.

For more information about setting color preferences, see the Ambit BuildGates Synthesis
User Guide.
May 2001 63 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
The Schematic View of Power

You can use the Schematic Viewer to see the power distribution in your design.

The Commands Menu

To open the Commands Menu that contains the power options

■ Check that you have a power option license.

■ Make sure that you do not have any schematic objects selected in the Schematic Viewer.

■ Right-click your mouse. The Commands menu opens.

The power-related commands are

Schematic Viewer
May 2001 64 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
Colorize Power Levels If selected, power levels are colorized in the Schematic Viewer
based on the power levels seen on the Power Level Legend
Form.

Annotate Instance Power If selected, displays the power value below each instance in the
schematic view. If you have a flat netlist, instance power is the
sum of internal power and leakage power. For a hierarchical
netlist, instance power is the sum of internal and leakage power
of primitive cells in the hierarchy and power consumed by the
nets driven by the cells.

Annotate Net Power If selected, displays power values at the source of each net in the
schematic view. You may choose to view signal probability,
toggle count, capacitance, and power values for the net by using
the Schematic Preferences – Highlighting dialog.

Worst Power Highlights (in the Schematic Viewer) the specified number of
objects that contain the worst power values for the current
module:

Instance Power Piechart Opens a dialog box (Instance Power Usage) displaying a
piechart of up to ten instances that consume the most power and
the remainder.

Power For: Number to View:

Nets 3, 5, or 10

Instances 3, 5, or 10

Both 3, 5, or 10
May 2001 65 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
Net Power Piechart Opens a dialog box (Net Power Usage) displaying a piechart of
up to ten nets that consume the most power and the remainder.

Note: All other schematic options visible on the Commands menu that are not power related
operate the same way as they would when you are not in the power mode. See the Ambit
BuildGates Synthesis User Guide for more information.
May 2001 66 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
Other Schematic Power Options

Instances

If you have an instance selected in the Schematic Viewer and right-click the mouse, the
Instance Menu opens.

Selecting Power from the menu displays the power value of the selected instance in the
console window.

Nets

If you have a net selected in the Schematic Viewer and right-click the mouse, the Net Menu
opens.

Selecting Power from the menu returns the power value of the selected net in the console
window.

Pins

If you have a pin selected in the Schematic Viewer and right-click the mouse, the Pin Menu
opens.

Selecting Power from the menu returns the power value of the selected pin in the console
window.
May 2001 67 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
Generating Power Reports

The Report Power Form

The Report Power form lets you generate a power report based on selected options.

Figure 4-3 The Report Power Form

Module Reports the power of all instances in the current module.

Instance Reports the power of all instances.

Net Reports the power of all nets.
May 2001 68 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
Sample Power Report

Figure 4-4 Power Report Example
May 2001 69 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
Setting General Preferences

Setting Power Preferences

To set power preferences, such as what power units you would like to use and the style of
power annotation displayed, you must open the General Preferences – Power form.

1. From the View menu of the BuildGates Synthesis GUI, select General Preferences.
The General Preferences form opens.

2. Click the Power tab to display the General Preferences – Power form, as seen in
Figure 4-1.

Figure 4-5 The General Preferences — Power Form
May 2001 70 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
Power Units

mW Sets the power units to milliwatts.

µW Sets the power units to microwatts.

nW Sets the power units to nanowatts.

pW Sets the power units to picowatts.

Capacitance Units

µF Sets the capacitance units to microfarads.

nF Sets the capacitance units to nanofarads.

pF Sets the capacitance units to picofarads.

fF Sets the capacitance units to femtofarads.

Power Type

For selected instances in your design, Power Type lets you select the components of the
total power calculated to be reported. By default, all types are on, meaning that the total
power is calculated from the sum of net, cell, and leakage power.

Net Calculates total power based on net power only.

Cell Calculates total power based on cell power only.

Leakage Calculates total power based on leakage power only.

General Options

Colorize module browser Uses colors (as seen in The Power Level Legend form) to display
power characteristics in the module and schematic viewers.
To change values and colors assigned to power levels, see
Setting Color Preferences on page 72.

Percent power annotationUses percentages to display the total power beside each
instance name in the module view of power.
May 2001 71 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
Note: Percent power levels are relative to the total power with respect to the top timing
module. For a schematic, the percent power levels used for colors in the schematic are
relative to the current module.

Numeric power annotationUses floating point numbers to display power values beside
each instance name in the module view of power.

No annotation Does not display any power annotation.

Setting Color Preferences

To set color preferences for power, open the General Preferences – Color form.

1. From the View menu of the BuildGates Synthesis GUI, select General Preferences.
The General Preferences form opens.

2. Click the Color tab to display the General Preferences – Power form, as seen in
Figure 4-2.

Figure 4-6 The General Preference — Color Form

Color Items Displays a list of items in the database that have a color assigned
to them. If you want to edit the color of an item, you must first
select it by clicking on it in the Color Item column.
May 2001 72 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
Color Selection Adjusts the amount of red, green, and blue for the color of the
selected object. Use your mouse to click and move the slider to
adjust the colors accordingly.

Power Level To change the values, you can either adjust the spinner controls
for each power level or type the new value in the text field.

Viewing Probability and Toggle Count Information

You can now get the switching activity information on individual nets, as well as the overall
distribution of the switching activity information for a particular instance.

The new toggle count histogram lets you view the probability distribution or toggle count
information on a per net basis. You can use the histogram after reading in your TCF file and
at other times during the remainder of your optimization and/or analysis flow because the
histogram is updated throughout the flow.

Using the Command Line For Toggle Count and Probability Information

If you want to get toggle count information using the command line, use the
report_tc_stats command.

Using the GUI For Toggle Count and Probability Information

In the main GUI, select Reports-->Power. Then, select either Toggle Rate Histogram or
Power Probability Histogram.

You can also get these histograms in the Module Browser.

For the toggle rate:

1. Click the right mouse button.

2. Select Power Histogram-->Toggle Rate

3. The toggle rate histogram opens. See Figure 4-6 on page 74.
May 2001 73 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
Figure 4-7 Toggle Rate Histogram

For the probability:

1. Click the right mouse button.

2. Select Power Histogram-->Probability

3. The probability histogram opens. See Figure 4-7 on page 75.
May 2001 74 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
LPS Graphical User Interfaces
Figure 4-8 Probability Histogram
May 2001 75 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
5
The Basic Power Optimization Flow

This chapter takes you through the basic power optimization flow using the LPS option of
Ambit® BuildGates® Synthesis and Cadence® PKS, including concepts, terminology, and
basic tasks:

■ Overview of the Low Power Synthesis (LPS) Design Flow on page 77

■ Steps in the Flow

❑ Step 1: Reading in the Library on page 78

❑ Step 2: Reading in the Design on page 79

❑ Step 3: Exploring Power at the RTL on page 80

❑ Step 4: Reading In a Toggle Count Format (TCF) File on page 83

❑ Step 5: Getting Power Numbers (Optional) on page 88

❑ Step 6: Committing Logic and Performing Gate-Level Power Transformations on
page 89

■ Script Example on page 90
May 2001 76 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
The Basic Power Optimization Flow
Overview of the Low Power Synthesis (LPS) Design Flow

The new LPS design flow lets you lower the power consumption in your design from within
the BuildGates Synthesis environment. The shaded boxes in Figure 5-1 highlight the LPS-
specific steps in the Cadence® Synthesis Place-and-Route (SP&R) flow.

Figure 5-1 LPS in the Cadence SP&R Flow

As seen in Figure 5-1, power analysis and power optimization are performed at various points
in the design flow. When the RTL is ready for synthesis, RTL power exploration is performed
as part of the normal synthesis process. The design is analyzed to determine where power
savings can be made. Clock-gating and sleep-mode logic are inserted accordingly. After the
netlist is generated, a more detailed power analysis is done after simulating the gate-level
netlist. Gate-level switching activity helps drive the gate-level power optimization where

RTL Simulation

RTLPower Exploration

LPS Gate-Level
Power Optimization

Gate-Level Simulation

LPS Power
Analysis

Place and Route

RTL

Netlist

Netlist

RTL
Switching
Activities

Gate-Level
Switching
Activities
May 2001 77 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
The Basic Power Optimization Flow
techniques, such as gate sizing, logic restructuring and buffer removal, are analyzed for
potential power savings that preserve timing. The final step of the gate-level power
optimization is committing all inserted RTL and gate-level transformation logic.

The remainder of this chapter walks through these basic steps of the LPS design flow.

Before You Start the LPS Flow

Here are some files that you will need to read into BuildGates Synthesis as you proceed
through the LPS flow:

■ A synthesis library containing power information

❑ Use an .alf or .tlf file

❑ Check that power information is available by using the check_library -power
command.

■ A simulation library

■ A testbench

■ A design (Verilog, VHDL, or gate level)

■ A timing constraints file

Step 1: Reading in the Library

Terms and Concepts You Should Be Familiar With

■ Ambit Library Format (ALF) File on page 108

■ Supported TLF Power Statements on page 29

■ Operating Conditions on page 109

■ Library Characterization on page 109

Commands Used

If you have an ALF file, use the read_alf command to read in that library file.

If you have a TLF file, use the read_tlf command to read in that library file.
May 2001 78 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
The Basic Power Optimization Flow
These commands are also available from the Graphical User Interface (GUI) of the tool. See
the Ambit BuildGates Synthesis User Guide for more information.

After Reading in Your Library (Optional)

Setting Operating Conditions

After reading in your library file(s), you can use the set_operating_conditions
command to specify the process, voltage, and temperature requirements for your design.

The software performs a check to verify that your library characterization and operating
condition settings match. If they do not match, the software scales the values.

Checking Power Properties

To identify cells with power models in your library files, use the check_library -power
command. See the PKS chapter of the Command Reference for details.

Step 2: Reading in the Design

Terms and Concepts You Should Be Familiar With

■ RTL on page 109

Commands Used

Use either the read_verilog command or read_vhdl command to read in your design.

Note: Sleep-mode analysis and clock gating will not work later in the LPS flow if you read in
a netlist format here. RTL transformations do not work with the netlist format; however, gate-
level power optimizations can be performed with a netlist format design file.

Optional and Alternate Steps

Using a Netlist Format File

If you have already gone through the timing flow and are reading in a netlist format, you can
read in that netlist format at this stage in the flow and then go to Step 6: Committing Logic
May 2001 79 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
The Basic Power Optimization Flow
and Performing Gate-Level Power Transformations on page 89 to skip the RTL stage and
perform the gate-level power optimizations.

See the Gate-Level Power Optimization Only Flow on page 94 for more information.

Step 3: Exploring Power at the RTL

Terms and Concepts You Should Be Familiar With

■ Clock Gating on page 108

■ Timing Library Format (TLF) File on page 110

■ Sleep Mode on page 109

Commands Used

It is recommended that you use both sleep-mode and clock-gating exploration. See Optional
and Alternate Steps on page 82 to find out when you might want to use RTL power
explorations separately.

Setting Sleep-Mode Options (Optional)

Set options for committing sleep-mode logic later in the flow during gate-level optimization by
using the following command:

set_sleep_mode_options

Note: You can perform this task any time before you do any gate-level optimization.

See the Chapter 5 of the Command Reference for detailed syntax for the
set_sleep_mode_options command.
May 2001 80 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
The Basic Power Optimization Flow
Performing Sleep-Mode Exploration

Run the do_build_generic command with the sleep mode option as shown:

do_build_generic -sleep_mode

This command explores possibilities for power savings by inserting sleep-mode logic. Logic
is inserted but is not committed until you perform gate-level optimization. To removed inserted
logic, see Removing Inserted Logic on page 82.

See the Chapter 2 of the Command Reference for details about do_build_generic
command usage.

Applying Timing Constraints

Source your timing constraints file.

source my_constraints.tcl

See Setting Timing Constraints in Timing Analysis for Ambit® BuildGates® Synthesis and
Cadence® PKS for details.

Setting Clock-Gating Options (Optional)

Set options for committing clock-gating logic later in the flow during gate-level optimization
using the following command:

set_clock_gating_options

The options related to exploration of power savings that may be set to change the default
behavior of clock gating before running the do_xform_optimize_generic command are
-control , -observe , -drv , -ignore , -no_latch , -force , and -pref_map .

The options that may be set to change the default behavior of clock gating before doing gate-
level power optimization with the do_optimize -power command are -minsize ,
-ignore , -force , and -no_timing .

See the Chapter 5 of the Command Reference for detailed syntax for the
set_clock_gating_options command.

Performing the Clock-Gating Exploration.

Run the do_xform_optimize_generic command as shown:

do_xform_optimize_generic -clock_gate
May 2001 81 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
The Basic Power Optimization Flow
The do_xform_optimize_generic command explores possibilities for power savings by
inserting clock-gating logic. Logic is inserted but is not committed until you perform gate-level
optimization. To remove inserted logic, see Removing Inserted Logic on page 82.

See the Command Reference for details about the do_xform_optimize_generic
command usage.

Optional and Alternate Steps

Sleep Mode Versus Clock Gating

See Chapter 6, “Alternate Power Flows.” for information about sleep-mode only and clock-
gating only flows.

Not Performing Power Explorations

You do not have to perform sleep-mode or clock-gating analysis in order to run gate-level
power optimization later in the design flow. You can run the do_xform_optimize_power
command to perform gate-level power optimization only.

See Chapter 6, “Gate-Level Power Optimization Only Flow.” for more information about the
gate-level only power optimization flow.

Removing Inserted Logic

To remove the sleep-mode logic during gate-level optimization, run the following commands:

set_sleep_mode_options -remove

do_xform_optimize_power -no_gatelevel_opt

To remove inserted clock-gating logic, run the following commands:

set_clock_gating_options -remove

do_xform_optimize_power -no_gatelevel_opt

Checking for Design Rule Violations

You can run the check_dft_rules command before and after running the
do_xform_optimize_generic -clock_gate command to be sure you do not have
design rule violations before or after clock-gating RTL exploration.
May 2001 82 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
The Basic Power Optimization Flow
Step 4: Reading In a Toggle Count Format (TCF) File

Terms and Concepts You Should Be Familiar With

■ Operating Conditions on page 109

■ Toggle Count Format (TCF) File on page 110

■ The Incremental Switching Activity Calculation on page 21

■ The Probabilistic Technique For Computing Switching Activities on page 21

Prerequisite

If you do not already have a toggle count format (TCF) file, you need to generate one. See
Optional and Alternate Steps on page 83 for details about generating a TCF file.

Commands Used

Use the read_tcf command to read in your TCF file.

read_tcf TCF_filename. tcf

Optional and Alternate Steps

Generating a TCF File

There are four methods for creating a TCF file:

■ Generating a TCF File From PLI Routines For a Verilog Design on page 83

■ Generating a TCF File from a Value Change Dump (VCD) File on page 86

■ Generating a TCF File for a VHDL Design on page 87

■ Generating a TCF File for a Mixed (Verilog and VHDL) Design on page 88

Generating a TCF File From PLI Routines For a Verilog Design

When linked to a Verilog simulator, Programming Language Interface (PLI) routines intercept
events on any net in a design and compute the toggle rate.
May 2001 83 Product Version 4.0.8

Saman
Highlight

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
The Basic Power Optimization Flow
The PLI routines first initialize all nets in the module list specified as a parameter. Then, they
traverse down the hierarchy, searching for the given module and calculating transition
activities for each net. Finally, all switching activities are transferred into the TCF file which
LPS uses to estimate power.

To generate switching activity for a Verilog design, you first need to start the process of
counting the toggles in the testbench and then generate a report.

The following Verilog function calls need to be invoked to generate TCF files.

■ $toggle_count list_of_modules

❑ This function initializes the nets that needs to be monitored. The nets inside any of
the modules in the list_of_modules is monitored. The monitoring of these nets
starts right after the execution of this function.

■ $toggle_count_report tcf_file , top_module

❑ This function traverses all the nets that were monitored and reports the switching
information in the tcf_file . If the top_module is provided, then it prints the net
and pin names with this as the top. Otherwise, the net and pin names are printed
with respect to the topmost module of the design.

The following steps take you through these tasks.

1. Change your testbench as follows:

initial begin

if ($test$plusargs("toggle")) begin

$toggle_count(tb_top.design_top.sub1, tb_top.design_top.sub2,...)

end

end

initial begin

#(whole simulation period) ;

if ($test$plusargs("toggle")) begin

$toggle_count_report_hier or _flat("<tb.tcf, tb_top.design_top.sub2>");

end

$finish;

end

Note: The module_name is optional. If you do not provide the module name, LPS assumes
the top module.

Here is a graphical representation of this testbench example:
May 2001 84 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
The Basic Power Optimization Flow
Figure 5-2 Testbench Hierarchy

2. Set the following (optional):

/ambit_install_dir/BuildGates/ version /lib/archives/ os / platform :$LD_LIBRARY_PATH

If you want to call the simulator from a C shell environment, you need to set this.

3. Add the following two options to your simulator:

■ In Verilog-XL

❑ +loadpli1=lpspli:lps_bootstrap

❑ +toggle

■ In NC-SIM,

❑ Add following options to ncvlog

-toggle

❑ Add following options to ncelab

-loadpli1=lpspli:lps_bootstrap

-toggle

You should be able to call your simulator as usual, as shown here:

setenv LD_LIBRARY_PATH /ambit_install_dir/BuildGates/v4.0/lib/archives/sunos5/
sparc verilog -f <verilog_opt>

4. Check that a TCF file named TCF_name.tcf was created after simulation.

Testbench

top_module

sub1 sub2
May 2001 85 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
The Basic Power Optimization Flow
5. Read in your TCF file.

read_tcf TCF_ name.tcf

Generating a TCF File from a Value Change Dump (VCD) File

Shipped with LPS is an executable that allows you to convert a VCD file to TCF. The
executable is located in the software installation hierarchy at:

/ambit_install_dir/BuildGates/version/bin/ os / platform_type /lpsvcd2tcf.exe

The VCD to TCF executable syntax is as follows:

lpsvcd2tcf top_module_name vcd_file_name -toggle {tcf_hier | tcf_flat}
-output_file { file_name } -divider -buschars

Where:

-buschars { bus_character }
Specifies how a bus is denoted. For example, you can specify a
bus as either bus[1] or bus{1} . For the program to correctly
parse the VCD file, you must correctly specify this argument to
match the way you specify a bus. The default is [] .

-divider { divider_character }
Specifies how the hierarchical name is displayed. For example, if
you specify the divider as ‘. ’, the output would be something like
this:
ctrl.net1.net2
If you specify the divider as ‘/ ’, the output would be something
like this:
ctrl/net1/net2

-output_file { file_name }
Specifies the name of the output TCF file. Depending on the
toggle value, the file must be either
output_file_name .tcf_flat or
output_file_name .tcf_hier .
May 2001 86 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
The Basic Power Optimization Flow
-toggle {tcf_flat | tcf_hier}
The TCF file output type that you would like. The default is
tcf_hier . Choose one of the following:

{ top_module_name }
Specifies the module for which you want to calculate power.
Specifying this means that the activity for only that portion of the
VCD file will be converted into the TCF file. For example, if your
design as this hierarchy:
TESTGEN_top/testgen_top/ctrl
TESTGEN_top/testgen_top/regs
and you specify ctrl as the top_module_name , the
lpsvcd2tcf executable reports only the activities for nets
inside ctrl . If you specify testgen_top as the
top_module_name , report activity for nets under both ctrl
and regs is generated.

vcd_file_name
The VCD file which contains the event information that you want
converted to a TCF file.

Here is an example of the VCD to TCF executable in use:

/ambit_install_dir/BuildGates/version/bin/sunos5/sparc32/lpsvcd2tcf.exe
design_a.vcd design_a.tcf

Note: A VCD file is generated directly from a VHDL simulator or it can be generated from a
Verilog simulator using the +dump option.

Generating a TCF File for a VHDL Design

To generate a TCF File for a VHDL design, simply create a VCD file and then follow the
process documented in Generating a TCF File from a Value Change Dump (VCD) File on
page 86.

tcf_flat Creates a flat TCF file. See the Flat TCF File
Example on page 24.

tcf_hier Creates a hierarchical TCF File. See A
Hierarchical TCF Example For a Gate-Level
Netlist on page 25.
May 2001 87 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
The Basic Power Optimization Flow
Generating a TCF File for a Mixed (Verilog and VHDL) Design

In the case of a mixed design, you can either follow the process of creating a VCD file and
generating the TCF file from that, or you can add the PLI routines to the Verilog portion of the
code. In the latter case, the PLI routine will generate the toggle counts for the part of the
design written in Verilog.

Step 5: Getting Power Numbers (Optional)

Because you have already read in the library netlist, timing constraints, and a TCF file, you
can now obtain the total power or power consumption for various objects in your design. You
can perform this step anytime during the remainder of the flow.

Terms and Concepts You Should Be Familiar With

■ Module

■ Instance

■ Power Consumption

Commands Used

Use the get_power command to get the total power of the current or specified instance.

User the report_power command to get power consumption information for specified
objects in your design.

For detailed syntax for these commands, see Chapter 5 of the Command Reference.
May 2001 88 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
The Basic Power Optimization Flow
Step 6: Committing Logic and Performing Gate-Level
Power Transformations

Terms and Concepts You Should Be Familiar With

■ Gate Sizing on page 52

■ Pin Swapping on page 53

■ Buffer Removal on page 53

■ Gate Merging on page 53

■ Slew Optimization on page 54

■ Logic Restructuring on page 55

Commands Used

In this final step of the basic LPS flow, you perform two tasks with one command: committing
clock-gating and sleep-mode logic and performing gate-level power transformations.

Use the do_optimize -power command to commit the inserted logic and perform the
gate-level transformations for meeting timing and to minimize power.

Optional and Alternate Steps

Committing Logic and Performing Gate-Level Transformations for a Timing-Optimized
Netlist

If you have a timing-optimized netlist, you can use a different command in this step of the flow:

do_xform_optimize_power

The difference between the do_optimize -power command and the
do_xform_optimize_power command is that the do_optimize -power command
tries to improve timing whereas do_xform_optimize_power tries to maintain the original
slack.

See Gate-Level Power Optimization Only Flow on page 94 if you have a timing-optimized
netlist and you do not want to use clock-gating or sleep-mode analysis in your power flow.
May 2001 89 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
The Basic Power Optimization Flow
Script Example

Here is a sample script that takes you through the basic LPS flow:

ac_shell -power

read_alf

read_verilog

do_build_generic -sleep_mode

source timing_constraints_file.tcl

do_xform_optimize_generic -clock_gate

do_xform_map -hier

write_verilog -hier ckt.v

Perform simulation for toggle switching

read_tcf filename

do_optimize -power

report_power
May 2001 90 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
6
Alternate Power Flows

This chapter takes you through some alternatives to the basic power optimization flow using
the Low Power Synthesis (LPS) option of Ambit® BuildGates® Synthesis and Cadence® PKS,
including sample scripts:

■ Sleep-Mode Only Flow on page 92

❑ Sample Sleep-Mode Only Flow Script on page 92

■ Clock-Gating Only Flow on page 93

❑ Sample Clock-Gating Only Flow Script on page 93

■ Gate-Level Power Optimization Only Flow on page 94

❑ Sample Gate-Level Power Optimization Only Flow Script on page 94

❑ Sample Script Starting from a Timing-Optimized Netlist on page 95

■ Flow for Applying Different Transformations Per Module on page 96

❑ Sample Script for the Different Transformations Per Module Flow on page 96

■ DFT-LPS Flow on page 98

❑ Sample DFT-LPS Observability Flow Script on page 98

❑ Tips for the DFT-LPS Flow on page 98

■ LPS-PKS Flow on page 100

❑ Sample LPS-PKS Flow Script on page 100

■ CT-PKS Power Flow on page 101

❑ Sample CT-Gen Power Flow Script on page 101
May 2001 91 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Alternate Power Flows
Sleep-Mode Only Flow

This flow omits clock-gating analysis and gate-level optimizations, focusing only on reducing
power consumption for datapath components and arithmetic units. For this flow, only sleep-
mode logic insertion and commitment are used to reduce power consumption.

See Sleep Mode on page 48 for more information about sleep mode.

Sample Sleep-Mode Only Flow Script
read_alf

read_verilog or read_vhdl

do_build_generic -sleep_mode

Set timing constraints

do_xform_optimize_generic

do_xform_map -hier

write_verilog or write_vhdl -hier

Simulate

read_tcf

do_optimize -power no_gate_level

Note: If you choose to use the Sleep-Mode Only Flow, keep in mind that LPS creates
dangling ports when inserting sleep-mode logic. To avoid having dangling ports, run the
delete_unconnected_port command before sleep-mode commitment during gate-level
optimization as shown here:

read_alf

read_verilog

do_build_generic -sleep_mode

do_xform_optimize_generic -clock_gate

do_xform_map -hier

do_optimize -power low -effort high

delete_unconnected_port
May 2001 92 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Alternate Power Flows
Clock-Gating Only Flow

This flow omits sleep-mode analysis and gate-level transformations, focusing only on
reducing power consumption for sequential elements that conditionally load data. For this
flow, only clock-gating logic insertion and commitment are used to reduce power
consumption.

See Clock Gating on page 37 for more information about clock gating.

Note: If you are really concerned about clock-tree synthesis for your design, Cadence
recommends that you do not use the clock-gating technique.

Sample Clock-Gating Only Flow Script
read_alf or read_tlf

read_verilog or read_vhdl

do_build_generic

Set timing constraints

do_xform_optimize_generic -clock_gate

do_xform_map -hier

writer_verilog or write_vhdl -hier

Simulate

read_tcf

do_optimize -power no_gate_level
May 2001 93 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Alternate Power Flows
Gate-Level Power Optimization Only Flow

This flow omits clock-gating and sleep-mode techniques when trying to reduce the power
consumption of your design. Gate-level power transformations, such as buffer removal and
gate sizing, are the only methods LPS used in this flow to address power problems.

See Gate-Level Power Optimization on page 51 for more details about the transformations
used in this flow.

Sample Gate-Level Power Optimization Only Flow Script
read_alf

read_verilog or read_vhdl

do_build_generic

Set timing constraints

do_xform_optimize_generic

do_xform_map -hier

writer_verilog or write_vhdl -hier

Simulate

read_tcf

Set timing constraints

do_optimize -power

Sample Script Starting from RTL
read_alf or read_tlf

read_verilog or read_vhdl

do_build_generic

#Set timing constraints

do_xform_optimize_generic

do_xform_map -hier

write_verilog or write_vhdl -hier

Simulate

read_tcf

do_optimize -power
May 2001 94 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Alternate Power Flows
Sample Script Starting from a Gate-Level Netlist
read_alf or read_tlf

read_verilog or read_vhdl

do_build_generic

Simulate

read_tcf

Set timing constraints

do_optimize -power

Sample Script Starting from a Timing-Optimized Netlist
read_alf or read_tlf

read_verilog or read_vhdl

do_build_generic

Simulate

read_tcf

Set timing constraints

do_xform_optimize_power
May 2001 95 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Alternate Power Flows
Flow for Applying Different Transformations Per Module

This flow allows you to use different methods of lowering power consumption for each module
in your design. So, for example, if one module contains a lot of datapath components, you
could use clock-gating analysis only. If a different module in the same hierarchy has a lot of
sequential elements that conditionally load data, you could run sleep-mode analysis only.
This flow makes that possible.

Sample Script for the Different Transformations Per Module Flow

The following example script explores and inserts sleep-mode logic in module A and explores
and inserts clock-gating logic in module B. Gate-level power optimization is performed on the
entire netlist. During that phase of the flow, sleep-mode logic in module A and clock-gating
logic in module B is committed.

read_alf lib.alf

read_verilog design.v

do_build_generic -sleep_mode -module A

do_build_generic

set_current_module B

do_xform_optimize_generic -clock_gate

set_current_module top

do_xform_optimize_generic

do_xform_map -hier

write_verilog design.map.v

Simulate

read_tcf design.tcf

do_optimize -power

The following graphics illustrates the design hierarchy for this script example:
May 2001 96 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Alternate Power Flows
A B

top
May 2001 97 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Alternate Power Flows
DFT-LPS Flow

This flow lets you make a design with multiple clock domains observable.

See Clock Gating Multi-Clock Domains Under DFT Settings on page 41 for more information
about observability of multiple clock domains.

Sample DFT-LPS Observability Flow Script
set_global dft_scan_path_connect tieblock

set_clock_gating_options

check_dft_rules

do_optimize_generic -clock_gate

do_optimize -power

set_global dft_scan_path_connect chain

do_xform_connect_scan_chain

Tips for the DFT-LPS Flow

For specific information about DFT commands, see Chapter 6 of the Command Reference.

For more information about using DFT, see Test Synthesis for Ambit BuildGates
Synthesis and Cadence PKS.

Preserving the Chain During a Top-Level Insertion

If you want to preserve the chain during top level scan chain insertion and you have a
structural lower module with the scan chain intact:

1. Use the set_dont_modify or the set_dont_touch_scan command on that
structural module.

2. Then run the top-level scan chain insertion with the do_xform_scan_chain -hier
command.
May 2001 98 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Alternate Power Flows
Preserving Existing Scan Enable Ports

If you have RTL sub-modules that already have the se port and you want to preserve them
when running DFT, you can do one of two things:

■ Use the set_dont_modify -network command on the scan_enable network

Because the se port of each module connects to anything, the connections between
jtag/scan_enable and se will be done during do_xform_optimize_generic , if the
set_dont_modify -network command is not set.

■ Build the chain inside each module separately and then connect the scan chains on top.
Here is the series of commands to do this:

do_push_module submodule_id

set_scan_mode se 1

do_xform_connect_scan

do_pop_module

Flat and Hierarchical Scan

To generate a hierarchical scan, use write_scan_order_file -hier .

To generate a flat scan, use write_scan_order_file -flat .

If you have more chains in the hierarchical scan as compared to the flat scan, run the
get_scan_chain_info -count command to obtain the scan chain count.

For example, you might have two chains in your hierarchical scan and one chain in the flat
scan. If get_scan_chain_info -count gives you a scan count of one, you might have a
single chain that goes out of the module and enters back into the module. To view it as a
single chain, view it from the top level and run display_scan in the GUI mode.

Automatic Test Port Creation

When you specify set_clock_gating_options -auto_test_port , the test port is
automatically created on the top level.

Before you run LPS optimization, you might want to run the check_dft_rules command
to see if you need to add set_test_mode_setup to the clock-gating scenario. If you specify
-auto_test_port , only clock-gating components that are inserted by LPS are controlled
by that test port.
May 2001 99 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Alternate Power Flows
LPS-PKS Flow

This flow includes power optimization as part of the more general PKS design flow.

Sample LPS-PKS Flow Script
read_alf

read_verilog or read_vhdl

do_build_generic -sleep_mode

set timing constraints

do_xform_optimize_generic -clock_gate

do_xform_map -hier

write_verilog or write_vhdl -hier

simulate

read_tcf

do_optimize -power-pks -stop

do_place

do_xform_optimize_slack -power

do_route

When you run the do_optimize -power -pks -stop command, WLM power
optimization takes place. Sleep-mode and clock-gating candidates are committed or
decommitted at this stage. Gate-level power optimizations are also performed here.

The do_xform_optimize_slack -power command in this flow does power-conscious
timing optimization.

For more details about these commands, see Chapter 5 of the Command Reference.
May 2001 100 Product Version 4.0.8

Saman
Highlight

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Alternate Power Flows
CT-PKS Power Flow

This flow includes power optimization as part of the CT-PKS flow.

Sample CT-Gen Power Flow Script
do_optimize -power -pks -stop

do_place

set_clock_tree_constraints

do_build_clock_tree -pin clk -power
May 2001 101 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
7
Troubleshooting

This chapter helps you work through problems you might encounter when using the Low
Power Synthesis (LPS) option of Ambit® BuildGates® Synthesis and Cadence® PKS.

■ General LPS Problems and Limitations on page 103

❑ When Conditions on page 103

❑ Clock-Gating and Sleep-Mode Options Still Set After do_remove_design on
page 103

■ LPS-DFT Flow Problems on page 104

❑ Using the ctrl_before_latch Option Before check_dft_rules on page 104

❑ Flip-Flops Do Not Have Output Nets on page 105

❑ Top Level Flip-Flop Cannot Connect To Any Scan Chain on page 105

❑ The Observability Flip-Flop Is In a Different Scan Chain on page 106

❑ An Observability Tree Is Outside the Sub-Module on page 106

❑ Warning When Setting Clock-Gating Options on page 106

❑ Problem Setting Test Mode Port on page 106

❑ Error Associating Test Ports With Multiple Clock Domains on page 107
May 2001 102 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Troubleshooting
General LPS Problems and Limitations

The following section describes problems you might encounter using the basic LPS flow as
described in Chapter 5 of this manual.

When Conditions

LPS currently does not support when conditions that contain pinQ or QN pins or any
sequential output pins. There is currently no solution for this limitation.

Clock-Gating and Sleep-Mode Options Still Set After do_remove_design

After running the do_remove_design -all command, options you set for either the
set_clock_gating_options or set_sleep_mode_options command still exist.

The do_remove_design -all command does not affect either of these LPS commands.
To change to the default settings, use the -default option for each command after running
the do_remove_design -all command:

do_remove_design -all

set_clock_gating_options -default

set_sleep_mode_options -default
May 2001 103 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Troubleshooting
LPS-DFT Flow Problems

The following section describes problems you might encounter using the LPS-DFT flow.

Using the ctrl_before_latch Option Before check_dft_rules

In the LPS-DFT flow, you might see an error if you are using the
-ctrl_before_latch option with the set_clock_gating_options command:

To resolve, use the workaround as mentioned in the LPS Option section of the Known
Problems and Solutions for Ambit BuildGates Synthesis immediately before running the
check_dft_rules command.

TDRC Violations When Using check_dft_rules

After running do_xform_optimize_generic -clock_gate and issuing the
check_dft_rules command, you see many TDRC violations like this:

ERROR: Internally driven clock net ‘u2/n_53’ in module ‘block2’

There are several reasons you may see this error. Here are some suggestions for resolving
the problem:

■ You may not have set the controllability. Run the following command:

set_clock_gating_options -control

Then rerun do_xform_optimize_generic -clock_gate and the
check_dft_rules commands

■ Check to see if there are any warnings after the
do_xform_optimize_generic -clock_gate command. You may see warnings
that indicate that the clock-gating logic was not successfully added.

If there are warnings, use the set_test_mode_setup command to set the test mode
pin.

■ Try to map the design and then check the DFT rules. If you have a generic netlist, the
clock net might have some inverters or buffers.
May 2001 104 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Troubleshooting
Flip-Flops Do Not Have Output Nets

After mapping using the do_xform_map -hier command, you see warning messages
saying that some flip-flops do not have output nets:

Info: Mapping module ‘LPS_CG_OBS_3’ ... <TCLNL-501>.

--> WARNING: Instance ‘LPS_CG_OBS_FF_34’ has no output net. <TM-203>.

Info: Mapping module ‘LPS_CG_OBS_2’ ... <TCLNL-501>.

--> WARNING: Instance ‘LPS_CG_OBS_FF_30’ has no output net <TM-203>.

Info: Mapping module ‘block2’ ... <TCLNL-501>.

LPS adds the flip-flops and these messages are the expected behavior because you have set
the set_clock_gating_options -obs_style command to register . In this case, the
observability registers have been created (LPS_CG_OBS_FF_34and LPS_CG_OBS_FF_30).
Later in the LPS-DFT flow, these registers can be put into scan chains.

Top Level Flip-Flop Cannot Connect To Any Scan Chain

If your top level flip-flop (OBS_FF) can not be connected to any scan chain, this may mean
that a portion of the design has been scan-mapped before you read it into the tool. Your flow
might look like this:

do_push_module [find -module <module_name>]

set_test_mode_setup TestMode 1 -clock clk2

do_xform_connect_scan

do_pop_module

check_dft_rules

do_xform_optimize_generic -clock_gate

do_xform_map -hier

do_xform_connect_scan

If you simply remove do_xform_connect_scan from this flow, you should not have a
problem connecting the top level flip-flop to a scan chain. So, the correct flow would look like
this:

do_push_module [find -module <module_name>]

set_test_mode_setup TestMode 1 -clock clk2

do_pop_module

check_dft_rules

do_xform_optimize_generic -clock_gate

do_xform_map -hier

do_xform_connect_scan
May 2001 105 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Troubleshooting
The Observability Flip-Flop Is In a Different Scan Chain

If an observability flip-flop is in a different scan chain than the scan chain containing the clock-
gating registers, it may be set to a different polarity. Try using the -same_polarity option
with the set_clock_gating_options command.

An Observability Tree Is Outside the Sub-Module

If your observability tree is outside of the sub-module, it could be because the current
xor_depth is less than the depth you defined. LPS inserts an observability block at the
outermost hierarchy available.

For example, if you set the depth to 5, LPS could put the register in at 3 because it could not
find a clock in a higher hierarchy and was forced to insert a register at that lower level.

See Chapter 3 for more details.

Warning When Setting Clock-Gating Options

You might see the following warning message when using the -domain dft_domain option
for the set_clock_gating_options command:

WARNING: Observability style register requires observability domain to be
clock_net. Setting observability domain to clock_net <POPT-267>.

This means that you used the set_clock_gating_options command to set the
observability style (-obs_style) to register or reg_module . In either case, you must set
the -domain option to clock_net .

If you do not want this behavior, set the -obs_style option to port:

set_clock_gating_options -domain dft_domain -control -obs_style port

You will then be able to use dft_domain as the -domain setting for that attribute set.

Problem Setting Test Mode Port

You will have a problem if you try to use the -auto_test_port option with the
set_clock_gating_options command to create a test mode port for a DFT domain. This
option only creates ports for clock domains.
May 2001 106 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Troubleshooting
Error Associating Test Ports With Multiple Clock Domains

When using the following commands to associate test ports with their clock domains:

set_test_mode test1 1 -clock clk1

set_test_mode test2 1 -clock clk2

set_test_mode test1 1 -clock clk3

set_clock_gating_options -control

do_xform_optimize_generic -clock_gate

You get the following error message:

ERROR: No test port defined. If -domain is set to all, then test port must be defined
using -control. Clock gating will not insert testability logic <POPT-266>.

To resolve this error, you need to also specify the -domain option with the
set_clock_gating_options -control command. Set it to either clock_net or
dft_domain .
May 2001 107 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
8
Glossary

Ambit Library Format (ALF) File

The library format file created by and used in the BuildGates synthesis software environment.
See the Ambit BuildGates Synthesis User Guide for more information.

Assertions

Switching activities provided by an user through a Toggle Count Format (TCF) File.

Clock Gating

Selectively shutting off registers during inactive periods in order to lower power in the clock
network and sequential elements.

Duty Cycle

The ratio of signal time to the total clock period for that signal.

Event

A logic state change, such as from 0 or 1.

INTERNAL_ENERGY

Dynamic energy (capacitive and short-circuit power) consumed by the cell when there is a
transition in the specified path. This does not include energy released when charging the load
capacitance connected to the output pins. Also, the constant (average) value per output load
and input slew are supported. See the Timing Library Format Reference for more
information.
May 2001 108 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Glossary
Library Characterization

Editing your library to include information about operating conditions (process, voltage, and
temperature). Complete this procedure before you read in the library.

Operating Conditions

The process, voltage, and temperature values you want to be taken into consideration.

Partial Transition

A transition which does not rise or fall all the way to the supply voltage or ground potential.

Power Exploration

LPS explores possibilities for lowering power in the design. None of the sleep-mode or clock-
gating logic is actually committed; logic is only inserted. After running sleep-mode
exploration and/or clock-gating exploration, you get a report of logic inserted in your design.
Results are displayed in the console window. Commitment of inserted logic happens when
you perform gate-level optimization.

RTL

Register transfer level.

SC_ENERGY

Short-circuit power consumed by the cell when there is a transition in the specified path. See
the Timing Library Format Reference for more information.

Sleep Mode

Selectively shutting off combinational logic blocks, including datapath elements, functional
blocks, and hierarchical modules, during inactive periods in order to reduce power in the
combinational blocks and sequential elements.
May 2001 109 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Glossary
Spatial Correlation

Two signals are considered to be spatially correlated if the occurrence of an Event for one of
the signals affects the probability an event occurring on the other signal.

Temporal Correlation

Where the probability of an Event for a signal is dependent on an event occurring during a
previous time step.

Timing Library Format (TLF) File

The library format file containing your timing information. See the Timing Library Format
Reference for more information.

Toggle Count

The total number of toggles (signal transitions between 0 and 1 or 1 and 0) in the given
simulation period at a node. Note that LPS displays toggle count in nano seconds(ns), but,
when calculating power, LPS arrives as transition density using the following equation:

toggleCount/durationInNanoSeconds

Toggle Count Format (TCF) File

A Toggle Count Format (TCF) file contains net or pin switching activities, as well as signal
probabilities. See The TCF File on page 23 for details.

Toggle Rate

The average number of toggle counts per second at a node.

TOTAL_ENERGY

This TLF construct captures the energy of the cell as well as the load it drives. LPS derives
the internal cell power by subtracting the external load power for a given path from the total
energy table.
May 2001 110 Product Version 4.0.8

Low Power Option of Ambit BuildGates Synthesis and Cadence PKS
Glossary
XOR Tree Depth

The depth of the observability logic when decomposed into a balanced tree of two input xor
gates.
May 2001 111 Product Version 4.0.8

	Contents
	Preface
	About This Manual
	Other Information Sources
	Syntax Conventions
	Text Command Syntax

	Introduction
	Power Issues in the Electronics Industry
	Overview of the LPS Design Flow
	Design Stages of Power Reduction
	Running the LPS Option
	LPS Option License
	Using the ac_shell Command Line
	Using the Graphical User Interface
	LPS-PKS Limitations

	Before Running the LPS Option
	Power Consumption
	Static Power Dissipation
	Dynamic Power Dissipation
	How LPS Models Power Dissipation

	Power Estimation
	How Power Estimation Works
	Performing Power Calculations
	The TCF File

	Library Requirements
	Library File Examples
	Sample .lib File Containing a Cell-Based Power Table
	Sample .lib File Containing an Arc-Based Power Table
	Sample .tlf File Containing a Power Table
	Sample .lib files Containing a 3D Power Table
	Sample Simulation Library

	Using Power Optimizations
	Power Optimization
	Prerequisites
	Register-Transfer Level (RTL) Transformations
	Clock Gating
	Clock Gating Multi-Clock Domains Under DFT Settings
	Controllability
	Controllability Examples
	Observability
	Observability Examples
	Sleep Mode
	Gate-Level Power Optimization
	Power Analysis

	LPS Graphical User Interfaces
	The Module and Schematic Views of Power
	The Schematic View of Power
	Generating Power Reports
	Setting General Preferences
	Viewing Probability and Toggle Count Information

	The Basic Power Optimization Flow
	Overview of the Low Power Synthesis (LPS) Design Flow
	Before You Start the LPS Flow
	Step 1: Reading in the Library
	Terms and Concepts You Should Be Familiar With
	Commands Used

	Step 2: Reading in the Design
	Terms and Concepts You Should Be Familiar With
	Commands Used
	Optional and Alternate Steps

	Step 3: Exploring Power at the RTL
	Terms and Concepts You Should Be Familiar With
	Commands Used
	Optional and Alternate Steps

	Step 4: Reading In a Toggle Count Format (TCF) File
	Terms and Concepts You Should Be Familiar With
	Prerequisite
	Commands Used
	Optional and Alternate Steps

	Step 5: Getting Power Numbers (Optional)
	Terms and Concepts You Should Be Familiar With
	Commands Used

	Step 6: Committing Logic and Performing Gate-Level Power Transformations
	Terms and Concepts You Should Be Familiar With
	Commands Used
	Optional and Alternate Steps

	Script Example

	Alternate Power Flows
	Sleep-Mode Only Flow
	Sample Sleep-Mode Only Flow Script

	Clock-Gating Only Flow
	Sample Clock-Gating Only Flow Script

	Gate-Level Power Optimization Only Flow
	Sample Gate-Level Power Optimization Only Flow Script

	Flow for Applying Different Transformations Per Module
	Sample Script for the Different Transformations Per Module Flow

	DFT-LPS Flow
	Sample DFT-LPS Observability Flow Script
	Tips for the DFT-LPS Flow

	LPS-PKS Flow
	Sample LPS-PKS Flow Script

	CT-PKS Power Flow
	Sample CT-Gen Power Flow Script

	Troubleshooting
	General LPS Problems and Limitations
	When Conditions
	Clock-Gating and Sleep-Mode Options Still Set After do_remove_design

	LPS-DFT Flow Problems
	Using the ctrl_before_latch Option Before check_dft_rules
	TDRC Violations When Using check_dft_rules
	Flip-Flops Do Not Have Output Nets
	Top Level Flip-Flop Cannot Connect To Any Scan Chain
	The Observability Flip-Flop Is In a Different Scan Chain
	An Observability Tree Is Outside the Sub-Module
	Warning When Setting Clock-Gating Options
	Problem Setting Test Mode Port
	Error Associating Test Ports With Multiple Clock Domains

	Glossary

