
Uniform Random Number Generator using Leap-Ahead LFSR Architecture
GU Xiao-chen, ZHANG Min-xuan

School of Computer
 National University of Defense Technology

Changsha, China
specialsjtu@163.com

Abstract—Uniform Random Number Generator (URNG)

is a key element in most applications which run on FPGA

based hardware accelerators. As multi-bits is required and

a normal LFSR could only generate one bit per cycle, more

than one LFSR is needed in a URNG. In this paper, we

introduce a new kind of URNG using Leap-Ahead LFSR

Architecture which could generate an m-bits random

number per cycle using only one LFSR. We analyze its

architecture, present the expression of the period and point

out how to choose the taps of the LFSR. Finally, a 18-bits

URNG is implemented on Xilinx Vertex Ⅳ FPGA.. By

comparison, the Leap-Ahead LFSR Architecture URNG

consumes less than 40 slices which is only 10% of what the

Multi-LFSRs architecture consumes and acquires very good

Area Time performance and Throughput performance that

are 2.18×10-9 slices×sec per bit and 17.87×109 bits per sec.
Keywords-FPGA; Uniform Random Number Generator;

LFSR

I. INTRODUCTION

 With the improving performance of FPGAs, they
have been introduced as hardware accelerators frequently.
Most of the applications implemented on these FPGAs
are computation intensive, such as Monte-Carlo
simulations[4][5][6]. In these applications, random number
generator (RNG) is a very important and frequently used
element.
 Among all kinds of RNGs, Uniform Random
Number Generator (URNG) is the most important one,
because all the other RNGs which have different
distributions could be transformed from URNG[7]. There
are many methods to implement a URNG, such as
“MT19937”, and LFSR based architecture is one of the
most popular because it could be easily described with
HDL language and prototyped in FPGAs.

A normal LFSR could only generate one random bit

per cycle. As multi-bits is required to form a random
number in most applications, Multi-LFSRs architecture is
used to implement a URNG. This means 32 different
LFSRs are needed in a 32-bit output URNG. But
Leap-Ahead architecture could avoid this and generate
one multi-bits random number per cycle using only one
LFSR.
 In this paper, we introduce the architectures of
Leap-Ahead LFSRs of both Galois type and Fibonacci
type. We primarily analyze the characteristics of the
transform matrix and present the period formula of the
generated random numbers. Finally, we implement the
Leap-Ahead LFSR based URNGs on Xilinx Vertex Ⅳ
FPGA, and analyze the results in detail with compare to
other reported ones.

II. LEAP-AHEAD ARCHITECTURE

A. The architecture

 There are two types of LFSRs: Galois type and
Fibonacci type as illustrated in Fig. 1. DFFi is a register,
c1-cn-1 are the taps, xi is the output of the ith DFF.

Both of the two types of LFSRs could be described
by the following formula:

)()1(tAXtX =+ (1)

X(t) is the output of all the DFFs at current time; X(t+1)
is the output of all the DFFs at the next clock cycle; A is
the transform matrix. Here, only xn is the “active output”
per cycle. If we use m bits (xn-(m-1) to xn) as the output of
the URNG, the random numbers generated would have
very close correlation and this is unacceptable.

2009 International Conference on Computer and Communications Security

978-0-7695-3906-5/09 $26.00 © 2009 IEEE

DOI 10.1109/ICCCS.2009.11

150

C1 C2 Cn-2 Cn-1

X1 X2 Xn-1 Xn
DFF1 DFF2⊕ ⊕ ⊕ DFFn-1 DFFn⊕

⊗ ⊗ ⊗ ⊗

DFF1 DFF2 DFFn-1 DFFn

⊕
⊗

⊕
⊗

⊕
⊗

⊕
⊗C1 C2 Cn-2 Cn-1

X1 X2 Xn-2 Xn-1 Xn
(a) Fibonacci Type

(b) Galois Type

Figure 1 Structure of Galois type and Fibonacci type LFSRs
If we use formula (1) m times, we could acquire the
m-cycle-late outputs of all the DFFs as follows:

)(...))2(()1()(tXAmtAXAmtAXmtX m==−+=−+=+

 (2)
This could also be represented as

)(')1(' tXAtX m=+ (3)

If we design the feedback circuit, like the structure
in Figure 1 but using the new transform matrix Am, we
could acquire the m-cycle-late outputs of all the DFFs in
Figure 1 within only one cycle in the new architecture.
Because the outputs of all the DFFs leap m cycle ahead
in the new architecture, we just call it Leap-Ahead LFSR
architecture. Here, X’(t+1) in formula (3) represents the
new outputs.

If DFFn-(m-1) to DFF n in Figure 1 operate as shift
registers, then, in Leap-Ahead architecture, the m-bit
outputs x’n-(m-1) to x’n per cycle just equal to the m-cycle
outputs of xn in Figure 1. Now, we could use the m-bit
outputs x’n-(m-1) to x’n as an m-bit random number,
because they no longer have close correlation.

This could be easily satisfied in Fibonacci Type
LFSR, because all the DFFs in Figure 1 (a) operate as
shift registers. But in Galois Type LFSR in Figure 1 (b),
we have to carefully choose the taps and make sure that
DFFn-(m-1) to DFF n also operate as shift registers.

B. The period of the generated random numbers

 The generated random numbers are pseudo random
numbers and they have a period. We could choose the

taps of the original LFSR carefully to make sure that the
one-bit stream generated has a maximum period of 2n-1.
Then, we could figure out that the period of the random
numbers generated by the corresponding Leap-Ahead
LFSR have the following relationship with n and m:

[]

m
mT

n ,12 −= (4)

Here, [2n-1, m] is the lease common multiple of 2n-1 and
m; n is the number of the stages of the LFSR; m is the
number of the output bits of the URNG; T is the period
of the generated random numbers.
 Obviously, T could get its maximum when 2n-1 and
m could not divide by each other. But at the same time,
the generated random numbers, again, would have close
correlation with each other, because they would have the
same content as the output of xn-(m-1)-xn from the original
LFSR. So, only when 2n-1 could divide by m, the
generated random numbers would acquire the best
quality. But the cost would be that T would get its
minimum. So, there is a tradeoff between the period and
the quality of the generated random numbers.

C. The transform matrix

 The transform matrix A in formula (1) is a special
matrix. It could be expressed as follows:

nn

n
nn

n
Galois C

I
A

×

×
−×−

−×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 1

)1()1(

)1(10

151

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

×−−×−

×

1)1()1()1(

1

0 nnn

n
Fibonacci I

C
A (5)

Here, 1×nC (or nC ×1) is the vector of taps;)1()1(−×− nnI

is an identity matrix;)1(10 −× n is a zero matrix.

According to this expression, we could acquire Am as
follows:

nn
n

m
n

m
nn

mnmn

mnmm
Galois CACACAC

I
A

×

×
−

×
−

××
−×−

−×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×××= 1

1
1

2
11

)()(

)(...
0

nnmmnmnmn

n

n

m
n

m
n

m
Fibonacci

I
C

AC

AC
AC

A

××−−×−

×

×

−
×

−
×

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

×

×
×

=

)()()(

1

1

2
1

1
1

0

... (6)

 In Galois type architecture, when the taps have the
following relationship:

 0...)1(21 ==== −−−− mnnn ccc (7)

We could acquire:

T

n

mnmn

m

n
m ccccCA

×

−+−

−

×
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=×

1

)1(21

)1(

1
110......00

个

 (8)
Also, in Fibonacci type architecture, when the taps have
the following relationship:

 0... 121 ==== −mccc (9)

We could acquire:

n1

)1(

121
1

1)0,...,0,0,1,,...,,,(×

−

−++
−

× =×
个m

nmmm
m

n ccccAC

(10)
Obviously, when taps could satisfy the relationship in

(7) and (9), we would acquire T
n

m CA)(1
1

×
− × and

1
1

−
× × m

n AC by only simply right-shifting T
nC 1× and

left-shifting nC ×1 . This just shows us an easy way to

figure out the new transform matrix Am.

III. IMPLEMENTATION AND RESULTS

 According to the above analysis, we implement
both Galois type and Fibonacci type Leap-Ahead
architecture based 18-bits output URNGs on a Xilinx
Vertex Ⅳ FPGA. Here, the required period of the
generated random numbers is 218. So, according to
formula (4), n should be 22. But we could not acquire
proper taps that would satisfy formula (7) and (9), when
n equals to 22. So, we have to increase n from 22 to 23。

For comparison, we also implement the
Multi-LFSRs architecture URNGs which have the same
output bit width and period. We use ISE 10.1 to
synthesize the Verilog. The results is listed in Table Ⅰ.

TABLE Ⅰ Synthesis results of URNGs using different architecture

Architecture Period Bit-width
No. of

LFSRs used

Stages of

each LFSR
Slices Frequency

Leap-Ahead

(Galois)
218 18 1 23 39 993 MHz

Leap-Ahead

(Fibonacci)
218 18 1 23 37 993 MHz

Multi-LFSR

(Galois)
218 18 18 18 393 1146 MHz

Multi-LFSR

(Fibonacci)
218 18 18 18 383 1010 MHz

152

As listed in TABLE Ⅰ , the Leap-Ahead
architecture consumes less than 10% of slices which the
Multi-LFSR architecture consumes. One of the reasons
for this is that the Leap-Ahead architecture has only 1
LFSR in the URNG hardware, while the Multi-LFSRs
architecture has 18. The other reason is that every
register in the URNG has to be initialed separately when
the circuit is restarted, and the logic for this is
complicated. As the Multi-LFSR architecture has 18×18
registers, while the Leap-Ahead architecture has only 23
registers, it needs more slices for the initializing function.

According to formula (4), we could acquire the
following relationship:

 LFSRMulti
m

AheadLeap nn −− =− 2log (11)

Here, AheadLeapn − and LFSRMultin − are the numbers of

stages of a single LFSR in Leap-Ahead architecture or
Multi-LFSR architecture. This means, for acquiring the

same period, the Leap-Ahead architecture needs m
2log

more stages in a single LFSR than which the Multi-LFSR
architecture needs. But, because there are m LFSRs in
one Multi-LFSRs architecture URNG, the overall number

of stages used here is LFSRMultinm −× . This number is

much larger than AheadLeapn − . As listed in TABLE Ⅰ, it

is 18×18 to 23.

From the results in TABLE Ⅰ , we could also
acquire the conclusion that the Leap-Ahead architecture

TABLE Ⅱ Performance comparison of different URNGs

Area Time

slices×sec per bit

×10-9

(smaller is better)

Throughput

Bits per sec ×109

(larger is better)

Leap-Ahead (Galois)

[this work]
2.18 17.87

Multi-LFSR(Galois)

[this work]
19.05 20.63

MT19937[1] 7.04 11.136

MT19937[2] 9 6.13

MT19937 software[3] - 3.10

TT800[8] 10.63 7.68

works slower than the Multi-LFSR architecture. This is
because the feedback logic is much more complicated in
the Leap-Ahead architecture. And the Fan-Out of each
register is larger, too. This drawback is much obvious in
Galois type architecture, because not only the Fan-Out
increases but also the logic stages of the feedback circuit
increases from 1 to 4. So, the working frequency
decreases from 1146 MHz to 993 MHz.

In Leap-Ahead architecture, Galois type no longer
has advantages in working speed, because it has almost
the same complicated feedback logic as Fibonacci type
does. As listed In TABLE Ⅰ , they have the same
working frequency as 993 MHz. Galois type architecture
consumes a bit more slices than Fibonacci type
architecture (39 slices to 37 slices). This is only because
its structure is more suitable for the optimization
methods of the ISE tools.

Performance comparison results of different
URNGs are listed in TABLE Ⅱ. As having a simple
structure, the Leap-Ahead architecture acquires much
higher working frequency, while consumes much less
slices. So, in TABLE Ⅱ, the Area Time performance of
Leap-Ahead architecture is 2.18 slices×sec per bit, much
better than the other ones. Though our implementation is
a 18-bit output URNG, it still acquires very good
Throughput performance of 17.87×109 bits per sec
because of the high working frequency. The Multi-LFSR
architecture has a little better Throughput performance,
but it has the worst Area Time performance as a cost. A
more intuitional comparison results are denoted in Fig. 2.

Figure 2 Comparison results of different URNGs

MT19937
software[3]

TT800[8]

MT19937[2]

MT19937[1]

Multi-LFSR
(Galois)

Leap-Ahead
(Galois)

0

5

10

15

20

25

0 5 10 15 20 25
Area Time (bits per sec×109)

T
h
r
o
u
g
h
p
u
t

(
s
l
i
c
e
s
×
s
e
c

p
e
r

b
i
t

×
1
0
-
9
)

153

IV. CONCLUSION

 We introduce a new kind of URNG using
Leap-Ahead LFSR architecture; present the period
expression and point out how to choose the taps for easy
computation of transform matrix. By implementing the
Leap-Ahead LFSR architecture and Multi-LFSR
architecture of both Galois type and Fibonacci type on
Xilinx Vertex Ⅳ FPGA, we acquire the conclusion that,
with only very little lost in speed, Leap-Ahead LFSR
architecture consumes only 10% slices of what the
Multi-LFSR architecture does to generate the random
numbers that have the same period. By comparison with
other URNGs, Leap-Ahead LFSR architecture has very
good Area Time performance and Throughput
performance that are 2.18×10-9 slices×sec per bit and
17.87×109 bits per sec.

ACKNOWLEDGMENT

 This paper is supported by the National High
Technology Research and Development Program
("863"Program) of China 2009AA01Z124.

REFERENCES

[1] I. L. Dalal, D. Stefan, “A hardware framework for the fast

generation of multiple long-period random number streams”,

Proceedings of the 16th international ACM/SIGDA symposium on

Field programmable gate arrays (FPGA ‘08), Monterey, California,

USA, 2008. pages:245-254

[2] V. Sriram, D. Kearney, “High throughput multi-port MT19937

uniform random number generator”, Eighth International Conference

on, Parallel and Distributed Computing, Applications and Technologies,

2007. PDCAT '07, Adelaide, SA, 2007, pages: 157-158

[3] M. Matsumoto, and Nishimura, T. (1998) Mersenne Twister, “A

623-dimensionally equidistributed uniform pseudo-random number

generator”, ACM Transactions on Modeling and Computer Simulation,

8, 3-30.

[4] D U Lee, J D Villasenor, W Luk, P H W Leong. A hardware

Gaussian noise generator using the Box-Muller method and its error

analysis . Computers, IEEE Transactions on, 2006, Volume: 55, Issue: 6,

pages:659-671.

[5] D U Lee, W Luk, J D Villasenor, G Zhang, P H W Leong. A

hardware Gaussian noise generator using the Wallace method . Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on, 2005,

Volume 13, Issue 8, pages:911-920

[6] D U Lee, W Luk, J D Villasenor, P Y K. Cheung. A Gaussian noise

generator for hardware-based simulations . Computers, IEEE

Transactions on, 2004, Volume 53, Issue 12, pages: 1523-1534

[7] S. Banks, P. Beadling, A. Ferencz. FPGA Implementation of Pseudo

Random Number Generators for Monte Carlo Methods in Quantitative

Finance. Reconfigurable Computing and FPGAs, 2008. ReConFig '08.

International Conference on, Cancun, 2008, pages: 271 - 276

[8] V. Sriram, D. Kearney, “A high throughput area time efficient

pseudo uniform random number generator based on the TT800

algorithm”, International Conference on, Field Programmable Logic

and Applications, 2007. FPL 2007, Amsterdam, 2007, pages: 529 - 532

154

