
 Created by Dorin Patru with the EEEE 220
 assistance of Konboye Oyake
 Upgraded by Yannis Papaefstathiou

EEEE 220 – Digital Systems II

Lab6: Processor Design
Objective

The purpose of this laboratory exercise is to design the actual processor. That also includes
Implementation and simulation. All of the components needed for the Datapath Design have
been introduced in the previous Laboratory exercises AND IN THE LECTURE!!! The
components needed are: (1) a register file which can be implemented using registers and
logic for selection, (2) the ALU designed earlier and (3) memory blocks. You will also have
to design an ASM in VHDL

Instruction Set Architecture

The Instruction Set Architecture, ISA, is enforced. The table below contains the (abstract) RTN
description of each of the 16 instructions.

4-Bit
Instruction
Code *

Instruction
Mnemonic

RTN Description Comments

0 0000 ADD A  (A + B) : C-DFF  C

Four-bit result gets stored in A. Carry out
is stored in C-DFF.

1 0001 SUB A  (A – B) : C-DFF  C

2 0010 INC A  (A + 1) : C-DFF  C

3 0011 DEC A  (A – 1) : C-DFF  C

4 0100 NOT A  (/A) /A := The complement of A

5 0101 AND A  (A  B)

6 0110 OR A  (A + B)

7 0111 SHR
A3  A3 : A2  A3 : A1  A2 :
A0  A1 : C  A0

Shift-Right; the sign bit is preserved;
LSBit is loaded into the C-DFF.

10 1010 SWAP A  B, B  A

11 1011 CPY B  A REG-A remains unchanged

12 1100 WR
M[[PC]  A Write contents of REG-A

 to memory location **

13 1101 RD
 A  M[PC] Read contents of memory

location into REG-A **

 Created by Dorin Patru with the EEEE 220
 assistance of Konboye Oyake

Legend:

A<3..0> := A Register (4-Bits)

B<3..0> := B Register (4-Bits)

C-DFF := Carry D-FlipFlop – a
single-bit register that holds the

carry of the most recent
arithmetic operation, or the
LSbit of A during a SHR

operation

PC<7..0> := Program Counter
(8-Bit)

IR<3..0> := Instruction Register
(4-bit) Holds the opcode of the
currently executing instruction.

M[0..255]<3..0> :=
Memory (256 4-bits words).

Table 5.1 – Instruction Set Architecture

(*) – The 4-bits instruction code is strictly enforced.
(**) – The memory address is computed as described further in the section “Memory Address Arithmetic”
(***) – These instructions are only implemented for processors with Memory Mapped I/O Peripherals. These processors must
implement a 4-Bits/4-Location Stack.

Algorithmic State Machine (ASM) Chart for Processor

The control unit will generate the sequencing of the processor. Start with a preliminary ASM
chart in order to determine the states and inputs to the Datapath which will be used to
manually test the Datapath for correct functionality. Below is an excerpt of an ASM
chart showing the machine cycles of one instruction, in particular the ADD instruction.

 Upgraded by Yannis Papaefstathiou

 Created by Dorin Patru with the EEEE 220
 assistance of Konboye Oyake

.
Figure 5.1 – ASM Chart for an instruction with a FETCH and one execution cycle.

Note: The numbers in the brackets, e.g. (00001) represent the state codes.

Complete the ASM Chart for all the 14 instructions specified and transalet it in VHDL and simulate it.

 Upgraded by Yannis Papaefstathiou

 Created by Dorin Patru with the EEEE 220

 assistance of Konboye Oyake

General Project Specifications

Below you can find the datapath and the control (which will comprise of your ASM) for the

processor you will design

Register File
 Clock Synchronous for writing;
 Two 4-Bit Registers A and B, both with parallel load capability;

Function Unit - ALU
 ALU from Lab 5. Change the XOR function to accommodate the SHR-A operation.

 Upgraded by Yannis Papaefstathiou

 Created by Dorin Patru with the EEE 220
 assistance of Konboye Oyake

 Upgraded by Eric Peskin
 with the assistance of Onome Ugbeme

Operation Select - FS[3..0]
FS3 FS2 FS1 CIN Operation Function

0 0 0 0 F = A Transfer A
0 0 0 1 F = A + 1 Increment A
0 0 1 0 F = A + B Addition
0 0 1 1 F = A + B + 1
0 1 0 0 F = A + (not B)
0 1 0 1 F = A + (not B) + 1 Subtraction
0 1 1 0 F = A – 1 Decrement A
0 1 1 1 F = A Transfer A
1 0 0 X F = not A NOT
1 0 1 X F = A AND B AND
1 1 0 X F = A OR B OR
1 1 1 X F = SHR-A SHR

Memory
 8-Bit Addressable Memory, i.e. 8-bit wide Address Bus;
 4-Bit Data-In-Bus;
 4-Bit Data-Out-Bus;

o One Program Memory Address Space implemented using an initialized ROM.
o One Data Memory Address Space implemented using an uninitialized,

asynchronous RAM.
o Asynchronous Write signal, MW = 1 to write, 0 to not write, i.e. read;

Program Counter - PC
 One 8-Bit Up Counter with parallel load capability;
 Clock Enable Signal;
 RESET Signal;
 Provides the address value to the instruction memory (segment), that points to the next

instruction to be fetched and executed.

 Created by Dorin Patru with the EEEE 220
 assistance of Konboye Oyake

Laboratory /Project Requirement

You have to design, simulate, and emulate a central processing unit (CPU) that implements the

instruction set described above in table 5.1. Follow the following steps:
1. Identify and write down your complete processor specifications;
2. Using two sheets of blank paper, start adding on one the building blocks you need to

implement the 8 ALU instructions, while capturing on the second one the sequence of
operations using an ASM chart. Continue with the other instructions.

3. After thoroughly scrutinizing it, present your design to the TA. The design must abide by
all specifications assigned for your particular processor. The laboratory is not complete
until the TA signs off on the design.

Your notes here:

 Upgraded by Yannis Papaefstathiou

