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Abstract—Uniform Random Number Generator (URNG) 

is a key element in most applications which run on FPGA 

based hardware accelerators. As multi-bits is required and 

a normal LFSR could only generate one bit per cycle, more 

than one LFSR is needed in a URNG. In this paper, we 

introduce a new kind of URNG using Leap-Ahead LFSR 

Architecture which could generate an m-bits random 

number per cycle using only one LFSR. We analyze its 

architecture, present the expression of the period and point 

out how to choose the taps of the LFSR. Finally, a 18-bits 

URNG is implemented on Xilinx Vertex Ⅳ  FPGA.. By 

comparison, the Leap-Ahead LFSR Architecture URNG 

consumes less than 40 slices which is only 10% of what the 

Multi-LFSRs architecture consumes and acquires very good 

Area Time performance and Throughput performance that 

are 2.18×10-9 slices×sec per bit and 17.87×109 bits per sec. 
Keywords-FPGA; Uniform Random Number Generator; 

LFSR 

I. INTRODUCTION 

 With the improving performance of FPGAs, they 
have been introduced as hardware accelerators frequently. 
Most of the applications implemented on these FPGAs 
are computation intensive, such as Monte-Carlo 
simulations[4][5][6]. In these applications, random number 
generator (RNG) is a very important and frequently used 
element.  
 Among all kinds of RNGs, Uniform Random 
Number Generator (URNG) is the most important one, 
because all the other RNGs which have different 
distributions could be transformed from URNG[7]. There 
are many methods to implement a URNG, such as 
“MT19937”, and LFSR based architecture is one of the 
most popular because it could be easily described with 
HDL language and prototyped in FPGAs.  

A normal LFSR could only generate one random bit 

per cycle. As multi-bits is required to form a random 
number in most applications, Multi-LFSRs architecture is 
used to implement a URNG. This means 32 different 
LFSRs are needed in a 32-bit output URNG. But 
Leap-Ahead architecture could avoid this and generate 
one multi-bits random number per cycle using only one 
LFSR. 
 In this paper, we introduce the architectures of 
Leap-Ahead LFSRs of both Galois type and Fibonacci 
type. We primarily analyze the characteristics of the 
transform matrix and present the period formula of the 
generated random numbers. Finally, we implement the 
Leap-Ahead LFSR based URNGs on Xilinx Vertex Ⅳ 
FPGA, and analyze the results in detail with compare to 
other reported ones. 

II. LEAP-AHEAD ARCHITECTURE 

A.  The architecture 

 There are two types of LFSRs: Galois type and 
Fibonacci type as illustrated in Fig. 1. DFFi is a register, 
c1-cn-1 are the taps, xi is the output of the ith DFF.  

Both of the two types of LFSRs could be described 
by the following formula: 

               )()1( tAXtX =+            (1) 

X(t) is the output of all the DFFs at current time; X(t+1) 
is the output of all the DFFs at the next clock cycle; A is 
the transform matrix. Here, only xn is the “active output” 
per cycle. If we use m bits (xn-(m-1) to xn) as the output of 
the URNG, the random numbers generated would have 
very close correlation and this is unacceptable.
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Figure 1 Structure of Galois type and Fibonacci type LFSRs  
If we use formula (1) m times, we could acquire the 
m-cycle-late outputs of all the DFFs as follows: 

)(...))2(()1()( tXAmtAXAmtAXmtX m==−+=−+=+

                                           (2) 
This could also be represented as 

            )(')1(' tXAtX m=+             (3) 

If we design the feedback circuit, like the structure 
in Figure 1 but using the new transform matrix Am, we 
could acquire the m-cycle-late outputs of all the DFFs in 
Figure 1 within only one cycle in the new architecture. 
Because the outputs of all the DFFs leap m cycle ahead 
in the new architecture, we just call it Leap-Ahead LFSR 
architecture. Here, X’(t+1) in formula (3) represents the 
new outputs. 

If DFFn-(m-1) to DFF n in Figure 1 operate as shift 
registers, then, in Leap-Ahead architecture, the m-bit 
outputs x’n-(m-1) to x’n per cycle just equal to the m-cycle 
outputs of xn in Figure 1. Now, we could use the m-bit 
outputs x’n-(m-1) to x’n as an m-bit random number, 
because they no longer have close correlation. 

This could be easily satisfied in Fibonacci Type 
LFSR, because all the DFFs in Figure 1 (a) operate as 
shift registers. But in Galois Type LFSR in Figure 1 (b), 
we have to carefully choose the taps and make sure that 
DFFn-(m-1) to DFF n also operate as shift registers. 

B.  The period of the generated random numbers 

 The generated random numbers are pseudo random 
numbers and they have a period. We could choose the 

taps of the original LFSR carefully to make sure that the 
one-bit stream generated has a maximum period of 2n-1. 
Then, we could figure out that the period of the random 
numbers generated by the corresponding Leap-Ahead 
LFSR have the following relationship with n and m:  

              
[ ]

m
mT

n ,12 −=               (4) 

Here, [2n-1, m] is the lease common multiple of 2n-1 and 
m; n is the number of the stages of the LFSR; m is the 
number of the output bits of the URNG; T is the period 
of the generated random numbers.  
 Obviously, T could get its maximum when 2n-1 and 
m could not divide by each other. But at the same time, 
the generated random numbers, again, would have close 
correlation with each other, because they would have the 
same content as the output of xn-(m-1)-xn from the original 
LFSR. So, only when 2n-1 could divide by m, the 
generated random numbers would acquire the best 
quality. But the cost would be that T would get its 
minimum. So, there is a tradeoff between the period and 
the quality of the generated random numbers. 

C.  The transform matrix 

 The transform matrix A in formula (1) is a special 
matrix. It could be expressed as follows: 
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Here, 1×nC  (or nC ×1 ) is the vector of taps; )1()1( −×− nnI  

is an identity matrix; )1(10 −× n  is a zero matrix. 

According to this expression, we could acquire Am as 
follows: 

nn
n

m
n

m
nn

mnmn

mnmm
Galois CACACAC

I
A

×

×
−

×
−

××
−×−

−×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×××= 1

1
1

2
11

)()(

)( ...
0

    

nnmmnmnmn

n

n

m
n

m
n

m
Fibonacci

I
C

AC

AC
AC

A

××−−×−

×

×

−
×

−
×

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

×

×
×

=

)()()(

1

1

2
1

1
1

0

...          (6) 

 In Galois type architecture, when the taps have the 
following relationship: 

      0... )1(21 ==== −−−− mnnn ccc          (7) 

We could acquire:  
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Also, in Fibonacci type architecture, when the taps have 
the following relationship: 

     0... 121 ==== −mccc                (9) 

We could acquire: 
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Obviously, when taps could satisfy the relationship in 

(7) and (9), we would acquire T
n

m CA )( 1
1

×
− × and 

1
1

−
× × m

n AC  by only simply right-shifting T
nC 1×  and 

left-shifting nC ×1 . This just shows us an easy way to 

figure out the new transform matrix Am. 
 

III.  IMPLEMENTATION AND RESULTS 

 According to the above analysis, we implement 
both Galois type and Fibonacci type Leap-Ahead 
architecture based 18-bits output URNGs on a Xilinx 
Vertex Ⅳ  FPGA. Here, the required period of the 
generated random numbers is 218. So, according to 
formula (4), n should be 22. But we could not acquire 
proper taps that would satisfy formula (7) and (9), when 
n equals to 22. So, we have to increase n from 22 to 23。 

For comparison, we also implement the 
Multi-LFSRs architecture URNGs which have the same 
output bit width and period. We use ISE 10.1 to 
synthesize the Verilog. The results is listed in Table Ⅰ. 

TABLE Ⅰ Synthesis results of URNGs using different architecture 

Architecture Period Bit-width 
No. of  

LFSRs used 

Stages of  

each LFSR 
Slices Frequency 

Leap-Ahead 

(Galois) 
218 18 1 23 39 993 MHz 

Leap-Ahead 

(Fibonacci) 
218 18 1 23 37 993 MHz 

Multi-LFSR 

(Galois) 
218 18 18 18 393 1146 MHz 

Multi-LFSR 

(Fibonacci) 
218 18 18 18 383 1010 MHz 
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As listed in TABLE Ⅰ , the Leap-Ahead 
architecture consumes less than 10% of slices which the 
Multi-LFSR architecture consumes. One of the reasons 
for this is that the Leap-Ahead architecture has only 1 
LFSR in the URNG hardware, while the Multi-LFSRs 
architecture has 18. The other reason is that every 
register in the URNG has to be initialed separately when 
the circuit is restarted, and the logic for this is 
complicated. As the Multi-LFSR architecture has 18×18 
registers, while the Leap-Ahead architecture has only 23 
registers, it needs more slices for the initializing function. 

According to formula (4), we could acquire the 
following relationship: 

  LFSRMulti
m

AheadLeap nn −− =− 2log      (11) 

Here, AheadLeapn − and LFSRMultin −  are the numbers of 

stages of a single LFSR in Leap-Ahead architecture or 
Multi-LFSR architecture. This means, for acquiring the 

same period, the Leap-Ahead architecture needs m
2log   

more stages in a single LFSR than which the Multi-LFSR 
architecture needs. But, because there are m LFSRs in 
one Multi-LFSRs architecture URNG, the overall number 

of stages used here is LFSRMultinm −× . This number is 

much larger than AheadLeapn − . As listed in TABLE Ⅰ, it 

is 18×18 to 23.  

From the results in TABLE Ⅰ , we could also 
acquire the conclusion that the Leap-Ahead architecture  

TABLE Ⅱ Performance comparison of different URNGs 

 

Area Time 

slices×sec per bit 

×10-9 

(smaller is better) 

Throughput 

Bits per sec ×109 

(larger is better) 

Leap-Ahead (Galois) 

[this work] 
2.18 17.87 

Multi-LFSR(Galois) 

[this work] 
19.05 20.63 

MT19937[1] 7.04 11.136 

MT19937[2] 9 6.13 

MT19937 software[3] - 3.10 

TT800[8] 10.63 7.68 

works slower than the Multi-LFSR architecture. This is 
because the feedback logic is much more complicated in 
the Leap-Ahead architecture. And the Fan-Out of each 
register is larger, too. This drawback is much obvious in 
Galois type architecture, because not only the Fan-Out 
increases but also the logic stages of the feedback circuit 
increases from 1 to 4. So, the working frequency 
decreases from 1146 MHz to 993 MHz. 

In Leap-Ahead architecture, Galois type no longer 
has advantages in working speed, because it has almost 
the same complicated feedback logic as Fibonacci type 
does. As listed In TABLE Ⅰ , they have the same 
working frequency as 993 MHz. Galois type architecture 
consumes a bit more slices than Fibonacci type 
architecture (39 slices to 37 slices). This is only because 
its structure is more suitable for the optimization 
methods of the ISE tools.  

Performance comparison results of different 
URNGs are listed in TABLE Ⅱ. As having a simple 
structure, the Leap-Ahead architecture acquires much 
higher working frequency, while consumes much less 
slices. So, in TABLE Ⅱ, the Area Time performance of 
Leap-Ahead architecture is 2.18 slices×sec per bit, much 
better than the other ones. Though our implementation is 
a 18-bit output URNG, it still acquires very good 
Throughput performance of 17.87×109 bits per sec 
because of the high working frequency. The Multi-LFSR 
architecture has a little better Throughput performance, 
but it has the worst Area Time performance as a cost. A 
more intuitional comparison results are denoted in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  Comparison results of different URNGs 
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IV. CONCLUSION 

 We introduce a new kind of URNG using 
Leap-Ahead LFSR architecture; present the period 
expression and point out how to choose the taps for easy 
computation of transform matrix. By implementing the 
Leap-Ahead LFSR architecture and Multi-LFSR 
architecture of both Galois type and Fibonacci type on 
Xilinx Vertex Ⅳ FPGA, we acquire the conclusion that, 
with only very little lost in speed, Leap-Ahead LFSR 
architecture consumes only 10% slices of what the 
Multi-LFSR architecture does to generate the random 
numbers that have the same period. By comparison with 
other URNGs, Leap-Ahead LFSR architecture has very 
good Area Time performance and Throughput 
performance that are 2.18×10-9 slices×sec per bit and 
17.87×109 bits per sec. 
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