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EE247 - Lecture 2
Filters

• Filters: 
– Nomenclature

– Specifications
• Quality factor

• Magnitude/phase response versus frequency characteristics

• Group delay

– Filter types
• Butterworth

• Chebyshev I & II

• Elliptic

• Bessel

– Group delay comparison example

– Biquads
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Nomenclature

Filter Types wrt Frequency Range Selectivity

 jH jH

Lowpass Highpass Bandpass Band-reject

(Notch)

  

Provide frequency selectivity

 jH jH

 

All-pass

 jH

Phase shaping 

or equalization
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Filter Specifications

• Magnitude response versus frequency characteristics:

– Passband ripple (Rpass)

– Cutoff frequency or -3dB frequency 

– Stopband rejection

– Passband gain

• Phase characteristics:

– Group delay

• SNR (Dynamic range)

• SNDR (Signal to Noise+Distortion ratio)

• Linearity measures: IM3 (intermodulation distortion), HD3 
(harmonic distortion), IIP3 or OIP3 (Input-referred or output-
referred third order intercept point)

• Area/pole & Power/pole
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Filters

• Filters: 

– Nomenclature

– Specifications
• Magnitude/phase response versus frequency characteristics

• Quality factor

• Group delay

– Filter types
• Butterworth

• Chebyshev I & II

• Elliptic

• Bessel

– Group delay comparison example

– Biquads
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Quality Factor (Q)

• The term quality factor (Q) has different 

definitions in different contexts:

–Component quality factor (inductor & 

capacitor Q)

–Pole quality factor

–Bandpass filter quality factor

• Next 3 slides clarifies each
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Component Quality Factor (Q)

• For any component with a transfer function:

• Quality factor is defined as:

 
   

 
 
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per uni t t ime

Average Power Dissipat ion
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





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Component Quality Factor (Q) 

Inductor & Capacitor Quality Factor

• Inductor Q :

Rs series parasitic resistance

• Capacitor Q :

Rp parallel parasitic resistance

Rs
L

s s
L L
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Pole Quality Factor

x

x

j



P

p
Pol e

x

Q   
2






s-Plane• Typically filter 

singularities include 

pairs of complex 

conjugate poles.

• Quality factor of 

complex conjugate 

poles are defined as:
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Bandpass Filter Quality Factor (Q) 
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Filters

• Filters: 

– Nomenclature

– Specifications
• Magnitude/phase response versus frequency characteristics

• Quality factor

• Group delay

– Filter types
• Butterworth

• Chebyshev I & II

• Elliptic

• Bessel

– Group delay comparison example

– Biquads

EECS 247                                                 Lecture 2:  Filters © 2010  Page 12

• Consider a continuous-time filter with s-domain transfer function G(s):

• Let us apply a signal to the filter input composed of sum of two sine 

waves at slightly different frequencies (D):

• The filter output is:

What is Group Delay?

vIN(t) = A1sin(t) + A2sin[(+D) t]

G(j)   G(j)e
j()

vOUT(t) = A1 G(j) sin[t+()] + 

A2 G[ j(+D)] sin[(+D)t+ (+D)]
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What is Group Delay?

{ ]}[vOUT(t) = A1 G(j) sin  t + 
()

 +

{ ]}[+ A2 G[ j(+D)] sin (+D) t +
(+D)

+D

(+D)

+D
 ()+

d()

d
D[ ][

1

 )( ]1 -
D



d()

d

()

 +
()

-( ) D




D

 <<1Since                  then D

 0[ ]
2
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What is Group Delay?

Signal Magnitude and Phase Impairment

{ ]}[vOUT(t) = A1 G(j) sin  t + 
()

 +

{ ]}[+ A2 G[ j(+D)]sin (+D) t +
d()

d

()

 +
()

-( )D



• PD  -()/ is called the “phase delay” and has units of time

• If the delay term d is zero the filter’s output at frequency +D and the 
output at frequency  are each delayed in time by -()/

• If the term d is non-zerothe filter’s output at frequency +D is time-
shifted differently than the filter’s output at frequency 

 “Phase distortion”

d
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• Phase distortion is avoided only if:

• Clearly, if ()=k, k a constant,  no phase distortion

• This type of filter phase response is called “linear phase”

Phase shift varies linearly with frequency

• GR  -d()/d is called the “group delay” and also has units of 

time. For a linear phase filter GR  PD =-k 

 GR= PD implies linear phase

• Note: Filters with ()=k+c are also called linear phase filters, but 

they’re not free of phase distortion

What is Group Delay?

Signal Magnitude and Phase Impairment

d()

d

()

- = 0
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What is Group Delay?

Signal Magnitude and Phase Impairment

• If GR= PD  No phase distortion

[ )](vOUT(t) = A1 G(j) sin  t - GR +

[+ A2 G[ j(+D)] sin (+D) )]( t - GR

• If  alsoG( j)=G[ j(+D)] for all input frequencies within 

the signal-band, vOUT is a scaled, time-shifted replica of the 

input, with no “signal magnitude distortion” 

• In most cases neither of these conditions are exactly realizable
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• Phase delay is defined as:

PD  -()/ [ time]

• Group delay is defined as :

GR  -d()/d [time]

• If ()=k, k a constant,  no phase distortion

• For a linear phase filter GR  PD =-k

Summary

Group Delay
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Filters

• Filters: 
– Nomenclature

– Specifications 
• Magnitude/phase response versus frequency characteristics

• Quality factor

• Group delay

– Filter types (examples considered all lowpass, the 
highpass and bandpass versions similar characteristics)

• Butterworth

• Chebyshev I & II

• Elliptic

• Bessel

– Group delay comparison example

– Biquads
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Filter Types wrt Frequency Response

Lowpass Butterworth Filter

• Maximally flat amplitude within 

the filter passband

• Moderate phase distortion
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Lowpass Butterworth Filter

• All poles

• Number of poles equal to filter 

order

• Poles located on the unit 

circle with equal angles

s-plane

j



Example: 5th Order Butterworth Filter

pole
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Filter Types 

Chebyshev I Lowpass Filter

• Chebyshev I filter

– Ripple in the passband

– Sharper transition band 

compared to Butterworth (for 

the same number of poles)

– Poorer group delay 

compared to Butterworth

– More ripple in passband 

poorer phase response
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Chebyshev I Lowpass Filter Characteristics

• All poles

• Poles located on an ellipse inside 

the unit circle

• Allowing more ripple in the 

passband:

_Narrower transition band

_Sharper cut-off

_Higher pole Q

_Poorer phase response

Example: 5th Order Chebyshev I Filter

s-plane
j



Chebyshev I LPF  3dB passband ripple

Chebyshev I LPF 0.1dB passband ripple



EECS 247                                                 Lecture 2:  Filters © 2010  Page 23
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Filter Types 

Chebyshev II Lowpass

• Chebyshev II filter

– No ripple in passband

– Nulls or notches in 

stopband

– Sharper transition band 

compared to 

Butterworth

– Passband phase more 

linear compared to 

Chebyshev I

Example: 5th Order Chebyshev II filter

EECS 247                                                 Lecture 2:  Filters © 2010  Page 24

Filter Types 

Chebyshev II Lowpass

Example: 

5th Order 

Chebyshev II Filter

s-plane

j



• Poles & finite zeros

– No. of poles n             

(n  filter order)

– No. of finite zeros: n-1

• Poles located both inside 

& outside of the unit circle

• Complex conjugate zeros 

located on j axis

• Zeros create nulls in 

stopband pole

zero
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Filter Types 

Elliptic Lowpass Filter

• Elliptic filter

– Ripple in passband

– Nulls in the stopband

– Sharper transition band 

compared to Butterworth & 

both Chebyshevs

– Poorest phase response

M
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Example: 5th Order Elliptic filter
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Filter Types 

Elliptic Lowpass Filter

Example: 5th Order Elliptic Filter

s-plane

j



• Poles & finite zeros

– No. of poles: n

– No. of finite zeros: n-1

• Zeros located on j axis

• Sharp cut-off

_Narrower transition 

band

_Pole Q higher 

compared to the 

previous filter types Pole

Zero
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Filter Types

Bessel Lowpass Filter

s-planej



• Bessel

–All poles

–Poles outside unit circle

–Relatively low Q poles 

–Maximally flat group delay

–Poor out-of-band attenuation

Example: 5th Order Bessel filter

Pole
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Magnitude Response Behavior

as a Function of Filter Order

Example: Bessel Filter
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Filter Types 

Comparison of Various Type LPF Magnitude Response
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Filter Types 

Comparison of Various LPF Singularities

s-plane

j



Poles Bessel

Poles Butterworth

Poles Elliptic

Zeros Elliptic

Poles Chebyshev I 0.1dB
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Comparison of Various LPF Groupdelay

Bessel

Butterworth

Chebyshev I 

0.5dB Passband Ripple

Ref: A. Zverev, Handbook of filter synthesis, Wiley, 1967.
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Filters

• Filters: 

– Nomenclature

– Specifications
• Magnitude/phase response versus frequency characteristics

• Quality factor

• Group delay

– Filter types
• Butterworth

• Chebyshev I & II

• Elliptic

• Bessel

– Group delay comparison example

– Biquads
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Group Delay Comparison 

Example

• Lowpass filter with 100kHz corner frequency

• Chebyshev I versus Bessel

– Both filters 4th order- same -3dB point

– Passband ripple of 1dB allowed for Chebyshev I
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Magnitude Response
4th Order Chebyshev I versus Bessel
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Phase Response

4th Order Chebyshev I versus Bessel
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Group Delay

4th Order Chebyshev I versus Bessel
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Step Response

4th Order Chebyshev I versus Bessel
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Intersymbol Interference (ISI)

ISI Broadening of pulses resulting in interference between successive transmitted 

pulses

Example: Simple RC filter
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Pulse Impairment

Bessel versus Chebyshev
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x 10
-4

-1.5

-1

-0.5

0

0.5

1

1.5

4th order Bessel 4th order Chebyshev I

Note that in the case of the Chebyshev filter not only the pulse has broadened but it 

also has a long tail

More ISI for Chebyshev compared to Bessel
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Input Signal: 

Symbol rate 1/130kHz 
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Summary

Filter Types

– Filter types with high signal attenuation per pole   _ poor phase 

response

– For a given signal attenuation, requirement of preserving constant 

groupdelay Higher order filter

• In the case of passive filters  _ higher component count

• For integrated active filters    _ higher chip area & 

power dissipation

– In cases where filter is followed by ADC and DSP

• In some cases possible to digitally correct for phase impairments 

incurred by the analog circuitry by using digital phase equalizers & 

thus possible to reduce the required analog filter order
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Filters

• Filters: 

– Nomenclature

– Specifications
• Magnitude/phase response versus frequency characteristics

• Quality factor

• Group delay

– Filter types
• Butterworth

• Chebyshev I & II

• Elliptic

• Bessel

– Group delay comparison example

– Biquads
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RLC Filters

• Bandpass filter (2nd order):

Singularities: Pair of complex conjugate poles 

Zeros @  f=0 &  f=inf.

o

s
o RC

2 2in oQ

o

o
o

V
V s s

1 LC

RQ RC
L

 







 



 

oVR

CLinV

j



s-Plane
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RLC Filters

Example

• Design a bandpass filter with:

 Center frequency of 1kHz

 Filter quality factor of 20 

• First assume the inductor is ideal

• Next consider the case where the inductor has series R 

resulting in a finite inductor Q of 40

• What is the effect of finite inductor Q on the overall filter 

Q?

oVR

CLinV
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RLC Filters

Effect of Finite Component  Q

idealfi l t ind.
f i l t

1 1 1
Q QQ

 
Qfilt.=20 (ideal L)

Qfilt. =13.3 (QL.=40)

Need to have component Q much higher 

compared to desired filter Q
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RLC Filters

Question:

Can RLC filters be integrated on-chip?

oVR

CLinV



EECS 247                                                 Lecture 2:  Filters © 2010  Page 47

Monolithic Spiral Inductors

Top View
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Monolithic Inductors

Feasible Quality Factor & Value

Ref: “Radio Frequency Filters”, Lawrence Larson; Mead workshop presentation 1999

c Feasible monolithic inductor in CMOS tech. <10nH  with Q <7

Typically, on-chip 

inductors built as 

spiral structures out 

of metal/s layers

QL  L/R)

QL measured at 

frequencies of 

operation ( >1GHz)
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Integrated Filters

• Implementation of RLC filters in CMOS technologies requires on-
chip inductors

– Integrated L<10nH  with Q<10 

– Combined with max. cap. 20pF

 LC filters in the monolithic form feasible: freq>350MHz 

 (Learn more in EE242 & RF circuit courses)

• Analog/Digital interface circuitry require fully integrated filters with 
critical frequencies << 350MHz

• Hence:

c Need to build active filters without using inductors
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Filters
2nd Order Transfer Functions (Biquads)

• Biquadratic (2nd order) transfer function:
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Biquad Complex Poles

Distance from origin in s-plane:
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