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A BJT Mixer
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The transformer is used to sum the LO and RF signals at the
input. The winding inductance is used to form resonant tanks at
the LO and RF frequencies.

The output tank is tuned to the IF frequency.

Large capacitors are used to form AC grounds.
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AC Eq. Circuit
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The AC equivalent circuit is shown above.
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BJT Mixer Analysis

When we apply the LO alone, the collector current of the mixer
is given by

IC = IQ

(

1 +
2I1(b)

I0(b)
cosωt +

2I2(b)

I0(b)
cos 2ωt + · · ·

)

We can therefore define a time-varying gm(t) by

gm(t) =
IC(t)

Vt
=

qIC(t)

kT

The output current when the RF is also applied is therefore
given by iC(t) = gm(t)vs

iC =
qIQ

kT

(

1 +
2I1(b)

I0(b)
cos ωt +

2I2(b)

I0(b)
cos 2ωt + · · ·

)

× V̂s cos ωst
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BJT Mixer Analysis (cont)

The output at the IF is therefore given by

iC |ωIF
= V̂s

qIQ

kT
︸︷︷︸

gmQ

I1(b)

I0(b)
cos(ω0 − ωs

︸ ︷︷ ︸

ωIF

)t

The conversion gain is given by

gconv = gmQ
I1(b)

I0(b)
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LO Signal Drive

For now, let’s ignore the small-signal input and determine the
impedance seen by the LO drive. If we examine the collector
current

IC = IQ

(

1 +
2I1(b)

I0(b)
cosωt +

2I2(b)

I0(b)
cos 2ωt + · · ·

)

The base current is simply IC/β, and so the input impedance
seen by the LO is given by

Zi|ω0
=

V̂o

iB,ω0

=
βV̂o

iC,ω0

=
βV̂o

IQ
2I1(b)
I0(b)

=
βbVt

IQ
2I1(b)
I0(b)

=
b

2

β

gmQ

I0(b)

I1(b)
=

β

Gm
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RF Signal Drive

The impedance seen by the RF singal source is also the base
current at the ωs components. Typically, we have a high-Q
circuit at the input that resonates at RF.

iB(t) =
iC(t)

β

=
1

β

qIQ

kT

(

V̂s cos ωst +
2I1(b)

I0(b)
cos(ω0 ± ωs)t + · · ·

)

The input impedance is thus the same as an amplifier

Rin =
V̂s

|component in iB at ωs|
= β

kT

qIQ
=

β

gmQ
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Mixer Analysis: General Approach

If we go back to our original equations, our major assumption
was that the mixer is a linear time-varying function relative to
the RF input. Let’s see how that comes about

IC = ISevBE/Vt

where
vBE = vin + vo + VA

or

IC = ISeVA/Vt × eb cos ω0t × e
V̂s
Vt

cos ωst

If we assume that the RF signal is weak, then we can
approximate ex ≈ 1 + x
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General Approach (cont)

Now the output current can be expanded into

IC = IQ

(

1 +
2I1(b)

I0(b)
cosωt +

2I2(b)

I0(b)
cos 2ωt + · · ·

)

×

(

1 +
V̂s

Vt
cosωst

)

In other words, the output can be written as

= BIAS + LO + Conversion Products

In general we would filter the output of the mixer and so the LO
terms can be minimized. Likewise, the RF terms are undesired
and filtered from the output.
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Distortion in Mixers

Using the same formulation, we can now insert a signal with two
tones

vin = V̂s1 cosωs1t + V̂s2 cos ωs2

IC = ISeVA/Vt × eb cos ω0t × e
ˆVs1

Vt
cos ωs1t+

ˆVs2
Vt

cos ωs2t

The final term can be expanded into a Taylor series

IC = ISeVA/Vt × eb cos ω0t ×

(
1 + Vs1 cos ωs1t + Vs2 cosωs2t + ( )2 + ( )3 + · · ·

)

The square and cubic terms produce IM products as before,
but now these products are frequency translated to the IF
frequency
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Another BJT Mixer
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The signal from the LO driver is capacitively coupled to the BJT
mixer
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LO Capacitive Divider

CsLs

+

v0x

−

C0

+

v0x

−

C0

C
′

s

Assume that ωLO > ωRF , or a high side injection

Note beyond resonance, the input impedance of the tank
appears capacitive. Thus C ′

s is the effective capacitance of the
tank. The equivalent circuit for the LO drive is therefore a
capacitive divider

vo =
Co

Co + C ′

s

vox
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Harmonic Mixer

Second

Harmonic

Mixer

LO

RF IF

We can use a harmonic of the LO to build a mixer.

Example, let LO = 500MHz, RF = 900MHz, and IF = 100MHz.

Note that IF = 2LO − RF = 1000 − 900 = 100
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Harmonic Mixer Analysis

The nth harmonic conversion tranconductance is given by

gconv,n =
|IF current out|

|input signal voltage|
=

gn

2

For a BJT, we have

gconv,n = gmQ
In(b)

I0(b)

The advantage of a harmonic mixer is the use of a lower
frequency LO and the separation between LO and RF.

The disadvantage is the lower conversion gain and higher noise.
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FET Large Signal Drive

vo

VQ

ID

Consider the output current of a FET driven by a large LO signal

ID =
µCox

2

W

L
(VGS − VT )2(1 + λVDS)

where VGS = VA + vLO = VA + Vo cos ω0t. Here we implicitly
assume that Vo is small enough such that it does not take the
device into cutoff.
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FET Large Signal Drive (cont)

0.5 1 1.5 2 2.5 3

That means that VA + V0 cosω0t > VT , or VA − V0 > VT , or
equivalently V0 < VA − VT . Under such a case we expand the
current

ID ∝
(
(VA − VT )2 + V 2

0 cos2 ω0t + 2(VA − VT )V0 cos ω0t
)
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FET Current Components

The cos2 term can be further expanded into a DC and second
harmonic term.

Identifying the quiescent operating point

IQ =
µCox

2

W

L
(VA − VT )2(1 + λVDS)

ID = IDQ + µCox
W

L







1

4
V 2

0
︸︷︷︸

bias point shift

+ (VA − VT )Vo cos ω0t
︸ ︷︷ ︸

LO modulation

+

V 2
0

4
cos(2ω0t)

︸ ︷︷ ︸

LO 2nd harmonic







(1 + λVDS)
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FET Time-Varying Transconductance

The transconductance of a FET is given by (assuming strong
inversion operation)

g(t) =
∂ID

∂VGS
= µCox

W

L
(VGS − VT )(1 + λVDS)

VGS(t) = VA + V0 cosω0t

g(t) = µCox
W

L
(VA − VT + V0 cos ω0t)(1 + λVDS)

g(t) = gmQ

(

1 +
V0

VA − VT
cos ω0t

)

(1 + λVDS)

This is an almost ideal mixer in that there is no harmonic
components in the transconductance.

A. M. Niknejad University of California, Berkeley EECS 142 Lecture 18 p. 18/35 – p. 18/35



MOS Mixer

vs

VQ

vo

IF Filter
We see that we can build a mixer
by simply injecting an LO + RF
signal at the gate of the FET (ig-
nore output resistance)

i0 = g(t)vs = gmQ

(

1 +
V0

VA − VT
cos ω0t

)

Vs cos ωst

i0|IF =
gmQ

2

V0

VA − VT
cos(ω0 ± ωs)tVs

gc =
i0|IF

Vs
=

gmQ

2

V0

VA − VT
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MOS Mixer Summary

But gmQ = µCox
W
L (VA − VT )

gc =
µCox

2

W

L
V0

which means that gc is independent of bias VA. The gain is
controlled by the LO amplitude V0 and by the device aspect
ratio.

Keep in mind, though, that the transistor must remain in forward
active region in the entire cycle for the above assumptions to
hold.

In practice, a real FET is not square law and the above analysis
should be verified with extensive simulation. Sub-threshold
conduction and output conductance complicate the picture.
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“Dual Gate” Mixer

+

vs
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The “dual gate” mixer, or more commonly a cascode amplifier,
can be turned into a mixer by applying the LO at the gate of M2
and the RF signal at the gate of M1. Using two transistors in
place of one transistor results in area savings since the signals
do not need to be combined with a transformer or capacitively .

A. M. Niknejad University of California, Berkeley EECS 142 Lecture 18 p. 21/35 – p. 21/35



Dual Gate Mixer Operation
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tr
io
d
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Without the LO signal, this is simply a cascode amplifier. But
the LO signal is large enough to push M1 into triode during part
of the operating cycle.

The transconductance of M1 is therefore modulated periodically

gm|sat = µCox
W

L
(VGS − VT )

gm|triode = µCox
W

L
VDS
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Dual Gate Waveforms

Active Region

Triode Region

gm,max

gm(t)

vLO,1

vLO,2

VGS2 is roughly constant since M1 acts like a current source.

VD1 = vLO − VGS2 = VA2 + V0 cosω0t − VGS2

g(t) =

{

µCox
W
L (VGS1 − VT ) VD1 > VGS − VT

µCox(VA2 − VGS2 − |V0 cosω0t|) VD1 < VGS − VT
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Realistic Waveforms

A more sophisticated analysis would take sub-threshold
operation into account and the resulting g(t) curve would be
smoother. A Fourier decomposition of the waveform would yield
the conversion gain coefficient as the first harmonic amplitude.
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Mixer Analysis: Time Domain

A generic mixer operates with a periodic transfer function
h(t + T ) = h(t), where T = 1/ω0, or T is the LO period. We can
thus expand h(t) into a Fourier series

y(t) = h(t)x(t) =
∞∑

−∞

cnejω0ntx(t)

For a sinusoidal input, x(t) = A(t) cosω1t, we have

y(t) =

∞∑

−∞

cn

2
A(t)

(

ej(ω1+ω0n)t + ej(−ω1+ω0n)t
)

Since h(t) is a real function, the coefficients c−k = ck are even.
That means that we can pair positive and negative frequency
components.
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Time Domain Analysis (cont)

Take c1 and c−1 as an example

= c1
ej(ω1+ω0)t + ej(−ω1+ω0)t

2
A(t)+c1

ej(ω1−ω0)t + ej(−ω1−ω0)t

2
A(t)+· · ·

= c1A(t) cos(ω1 + ω0)t + c1A(t) cos(ω1 − ω0)t + · · ·

Summing together all the components, we have

y(t) =

∞∑

−∞

cn cos(ω1 + nω0)t

Unlike a perfect multiplier, we get an infinite number of
frequency translations up and down by harmonics of ω0.
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Frequency Domain Analysis

Since multiplication in time, y(t) = h(t)x(t), is convolution in the
frequency domain, we have

Y (f) = H(f) ∗ X(f)

The transfer function H(f) =
∑

∞

−∞
cnδ(f − nf0) has a discrete

spectrum. So the output is given by

Y (f) =

∫
∞

−∞

∞∑

−∞

cnδ(σ − nf0)X(f − σ)dσ

=
∞∑

−∞

cn

∫
∞

−∞

δ(σ − nf0)X(f − σ)dσ
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Frequency Domain (cont)
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By the frequency sifting property of the δ(f − σ) function, we
have

Y (f) =

∞∑

−∞

cnX(f − nf0)

Thus, the input spectrum is shifted by all harmonics of the LO
up and down in frequency.
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Noise/Image Problem

Previously we examined the “image” problem. Any signal
energy a distance of IF from the LO gets downconverted in a
perfect multiplier. But now we see that for a general mixer, any
signal energy with an IF of any harmonic of the LO will be
downconverted !

These other images are easy to reject because they are distant
from the desired signal and a image reject filter will be able to
attenuate them significantly.

The noise power, though, in all image bands will fold onto the IF
frequency. Note that the noise is generated by the mixer source
resistance itself and has a white spectrum. Even though the
noise of the antenna is filtered, new noise is generated by the
filter itself!
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Current Commutating Mixers

+LO −LO

VCC

Q2 Q3

Q1+RF

IF

RIF

+LO −LO

+RF

IF

A popular alternative mixer topology uses a differential pair LO
drive and an RF current injection at the tail. In practice, the tail
current source is implemented as a transconductor.

The LO signal is large enough to completely steer the RF
current either through Q1 or Q2.
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Current Commutating Mixer Model

+LO −LO

VCC

Q1+RF

IF

RIF

If we model the circuit with ideal elements, we see that the
current IC1 is either switched to the output or to supply at the
rate of the LO signal.

When the LO signal is positive, we have a cascode dumping its
current into the supply. When the LO signal is negative, though,
we have a cascode amplifier driving the output.
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Conversion Gain

t

TLO

+1

0

s(t)

We can now see that the output current is given by a periodic
time varying transconductance

io = gm(t)vs = gmQs(t)vs

where s(t) is a square pulse waveform (ideally) switching
between 1 and 0 at the rate of the LO signal. A Fourier
decomposition yields

io = gmQvs

(

0.5 +
2

π
cos ω0t −

2

π

1

3
cos 3ω0t + · · ·

)
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Conversion Gain (cont)

So the RF signal vs is amplified (feed-thru) by the DC term and
mixed by all the harmonics

io
Vs

=
gmQ

2

(
1

2
cos ωst +

2

π
cos(ω0 ± ωs)t −

2

3π
cos(3ω0 ± ωs)t + · · ·

)

The primary conversion gain is gc = 1
π gmQ.

Since the role of Q1 (or M1) is to simply create an RF current, it
can be degenerated to improve the linearity of the mixer.
Inductance degeneration can be employed to also achieve an
impedance match.

MOS version acts in a similar way but the conversion gain is
lower (lower gm) and it requires a larger LO drive.
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Differential Output

+LO −LO

+RF

IF

This block is commonly known as the Gilbert Cell

If we take the output signal differentially, then the output current
is given by

io = gm(t)vs = gmQs2(t)vs
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Differential Output Gain

t

TLO

+1

−1

s2(t)

The pulse waveform s2(t) now switches between ±1, and thus
has a zero DC value

s2(t) =
4

π
cos ω0t −

1

3

4

π
cos 3ω0t + · · ·

The lack of the DC term means that there is ideally no RF
feedthrough to the IF port. The conversion gain is doubled since
we take a differential output gc/gmQ = 2

π
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