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Abstract – The concept of the PML is used to 
construct a novel, anisotropic, absorber for acoustic 
scattering FDTD simulations in lossy media. 
Overcoming the original PML lossless profile, it is 
proved that by a proper selection of additional 
attenuation parameters in a stretched coordinate 
system a theoretically zero reflection can be achieved, 
independently of frequency and incident angle. 
Numerical results – addressing several open-region 
problems of acoustic propagation and scattering in 
ordinary media – verify the efficiency of the proposed 
algorithm, and the accuracy of the computations. 
 

I. INTRODUCTION 
 

 The last years the Finite-Difference Time-Domain 
(FDTD) method has been widely used for the proper 
simulation of numerous problems not only in 
electromagnetics, but also in acoustics. This method 
was found invaluable along with the enforcement of 
the absorbing boundary conditions (ABCs), which 
enabled the method’s usage in all open-boundary 
problems, as it is necessary for the last to be 
computationally restricted. That is, the propagating 
waves can be absorbed without reflections and thus 
the FDTD simulation can be efficient. 
 Many techniques have been proposed in order to 
accomplish as better absorption as possible. In this 
way, J.-P. Berenger suggested the perfectly matched 
layer (PML), an artificial anisotropic lossy material, 
which encloses the space of interest, and has been 
proved to be a very effective ABC [1]. It was also 
found useful in acoustics and employed in many 
problems with impressive results [2]-[4]. 
 Despite all the advantages, the PML was firstly 
designed to cover only lossless propagation media, 
and hence it was insufficient in lossy cases. This is of 
great importance in acoustics as losses must be 
seriously considered in most media. There have been 
efforts to improve PML and adjust it to absorb 

travelling waves in lossy materials. Among them, a 
generalized form, which relies on the assumption of 
additional attenuation coefficients in a stretched 
coordinate system, has been presented [5], [6]. 
   In this paper, a FDTD-PML technique is 
implemented in acoustic scattering to accomplish the 
desirable dissipation of propagating waves at the 
truncation boundaries. The acoustic equations are 
considered and the reflection factor of an incident 
plane wave striking a lossy medium-PML interface is 
imposed to be zero for all frequencies and angles of 
incidence. The proper general PML equations are 
derived in such a way that can be easily enforced in 
both lossless and lossy media after slight modification 
of their parameters. This is verified by several 
numerical experiments, which show the capabilities 
of the proposed PMLs as well as their high efficiency 
in the absorption of travelling waves. 
 

ΙΙ. THE PML IN STRETCHED COORDINATES  
AND ITS DISCRETIZED FORM  

 
 In the general case of a homogeneous, lossy fluid 
medium, the pressure-velocity acoustic equations are 

 s tp aρ ∗∇ = − ⋅∂ − ⋅u u  (1) 

 s t p a pκ∇ ⋅ = − ⋅∂ − ⋅u  (2) 

where p is the pressure and u the vector of the sound 
velocity in the fluid, respectively. The coefficients ρ, 
κ and a symbolize the mass density, the 
compressibility and the compressibility attenuation of 
the medium, respectively. The coefficient a* is a 
nonphysical attenuation parameter, which is generally 
zero for the acoustic media. The velocity of the sound 
in the medium is given by the expression 

2/1)( −= κρc . The ∇s tensor indicates the 
implementation of a stretched system in Cartesian 
coordinates that is subsequently described by  



 
Figure 1: Oblique incidence of the acoustic wave. 
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 If all stretching coefficients are set equal to unity 
i.e. sx = sy = sz = 1, analysis turns to that of the 
ordinary lossless acoustic material. In the frequency 
domain, for acoustic waves of angular frequency ω, 
(1) and (2) can be written as  

 ( )s p j a jωρ ωρ∗ ′∇ = − − = −u u  (3) 

 ( )s j a p j pωκ ωκ ′∇ ⋅ = − − = −u  (4) 

where  

 /a jρ ρ ω∗′ = +  ,       /a jκ κ ω′ = +  (5)  

 The main idea of the proposed PML is to split the 
acoustic pressure into two additive components px, py 
and assume the compressibility attenuation a simply 
anisotropic: diag{ , }x ya a a= . That is, the acoustic 
equations in the PML medium can take the form 

 1
2( )x x x y xs p p j uωρ− ′∂ + =−  (6) 

 1
2( )y y x y ys p p j uωρ− ′∂ + =−  (7) 

 1
2x x x xs u j pωκ− ′∂ =−  (8) 

 1
2y y y ys u j pωκ− ′∂ =−  (9) 

 In order to achieve a perfect absorption of the 
incident waves in the PML, the parameters κ2, ρ2, a2, 
a2

* and sx, sy, should be determined in such a way that 
the interface will be reflectionless. For an oblique  

 
Figure 2: The PML at the corner of the domain. 

 
incident angle θ1, as shown in figure 1, plane waves 
propagating in the acoustic medium are considered. 
 Imposing the continuity conditions for pressure 
and the normal component of velocity at the interface 
of the two media – and as no coordinate stretching 
has been chosen towards the y direction (sy = 1) – we 
get κ1 = κ2, ρ1 = ρ2, a1 = α2, a1* = a2*. Thus, the whole 
problem reduces to the choice of sx such that the wave 
that is transmitted within the PML, having passed 
through the normal to the x-axis interface, is further 
attenuated. The coefficient sx, which is generally a 
complex number, can either be one of the forms 
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where s0x, ax, ax
* are functions of x and they will be 

selected properly considering numerical experiments 
as well as bibliography. The sx in (6) is the same as in 
(11), whereas the sx in (8) is that of (10). However, it 
is the same sx and the new matching condition is 

 1 1( )/ ( )/x xa x a xκ ρ∗=  (12) 

So, the parameters κ1, ρ1, a1, a1* are arbitrary, and 
there is no need to satisfy any relation of the form 
a1*/ρ1 = a1/κ1 – the matching condition of the original 
PML – responsible for the limitation of the method 
performing in lossless media only.  
 In the case of an interface, which is normal to the 
y-axis, sx is set equal to unity, whereas sy takes a form 
analogous to that mentioned above. In the corner 
regions, both sx and sy are different from unity, and 
considered to be of such a form. A corner section of 
the FDTD domain is depicted in figure 2. 
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 Replacing (10),(11) in (6)-(9), the PML equations 
can take a new form, with the first of them written as 
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 (13) 

   Such generalized equations are more difficult to be 
discretized, since they involve an additional term of 
the form 1/jω, which in the time domain implies 
temporal integration. The most usual way to tackle 
with this is to introduce proper auxiliary variables. 

 1( )I I
x x t x xu j u u uω −= ⇒ ∂ =  (14) 

The PML equations can now be discretized using a 
proper FDTD scheme and computationally solved at 
every time step. That is, (13) is transformed 
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when (14) becomes 
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III. SIMULATION RESULTS 

 
   Three kinds of problems have been examined with 
the presented technique to show its ability in the 
absorption of acoustic waves and the minimization of 
the reflections caused by the truncation boundaries. 
   The first one concerns the propagation of the 
acoustic waves in a lossless medium. PML absorbers 
of the original form are constructed (sx = sy = 1) to 
enclose the 143×143 domain, at the centre of which a 
Gaussian pulse excitation is considered. The PML 
medium consists of m layers and the parameter of  

 
 

Figure 3: Global error for various PML layers. 
 

     
 

Figure 4: The acoustic pressure before and after 
 wave impingement on the PML absorber. 

 

losses is chosen to be of parabolic variation along 
them in order to accomplish the best absorption. 
Therefore, from the inner to the outer layer the value 
of a increases from zero to amax according to 
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max
1
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m ia i a
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 + − =    ,   ( 1,2,..., )i m=  (17)  

 The maximum value of the attenuation coefficient 
amax has been selected after some computational effort 
estimating the global error. What is more, the great 
ability of the PML is the possibility for further 
reduction of the reflections, by increasing the number 
of the PML layers in the FDTD grid. Figure 3 shows 
the reduction of the global error of the acoustic 
pressure as the number of the PML layers increases.  
   The evolution of the acoustic waves before and 
after their impingement on the medium-PML 
interface is shown in figure 4. It is obvious that the 
propagation of the acoustic waves remains 
unobstructed as if the domain has not been truncated. 



  
 
(a) (b) 

Figure 5: Acoustic pressure calculated via (a) existing 
PML schemes and (b) the proposed technique. 

 

  
 

(a) (b) 
Figure 6: Snapshots of acoustic scattering in the case 
of a (a) two-media interface and (b) square scatterer.  

 
 However, usual PMLs do not work satisfyingly 
when the propagation medium is lossy, which usually 
occurs in acoustics. In figure 5(a), it is apparent that 
significant reflections can be caused at the truncation 
boundaries when losses are considered. To overcome 
this, the stretched coordinate system is assumed (sx, sy 

≠ 1) and s0x, s0y are set equal to unity while ax, ay are 
given by (17). The acoustic wave propagation in a 
lossy medium with a0 = 3.212∗10-4 m2Nt-1sec-1 and a0

* 

= 0, is simulated for the same FDTD grid, the same 
number of PML layers with maximum attenuation 
coefficient amax = 3.212∗10-3 m2Nt-1sec-1 and the same 
excitation. Figure 5(b) presents how the modified 
PML worked in this case as the reflections observed 
in figure 5(a) are completely suppressed and the 
acoustic field is no more distorted. 
   The behavior of the PML is further studied in 
acoustic scattering from an interface of two different 
lossy media and an obstacle of square cross-section 
existing into the medium of propagation. The 
interface is placed at the 50th column of the FDTD 
grid, when the 20×20 cells scatterer placed on the left 

side of an identical FDTD grid. The scattering 
acoustic field is presented for both cases in figures 
6(a) and 6(b) respectively, which indicate high 
absorption of travelling waves and verify the 
usefulness of our method as an ABC. 
 

IV. CONCLUSIONS 
 

 The development of an efficient PML absorption 
technique in open-problems of acoustic scattering in 
lossy media is presented in this paper. It has been 
proved that zero reflections can occur in such a case, 
while numerical results verify the theoretical 
prescripts, creating new aspirations for the precise 
simulations in the field of acoustic propagation.   
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