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Abstract

We consider the design of high-speed continuous-time delta-sigma modulators for analog-to-

digital conversion. Many of the nonidealities that affect performance in discrete-time modulators

do likewise in continuous-time modulators, yet there are three additional important considerations

unique to continuous-time modulators. The first, excess loop delay, is the time delay between the

quantizer clock and the output of the feedback, which affects stability and dynamic range; its ef-

fect can be reduced by employing return-to-zero-style DACsand feedback coefficient tuning. The

second, clock jitter, whitens the output spectrum in the quantization noise notch and lowers SNR;

a carefully-designed VCO will alleviate its effects for allbut very wideband or high-resolution

modulators. The third, quantizer metastability, also whitens the output spectrum and lowers SNR;

it is essential to use a three half-latch quantizer over a simple master/slave design to provide extra

regeneration, and even then it is best not to clock faster than about 5% of maximum transistor

switching speed. A design procedure is given for band pass modulators whose intended appli-

cation is conversion of analog signals at one quarter of the sampling frequency, and a fabricated

4GHz modulator for 1GHz signal conversion is simulated, tested, and redesigned to improve its

performance from 6 bits to 10 bits. Finally, the appropriateness of high-speed continuous-time

delta-sigma modulation is considered for various applications.
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Chapter 1

Introduction

1.1 Motivation

The late 1990s will perhaps be remembered as the start of the “system on a chip”-style of design

and manufacturing: those engaged in building products for certain markets, cellular radio being a

major one, are keen to cut costs and therefore gain a competitive edge by integrating all system

functions onto a single substrate with as few external components as possible. This task is made

much easier if analog signals, which is how any real-world quantity must inevitably be represented,

are converted to digital form for on-chip processing. This helps in two main ways: digital signals

are less susceptible to corruption by circuit noise and process variations, and more digital signal

processing circuitry can be integrated into the same die area than analog circuitry. Thus, it is

clear that analog-to-digital converter (ADC) circuits play an important role in modern integrated

systems.

The three main performance measures of an ADC are its resolution (usually number of bits), its

speed (how many conversions it does per second), and its power consumption, where customarily

it is desired that the first two of these be maximized and the third minimized. There are many

different styles of circuit that perform ADC; one particular style that has received a good deal of

attention in the last fifteen years is the delta-sigma modulator (DSM or ∆ΣM) [Nor97]. These

circuits have found their niche in applications requiring very high resolution at low speeds (e.g., 20

1



2 Chapter 1: Introduction

bits at 500Hz [Tho94]) and audio converters (16 or more bits at 44kHz [Kwa96]), and they often

work with very modest power budgets (2.3mW for an audio coder[vdZ97]). It is fair to say that

for high resolution and/or low power at fairly low speeds (upto a few hundred kHz), delta-sigma

modulation is the best ADC architecture choice.

The vast majority of∆ΣMs have been built with discrete-time (DT) circuitry, very often

switched-capacitor circuits. If circuit waveforms are to be allowed adequate settling time, the

speed at which DT circuits are clocked must be restricted. These restrictions can be relaxed by

employing continuous-time (CT) circuitry in place of DT circuitry. We noted last paragraph that

DT ∆ΣMs already enjoy resolution and power advantages over otherstyles of ADC; perhaps CT

∆ΣMs could retain these advantages while operating at higher speeds? This question has been

given increasing attention in the last few years as the need for high-resolution ADC at ever-higher

speeds grows.

It is this same question that we address in this thesis. We shall see that the practice of building

CT ∆ΣMs for high-speed conversion has proved more difficult than anticipated—they operate

correctly, but they achieve lower resolution than their lower-speed counterparts. We study the

reasons for this in the present work. Past work has identifiedsome of the problems in specific

architectures, but here we generalize these results to manyarchitectures, explore the effect of some

previously unidentified nonidealities, and explain as muchas possible about what can be done to

overcome their effects. Where feasible, we give simple formulas for prediction of performance

limits. This thesis contains a moderate amount of emphasis on theory, but every effort is made to

tie the theory to practice. This is made easier because we have an actual high-speed part to test.

1.2 Contributions

The introductory chapters of this thesis present summariesof the published literature in the fol-

lowing subjects:

• ∆ΣM performance measurement;

• a∆ΣM nonideality literature survey;
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• a CT∆ΣM literature survey.

The first and third of these are not summarized elsewhere to the author’s knowledge and so are use-

ful overviews, while the second is discussed in [Nor97, Chap. 11] for DT modulators but extended

here for CT modulators. Thereafter follows the original material listed here.

1. The phenomenon of “excess loop delay” in∆ΣMs has been identified as an important non-

ideality in past work, though the study has been scattered among several papers. Here, we

collect all the information into one place, use an improved mathematical technique, and

apply it to previously-unstudied circuit architectures.

2. The effect of clocking a CT∆ΣM with an on-chip VCO having a certain phase noise speci-

fication is quantified for the first time.

3. A new method of system identification is proposed and illustrated for CT∆ΣMs.

4. Quantizer metastability is identified as a mechanism of performance loss in CT∆ΣMs and

its effect characterized.

5. The tradeoffs and parameter selection criteria in the design of fs/4 fourth-order band pass

modulators are outlined and an explicit design procedure formulated.

6. Simulation and measurement results are presented on a fabricated fourth-order band pass

modulator with a 4GHz clock. As well, design improvements which appear to better the

performance significantly are suggested.

There are also many illustrative examples throughout the following chapters that clarify the con-

cepts presented.

1.3 Organization

Chapter 2 introduces the concept of delta-sigma modulation, lists some of the fundamental mod-

ulator design choices, explains how modulator performanceis measured, and briefly discusses

time-domain simulation of∆ΣMs.
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Chapter 3 summarizes some issues surrounding the implementation of∆ΣMs. We survey the

literature that characterizes the effect of certain nonidealities in DT∆ΣMs and explain how these

apply to CT∆ΣMs, then we list and briefly describe the important papers in CT ∆ΣM. Finally, a

summary of the performance achieved in published high-speed CT ∆ΣMs is given.

Chapter 4 is about excess loop delay in CT∆ΣMs, which is delay between the clock edge and

the effect of the output bit as seen at the feedback. We first expound on the equivalence between

ideal DT and CT modulators, then explain what loop delay doesto this equivalence, illustrating

the performance lost in different modulator orders and architectures. As well, we look at methods

for overcoming this performance loss.

Chapter 5 characterizes the effect of quantizer clock jitter on idealCT ∆ΣM performance and

looks at the effect of clocking a CT∆ΣM with a practical integrated VCO with a given phase noise

characteristic.

Chapter 6 analyzes quantizer metastability and its effect on high-speed CT∆ΣMs and proposes

what can be done to alleviate the performance loss it causes.

Chapter 7 presents design guidelines, analysis, simulation results, and test results for a fourth-

order 4GHz band pass∆ΣM fabricated with SiGe HBTs for conversion of narrowband 1GHz

analog signals to digital. We also redesign key portions of the modulator and estimate the perfor-

mance improvement that would result.

Chapter 8 concludes the thesis with a discussion of the appropriateness of CT∆ΣM for appli-

cations requiring high-speed ADC and makes recommendations for future work.



Chapter 2

∆ΣM Concepts

In this chapter we explain what a delta-sigma modulator is and how it can be used for analog-to-

digital conversion along with some of the basic design choices in∆ΣM design. We move on to

how the performance of a∆ΣM is measured. Finally, we discuss some aspects of the time-domain

simulation of∆ΣMs, distinguishing discrete-time modulator simulation from continuous-time.

2.1 A Brief Introduction to ∆ΣM

An overview of the∆ΣM concepts relevant for this work will be presented here. If it seems too

cursory, the reader may turn to any of a number of excellent summary articles [Hau91, Can92b,

Azi96, Can97] for a more detailed treatment.

2.1.1 Operating Principles

A ∆ΣM ADC has three important components, depicted in Figure 2.1:

1. A loop filter or loop transfer functionH(z)

2. A clocked quantizer

3. A feedback digital-to-analog converter (DAC)

5
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f s

H(z)

DAC

-
Σ

x
u y

Figure 2.1: Basic components of a∆ΣM for ADC.

The quantizer is a strongly-nonlinear circuit in an otherwise linear system, which makes the behav-

ior of ∆ΣMs very complicated to investigate analytically [Gra90]. The basic idea of∆Σ modula-

tion is that the analog input signal is modulated into a digital word sequence with a spectrum that

approximates that of the analog input well in a narrow frequency range and has the quantization

noise “shaped” away from this range. An intuitive qualitative understanding of how this happens

can be had bylinearizingthe circuit as shown in Figure 2.2. The quantizer is replacedby an adder

Σ ΣH(z)

DAC

-

x
u y

e

Figure 2.2: Linearizing the quantizer in a∆ΣM.

and we pretend that the quantization noise is “generated” byan inpute which is independent of the

circuit inputu. The outputy may now be written in terms of the two inputsu ande as

Y (z) =
H(z)

1 + H(z)
U(z) +

1

1 + H(z)
E(z) (2.1)

= STF(z) · U(z) + NTF(z) · E(z) (2.2)

where STF(z) and NTF(z) are the so-calledsignal transfer functionandnoise transfer function.

From (2.1) we see that the poles ofH(z) become the zeros of NTF(z), and that for any frequency
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Figure 2.3: STF(z) and NTF(z) for circuit of Example 2.1.

whereH(z) ≫ 1,

Y (z) ≈ U(z).

In other words, the output resembles the input most closely at frequencies where the gain ofH(z)

is large.

Example 2.1: Consider the system of Figure 2.1 with a simple integratorH(z) =

1/(z − 1) as the loop filter and a one-bit quantizer which produces output bits with

values±1. From (2.1) we can calculate

STF(z) = z−1, NTF(z) = 1 − z−1. (2.3)

These are depicted graphically in Figure 2.3 withz = exp(j2πfTs). We haveH(z) →
∞ at dc (i.e., atf = 0), which means input signals near dc should be reproduced

faithfully in the output bit stream. In fact,|STF(z)| = 1 everywhere, so we at least

expect themagnitudeof an input at any frequency to be reproduced at the output. As

well, NTF(z) → 0 at dc, and it increases away from dc; hence, the quantizationnoise

is “shaped away from dc”.

If we implement the system mathematically, simulate it in Matlab, and look at the

power spectrum of the output bit stream, we obtain the plot shown in Figure 2.4. In
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Figure 2.4: Simulated output bit stream power spectrum.

this example, the input tone had an amplitude of 0.434V and a frequency of(8.545 ×
10−3)fs. Relative to the output levels of±1, we expect, and observe, an output signal

power of20 log10(0.434/
√

2) = −10.2dB. The quantization noise spectrum follows

NTF(z) qualitatively at least, going to zero at dc and increasing away from dc, but it

clearly contains tones spaced at an interval related to the input frequency. The usual

assumption when linearizing the quantizer as in (2.1) is that the quantization noise

spectrum is white, as well as uncorrelated with the input; while the former is often true,

the latter is never exactly true though the correlation is often so complex as to be all

but impossible to determine. The linearization is thus not really valid, but it often gives

correct qualitative predictions of modulator performance. However, we usually require

quantitativeaccuracy, and thus for the most part we eschew linearizationthroughout

this thesis. 2

Note what is implied in this example: the quantization noiseis reduced only in a small band-

width, that is, a bandwidth much smaller than the sampling frequencyfs. If we wish to obtain high
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converter resolution, then the signal must be bandlimited to a value much smaller thanfs. This

means that for a signal with Nyquist ratefN , we requirefN ≪ fs, which is the same as saying

we must sample muchfasterthan the Nyquist rate.∆ΣMs, therefore, are so-calledoversampled

converters, with anoversampling ratiodefined as

OSR≡ fs/fN . (2.4)

How is the high-speed low-resolution quantizer output converted to multibit output samples at

the Nyquist rate? A complete block diagram of a∆ΣM ADC is shown in Figure 2.5; it includes

f s

f s/8f N /2 f N /2

H(z)

DAC

-
Σ

x
u y Decimator

Figure 2.5: Complete∆ΣM ADC block diagram including decimator.

a modulator followed by a circuit called adecimator. The decimator’s purpose is twofold: it

decimates, i.e., reduces in frequency, the high-rate bit streamand removes everything outside the

desired band with a filter. Typical time domain and frequencydomain waveforms at the modulator

and decimator outputs are shown in the figure.

We do not go into detail regarding the design of the decimator, instead preferring to concentrate

on designing a∆ΣM to obtain an output bit stream with desirable properties. Decimator design

is reasonably well-understood and is covered in [Can92a]. As is customarily done in work about

∆ΣM, we shall assume that the modulator output is filtered by a brick-wall filter with a gain of 1

in the signal band and 0 elsewhere.

2.1.2 Design Choices

There is a myriad of design choices for∆ΣMs. Very briefly, the major ones are listed and described

here.
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Order of H(z) and oversampling ratio

Example 2.1 featured a single integrator, a first-order transfer function, forH(z). In general, the

order ofH(z) (which must be strictly proper to ensure causality) is the maximum power ofz in

the denominator. It is possible to use a second-, third-, or even higher-orderH(z) as a loop filter;

generally, a converter of orderm is built as a cascade ofm integrators usually surrounded with

feedforward and feedback coefficients [Cha90] as depicted in Figure 2.6.

Σu(t) Σ

B1

1
z-1

Σ
x(t)

k1

1
z-1

1
z-1

B2

km-1km

y(n)

DAC

Bm

Figure 2.6: Generalmth-order low pass∆ΣM structure.

In a given application, the signal bandwidthfN is usually fixed. Sampling faster than the

Nyquist rate isalwaysbeneficial for improving the signal-to-noise ratio (SNR) inan ADC because

the quantization noise inside the signal band is reduced by 3dB per octave of oversampling; in an

order-m ∆ΣM, this improvement can be shown to be6m + 3dB/oct [Can92b] because the noise

is shaped by the loop filter. Thus, a high-order modulator is desirable because of the huge increase

in converter dynamic range (DR) obtained from each doublingof the OSR.

Not surprisingly, using a high-order modulator has drawbacks. First, the stability of the overall

system withH(z) above order two becomes conditional: input signals whose amplitudes are below

but close to full scale (to be defined later) can cause overload at the output of the integrators closer

to the quantizer, which degrades DR [Sch93]. As well, the placement of the poles and zeros of

H(z) becomes a complicated problem, though many solutions have been proposed in the literature

(e.g., [Ris94] among others). Furthermore, the technologyin which the circuit is implemented and

the circuit architecture itself will limit the maximum-achievable sampling rate and hence, from

(2.4), the OSR. Finally, the design of the decimator increases in complexity and area for larger
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oversampling ratios. Typical values of OSR lie in the range 32–256, though circuits with OSRs

outside this range have been fabricated [Bai96, Nys96].

Quantizer resolution

It is possible to replace the single-bit quantizer of Example 2.1 with a multibit quantizer, e.g., a

flash converter [Ada86]. This has two major benefits: it improves overall∆ΣM resolution and it

tends to make higher-order modulators more stable. Furthermore, nonidealities in the quantizer

(e.g., slightly misplaced levels or hysteresis) don’t degrade performance much because the quan-

tizer is preceded by several high-gain integrators, hence the input-referred error is small [Hau86].

Its two major drawbacks are the increase in complexity of a multibit vs. a one-bit quantizer, and

that the feedback DAC nonidealities are directly input-referred so that a slight error in one DAC

level corrupts converter performance greatly. There existmethods to compensate for multibit DAC

level errors (e.g., [Gal96], [Lar88]). These aren’t neededin a single-bit design because one-bit

quantizers are inherently linear [Sch93].

Low pass vs. band pass

Integrators have poles at dc, and hence buildingH(z) from integrators will shape noise away from

dc. ∆ΣMs where the quantization noise has a high pass shape are built with low pass loop filters

and hence are denotedlow pass(LP) converters. If we were to buildH(z) out of resonators, the

noise would tend to be shaped away from the resonant frequency. The quantization noise then has

a band stop shape because the loop filter is band pass, and the resulting∆ΣMs are calledband pass

(BP) converters [Sch91]. A common type of band pass converter is built starting with a low pass

H(z) and performing the substitutionz−1 → −z−2; this produces a converter with noise shaped

away fromfs/4 with identical stability properties performance as the lowpass prototype, though

the order is doubled [Sho96].

A typical application of such a converter is the conversion of an RF or IF signal to digital for

processing and heterodyning in the digital domain, as depicted in Figure 2.7. The spectrum at the

output of the converter is shown in the figure—the quantization noise is large everywhere except
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Figure 2.7: Typical radio receiver application for a band pass∆ΣM.

in a narrow band near 1GHz. Mixing to baseband digitally for Iand Q channel recovery becomes

particularly easy when the sampling frequency is chosen to be four times the input signal frequency

because sine and cosine are sequences involving only±1 and 0, so simple digital logic can replace a

complicated multiplier circuit. In general, the ability ofa∆ΣM to perform narrowband conversion

at a frequency other than dc makes them particularly attractive for radio applications; furthermore,

CT ∆ΣMs can be made fast enough to allow conversion of signals intothe hundreds of MHz and

beyond1.

OSR for BP converters is defined as half the sampling frequency divided by the bandwidth of

interest [Nor97, Chap. 9]; thus, anfs/4 converter with a signal occupying the frequency range

(fs/4 − fs/32, fs/4 + fs/32) has a bandwidth offs/16, and hence OSR= 8.

Discrete- vs. continuous-time

We have been writing the loop transfer functionH(z) in the discrete-time (DT) domain. The

majority of ∆ΣMs in the literature are implemented as discrete-time circuits such as switched-

1This is not the only possible architecture: we might digitize directly at the RF rather than at the IF, although the

noise figure of the∆ΣM might be too high to achieve the desired system dynamic range. We might also mix more

than once prior to the modulator.



Chapter 2:∆ΣM Concepts 13

capacitor (SC) [Bai96] or switched-current (SI) [Ned95] circuits. It is possible to build the loop

filter as acontinuous-time(CT) circuit Ĥ(s), for example with transconductors and integrators

[Jen95]. It is this kind of circuit in which we are interestedin this thesis for it will usually be

possible to clock a CT∆ΣM at a much higher rate than an SC or SI design in the same technology.

Single stage vs. multi-stage

Many modulators employ a single quantizer with multiple feedback loops leading to various points

inside the forward modulator path, and these are calledmultiloop∆ΣMs. It is possible to build

stable high-order modulators out of two or more low-order modulators where later modulators’

inputs are thequantization noisefrom previous stages. Such∆ΣMs are calledmultistage; they

were originally dubbed “MASH” structures, where MASH is an acronym deriving somehow from

Multistage Noise-Shaping [Hay86]. In Figure 2.8, a first-order modulator’s quantization noise is

Σ Σ
1-z-1

1

DAC z-1

Σ Σ
1-z-1

1

DAC z-1

Σ

E1

Y1

-E1
-11-z

Σ

-

E

Y

2

2

-

-

U Y

Figure 2.8: A multistage∆ΣM.

shaped by another first-order modulator:

Y1 = U + (1 − z−1)E1

Y2 = −E1 + (1 − z−1)E2.

WhenY2 is differentiated and added toY1, we find

Y = Y1 + (1 − z−1)Y2



14 Chapter 2:∆ΣM Concepts

= U + (1 − z−1)E1 − (1 − z−1)E1 + (1 − z−1)2E2

= U + (1 − z−1)2E2. (2.5)

Thus, the first-order noise is canceled in the output and the modulator achieves second-order quan-

tization noise shaping. In principle, this can be extended to mth order noise shaping while pre-

serving unconditional stability since each first-order∆ΣM is unconditionally stable. In practice,

mismatches between components in the stages result in imperfect noise cancellation [Mat87].

To the author’s knowledge, all published MASH∆ΣMs to date have been DT. It is possible to

do CT MASH, but the only place it is discussed is [Nor97, Chap.6]. As such, we will consider

only single-stage modulators in this thesis.

2.2 Performance Measures

We have mentioned certain A/D converter performance measures such as dynamic range and

signal-to-noise ratio, but we have yet to explain how to determine them for a∆ΣM. This sec-

tion does just that by combining information from a literature survey about the subject with the

author’s practical experience.

2.2.1 Power Spectrum Estimation

A ∆ΣM is a noise-shaping converter: the quantization noise is shaped away from the desired

frequency band. We are thus interested in the frequency domain representation of the time domain

output bits. More specifically, we care about the power spectrum of the output bits. The most

common tool for finding power spectra is the discrete Fouriertransform or DFT.

Suppose we haveN uniformly-sampled data pointsy(n) = ŷ(t)|t=nTs
, n = 0 . . .N − 1,

y(n) ∈ R. We will be using the so-calledperiodogramto estimate the power spectrum ofy(n).

The DFT (which can be afast Fourier transformor FFT whenN is a power of two, which it

frequently is) ofy(n) is given by

Y (n) =
N−1
∑

k=0

y(k)ej2πkn/N , n = 0 . . . N − 1 (2.6)
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and the periodogram is defined as [Pre92]

P (0) =
1

N2
|Y (0)|2

P (n) =
1

N2
[|Y (n)|2 + |Y (N − n)|2], n = 1 . . . (N

2
− 1) (2.7)

P (N/2) =
1

N2
|Y (N/2)|2.

This power spectrum is defined atN/2 + 1 uniformly-spaced frequency points between 0 and the

Nyquist ratefs/2. Thus, each frequencybin is of widthfs/N . An example plot of10 log10 P from

(2.7) was shown in Figure 2.4 in Example 2.1. Evidently,P is rms power: our input had magnitude

−7.2dB and its power in the spectrum is−10.2dB. In this thesis, when we refer to the “spectrum”,

we mean the power spectrum as found from the periodogram.

A periodogram is a discrete representation of the spectrum of a discrete (sampled) signal, but

in the real world power spectra are continuous functions of continuous signals. The discretization

gives rise to two problems in periodograms, the first of whichis usually denotedspectral leakage

or simply leakage, and the second of which relates to uncertainty. We discuss both and how to

alleviate them below.

Leakage and windowing

If there exists a tone in the input signal at a frequency that does not fall exactly in the center of a

frequency bin, then leakage will result: instead of a sharp “spike” in one sepctrum bin, the tone

will become spread over several adjacent bins. This can be understood by realizing that we can

only take the FFT of a finite stretch of data (i.e., at a finite number of points); this is akin to taking

the FFT of an infinite stretch of data multiplied by a rectangular window that is 1 for the duration

of the finite stretch and 0 elsewhere. In the frequency domain, this corresponds to convolving an

infinite power spectrum with the Fourier transform of a rectangle, namely,(sin x)/x. The amount

of leakage is determined by the spectrum of this function.

The severity of leakage may be reduced bywindowingthe data, which means multiplying it by

a windowing functionbefore taking its FFT. This has the effect of convolving the spectrum with a

function other than(sin x)/x. [Har78] lists many examples of windows; in the time domain,they
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Figure 2.9: Effect of windowing: (a) unwindowed output spectrum, (b) windowed output spectrum.

generally peak at 1 near the center of the data and fall to 0 in various ways near the edges. We

prefer to use aHann window(often incorrectly called aHanning window), also called araised

cosinewindow because of the formula that describes it:

w(n) =
1

2

[

1 − cos
(

2πn

N

)]

, n = 0, . . . , N − 1. (2.8)

Example 2.2: In the simulation of∆ΣMs, it is easy (and recommended) to choose

an input sinusoid with a frequency exactly in the center of a bin by making its fre-

quency a multiple offs/N . Thus, leakage from the input tone is not usually problem-

atic. Moreover, discrete tones arising from output limit cycles also usually fall exactly

in the center of frequency bins. One case where they don’t occurs when simulating

a low pass∆ΣM and the mean ofy(n) is nonzero. This creates a dc component in

P (n) and also “misaligns” the output limit cycles such that thereis leakage into all

the low-frequency bins. We shall see that this turns out to give an unfairly-pessimistic

SNR estimate.

Windowing greatly alleviates the problem. Figure 2.9(a) illustrates what happens

whenN = 4096 output bits from a second-order modulator have an average value

of 2/N = −66.2dB: the spectrum near dc flattens out to−63.2dB. Taking that same
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output bit stream and first multiplying it by a Hann window before taking the FFT

yields Figure 2.9(b): now, the noise-shaping behavior is clearly evident down to dc.

The author prefers a Hann window because the input tone only becomes smeared

over its immediately adjacent bin on each side; compare thisto Blackman or Welch

windows, commonly used by other authors, which smear the tone over several adjacent

bins. This is of concern for calculating SNR as we shall see inExample 2.4. 2

Uncertainty and averaging

The second reason why periodograms are inaccurate is as follows: the periodogram at a single

frequencyP (n) is an estimate of a continuous functionP̂ (f) over a frequency rangefs/N centered

at fn. It turns out the estimateP (n) has a standard deviation of100% of the “actual” value.

However, by takingK successive sets ofN output bits, finding the periodogram of each, and

averagingthem, the standard deviation in each frequency bin is reduced by
√

K [Pre92].

Example 2.3: Figure 2.10 is a striking illustration of the effect of averaging on the

output power spectrum of a second-order∆ΣM. The upper-left graph shows the FFT

of N = 4096 output bits; the upper-right graph depicts the average ofK = 4 succes-

sive sets ofN output bits. The following graphs are forK = {16, 256, 1024, 16384};

the graphs become smoother and smoother as the variance in each frequency bin is

reduced. Moreover, the detail of the tones nearfs/2 is enhanced.

To generate the graph forK = 16384 we must calculateN ×K ≈ 67×106 output

bits, and that takes about 12 minutes with a C program on an unloaded 170MHz Sparc

Ultra. We do not usually need that large aK; it was provided merely as an illustration.

256 would certainly suffice for most purposes. 2

2.2.2 Signal to Noise Ratio (SNR)

One of the most important performance measures of a∆ΣM is its signal-to-noise ratio (SNR).

From this we may calculate other important performance measures such as its dynamic range
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Figure 2.10: Effect of averaging on spectrum variance.
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Figure 2.11: Unwindowed averaged periodogram near dc.

(DR) and peak SNR (SNRmax).

To find the SNR in a Nyquist-rate converter, we would divide the signal amplitude by the

integrated noise from 0 tofN/2 [Kes90a], which is the same frequency asfs/2. A ∆ΣM is an

oversampled converter, however, so we do the same calculation over the bandwidth from 0 to

fN/2, which is nowfs/(2 · OSR). As noted earlier, this assumption is the same as having the

modulator followed by a brick-wall low pass filter which cutsoff sharply atfN/2. That being said,

we are about to see that there remain a number of subtleties inthis calculation.

Example 2.4: Consider a 4096-point simulation of a second-order modulator.

With K = 256 averaged periodograms, the spectrum near dc appears as in Figure 2.11.

The input tone is−13dB and it occurs in binb = 45, which is0.01099fs. Let us try to

calculate the SNR for OSR= 32.

We must integrate the noise between 0 andfs/64, which is shown by the dashed

line in Figure 2.11. This corresponds to bin numbers 0 through 4096/64 = 64. Pre-
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sumably, the noise power we’re interested in can be found from

Pn =
64
∑

i=0

P (i) − P (b). (2.9)

However, do we include bin 64 in the calculation, or exclude it? In other words, should

we find the noise for0 ≤ f ≤ fs/64, or 0 ≤ f < fs/64? Moreover, what should we

do about the bin containing the signal? Do we subtract it as in(2.9) and leave it at that,

or perhaps add the geometric mean of the power in the surrounding bins toPn to make

up for the missing bin?

Table 2.1 addresses some of these considerations, as well asthe effect ofK (the

Table 2.1: Comparison of SNR calculation methods. Including the bin atfs/(2 · OSR) lowers SNR by 0.3dB, while

trying to account for the tone bin lowers it further by 0.1dB.

K
63
∑

i=0

P (i) − P (b)

64
∑

i=0

P (i) − P (b)

64
∑

i=0

P (i) − P (b)

+
√

P (b − 1)P (b + 1)

1 50.86, σ = 1.01 50.53, σ = 0.85 50.46, σ = 0.86

4 49.81, σ = 0.62 49.49, σ = 0.62 49.40, σ = 0.60

16 50.03, σ = 0.32 49.64, σ = 0.28 49.56, σ = 0.28

64 49.87, σ = 0.22 49.55, σ = 0.19 49.47, σ = 0.19

256 49.93, σ = 0.22 49.60, σ = 0.22 49.52, σ = 0.22

number of averaged periodograms) on the calculated SNR. Forten different runs at

eachK value, the SNR was calculated by dividingP (b) by the quantity listed at the

top of each table column and taking10 log10 of the result. The table lists the average

and standard deviationσ of the ten SNR values, all in dB. First, we note that including

bin 64 lowers SNR by 0.3dB or so, while adding the geometric mean of the bins around

the tone makes another 0.1dB of difference. Second, we note thatσ is higher for small

K—that is, the variance in calculated SNR between different runs is greater when we

do less averaging. Third, calculated SNR drops by a full dB betweenK = 1 and

K = 256.
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Figure 2.12: Hann-windowed averaged periodogram near dc.

Adding to this is the confusion about what happens when we window the peri-

odograms. Figure 2.12 is another run withK = 256, but now a Hann window is

applied to the data before finding its spectrum; the dotted line is the data from Fig-

ure 2.11 reproduced for reference. In Figure 2.11, the tone was only in one bin, and

its power wasP (b) = −15.99dB. Now, we find the tone spreads over three bins, and

P (b − 1) + P (b) + P (b + 1) = −20.25dB. The unwindowed SNR for bins 0 to 64

excluding binb was 49.66dB; the Hann-windowed SNR for bins 0 to 64 excluding

binsb − 1 to b + 1 is 50.57dB.

The difference of−4.26dB in tone power can be explained as follows. The peri-

odogram of (2.7) is normalized such that the signal power in time and frequency are

equal (i.e., Parseval’s theorem holds). Since the output sequence is composed of±1,

the power in time is 1; we can easily verify that
∑N/2+1

i=0 P (i) = 1 in Matlab. A Hann

window turns out to scale the total power by0.375, and10 log10(0.375) = −4.2597—

exactly the difference seen in the tone power. The total baseband noise seems to have
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Figure 2.13: Welch-windowed averaged periodogram near dc.

been reduced by50.57 − 49.66 + 4.26 = 5.15dB. It is not so easy to explain nu-

merically where the extra5.15 − 4.26 = 0.91dB of noise reduction by windowing

comes from, though qualitatively we expect the reduction because windowing reduces

leakage problems.

Finally, as alluded to in Example 2.2, a Hann window is vastlypreferable for SNR

calculations over many other windows. Figure 2.13 shows what a Welch window does

to the baseband spectrum with the unwindowed spectrum plotted for reference. The

tone has been smeared over so many bins that it becomes impossible to know where

the noise begins. We only have 64 bins in which to find the noise, and too many of

them get corrupted by smearing for a meaningful SNR calculation. 2

The preceding example illustrates that SNR can vary by about1dB depending on how the

calculation is done. This suggests that specifying SNR to more than one decimal place is pointless,

and even the first decimal place might not be very meaningful.Unfortunately, the example does

little to clear up confusion about the “right” way to calculate SNR; papers in the literature rarely
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seem to be specific. We arbitrarily adopt the definition in thefirst column of Table 2.1, where we

neglect the tone bin(s) and the final FFT bin.

Some authors refer to signal-to-quantization-noise ratio(SQNR), where only quantization noise

power is counted as noise, as distinct from signal-to-noise-and-distortion ratio (SNDR or SINAD),

where both quantization noise powerandthe power in any output harmonics of the input signal are

counted. We use SNR to mean SNDR—our SNR calculations will include any power in harmonics

of the input signal caused by distortion. We shall examine some of the things that can create input

signal harmonics in the output spectrum presently.

2.2.3 Other Performance Measures

Dynamic range

The dynamic range range of a∆ΣM, often specified in decibels, is equivalent to the resolution of

the modulator as an ADC. We can convert from resolution in dB to resolution in bits by relating a

∆ΣM to a Nyquist-rate converter using [Ben48]

DR(bits)= (DR(dB)− 1.76)/6.02. (2.10)

To actually find the DR for a given modulator, SNR is plotted against input amplitude. The input

amplitude range which gives SNR≥ 0 is precisely the DR.

Example 2.5: For a second order low pass∆ΣM, Figure 2.14(a) shows the SNR

as a function of input amplitude for two different OSRs, 32 and 64. We call this kind

of graph adynamic range plot. The slope of each curve is 1dB/dB except for large

input amplitudes where the SNR stays constant or decreases with input amplitude. For

small inputs, the SNR is limited by the in-band noise, while at large inputs, the SNR

starts to become affected by input signal harmonics. Figures 2.15(a) and (b) show

the baseband output spectrum for inputs of−6dB and−2dB, respectively. Signal

harmonics are clearly present for the larger input.

Extrapolating to SNR= 0 for small inputs indicates the DR for OSR= 32 is 62dB,

or about 10 bits from (2.10), and for OSR= 64 the DR is 77dB (about 12.5 bits). We
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Figure 2.14: Performance of ideal double integration∆ΣM.

said earlier that at a fixed input amplitude SNR improves as6m + 3dB per octave of

oversampling, wherem is the order of the modulator. Figure 2.14(b) demonstrates the

truth of this for a−4dB input tone. 2

Full scale amplitude

In the previous example we referred to the input as being in dB, but what we did not make explicit

is that it is dB relative to full scale2. How is “full scale” defined for a∆ΣM? The answer is not

always obvious. In many cases, a full-scale input is one whose magnitude equals the maximum

magnitude of the quantizer feedback, assuming a quantizer whose output is centered at 0 (which it

almost always is). For an input larger than this, the feedback will not be able to keep the modulator

stable; we refer to this asoverloading the modulator.

Example 2.6: In the previous example, the quantizer was feeding back±1. When

the input was a tone with peak amplitude 0.1V, it transpired that the tone appeared in

2It would probably be less confusing if the units of the input signal were explicitly specified as “dBrel” or something

similar to indicate that it is dB relative to some maximum. However, most of the literature refers to “dB”, so we do the

same here.
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Figure 2.15: Increase in baseband harmonics for inputs nearfull scale: (a)−6dB input, (b)−2dB input.

the output spectrum with magnitude−23.01dB, which corresponds to a peak ampli-

tude of−20dB = 0.1V. We can deduce that 1V is the full-scale input level in that

example. An input larger than 1V will overload the modulator. Inputs close to 1V

cause graceful degradation of SNR due to increased spectralharmonic content, as we

saw in Figure 2.15. 2

Example 2.7: Figure 2.16 shows a typical implementation of a second-order low

f s

1IkIk2

2C

2C C1

C1

gm1gm2

yu

Figure 2.16: InP second-order CT∆ΣM by Jensen et al.
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pass CT∆ΣM for high-speed ADC. The input signal is fed through a transconductor

gm1, and at the transconductor output node, there is a feedback current of magnitude

k2. The currentgm1u can be no larger thank2 without overloading the modulator;

therefore, the full-scale input signal magnitude isk2/gm1. Typical component values

might bek2 = 0.4mA andgm1 = 1mA/V, so a 0.4V input signal would appear at the

output as 0dB when the output bits are±1. 2

For certain more complicated modulator structures we will encounter later, the full-scale input

range will need to be found from simulation rather than calculation.

Maximum SNR and maximum stable amplitude

Maximum SNR, SNRmax (sometimes called “peak SNR”), is easily found from a DR plotas the

peak of the SNR vs. input amplitude curve. It turns out that the second-order low pass∆ΣM is

stable all the way up to an input amplitude of 0dB [Wan92]. It also turns out that higher-order

modulators usually become unstable before 0dB is reached; this instability usually manifests itself

in clipping of the final integrator output which causes the quantizer to produce a long consecutive

sequence of the same output bit. This means the signal encoding properties of the modulator

become poor [Ris94] and hence SNR is degraded. The maximum stable amplitude (MSA) is, then,

the largest input amplitude which keeps the final integratoroutput bounded “most of the time”. It,

too, can be found from a DR plot as the maximum input amplitudefor which SNR≥ 0.

Spurious free dynamic range

Nyquist-rate ADCs sometimes specify a rating for spurious free dynamic range (SFDR) [Kes90b].

To measure SFDR, we apply a tone at the ADC input and look for the largestspurbetween 0 and

fN/2, where a spur is a tone visible above the noise floor. In theory, we must do this for all input

frequencies and phases to find the very worst-case spur. Then, SFDR is the largest magnitude

difference between the amplitudes of the input tone and the largest spur in dB, over all input tone

amplitudes.
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The importance of SFDR depends on the application. In some applications, a good SFDR is

more important than a good DR. In radio systems, for example,it might be important to keep

the amplitude of spurious tones low since nonlinearities might cause them to intermodulate and

corrupt the desired signal, while the total amount of in-band noise might not matter so much.

SFDR measurements aren’t often quoted for oversampling converters such as∆ΣMs, though they

sometimes are [Jen95]. Realistically, an SFDR measurementcan only be performed on an actual

circuit rather than in simulation because it requires many different input amplitudes, frequencies,

and phases. We will usually neglect SFDR in our examination of CT ∆ΣMs until we come to

Chapter 7 where we can explicitly measure it for a fabricateddesign.

2.3 Simulation Methods

To characterize the performance of a∆ΣM, we take the spectrum of its output bit stream. How

do we actually generate this output bit stream in a simulation? Because of the nonlinear quantizer,

determining the output bits analytically is very difficult.As a result, time-domain simulation of the

modulator is the usual method. In the simulation of just about any system, there exists a tradeoff

betweenrealismandsimulation time: as we model the behavior of a system more accurately, the

length of time required to generate simulation results increases. Let us first consider our simulation

options for DT∆ΣMs, a subject which has received a considerable amount of attention in the

literature, followed by those for CT∆ΣMs [Che98a].

2.3.1 Discrete-Time Modulator Simulation

An ideal DT ∆ΣM can be described by a discrete-time system of equations. For the general

modulator in Figure 2.17 which includes input prefiltering [Ris94], we can write a linear equation

for the quantizer input in terms of the circuit input and quantizer output

X(z) = G(z)H(z)U(z) − H(z)Y (z). (2.11)
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Figure 2.17: A general DT∆ΣM including input prefiltering.

G(z) andH(z) are rational functions ofz, with G(z) proper andH(z) strictly proper. It is a trivial

matter to take the inverseZ-transform of (2.11), which leaves an expression forx(n), the quantizer

input now, in terms of past samples of(u, x, y):

x(n) =
m
∑

k=1

akx(n − k) +
m
∑

k=1

bku(n − k) +
m
∑

k=1

cky(n − k). (2.12)

{ak, bk, ck} are constants that can be found fromG(z) andH(z). For eachx(n) found from (2.12),

we findy(n) by assuming an ideal quantizer; in the case of a single-bit quantizer,

y(n) =











+1, x(n) ≥ 0

−1, x(n) < 0.
(2.13)

Applying (2.12) and (2.13) forn = 1, . . . , N in a high-level language such as Matlab [Han98] or

C gives a very rapid method for determining the output bit stream.

Rapidity is one thing, but realism is another. A practical circuit will likely not be represented

by its ideal equations. Eventually, we will have a transistor-level description of a circuit whose

behavior we would like to simulate, and we will most likely turn to a full-circuit simulator such as

SPICE or Eldo. While such a simulation is likely to be able to model most if not all of the pertinent

nonidealities which affect circuit performance, we will often be stuck waiting for hours or even

days while generating enough output bits for an FFT. A detailed discussion of these nonidealities

appears in Chapter 3.

Fortunately, there exists more than one “middle-ground” approach, where we achieve reason-

able accuracy while still maintaining acceptably-fast simulation speed. Several programs (Simulink
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under Matlab [Sim96], SPW [SPW92], and Ptolemy [Pto97] among them) allow a system to be

defined at the block diagram level graphically, with the function of each block controlled by the

user. This allows both rapid, user-friendly prototyping of∆ΣM systems along with the inclusion

of nonidealities (such as finite integrator output swing andquantizer hysteresis) by using the appro-

priate blocks in the simulation. In a similar manner, full-circuit simulation programs like SPICE

and Eldo3 often allow the specification of a circuit withmacromodels, where a block is modeled

as an ideal version of itself instead of as a transistor-level description. Better still, ideal blocks

can be replaced one at a time with transistor-level descriptions, which allows the user to see the

effect of nonidealities in each individual block on overallmodulator performance while keeping

the simulation speed faster than for a complete transistor-level circuit.

Even better still, there exist special-purpose programs written specifically for the simulation of

DT ∆ΣMs. Both MIDAS [Wil92] and TOSCA [Lib93] are examples of programs which can sim-

ulate and extract key performance parameters from otherwise ideal∆ΣMs as well as DT∆ΣMs

which include important nonidealities such as finite op amp gain, finite switch on-resistance, and

clock feedthrough. A program by Medeiro et al. [Med95] goes even further: the user specifies

modulator parameters such as required resolution, clock rate, and power consumption, and then

the program can design and automatically produce the circuit layout for a complete SC modulator

which meets the specifications.

Clearly, a first-time DT∆ΣM designer has plenty of options for generating an output bitse-

quence relatively quickly while still including the effects of relevant nonidealities.

2.3.2 Continuous-Time Modulator Simulation

The situation for CT∆ΣMs is perhaps not as good, most likely because there has been considerably

less attention devoted to the design of CT∆ΣMs. Nonetheless, there are several choices. As with

DT ∆ΣMs, we may represent an ideal CT∆ΣM with a frequency domain equation akin to (2.11),

X̂(s) = Ĝ(s)Ĥ(s)Û(s) − Ĥ(s)Ŷ (s), (2.14)

3Eldo is perhaps more suited to discrete-time block-level simulation than SPICE.
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where we use the continuous frequency variables rather than the discrete onez = exp(sTs) and

Ts is the sampling frequency. Taking the inverse Laplace transform of (2.14) does not lead to as

easily-implementable an equation as that which resulted from the discrete case (2.12), so for time-

domain simulation, we must represent the system as a series of coupled first-order differential

equations and solve them using numerical integration.

Example 2.8: For the modulator in Figure 2.16, the equations describingcircuit

behavior are
C1

dx̂1

dt
= gm1û(t) + k2ŷ(t)

C2
dx̂2

dt
= gm2x̂1(t) + k1ŷ(t)

(2.15)

and the single-bit quantizer is described by (2.13). Implementing these equations in

a numerical integration program is perhaps slightly more tedious than solving the dif-

ference equations, but it is still not terribly difficult. 2

It happens that because of the clocked quantizer inside the CT loop, an ideal CT modulator has a

DT equivalent. Thus, there exists a mapping between thes-domain description of a∆ΣM and the

z-domain which can be exploited to increase simulation speedand give intuitive understanding of

modulator behavior. We leave a more detailed discussion of this until the time when we actually

make use of it in Chapter 4.

Once again, ideal CT∆ΣM behavior is one thing and the behavior of a real circuit is another.

As with DT modulators, full-circuit simulation of CT modulators is painfully slow when each

block is described down to the transistor level. Also as in the DT case, macromodel simulation

is an attractive option for reducing simulation time while incorporating key nonidealities: a CT

∆ΣM is first described with ideal blocks in a full-circuit simulator, then nonidealities can be added

gradually to observe the effect on performance. Often, graphical block diagram simulators (such

as those listed in the previous section) can also simulate CTsystems, so this too is a choice for CT

∆ΣMs.

As far as specialized CT∆ΣM simulation tools go, the literature seems not to mention large-

scale efforts. Frequently [Bro90, Cha92, Ush94, Che98a] special-purpose programs in a high-level

language such as C are written in the course of studying modulator performance. Opal [Opa96]
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has built a fairly general framework based on the CT/DT equivalence mentioned above, but to this

author’s knowledge, there is no equivalent of a program likeTOSCA for CT∆ΣMs.

Rapid and realistic simulation of CT∆ΣMs is a central underlying theme of this thesis. We

will be making use of various simulation techniques as we delve into detail, and we will describe

them more as we need to make use of them.

2.4 Summary

Delta-sigma modulation is a technique which combines filtering and oversampling to perform

analog-to-digital conversion: the noise from a low resolution quantizer is shaped away from the

signal band prior to being removed by filtering. High-speed conversion can be accomplished by

using a continuous-time filter inside the delta-sigma loop,and we are interested in this for its

potential applicability to radio receiver and other high frequency circuits. Performance of a∆ΣM

is determined by taking the spectrum of a sequence of output bits generated from time-domain

simulation of the modulator; it is characterized with some of the usual ADC performance measures

such as DR and SNR, while omitting others which have no meaning in ∆ΣMs such as DNL

and INL. How to actually perform the time-domain simulationis a matter of considerable import

in oversampled converters because they will usually require many more output samples than a

Nyquist rate ADC before performance can be measured.
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Chapter 3

∆ΣM Implementation Issues

The theory of ideal delta-sigma modulators is quite well-understood [Nor97, Chap. 4–5]. The

purpose of this chapter is twofold: first, to summarize the papers from the published literature

which discuss the effects of commonly-encountered nonidealities on the performance of∆ΣMs,

and second, to list the important literature papers regarding CT∆ΣM specifically, of which there

are considerably fewer than those that discuss DT∆ΣMs. We close this latter section with a

summary of the performance achieved in published high-speed CT ∆ΣMs.

3.1 Nonidealities in∆ΣMs

There are certain considerations that apply to the design ofboth DT and CT modulators. First

of all, the problem of choosing the CT loop transfer functionĤ(s) can be formulated in the DT

domain, whereH(z) is chosen using any one of the numerous suggestions in the literature and

then transformed to the appropriatêH(s). We will see several examples of this in Chapter 4.

Additionally, there are certain nonidealities which adversely affect the performance of DT∆ΣMs

which have a similar effect in CT∆ΣMs. In this section, we take it as given that how to select

a transfer function to achieve a given performance is understood; we survey the literature on the

performance effect of nonidealities in delta-sigma modulation and summarize the results that are

germane to the design of single-stage CT∆ΣMs. A version of this summary for DT∆ΣMs

33



34 Chapter 3:∆ΣM Implementation Issues

appears in [Nor97, Chap. 11]; we extend it here to include CT∆ΣMs.

3.1.1 Op Amps

Not all modulators include op amps, though many do. If an op amp inside a∆ΣM deviates from

ideal, performance is invariably worsened. We consider various types of commonly-encountered

op amp problems here.

Finite op amp gain

Probably the most widely-studied nonideal effect is that offinite op amp dc gain [Hau86, Bos88,

Cha90, Fee91, Can92b, Cha92]. An ideal integrator has a DT transfer functionF (z) = 1/(z − 1);

it can be shown that an integrator built from an op amp with dc gainA0 results in a transfer function

F (z) =
1

z − p(1 − 1/A0)
(3.1)

wherep is a constant. Finite op amp gain causesleaky integration: the NTF zeros are moved off

the unit circle towardsz = 0, which reduces the amount of attenuation of the quantization in the

baseband and therefore worse SNR. The equivalent problem ina BP modulator occurs when the

resonators have finiteQ.

A good rule of thumb which applies to both DT and CT∆ΣMs is that the integrators should

haveA0 ≈ OSR, the oversampling ratio [Hau86, Bos88, Cha92, Can92b, Ber96]. If this holds, the

SNR will be only about 1dB worse than if the integrators had infinite dc gain [Bos88]. In [Jen95],

which is a CT∆ΣM using the circuit in Figure 2.16, it was shown that the parameter which limited

the baseband noise floor wasA0RinC, whereA0 andRin are the gain and input impedance of the

op amp andC is the integrating capacitor. That is, the baseband noise went from shaped to white

at a frequency given byf = (2πA0RinC)−1, so once again, highA0 is beneficial.

Finite bandwidth (nonzero settling time)

Usually, it is assumed that an op amp can be modeled as a single-pole system with time constant

τ [Hau86, Bos88, Cha90, Med94]. [Bos88] notes that for many sampled-data analog filters, the
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unity-gain bandwidth of an op amp must be at least an order of magnitude higher than the sampling

rate; [Gre86] says it should be five times higher.

This requirement is greatly relaxed in DT∆ΣMs. Both [Med94] and [Bai96] contend that

incomplete integrator settling is the same as a gain error, which results in increased baseband

quantization noise. However, [Hau86] finds that even with a settling error as large as 10%, as

long as it is alinear error, 14-bit performance can be achieved. The fabricated design in [Bos88]

exhibited negligible performance loss forτ ≤ Ts/2. It thus seems thatτ can be on the order of

Ts for acceptable performance. Chan [Cha92] found something similar for a CT ∆ΣM: op amp

bandwidths could be as low asfs, the sampling frequency, and still give negligible performance

loss.

Finite slew rate

Generally, in DT circuits we are worried about slewing of theinput signal. A DT∆ΣM, however,

is oversampled, which means the input signal is slow compared to the sampling rate; thus, what

concerns us is slewing ofinternal signals (most particularly op amp outputs). It might appear

that slew-rate limiting of these signals should not make anydifference on top of that made by

imperfect settling—so long as the outputs are “close enough” to the correct values after a full

clock period, why does it matter whether they approach thesevalues by slewing rather than linear

settling? In fact, itdoesmatter because op amp slewing is anonlinearsettling process [Cha90],

and this introduces input signal harmonics in the output spectrum which degrades SNDR [Med94].

In [Bos88], a large increase both in quantization noise and harmonic distortion was observed when

the slew rate dropped below1.1∆/Ts, where∆ is the difference between adjacent quantizer output

levels. Note well, however, that this is anextremelyrelaxed requirement compared with non-

oversampled circuits—slew rate is one of many parameters inwhich ∆ΣMs are quite tolerant of

imperfections.

We show by example that a similar thing happens in CT∆ΣMs.

Example 3.1: Typical integrator and quantizer output waveforms for an ideal CT

double integration modulator with a small dc input are depicted in Figure 3.1. The
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Figure 3.1: Typical integrator output and quantizer waveforms.

first integrator operates on the sum of two currents, a constant one determined by the

quantizer bit and a nearly-constant one from the input (which in general is slowly-

varying compared to the sampling clock). Hence, the integrator outputx̂1(t) appears

as a straight line. The outputx̂2(t) is the integral of the sum of̂x1(t) (a straight line)

and the output bit (a constant), so it has a parabolic shape.

A typical output spectrum for the ideal modulator appears asin Figure 3.2(a). For

the modulator parameters chosen, the maximum slew rate required for thefs = 1GHz

sampling clock is about 0.35V/ns. If we limit the slew rate to0.25V/ns, the graph

in Figure 3.2(b) results. We see both a slight increase in baseband quantization noise

anda large increase in harmonic distortion. Clearly, avoidingslew-rate limiting in CT

∆ΣMs is as important as in DT circuits, though doing so is not usually difficult. 2

Limited output swing

An mth-order∆ΣM hasm states whose values at sampling instants completely determine mod-

ulator behavior. It is usually the case that the integrator output voltages are precisely the system
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Figure 3.2: Output spectra using op amps with (a) no slew-rate limiting, (b) slew-rate limiting.

states. Therefore, if the integrators are built with op ampswhose output swing is not large enough

to produce the required state values, modulator behavior will be altered. Both [Hau86] and [Bos88]

illustrate that clipping the integrators results in severebaseband noise penalties. Fortunately, this

problem has been very well-studied, and it is not difficult toscale the parameters in a∆ΣM to

avoid clipping op amp outputs (e.g., [Cha90] among others).Circuit noise considerations yield a

practical lower limit on how small signal swings can be.

Gain nonlinearity

If the gain of the op amp depends in a nonlinear manner on the opamp input voltage, harmonic

distortion of large input signals appears in the output spectrum [Bos88, Med94, Dia94, Ber96]. It

is difficult to give general results for how much nonlinearity can be tolerated; op amp gain should

be made as independent of input signal level as possible, though the amount of independence

required depends on the desired modulator resolution. Gainnonlinearity in the op amp nearest the

input stage has the greatest effect because later-stage gain nonlinearities are divided by the (large)

gains of earlier stages when referred to the input [Bos88]; this fact is important in both DT and CT

∆ΣMs.
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3.1.2 Mismatch and Tolerance

A traditional notion about∆ΣMs (as compared with Nyquist-rate ADCs) is that they often need

not have matching or tolerances better than the desired resolution of the converter. This is true for

mismatch among components in the forward loop (i.e., in the loop filter), but not true for DAC

level mismatch.

Component mismatch and tolerance

In SC∆ΣMs, a mismatch between sampling and integrating capacitorsin an SC integrator stage

results in a gain error [Reb89, Baz96] whose effects we can treat in a manner similar to [Bos88].

There exist layout techniques to keep integrated capacitors matched quite well [Reb89]; as well,

using large capacitors and/or clever circuit architectures can alleviate problems [Baz96]. To give

an idea of the required tolerances, in a particular 90dB SC converter, it was found 5% error in

individual coefficients of the loop filter led to performancelosses of only 1–3dB [Cha90]. Sensi-

tivity to tolerance obviously depends on the exact circuit architecture, so it is difficult to generalize.

However, for a typical CT∆ΣM, matching requirements are unlikely to be terribly stringent, just

as was found in [Cha90].

Multibit DAC level mismatch

∆ΣMs frequently employ a one-bit quantizer for two reasons: itis easy to build, and because

a feedback DAC with only two levels is inherently linear [Sch93]. If we choose to build our

modulator with a multibit quantizer, then we require a multibit DAC, and now any errors in the

spacing between DAC levels are directly input-referred. Thus, it would appear the resolution of

the overall modulator depends directly on the DAC matching.

Fortunately, there exist techniques calleddynamic element matchingwhere mismatched DAC

elements are “shuffled” so that different elements are used each time the same output code occurs.

A survey of this area alone is quite interesting, though for brevity and relevance reasons we omit

it. The most important papers which discuss DEM techniques are [Car87, Bai95, Kwa96, Jen98,

Shu98], and [Nor97, Chap. 8] contains a good summary of present knowledge in the area. This
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same chapter also goes into digital-post correction schemes which can also compensate for multibit

DAC errors. All DAC error correction schemes could in theorybe applied just as well to CT

designs, something we discuss more in§4.5.

3.1.3 Quantizers

Just as∆ΣMs are tolerant of mismatch, so too are they tolerant of common quantizer imperfections

[Hau90]. The quantizer is preceded by several high-gain stages, so dc offsets (or level spacing

errors in a multibit quantizer) are negligible once input-referred. Of course, the comparator must

be “fast enough” to resolve its input signal to the desired logic level; there is some discussion on

this point for DT designs in [Hau90], and for CT designs, not much has been said. We devote

considerable attention to this important point in Chapter 6of this thesis.

It transpires that for one-bit quantizers, hysteresis is not terribly problematic. Boser [Bos88]

shows that hysteresis may be as severe as0.1∆ (one tenth of the step size) with negligible perfor-

mance loss in his SC circuit, though Chan [Cha92] found a requirement of0.01∆ in his CT circuit.

We consider hysteresis in Chapter 6, and we discover that CT∆ΣMs are very tolerant of it.

3.1.4 Circuit Noise

In simulation, the in-band noise floor in a∆ΣM output spectrum is determined by quantization

noise only in an ideal modulator. Certain nonidealities like DAC level mismatch (discussed above)

and clock jitter (discussed below) can also contribute to in-band noise in a simulation. In manufac-

tured circuits, often it is the input-referred electronic circuit noise that limits performance [Bos88].

Once again, circuit noise depends on the circuit architecture. In a typical SC∆ΣM, noise

comes from three main sources [Dia92a, Dia92b].

1. Switch resistance means the voltage sampled onto the input capacitor has uncertaintykT/C

[Gre86] wherek is Boltzmann’s constant,T is absolute temperature, andC is the capaci-

tance. Depending on resolution, this might require relatively large input capacitors—for par-

ticularly high-resolution converters, integrating such capacitors onto a chip might be prob-
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lematic [dS90]. Off-chip capacitors could be used, or usinga CT integrator as the first stage

with DT integrators for later stages also works [dS90].

2. The thermal noise of the first op-amp must be kept small. It is inversely proportional to the

transconductancegm of the input MOS differential pair, which can be controlled by sizing

the input devices appropriately [Gre86].

3. MOS transistors also have so-called1/f noise [Gre86], where low-frequency noise increases

as 10dB/dec with decreasing frequency. This can be overcomewith so-calledchopper stabi-

lization [Gre86, dS90] where the1/f noise is cleverly modulated to the sampling frequency

and thus filtered out by the decimator. As well, it is unlikelythat1/f noise would affect a

band pass∆ΣM, since then the baseband would be away from low frequencies.

We leave a discussion of thermal noise in typical CT∆ΣMs for Chapter 7 where we present test

results on an actual fabricated circuit.

3.1.5 Other Nonidealities

There are a few other nonidealities which have been studied in connection with∆ΣMs. Two

effects which matter in SC designs, but not in CT designs, arenonzero switch “on” resistance

and signal-dependent charge injection. The first of these limits the maximum modulator clock rate

because of theRC time constant involving the switches and the sampling capacitor [Hau90], hence

small-resistance switches are often important. The seconddisturbs the voltage on the sampling

capacitors, though it can be circumvented with techniques such as differential circuitry [Bos88],

additional clock phases [Bos88, Baz96], and bottom-plate sampling [Baz96].

Designing the first stage

We have already alluded to this in the previous subsections,but we say it explicitly here: the first

stage is the most important to design well in terms of its thermal noise, linearity, matching, etc.

This is because nonidealities in later stages, when input-referred, are divided by the total gain
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preceding them. By design, each stage in a∆ΣM has a high gain in the signal band, so stages two

and beyond have a reduced influence at the input, but the first stage does not. Thus, in a DT∆ΣM,

considerable effort must be spend designing the first op amp [Yuk87] while requirements on later

op amps may be relaxed. Likewise, the first transconductor ina CT∆ΣM is the most important

for overall thermal noise and linearity [Jen95, Mor98]. A mismatch in the input differential pair

transistors leads to an offset which results in a dc term in the output spectrum; special care must

be taken in converters where dc is not removed by the decimator.

Component nonlinearity

Earlier we mentioned nonlinearity in the first stage op amp gain characteristic adds harmonic dis-

tortion. The same thing happens if components near the inputare nonlinear. For example, [Hau86]

shows how a voltage-sensitive first integrating capacitor degrades performance in a typical SC

∆ΣM. In [Jen95], the input transconductor in their CT∆ΣM uses a differential pair degenerated

with an emitter resistor to setgm; it is observed that the linearity of this resistor which is the key to

the linearity of the whole circuit. If the first integrating capacitor is slightly nonlinear, harmonics

of the input signal appear in the output spectrum—the resulting spectrum looks similar to the one

in Figure 3.2(b). Usually, component linearity requirements are more stringent than component

tolerance requirements.

Clock jitter

How important is timing jitter in the quantizer clock in a∆ΣM? Compared to a Nyquist-rate con-

verter, Harris [Har90] found∆ΣMs had a tolerance to white jitter improved by the oversampling

ratio for the same jitter variance. Boser [Bos88] found the same thing, but he also noted that be-

cause jitter noise falls as1/OSR while quantization noise falls as1/OSR2m+1, modulators with

high OSRs are more likely to be performance-limited by jitter. Van der Zwan [vdZ96] presents an

argument that CT∆ΣMs are more sensitive to jitter than DT∆ΣMs; we will take this issue up in

Chapter 5 when we consider in detail the problem of clock jitter in CT∆ΣMs.
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3.2 Important CT ∆ΣM Papers: A Survey

No study of CT∆ΣM would be complete without a review of the significant papersin the literature

on the subject. We present a chronological listing of these papers as unearthed by the author in an

extensive literature survey with a brief description of each, and we then summarize the performance

achieved in tests of actual fabricated circuits.

3.2.1 Paper List

[Ino62], [Ino63] The first of these papers is where∆ΣM was first published, though there was a

patent granted to Cutler a couple of years earlier [Cut60]. The second paper contains some

analysis of a CT∆ΣM with both a single and double integrator. In particular, the 9dB

and 15dB of SNR improvement per octave of oversampling for the first- and second-order

modulators are derived. They build circuits for both and verify the predicted performance,

and apply the circuits to the encoding of video signals.

Following this paper, over the next twenty years there were not many papers on∆ΣM be-

cause integrated MOS processes were still expensive. As they became cheaper, the DSP

required in the decimator became cheaper, and hence∆ΣMs began to receive more interest.

[Can85] It is this paper which really sparked interest in∆ΣM as a method for ADC. It is widely

cited as the source for the so-calleddouble integration∆ΣM, although in fact [Ino63]

predates it. Such a∆ΣM contains two cascaded integrators and implements NTF(z) =

(1 − z−1)2, i.e., double differentiation of the quantization noise. We denote this modulator

the standard [low pass] second-order∆ΣM since, as we shall see, there have been many

subsequent implementations of it. This paper is the first to derive the DT/CT loop filter

equivalence

H(z) =
2z − 1

(z − 1)2
↔ Ĥ(s) =

1 + 1.5sTs

s2T 2
s

(3.2)

for a feedback DAC that emits full-period pulses, and a CT∆ΣM circuit was built based on

this equivalence.



Chapter 3:∆ΣM Implementation Issues 43

[Koc86] This is also a double integration CT∆ΣM, following Candy’s lead. With a 15MHz clock,

the achieved performance was 77dB over a 120kHz bandwidth and a power consumption of

20mW—certainly not poor even by today’s standards.

[Ada86] Miles ahead of its time, this paper describes a fourth-orderfour-bit (i.e., with a four-bit

quantizer) CT∆ΣM that achieves 18 bits of resolution at 24kHz. The crucial issue of DAC

waveform asymmetry (i.e., differing rise and fall times at the DAC output) is first discussed

here. This will be mentioned again in Chapter 4.

[Gar86] Floyd Gardner’s paper is the first to describe theimpulse-invariant transformationbe-

tween CT and DT as an alternative to the (perhaps more common)bilinear transform. We

mentioned its existence in§2.3.2 and we will make use of it in Chapter 4.

[Pea87], [Sch89], [Gai89]The idea of band pass∆ΣM was, to the author’s knowledge, first sug-

gested in the first of these papers, though it can hardly be said that those proceedings are

widely available. InElectronics Letters, Schreier and Snelgrove first introduced the idea to

a wider audience in the second paper listed; unbeknownst to them at the time, a U.S. patent

had been granted to Gailus et al. a few months earlier, as the third citation shows.

[Gos88], [Gos90]These papers were the first to point out that a delay between the sampling clock

edge and DAC pulse edge affects the performance of a CT∆ΣM. We shall denote this delay

asexcess loop delay, and as we shall see in Chapter 4, it turns out to have a major impact on

the design of CT∆ΣMs.

[Bro90] This was an early paper on how to simulate DT systems in CT. It used a third-order CT

∆ΣM as an example and showed how to simulate its behavior both inC and SABER. The

bilinear transform was used to map betweenz ands domains, though we prefer the impulse-

invariant transformation.

[Hor90] Another paper very advanced for its time and often overlooked, it also discusses excess

loop delay in CT∆ΣM and is the first to suggest the use of the modifiedZ-transform to

account for loop delay in the design of high-order CT∆ΣMs. While [Gos88] showed that a
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certain amount of loop delay is beneficial to a first-order CT∆ΣM, this paper extended the

results to higher-order CT∆ΣMs.

[Asi91] Although no circuit was actually designed here, this is an early paper that considers some

issues in the design of very fast CT∆ΣMs. For a standard second-order CT∆ΣM clocking

at 500MHz in GaAs, the authors examine the effect on SNR of finite op amp dc gain, gain-

bandwidth product, and signal swing, and small nonlinearities in the op amp, and conclude

that a 10-bit converter could be built to work at this speed.

[Com91] This is one of the few CT∆ΣM papers that doesn’t use op amps: it is a CMOS current-

steering design. Nothing much similar has appeared in the literature to this author’s knowl-

edge since its publication.

[Thu91] At the time this paper was published, the idea of band pass∆ΣM was relatively new.

This paper is the first to use the impulse-invariant transformation to design a continuous-

time BP∆ΣM. They designed a loop transfer function with nonoptimal noise shaping; it

took [Sho94] to explain how to overcome this.

[Cha92] The authors talk about design issues of a standard second-order CT∆ΣM in GaAs for

500MHz clocking, including finite op amp dc gain and gain-bandwidth product, and quan-

tizer hysteresis and delay. They then fabricate and test a prototype whose poor performance

is attributed to poor comparator sensitivity. However, thecircuit was one of the first to

demonstrate the feasibility of integrating high-speed CT∆ΣMs.

[Can92b] This is the first of two IEEE Press books published about∆ΣM. It is a compendium of

Candy and Temes’ opinion of the important papers in∆ΣM up until early 1990. This author

recommends owning a copy to anyone working in∆ΣM design since most or all important

early papers may be found in this convenient reference.

[Hal92] This is another early high-speed modulator, this time in2µm CMOS clocking at 150MHz.

It describes a standard second-order CT∆ΣM and achieves 10-bit resolution at an OSR of

128.
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[Wan92] It had long been suspected that the standard double integration ∆ΣM is stable for dc

inputs up to the rails. This paper proves it using a geometrical argument about the bounds of

internal states.

[Tro93] These authors designed a BP CT∆ΣM on an analog-digital FPGA. As in [Thu91], they

didn’t implement the correctH(z)...

[Sho94] ...it was in this paper that a correct method for designing band pass CT∆ΣMs based on

the impulse-invariant transform was explained.

[Ush94] This paper isn’t terribly interesting except for the fact that they model the quantizer as a

steep tanh function for simulation purposes, which allows them to write and simulate linear

differential equations for a∆ΣM. Little seems to have been made of this since then.

[Ris94] Lars Risbo’s doctoral thesis is unique. Motivated by his desire to build the best-sounding

CD player possible, he examines stability and design methods for high-order single-bit

∆ΣMs in ways that are highly innovative and original. Sadly, his ideas will likely be appre-

ciated by few because they are almost too clever: it took thisauthor three separate attempts

over one year to grasp much of what Risbo says. Nonetheless, this is a reference work to

be taken seriously for anyone wishing a deep understanding of ∆ΣMs. His Appendix C

contains some discussion of clock jitter in CT∆ΣMs, a topic we cover at length in Chapter

5.

[Fen94], [Nar94], [Jen94] Three high-speed CT∆ΣMs appeared at the GaAs Integrated Circuits

Symposium in 1994. The first listed clocked at 500MHz, the second at 2GHz, and the third

at 4GHz; the first two are standard second-order low pass GaAsdesigns while the third

is a first-order low pass InP design. All three designs suffered from moderate amounts of

harmonic distortion in the baseband.

[Jen95] We spent considerable time studying this paper. It describes the building of a standard

second-order CT∆ΣM using InP double heterostructure HEMTs clocking at 3.2GHzfor
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converting a 50MHz baseband signal and 71dB SFDR is achieved. A circuit diagram of

their modulator was shown in Figure 2.16 on page 25.

[Mit95] The authors of this paper simulate, but don’t build, a first-order CT∆ΣM in CMOS that

dissipates only 3mW at a clock speed of 128MHz.

[Sho96], [Sho97]Omid Shoaei’s excellent Ph.D. thesis is, to date, the definitive work on high-

speed CT∆ΣM. It is required reading for anyone working in the area. Shoaei attempted

to build a 250MHz fourth-order band pass CT∆ΣM for conversion of narrow band signals

at 62.5MHz, but the final performance was thwarted by unexpectedly high fabrication toler-

ances and a lack of common-mode feedback circuitry in his transconductors. Shoaei’s work

will be referred to extensively throughout this thesis. Thefirst citation is the thesis itself, and

the second is a journal paper which summarizes the thesis.

[Erb96] This brief paper describes a silicon bipolar standard second-order CT∆ΣM clocking at

1.28GHz. The performance is at best 8 bits, though the paper’s length permits very little

detail to be given. It is implied that the authors use a circuit architecture similar to that in

Figure 2.16.

[Sch96a] This paper explains how to design a CT∆ΣM by transforming it to a DT∆ΣM design

problem using the impulse-invariant transform. While [Sho96] deals with the problem in

pole-zero form, [Sch96a] represents the modulator in state-space.

[Opa96], [Don97], [Don98b], [Don98a]Opal’s 1996 work focuses on the rapid simulation of

clocked CT systems in the DT domain. Since then, a student of his, Yikui Dong, has writ-

ten several papers about rapidly simulating nonideal effects in CT∆ΣMs, most particularly

thermal noise. Such a tool is extremely useful, and the simulation results look plausible, but

unfortunately no experimental validation of their resultshas been provided to date.

[vdZ96], [vdZ97] These nice papers present fourth-order CT∆ΣMs with very low power. The

first is a 0.2mW voice band coder, the second a 2.3mW audio coder. Both achieve about 15
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bits of performance. [vdZ96] also contains some discussionabout tradeoffs between DT and

CT designs.

[Ben97], [Gao97a] As noted, excess loop delay in a CT∆ΣM worsens performance. Both these

papers talk about how to compensate for loop delay with appropriate feedback and tuning.

We will be examining this further in Chapter 4.

[Rag97] Written by the authors of [Jen95], this paper describes Figure 2.16 with an additional

transconductor element to turn the low pass modulator into amildly band pass one with a

noise notch tunable from 0 to 70MHz and a 4GHz sampling clock.A claim of 92dB SNR is

made for a very narrow bandwidth corresponding to an OSR of around 5000.

[Che97] It is believed that this is the first mention of the performance effects of quantizer metasta-

bility in CT ∆ΣMs. It was written by the author, and a large amount of new material along

these lines is given in Chapter 6.

[Nor97] This is the second IEEE Press book about∆ΣM. Instead of a compilation of papers,

the editors commissioned various authors to write chaptersin their areas of expertise on

many aspects of∆ΣM theory, design, and simulation. It, too, is highly recommended as

a reference work for anyone in the area—the book has acquiredthe moniker “the orange

Bible”.

[Miy97], [Olm98] In these papers, a 5GHz HEMT modulator was designed for a 50MHz band-

width, and 7-bit performance was achieved. It must be noted,however, that this performance

was achieved with a signal band that did not extend below 6MHz; this was apparently to

avoid further SNR degradation by the1/f noise of the devices.

[Jay97] Following [Jen95], these authors make a fourth-order BP CT∆ΣM clocking at 3.2GHz

with an 800MHz center frequency. They achieve 7-bit performance in a 25MHz band,

though they estimate with proper design this could be raisedto 10 bits. We arrive at a

similar conclusion for our 4GHz modulator in Chapter 7.
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[Gao97b], [Gao98b] These papers present an aggressive 4GHz CT second-order band pass design

in 25GHz Si bipolar technology for direct conversion of 950MHz analog signals. In a very

narrow bandwidth, 10-bit performance was achieved.

[Che98a], [Che98b] The author presented these papers at ISCAS 1998 in Monterey.The first

deals with simulating CT∆ΣMs, something we covered briefly in the previous chapter, and

the second deals with the nonideal effects of excess loop delay, clock jitter, and quantizer

metastability on the performance on CT∆ΣMs. This thesis is in large part an expansion of

the second paper: we devote one chapter to each of these threekey nonidealities.

[Gao98a] Preliminary test results on a fourth-order 4GHz CT band passmodulator in a 40GHz

SiGe HBT technology are presented in this paper. We greatly extend these results in Chapter

7 of this thesis.

[Oli98] In this paper the effect of jitter in the DAC pulse width of return-to-zero-style first- and

second-order modulators is studied. The authors conclude,as [Che97] did earlier, that jitter

in the width of the DAC pulse is not noise-shaped and hence degrades performance. How-

ever, their new result is that a second-order modulator provides first-order shaping of pulse

starting timejitter; hence, they propose using a monostable multivibrator as a quantizer,

which produces fixed pulse widths even in the presence of variable pulse start time.

[Mor98] This is the first paper to the author’s knowledge which contains a high-speed design

of order three. This circuit contains two separate modulators for I and Q channels with

integrated mixers, similar in architecture to Figure 2.7 only where the mixing is done as

part of the first stage of the modulator so that the modulatorsthemselves are low pass. In a

50MHz bandwidth, 35dB SNR was achieved.

3.2.2 High-Speed CT∆ΣM Performance Summary

Table 3.1 summarizes the order and type of the high-speed CT∆ΣM designs surveyed, where

“1LP” means first-order low pass, “2BP” means second-order band pass, etc. The majority of the
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Table 3.1: High-speed CT∆ΣM published performance.

Paper Technology Type fs OSR
DR

(dB)

SNR

(dB)

[Cha92] 1µm GaAs D MESFET 2LP 200MHz 100 58 50

[Hal92] 2µm CMOS 2LP 150MHz 128 63 57

[Fen94] 0.5µm GaAs HEMT 2LP 500MHz 100 60 55

[Nar94] 1.4µm GaAs HBT 2LP 2GHz 20 43 37

[Jen95] 2.0µm InP DHBT 2LP 3.2GHz 32 49 50

[Mit95] 1.2µm CMOS 1LP 128MHz 128 60 57

[Sho96] 0.8µm Si BiCMOS 2BP 200MHz 500 50 46

[Erb96] Si BJT 2LP 1.28GHz 64 − 45

[Rag97] 2.0µm InP DHBT 2LP/BP 4GHz 64 44 41

[Gao97b] 0.5µm Si BJT 2BP 3.8GHz 10000 60? 49

[Jay97] AlGaAs/GaAs HBT 4BP 3.2GHz 64 42 41

[Olm98] 0.4µm InGaP/InGaAs HEMT 2LP 5GHz 50 51 39

[Gao98a] 0.5µm SiGe HBT 4BP 4GHz 500 62 53

[Mor98] 0.5µm SiGe HBT 3LP 1.6GHz 16 − 35
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designs are implementations of the standard double-integration modulator with a loop filter given

by (3.2),H(z) = (2z−1)/(z−1)2. The two second-order BP modulators are for converting analog

signals at one quarter of the sampling frequency to digital;ideally, they have the same performance

and stability as a first-order LP design. The two fourth-order BP designs are alsofs/4 designs, and

they have the same performance and stability as a double-integration∆ΣM. Thus, all the high-

speed designs listed except the last one are first- or second-order. For each clock ratefs and OSR,

DR and SNRmax are also listed.

The performance of an ideal first- or second-order modulatorcan be found from DT simulation

as we did in Example 2.5 or from [Sch93, Fig. 7]. Based on these, an approximate formula for the

achievable performance in a double integration modulator is

DR ≈ 15 log2(OSR) − 13 dB, SNRmax ≈ 15 log2(OSR) − 20 dB. (3.3)

Table 3.2 shows how each of the published 2LP/4BP modulatorscompares to (3.3). Generally,

Table 3.2: Performance in published double integration CT∆ΣMs relative to ideal simulation.

Modulator [Cha92] [Hal92] [Fen94] [Nar94] [Jen95]

fs (GHz) 0.2 0.15 0.5 2.0 3.2

OSR 100 128 100 20 32

DR loss (dB) 29 29 27 9 13

Useful OSR 18.7 24.0 21.0 11.9 15.1

Modulator [Erb96] [Rag97] [Jay97] [Olm98] [Gao98a]

fs (GHz) 1.28 4.0 3.2 5.0 4.0

OSR 64 64 64 50 500

DR loss (dB) 25? 33 35 21 59

Useful OSR 15.1 9.5 8.5 14.9 16.6

we see performance falling far short of ideal, particularlyfor OSRs of 64 or more. Frequently in

papers that publish output spectra it is clear that the signal band is filled with white, rather than

shaped, noise. Thus, doubling the OSR results only in a 3dB DRimprovement instead of 15dB
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Figure 3.3: Ideal vs. real spectra in double integration modulators.

for an ideal second order∆ΣM as depicted in Figure 3.3. We could extrapolate backwards to the

approximate point where noise shaping ends and white noise begins as

Useful OSR≈ OSR÷ 2DR loss/12. (3.4)

This is termed “useful OSR” because it is the OSR for which noise shaping ceases, and it is listed

in the table for each modulator.

Clearly, there is little benefit in using OSR> 15 for GHz-speed modulators. It is surprising

how consistent this number is, even with quite different clock speeds and semiconductor processes.

The problem is not with CT∆ΣMs in general—[Ada86], for example, achieved DR= 105dB in

a 20kHz band—it is withhigh speedCT ∆ΣMs. It might be that all these modulators are limited

simply by thermal noise; the same thermal noise spec would cause 30dB more noise in a 20MHz

band than in a 20kHz band, so a 4GHz modulator would be more likely to be thermal-noise limited

than a 4MHz modulator with the same OSR. Still, there are a number of other possibilities which

we explore in the coming chapters.

3.3 Summary

Published high-speed CT∆ΣMs achieve poor performance compared to an ideal modulator.We

spend the remainder of this thesis investigating the performance-limiting nonidealities in high-

speed CT∆ΣM design.
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Chapter 4

Excess Loop Delay

Consider once again the high-speed double-integration modulator from Figure 2.16 [Jen95] re-

produced in Figure 4.1. The quantizer is a latched comparator whose output drives differential

f s

1IkIk2

2C

2C C1

C1

gm1gm2

yu

Figure 4.1: Example of high-speed double integration CT∆ΣM.

pair DACs; their output currents sum with the transconductor outputs. Ideally, the DAC currents

respond immediately to the quantizer clock edge, but in practice, the transistors in the latch and

the DAC have a nonzero switching time. Thus, there exists a delay between the quantizer clock

and DAC current pulse. It is this delay that we callexcess loop delay, or simplyexcess delayor

loop delay. There is really no analogous problem in DT modulators; perhaps the closest thing is

incomplete settling, which we discussed in§3.1.1.

53
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Excess delay has been studied in the literature before; a brief summary of past work is appro-

priate. Gosslau and Gottwald [Gos88, Gos90] found that excess delay of 25% actually improves

the DR of a 1LP CT∆ΣM. Horbach [Hor90] confirmed this and extended the results tohigher-

order LP modulators, showing that excess delay is detrimental to their performance. Chan [Cha92]

found a full sample of feedback delay in his 2LP modulator caused 10dB of SNR loss. Shoaei

[Sho96] found excess delay problematic in 2BP and 4BP modulators. Gao et al. [Gao97a] propose

feedback coefficient tuning and demonstrate that it alleviates delay problems in a 4BP modulator,

while Benabes et al. [Ben97] add an extra feedback loop to a 2LP modulator for the same purpose.

One of the aims of this chapter is to unify and summarize the past work in the area, but we

also contribute new material. First, most authors use the modifiedZ-transform for studying excess

delay, but we explain here why this is inappropriate and demonstrate a preferred method. Second,

we consider higher-order LP and BP modulators in much more detail than has previously appeared.

We also consider multibit modulators, something which seems not to have been done in the past.

Ideas from this chapter have appeared partially in [Che98b], and the chapter has been accepted

almost verbatim in its entirety for journal publication [Che99b].

4.1 Preliminaries

A general CT∆ΣM is depicted in Figure 4.21. The CT inputû(t) (possibly prefiltered bŷG(s))

DAC

f s

x(t)
H(s)

y(t)

u(t) G(s) Σ y(n)

Figure 4.2: General CT∆ΣM block diagram.

1We have made a slight change from Figure 2.1: the DAC output isnow added to the input instead of subtracted.

This is a trivial difference which will invert the sign ofH(z), but otherwise leave modulator behavior identical.
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is applied to a modulator with a CT loop filter̂H(s) whose output we denotêx(t). The quantizer

samples this signal at frequencyfs, or equivalently with periodTs; this produces a DT output

signaly(n) = ŷ(nTs), which is fed back through a DAC.

4.1.1 CT/DT Modulator Equivalence

It is useful to begin by explaining how to find the equivalent DT loop filter H(z) for a given CT

loop filterĤ(s) (we first mentioned this equivalence in§2.3.2). Why does such an equivalent exist?

Because the quantizer in a CT∆ΣM is clocked, which means there is animplicit sampling action

inside the modulator, and sampled circuits are DT circuits.We can make the sampling explicit

by placing the sampler immediately prior to the quantizer asdepicted in the upper left diagram of

Figure 4.3—this does not change the behavior of the modulator. If we want to know how this is

DAC

DAC

u(t)

DAC
y(t)

Ts

1
fs=

x(t)
H(s)

H(s)
Ts

1

t t+T

1

s

DAC

t

1

y(t)

Σ y(n)
x(n)

x(t) x(n)
fs=

y(n)

Σ y(n)
x(n)

u(n) H(z)

y(n)
H(z)

x(n)

Figure 4.3: Open-loop CT∆ΣM and its DT equivalent.

equivalent to a DT modulator, shown in the upper right of Figure 4.3, then it is illustrative to zero

both inputs and open both loops around the quantizer. This leads to the bottom two diagrams of

Figure 4.3.
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In the CT open-loop diagram, the quantizer outputy(n) is a DT quantity, and we may think of

the DAC as a “discrete-to-continuous converter”: it makes aCT pulseŷ(t) from the output sample

y(n). This pulse is filtered bŷH(s) (the CT loop filter) to producêx(t) at the quantizer input,

which is then sampled to produce the DT quantizer inputx(n). The input and output of both the

CT and DT open-loop diagrams are thus discrete-time quantities. A CT modulator would produce

the same sequence of output bitsy(n) as a DT modulator if the inputs to the quantizer in each were

identical at sampling instants:

x(n) = x̂(t)|t=nTs
. (4.1)

This would be satisfied if the impulse responses of the open loop diagrams in Figure 4.3 were equal

at sampling times, leading to the condition [Thu91]

Z−1{H(z)} = L−1{R̂D(s)Ĥ(s)}|t=nTs
, (4.2)

or, in the time domain [Sho96],

h(n) = [r̂D(t) ∗ ĥ(t)]|t=nTs
=
∫ ∞

−∞
r̂D(τ)ĥ(t − τ)dτ |t=nTs

(4.3)

wherer̂D(t) is the impulse response of the DAC. Since we are requiring theCT and DT impulse

responses to be the same, the transformation between the twois called theimpulse-invariant trans-

formation[Gar86].

Without loss of generality, we shall simplify the discussion by normalizing the sampling period

to Ts = 1 second for the remainder of this chapter.

4.1.2 Usefulness of Equivalence

Knowledge of the equivalence allows us to perform CT∆ΣM loop filter design in the DT domain

using any design technique we choose, for example, NTF prototyping [Nor97, Chap. 4]. Once we

have chosenH(z), we may find theĤ(s) to implement the CT modulator with identical behavior,

given a certain type of DAC pulse. For simplicity, we assume aperfectly rectangular DAC pulse

of magnitude 1 that lasts fromα to β, i.e.,

r̂(α,β)(t) =











1, α ≤ t < β, 0 ≤ α < β ≤ 1

0, otherwise.
(4.4)
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Table 4.1 lists thes-domain equivalents forz-domainH(z) poles of orders one through three.

These were found by solving (4.2) in the symbolic math program Maple [Red94] where the Laplace

transform of (4.4) is

R̂(α,β)(s) =
exp(−αs) − exp(−βs)

s
. (4.5)

It is found that az-domain pole of multiplicityl atzk maps to one atsk with the same multiplicity,

with

sk = ln zk. (4.6)

Therefore, to use the table,H(z) is first written as a partial fraction expansion, then we apply

the transformations in the table to each term and recombine them to get the equivalent̂H(s).

Poles at dc (i.e.,zk = 1) end up giving0l/0l as the numerator of thes-domain equivalent, which

necessitatesl applications of l’Hôpital’s rule; this has been done in theright column of Table 4.1.

The table extends the work in [Sho96] to general(α, β) and also to third-orderz-domain poles.

Example 4.1: Many designs use DACs with an output pulse which remains con-

stant over a full period, which we shall term anon-return-to-zero(NRZ) DAC. For this

type of DAC,(α, β) = (0, 1) in (4.4). Moreover, we saw that many of the high-speed

designs in Table 3.1 were second-order LP designs; these differentiate the quantization

noise twice so that NTF(z) = (z − 1)2 and

H(z) =
−2z + 1

(z − 1)2
. (4.7)

Writing this in partial fractions yields

H(z) =
−2

z − 1
+

−1

(z − 1)2
. (4.8)

Thuszk = 1, which meanssk = 0 from (4.6). Applying the first row of Table 4.1 to

the first term of (4.8) and the second row to the second term with (α, β) = (0, 1) gives

Ĥ(s) =
−2

s
+

−1 + 0.5s

s2
(4.9)

= −1 + 1.5s

s2
. (4.10)
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Table 4.1:s-domain equivalences forz-domain loop filter poles.

z-domain pole s-domain equivalent Limit for zk = 1

y0

z−zk

r0

s−sk
× y0

z1−α

k
−z1−β

k

r0

s−sk

r0 = sk r0 = y0

β−α

y0

(z−zk)2
r1s+r0

(s−sk)2 × y0

zk(z1−α

k
−z1−β

k
)2

r1s+r0

(s−sk)2

r1 = q1sk + q0

r0 = q1s
2
k

q1 = z1−β
k (1 − β) − z1−α

k (1 − α)

q0 = z1−α
k − z1−β

k

r1 = 1
2

(α+β−2)y0

β−α

r0 = y0

β−α

y0

(z−zk)3
r2s2+r1s+r0

(s−sk)3 × y0

z2

k
(z1−α

k
−z1−β

k
)3

r2s2+r1s+r0

(s−sk)3

r2 = 1
2q2sk − q1

r1 = −q2s
2
k + q1sk + q0

r0 = 1
2q2s

3
k

q2 = (1 − β)(2 − β)(z1−β
k )2

+ (1 − α)(2 − α)(z1−α
k )2

+ [β(β + 3) + α(α + 3)

− 4(1 + αβ)]z1−α
k z1−β

k

q1 = (3
2 − β)(z1−β

k )2 + (3
2 − α)(z1−α

k )2

+ (α + β − 3)z1−α
k z1−β

k

q0 = (z1−α
k − z1−β

k )2

r2 = 1
12

y0

β−α [β(β − 9)

+ α(α − 9) + 4αβ + 12]

r1 = 1
2

(α+β−3)y0

β−α

r0 = y0

β−α
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As noted in§3.2.1, (4.10) was first derived by Candy [Can85] as the CT equivalent of

the DT double integration modulator in (4.7). 2

Our CT/DT transformations are based on expressing the loop filter in pole-zero form, though

this is not the only way to do it. Schreier [Sch96a] uses state-space representation, and others

[Sho96, Gao97a] use pole-zero with the modifiedZ-transform to account for excess delay, some-

thing we avoid here for reasons which will be explained below. As well, we only deal with loop

filter equivalence, which affects the noise transfer function in the linearized∆ΣM model. There

are some subtleties regarding the signal transfer function[Sho96, Sch96a] which we simplify by

assuming a signal transfer function of 1 in the signal band. This assumption is approximately valid

for most designs.

4.1.3 Effect of Excess Loop Delay

As noted in the introduction, excess loop delay arises because of nonzero transistor switching

time, which makes the edge of the DAC pulse beginafter the sampling clock edge. We assume

that excess loop delay can be expressed by

τd = ρdTs (4.11)

which is depicted for an NRZ DAC pulse in Figure 4.4. The sampling instant ist = 0. The value

Ts Tsτd

Figure 4.4: Illustration of excess loop delay on NRZ DAC pulse.

of τd depends on the switching speed of the transistorsfT , the quantizer clock frequencyfs, and

the number of transistors in the feedback pathnt, as well as the loading on each transistor. As a

crude approximation, we may assume all transistors switch fully after1/fT , in which case

ρd ≈ ntfs

fT

. (4.12)

τd could end up being a significant fraction ofTs depending on the parameters in (4.12).
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Example 4.2: In the design in Figure 4.1, suppose we desire 12-bit DR in a

50MHz bandwidth. This will require an OSR of about 50 [Sch93], which means we

must clock atfs = 50(2 · 50) = 5GHz. If the quantizer is an ECL-style latched

comparator, its output differential pair must switch; the DAC must also switch, and

thusnt = 2. In afT = 30GHz process, therefore,

ρd ≈ 2 · 5
30

= 33% (4.13)

is the amount of excess delay predicted by (4.12). 2

Excess loop delay is problematic because it altersα andβ, which means it affects the equiv-

alence between̂H(s) andH(z). We can calculate the effect mathematically by using Table 4.2

which lists thez-domain equivalents fors-domainĤ(s) poles of orders one through three. As

with Table 4.1, these were calculated with the help of Maple and (4.2). Ans-domain pole of

multiplicity l at sk maps to one atzk with the same multiplicity, with

zk = exp sk. (4.14)

Poles atsk = 0 give numerators of0l/0l, as before, and the rightmost column gives the formulae

that result when l’Hôpital’s rule is appliedl times.

Example 4.3: Suppose we have designed̂H(s) from (4.10) assuming NRZ DAC

pulses, but that we have excess loop delayτd, so that in actuality we have NRZ DAC

pulses delayed byτd as in Figure 4.4. Now, we have(α, β) = (τd, 1 + τd). The

formulae in Table 4.2 only apply for a pulse withβ ≤ 1, but we needn’t worry: it is

possible to write aτd-delayed NRZ pulse as

r̂(τd,1+τd)(t) = r̂(τd,1)(t) + r̂(0,τd)(t − 1), (4.15)

that is, as a linear combination of a DAC pulse fromτd to 1anda one-sample-delayed

DAC pulse from 0 toτd as shown in Figure 4.5. Writing (4.10) in partial fractions

gives

Ĥ(s) =
−1.5

s
+

−1

s2
. (4.16)
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Table 4.2:z-domain equivalences fors-domain loop filter poles.

s-domain pole z-domain equivalent Limit for sk = 0

r0

s−sk

y0

z−zk
× r0

sk

y0

z−zk

y0 = z1−α
k − z1−β

k y0 = r0(β − α)

r0

(s−sk)2
y1z+y0

(z−zk)2 × r0

s2

k

y1z+y0

(z−zk)2

y1 = z1−β
k [1 − sk(1 − β)]

− z1−α
k [1 − sk(1 − α)]

y0 = z2−α
k (1 + skα)

− z2−β
k (1 + skβ)

y1 = r0

2 [β(2 − β) − α(2 − α)]

y0 = r0

2 (β2 − α2)

r0

(s−sk)3
y2z2+y1z+y0

(z−zk)3 × r0

s3

k

y2z2+y1z+y0

(z−zk)3

y2 = z1−β
k [−1 + sk(1 − β) +

s2

k

2 (1 − β)2]

− z1−α
k [−1 + sk(1 − α) +

s2

k

2 (1 − α)2]

y1 = z2−β
k [2 − sk(1 − 2β)

+
s2

k

2 (−1 − 2β + 2β2)]

+ z2−α
k [2 − sk(1 − 2α)

+
s2

k

2 (−1 − 2α + 2α2)]

y0 = z3−α
k (1 + skα +

s2

k

2 α2)

− z3−β
k (1 + skβ +

s2

k

2 β2)

y2 = r0[
1
6 (β3 − α3)

− 1
2 (β2 − α2) + 1

2 (β − α)]

y1 = r0[
1
3 (β3 − α3)

− 1
2 (β2 − α2) − 1

2 (β − α)]

y0 = r0

6 (β3 − α3)



62 Chapter 4: Excess Loop Delay

Tsτd
Tsτd

Ts

τd

Figure 4.5: Delayed NRZ pulse as a linear combination.

Applying Table 4.2 to each term of (4.16), for each of the two DAC pulses in (4.15),

yields

−1.5

s
→ −1.5(1 − τd)

z − 1
+ z−1−1.5τd

z − 1
(4.17)

−1

s2
→ (−0.5 + τd − 0.5τ 2

d )z + 0.5(−1 + τ 2
d )

(z − 1)2

+ z−1 τd(−1 + 0.5τd)z − 0.5τ 2
d

(z − 1)2
. (4.18)

Adding (4.17) and (4.18) gives

H(z, τd) =
(−2 + 2.5τd − 0.5τ 2

d )z2 + (1 − 4τd + τ 2
d )z + (1.5τd − 0.5τ 2

d )

z(z − 1)2
. (4.19)

We can quickly verify that forτd = 0, (4.19) turns into (4.7) as it should. However,

for τd 6= 0, the equivalentH(z) is no longer (4.7).

If instead of Table 4.2 we use the modifiedZ-transform on (4.7), the result is

[Gao97a]

HMZ(z, τd) = Zm

[

Z−1

[

−2z + 1

(z − 1)2

]]

=
(−2 + 2τd)z

2 + (1 − 3τd)z + τd

z(z − 1)2
, (4.20)

which is similar to (4.19) but not identical. The modifiedZ-transform assumes the de-

lay happens at the output of̂H(s) (at the quantizerinput), but in our method we assume

the delay happens prior to the DAC pulse (at the quantizeroutput). The literature does

not distinguish between these two cases, but they are clearly different. More impor-

tantly, our assumption represents reality more closely—the delay is after the quantizer

in an actual circuit—so our method is superior to the modifiedZ-transform. 2

We treat pulses as rectangular because it allows exact closed-form solutions in the CT/DT equiv-

alence calculations. Other authors [Ben97] treat pulses astrapezoidal or as having exponential
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rising behavior, which is more realistic but which does not lead to exact solutions as easily. A

real circuit will likely exhibit DAC pulse shapes more complicated still. The key point is, excess

delay always alters the numerator coefficients of the equivalent H(z), and it turns out that using

rectangular pulses yields results that are similar to thosefound using more realistic pulse shapes.

4.2 Double Integration Modulator

How well does a modulator with a loop filter given by (4.19) perform? To study the effects of

excess loop delay, Matlab code was written to perform the transformations in Tables 4.1 and 4.2

numerically. The output bit stream from a modulator was determined by solving the difference

equationX(z) = G(z)H(z)U(z) + H(z)Y (z) in the time domain with a C program for given

G(z) andH(z). The virtue of using the transformations is it allows us to simulate in the DT

domain, a process usually significantly more rapid than simulating usingĤ(s) in the CT domain2.

Since first-order modulators with excess delay have been studied already [Gos88] and are of

limited practical use due to an excessive presence of harmonics in the output spectrum, we confine

ourselves to modulators of orders two and above. In this section, we commence with the double-

integration∆ΣM: how is its DR affected by excess delay? We said in§2.2.3 that DR is defined

as the difference between the smallest and largest input levels (in dB) which give SNR≥ 0. At

low input levels, SNR is limited by in-band quantization noise (IBN), while a large-enough input

level eventually compromises the stability of the modulator. There exists a maximum stable input

amplitude (MSA); DR may be found from IBN and MSA, as we explain below.

4.2.1 Root Locus

The easiest way to grasp the effect of excess delay is to linearize the quantizer as was done in§2.1.1

and look at the stability of the noise transfer function. There is, however, a subtlety we ignored in

2Though we provide no experimental verification of the results throughout this chapter, we find simulation of

Figure 4.1 in Eldo using ideal circuit components and a variable delay in the feedback path gives results that are

consistent with those presented in this section. Simulations take much longer with Eldo, however.
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Figure 2.1: the gain of a one-bit quantizer isn’t well-defined. That is, we could insert a positive gain

κ immediately in front of the quantizer and not affect the performance of the circuit—quantizer

inputs would be scaled, but their signs remain unchanged, hence the sequence of±1 would be

identical. Makingκ explicit is usually done (Figure 4.6) in the linear model, which results in

Σ ΣH(z)

DAC

-

x
u y

e

κ

Figure 4.6: Linearized∆ΣM with one-bit quantizer arbitrary gainκ.

NTF(z, τd) = (1 + κH(z, τd))
−1. Figure 4.7 shows that forκ = 1 and increasingρd, the poles

of NTF(z, τd) move towards the unit circle, eventually moving outside atρd ≈ 0.31. Any choice

of κ > 0 shows a similar movement of poles from their initial positions towards the unit circle;

this implies modulator stability worsens as delay increases. Time-domain simulation shows that it

takesρd ≈ 0.65 to make the modulator unstable. The root locus incorrectly predictedρd = 0.31

for instability becauseκ = 1 was not satisfied in the simulation. How to measure or chooseκ is a

nontrivial matter [Ris94, Chap. 6] and we do not explore it indetail here; we attempted to use the

linear model for characterizing delay with little success.Suffice it to say that it at least makes a

qualitativeprediction that stability worsens with increasing loop delay.

4.2.2 In-Band Noise

In practical terms, we care about how much performance is lost due to excess delay. Figure 4.8(a)

shows an output spectrum near dc: 256 16384-point Hann-windowed periodograms with random

initial conditions were averaged, and the input signal is a 0.1V sine wave. As the delay increases

from 0% up to 60%, we see that the noise floor rises slowly. Integrating the IBN for zero input as

a function ofτd produces Figure 4.8(b): for delays below about 20%, IBN stays roughly constant,
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Figure 4.7: Effect of loop delay on root locus of NTF(z, τd).

but rises as delay increases3. If the excess delay exceeds about 65%, the modulator goes unstable.

In this chapter, instability is defined to have occurred if the quantizer input magnitude exceeds 10

before the end of a simulation for 1000 successive simulations with random initial states. A similar

definition was used in [Ris94].

The smallest input signal for which SNR= 0dB is exactly the IBN, adjusted for the gain of the

window (0.375 for Hann, or 4.26dB) and the fact that periodograms measure rms power (3.01dB).

For example, the IBN forτd = 0 and OSR= 64 is −85.06dB, and so we predict that an input

magnitude of approximately

−85.06 + 4.26 + 3.01 = −77.79dB (4.21)

is needed to get SNR= 0dB. In simulation, we find the input magnitude that leads to 0dB SNR to

be about−77dB.

3The non-monotonicity on the tails of the IBN graphs and certain later DR graphs is not a real effect: it is an artifact

of doing simulations with zero input and no dither. Otherwise, the general trends indicated by the curves are accurate.
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Figure 4.8: (a) Output spectrum from double integration CT∆ΣM (b) in-band noise for zero input as a function of

loop delay.

4.2.3 Maximum Stable Amplitude

Second, how does the MSA change with loop delay? To determinethe MSA, we once again

follow Risbo [Ris94]: we apply a ramp input whose amplitude increases slowly from 0 to 1 over

105 time steps; when the quantizer input magnitude exceeds 10, the input level at that instant is

the MSA. A traditional method [Sch93] involves applying a low-frequency sine wave at the input

and running for hundreds of thousands of cycles to check thatthe modulator remains stable, then

increasing the amplitude and repeating the simulation until the maximum amplitude for which the

modulator remains stable is found. We find Risbo’s method gives approximately the same answer

while requiring many fewer simulation runs.

Performing this test for 200 runs with random initial conditions yields the graph in Figure 4.9.

The modulator is stable for inputs of up to 0.92 for no excess delay, but this falls more or less

linearly to near zero at about 50% delay. An unstable modulator has SNR= −∞, so the MSA is

precisely the largest input for which SNR> 0. For example, atτd = 0, the MSA is

20 log10 0.92 = −0.72dB. (4.22)
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Figure 4.9: Maxmimum stable amplitude for double integration CT∆ΣM.

4.2.4 Dynamic Range

We can combine the previous two results to plot the modulator’s DR against delay in Figure 4.10.

DR is the difference between MSA and adjusted IBN; for example, atτd = 0, equations (4.21) and

(4.22) give

DR = −0.72 − (−77.79) = 77.07dB. (4.23)

This is converted to bits using (2.10) and the result is plotted for0 ≤ τd ≤ 1 in Figure 4.10.

Example 4.4: Example 4.2 estimated a loop delay of 33% in (4.13) for OSR= 50.

We see from Figure 4.10 that even with OSR= 64 it would not be possible to achieve

the desired resolution at 33% delay: we could only obtain DR= 11 bits. To achieve

12 bits at OSR= 64, we must have no more than about 20% excess loop delay. For

a 50MHz bandwidth, OSR of 64 means clocking at 6.4GHz, and from (4.12), we see

that the transistors must havefT > 32GHz or so. 2
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Figure 4.10: Dynamic range for double integration CT∆ΣM.

4.3 fs/4 Fourth-Order Band Pass Modulator

We saw in Figure 2.7 that BP modulators with center frequencyfs/4 are potentially useful in

radio receivers; indeed, several circuits [Sin95, Gao97b,Jay97, Gao98a] have been built with this

application in mind. We noted in§2.1.2 that taking a low pass NTF(z) with a quantization noise

notch at dc and performing the substitutionz−1 → −z−2 gives a BP NTF(z) with a noise notch at

fs/4, one-quarter the sampling frequency, with double the orderand identical stability properties

to the LP prototype. The substitution can be applied to the loop filterH(z) to yield the same result.

Applying this to the double integration modulator (4.7) gives

HLP (z) =
−2z−1 + z−2

(1 − z−1)2
→ HBP (z) =

2z−2 + z−4

(1 + z−2)2
. (4.24)

This contains two double poles atzk = ±j; we could find the equivalent̂HBP (s) by applying the

results in Table 4.1 to a partial fraction expansion of (4.24).
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Example 4.5: Doing this for NRZ DAC pulses yields

ĤBP (s) =
−1.0354s3 + 1.0652s2 − 1.3210s + 4.5661

(s2 + (π
2
)2)2

. (4.25)

How do we build a circuit to implement this? Historically, LPDT modulators have

been built as a cascade of integratorsz−1/(1− z−1) [Cha90], and building anfs/4 BP

DT modulator simply requires replacing the integrator blocks directly with resonator

blocks−z−2/(1 + z−2). It is likewise possible to build LP CT modulators as a cas-

cade of integrators1/s—the block diagram for Figure 4.1 is shown in Figure 4.11.

However, simply replacing integrators with resonatorsAs/(s2 + ω2), ω = π/2 as in

1
s

Σ1
s x(t)

u(t) Σ

NRZ DAC

1k =-1.5k =-12

y(n)

Figure 4.11: Block diagram for LP CT∆ΣM from Figure 4.1.

Figure 4.12 doesnot build (4.25): the numerator of̂HBP (s) for Figure 4.12 does not

Σ
x(t)

u(t) Σ
s2+ω2

As
s2+ω2

As

k4 k2

NRZ DAC

y(n)

Figure 4.12: Block diagram for BP CT∆ΣM with integrators replaced by resonators that cannot implement desired

equivalentH(z).

contain ans2 or s0 term, yet each is required in (4.25). Early designs [Thu91] suffered

from this problem. 2

One solution is to use resonators with a low pass term included in the numerator:(As +

B)/(s2 +ω2). A second elegant solution first proposed in [Sho94] and [Sho95] is to use resonators
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As/(s2+ω2) with two different types of feedback DAC, leading to the so-calledmulti-feedback ar-

chitecturein Figure 4.13. There, the DACs are return-to-zero (RZ), which has(α, β) = (0, 0.5) in

Σ
x(t)

u(t) Σ
s2+ω2

As
s2+ω2

As

k4h k2h

y(n)

HRZ DAC

RZ DAC

k4r k2r

Figure 4.13: Multi-feedback BP CT∆ΣM architecture.

(4.4), and half-delayed return-to-zero (HRZ)(α, β) = (0.5, 1). The three types of DAC mentioned

so far are depicted in Figure 4.14. All are easy to fabricate in an ECL-style latched comparator, a

Ts

1

Ts

1

Ts

1

r̂NRZ(t) =







1, 0 ≤ t < Ts

0, otherwise
r̂RZ(t) =







1, 0 ≤ t < Ts/2

0, otherwise
r̂HRZ (t) =







1, Ts/2 ≤ t < Ts

0, otherwise

R̂NRZ(s) =
1 − e−sTs

s
R̂RZ(s) =

1 − e−sTs/2

s
R̂HRZ(s) = e−sTs/2 1 − e−sTs/2

s

Figure 4.14: Common DAC pulse types.

typical circuit diagram of which is shown in Figure 4.15. By diode-connecting the final differential

pair rather than cross-coupling them [Gao98a], an RZ ratherthan an NRZ waveform is output. In

the multi-feedback architecture, we could have used any twoof NRZ, RZ, and HRZ, or for that

matter any other two different pulses, but those three typesare easiest to build in a practical circuit.

The numerator of̂HBP (s) implemented in Figure 4.13 can be set by altering thek coefficients.

Example 4.6: We wish to find how to set theks so that the equivalentHBP (z) is

that in (4.24); this is done by convertinĝHBP (s) to thez-domain using Table 4.2 for

each DAC separately, then linearly combining the results and solving for theks. It can
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clk
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Voutn

V

Vclkb

en

Figure 4.15: ECL-style latched comparator with preamplification for enhanced resolution at high speed. For an NRZ

comparator, connect the final differential pair via the dashed lines; for RZ, connect the dotted lines instead.

be calculated that

{kr4, kr2, kh4, kh2} = {−1.08678,−2.13388, 0.45016, 1.48744} (4.26)

are thek values that implement (4.24) when the CT modulator uses RZ and HRZ

DACs. 2

How does excess delay affect this design? Both leading DAC edges become delayed byτd.

Exactly the same simulations were carried out for this BP modulator as were done in the previous

section (IBN and MSA), only instead of using a dc input to find the MSA, a sine wave input atfs/4

whose amplitude increases from 0 to 1 over105 time steps is used. Again, this method is rapid, and

we find it to gives similar results to using a sine wave input with fixed amplitudes and frequencies

nearfs/4, simulating for many cycles to see if the modulator remains stable, then increasing the

amplitude and repeating the simulation.

The resulting DR as a function ofτd is plotted in Figure 4.16(a); for comparison, the results

from Figure 4.10 for the double integration modulator are overlaid with dashed lines. Interestingly,

the two designs perform the same until about about 30% excessdelay, at which point the BP design

becomes more severely affected; the exact reason for this isunclear to the author. It goes unstable
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Figure 4.16: (a) Dynamic range for multi-feedback BP CT∆ΣM, with comparison to double integration results. (b)

Same graph with OSR as independent variable; numbers on curves areτd × fN .

for about 50% excess delay. These results do not change if a different pair of DAC pulses are

selected. Figure 4.16(b) plots the same results only with OSR as the independent variable; the

parameter on the curves is the product ofτd and fN , the Nyquist rate. Thus, for example, a

modulator with a desiredfN = 2MHz and a fixed delay ofτd = 1ns hasτd × fN = 10−3 = 0.1%,

and the DR at a given clock speedfs ≡ OSR· fN may be found from the graph.

Previous examinations of this modulator [Sho96,§3.1.4], [Gao97a] which found 25% delay

required for instability made two errors. First, the modified Z-transform was used which led to

an incorrectHBP (z, τd). Second, simulations were carried out with a large fixed-amplitude tone,

which fails to take into account the changing modulator MSA with increasing delay.

4.4 Higher-Order Modulators

We now turn to the effects of excess loop delay for low pass CT∆ΣMs of order higher than two.

This has been examined cursorily using the modifiedZ-transform in [Hor90], but nowhere else

to the author’s knowledge. The architecture we will consider is a generalization of Figure 4.11
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which was first shown in Figure 2.6, reproduced here with CT integrators in Figure 4.17. It is

1
s

Σ1
s

u(t) Σ

B1

1
s

Σ
x(t)

k1

y(n)

DAC

BmB2

km-1km

Figure 4.17: Block diagram for general high-order LP CT∆ΣM .

straightforwardly realizable in VLSI with transconductors, integrators, and differential pair DACs

as in Figure 4.1. The loop filter realized by this architecture form ≥ 2 is

Ĥ(s) =

∑m
i=1(

1
s
)i[ki −

∑i−1
j=1 ki−jBj ]

1 −∑m
i=1 Bi(

1
s
)i

. (4.27)

(4.27) shows that the purpose of theBis is to allow us to implement NTF(z) zeros at places other

than dc (i.e.,z = 1).

Four types of high-order modulators were designed using NTFprototyping. The NTFs used

had

• Third-order Butterworth poles, all zeros atz = 1;

• Third-order Butterworth poles, optimally-spread zeros;

• Fourth-order Butterworth poles, optimally-spread zeros;

• Fifth-order Chebyshev poles, optimally-spread zeros.

The spread-zero modulators had zeros placed according to [Sch93] so that IBN would be mini-

mized for a given OSR. Modulators with out-of-band gains (OOBGs) of 1.3, 1.4, 1.5, and 1.6 were

all designed—higher OOBG means lower IBN at the price of MSA [Nor97, Chap. 4].

Example 4.7: We demonstrate this quickly for a fifth-order Chebyshev modulator

with zeros spread assuming OSR= 64. Figure 4.18(a) shows that IBN falls from
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Figure 4.18: Effect of out-of-band-gain on fifth-order Chebyshev modulator: (a) IBN, (b) MSA.

−116dB for OOBG = 1.3 down to−131dB for OOBG = 1.6. At the same time,

MSA falls from about 0.79 to about 0.51. Note that IBN is plotted on a logarithmic

scale but MSA is on a linear scale; DR increases from 17.4 to 19.3 bits over that range

of OOBG. 2

The DR as a function of excess loop delay for NRZ DAC pulses andOSRs of both 32 and 64

are summarized in the graphs in Figure 4.19. The results are most intriguing. The modulators with

OOBG = 1.3 remain stable even for one full sample excess delay, and moreover they only suffer

a dynamic range loss of between two and three bits. This contrasts starkly with the results for

the second-order LP and fourth-order BP circuits. Increasing OOBG results in modulators which

have generally better resolution at no delay, but which become unstable for less excess delay. This

makes perfect sense: higher OOBG means a generally less-stableH(z), and in fact we see theτd

needed for instability is roughly inversely proportional to OOBG. This suggests that higher-order

modulators enjoy an advantage over the lower-order ones: the existence of a parameter, OOBG,

which we may select according to our resolutionand excess delay imperviousness requirements,

though only extremely recently has anyone published a high-speed CT∆ΣM design with an order

higher than two (recall [Mor98] in Table 3.1). To be fair, onecanvary the OOBG in a second-order



Chapter 4: Excess Loop Delay 75

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

1.3

τ
d

D
yn

am
ic

 r
an

ge
 (

bi
ts

)

3rd−order LP Butterworth with dc zeros     

1.41.5
1.6

OSR 32

1.3

1.4
1.51.6

OSR 64

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

1.3

τ
d

D
yn

am
ic

 r
an

ge
 (

bi
ts

)

3rd−order LP Butterworth with optimal zeros

1.41.5
1.6

OSR 32

1.3

1.4
1.5

1.6

OSR 64

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

1.3

τ
d

D
yn

am
ic

 r
an

ge
 (

bi
ts

)

4th−order LP Butterworth with optimal zeros

1.41.51.6

OSR 32

1.3

1.4
1.5

1.6

OSR 64

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

1.3

τ
d

D
yn

am
ic

 r
an

ge
 (

bi
ts

)

5th−order LP Chebyshev with optimal zeros  

1.41.5
1.6

OSR 32

1.3

1.4
1.5

1.6

OSR 64

Figure 4.19: Dynamic range for high-order LP CT∆ΣMs. Numbers on curves are OOBG values.
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Figure 4.20: Dynamic range for sixth-order BP CT∆ΣM. Numbers on curves are OOBG values.

LP ∆ΣM, but it is rarely done in practise.

For interest’s sake, a sixth-orderfs/4 BP design was also tested by taking the low pass NTF

with third-order Butterworth poles and three dc zeros and transforming it to a band pass design

usingz−1 → −z−2. This can be implemented using the multi-feedback architecture in Figure 4.13

with a third resonator and an additional feedback coefficient for each DAC. DR is plotted against

τd in Figure 4.20. Comparing these curves to those of the equivalent third-order LP design (the

upper-left graph of Figure 4.19) illustrates behavior likethat in Figure 4.16: the BP curves have

the same shape as those of the LP curves for low excess delay, but they become unstable sooner

as excess delay increases. Significantly, the LP modulator with OOBG= 1.3 was stable for a full

sample of excess delay, while the same BP modulator is only stable up untilτd = 0.65.

In conclusion, LP modulators of order higher than two let us choose OOBG as an anti-delay

measure at the cost of resolution. High-order multi-feedback BP modulators do likewise, though

their immunity to excess delay isn’t as good as in their LP counterparts4. It is believed that these

4The Matlab code written to do the transformations was unfortunately not sophisticated enough to handle BP
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Figure 4.21: Modulators with multibit quantizers: (a) second-order LP, (b) fourth-order BP.

results are new. Finally, in fairness, even though the resolution of some of the ideal modulators in

Figure 4.19 exceeds 16 bits, it is unlikely that GHz-speed modulators would achieve such a high

resolution because other nonidealities such as thermal noise and clock jitter will almost surely limit

performance more than quantization noise [Dia92a]. We willdiscuss these in the chapters to come.

4.5 Modulators with a Multibit Quantizer

Thus far, this study has simulated∆ΣMs employing a single-bit quantizer. It is known that multibit

quantizers in DT designs improve stability, particularly for high-order designs [Nor97, Chap. 8]. If

the previous section is any guide, we can hope for an improvement in the immunity of CT designs

with a multibit quantizer to excess delay. The author has notseen this studied elsewhere.

There is some improvement, but not a lot. Figure 4.21(a) shows the DR against excess delay

for the second-order LP modulator for OSR= 64, while Figure 4.21(b) is for the fourth-order BP

modulator. The thick lines are from Figure 4.10 and Figure 4.16, the results for a 2-level (1-bit)

modulators with non-coincident NTF zeros, though it seems reasonable to assume the results for such modulators

would echo those seen in Figure 4.20.
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quantizer, and the other lines are for 3-, 4-, 8-, and 16-level (1.5-, 2-, 3-, and 4-bit) quantizers.

Generally, DR improves with quantizer resolution as expected, and furthermore theτd range over

which the modulators remain stable improves a little with increasing quantizer resolution. Similar

results are seen for the high-order LP modulators as for the second-order LP modulator. We see

the fourth-order BP circuit can be stable forτd close to 0.7 with a 4-bit quantizer compared to 0.5

for a 1-bit quantizer. Again, similar results are seen for the sixth-order BP modulator.

We noted in§3.1.2 the traditional problem in multibit designs: any level mismatches in the

multibit feedback DAC are directly input-referred, thereby limiting the achievable performance.

Implementing either DEM or digital post-correction on the same chip as the modulator might be

a problem because both would require digital circuitry switching atfs, which would cause a great

deal of switching noise that might couple through the substrate into the forward modulator cir-

cuitry and degrade performance. Moreover, DEM would mean switching circuitry in the feedback

path, which would add excess delay. Multibit quantizers areattractive both for stability and for

reducing jitter sensitivity [Ada98], something we consider further next chapter, though no one has

yet attempted to build a high-speed CT∆ΣM with a multibit quantizer probably because of the

difficulties just mentioned.

4.6 Compensating for Excess Loop Delay

We have seen that it is possible to make a modulator immune to excess delay by choosing its

OOBG appropriately. However, there exist methods of actually compensating for delay. We turn

now to discussing them for single-bit designs, though the results are equally applicable to multibit

designs. We explore some past proposals in more detail than previously reported and also suggest

some new methods.

4.6.1 DAC Pulse Selection

In §4.2, we considered the second-order LP∆ΣM with NRZ DAC pulses. A problem with this

kind of pulse is that any excess loop delayτd > 0 causesβ > 1, which means the end of the pulse
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extends beyondt = 1. We saw in equations (4.15) through (4.19) that this increases the order

of the resulting equivalentH(z): in (4.19),H(z) has the two poles atz = 1, but it acquires an

additional pole atz = 0 for τd > 0. Thus, the second-order modulator we tried to build actually

has athird order loop filter5. In general, in any CT modulator with enough excess delay to push

the falling DAC pulse edge pastt = 1, the order of the equivalent DT loop filter is one higher

than the order of the CT loop filter. Thus, a multi-feedback BPmodulator using either an NRZ or

HRZ pulse increases in order, as do the higher-order LP modulators from§4.4 with NRZ DACs.

Another way to think about this increase in order is that it adds intersymbol interference: the DAC

pulse from a previous symbol overlaps the current one.

If we were to use DAC pulses withβ < 1, then the pulses would extend pastt = 1 only if the

condition

τd > 1 − β (4.28)

held. This suggests the following for the second-order LP modulator in Figure 4.11: if we used

an RZ DAC instead of an NRZ DAC,H(z) would remain second-order forτd ≤ 0.5. If we knew

exactly whatτd was, we could select the feedback coefficients{k2, k1} to get exactly the equivalent

H(z) from (4.7).

Example 4.8: For Figure 4.11, the loop filter is

Ĥ(s) =
k2 + k1s

s2
. (4.29)

Applying Table 4.2 to the partial fraction expansion of thisfor (α, β) = (τd, τd + 0.5)

gives

H(z, τd) =
[4k1 + k2(3 − 4τd)]z + [−4k1 + k2(1 + 4τd)]

8(z − 1)2
. (4.30)

We wish for this to equal (4.7); equating powers ofz in the numerator and solving

yields

{k2, k1} = {−2,−5

2
− 2τd}. (4.31)

5For smallτd, the NTF has a pole and a zero close to one another which almostcancel, so the design appears

approximately second-order in that case.
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Thus, for a givenτd ≤ 0.5 and RZ DAC pulses, we can make ourĤ(s) match exactly

the desiredH(z) by tuning the parameterk1. In the particular circuit of Figure 4.1,

this is accomplished by changing the value of the current source in the rightmost dif-

ferential pair DAC. 2

It has long been recognized that it is sensible to use RZ DAC pulses in low pass CT∆ΣMs

[Ada86, Com91, Cha92, Nar94, Mit95]. Apart from the immunity to excess delay it afford us, an

RZ DAC also alleviates intersymbol interference problems caused by asymmetric DAC pulse rise

and fall times [Ada86]. However, the differential circuit architecture of Figure 4.1 also avoids this

asymmetry even with NRZ pulses [Jen95].

4.6.2 Feedback Coefficient Tuning

As we have noted, if there exists enough excess delay to push the falling edge of a DAC pulse

pastt = 1, the modulator order increases by one. Therefore, there will be m + 1 coefficients

in the numerator of the equivalentH(z); with only m feedback coefficientsk, the system is not

fully controllable via theseks alone. Previous examinations of loop delay infs/4 BP ∆ΣMs

(notably [Sho96,§3.1.4] and [Gao97a]) have studied the system in Figure 4.13 using the modified

Z-transform and found the number of parameters in the numerator ism. The multi-feedback archi-

tecture achieves a numerator coefficient of 0 for thez−1 term only because of perfect cancellation

in theτd = 0 case. Forτd 6= 0 the cancellation is ruined so the coefficient ofz−1 is nonzero, yet

the modifiedZ-transform incorrectly finds it to remain zero. There are actually m + 1 rather than

m numerator coefficients forfs/4 BP modulators with excess delay.

Even though delay causingβ > 1 means the system cannot be controlled perfectly with theks,

somedegree of control can be exercised. We demonstrate the helpfulness of this on the fourth-order

multi-feedback modulator in Figure 4.13.

Example 4.9: Suppose there is a fixed excess delay ofτd = 35%: Figure 4.16

shows that for OSR= 64, a DR of 9.9 bits is achieved using the nominalk values in

(4.26). It is found that IBN= −78dB and MSA= 0.34 at thisτd.
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Figure 4.22: Fourth-orderfs/4 BP CT∆ΣM performance atρd = 35% delay with feedback coefficient tuning.
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Figure 4.23: Multi-feedback BP modulator dynamic range with k tuning.

Figure 4.22 shows how the performance of the modulator is affected when theks

are tuned one at a time away from their nominal values. By adopting a steepest-descent

tuning approach where eachk is tuned iteratively until the DR is maximized, we find

that it is possible to improve the DR from 9.9 bits to 11.3 bits, still at τd = 0.35. The

IBN and MSA are both improved, IBN to−79dB and MSA to 0.74. Thek values

which give this performance are approximately

{kr4, kr2, kh4, kh2} = {−0.87,−1.83, 0.48, 1.89}. (4.32)

The tunedk performance is still not as good as the 13 bits achieved at no excess delay

in Figure 4.16, but it is an improvement compared to the untunedk performance. 2

An interesting thing happens when we tune theks to maximize performance over a wide range

of excess delay values. To wit:

Example 4.10: Figure 4.23 compares the modulator DR for untunedk parameters
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from Figure 4.16 and tunedk parameters where the steepest-descent algorithm was

applied for several different values of excess delay between 0 and 1. We see that it is

possible to findk values which keep the modulator stable for the entire range of τd.

What is perhaps more surprising is that performance worsensup to 50% excess delay,

but then actually starts to improve again until there is a full sample delay, whereupon

the performance becomes as good as it was for no delay at all! How can this apparently

incongruous result be true?

RecallHBP (z) in (4.24): the numerator was2z−2 + z−4. Thez−2 means there is a

two-sample delay in the feedback; every∆ΣM must have at least one sample of delay

in order to be causal. We found the equivalentĤBP (s) in (4.25); the two-sample delay

is implicit in this equation. Note that

HBP (z) =
2z−2 + z−4

(1 + z−2)2
= z−1 2z−1 + z−3

(1 + z−2)2
. (4.33)

This suggests we could place a digital latch that provides one sample of delay (z−1)

prior to the DACs, and then find the equivalentĤBP (s) for theH(z) with numerator

2z−1 + z−3. In other words, we have two choices for building a two-sample delay into

the CT feedback loop: by matching to anH(z) with two delays in the numerator,or

by providing a latch which adds one delay and matching to anH(z) with one delay in

the numerator. These are denoted, respectively, thezeroandone digital delayschemes

in [Sho96]. This choice is peculiar tofs/4 BP modulators; it does not exist for LP

modulators or BP modulators at a different frequency because they invariably have a

nonzeroz−1 term in the numerator, and thereforeH(z) would become non-causal if

we were to factor out az−1 as we did in (4.33).

For each scheme, it is possible to find analytically the feedbackks which imple-

ment the desiredH(z):

{kr4, kr2, kh4, kh2} =











{−1.0868,−2.1339, 0.4502, 1.4874}, zero digital delay,

{−0.4502,−0.6339, 1.0868, 2.9874}, one digital delay,
(4.34)
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where the first set ofks is from (4.26). The reason for the identical DR performance

observed at bothτd = 0 andτd = 1 is now clear: forτd = 1, the optimalks are those

in the second row of (4.34), and the steepest-descent algorithm turns out to converge

to values close to those. For0 < τd < 1, theks for optimal DR lie in between the zero

and one digital delay values—compare, for example, (4.32) for τd = 0.35 to (4.34)—

though unfortunately the relationship betweenτd and theks which optimize DR is not

linear. For example, forτd = 0.5, pickingk values that lie exactly half way between

the values in (4.34) leads to DR= 9.2 bits, though the steepest-descent algorithm

foundk values to make a modulator with DR= 10.8 bits. 2

Figure 4.23 is strong encouragement to design theks to be tunable, possibly even for on-line cali-

bration against process and temperature variations. How todesign a tuning algorithm to maximize

DR that works on-chip, perhaps even while the modulator is operating, is an interesting topic for

future research.

4.6.3 Additional Feedback Parameters

If β > 1 causes the modulator order to increase fromm to m + 1, and we only havem feedback

coefficients, then it stands to reason that employing an additional feedback should restore full con-

trollability to the system. This has been suggested in [Ben97]: in the block diagram of Figure 4.11,

a third NRZ feedback was added whose output goes directly to asumming node after the second

integrator (that is, immediately prior to the quantizer). To use this approach in a circuit architecture

like Figure 4.1, where the quantizer input must be a voltage but summation is done with currents,

we would have to add a transconductor followed by a current-to-voltage converter in between the

second op amp and quantizer.

We can avoid adding components in the forward∆ΣM path by using an additional feedback

with a differentkind of DAC pulse. This is akin to the multiple feedbacks in the multi-feedback

BP circuit, but it is believed that this has not been suggested previously for delay compensation in

LP modulators.
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Example 4.11: Consider again Figure 4.11: let us denote its NRZ feedback

parameterskn2 = k2 andkn1 = k1, and let us suppose there is a third feedback which

goes to the same summing node askn1: an HRZ DAC with coefficientkh1. Thez-

domain equivalents for the NRZ pulses with excess delay havealready been found in

(4.17) and (4.18); to generalize them to feedbackskn1 andkn2 instead of−1.5 and−1

is a trivial change to those equations. For an HRZ pulse delayed byτd, thez-domain

equivalent is
kh1

s
→ kh1(0.5 − τd)

z − 1
+ z−1 kh1τd

(z − 1)
. (4.35)

Combining this with (4.17) and (4.18) yields

H(z) =
y2z

2 + y1z + y0

z(z − 1)2
(4.36)

where{y2, y1, y0} are expressions involving{kn2, kn1, kh1, τd}. We wish for the nu-

merator of this to equal−2z2 + z from (4.7), and Maple can be used to solve symbol-

ically for thek values:

kn2 =
τ2

d
+2

τ2

d
−2

,

kn1 =
−τ4

d
+4τ3

d
−12τ2

d
+10τd+4

τ2

d
−2

,

kh1 =
τ4

d
−4τ3

d
+13τ2

d
−12τd−2

τ2

d
−2

.

(4.37)

Therefore, given the excess delayτd, we can get exactly theH(z) in (4.7) by tuning

the feedbacks to the values given in (4.37).

We could also use an HRZ pulse fed back to the first summer; thiswould give

us different equations from (4.37), but it would still be possible to achieve theH(z)

in (4.7). However, we couldnot use an RZ pulse in place of an HRZ pulse. This is

because forτd ≤ 0.5, the RZ pulse would not contribute toy0 in (4.36): onlykn2 and

kn1 would, and thus to sety0 = 0 (as (4.7) dictates) would requirekn2 = kn1 = 0,

which renders the feedback inoperational. 2

How do we add an additional parameter to the BP multi-feedback architecture for delay com-

pensation? Interestingly, adding an NRZ pulse to Figure 4.13 turns out not to work. This is because
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an NRZ pulse is a linear combination of RZ and HRZ pulses, so its feedback parameters are not

independent. An independent pulse is needed—for example a pulse with (α, β) = (0.25, 1) in

combination with any two of NRZ, RZ, and HRZ—but generating apulse other than these latter

three might be nontrivial at high speed.

4.7 Summary

Excess loop delay in a CT∆ΣM is a delay between the sampling clock edge and the change in

output bit as seen at the feedback point in the modulator. It arises because of the nonzero switch-

ing time of the transistors in the feedback path, and is significant because it alters the equivalence

between the CT and DT representations of the loop filter,Ĥ(s) andH(z). Its effect on perfor-

mance is noticeable if the sampling clock speed is an appreciable fraction (10% or more) of the

maximum transistor switching speed; this is becoming more likely nowadays as desired conversion

bandwidths increase and delta-sigma modulation with an aggressively-high clock rate relative to

the transistor switching speed is considered for the converter architecture.

If excess delay is not designed for, then as excess delay increases as a fraction of the clock

period, second-order LP and fourth-orderfs/4 BP modulators will suffer in terms of in-band noise,

maximum stable input amplitude, and dynamic range. Higher-order LP designs seem more robust

if designed using NTF prototyping because there is a parameter, the out-of-band gain, which can

be selected to give some immunity to excess delay. Higher-order BP designs are also more robust

than lower-order ones, but a multi-feedbackfs/4 BP design is always found to be less immune

to excess delay than the corresponding LP design. The use of amultibit quantizer is somewhat

helpful, though incorporating the usually-needed correction circuitry for a feedback DAC with

mismatched levels is nontrivial for high-speed designs.

It is sensible—nay, imperative—to recognize the presence of excess delay and take it into

account in the design process. Choosing the right DAC pulse shape in combination with tuning of

the feedback parameters (either in the design phase or automatically on-line) can greatly mitigate

the performance loss due to delay. In fact, taking excess delay into account renders it effectively a
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nonproblem. Our study has contributed a number of useful newresults: we use a transformation

method which treats the delay as occurring after the quantizer, not before as the modifiedZ-

transform does; we consider both the change in noiseand MSA with delay; we show how delay

affects high-order designs, as well as multibit designs; and we demonstrate compensation methods

based on RZ DAC pulses and additional feedbacks using independent DAC pulses.



88 Chapter 4: Excess Loop Delay



Chapter 5

Clock Jitter

Timing jitter in the quantizer clock, usually called clock jitter, is an important mechanism of per-

formance degradation in CT∆ΣMs. It is a more severe problem than in DT designs for a reason

that can be understood as follows. On the left of Figure 5.1, atypical circuit voltage waveform for

q

∆t

∆

∆t

∆q

DT CT

d
c

Figure 5.1: Clock jitter effect in DT vs. CT design.

an SC DT∆ΣM is depicted. Most of the charge transfer occurs at the startof the clock period so

that the amount of charge∆qd lost due to a timing error is relatively small. By contrast, the right of

Figure 5.1 shows the DAC output currents in a CT circuit such as Figure 4.1; here, charge is trans-

ferred at a constant rate over a clock period, and so charge loss∆qc from the same timing error is a

larger proportion of the total charge. Moreover, in a DT design, jitter in the input sample-and-hold

(S/H) clock means only the input waveform is affected. In a CTdesign, the sampling occurs at the

quantizer rather than the input, which means the jitter affects the sum of the input plus quantization

noise—a signal with considerably more power than the input alone. Hence, CT∆ΣMs are more

sensitive to clock jitter than DT designs [vdZ96].

89
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Clock jitter causes a slight random variation in the amount of charge fed back per clock cycle.

Put another way, it is akin to adding a random phase modulation to the output bit stream. In an

oversampled converter, the spectrum of the output stream isvery noisy outside the (narrow) signal

band; a random phase modulation causes the noise outside thesignal band to fold into the signal

band, raising the converter noise floor and degrading its resolution. The aim of this chapter is to

quantify this degradation given a phase noise specificationfor a typical on-chip VCO so that given

the desired resolution of a fully-integrated delta-sigma data converter with an on-chip clock, the

maximum-allowable phase noise for a given clock frequency might be determined. The majority of

past work [Har90], [Dia92a,§4], [Ris94,§C.4.3], [vdZ96,§II.C] treats jitter as white; our treatment

of nonwhite jitter in§5.3 is believed to be the first comprehensive one. This chapter and the next

have been accepted for publication as a journal paper [Che99a].

5.1 Preliminaries

We introduce the architecture of the modulators used in thisstudy and describe the method used to

simulate their behavior.

5.1.1 Modulator Architecture

A block diagram of the architecture is shown in Figure 5.2. Itis similar to Figure 4.17, only more

x(t)
ΣΣ

HRZ DAC

u(t) Σ

kr(m-1) kh(m-1) kh1kr1krm khm

G (s)1 G (s)2 G (s)m y(n)

B2 Bm

RZ DAC

B1

Figure 5.2: Block diagram for general CT∆ΣM architecture.
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generalized. Each of the gain blocksGi(s) will typically be the same except possibly for the gains;

thus, for a low pass modulator, the blocks can be representedwith continuous-time integrators

Gi(s) =
Ai

sTs
(5.1)

and for a band pass modulator, they will be resonators

Gi(s) =
AisTs

s2T 2
s + ω2

i

. (5.2)

Without loss of generality, we will sometimes assume the sampling frequency isfs = 1Hz, which

simplifies the notation in (5.1) and (5.2) by makingTs = 1. Modulator behavior is unchanged so

long as the proper scaling is applied to all circuit parameters.

The quantizer drives two separate DACs of the RZ and HRZ varieties whose levels at feedback

points are set by coefficients{krm, kr(m−1), . . . , kr1} and{khm, kh(m−1), . . . , kh1}, respectively. A

modulator with an NRZ DAC can be effected by settingkri = khi, while one with an RZ DAC only

would have allkhi = 0. We have both types of DAC in Figure 5.2 separately tunable for when we

wish to implement multi-feedback BP modulators.

5.1.2 Simulation Method

The time-domain state equations are coded in a C program and integrated numerically using a vari-

able time step fourth-order Runge-Kutta (RK4) method [Pre92]. For example, for an LP modulator

with gain blocks given by (5.1), the state equations are

1

Ai

dxi

dt
=











B1x1 + · · · + Bmxm + kmy + u, i = 1

xi−1 + km+1−iy, i = 2, . . . , m
(5.3)

whereki = kri during the first half of a period andki = khi during the second half. At every clock-

ing instant, the quantizer output is evaluated; the power spectrum ofN output bits is calculated by

the program using the periodogram of the FFT, and periodograms from any number of runs with

random initial states may be averaged to yield a fairly smooth spectrum from which the SNR may

be found.

Moreover, certain nonidealities of interest in this chapter are implemented. In particular:
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• the sampling instant can be affected by jitter;

• the DAC pulses can be delayed to model the finite speed of the transistors in the feedback

path, and they can have nonzero rise time to model the finite gain of the transistors;

• the quantizer can exhibit hysteresis and/or metastability.

This latter item will be important in Chapter 6; in this chapter a quantizer with no metastability is

assumed. Other nonidealities such as integrators with finite dc gains (or resonators with finiteQs)

and finite gain block output swing could also be modeled without much difficulty.

The principal advantage of using C is that it runs very fast compared to, for example, block-

diagram level simulation in a circuit simulator like SPICE,though it is slower to code. Presently we

show that we can get acceptable agreement between the program and a transistor-level simulation

in SPICE with several orders of magnitude increase in simulation speed. The effort spent on the

coding will appear justified.

5.2 Effect of Clock Jitter on an Ideal CT ∆ΣM

Let us start with a review of the theory for white jitter. Suppose the sampling times are given by

tn = nTs + βn, n = 0, 1, . . . , N − 1 (5.4)

and for the moment, let theβn be i.i.d. random variables with varianceσ2
β . As noted in the intro-

duction, the effect of sample time jitter is to modulate the out-of-band noise in the output spectrum

into the signal band. This fills in the ideally infinitely-deep quantization noise notch with white

noise, which lowers the SNR and hence the converter resolution. Let us quantify this statement for

a couple of different cases.

5.2.1 LP Modulators with NRZ Feedback

Figure 5.2 can simulate low pass modulators with NRZ feedback by making the gain blocks inte-

grators as in (5.1) and settingkri = khi = ki. If all the integrators have gainAi = 1, the loop filter
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implemented by the circuit form ≥ 2 is (4.27):

Ĥ(s) =

∑m
i=1(

1
s
)i[ki −

∑i−1
j=1 ki−jBj ]

1 −∑m
i=1 Bi(

1
s
)i

. (5.5)

We can choose a loop filterH(z) in the DT domain using any method we please and transform it

to the equivalent̂H(s) as we did in Chapter 4. It is then a trivial matter to pickki andBi in (5.5).

Example 5.1: We have already noted that the standard double-integration mod-

ulator has a DT loop transfer functionH(z) and equivalent CT̂H(s) for NRZ DAC

pulses given by

H(z) =
−2z + 1

(z − 1)2
↔ Ĥ(s) =

−1.5s − 1

s2
(5.6)

whereTs = 1 for simplicity. For integrators with gains{A1, A2} = {1, 1},

{k2, k1} = {−1,−1.5}, {B1, B2} = {0, 0} (5.7)

are found from (5.5). 2

Example 5.2: A third-order modulator designed using NTF prototyping where

NTF(z) has Butterworth poles, an out-of-band gain of 1.5, and zerosspread to mini-

mize quantization noise in the signal band assuming OSR= 32 can be found to have

H(z) andĤ(s) for NRZ DAC pulses given by

H(z) =
−0.7874z2 + 1.3085z − 0.5569

z3 − 2.9942z2 + 2.9942z − 1

↔ Ĥ(s) =
−0.6702s2 − 0.2407s − 0.0458

s3 + 0.0058s
. (5.8)

Choosing all integrator gains to be 1 yields

{k1, k2, k3} = {−0.0831,−0.5021,−1.4659},

{B1, B2, B3} = {0,−5.7830× 10−3, 0}. (5.9)

If we were interested in actually building this, we might findthe range of these values

(from 0.5 × 10−3 up to 1.5) too wide to be practical. Choosing the integrator gains as
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{A1, A2, A3} = {0.2, 0.2, 1} instead gives a smaller spread in the resultingki andBi.

Rewriting (5.5) forAi 6= 1 and solving gives

{k1, k2, k3} = {−1.0479,−1.2033,−0.6702},

{B1, B2, B3} = {0,−0.1446, 0}. (5.10)

Of course, for the purposes of simulation, either will work. 2

Performing the same calculation for fourth-order Butterworth pole and fifth-order Chebyshev

pole NTFs both with out-of-band gain 1.5 and optimally-spread zeros, and simulating those sys-

tems with different values of jitter standard deviationσβ, results in the output spectra shown in

Figure 5.3. These are 256 averaged 8192-point Hann-windowed periodograms whosex axes span

a frequency range from 0 tofs/32. The input tone was−20dB relative to full scale in bin 19

(2.32× 10−3fs). Theβn were normally-distributed. We indeed see the deep notch in the quantiza-

tion noise gradually filled in with white noise with a power proportional to10 log10(σβ/Ts)
2.

This behavior can be explained by considering Figure 5.4. The output bit stream with jitter

shown in the top diagram is equivalent to the sum of an unjittered bit stream (the middle diagram)

and a stream of pulses, which we call theerror sequence, resulting from the jitter (the bottom

diagram). By the linearity of the FFT, the output spectrum ofthe top signal must be the sum of the

spectra of the bottom two signals. The error sequence can be written as [Ris94]

eNRZ(n) = [y(n) − y(n − 1)]
βn

Ts

(5.11)

wherey(n) is thenth output bit. For wideband uncorrelated jitter, this errorwill be almost white,

in which case we may write

σ2
e ≈ σ2

δy ×
σ2

β

T 2
s

, (5.12)

in other words, the variance of the error sequence is the product of the variance ofδy ≡ y(n) −
y(n− 1) and the jitter variance relative to the clock period. ForN output bits, we expect the noise

per periodogram bin to be

10 log10

(

2σ2
δy · 2σ2

β

NT 2
s

)

− 7.27dB (5.13)
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Figure 5.3: Output spectra for NRZ LP modulators with clock jitter.
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Figure 5.4: Equivalent representations of a jittered bit stream.

Table 5.1: Simulated and calculated LP NRZ modulator performance forσβ = 10−2Ts in Figure 5.3.

Modulator σδy Baseband noise per bin SNR for OSR= 32

Simulated Simulated Calculated, eq. (5.13) Simulated Calculated, eq. (5.14)

Double integration 1.674 −75.8dB −75.9dB 27.5dB 27.6dB

3rd order Butterworth 1.750 −75.6dB −75.5dB 27.3dB 27.2dB

4th order Butterworth 1.739 −75.5dB −75.6dB 27.4dB 27.2dB

5th order Chebyshev 1.731 −75.5dB −75.6dB 27.5dB 27.3dB

where the factors of 2 in the numerator arise because we are taking the one-sided power spec-

trum and where 7.27 is the sum of10 log10 2 = 3.01dB (the power spectrum is rms power) and

10 log10 0.375 = 4.26dB (0.375 is the gain of a Hann window). Moreover, if the SNR inbase-

band is completely limited by white jitter noise rather thannoise-shaped quantization noise, we

can write [Ris94]

SNRNRZ = 10 log10

OSR· V 2
in/2

σ2
δy(

σβ

Ts
)2

dB. (5.14)

Table 5.1 shows the agreement between calculated and simulated values of (5.13) and (5.14) for

the four modulators in Figure 5.3. The theory for low pass NRZmodulators is confirmed by our
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simulation.

5.2.2 Modulators with RZ and/or HRZ Feedback

It is possible to build LP modulators that use feedback otherthan NRZ, for example, RZ feed-

back. Indeed, as we saw last chapter, RZ DAC waveforms are beneficial for reducing intersymbol

interference and excess delay problems, so we might prefer them over NRZ DACs. As well, multi-

feedback BP modulators use both RZ and HRZ DACs in the same circuit. How does jitter affect

the spectrum of a modulator using RZ (and possibly HRZ) DACs?This problem has not previously

been considered; it is believed that the material here is new. Let us first choose circuit coefficients

for typical modulators.

Example 5.3: The CT loop filterĤ(s) for a double integration LP modulator with

RZ DAC pulses can be found fromH(z) to be

H(z) =
−2z + 1

(z − 1)2
↔ Ĥ(s) =

−2.5s − 2

s2
. (5.15)

Picking the integrator gains to be 1 and theBis to be zero leaves

{k2, k1} = {−2,−2.5}, (5.16)

which we found in (4.31) forτd = 0. 2

Example 5.4: We considered the design of a fourth-orderfs/4 BP modulator in

Example 4.6 already. The feedback coefficients for resonators in (4.26) were

{kr2, kr1, kh2, kh1} = {−1.0868,−2.1339, 0.4502, 1.4874}, (5.17)

and these are correct for resonators with gains{A1, A2} = {π/2, π/2} andω0 = π/2

in (5.2). 2

Output spectra for simulations of each system are shown in Figure 5.5. Once again, these

are 256 averaged 8192-point Hann-windowed periodograms. For a jitter standard deviationσβ =
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Figure 5.5: Output spectra for (a) LP RZ and (b) BP RZ/HRZ modulators.

10−2Ts, we found a baseband noise of−75.8dB per bin in the double integration NRZ modulator,

while for the double integration RZ modulator in Figure 5.5(a) the value is−71.3dB, and for the

BP modulator in Figure 5.5(b) the value is−66.7dB. Where do the new values come from?

Figure 5.6 shows the same bit sequence{+1, +1,−1, +1,−1} as output by the same modulator

RZ

NRZ

RZ & HRZ

Figure 5.6: Error sequence energy in different types of modulator.

with three different DACs: NRZ, RZ, and a combination of bothRZ and HRZ DACs. The solid

rectangles show edges which are affected by jitter. We may distinguish the three cases as follows.
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• In an NRZ modulator, jitter only matters when the output changes sign—the error sequence

eNRZ(n) is nonzero only at those times, c.f. (5.11). The energy in theerror sequence is

proportional toδy2 = [y(n) − y(n − 1)]2 = 4 for a modulator with±1 outputs. For the

double integration NRZ modulator in Table 5.1 we foundσδy = 1.673, and the formula for

variance is

σ2
δy =

∑

δy2 − (
∑

δy)2

N

N − 1
≈ 4Nδy

N
(5.18)

for largeN whereNδy is the actual number of output bit transitions. We haveσ2
δy = 2.80

and can estimateNδy/N = σ2
δy/4 = 0.70 for that modulator.

• In an RZ modulator, both the rising and the falling edge of thepulse occureveryclock cycle,

so jitter affects a total of2N edges. The energy per edge is[±1 − 0]2 = 1, one quarter as

much as in the NRZ case. But now, energy is being transferred over only half a clock cycle;

σβ is therefore twice as large relative to the energy transfer period in an RZ modulator.

• In a modulator employing RZ and HRZ pulses of opposite sign, as is the case in a multi-

feedback BP modulator, there are nowN edges at half clock cycles when going from the

RZ to the HRZ pulse, and edges at half cycles where the output bits y(n − 1) andy(n) are

the same. These edges have energy 4 as in the NRZ case, andσβ is twice as large relative

to the energy transfer period as in the RZ case. In simulation, we find σδy = 1.405 for

the BP modulator, so thatNδy/N = 0.494 from (5.18). The total number of edges is then

N + N(1 − Nδy/N) = 1.506.

Taking all this into account, we may estimate an effective value ofσ2
δy in (5.12):

σ2
δy =























0.70N×4
N

= 2.80, NRZ
2N×1

N
× 22 = 8.00, RZ

1.506N×4
N

× 22 = 24.10, RZ & HRZ.

(5.19)

Therefore, we expect the RZ LP modulator to be10 log10(8.00/2.80) = 4.6dB worse than the NRZ

LP modulator and the BP modulator to be10 log10(24.10/2.80) = 9.3dB worse than the NRZ LP

modulator. This is very close to what we observed (4.5dB and 9.2dB) in Figure 5.5. As a rule of

thumb, clock jitter lowers SNR by 6dB (1 bit) in RZ/HRZ vs. NRZmodulators.
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Figure 5.7: Unwindowed spectra of sine wave carriers sampled with jitter: (a) independent jitter, (b) accumulated

jitter.

5.3 Clocking with a VCO

Although it is interesting didactically, the analysis in§5.2 is not terribly relevant in practice. The

problem is, if we are trying to use a high-speed CT∆ΣM in a practical circuit it will likely be

clocked on-chip with an integrated VCO. Sampling instants as given in (5.4) are not what a real

VCO provides—the jitter instantsβn from a VCO are not well-modeled as i.i.d. random variables.

Figure 5.7(a) shows 256 averaged 8192-point unwindowed periodograms of a sine wave carrier

sampled by an ideal S/H four times per period (i.e.,fc = fs/4) with a jittered clock given by (5.4)

andσβ = 10−4Ts. That kind of jitter, which we will denoteindependent jitter, adds white noise

skirts to the carrier. A VCO produces skirts that are nonwhite.

5.3.1 Modeling VCO Phase Noise

We can modify (5.4) to produce nonwhite skirts fairly easilyusing a result due to Berkovitz and

Rusnak [Ber92]. Suppose the sampling instants are instead given by

tn = nTs +
n
∑

i=0

βi, n = 0, 1, . . . , N − 1 (5.20)
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Figure 5.8: Phase noise plot for accumulated jitter sampling of sine wave.

whereβi are still i.i.d. We denote thisaccumulated jitterbecause it contains a running sum, and

a sine wave sampled four times per period with a jittered clock given by (5.20) has the spectrum

shown in Figure 5.7(b). Plotting the magnitude of the skirtsrelative to the carrier with a logarithmic

frequency scale, as is customarily done in a VCO phase noise plot, yields the graph in Figure 5.8,

where we have assumed the sine wave has a frequency offc = 1GHz. The sideband power has a

1/f 2 dependence—exactly as is the case in an integrated VCO [Haj98]. A VCO also has a1/f 3

region close to the carrier, and a white noise floor far from the carrier, but (5.20) at least gives a

reasonable approximation of a VCO phase noise over frequencies an intermediate distance from

the carrier. Phase noise in a VCO is usually specified asnc dBc/Hz at an offsetfn from the carrier

fc. Happily, thisfn is usually in the1/f 2 region of the phase noise.

A typical achievable value ofnc is [Lee66, Dau98]

nc = −100 + 20 log10 fc dBc/Hz at 100kHz offset (5.21)

for fc in GHz. How can we relate this toσβ? We are interested in the case offc = fs, since

for clocking a∆ΣM, all that matters is the jitter of the zero crossings of the carrier, yet we are
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constrained mathematically in a periodogram tofc < fs/2. However, it is found that altering the

ratiofc/fs moves the phase noise in Figure 5.8 proportionally to10 log10 fc/fs, so we can use this

to extrapolate tofc = fs. After some experimentation with normally-distributedβn, it is found

that using

σ2
β ≈ f 2

n × 10nc/10

2fc
(5.22)

gives a phase noise ofnc relative to the carrier atfn offset fromfc.

Therefore, we can simulate the effect of clocking a∆ΣM with a VCO meeting a certain phase

noise spec by using sampling instants with accumulated jitter (5.20) and a variance given by (5.22).

5.3.2 Effect of Accumulated Jitter on Performance

Example output spectra for four different types of modulator are depicted in Figure 5.9. These are

the third-order Butterworth NRZ, fifth-order Chebyshev NRZ, double integration RZ, and fourth-

orderfs/4 multi-feedback BP∆ΣMs from Figures 5.3 and 5.5. All simulations usedσβ = 10−2Ts,

and for contrast both independentandaccumulated jitter spectra are plotted compared to unjittered

spectra.

There are two traits in the accumulated jitter spectra worthnoting. First, accumulated jitter

whitens the in-band spectrum in much the same way as independent jitter—this is not unexpected

becauseany clock spectral impurities will randomly modulate out-of-band noise into the signal

band. The white noise floor seems to be between about 1–5dB lower for accumulated jitter com-

pared to independent with the sameσβ ; for a given modulator, simulations shows this number is

about constant for any values ofσβ, input frequency, and input amplitude. Second, the dash-dot

lines on each graph show the spectrum of a sine wave with the same frequency as the input tone

that has been sampled by a S/H circuit clocked with the same clock as the quantizer. The skirts

on the tone appear directly in the output spectrum so long as they are higher than the white noise

floor. This, too, is logical.

Note the significance of the observation in§5.3.1 that the height of the skirts is proportional to

10 log10 fc/fs: as the input tone moves to higher frequencies, the skirts become higher relative to

the tone. Thus, an LP modulator with a large tone close to the upper in-band frequency edge will
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Figure 5.9: Comparison of∆ΣM spectra for independent and accumulated jitter, including spectrum of single tone at

output of jittered S/H.
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Table 5.2: Performance effects of real VCO clocking on practical modulators.

Modulator σβ/Ts OSR Ideal clock VCO clock

DR Peak SNR DR Peak SNR

1GHz 3rd order Butterworth 2.236 × 10−5 32 73.2dB 73.3dB 69.6dB 69.6dB

64 93.5dB 93.8dB 90.5dB 89.2dB

2GHz 5th order Chebyshev 3.155 × 10−5 32 82.6dB 82.8dB 79.8dB 79.1dB

64 114.5dB 100.7dB 101.6dB 92.1dB

3.2GHz double integration [Jen95]3.953 × 10−5 32 62.7dB 56.3dB 62.6dB 56.3dB

64 78.8dB 71.3dB 79.0dB 71.4dB

4GHz 4th order BP [Gao98a] 4.451 × 10−5 32 63.2dB 56.4dB 63.2dB 52.7dB

64 77.5dB 70.2dB 77.3dB 55.3dB

have higher skirts and hence lower peak SNR than if the tone were close to dc. Moreover, thefs/4

BP modulator’s performance is affected much more severely than any of the LP modulators, as is

apparent in the graphs. Shoaei observed skirts in the outputspectrum of a BP modulator [Sho96,

§8.4], so he too was apparently using accumulated jitter, though his study is not nearly as detailed

as ours.

The σβ used in Figure 5.9 is unrealistically high for a practical VCO; it was used simply as

an illustration. In Table 5.2, we have shown how more realistic σβ values would affect the perfor-

mance of real high-speed CT∆ΣMs. We have characterized the dynamic range (DR) and peak

SNR of four modulators:

• a 1GHz-clocking third-order LP design with NRZ DAC pulses and Butterworth pole place-

ment in the NTF with gain 1.5 and spread zeros;

• a 2GHz fifth-order LP design with NRZ DAC pulses and Chebyshevpole placement in the

NTF with gain 1.5 and spread zeros;

• the 3.2GHz double integration modulator published in [Jen95], which has NRZ DAC pulses;

and



Chapter 5: Clock Jitter 105

• the 4GHz fourth-order BP multi-feedback modulator from [Gao98a] with a noise notch at

fs/4 = 1GHz.

For each modulator, we used (5.21) to pick a reasonable valueof nc givenfs, and (5.22) to find

σβ . Then, DR and peak SNR were measured from simulation of each modulator at two different

OSRs, 32 and 64. The modulators were simulated both with ideal (unjittered) and VCO (jittered)

clocks, and the input tone for the LP modulators is close to the upper band edge so that jitter skirts

will be most pronounced1.

Looking at the table, we may make the following comments. Theideal modulators have DR and

SNR limited by quantization noise only; for the modulators clocked with a VCO, the question is,

does jitter noise impose additional performance limitations? For the double integration modulator,

the answer is no: performance is still quantization-noise limited for the realistic value ofσβ used.

For high-order modulators and/or high OSRs, the likelihoodof being jitter-noise limited increases,

as is particularly clear in the fifth-order modulator with OSR = 64: more than two full bits of

DR are lost at this clock frequency. As well, modulators withcenter frequencies away from dc

suffer more greatly from jitter performance degradation, as we expect from Figure 5.9—note that

maximum SNR for the BP modulator is 4dB worse than ideal at OSR= 32 and 15dB worse at

OSR= 64.

An interesting thing happens when we combine the equations in this chapter to derive the

maximum-achievable DR for a VCO-clocked modulator with a phase-noise spec given by (5.21).

We assume that the in-band noise is completely white; the full calculation appears in§A.1 and the

result is equation (A.10),

Maximum DR (bits)≈ 19 − 0.5 log2 fN , (5.23)

1A quick check of the absoluteσβ values in the table makes them appear suspicious: for example, the 4GHz

modulator hasTs = 250ps andσβ/Ts = 4.451× 10−5, which meansσβ = 11.1fs. A typical Gbit-rate data generator

specs edge jitter at a value of a few ps, two to three orders of magnitude higher than thisσβ . However, it must be

remembered that we are using accumulated jitter, (5.20), not white. This means the clock phase over hundreds of

cycles wanders significantly relative to a coherent reference; it is trivial to show that afterN clock cycles, the phase is

a Gaussian random variable with varianceNσ2
β . Theσβ/Ts values in the table are correct for a phase noise given by

(5.21).
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wherefN is the Nyquist rate expressed in MHz. This dependsonly on desired conversion band-

width—it is independent of clock frequency so long as the VCOconforms to (5.21)! As an exam-

ple, a 32MHz converter hasfN = 64MHz, and (5.23) says VCO jitter will limit the performance to

no more than 16 bits in this band. But this is far more than the resolution achieved by the fast mod-

ulators in Table 3.2. Clearly, VCO phase noise is unlikely tobe the limiting factor in a high-speed

modulator.

To conclude, the quality of integrated VCOs for cellular radio applications is good enough

that the DR of only very high-resolution wideband LP∆ΣMs would likely be affected. Fast BP

designs might be more problematic in terms of the peak SNR lost due to jitter skirts appearing on

the output tone. For [Gao98a] which does band pass conversion at 1GHz, we might think we can

address this by downconverting to a frequency of a couple hundred MHz and doing the ADC there

instead where the jitter skirts in a∆ΣM would be less severe; however, we must remember that

the downconversion operation itself must be done with a jittered clock, and this introduces skirts

on the tone in the mixing process.

5.4 Summary

Clock jitter adds a random phase modulation to the output bitstream which degrades performance

by whitening the quantization noise notch. Past treatmentsof jitter in CT ∆ΣMs have generally

treated jitter as wideband uncorrelated white noise, but this is not realistic for the case of a∆ΣM

clocked with an on-chip VCO which has nonwhite phase noise skirts. This can lead not only to

in-band noise whitening, but also to skirts on the input tonein the output spectrum. We distill

the calculations into a single equation, (5.23), which allows us to estimate the maximum DR that

would result if∆ΣM performance was limited entirely by VCO phase noise. From it, we conclude

that for conversion bandwidths into the tens of MHz it is unlikely that typical VCO phase noise

would be severe enough to cause a noticeable DR degradation in a typical integrated low-order LP

CT ∆ΣM, though high-bandwidth high-order LP designs might present more of a problem and BP

designs suffer in terms of SNRmax due to the higher skirts at higher input signal frequencies.



Chapter 6

Quantizer Metastability

Even with a perfectly uniform sampling clock, it is nonetheless possible for there to exist a variation

in the feedback charge. This happens because a real quantizer contains a regenerative circuit with

a finite regeneration gain. Therefore, quantizer inputs with a magnitude near zero will take longer

to resolve than inputs with a large magnitude—this is the classic problem of metastability in digital

latches. In a∆ΣM, the input to the quantizer is decorrelated from the modulator input to the degree

that it appears random; hence, the times when the quantizer input is near zero also appear random.

This means that at certain unpredictable sampling instants, slightly more charge is transferred for

the previous clock period and slightly less for the next period. As with clock jitter, the effect is to

modulate out-of-band noise into the signal band and degradeconverter resolution.

This was first identified by the author in [Che97]. The aim of this chapter is to greatly expand

on those results, which were only for a double integration modulator: we wish to generalize them to

different orders of modulator and study methods to overcomethe effects of quantizer metastability.

6.1 Background

Before going too deep, we first chronicle how the importance of metastability was discovered. This

is to introduce a new method of simulating CT∆ΣMs, another idea first published by the author

[Che98a].

107
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Figure 6.1: Typical output spectra for (a) SPICE prototype,(b) C program using the same parameters.

6.1.1 Initial Observations

The author was studying an industrial high-speed double integration CT∆ΣM [Sch96b], an early

prototype of which was very similar in design to the modulator in Figure 4.1. The prototype

clocked atfs = 1GHz; a 16000-point Hann-windowed spectrum from a transistor-level SPICE

simulation is shown in Figure 6.1(a). The input tone was−4dB, and the SNR achieved for an

OSR of 32 was 44.2dB. From (3.3), an ideal double integration∆ΣM achieves SNRmax = 56dB,

and this happens at an input level of around−4dB. Therefore, the prototype appeared nonideal

by about two bits. Moreover, at an OSR of 64, the SNR only improved 3dB to 47.3dB—this

shows that the baseband noise is white rather than shaped at 15dB per octave of oversampling, as

we would expect for a second-order∆ΣM. A C program was written to model the SPICE circuit,

including such things as finite op amp gain and input resistance, nonzero excess delay, and nonzero

DAC pulse rise time. A typical spectrum for the same input conditions appears in Figure 6.1(b).

The spectrum looks similar except towards dc, where it continues to descend at 15dB/oct. Both

modulators had an unjittered clock, and past experience with SPICE taught us that it didn’t seem

reasonable to attribute the SPICE results to, e.g., roundoff error. Why does the spectrum of the

SPICE simulation become white?
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6.1.2 z-Domain Extraction

The new simulation method exploits the bidirectionality ofthe DT/CT equivalence explained in

§4.1. For the general DT modulator in Figure 2.17 on page 28, wehad a time-domain expression

for the quantizer inputx(n) in (2.12), reproduced here:

x(n) =
m
∑

k=1

akx(n − k) +
m
∑

k=1

bku(n − k) +
m
∑

k=1

cky(n − k). (6.1)

Recall that we are using the impulse-invariant transformation for DT/CT equivalence, which en-

forces the condition (4.1):

x(n) = x̂(t)|t=nTs
. (6.2)

Thus, (6.1) must hold for a CT modulator at sampling instants:

x̂(nTs) =
m
∑

k=1

[akx̂((n − k)Ts) + bkû((n − k)Ts) + ckŷ((n − k)Ts)] . (6.3)

This suggests the following: if we simulate a CT∆ΣM and extract{x̂(nTs), û(nTs), ŷ(nTs)},

then we ought to be able to find{ak, bk, ck} such that (2.15) is satisfied. This will give us the DT

equivalent for the CT modulator.

Example 6.1: During the 16000-clock cycle SPICE simulation of the prototype,

the values of̂x, û, andŷ at sampling instants were printed out. Using a least-squares

fitting approach in Matlab, the following best-fit DT difference equation was found for

the group of 50 consecutive samples ofx̂(nTs) = x(n) beginning at sample 700:

x(n) = 1.9835x(n − 1) − 0.9886x(n − 2) + 0.2319u(n − 1)

− 0.2083y(n− 1) + 0.0511y(n − 2) + 0.0462y(n − 3),
(6.4)

‖ε‖∞ = 19.43mV, ‖ε‖2 = 4.914mV. (6.5)

The fit is not perfect, as evidenced by the nonzero‖ε‖∞ and‖ε‖2 values in (6.5), which

are (respectively) the maximum and rms errors between the best-fit x(n) in (6.4) and

the x̂(nTs) from SPICE.x(n) spans a range of about±500mV, so the rms error‖ε‖2

is about 1% of the full-scale range ofx(n).
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Taking theZ-transform of (6.4) and using (2.11), we find the loop transfer function

to be

H(z) = 0.1042
−2.0000z−1 + 0.4906z−2 + 0.4436z−3

1 − 1.9835z−1 + 0.9886z−2
. (6.6)

Thus, thez-domain extraction method allows us to see theH(z) actually implemented

(as opposed to theH(z) we thought we had implemented) in a CT∆ΣM. (6.6) is

quite a bit different from theH(z) = (−2z−1 + z−2)/(1− z−1)2 we desire in a double

integration∆ΣM. First, the ratio of thez−1/z−2 numerator coefficients is closer to−4

than−2, andz−3 is nonzero. Second, from (2.2) the poles ofH(z) are the zeros of

NTF(z), and factoring the denominator of (6.6) gives polesz = 0.994 6 ±4.1◦. Ideally,

this would bez = 1 6 0◦. Using the group of 50 samples starting at sample 7000 yields

a best-fitx(n) of

x(n) = 1.9587x(n − 1) − 0.9832x(n − 2) + 0.2241u(n − 1)

− 0.2027y(n− 1) + 0.0501y(n − 2) + 0.0468y(n − 3),
(6.7)

‖ε‖∞ = 26.62mV, ‖ε‖2 = 7.061mV. (6.8)

The NTF zeros are now found to be0.992 6 ±9.0◦. The magnitude is similar to that

found from (6.6), but the angle has changed from 4.3◦ to 9.0◦. The coefficients of the

best-fit equation seem sensitive to the group of samples chosen. 2

6.1.3 Examining the Errors

For the groups of samples in Example 6.1, Figure 6.2 illustrates the SPICE values of̂x(nTs) with

clear bars, and the errors (the solid bars, magnified for easeof viewing) between̂x(nTs) and the

best-fit Matlab equationsx(n) in (6.4) and (6.7). At samples 709 and 710 in Figure 6.2(a), there

is a large error followed by an error of opposite sign; the same is true at samples 7018 and 7019

in Figure 6.2(b). Resimulating with more detail produced the same problem at samples 179 and

180 and the circuit waveforms in Figure 6.3. We noticed the matching errors of opposite sign

coincided withadditionalexcess delay at sample 178: the nominal excess delay in this design is

ρd ≈ 0.20, but at sample 178 in Figure 6.3, the delay isρd ≈ 0.30. Recall that the second integrator
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Figure 6.2: Examples ofz-domain extraction from SPICE data.

output in Figure 4.1 is preciselŷx, the quantizer input; notice that in Figure 6.3(b), the voltage at

sample 178 (illustrated by the small circle) is close to zero. It is this which causes the extra delay:

small quantizer inputs lead to longer regeneration times, which leads to increased excess delay.

Figure 6.4 plots excess delay against quantizer input magnitude for many sampling instants and

proves the point.

6.1.4 Usefulness ofz-Domain Extraction

It was because of thez-domain extraction method that we stumbled upon the significance of

metastability in CT∆ΣMs. Some general comments about the usefulness of the methodare in

order. First, the good things:

• It requires relatively few samples to work, and hence relatively little simulation: for example,

50 samples are enough for a good least-squares fit. These 50 samples could be the first 50

rather than later sequences of 50 as we used in Example 6.1, which means we can apply it

with a quick SPICE simulation rather than a lengthy one.

• It works on data from any simulation program, SPICE or otherwise, which can print out
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Figure 6.3: First and second integrator output waveforms from SPICE showing additional excess delay at sample 178.
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circuit values at sampling times.

• It turns out to be good at modeling certain types of nonideality, such as DAC waveforms

with delay or nonzero rise time, well.

• It allows us to determine theH(z), and consequently the NTF(z), actually implemented.

This could be useful as a design check on NTF(z).

The bad things are:

• Guesswork as to which terms to include on the RHS of the fittingequation is sometimes

required to find a fit with a small error.

• Certain types of nonidealities, such as nonlinear integrating capacitors (or, indeed, quantizer

metastability—it was this that was predominantly to blame for the largish matching errors in

(6.5) and (6.8)), seem difficult or impossible to model exactly. This might be improved with

a better selection of fitting terms.

We had, perhaps naively, hoped to be able to use the method to supplant CT simulation altogether:

with a perfectz-domain fit, one could simply simulate a CT modulator using the difference equa-

tion. Instead, the method seems appropriate to usein conjunction with, rather than in place of,

full-circuit CT simulation. We should also mention that it can be, and was successfully, used in an

SC modulator to identify clipping integrator outputs as thereason for poor performance, so it can

be applied to DT simulations as well.

6.2 Latches and Metastability

Published high-speed CT∆ΣMs tend to be bipolar-only circuits with a one-bit quantizer. A typical

quantizer for such circuits was shown in Figure 4.15, reproduced here as Figure 6.5. As we said

earlier, the transistors in the dotted box can be reconnected to produce RZ instead of NRZ wave-

forms. The dashed box contains the four transistors responsible for regeneration: when the circuit

is enabled, the voltage differenceVrd at the bases of the emitter follower transistors is amplifiedby
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Figure 6.5: Typical high-speed CT∆ΣM master-slave latched comparator with preamplifier.

positive feedback until the maximum positive (digital+1) or negative (digital−1) voltage differ-

ence is reached. In an ideal latch there exists a third outputstate, themetastablestate, where the

inputs are balanced resulting in a 0V differential output signal. This state is unstable in that a slight

perturbation (e.g., from circuit noise) will push the latchtowards one of its stable states, hence the

metastable state itself is never observed in practice.

6.2.1 Digital Circuits vs.∆ΣMs

The usual analyses of metastability in digital latches [Vee80, Hor89] treat the regenerative circuit

as a single-pole system where the voltage difference att = 0 increases exponentially with a time

constant inversely proportional to the gain-bandwidth (GB) product of the system. Such a treatment

is valid here: Figure 6.6(a) is a SPICE transistor-level simulation of just the master portion of

Figure 6.5 with input voltages given in the legend box. The differential pair amplifies the input

voltage in the first half clock cycle, then the regenerative quad is enabled atT = 1ns and the value

Vrd rises exponentially (log Vrd is a straight line) until near the output voltage limit.

In digital circuits, the usual question to be answered is, what is the probability that the latch
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Figure 6.6: Output of (a) master stage, (b) slave stage.

output is a valid digital level at timet given a certain setup time? In CT∆ΣMs, we are interested

in a different question. Figure 6.6(b) plots the output of anM/S latch whose input is first driven

negative to make the latch output−1, then slightly positive to the value in the legend box. Note

that the time when the latch output crosses zero on its way to+1 varies as a function of the positive

input voltage (and that very small positive inputs cause thelatch to produce a glitch). This output

voltage drives the DACs, and variations in its zero-crossing time (ZCT) have exactly the same

effect as quantizer clock jitter—random edge variations modulate out-of-band noise into the signal

band and whiten the spectrum. Thus, the question that concerns us is, what is the exact shape of

the DAC output waveform? Most particularly, how does its ZCTvary for quantizer input voltages

changing sign between clock periods?

When we initially studied this problem we were hoping to find an analytic answer to the ques-

tion using methods along the lines of those published in papers on CMOS latches. However, we

encountered a number of difficulties that meant a formula eluded us. First, published papers gen-

erally solve for one variable (the probability that the output is a valid digital level) based on one

parameter (the setup time); in our work, we care abouttwo variables (the ZCT and also the rise

time) as a function oftwo parameters (the input voltage and its slope). Second, papers on CMOS
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latches generally look just at the latch output; in our case,while the latch output is important in

its own right, we are really more interested in theDAC output waveform. The latch output drives

an emitter follower which drives the DAC differential pair,so there are additional stages whose

behavior must be characterized.

Surely neither of these difficulties means an analytic approach is outright impossible. The work

in [Hoh84] treats a latch with a multivibrator input stage, which is more complicated than what

most papers treat and could perhaps be adapted for our purposes. However, we eventually decided

to adopt an empirical solution to the problem. We must acceptthe danger that useful insights which

would otherwise have come out will be obscured.

6.2.2 Characterization Method for∆ΣMs

We determine the ZCT and rise time characteristics of a givenlatch from simulation. A transistor-

level SPICE file describing the complete feedback circuit from latch input to feedback output is

composed. The input to the latch is a piecewise-linear wave which first goes negative to drive the

feedback output negative, then positive with slopevsl so that at the next clocking instant the latch

input is a specified valuevx. For many different(vx, vsl) pairs, the ZCT relative to the previous

sampling instant (which we callτd = ρdTs for “delay time”) and the feedback output rise time

(which we callτr = ρrTs for “rise time”) are calculated. It is assumed that the curves would be the

same for a falling output wave, i.e., that the circuit is differential and hence symmetric. If this did

not hold, it would be possible to characterizeρd andρr both for rising and falling latch inputs.

Example 6.2: The process is illustrated in Figure 6.7, which is for an M/Slatch

like Figure 6.5 except with no preamplifier stage. The clock rate isfs = 500MHz

(Ts = 2ps), and the transistors have a switching speed of aboutfT = 12GHz. In the

upper graph, we see(vx, vsl) = (0.2, 0.6) for the input waveVin at t = 0. The latch

output goes through an emitter follower to a differential pair DAC whose collectors

have been terminated with resistors. It is the differentialresistor voltage that we plot as

Vout in the bottom graph. We calculate(ρd, ρr) = (0.0860, 0.0386) and this is plotted
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Figure 6.7: SPICE input and output waveforms with linear approximation to output.

as the dotted line in the bottom graph; the approximation to the actual waveform is

quite good.

Our input wave is such that we are characterizing the quantizer by driving it hard

one way, which makes it emit a “strong pulse”, then weakly theother way, which

makes a “weak pulse”. Experience shows that this is by far themost common case—

rarely is the quantizer input of a real modulator such that the quantizer would emit two

weak pulses in a row. 2

Using Perl [Wal96] helps greatly to automate the procedure for many(vx, vsl) pairs. Curves for

ρd andρr for our M/S latch and DACs from Example 6.2 are plotted in Figure 6.8. These curves

indicate that for inputs close to zero, both the ZCT and the rise time increase, c.f. Figure 6.6(b).

Moreover, for small enough inputs, no zero crossing is measured, which is what we saw with the

glitch in Figure 6.6(b) forVin = 0.3mV—this is an example of quantizer hysteresis. And, as the

input passes throughvx with higher slopes, delayed zero crossings and hysteresis happen for larger

values ofvx. These curves have been normalized so thatvx is relative to the expected full-scale
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quantizer input, which for our example circuit happens to be±1V. vsl values are normalized to full

scale volts per clock period and swept from 0 to 2.vsl = 2 corresponds to a straight line quantizer

input that goes from positive to negative full-scale over one clock period. Typically the maximum

quantizer slope can be observed to be about half this much, though the quantizer input isn’t usually

a perfectly straight line (recallx2 in Figure 3.1). Nonetheless,vsl = 2 should be larger than most

practically-occurring slopes.

The data from Figure 6.8 is used as input to the RK4 simulationprogram from Chapter 5; at

each clocking instant, the program calculates(vx, vsl) and uses linear interpolation to find(ρd, ρr),

which are then used to set the feedback pulse’s delay time andrise time. Essentially, we are

employing the technique ofbehavioral modeling[Cur95].

6.2.3 Validation of Quantizer Model

How good is the behavioral model? In other words, how well do the results from our∆ΣM

simulator using the behavioral quantizer model agree with those from full-circuit simulation?

Example 6.3: The comparator and feedback circuitry of the prototype dou-

ble integration modulator in§6.1 designed in anfT = 25GHz process clocking at

fs = 1GHz were characterized as described in Example 6.2, and as many of the pa-
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Figure 6.9: Comparison of SPICE and Runge-Kutta simulationprograms: (a) output spectra, (b) quantizer input pdfs.

rameters from the actual circuit as possible (such as finite integrator gain and input

resistance) were included in an input file to the RK4 simulator. For a−4dB input at

3.1MHz, output spectra for a 16384-point SPICE simulation and 64 averaged 16384-

point periodograms from the RK4 simulation are shown in Figure 6.9(a). The spec-

trum details agree quite well, and there is acceptable agreement between calculated

SNR values at OSR= 32 and64, as shown on the graph. The RK4 program predicts a

slightly lower white noise floor due to metastability than SPICE. Figure 6.9(b) shows

a histogram of the quantizer input pdfpx(α) from each simulator, and good agreement

is seen—we are modeling the behavior and voltage levels in the real circuit quite well.

A dynamic range plot is shown in Figure 6.10(a). The RK4 values of SNR were

found from 32 averaged 4096-point periodograms, and in SPICE each value was found

from a single 4096-point simulation. The agreement betweenthe two is quite good,

and it is worth noting that while each RK4 simulation of 128k output bits took about

30 seconds, a single 4096-bit SPICE simulation took over four hours. 2

Behavioral models are meant to increase simulation speed while maintaining accuracy, and we see

that our quantizer model scores well on both counts.



120 Chapter 6: Quantizer Metastability

−45 −40 −35 −30 −25 −20 −15 −10 −5 0
−10

0

10

20

30

40

50

Input mag (dB)

S
N

R
 (

dB
)

SNR comparison for OSR 32

RK4  
SPICE

0 100 200 300 400 500
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Sample number

Q
ua

nt
iz

er
 in

pu
t v

ol
ta

ge
 (

V
)

RK4 with −40dB input

(a) (b)

Figure 6.10: Comparison of SPICE and Runge-Kutta simulation programs: (a) dynamic range plot, (b) quantizer input

limit cycle for low magnitude input.

Example 6.4: We made an interesting discovery in the course of this work:the

effect of metastability for small input magnitudes. The dashed line in Figure 6.10(a)

has slope 1dB/dB, which is the expected slope of the SNR vs. input magnitude curve.

This slope is observed in simulation for large input amplitudes, but as input amplitude

decreases, we achieve SNR= 0 for an input magnitude of−42dB, whereas the dashed

line predicts SNR= 0 at−52dB input. With a−40dB modulator input, observation of

the quantizer input as a function of time reveals the behavior shown in Figure 6.10(b):

up to about sample 160, the quantizer behaves as it should, but then the modulator

enters a{+1,−1} limit cycle from which it does not escape at a later time. Clearly,

the modulator output no longer encodes the input signal at this point. The author

observed this behavior in both RK4 and SPICE simulations.

It is known [Fee91] that integrators with finite gain can cause such behavior. How-

ever, it was found in RK4 simulations with a metastable quantizer that the behavior

occurred even with ideal (i.e., infinite-gain) integrators. It was thought that perhaps

a quantizer with hysteresis alone (i.e., withconstantρd andρr) might also cause the
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∆ΣM to exhibit the behavior, but this was not found to be the casewith infinite-gain

integrators. Therefore, it appears that quantizer metastability can result in worsened

sensitivity of an otherwise ideal CT∆ΣMs to small input levels.

It should be noted that the metastability is indeed being excited in Figure 6.10(b).

From samples 160 to 300 or so the bottom envelope of the quantizer input is near zero,

which activates the metastability. It “escapes” from this mode of behavior only to have

thetopof the envelope approach zero and activate the metastability at sample 320. The

metastability is excited alternately by the envelope top and bottom every few hundred

cycles. 2

This result is of grave significance because it implies usinga single large-amplitude tone to estimate

modulator resolution is insufficient: one might predict a DRbased on an incorrect assumption of

a slope of 1dB/dB down to SNR= 0. To the author’s knowledge, this is a previously unpublished

result.

Admittedly, there is no absolute guarantee that changing the quantizer circuit will mean the

agreement between behavioral and SPICE simulation remainsgood. However, we have more

than one reason to be confident that our behavioral model has identified the key issues. First, we

have good agreement not just on SNR, but on output spectrum details and quantizer input pdf

too. Second, the behavioral model correctly predicted the limit cycle behavior, a result which was

unknown a priori. For the remainder of this chapter we use only the behavioral model for circuit

performance measurements.

6.3 Real Quantizer Performance Effects

The design of CT∆ΣMs is usually done assuming an ideal quantizer, which has no hysteresis and

makes a decision instantly. The characteristics of such a quantizer are plotted in Figure 6.11(a):

ρd is always zero no matter how smallvx is. Practical quantizers suffer from three nonidealities

which can be distinguished as follows:

1. Excess delay, Figure 6.11(b), means a vertical shift of the quantizer curve; more excess
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Figure 6.11: Quantizer characteristics: (a) ideal, (b) excess delay, (c) hysteresis, (d) metastability, (e) practical.

Metastability severity is proportional to the area of the shaded region.

delay means a greater vertical shift. As we noted in Chapter 4, the effect of excess delay is to

increase in-band noise and lower MSA which in combination compromise overall modulator

DR.

2. Hysteresis, Figure 6.11(c), causes a horizontal shift ofthe curve proportional to the amount

of hysteresis. From§3.1.3, quantizer hysteresis in an otherwise ideal system adds noise

power in the baseband for LP modulators [Bos88]. An example of its effects for the third-

order LP Butterworth∆ΣM studied in Chapter 5 is depicted graphically here. In Fig-

ure 6.12(a), we seepx(α) becoming wider with hysteresis; this is expected because aslong

as the quantizer output bit remains the same, the circuitry inside the loop will continue

integrating in the same direction, enlarging signal swings. In a modulator whose integra-

tor outputs clip, hysteresis introduces harmonic distortion; moreover, too large an internal

signal excursion range leads only togradualinstability and hence DR loss, as shown in Fig-

ure 6.12(b)—hardly any performance is lost even for large hysteresis. By contrast, [Cha92]

found 1% hysteresis caused significant performance loss, though this is at odds with other

publications and our own results.

3. Metastability, Figure 6.11(d), means that the sharp corner in the ideal quantizer character-

istics becomes smooth instead. The severity of the metastability is related to the amount of

area underneath the curve: curves with a more abrupt corner have less area under them and

hence less metastability.
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Figure 6.12: Quantizer hysteresis in third-order Butterworth modulator: (a) quantizer input pdf, (b) modulator dynamic

range.

A real quantizer has all three effects simultaneously, Figure 6.11(e), as we saw in Figure 6.8.

Along with the losses already caused by excess delay and hysteresis, metastability introduces two

additional performance-limiting effects. First, at low input amplitudes, there is the output limit

cycle behavior mentioned in Example 6.4 and depicted in Figure 6.13(a) for a double integration

modulator. Second, at higher input amplitudes spectral whitening occurs due to thevariability of

ρd mentioned in§6.1.3. A typical spectrum is depicted in Figure 6.13(b).

Example 6.5: The DR impact of using the quantizer characteristics in Figure 6.8

on several kinds of LP∆ΣM is shown in Figure 6.14. In order to make the comparison

fair, the modulators had their feedbacks scaled so that theyall had the same quantizer

input pdf standard deviation ofσx = 1/31. We observe the following:

• An ideal modulator exhibits6m+3dB/oct improvement of SNR with OSR, where

m is the modulator order. A modulator with a metastable quantizer will, for

large enough OSR, be limited to a mere 3dB/oct improvement because the noise

1Sincepx(α) is roughly Gaussian [Bos88], fixingσx assures roughly the same distribution of abscissae in the

quantizer characteristic in Figure 6.8, and hence a roughly-comparable ordinate distribution.
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Figure 6.13: Typical output spectra from double integration ∆ΣM with a real quantizer: (a) low input amplitude, (b)

high input amplitude.

notch in the output spectrum is filled in with white noise. Forthe quantizer from

Example 6.2, going from OSR= 32 to OSR= 64 (shown by the dash-dot lines)

gives us only 3dB SNR improvement. This means the DR at OSR= 64 for all

modulators is cut drastically by a full factor of two.

• The dashed lines show modulators with hysteresis and fixed

(ρd, ρr) = (8.6%, 3.9%);

compared with the ideal modulator, DR is hardly compromisedat all, perhaps

0–3dB depending on the modulator order.

• The limit cycle behavior in∆ΣMs with metastable quantizers mentioned earlier

seems only to affect the lower-order modulators: the higher-order modulators

have 1dB/dB slope all the way down to low input magnitudes, except perhaps for

a slight dip near−35dB.

Metastability clearly has a major impact on the DR of these high-speed CT∆ΣMs. 2
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Figure 6.15: Comparison of clock jitter to quantizer metastability: (a) DAC pulse width variation histogram, (b) output

spectrum.

There is a relationship between performance lost by metastability and that lost by clock jitter

which can be explained as follows.

Example 6.6: We know that random variation in DAC pulse width (DPW) fills the

output spectrum noise notch with white noise. The solid linein Figure 6.15(a) shows

a histogram of DPW variation for the fifth-order modulator with an ideal sampling

clock and a metastable quantizer with characteristic givenby Figure 6.8. The standard

deviation of this distribution isσms = 5.95 × 10−3Ts. To get the same DPW variance

from a modulator with an ideal quantizer and a clock with independent jitter, we must

set the jitter variance to

σβ = σms/
√

2. (6.9)

This results in the dashed-line histogram in Figure 6.15(a). Note thatσjitt ≈ σms.

Since the DPW variance is about the same in both cases,§5.2 taught us that the spec-

trum whitening should also be about the same. Figure 6.15(b)illustrates this to be the

case: the SNR value for the modulator with the metastable quantizer is 31.7dB, while

that for the modulator with clock jitter is 34.9dB. The noisefloors are close but not
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identical because the distribution of the DPW histogram fora metastable quantizer is

not particularly Gaussian. Even still, the agreement is quite good. 2

Clock jitter is not identical to metastability because clock jitter does not cause the limit cycle

behavior observed in Example 6.4 for low input amplitudes; it is the white noise levels that are

roughly the same in both for large-enough input amplitudes.Though the DRs might differ, the

peak SNR measured in both would come out about the same.

6.4 Mitigating Metastability Performance Loss

How can we overcome the performance penalties imposed by quantizer metastability? Several

answers to this question suggest themselves when we consider the source of the loss: the variations

in the DPW caused by finite quantizer regeneration. We observed at the start of§6.3 that this

varianceσDPW is related to the area under the metastability curve in Figure 6.11(e), or equivalently

the “sharpness” of the corner in the curve. What approaches might we take to reduce its area or

sharpness?

6.4.1 Parameter Scaling

The first thing we might think of is to scale the modulator parameters to enlarge the quantizer input

standard deviationσx. This works as follows: we know that if the magnitude of the quantizer input

is small, then the ZCT increases. For the quantizer in Figure6.8, inputs which cause increased

ZCT are approximately those for which|vx| < 100mV. By increasingσx, we widen the range of

possible quantizer inputs so that the probability of|vx| < 100mV is decreased. Alternately, we

may think of this as scaling thevx axis by compressing the metastability curves towards theρd

axis. This reduces the effective area under a given curve andhence reducesσDPW .

Example 6.7: Example 6.5 usedσx = 0.33. We illustrate the effect of choosing

σx ranging from 0.1 up to 0.5 in Figure 6.16. In Figure 6.16(a), the metastability

curve forvsl = 0.6 is plotted as a function ofσx; we can see the corner of the curve
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Figure 6.16: (a) Quantizer metastability curves and (b) modulator performance as a function ofσx.

becoming sharper asσxincreases, which leads to more favorableσms/Ts and SNR in

Figure 6.16(b). 2

Generally, it is a good idea to have the quantizer input span as large a range as possible. The range

can be increased by, for example, choosing smaller integrating capacitors and larger feedback

currents. Circuit constraints will ultimately limit the maximum achievable range; for our case, the

quantizer input can swing about±1V differential while still keeping all transistors operating in

their forward active regions. Having too small a swing rangeis to be avoided because as we see in

Figure 6.16(b) it quickly becomes detrimental for SNR.

6.4.2 Regeneration Time

In §6.2.1, we said that the regeneration time of a latch is inversely proportional to the GB product

of the regeneration circuit. If we were to increase this GB product, the corners of the metastability

curves would become sharper as follows: the slope of the curves in Figure 6.6(a) would increase,

which in turn would, we hope, mean that it would take asmaller input levelvx for the curves in

Figure 6.6(b) to exhibit increased delay—in other words, for the set ofvx values in that legend box,
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Figure 6.17: Effect ofVen on (a) regeneration time, (b) slew rates at latch output and DAC output.

the rising output edges would be bunched more closely together. In turn, the curves in Figure 6.8

would rise towards infinity more abruptly, i.e., the corner becomes more pronounced.

Example 6.8: One way to affect the regeneration time constantτrg of the latch

in Figure 6.5 is to change the current in the regenerative quad; this is accomplished

by altering the voltageVen. To keep the comparison reasonable, we will adjustVen

andRla simultaneously to keep the latch output voltage swing at around ±300mV.

SweepingVen over the range 0.90V to 1.35V and extractingτrg from simulation yields

the curve of Figure 6.17(a): as is usual with ECL circuits, there exists a current/load

resistor combination which minimizes rise time which for this latch occurs at about

Ven = 1.15V. While fast linear settling is important, surely as important for ZCT is the

nonlinear settling behavior, i.e., slewing. Figure 6.17(b) plots the slew rates at both

the latch output (top) and DAC output (bottom) as a function of Ven.

Figure 6.18(a) shows quantizer metastability curves forvsl = 0.6 asVen changes.

There is some sharpening of the corner with increasedVen, but as an added bonus also

lowerρd and hysteresis. Just as diminishing returns are apparent there, so too are they
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Figure 6.18: (a) Quantizer metastability curves and (b) modulator performance as a function ofτrg.

in Figure 6.18(b) where the SNR is plotted againstVen. The optimum SNR does not

quite occur whereτrg is a minimum—very minor improvements are obtained asVen is

raised further because of the increase in slew rate. 2

Ensuring adequate regeneration is a good idea in a∆ΣM’s latch. SettingVen very high might

use more power than necessary to achieve a given SNR, so thereexists a tradeoff between power

consumption and SNR, though we could use smaller transistors whose peak speed occurs at lower

bias current.

6.4.3 Preamplification

A third thing we can try is using a latch with a preamplifier. This is similar to signal scaling in

§6.4.1 but not identical because we actually insert a new circuit element into the forward path.

How do we choose its gain? Traditional analyses show that forcascaded amplifiers there exists an

optimum gain per stage that maximizes the overall amplifier GB product and hence the amplifier

speed. Depending on the assumptions made, the optimum gain is eithere = 2.72 [Sne96, Chap.

2] or
√

e = 1.65 [Lee98, Chap. 8]. In the present circuit, we will consider only one preamplifier
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Figure 6.19: (a) Quantizer metastability curves and (b) modulator performance as a function of preamplifier gain.

stage and study how its gain affects metastability performance in the following example.

Example 6.9: Figure 6.19(a) shows metastability curves for a quantizerwith a

simple differential pair preamplifier as depicted in Figure6.5. The gain was varied

between 1 and 10 by changing the value ofRpa. Increasing the gain has the desirable

effect of sharpening the corner of the metastability curvesfor constant quantizer in-

puts (see the solid lines in the figure), but forslewinginputs little sharpening can be

seen as gain rises. Hysteresis increases slightly with gain, and in fact it has increased

substantially over Figure 6.18(a) from about 10mV to about 30mV. This is not terribly

detrimental to performance as we learned in Figure 6.12.

Figure 6.19(b) shows that a preamplifier does offer some SNR improvement (about

2dB) over parameter scaling, Figure 6.16(b), and regeneration time lowering, Fig-

ure 6.18(b). There is little point in using a gain above 4, it appears. 2

Thus, preamplifying is somewhat beneficial for performance. An ancillary benefit of a preamplifier

with an emitter follower buffer between it and the latch input is a reduction in clock feedthrough

noise [Lee92].
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Figure 6.20: (a) Quantizer metastability curves and (b) output spectrum for quantizer with an additional latching stage.

6.4.4 Additional Latching Stages

A fourth thing we can try is using additional latching stagesafter the slave stage in Figure 6.5

[Jen95]. Clocking each stage on the opposite clock phase from the previous stage gives the pre-

vious stage a good deal of time to settle. The drawback is, each latching stage adds an additional

half-sample delay in the feedback loop, and from Chapter 4 this delay is detrimental to stability

and dynamic range. However, we can somewhat overcome these problems by tuning thekr andkh

feedback parameters.

Example 6.10: Figure 6.20(a) shows quantizer metastability curves for our base-

line latch which has only master and slave half-stages, and alatch that has a third

half-stage following the slave which is clocked on the same phase as the master. We

have added one half sample of extra delay as can be seen on the right y axis where

ρd3 is 0.5 more thanρd2 on the left axis, but the variation ofρd3 with vx is drastically

reduced. This results in a huge improvement—about40dB—in the white noise floor

of the output spectrum, Figure 6.20(b). From simulation, wefind DPW variance has

dropped nearly two orders of magnitude, from5.9 × 10−3Ts to 1.4 × 10−4Ts.

The fifth-order modulator was unstable withρd = 0.6 and nominalk values, but
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Table 6.1: Performance of LP modulators with two- and three-half latches against ideal.

Modulator OSR Ideal q.,ρd = 0.0 Two half-latch Ideal q.,ρd = 0.6 Three half-latch

DR Peak SNR DR Peak SNR DR Peak SNR DR Peak SNR

Double 32 64dB 56dB 45dB 50dB 52dB 46dB 52dB 46dB

integration 64 79dB 69dB 43dB 55dB 67dB 61dB 67dB 60dB

3rd order 32 74dB 68dB 49dB 52dB 66dB 61dB 66dB 61dB

Butter 64 95dB 89dB 51dB 55dB 88dB 83dB 84dB 81dB

4th order 32 78dB 74dB 48dB 51dB 68dB 65dB 67dB 65dB

Butter 64 105dB 99dB 50dB 54dB 95dB 91dB 85dB 85dB

5th order 32 83dB 80dB 47dB 50dB 73dB 69dB 72dB 69dB

Cheby 64 116dB 111dB 50dB 53dB 107dB 103dB 85dB 85dB

theks were tuned so that the modulator was stable and the DR of a modulator with an

ideal quantizer was maximized atρd = 0.6. One artifact of the largeρd is the peak in

the spectrum at0.025fs, something which is caused by the movement of the equivalent

DT loop filter poles toward the unit circle as excess loop delay increases. 2

We seem to have come across a solution to the metastability problem. How well does it work in

general?

Example 6.11: Figure 6.21 shows DR plots for several LP∆ΣMs for an ideal

quantizer and the two quantizers with the metastability curves in Figure 6.20(a). With

two half-latches, there is only about 10% excess delay, but the third half-latch pushes

that up to 60%. A modulator with an ideal quantizer and 60% delay usually requires

k tuning to remain stable, and even then, the DR is less than forthe 10% delay case.

However, when the ideal quantizer is replaced with a metastable one, the three half-

latch quantizer is the clear DR winner.

Table 6.1 summarizes the results for four cases: an ideal quantizer, a quantizer

with two half-latches, an ideal quantizer with 60% excess loop delay and tunedks

to maximize DR, and a quantizer with three half-latches and the same tunedks. For
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high-order modulators with high OSR, the white noise resulting from metastability is

what limits the achievable performance, though much less severely when with three

rather than two half-latches. 2

The idea of using a third latching stage “to provide additional regeneration” is mentioned in passing

in [Jen95, p. 1123], though the claim that “the extra 1/2 delay does not have any impact on mod-

ulator performance” seems suspect given the first two rows ofTable 6.1: we find a half-sample

delay costs 12dB of DR in an ideal second-order CT∆ΣM. Adding a fourth latching stage will not

usually be possible because stabilizing a CT∆ΣM with a full sample of delay probably cannot be

accomplished through feedback tuning, but even the third stage is clearly highly advantageous for

performance.

6.4.5 Other Modulator Architectures

The previous four subsections assumed LP∆ΣMs with NRZ DACs, but we said in Chapter 4 and

§5.2.2 that it is possible to build LP modulators with RZ DACs and BP modulators which use both

RZ and HRZ DACs. An RZ DAC will be affected by metastability inmuch the same way as an

NRZ DAC: the time when the rising edge begins will vary depending onvx andvsl. To make the

latch output return to zero at0.5Ts simply requires connecting the bases of the transistors in the

dotted box in Figure 6.5 to the same node as their respective collectors; thus, the falling RZ edge

is not affected by metastability. But given the sameσms in an NRZ vs. an RZ system, it will cause

3dB more noise in the RZ output spectrum because the sameσms appears twice as large relative to

an RZ pulse (which is half the width of an NRZ pulse).

That being said, applying the ideas of the previous subsection is still worthwhile. In (5.15),

we found the equivalent CT loop filter for a double integration modulator when the DAC has RZ

pulses. We can do the same thing for a DAC with HRZ pulses, which results in

H(z) =
−2z + 1

(z − 1)2
↔











Ĥ(s) = −2.5s−2
s2 , RZ DAC

Ĥ(s) = −3.5s−2
s2 , HRZ DAC.

(6.10)

We can build an HRZ DAC with an additional latching stage in Figure 6.5—and we learned in
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§6.4.4 that adding such a stage greatly reduces DPW jitter caused by metastability. Thus, rather

than building LP∆ΣMs with RZ DACs, it behooves us to choose HRZ DACs.

BP modulators with a noise notch atfs/4 have the property that there is a two-sample delay

in the numerator of the loop filterH(z), we learned in (4.33). If we choose the one digital delay

BP architecture, then we need to insert a full sample of delayin the feedback path. This can be

accomplished by using not one buttwo additional half-latches in Figure 6.5—and once again, the

previous subsection showed adding half-latches provides immunity to metastability DPW jitter.

Thus, any modulator with a two-sample delay in the numerator(which is the case for the BP

fs/4 modulators treated here) should be built with one digital delay in the feedback path. Inany

modulator with only a single sample of delay, HRZ-style DAC pulses are called for, as we noted

in the previous paragraph for LP modulators.

Using a multibit quantizer is intriguing because it appearsto give a win: for anM-level quan-

tizer, there are now(M−1) regions around which metastability can occur but the distance between

steps is smaller by a factor of(M − 1). DPW variance power is related to the square of this lat-

ter quantity, so it offsets the increase in number of metastability regions and appears to result in

10 log10(M − 1) dB smaller white noise power. This topic could benefit from future study.

6.5 Maximum Clocking Frequency

In our LP NRZ examples so far, we have been clocking atfs = 500MHz in a fT = 12GHz

technology. A natural question arises: what is the maximumfs at which it is safe to clock given a

converter resolution specification?

As we increasefs, two things together limit resolution. First, the transistor switching time starts

to become a larger fraction of a clock period. This means the excess loop delayρd and DAC pulse

rise timeρr start to increase. There comes a point when excess loop delaymakes the modulator

completely unstable and impervious to stabilization through feedback coefficient tuning. Second,

the metastability behavior of even the three half-latch comparator will start to degrade2. We study

2In §6.4.5 we suggested using half rather than full DAC pulses forLP modulators. While RZ LP∆ΣMs remain
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Figure 6.22: (a) Effect of increasingfs onρd andρr, (b) theoretical vs. measured switching time.

both of these issues in the following example.

Example 6.12: Figure 6.22(a) shows howρd andρr change as we increase the

clock speed of the three half-latch comparator from 500MHz to 2.5GHz. Returning to

our crude formula forρd in (4.12),

ρd ≈ ntfs

fT
, (6.11)

we see that it is somewhat pessimistic. First of all,ρd andρr are both quite linear

with fs/fT , as predicted by (6.11). Moreover, our circuit hasnt = 3 transistors in the

feedback path (two followers and a differential pair), and so from (6.11) we expect

them to have switched fully after

0.5 +
ntfs

fT
= 0.5 + 3

fs

fT
(6.12)

stable for more excess delay than NRZ LP∆ΣMs, the worsening of performance due to metastability increases

proportionally withfs for both styles of modulator. As the following example shows, it is metastability that limits DR

more than stability; thus, RZ∆ΣMs have no performance advantage over NRZ∆ΣMs at high clock speeds.
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Figure 6.23: Effect of increasingfs on (a)σms, (b) calculated and simulated noise level.

where the 0.5 is for the extra half-latch. In terms ofρd andρr, full switching is accom-

plished after

ρd + 0.5ρr, (6.13)

c.f. Figure 6.7. Figure 6.22(b) plots both (6.12) and (6.13); rather than using a factor

of nt = 3 in (6.12), a better fit is obtained with a factor of 2.25.

In any case, Figure 6.23(a) showsσms as a function offs with both variables

on a log scale. This was found from simulating the fifth-orderLP NRZ modulator

with feedbacks tuned for optimal DR at the given clock frequency over the range

500MHz to 2.5GHz, and finding the variance of the DPW histogram like the one in

Figure 6.15(a). Using those same simulations with an OSR of 32 at clock frequencies

from 500MHz to 2.5GHz yields the in-band white noise level per bin shown in Fig-

ure 6.23(b). This agrees to within 3dB with the calculated value from (5.13) where

N = 8192, σβ is found from (6.9), andσδy ≈ 1.1 is found from simulation. The mod-

ulator goes unstable atfs = 2.5GHz due to excess delay and no amount of feedback

tuning seems to restore stability. 2

We can use the data in Figure 6.23 to come up with an approximate rule of thumb for the
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maximum performance achievable with a three-half latch quantizer assuming in-band noise is

dominated by white noise due to metastability andnt = 3 transistors in the feedback path. The

calculation is shown in§A.2, and the results are equations (A.16) and (A.18):

DR ≥ 11.5 + 0.5 log2 OSR bits, fs/fT ≤ 5%

DR ≈ 8.5 + 0.5 log2 OSR+ log2
fs/fT

5
bits, fs/fT ≥ 6%.

(6.14)

This tells us that clocking slower than about 5% offT is recommended if we desire at least 14-

bit performance with a reasonable OSR like 32 or 64; better performance can be achieved with

a slower clock. Clocking faster than 5% or so offT means we are limited to 12-bit or worse

performance at the same OSRs. We do not recommend clocking faster thanfs = 0.2fT under

any circumstances since stability will be questionable at best and nonexistent at worst at such high

speeds.

In closing this section, we must comment further on (6.14). First, it gives an upper bound on

DR: DR will be limited either by white noise due to metastability or quantization noise, depending

on the OSR chosen. Second, it is not continuous: it has a jump between 5% and 6%. Third, the

bound is not tight forfT /fs < 5%: DR improves as we slow the clock down, though because

of the semi-empirical nature of the calculations we can’t easily extrapolate below this point. We

estimate that metastability will have a negligible effect in most modulators whenfT /fs < 2%.

6.6 Summary

Quantizer metastability causes a variation in the width of the DAC pulses in a CT∆ΣM and de-

grades modulator performance by whitening the in-band noise in a very similar manner to clock

jitter. A three half-latch quantizer design is recommendedfor reducing adverse metastability ef-

fects over a simple master/slave design. As was the case in Chapter 5, we have distilled our results

into a pair of easy-to-apply equations (6.14). Using them tells us that metastability starts to become

significant when clocking at more than about 5% of the maximumtransistor switching speed, lim-

iting modulator resolution to about 12 bits. Higher resolutions can be obtained by clocking more

slowly.
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Chapter 7

A 4GHz Fourth-Order Band Pass∆ΣM

Until this point, we have dealt with modulators on a fairly abstract and theoretical level. It would

seem foolish not to supplement this work with some of the nitty-gritty practical issues in modulator

design and testing. To this end, we present performance measurements on an actual fabricated

fourth-order BP CT∆ΣM which clocks atfs = 4GHz and has a center frequency off0 = fs/4 =

1GHz. This will allow us to see how the work in the previous chapters applies to a real designand

illustrate some additional practical considerations.

A block diagram of the circuit appears in Figure 7.1. The input voltage is fed through an input
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Figure 7.1: A 4GHz fourth-order BP CT∆ΣM.

transconductorGg which produces a currentig = Ggvi to drive an on-chip parallel LC tank. This

gives the tank output voltagevo a band pass shape:

Vo = IGZLC =
GgVi

sC + 1/sL
=

(Gg/C)s

s2 + 1/LC
Vi. (7.1)

141
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The resonator described by (7.1) is a second-order transferfunction, so the series connection of two

resonators yields a fourth-order modulator. The integrated inductor has a poor quality factorQL,

so aQ-enhancement transconductorGq is connected as a negative resistor to cancel the positive

resistance of the inductor. Both the gainA0 and theQ of the resonatorQres are tunable. The

quantizer and latches are such that this is a one digital delay multi-feedback architecture, and the

DACs are simple tunable current switches where the feedbackoperates via KCL. All in all, the

architecture is fairly reminiscent of Figure 4.1, only withresonators in place of integrators.

The intended application for this modulator is in a system like Figure 2.7: it is to be the IF

filter in a 5GHz radio, where we convert the entire band to digital and sort out the components in

the spectrum in software with DSP. It could, in theory, also be used as an RF converter in a 1GHz

radio. This author wrote a paper on its performance and presented it at the 1998 Symposium on

VLSI Circuits [Gao98a], but the circuit was designed by Weinan Gao. In this chapter, we give the

circuit a much more detailed treatment than in that publication.

7.1 General Design Considerations

Before discussing this specific modulator, it is instructive to understand how we should go about

choosing the parameters in a generalfs/4 BP design. We develop a procedure in this section which

was not applied to the design of this modulator, but which could be applied to future designs.

A simplified single-ended model of the modulator appears in Figure 7.21. The design problem

may be stated roughly as follows: given that we desire a certain center frequency, OSR, and SNR,

how do we choose the parametersL, C, R, Gg, Gq, k2, andk4? We must recognize immediately

that it is more or less mandatory to operate anLC-style resonator atf0 ≥ 1GHz since on-chip

inductors tend to haveQs that are poor below this frequency. That being said, let us discuss the

other constraints on the parameters.

1We have renamed some of the parameters (e.g., the feedbackks) so they are consistent with what was used in

this design, but inconsistent with earlier naming. Moreover, there is a mild notational conflict in this section with the

feedbackks andk for Boltzmann’s constant. The author apologizes for both ofthese.
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Figure 7.2: Approximate single-ended model for modulator.

7.1.1 Element Parameter Selection

In §3.1.5 we noted that the first stage of a modulator is usually the most important part to design

well because nonlinearities and nonidealities here appearimmediately at the input. It should come

as no surprise, then, that the first circuit component which constrains the design of Figure 7.2 is the

input transconductorGg1. The minimum detectable input voltageumin for the whole modulator is

determined by the input-referred noise ofGg1 while the maximum voltageumax is constrained by

its linearity. Let us derive approximate expressions for each to find which parameters are important.

We start with a series/parallel tank transformation as follows. The resistorRs = R on the left

of Figure 7.3 represents the finiteQL of the inductor,

Gg1

x2
u

L

R
C

s

Gg1

Rp

x2
u

L C

Figure 7.3: Series/parallel tank equivalence near resonance.

QL = ω0L/R. (7.2)

It can be shown [Lee98,§4.4] that over a suitably-restricted frequency range near resonance, the

seriesLR circuit with a parallelC is approximately equivalent to a purely parallelRLC circuit as
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on the right of Figure 7.3 when

Rp = Rs(Q
2
L + 1), Lp = Ls

(

Q2
L + 1

Q2
L

)

. (7.3)

This is useful because at resonance, the impedances ofL andC cancel in the parallel RLC circuit

leaving onlyRp. Next, we assume thatGq1 is tuned such that it makes a resistance−Rp to ground

as depicted in Figure 7.4. This is desirable because once again, at resonance, the positive and

Gg1

L Rp RpRp

4kT
Rp

4kT

x2
u

Gg1

y2k 22qk

C

2kT

Figure 7.4: Input transconductor equivalent circuit for noise considerations.

negativeRps cancel which means we will have an infinite resonatorQ and hence an infinitely-deep

notch in the quantization noise. It now becomes possible to write expressions for the noise currents

of each resistor and the feedback DAC as depicted in the figure. The resistors have noise current

densities4kT/Rp A2/Hz, and assuming the DAC is a bipolar transistor with collector current

Ic = k2, its noise current density will be of the form2qk2 A2/Hz [Gra93, Chap. 11]. All these

currents drivex2 from ground, and therefore they may be referred to the input by dividing them

by G2
g1, whence they become noisevoltagedensities. Lastly, the input transconductor itself has a

certain input-referred noise voltage density, and if we assume once again that it is a bipolar-based

circuit we may write its noise voltage density as2kT/Gg1 V2/Hz. Finally, then, all the noise

voltages at the input are uncorrelated, so we add them to get atotal input noise voltage density of

v2
ng1 =

2kT

Gg1

+
2qk2

G2
g1

+
8kTω0C

G2
g1QL

V2/Hz (7.4)

where we have used the fact thatRp ≡ QL/(ω0C). This noise density is a mild function of

frequency because transistor noise currents are frequency-dependent; we treat it as white in the

(narrow) signal band. The total in-band noise voltage is, bydefinition, the minimum detectable
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signal

umin ≡
√

v2
ng1 ×

fs

2 · OSR
. (7.5)

Immediately we see from (7.4) that in order to be able to detect small signals, we wish forGg1 to be

large. Our first design constraint, therefore, is to makeGg1 “large enough” to have small in-band

noise. In general, transconductance is related to current;in a bipolar design, largeGg1 means large

currentig1 supplied toGg1 and hence high power dissipation. As usual, low noise (and thus high

DR) can be achieved at the expense of power.

How large is large enough? That is determined by the requiredSNR, which in turn fixes

the needed linearity ofGg1. Clearly, the maximum signal that must be handled with acceptable

linearity is

umax = umin × 10SNR/20. (7.6)

To quantify this, let us assume the linearity ofGg1 has been characterized by a standard measure

such as input-referred third-order intercept point IIP3. Let us further assume that it is a differential

circuit with a weak cubic nonlinearity described by

ig1 = Gg1u − ǫg1u
3, (7.7)

quite a reasonable assumption for an integrated transcondcutor. (7.7) can be solved to yield

IIP3 for Gg1 ≡
√

Gg1

ǫg1
. (7.8)

The linearity requirement forGg1 is then straightforward to state: atumax, we require harmonics

to be at least SNR dB below the fundamental. A simple geometrical argument says that we require

IIP3 for Gg1 = 20 log10 umax + SNR/2 dB (7.9)

because the third harmonic has a slope 3dB/dB withu while the linear term has a slope 1dB/dB.

So far, our first consideration is the design of the input transconductor. It must have suffi-

cient dynamic range (i.e., sufficiently low noise and sufficiently high linearity) to meet our SNR

requirements. Higher dynamic range usually requires greater power dissipation.
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Continuing in this vein, it is illustrative to write an expression for SNR using the following

fact: in order to keep the modulator stable, the feedback current must be at least as large as the

maximum input current. Recalling that the DAC current isk2 ≡ kr2 + kr4, we may write

k2 ≥ umaxGg1. (7.10)

Put another way, we require

umax ≤ k2

Gg1

(7.11)

whereumax is the full-scale input voltage. Assuming we choosek2 no larger than necessary, the

inequality in (7.10) and (7.11) becomes an equality, and therefore the signal power is(k2/Gg1)
2.

We wrote an expression for the integrated noise power in (7.5); combining this with (7.11) and

simplifying leads to

SNRmax =
k2

2

kTGg1fN (1 + k2

ig1
+ 4

QL

ω0C
Gg1

)
(7.12)

wherefN is the Nyquist bandwidth and we have used the fact that small-signalgm ≡ Ic/VT and

henceGg1 = ig1/(kT/q) for a bipolar transistor. This expression shows that the noise is made

up of the sum of three components; the one that dominates willdepend on the actual design. One

of the interesting insights this equation offers us is that even if Gg1 and the DAC were noiseless,

SNR would still be limited by finiteQL. If QL is poor, then we need either highGg1 or low C to

ensure that the third denominator term does not dominate; thus, poor inductorQ either increases

our power dissipation or constrains our choice of capacitorsize.

To understand how to pick tank component values and theGqs, we write an expression forx2

in Figure 7.2. Assuming theGq1 transconductor draws negligible current (reasonable for abipolar

design), we may write an equation for the first resonator output X2

X2 = [Ig + Iq + k2Y ]Zeq

= [Gg1U + Gq1X2 + k2Y ]
1

1
sL+R

+ sC
. (7.13)

Solving forX2 gives

X2 = [Gg1U + k2Y ]
1
C
s + R

LC

s2 + (R
L
− Gq1

C
)s + 1

LC
(1 − RGq1)

. (7.14)
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A similar equation could be written forx4 in terms ofx2 and the second resonator parameters.

Recalling that the center frequency of a band pass transfer function is determined by the coefficient

of thes0 term in the denominator and assuming for the moment thatRGq1 is small, we arrive at

the design constraint

ω0 ≈
1√
LC

. (7.15)

Choosing one ofL or C then fixes the other according to (7.15). Usually, the inductor series

resistanceR is given onceL is known because one has little control over integrated inductor Q.

A deep noise-shaping notch requires a high-Q resonator; the rule of thumb we gave in§3.1.1 was

that

Qres ≈ OSR. (7.16)

Integrated inductorQs typically range from 5 to 10, hence we requireQ-enhancement of some kind

which as we have said is provided by theGq1 transconductor. From (7.14), a high-Q resonator has

a denominators1 coefficient of near 0; thus, we need

R

L
− Gq1

C
≈ 0. (7.17)

Gq1 may now be found because it is the only unknown in (7.17), andGq2 may be found in a similar

manner. What are some of the considerations for how we shouldchooseL and/orC? (7.12) shows

that smallC is good for noise. But smallerC means largerL, which for an integrated inductor

means larger die area. As well, we can only reduceC so much before parasitics start to become

significant. IfQL is a function ofL, then instead of choosingC it may be more sensible to choose

L so thatQL is maximized.

Thus far, we have chosen all the parameters except the feedback DAC currents andGg2. Our

choices of these depend on two things: achieving the correctnoise-shaping transfer function and

the linearity of the the transconductors other thanGg1.

Addressing the first issue, recall the CT/DT equivalence in Chapter 4 and 5: in this section we

are discussing building a one digital delayfs/4 fourth-order BP modulator which has

HBP (z) = z−1 2z−1 + z−3

(1 + z−2)2
(7.18)
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from (4.33). Using the parameter names in this section, the values of the feedback DAC levels in

the CT circuit to give the correct equivalentHBP (z) can be shown to be

(k̄r2, k̄r4, k̄h2, k̄h4) = (−1.1107
C

Gg2Ts

C

Ts

,−0.9957
C

Ts

, +2.6815
C

Gg2Ts

C

Ts

, +4.6927
C

Ts

) (7.19)

(the reason for the bars over the names will be explained shortly). C andTs have already been

determined, sōkr4 and k̄h4 are now known. Moreover, the sum̄k2 ≡ k̄r2 + k̄h2 is known from

(7.10). The only remaining unknown is thusGg2, which is found to be

Gg2 =
π/2

k̄2

C2

T 2
s

. (7.20)

It appears that the design is now complete, except there is one remaining detail: the second issue

above, i.e., the linearity of the other transconductors. Let us consider it now.

When the modulator is operating, the voltages atx2 andx4 are stochastic in nature with stan-

dard deviationsσx2
andσx4

. It is not difficult to see that these values are directly proportional

to the feedback current levels: driving more DAC current into x2 andx4 produces proportionally

more voltage across the (fixed) tank impedance. Thek̄s above are nominal currents; let us make

the actual currents be scaled byγk, so that

(kr2, kr4, kh2, kh4) = (γkk̄r2, γkk̄r4, γkk̄h2, γkk̄h4). (7.21)

With this scaling applied, it is found from simulation that with no input signal,

(σx2
, σx4

) ≈ (
1√
2

C

Gg2Ts
γk, 1.157γk) (7.22)

which are values in volts. The proper scaling forGg2 is

Gg2 =
π/2

k2

C2

T 2
s

γk (7.23)

wherek2 is from (7.10).x2 drivesGq1 andGg2 whilex4 drivesGq2, so it stands to reason that there

must be a way to relate the linearity requirements ofGq1 andGg2 to the typical level ofx2, i.e.,

σx2
, and to relate the linearity ofGq2 to σx4

.

As before, suppose these three transconductors have known IIP3 with a form similar to (7.8).

It is not immediately apparent how to treat them because theyare driven by stochastic wideband
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Figure 7.5: Spectrum of (a) output bits, (b)x2 andx3
2.

signals rather than sinusoids. To make matters more confusing,Gq1 andGq2 have the same output

and input node. But one way to grasp what nonlinearity does isto write out the time-domain

differential equations for the states. For simplicity, assumeGq1 is the only nonlinear transconductor

and thatR = 0. The coupled first-order equations forx2 can be written as

dx1

dt
=

1

LC
x2,

dx2

dt
= −x1 +

1

C

[

Gg1u + ǫq1x
3
2 + k2y

]

(7.24)

If ǫq1 = 0, the term inside square brackets describes normal modulator operation: the inputu is

combined with the fed-back output bity and the amplitude ofu in the spectrum ofy is determined

from k2/Gg1. Viewed in this light, foru = 0, we have the fed-back outputy combining withx3
2.

By analogy to theǫq1 = 0 case, we can think ofx2 as though it is acting like an input. Therefore,

by analogy, we expect the spectrum ofx3
2 to appear in the spectrum ofy with a ratio involving

k2/ǫq1. Figure 7.5(a) shows a typical output spectrum, whereas Figure 7.5(b) shows the spectra of

the voltage atx2 andx3
2 for the same input conditions. From simple theory, the spectrum of x3

2 is

the spectrum ofx2 convolved with itself twice. This means some of the out-of-band noise will fold

in-band, but how much?

The best way to characterize it turns out to be withnormalization. If we plot the DR and
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SNRmax from simulation as a function of normalizedǫq1,

ǭq1 ≡
ǫq1σ

3
x2

kr2 + kh2

, (7.25)

the graphs appear as in Figure 7.6(a) and look the same for a given OSR. The form of̄ǫq1 is logical

given (7.24). Similar normalizations can be found for the other two nonlinear parameters:

ǭg2 ≡
ǫg2σ

2
x2

Gg2
, (7.26)

ǭq2 ≡
ǫq2σ

3
x4

kr4 + kh4

. (7.27)

Graphs of DR and SNRmax are plotted in Figures 7.6(b) and (c). From these graphs, we may derive

the following rules of thumb for the restrictions on theǭs that will not affect DR significantly:

ǭq1 < 10−3, ǭg2 < 10−2, 10 log10 ǭq2 < −5 − log2 OSR. (7.28)

The final portion of the design procedure can now be described. The nominal feedbacks̄ks and

signal levelsσxs are found from the other known parameters by using (7.23) for Gg2 followed by

(7.21) and (7.22), where to start we assumeγk = 1. The IIP3 for the transconductors other thanGg1

are characterized, and the normalizedǭs are calculated and compared with (7.28). If they are large

enough that linearity is a problem, thenγk can be lowered and the calculation redone. We should

also keep in mind that we can also alter the signal levelsσx2
andσx4

by altering the tank impedance

if changingγk is found to be unsatisfactory. Loweringγk also lowers power consumption.

7.1.2 Design Procedure

We summarize the salient points of our design method here. Take as given center the frequencyf0

(f0 = ω0/2π = fs/4), SNR (assumed equal to DR), and conversion bandwidthfN/2 = fs/(2 ·
OSR).

For the input transconductor:

→ Design the circuit and find the achievedGg1 andǫg1 in (7.7)
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Figure 7.6: DR and SNRmax for (a) ǭq1, (b) ǭg2, (c) ǭq2. Numbers on curves are OSR values.
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→ Use SPICE to find the total input-referred noise voltage overthe Nyquist band

→ Calculateumin from (7.5),umax from (7.6)

→ Ensure IIP3 satisfies (7.9)

For the tank parameters:

→ Calculate first feedback currentk2 from (7.10)

→ CalculateL andC product from (7.15)

→ Determine inductor series resistance

→ Calculate requiredGq1 andGq2 from (7.17)

→ With DAC andGq1 circuits present, resimulate input-referred noise in SPICE and ensure

input transconductor still has necessary dynamic range

For the feedback DAC levels and other transconductors:

→ Calculate requiredGg2 from (7.23)

→ Calculate nominal̄ks andσxs from (7.21) and (7.22) usingγk = 1

→ Design the other transconductors to meetGq andGg2 specs and find the achievedǫq andǫg2

→ Calculate normalized̄ǫs from (7.25)–(7.27)

→ Check if performance loss is significant with (7.28) and adjust γk and/or tank impedances

appropriately

Of course, application of this procedure will involve a gooddeal of iteration. Note that we

recommend SPICE or some other full-circuit simulator for noise measurements; our estimates in

(7.4) and (7.12) are only very approximate.

7.1.3 Parameters for This Design

The circuit we present in the rest of this chapter was designed long before this procedure was

formalized. Before we describe the circuit, it is interesting to see how its parameters look. They
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Table 7.1: Parameters for the fourth-order design in this chapter.

L = 3.5nH

Tank element values C = 6.1pF

R = 2.45Ω

Gg Range 2 → 8 mA/V

ǫg Typical 9×10−3 mA/V3

Gq Range 2 → 9 mA/V

ForQ = ∞, calc 4.3mA/V

ForQ = ∞, meas 8.9mA/V

ǫq Typical 5×10−4 mA/V3

kr, kh Range 0 → 500 µA

σx2
, σx4

Range 4 → 12 mV

vng1 Calc (typical) 3.5nV/
√

Hz

Sim (typical) 20nV/
√

Hz

umin Typical 90µV

Gg1 IIP3 Sim −2.3dBV

ǭq1 Maximum 2.3 × 10−6 = −56.4dB

ǭg2 Maximum 1.8 × 10−4 = −38.5dB

ǭq2 Maximum 2.6 × 10−6 = −55.8dB

SNR limit umin, IIP3 52dB

are presented in Table 7.1 for a bandwidth of 20MHz, which corresponds to OSR= 100, and

typical biasing conditions. Their derivations will followin later sections. There are several things

worth noting about them.

1. The inductors have aQ of about 8 according to SPICE, so theGq value required to achieve

Q = ∞ is 4.3mA/V when calculated from (7.17). In measurements, from Figures 7.34(b)

and B.2(b), the value comes out closer to 9mA/V. We discuss possible reasons for this in

§7.4.3.

2. SPICE measures typical in-band noise voltage densities of 20nV/
√

Hz while our simple
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formula (7.4) predicts 3.5nV/
√

Hz. However, test indicate both SPICE and our formula

predict the same dominant term: the noise seems to come mostly from the DAC, the middle

term in (7.4).

3. The swing at the resonator outputsσx2
andσx4

can be made only as high as about 12mV

because the DAC currents were chosen very small in this design. As a result, when we find

the normalized̄ǫ values and compare them to (7.28), it happens that none of them are large

enough to affect DR appreciably at OSR= 100.

4. The input-referred noise forGg1 is quite large, typically 20nV/
√

Hz, which in a 20MHz

bandwidth gives a minimum-detectable input signal ofumin = 90µV. The linearity of that

transconductor is such that IIP3 = −2dBV or so, and calculation with (7.6) and (7.8) gives

a maximum SNR of 52dB.

At the outset, our simple formulae predict we will not do better than SNR= 52dB which means

this is just over an 8-bit ADC. Let us study the circuit more closely, however.

7.2 Circuit Blocks

The circuit is built in a 0.5µm SiGe BiCMOS process, though it is an all-bipolar design andso

only uses the HBTs of the process. These are rated at speeds ofapproximatelyfT = 40GHz and

fmax = 60GHz. It should be stressed once again that the author did not design this circuit—there

were no notes to be found on it, so everything written in this chapter is based largely on inference

and a scant few conversations with the designer. The circuitdoesfunction, so it is useful to study.

Let us describe each circuit block at the transistor level2.

2Until now we have specified input levels in dB, which as we noted in Chapter 2 is dB relative to full scale. In

this chapter, because this is a real circuit with an input voltage, we talk about input levels both in V and (because the

circuit is intended for a radio receiver) dBm assuming a50Ω impedance. The one place we refer to dB, Figure 7.44,

still uses dB relative to full scale, and we calculate the full-scale input level in§7.3.1.
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Figure 7.7: SPICE ac analysis of inductor: (a)L, (b) Q.

7.2.1 Resonator

Before proceeding to the final resonator circuit, it is useful to break it down into separate compo-

nents.

Single-ended block diagram

The model in Figure 7.2 approximates the resonator quite well. A lumped-element equivalent

circuit for each on-chip inductor half-circuit can be derived from the physical inductor layout which

includes metal resistance, inter-turn capacitance, capacitance through the dielectric to the substrate,

etc. A SPICE ac analysis of the lumped equivalent produces the characteristics in Figure 7.7. The

inductor’s nominal value atfs/4 = 1GHz isL = 3.5nH with aQ of about 8.1, and its self-resonant

frequency is about 12.8GHz. This means the series resistance is aboutR = 2.45Ω; it mildly

frequency-dependent, but in simulation the dependence is weak enough that we may considerR

to be constant.C is actually two1.525pF capacitors in parallel with each other with both ends

connected to either collector of a differential pair. Thus,the equivalent capacitance to ac ground is

C = 6.1pF, four times this value.
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Transconductor

Both input andQ-enhancement transconductors are so-calledmulti-tanhcircuits [Gil98] whose

operation can be understood starting with the simple differential pair in Figure 7.8. A differential

vin+ vin-

outi

I tail

A 1

Figure 7.8: Differential pair transconductor.

input voltagevin becomes a differential output currentiout with a hyperbolic tangent characteristic

[Gra93, Chap. 3]; the transconductanceGm ≡ diout/dvin thus has a sech2 shape. Figure 7.9(a)

shows how theGm vs.vin curve varies as a function of tail currentItail for A = 1: we can increase

the peakGm by increasingItail. The input range over which the circuit is linear can be improved

by first unbalancing the differential pair, whereA transistors are connected in parallel on one side

(effectively creating a transistor whose emitter isA times larger). This has the effect of shifting

the peak of theGm vs. vin curves as illustrated in Figure 7.9(b). Next, unbalanced pairs have

their outputs cross-coupled, Figure 7.10, which results inthe overallGm characteristic having a

double-hump shape, Figure 7.11(a). The horizontal shift oftheGm curves is altered by changing

A, and we also have the option of adding small emitter resistorsRe to further change the shape of

the individual pairs’Gm curves, Figure 7.11(b). By correctly choosingA andRe, we can get a flat

top on the finalGm vs.vin curve. This is what gives us the desired increase in linear range.

The main advantage of using a multi-tanh circuit for linearity over a differential pair with

emitter degeneration is that the latter has a fixed transconductance, while in the formerGm is

tunable withItail while retaining good linearity. Furthermore, the increasein noise suffered by

using two pairs of transistors and two tail current generators (instead of one of each in a simple diff

pair) is more than made up for by the increase in 1dB compression point—multi-tanh circuits have

higher DR than degenerated differential pairs when both noise and linearity are taken into account.
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Figure 7.9: Transconductance of differential pair as a function of (a) tail current, (b) number of transistors.
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Figure 7.11: (a) Multi-tanhGm characteristic, (b) effect of varyingRe.

Input transconductor

The actual multi-tanh topology used in this architecture isdepicted in Figure 7.12. In place of

4

4

4

4

4

4

vin+ vin-

outi

I tail I tail

Figure 7.12: Actual transconductance topology used.

resistors, diode-connected transistors are used. Betweenthe input and ac ground, we haveD = 3

diodes formed by base-emitter junctions; what are the ramifications of employing this configura-

tion overD = 1 as in the original multi-tanh design in Figure 7.10 orD = 2?

Example 7.1: Let us study the circuit in Figure 7.12 with500Ω load resistors
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Figure 7.13: Transconductance as a function of number of diodes: (a) absolute, (b) normalized to peakGg.

on the collectors of the input transistors going toVCC = 5V. We will use an input

common-mode (CM) level of 3.4V, which is about what the actual level in the final

modulator is.

For Itail = 0.4mA, Figure 7.13(a) plotsGg vs. Vin from a SPICE dc analysis for

D = 1, 2, and 3 base-emitter diodes.Gg falls from 9.40mA/V to 4.70mA/V and

3.68mA/V: it is inversely proportional toD. At the same time, the linear range in

Figure 7.13(b) increases proportionally toD: a 1% drop inGg happens atVin =

25mV, 50mV, and 75mV. This behavior is easily understood by considering the series

connection ofD identical diodes with the same currentI and voltageV across their

terminals, Figure 7.14. The current through each diode is the same and is given by

D

I
V

Figure 7.14: Series-connected diodes.
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Figure 7.15: Linearity for emitter diodes vs. emitter resistors: (a)A = 4, D = 3, (b) A = 8, Re = 100Ω.

I = Is exp

(

V/D

kT/q

)

(7.29)

because the voltage across each diode isV/D. The small-signal transconductance is

found from

gm =
dI

dV
=

Is

D(kT/Q)
exp

(

V/D

kT/q

)

=
1

D

I

kT/q
. (7.30)

The transconductanceGg above falls because of the1/D factor in front of (7.30), and

the linear range increase arises because of theV/D inside the exponential.

The advantage of using diodes rather than passive resistorsshould be clear: thegm

for a diode is proportional toItail, but for a passive resistorgm is fixed. This explains

why in Figure 7.15, which contrasts the two cases for similarGg andItail, the linearity

is retained asGg is varied in the diode case but not in the resistor case.

A fair comparison of theD choices includes several parameters: the realizable

range ofGg values,Itail perGg (which gives a measure of power dissipation), and the

dynamic range, which is a combination of the noise figure and the linearity. We will

use an input frequency of 1GHz, since that is approximately the frequency at which

the circuit must operate in the∆ΣM. The parameters for this cell are presented in
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Table 7.2. A discussion of the results is in order.

Table 7.2: Comparison of multi-tanh architectures.

Parameter D = 1 D = 2 D = 3

RealizableGg range (mA/V) 2–22 2–11 2–8

∆Itail (µA per mA/V) 45 90 135

NFopt (dB),RSopt (Ω) Itail = 400µA 5.67, 600 7.51, 900 9.11, 1100

Itail = 1mA 4.73, 400 5.83, 550 6.86, 700

Linearity 1dB compression (dBm) −11.5 −5.5 −1.9

Estimated IIP3 (dBm) −1.9 +4.1 +7.7

Approximate∆DR (dB) 0 5 7

• The realizableGg range is unlimited in theory as long as we are willing to supply

the currentItail. What limits us in this design is headroom, in particular the

design of the biasing circuit that suppliesItail. ForD = 3, excessiveItail pushes

the transistor supplyingItail into saturation which degrades linearity. This could

be remedied with increased supply voltageVCC , though this would increaseVCE

on all the transistors and possibly introduce problems withBVCEO.

• As expected, power dissipation is proportional toD for a givenGg. Again, high

Gg can be obtained no matter whatD is as long as we are prepared to dissipate

more power.

• Noise figures were measured in SPICE at 1GHz using ac analysis; the source re-

sistance was swept until the optimum NF was found, and both values are listed.

NF falls asItail increases; the NFopt increases between 1 and 1.5dB withD de-

pending onItail. As well, largerD requires higherRSopt for optimum NF. That

being said, NF andRSopt are roughly constant for the sameGg.

• Linearity was measured with transient simulation in SPICE.The 1dB compres-

sion point is fairly easy to measure by sweeping the input voltage, plotting the



162 Chapter 7: A 4GHz 4th-Order BP∆ΣM

−60 −50 −40 −30 −20 −10
−120

−100

−80

−60

−40

−20

0

Voltage input (dBV)

C
ur

re
nt

 o
ut

pu
t (

dB
m

A
)

Fundamental     
3rd hamonic     
3dB/dB reference

Figure 7.16: Linearity plot for a multi-tanh circuit.

output current, and using straight-line extrapolation to find where it deviates from

linear by 1dB. Figure 7.16 shows the results of a two-tone test in SPICE where

the input tones are at 980MHz and 1GHz, and the third harmonicat 1.02GHz

is plotted. Unfortunately, the third harmonic does not behave in a Taylor-series

manner: the slope of its magnitude doesn’t increase by 3dB per dB of input

voltage, as the dashed and dotted lines show. This is an inherent property of

multi-tanh circuits [Gil98]; because of it, defining IIP3 is difficult. The definition

we adopt (simply so we have a method of discussing it) is that it is 9.6dB higher

than the 1dB compression point, which derives from the assumption of a weak

Taylor-type cubic nonlinearity in (7.7) and (7.8). In any case, linearity improves

roughly as20 log10 D.

• Combining the previous two facts—the small increase in NF with the larger in-

crease in 1dB compression point—leads to the final table row which shows DR

improvement resulting from increasingD.
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In conclusion, there is a clear DR advantage of usingD = 2 instead ofD = 1, and

a slight further advantage in usingD = 3 over D = 2. In a VCC = 5V design

such as this one,D = 3 is about the maximum we can get away with while retaining

acceptable headroom. 2

Q-enhancement transconductor

The band pass resonator block appears in Figure 7.17. The input voltage is applied through emitter

followers (not shown) to the input multi-tanh block whose load is the LC tank. TheQ-enhancement

transconductor is a second multi-tanh circuit whose input is derived from the output voltage sam-

pled by a capacitive divider. The dc level at the inputs to theQ-enhancement multi-tanh would not

be well-defined without the control voltageVCDB and the circuitry associated with it.

Examination of the dc operating point of the circuit makes itclear that care must be taken

when choosing where to set various voltages when the power supply is 5V. The bias circuit has to

be turned off in practice because the base currents of theQ multi-tanh input transistors alone drop
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enough voltage across the2kΩ and10kΩ resistors to push the input common-mode voltageVIB

to 3.5V, which, as was also true with the input transconductor, strains the ability of the transistors

supplyingItail to stay out of the saturation region. RaisingVCDB to a voltage which turnsQCDB on

pullsVIB down further resulting in worse IIP3 for theGq transconductor. Therefore,VCDB = 0V

is required in normal circuit operation.

The Gq transconductor’s ac input voltage derives fromVout through the 1pF/3pF capacitive

voltage divider. We expect a voltage division of 0.25 (i.e.,the input signal atVIB smaller than

Vout by a factor of four), though SPICE simulations indicate a value of closer to 0.20 for a signal

between 1GHz and 4GHz. The transistors in theGq multi-tanh circuit are, however, four times

larger than those in theGg circuit, so they are capable of supplying about four times the current

at the sameVBE. The net result is, the achievable transconductance range obtainable for theGq

transconductor is not markedly different from that for theGg transconductor. The linearity is better,

however:Gq achieves IIP3 = +20dBm or so vs.+8dBm for Gg, though this is expected because

of the voltage division.

Resonator characteristics

We illustrate gain andQ tuning for the overall resonator in a SPICE ac analysis in Figure 7.18.

Figure 7.18(a) showsVG tuning with fixedVQ, where these two voltages control the tail currents in

each multi-tanh block. The peak gain varies over about 9.5dB, with Qres remaining almost constant

at about 73; the peak gain is proportional to theGg in the gain multi-tanh circuit. Figure 7.18(b)

is with VG fixed andVQ tuned, and theQres varies from 28 forVQ = 2.4V to about 360 for

VQ = 2.7V. These results are useful because they let us estimate actual voltage levels which result

in a certain gain andQ during testing.

We also do a comparison of ac analysis to transient analysis.Figure 7.19 contrasts the analysis

results forVG = 2.2V and VQ = 2.6V, gain in Figure 7.19(a) and phase in Figure 7.19(b). It

takes the output amplitude about 400 cycles to settle, so each simulation takes quite a bit of time.

Agreement is good except near the peak gain where it becomes merely acceptable: ac analysis

predictsQ = 74 while the transient analysis showsQ ≈ 150. SPICE ac analysis is linearized



Chapter 7: A 4GHz 4th-Order BP∆ΣM 165

1 1.05 1.1 1.15
−15

−10

−5

0

5

10

15

20

25

Frequency (GHz)

G
ai

n 
(d

B
)

Gain tuning

1 1.05 1.1 1.15
−10

−5

0

5

10

15

20

25

30

Frequency (GHz)
G

ai
n 

(d
B

)

Q tuning

(a) (b)

Figure 7.18: Filter gain characteristic: (a) fixedVQ = 2.6V, steppingVG by 0.2V from 2.0V to 2.8V, (b) fixed

VG = 2.2V, steppingVQ by 0.1V vrom 2.4V to 2.7V.

1.02 1.04 1.06 1.08 1.1
−5

0

5

10

15

20

Frequency (GHz)

G
ai

n 
(d

B
)

AC       
Transient

1.02 1.04 1.06 1.08 1.1
−100

−80

−60

−40

−20

0

20

40

60

80

Frequency (GHz)

P
ha

se
 (

o )

AC       
Transient

(a) (b)

Figure 7.19: Transient analysis forVG = 2.2V andVQ = 2.6V: (a) gain, (b) phase.



166 Chapter 7: A 4GHz 4th-Order BP∆ΣM

NRZ NRZ NRZ NRZ NRZVin

Vclk

VHNRZVNRZVout

Ts s2T Ts s2T Ts s2T

(a)

NRZ NRZ NRZVin

Vclk

Vout

NRZ

Ts s2T Ts s2T

VRZ

RZ

VHRZ

Ts s2T

RZ

(b)

Figure 7.20: Overall latching scheme and waveforms: (a) NRZmodulator, (b) RZ modulator.

while transient analysis preserves nonlinearities, hencethe two disagree here [Che94, Che98c].

We can find the input-referred noise (and hence the minimum-detectable input signalumin)

from a SPICE ac simulation. A value for typical control voltage settings isvng1 = 20nV/
√

Hz,

though this can vary by a factor of two either way depending onthe exact biasing. In a 20MHz

band, the total noise comes out to aboutumin = 90µV which is therefore the smallest modulator

input voltage which can be sensed. Both these values were listed in Table 7.1.

7.2.2 Latch

Two different modulators were designed: the “NRZ modulator”, which has NRZ and half-delayed

NRZ (HNRZ) feedbacks, and the “RZ modulator” with RZ and HRZ feedbacks. Block diagrams

of the latching schemes in each are shown in Figures 7.20(a) and (b). The NRZ and RZ blocks

are half-latches with outputs that either don’t or do returnto zero after a half cycle (c.f. the dashed

and dotted lines in Figure 4.15). The one-bit quantizer in both designs is a preamplifier with an

ECL master/slave latch, exactly as was depicted in Figures 4.15 and 6.5. As mentioned at the start
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Figure 7.21: Schematics for (a) preamplifier, (b) half-latch.

of this chapter, there is a full sample of delay prior to each DAC, and these are implemented with

appropriate further half stages as shown.

The preamplifier circuit, Figure 7.21(a), is a simple differential pair with input and output

buffers. As we noted in§6.4.3, it has been shown [Lee92] that emitter followers before and after a

preamplifier are good for eliminating coupling of the clock signal between the main latch and the

preamp. But the followers in this circuit are apparently sized and biased incorrectly for optimum

speed, a rather serious oversight for a high-speed circuit.We will worry about correcting them

in §7.4.2; for now, we provide gain and phase curves of SPICE ac analysis (supplemented with

transient analysis for verification) for the input followerin Figure 7.22(a). Followers are fairly

forgiving circuits, so the gain and phase shifts are not huge, but they can be improved a good deal.

One result of the rolloff exhibited in the input follower gain curve is that the overall preamp has an

ac analysis given in Figure 7.22(b): the−3dB frequency is quite low at 4.59GHz. The dc gain is

18.7dB, and the phase shift atf−3dB is −61.6◦.

A half-latch in this design appears in Figure 7.21(b). The output swing is typically 270mV

and the regeneration time constant for the latch as designedis τrg = 17.4ps, which again can be

improved with proper follower design. We leave this for§7.4.2.
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Figure 7.22: Original preamp ac analyses: (a) input follower, (b) entire circuit.

Typical ZCT characteristics for the M/S latch output and one-sample delayed latch output are

illustrated in Figures 7.23(a) and (b), respectively. Clocking at fs = 4GHz in anfT = 40GHz

process is aggressive, to be sure, if the guideline of 4–5% in§6.6 is to be believed. That guideline

was for a three half-latch design, and this one contains four, so the regeneration at the final latch

output is adequate, as is clear by the sharpness of the corners in Figure 7.23. However, it is the

hysteresis in combination with small quantizer input swingwhich will turn out to be a major

problem in this design: we barely use 5% of the full-scale input range. Our redesign will address

this.

7.2.3 Output Buffer

The output is obtained from the slave stage of the M/S latch driving a differential pair with50Ω

load resistors, Figure 7.24, for matching to an off-chip50Ω measuring device. The bias current,

and hence the output swing, is controlled with a voltageVBUF applied directly to the base of a

current-source transistor. A typical desirable swing for us is 200mV, which requires a current of

4mA; this can be achieved by usingVBUF = 3V.

In Figure 7.25(a), we show a typical output waveform from theM/S latch, and Figure 7.25(b)
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Figure 7.25: Output waveforms: (a) M/S latch, (b) output buffer.

depicts the output buffer waveform. The latch output seems not to rise very sharply, but the edge

of the output buffer waveform is much better-defined.

7.2.4 DAC

There are a total of four DACs on the chip, two for each of theVNRZ andVHNRZ (or VRZ and

VHRZ) signals; for each signal, one DAC connects to the first resonator output and one to the

second. The DACs are relatively simple current-steering circuits, Figure 7.26, with follower inputs

and current outputs derived from the sum of cross-coupled diff pairs. A typical output voltage

waveform vs. normalized time appears in Figure 7.27. The M/Slatch output switches just after

t/Ts = 0, then there is a full sample of delay before the DAC switches.The ZCT isρd = 1.322

and the rise time isρr = 0.146. Ideally, this waveform would switch instantaneously att/Ts = 1.

7.2.5 Complete Circuit

Finally, complete transistor-level schematics for both modulators are shown in Figures 7.28 and

7.29. The boldface words are the names of the external signals. A die photomicrograph of the
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Figure 7.30: Die photomicrograph of NRZ modulator.

fabricated NRZ modulator appears in Figure 7.30. The die measures2.4 × 1.6mm2 with the pads

and1.6 × 0.85mm2 without. There are a total of 40 pads: 6 input (two each for differential input,

clock, and output), 2VCC , 15 dc bias (VCB, VBUF , two each ofVG andVQ, VCDB, and four each

of Vk+ andVk− for the DACs), and 17 ground. As is evident from the schematics, the input signal

common-mode (CM) levels are not set on-chip and so must be provided through bias tees.

7.3 Measurement Results

Given the number of dc biases that must be controlled in this design, standard high-speed probe

configurations for wafer-level tests are all but impossibleto come by. It is possible to have a

“membrane probe card” specially constructed, but several factors (not least the financial expense

of US$17,000) ruled out this possibility. Thus, diced wafers were packaged and mounted on a

four-layer test board. There are no individual circuit block breakouts, so we must devise methods

to check circuit behavior based only on the overall modulator output bit stream, either in the time
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Figure 7.31: Measurement test setup.

domain or the frequency domain.

The input and clock signals were provided from signal generators, driven differentially onto the

board through180◦ power splitters, each with two bias tees for providing CM voltages. At first,

VCC and the two CM voltages were all provided with separate powersupplies, which resulted in the

destruction of several packaged parts by applying inappropriate voltages across certain junctions

of the input buffer transistors; eventually, a single supply for VCC was used, with the CM levels

being drawn from a tunable resistive divider circuit. SMA connector-terminated cables of equal

lengths rated to 40GHz were connected to the board. The remaining dc biases were set with10kΩ

potentiometers connected betweenVCC and ground. Each required hand tuning with a screwdriver

and voltmeter to set a desired voltage level. The output camedifferentially from two similar cables

connected to the “DC+RF” input of bias tees; the RF outputs have no remaining dc component,

and they were connected to a spectrum analyzer through a combiner. A diagram of the test setup

appears in Figure 7.31.

A typical spectrum analyzer display for the NRZ modulator output bit stream appears in Fig-

ure 7.32. The conditions with which this plot was made were
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Figure 7.32: NRZ modulator output spectrum.

• Input 4.2V CM,−26dBm, 1.010GHz

• Clock 3.0V CM,−10dBm, 4.000GHz

• Power supply 5.03V, 75mA

• VG1 = VG2 = 2.6V, VQ1 = VQ2 = 2.8V, VCDB = 0V

• VBUF = 3V, VCB = 4V

• DAC CM 1.2V,Vn2 = 0.4V , Vn4 = 0.2V, Vh2 = Vh4 = 0V

The noise-shaping behavior is evident: the quantization noise has a dip of 20dB or so at about

fs/4 = 1GHz. Thus, the circuit appears to be functioning correctly.

7.3.1 Resonator

For the resonator, there are three voltages which should have a noticeable effect:VG, VQ, and

VCDB. Let us examine each in turn.
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Varying VG

For simplicity, we test the NRZ modulator with the half-delayed feedback pulses disabled, i.e.,

Vh2 = Vh4 = 0V. This allows us to specify the level of a full-scale input easily. From (7.14)

and Figure 7.2 (recall also Example 2.7), the maximum input is one where the current due to the

input transconductorGg1u has the same magnitude as the feedback currentkn2y. Thus, the output

magnitude relative to full scale of an input signalu in V is

Gg1

kn2
u, (7.31)

whereGg1 is in mA/V andkn2 in mA. Let us relate all these quantities to the signals we actually

use.

• Gg1 is related toVG1 through Figure B.2(a). An approximate formula is

Gg = 5.43VG − 8.73, (7.32)

whereGg is in mA/V andVG in V.

• Forkn2, definekn2 ≡ Ik+ − Ik− andVn2 ≡ Vk+ − Vk− in Figure 7.26. From Figure B.4,

Ik = 0.48Vk − 0.38 (7.33)

for Ik in mA andVk in V. Substituting our definitions in (7.33), we arrive at

kn2 = 0.48Vn2 (7.34)

for kn2 in mA andVn2 in V.

• The input voltageVin from the signal generator is calibrated in dBm assuming a50Ω load.

The modulator input, however, was not designed to have a50Ω input impedance: the signal

generator drives the pin capacitance, a bond wire inductor,and then an emitter follower.

In §7.4.2, we estimate that the signal at the base of the emitter follower will be about 4dB

smaller than the dBm reading on the generator. Taking this into account, we may write

u = 10(Vin−14)/20 (7.35)
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Figure 7.33: Tone magnitude in output spectrum against (a)VG1, (b) VG2.

for u in peak V (as opposed to rms) andVin being the nominal output from the generator in

dBm.

• We shall see that the time-domain output voltage has a swing of about 120mV peak-to-peak,

or 60mV peak. An 0dB input tone thus requires a peak magnitudeof 60mV, which is

20 log10 0.06 + 10 = −14.5dBm. (7.36)

For a 1.003GHz−26dBm input, the magnitude of the 1.003GHz tone in the output spectrum as a

function ofVG1 appears as the solid line in Figure 7.33(a). The result calculated from equations

(7.31)–(7.36) is plotted as the dashed line. The curves agree reasonably well. According to our

approximate formula (7.32), the transconductor turns off at VG1 = 1.6V, at which point no output

tone should be visible; in reality, the output tone remains with an amplitude is about−47dBm even

with VG1 = 0V, likely because of coupling acrossCµ from input to output ofGg1.

Simulation of the modulator using the RK4 program and a modellike Figure 7.2 shows that

the output amplitude depends slightly onVG2 as well, though in a manner that is more difficult

to calculate. Figure 7.33(b) shows measured and simulated output tone magnitude againstVG2



Chapter 7: A 4GHz 4th-Order BP∆ΣM 179

503 600 800 1000 1200 1400 1503
−80

−70

−60

−50

−40

−30

−20

Frequency (MHz)

A
m

pl
itu

de
 (

dB
m

)

−48dBm
−47dBm
−46dBm

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3
−80

−75

−70

−65

−60

−55

−50

−45

−40

V
Q

 (V)

M
in

im
um

−
de

te
ct

ab
le

 in
pu

t (
dB

m
)

(a) (b)

Figure 7.34: (a) Loss of noise shaping for small input and lowQ, (b) minimum-detectable input amplitude againstVQ.

for fixed VG1 = 2.6V, and once again, even withVG2 = 0V, there is still an output tone of about

−35dBm. Generally, the output tone magnitude behaves as expected when eitherVG is varied.

Varying VQ

Ideally, a modulator is tuned so that it has infiniteQ. This means (in theory) an infinitely-deep

notch in the quantization noise and optimal SNR. Practically, there are two cases of interest which

we demonstrate here. IfQ is tuned too low, then the modulator will not exhibit noise shaping for

very small input levels [Fee91]. Figure 7.34(a) depicts output spectra forVQ1 = VQ2 = VQ = 2.8V

and the input amplitude increasing slowly. At−48dBm, no noise shaping is seen; the modulator is

sensitive only to inputs of−47dBm. Figure 7.34(b) plots the minimum-detectable input amplitude

versusVQ: atVQ = 3.25V, the input can be disabled without the loss of noise shapingat the output.

On the other hand, ifQ is too high, then instead of a resonator we will have an oscillator.

Figure 7.35(a) is the output spectrum forVQ = 3.31V and no input, which turns out to be just on

the edge of stability—if we makeVQ = 3.33V, the spectrum looks like Figure 7.35(b), which has

the tonal behavior characteristic of a modulator with an oscillator in the forward path3. TheVQ

3It is actually possible to have a pole slightly outside the unit circle and still have a stable modulator: this yields
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Figure 7.35: Oscillation in output spectrum: (a)VQ = 3.31V, (b) VQ = 3.33V.

which causes oscillation in practice is higher than that predicted by (7.14): from Figure B.2(b), we

may write

Gq = 3.63VQ − 6.01 (7.37)

for Gq in mA/V andVQ in V, and for the parameters in Table 7.1, we expectVQ = 2.83V or so.

The spacing of the tones in Figure 7.35(b) is curious: they seem to occur every 38MHz or so,

which suggests we have entered an output limit cycle whose period is 4GHz/38MHz ≈ 105. No

explanation for this value is obvious, though it might reasonably be some kind of beating between

the oscillation frequency andfs/4. Naturally, the modulator is not intended to be operated in this

regime.

Varying VCDB

We stated in§7.2.1 that settingVCDB too high would give linearity problems due to saturating the

current-source transistors in theQ-enhancement multi-tanh block. The best way to verify this in

a so-called chaotic modulator [Ris94, Chap. 3]. Pushing thepole too far outside the unit circle results in instability

like that shown in Figure 7.35(b). From Figure 7.34(b),Q = ∞ seems to be achieved atVQ = 3.22V, so the plot in

Figure 7.35(a) forVQ = 3.31V is very likely one where the modulator is chaotic.
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Figure 7.36: Effect ofVCDB on (a) linearity, (b) supply current.

practice would be with a two-tone test, but our setup is too cumbersome to allow this to be done

easily. However, with a fixed-amplitude−26dBm tone, we can observe the amplitude of the output

tone varying asVCDB increases, Figure 7.36(a). The gain to the output is constant for smallVCDB,

but as soon asQCDB in Figure 7.17 turns on, we start to see distortion, first gainexpansion, then

gain compression. The transistors supplyingItail in Figure 7.12 are being driven into saturation

almost immediately whenQCDB starts to conduct: Figure 7.36(b) shows that the current drawn

from the supply begins to drop asVCE is driven towards 0, which is the expected behavior from

Figure B.1(b).

7.3.2 Latch

The control voltageVCB affects the behavior of the latch in a quantifiable way: it changes the

currentIle throughRle in Figure 7.21(b), and hence the regeneration timeτrg. IncreasingIle

leads to a closer bunching of the ZCT curves in Figure 7.23(a), in turn leading to smallerσDPW .

Examination of the output spectrum nearfs/4 shows that the spectrum is white; if it is limited

by noise due to DPW modulation from metastability, then the noise floor should become lower as

σDPW falls. Figure 7.37(a) demonstrates that the noise floor nearthe resonator center frequency
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Figure 7.37: ChangingVCB: (a) overall spectrum, (b) in-band noise.

does indeed fall asVCB is increased from 2.6V to 3.3V and 4.0V. Figure B.3(b) is the in-band

noise measured with the spectrum analyzer set to display a 10MHz band near the approximate

notch center frequency of 980MHz; asVCB increases, the in-band noise falls.

The author also had a brief opportunity to take some time-domain measurements on a 50Gs/s

sampling oscilloscope. Figure 7.38 shows an eye diagram of the 4Gb/s bit stream on a 50ps/div

horizontal time scale. The eyes have a not-inconsiderable number of dots inside them, the cause of

which is the location at which the output bits are taken: the M/S latch output. The dots correspond

to instances where the latch output is delayed and the oscilloscope happens to sample at a point

on that delayed waveform. The eyes would be more open if the output bits were taken from

the one-sample delayed latch, where from Figure 7.23(b) there is less ZCT variance. This is of

consequence when the modulator output spectrum is examinedon a spectrum analyzer, as opposed

to found from the FFT of a sequence of output bits. Even thoughmuch of the digital output edge

jitter due to quantizer metastability is removed in thefeedback pathby the two extra half-latches,

none of this jitter is removed at the modulator output because this output is takenprior to the

extra regeneration stages. To a spectrum analyzer, the analog properties of the output waveform

are significant. Thus, closed eyes due to metastability willdegrade the spectrum measured on a
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Figure 7.38: Output bit stream eye diagram.
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Figure 7.39: Histogram of time-domain output bit zero crossings.

spectrum analyzer by whitening it in-band. Wedid find that increasingVCB resulted in improved

eye openings, as one would expect.

More evidence of the effects of metastability can be seen in Figure 7.39, which is a histogram

of the zero crossings of the time-domain output bit stream. At these rapid speeds, the sampling

jitter of the oscilloscope itself is significant. When we used a common frequency reference for

both a signal generator and the scope, and applied a 4GHz sinewave from the generator to the

scope, we found a normally-distributed time jitter (the “RMS∆” field in the figure) in the sine

wave zero crossings of about 7ps. For the∆ΣM output, the rms jitter is 18.7ps, and there it

is clear that the tail of the distribution descends more gradually to the right than the left as ex-

pected for a metastable quantizer. The same measurement wastaken five times, and rms jitters of

{18.2, 18.3, 18.7, 19.2, 21.2}ps were measured, so it is hard to specify an exact value.

In theory, the effect of metastability could be removed if wecaptured a bit stream and found

its spectrum. Again, the author had brief access to an 8Gs/s oscilloscope which could sample and

hold 128k data points. The scope thus sampled the 4Gs/s bit stream twice per bit, and then the

odd or even 64k samples could be downloaded to a computer and aspectrum taken. For a 1GHz

−15dBm input, Figure 7.40 shows the 16 averaged 4096-point Hann-windowed periodograms of

the bit stream. Annoyingly, this data was captured before the author fully understood the∆ΣM,

hence the biases were set incorrectly: we usedVQ = 2.6, which is nowhere near high enough for

a deep noise notch. As a result, this spectrum has a similar noise floor to that observed on the
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Figure 7.40: Output spectrum of captured bit stream.

spectrum analyzer and many spurious tones.

7.3.3 Output Buffer

There is not much to test on the output buffer itself. Figure 7.41 are output spectra forVBUF = 2.0V

and 3.0V. From Figure 7.24, such a change should result in a supply-current increase from about

2mA to about 4mA, and we measure it to go from 87.8mA to 90.0mA.Furthermore, doubling the

switching current should mean double the output voltage swing and hence 6dBm more spectral

power total; the measured increase is about 5dBm.

7.3.4 DAC

ChangingVn2 in the NRZ modulator should affect the amplitude of the inputtone as it appears in

the output spectrum according to (7.31). Figure 7.42(a) is the output magnitude of a 1.003GHz

−36dBm input tone asVn2 varies, both measured and calculated. Once again the shapesof the

curves agree quite well. The supply current rises approximately 400µA over the rangeVn2 = 0.2V
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Figure 7.42: ChangingVn2: (a) tone magnitude at output, (b) overall spectrum.
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Figure 7.43: Measured modulator spectra: (a)Vin = −40dBm, (b)Vin = −20dBm.

to 1.0V, which concurs with Figure B.4.

Otherwise, changing DAC voltages should affect the loop filter zero locations and hence the

noise shaping. Figure 7.42(b) shows that an NTF pole moves upin frequency and further towards

the middle of thez plane asVn2 is increased; a similar movement of this pole is observed in

simulation in the RK4 program. Many other such examples could be demonstrated, but this one

gives the general idea.

7.3.5 Dynamic Range

It is clear from the spectra presented in this section that the actual noise notch center frequency is

approximately 980MHz. Thus, for a DR plot, we setfs = 3920MHz, four times this value, and

apply an input tone at 981MHz. We choose to consider a bandwidth of 20MHz (i.e., OSR= 100),

which is what we assumed in Table 7.1. Typical in-band spectra appear in Figure 7.43; the noise

floor is white with a level of about−130dBm/Hz. In a 20MHz bandwidth, the total noise power

is thus−57dBm, and in Figure 7.43(a), the signal power is−42dBm, which gives SNR= 15dB.

An input 20dBm larger shows much output harmonic distortion, as seen in Figure 7.43(b). From

(7.31) and the circuit voltages, the full-scale input for these conditions is about−14dBm.
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Figure 7.44: Dynamic range plot for NRZ modulator in 20MHz bandwidth.

Figure 7.44 shows the DR plot for the NRZ modulator, where spectra with 20MHz bandwidth

were captured and the SNR calculated in Matlab. This SNR stays positive for inputs up to 0dB, but

it is difficult to know how to calculate it fairly for large inputs because of strong harmonic content

and distortion of the input signal. In any event, the peak SNRis 37dB and the DR is about 40dB,

which makes this a 6.3-bit converter. The SNR value agrees well with our prediction in Table 7.1.

The modulator consumes about 450mW from a single 5V supply. With a−5dB input, the harmonic

at 977MHz dominates, and the SFDR is found to be approximately 48dB. In a narrower bandwidth,

SNR performance would be better, improving at 3dB per octaveof oversampling, though spurs can

exist even in very narrow bands and thus SNR performance might still be limited.

7.4 Result Commentary

The performance of the modulator is disappointing, certainly, though a good deal was learned in

the process of simulating and testing it.
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7.4.1 Design for Testability

In all circuit designs, it is important to think about how the circuit will eventually be tested, and if

possible, to design so that testing is facilitated. This becomes more necessary, indeed crucial, as

the speed at which the design must operate increases. Thoughthey may seem obvious, a number

of points came up in the testing of this∆ΣM which deserve to be mentioned.

Individual block breakouts

It is a major boon if the individual circuit blocks are brokenout of the whole circuit for separate

testing, particularly in a relatively new manufacturing process (as was the case at the time this

∆ΣM was made). Each block usually has fewer settable parameters than the entire circuit, which

offers two advantages: it can likely be tested on-wafer witha standard probe arrangement, and the

parameter space for a block can be rapidly explored. Furthermore, if one block operates differently

than expected, this can be found by testing the block by itself rather than observing its effect on

the output of the full circuit. The main disadvantages of breakouts are the increased amount of die

area consumed and that special input and output buffers might need to be designed to test a block

by itself. Experienced designers building a familiar circuit in a well-characterized process might

have less need to heed this advice, but following it would have been beneficial here.

Tunability

How to choose the number of tunable parameters in a design is not always obvious. On the one

hand, one would like to be able to control as much as possible when the process is unfamiliar or

new. On the other hand, using a large number of parameters canlead to a testing nightmare—how

can one be sure the design is tuned to give optimal performance when the parameter space is huge?

For a first cut, tunability is probably a good idea, though foran actual product, over temperature

and process variations, parameters must stabilized eitherby design or through stabilizing circuitry.

At times during testing, this author found the amount of tunability in this design frustrating, but in

the end it was probably prudent.
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Data capture

A designer must anticipate how the circuit output(s) will beobserved. For GHz-speed∆ΣM this

is particularly relevant: how does one plan to capture the high-speed bit stream? For measurements

directly in the frequency domain, one must remember that spectrum analyzers have a certain noise

floor and that they are sensitive to analog imperfections in the waveform. Likewise, for time

domain measurements, fast sampling scopes cannot necessarily sample verydeep; getting enough

bits for a reasonable spectrum (like 16k or more) might be nontrivial. Worth considering is an

on-chip demux, for example 1:16 in the 4GHz design in [Rag97], which groups the bits into 16-bit

250MHz quantities which can be brought off-chip to a fast logic analyzer.

Packaging and board design

These are two more important factors in high-speed test. If the circuit can be tested on-wafer, so

much the better, but if packaged testing is required, the board design and packaging can have a

major impact on the measured performance. The test board forthis circuit seemed well-designed

to the author, but the package left a good deal to be desired: the footprint was7 × 7mm2 for a

2.5× 2mm2 die, which meant very long bond wires between the package pins and the die surface.

We explore the effect of bond wire inductance in the following section.

7.4.2 Known Circuit Problems

This design was a first cut. The author is fairly certain that it was thrown together in a very short

space of time for a tight deadline; that it works at all is a testament to the design skill of Mr. Gao.

Even so, there are many areas in which, upon further examination, things could have been done

better, a list of which follows.

Improper architecture choice

A modulator with half-delayed NRZ (HNRZ) feedback is a bad idea because it produces a dif-

ferent pulse shape when there are two of the same output bit ina row. To illustrate, suppose the
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Figure 7.45: Illustration of nonuniform feedback caused bya half-delayed NRZ DAC.

modulator output goes{− + + − + + −−}, where− is a−1 and+ is a+1. In Figure 7.45, the

DAC pulses that would result from such a sequence are depicted for NRZ/HNRZ and RZ/HRZ

modulators. At the feedback, the pulses are summed which results in the feedback waveforms in

the bottom graphs. It is apparent that for two or more of the same output bits in a row, the wave-

form sum for the first bit looks different than for all the remaining bits in the NRZ/HNRZ case;

by contrast, the waveform sum in the RZ/HRZ case looks identical for every+ and− no matter

how many of the same bit occurs sequentially. This nonuniform feedback sum means a modulator

employing HNRZ feedback cannot implementmth-order noise-shaping in a BP∆ΣM of orderm;

it introduces additional numerator terms in the equivalentH(z) which would require additional

feedbacks to compensate.

One might ask, therefore, why all the test results in§7.3 were done on the NRZ modulator

rather than the RZ modulator. There are three reasons. First, the HNRZ feedbacks were set to zero

so that they did not affect modulator performance. Second, it is easier to calculate the full-scale

amplitude for the NRZ modulator than the RZ modulator. Third, a modulator employing HNRZ

feedback is nonideal only if the performance is limited by quantization noise alone; in our circuit,

white noise filled in the noise notch. The performance of the RZ modulator was no better than the

NRZ modulator, so it did not matter which we measured.
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Output bit taken from wrong point in feedback

As we said in§7.3.2, the output bitVout for the modulator comes from the M/S latch output.

Instead, it should be taken from the one-delayed latch outputs to reduce edge jitter. This would

matter less if there were an easy way to capture the bit stream, but when using a spectrum analyzer

to measure performance, it matters more.

No input or clock matching networks

If this modulator were to be used in a radio receiver, matching between the driving circuit (per-

haps a mixer) output and modulator input is important because the mixer would be sensitive to

reflections due to mismatch. Moreover, the impedance level seen by the driver matters because it

determines the actual signal amplitude at the modulator input. No apparent attempt was made to

match the input to a source,50Ω or otherwise.

An approximate model for what the source actually sees appears in Figure 7.46 [Szi98], where

Q
1

VCC

Vin

50

3n0.1µ

3n

10p
Vb

Figure 7.46: Model of actual circuit input.

the inductors represent the bond wires (1mm of bond wire has about 1nH of inductance), the0.1µF

capacitor is a power supply decoupling capacitor on the circuit board, and the 10pF capacitor is

the package pin capacitance. A more accurate model would include the SMA connector model,

the 50Ω transmission line on the circuit board, and the pad capacitance, but this will do for our

purposes. Transient analysis in SPICE for the input transistor shows that a 1GHz signal atVin

gets reduced by 10.5dB atVb; for the clock transistor and a 4GHz input, the attenuation is close to

20dB. It was this knowledge that allowed us to write (7.35), the actual input amplitude seen atVb



Chapter 7: A 4GHz 4th-Order BP∆ΣM 193

relative to the reading on the signal generator.

Clock jitter due to circuit noise

The input-referred noise voltage at the base of the clock input buffer causes a deviation in the zero-

crossing of the clock voltage, i.e., clock jitter. In Figure7.47, near a zero crossing of the clock

t jitt
∆

Clock

v∆
noi

Figure 7.47: Clock jitter caused by circuit noise.

waveform, circuit noise∆vnoi causes a time jitter∆tjitt. For a clock given by

Vclk = Aclk sin 2πfst, (7.38)

Figure 7.47 allows us to write
∆vnoi

∆tjitt
≈ dVclk

dt

∣

∣

∣

∣

∣

max

(7.39)

because the clock zero crossings are at the point of maximum slope of the clock waveform. Solving

for ∆tjitt gives

∆tjitt =
∆vnoi

2πAclkfs
; (7.40)

writing ∆vnoi ≡
√

v2
ncfs and solving yields

σβ ≡ ∆tjitt =

√

v2
ncfs

2πAclk

Ts. (7.41)

SPICE ac analysis tells us that the input-referred noise voltage atfs = 4GHz for the clock transistor

is vnc = 3.56nV/
√

Hz, so forAclk = −4dBm = 0.2V,

σβ = 1.8 × 10−4Ts. (7.42)
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The measured in-band noise as a function of the dBm reading onthe clock signal generator

appears in Figure 7.48. There should be some way to relate this to (5.13), (5.19), (7.36), Figure 7.47

for the actual clock level on chip, and (7.41), which is plotted with the dashed line in the figure. The

calculation can only bevery approximate because of the uncertainty of many of the parameters,

and the reality seems to bear little resemblance to the calculation. The author has found that

clock amplitude has some bearing onτrg, the latch regeneration time, which in turn affects the

metastability behavior of the latch; this is a complicated effect to model, and it might be responsible

for the observed behavior. At this time, there is too little information to tell.

Misdesigned emitter followers

Emitter followers appear frequently in ECL designs, typically as interstage buffers, drivers, and/or

level shifters. There are two important design parameters for followers: the bias current and the

transistor size. Bias current is chosen to be large enough todrive the load of the following stage, but

not so large as to waste power. Transistor size is determinedby, among other things, bias current,
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Figure 7.49: MeasuredfT vs.IC curves for SiGe BJTs.

where usually one chooses a transistor that operates at its peakfT givenIC ; loading, becauseCµ

in output buffers connects to analog ground and hence appears as an amplifier load; and noise,

where if input-referred noise is important, a larger deviceshould be used because its extrinsic base

resistance is lower.

The majority of the followers in this design are devices with20µm emitter widths and10kΩ

emitter resistances. Figure 7.49 showsfT against collector current for fabricated2.5µm, 5µm, and

20µm devices. The typical voltage level at the emitters of thesefollowers ranges between 2.5V and

4V, which means the bias current level is betweenIC = 250µA and400µA. From the figure, the

20µm device has anfT from 10GHz to 13GHz; clearly, this is nowhere near the device’s peakfT .

Fortunately, followers can be forgiving: Figures 7.50(a) and (b) show the input and output voltages

of the resonator output buffers in Figure 7.28, and we see that the voltages are being reproduced

faithfully despite the low bias current. The place where we get into trouble is in the preamplifier

and half-latch, as we now detail.

Consider once again the preamplifier in Figure 7.21(a). The common-mode level atVPin is typ-
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Figure 7.50: (a) First and (b) second resonator output buffer waveforms.

ically about 3.4V, which means 2.6V at the emitters of the input followers; with a10kΩ resistance,

we can calculateIC ≈ 250µA. This is not nearly enough to drive theCµ of the diff pair which

is magnified by the Miller effect. The output followers are large devices whoseCµ together with

the diff pair loadRpa create a largish RC time constant. These two factors, insufficient input drive

and large output loading, resulted in the rolloff at 4.6GHz in Figure 7.22(b). Resizing the devices

and changingRef appropriately results in the improved performance in Figure 7.51. The input

followers are still20µm, butRef = 400Ω instead of10kΩ, which gives them much higher drive

(IC = 6mA) and operates them closer to their peakfT . Consequently, in Figure 7.51(a) we observe

only 0.13dB of rolloff and−2.9◦ phase shift at 10GHz. Shortening the output followers to5µm

reduces the loading on the amplifier output nodes, andRef = 2kΩ setsIC ≈ 2mA which accord-

ing to Figure 7.49 operates the devices near their peakfT . The overall preamp ac response appears

as in Figure 7.51(b): the low-frequency gain is 18.9dB, the corner frequency is 10.8GHz, and the

phase shift there is−78.2◦. This is a substantial improvement in corner frequency compared to the

4.6GHz in the original preamp in§7.2.2

Similar problems exist in the half-latch, Figure 7.21(b). In §6.2.1 we noted that the regeneration

time constantτrg of this style of latch is related to the GB product of the regenerative quad; in turn,
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Figure 7.51: Optimized preamp ac analyses: (a) input follower, (b) entire circuit.

this GB product is affected byVEN (which controls the currentIle in the diff pair in the quad), the

capacitance at both nodesVLmid andVLout, Rla, and the drive of the output follower. We stated in

§6.4.2 that making the latch as fast as possible doesn’t do much to improve the performance lost

due to metastability; this was assuming the latch was at least closeto optimized, which this one is

not. With a20µm output follower andRef = 10kΩ, SPICE transient analysis givesτrg = 17.4ps.

This has the same two problems as before: large loading atVLmid due toCµ of the follower and

inadequate drive of the Miller capacitance of the next stage’s amplifier. Sticking with a20µm

transistor and changingRef to 500Ω helps greatly with the drive aspect, loweringτrg to 12.3ps, but

the loading is larger than necessary. This can be seen by using a5µm transistor andRef = 1.5kΩ,

which givesτrg = 10.4ps. Going to a smaller device like2.5µm reduces loading still further, but

such a device cannot drive as much current without itself slowing down; the optimalRef seems to

be about2kΩ for such a device, in which caseτrg = 10.9ps. The best tradeoff between loading

and drive in this design, therefore, seems to be5µm andRef = 1.5kΩ.

How much difference would a proper design make? Figure 7.52(a) contrasts the original M/S

latch output waveform from Figure 7.25(a) (the solid line) with the output waveform resulting

from a latch with redesigned followers. The new output buffer wave in Figure 7.52(b) crosses



198 Chapter 7: A 4GHz 4th-Order BP∆ΣM

0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t / T
s

V
M

S
ou

t (
V

)

Old latch
New latch

0 0.2 0.4 0.6 0.8 1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t / T
s

V
O

U
T
 (

V
)

Old latch               
New latch, 20µm output
New latch, 5µm output 

(a) (b)

Figure 7.52: Output waveforms: (a) M/S latch, (b) output buffer.

zero earlier (i.e., the output buffer responds more quickly), but at the cost of a large overshoot in

Figure 7.52(b). This is partly as a result of the ripple in thelatch output, but also because there is a

good deal of coupling from the bases of the output buffer diffpair through the Miller capacitorCµ

to the collectors. We can reduce the severity of the couplingby using smaller transistors; replacing

the20µm devices with5µm devices yields the dash-dot output waveform in Figure 7.52(b). The

overshoot has been cut approximately in half, and moreover we have achieved a slight speed in-

crease (note that the zero crossing now occurs slightly earlier) because we have lowered the Miller

capacitance which the latch output has to drive. Moreover, a5µm device is still capable of operat-

ing quickly atIC = 4mA (recall Figure 7.49). To be fair, however, the speed of theoutput buffer

is not likely to be that important—as long as a recognizable bit comes out, we are not concerned

overmuch with speed.

If we use the newly-optimized circuit components, we findρd = 1.255 andρr = 0.113 from

the dotted line in Figure 7.53. Once again, the emitter followers in the DAC (which isolate the

final latch output from the DAC switching transistors) appear to be biased at too low a current for

optimum speed, in this caseIC ≈ 300µA. If we chooseRef = 1.2kΩ, the DAC output waveform

is the dash-dot line in Figure 7.53, and now(ρd, ρr) = (1.214, 0.894). However, the ringing out of
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Figure 7.53: Dynamic DAC output voltage.

the final latch stage appears much more strongly at the DAC output, which might be undesirable.

This could be reduced by adding cascode devices in the collectors of the DAC output transistors,

or more simply by leavingRef = 10kΩ in the DAC followers—we only gain an additional 4% of

excess delay, which could easily be compensated by appropriateVk tuning. And, once again for

fairness, the more important thing is that the amount of delay be relatively fixed—Chapter 6 taught

usvarianceof σDPW is to be avoided for optimal performance.

The final proof, though, comes from (painfully slow) full-circuit SPICE simulation. Figure 7.54

illustrates the improved ZCT characteristics, which have much less hysteresis and also steeper

slopes. Figure 7.55(a) is a 4096-point spectrum for the original modulator, and Figure 7.55(b)

is for the modulator with the redesigned followers. The spectra are forVQ1 = VQ2 = 3.15V in

SPICE, which seems to be about the maximum value which keeps the modulator stable, and the

output bits are taken from the one-delayed latch output. Thein-band noise forω0 = 1.06GHz and

OSR= 100 improves from−50.3dB to−57.3dB—over one full bit. Thus, maximizing the speed

of the followers matters for performance. As usual, the price to be paid is increased power: in this
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Figure 7.54: New ZCT characteristics for (a) M/S latch output, (b) one-sample delayed output.
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Figure 7.55: SPICE output spectra for (a) original modulator, (b) optimized modulator.
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Figure 7.56: Resonator output voltage histograms from SPICE.

design, we estimate the suggested biasing would result in about 50% greater power consumption.

Resonator output signal scaling

The last problem comes out from closer examination of the voltages at the resonator outputs in

SPICE. Figure 7.56 shows histograms of these voltages for the conditions at the start of§7.3: the

first resonator ranges over about±20mV, the second over±10mV, and Matlab givesσx2
= 6.0mV

andσx4
= 3.5mV. This latter value drives the quantizer, and we can see from the dashed lines in

Figure 7.54 that it is too small for the quantizer to make a reliable decision—there will be a severe

amount of hysteresis. As we noted in§7.2.2, the combination of quantizer hysteresisand small

quantizer input signal is detrimental to this modulator. Even our redesigned quantizer has trouble

with these signals at high speeds.

We find that we can raise the swings toσx2
= 11.7mV andσx4

= 12.3mV if we usekn2 =

kn4 = 500µA instead of200µA and 100µA, respectively; this makes sense because we know

those swings to be proportional tok from §7.1.1. Figure 7.57(a) shows the new resonator output

distributions, and Figure 7.57(b) plots the spectrum from SPICE. The in-band noise comes out to

−63.3dB, over two bits better than the−50.3dB obtained with the smallerks and original quan-

tizer. If we desired to increase these swings still further,we could replace theRDAC resistors in
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Figure 7.57: Scaled DAC currentskn2 = kn4 = 500µA: (a) resonator output histograms, (b) output spectrum.

Figure 7.26 with something smaller; at present they are2kΩ, and given thatVk = 1.0V maximum,

the maximum current is fixed at1/2k = 500µA. Another SPICE simulation was carried out with

RDAC = 560Ω, where theks were 1.8mA, and the output distributions and spectrum are shown in

Figure 7.58. We have now achievedσx2
= 43.1mV andσx4

= 43.8mV, though the in-band noise is

no better than with500µA of current,−61.7dB, while the power dissipation has increased. It might

be that the actual modulator would perform a little better with these much larger swings; SPICE is

too slow to run many simulations and average the periodograms to give us a more accurate idea of

the in-band noise.

More importantly, though, we must recognize that this modulator’s DR is not limited by quan-

tization noise: we found in Table 7.1 thatGg1’s dynamic range is such that the maximum SNR

we can expect is 52dB or so. This is based on the IIP3 of Gg1 and on the input-referred noise;

what does SPICE say about this latter quantity at the three different currents? Table 7.3 shows

simulations of the ac input-referred noise, which is the same as the minimum input signalumin. At

k = 500µA, we see the total noise drops a little, and this gives aGg1-limited performance of about

55dB (IIP3 for Gg1 is still the same,−2.3dBV). As we raise theks to 1.8mA, the input-referred

noise increases again, and we are back to 52dB of performance. More significantly, as currents
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Figure 7.58: Scaled DAC currentskn2 = kn4 = 1.8mA: (a) resonator output histograms, (b) output spectrum.

increased, the normalized nonlinearity parameters of theothertransconductors start to increase. In

particular,Gg2 is coming perilously close to the recommended−20dB maximum in (7.28).

In conclusion, then, scaling the DAC currents would result in a theoretical performance limit

of about 55dB, or 9 bits, based on the noise and linearity of the first transconductor. This scaling

is also beneficial for helping the latched comparator resolve the quantizer input voltage correctly.

7.4.3 Unaddressed Circuit Issues

We have taken into account a good number of factors that affect the performance of this∆ΣM, but

there are a number that would need more thorough investigation in a final design.

Resonator center frequency and instability voltage

Simulations in SPICE seem to predict a resonator with a center frequency of about 1.06GHz,

Figure 7.19 and Figure 7.55. The measured frequency appearscloser to 980MHz, Figure 7.35.

As well, in §7.4.2 SPICE predicts oscillation of the resonators in an operating modulator atVQ =

3.20V, but the measured value wasVQ = 3.32V, Figure 7.35. Why the differences between the

two?
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Table 7.3: Comparison of modulators with different feedback currents.

kn2 0.2mA 0.5mA 1.8mA

kn4 0.1mA 0.5mA 1.8mA

σx2
6.0mA 11.7mA 43.1mA

σx4
3.5mA 12.2mA 43.8mA

IBN (SPICE) −50.3dB −63.3dB −61.7dB

umin = vng1 90µV 60µV 90µV

SNR due toGg1 52dB 55dB 52dB

ǭq1 −61.1dB −56.4dB −44.9dB

ǭg2 −44.7dB −38.5dB −27.6dB

ǭq2 −65.1dB −55.8dB −44.7dB

It is hard to say for certain. It might simply be due to processvariations, but a reasonable con-

jecture about the center frequency involves the T-shaped strip of metal in Figure 7.30 connecting

the inductors to the pads in the center of the die on the left- and right-hand sides. Anlµm× wµm

strip of this metal [Mar98] has a resistance of15mΩ/2 and an inductance of

Lpar = 2 × 10−4l[ln(
2l

w
) + 0.5] nH. (7.43)

The arms of the T are each100µm× 20µm, which givesL = 0.056nH andR = 0.075Ω, and the

long strip of metal is440µm× 20µm, which givesL = 0.377nH andR = 0.33Ω. This long strip

is equivalent to two strips in parallel, one for each inductor, giving a total additional inductance

and resistance ofLpar = 0.81nH andRpar = 0.74Ω in theLR branch in Figure 7.2. The center

frequency changes from

f0 =
1

2π
√

LC
= 1.089GHz→ 1

2π
√

(L + Lpar)C
= 981.6MHz, (7.44)

which looks approximately correct. The instability voltage (which is determined by the coefficient

of s1 in the denominator of (7.14)) might also explained by these parasitics:R/L = 0.70, but

(R + Rpar)/(L + Lpar) = 0.74, which means a higherGq in (7.37) would be needed to change the

sign of thes1 coefficient from positive to negative. However, to predict it exactly, we would need
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to be sure that (7.37) was correct, andC in thes1 coefficient likely includes some parasitics of its

own.

Thermal noise and linearity

The smallest noise floor we observe on the spectrum analyzer had a power of about−130dBm/Hz.

We have been assuming that this was caused by the analog properties of the output waveform,

which is certainly reasonable, but it might also be affectedby the input-referred thermal noise of

the modulator being amplified to the modulator output, or indeed from the measurement noise floor

of the spectrum analyzer itself. In a proper design, we wouldcapture the bit stream and take its

FFT, thus obviating the need to know the spectrum analyzer measurement limit, but we would still

need to know the effect of circuit thermal noise. Our setup isnot terribly suited to measuring, for

example, input-referred thermal noise; the best we can do isestimate it from simulation as we have

in §7.2.1.

We are also not well set-up to measure the third-order intercept point of the modulator. We

estimated the 1dB compression point from simulation in§7.2.1, but in a real circuit we would need

to have an easy way to do a two-tone test. Here, we did observe some gain expansion for large

input amplitudes in Figure 7.44, but we did not make much attempt to quantify them.

Phase noise of sources

While there will be some circuit noise added to the clock input voltage as explained in§7.4.2, the

phase noise of the signal generator itself will matter in a final design. The author was not able

to observe significant skirts on the input tone in the output bit stream spectrum, perhaps because

these skirts were below the white in-band noise floor. As noted, an FFT of the output bit stream

would surely exhibit these skirts, so they should be accounted for.

7.5 Summary

Table 7.4 summarizes the performance achieved by this high-speed BP∆ΣM. In a redesign, the
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Table 7.4: Modulator performance summary.

Process 0.5µm SiGe HBT

Die area with pads 2.4mm× 1.6mm

Die area without pads 1.6mm× 0.85mm

Supply voltage 5V

Sampling frequency 4GHz

Signal bandwidth 20MHz

Oversampling ratio 100

Dynamic range 40dB

Peak SNR 37dB

Peak SFDR 48dB

Power consumption 450mW

output bit should be taken from the delayed latch output, theemitter followers should be optimized

for speed, and the resonator output voltages should be scaled up; we estimate these changes would

improve dynamic range from 6.3 bits to about 9 bits in a 20MHz bandwidth. It is our feeling

that with further careful design of the input transconductor for low noise and higher linearity, a

resolution of 10 bits might be achievable. For reference, this agrees with the authors of [Jay97],

who concluded that theirfs/4 BP modulator which clockedfs = 3.2GHz could also achieve 10-

bit performance in a 25MHz band. A second-cut of our design would also include a method of

capturing the output bits for off-line FFTs.



Chapter 8

Conclusions

We have supplemented the theory in Chapters 4 through 6 with the practical test results in Chapter

7. We are now in a position to examine the usefulness of high-speed∆ΣMs in general, and from

this, propose work for the future.

8.1 Summary of Contributions and Results

We started with a discussion of the design choices in a∆ΣM and we explored some of the issues in

performance measurement and simulation of both DT and CT∆ΣMs. CT∆ΣMs appear valuable

because in theory their clock speed is not limited by settling time in the same manner as in a DT

∆ΣM. Calculating modulator performance requires time-domain simulation, and many techniques

from ideal equations (which are fast but unrealistic) to full-circuit simulation (which is realistic but

slow) must be employed as the design progresses.

Next, we discussed nonidealities in DT∆ΣMs, a subject that has been studied at length in the

literature, and explained how they affect the performance of CT ∆ΣMs, something which had been

studied less but which is newly summarized here. We presented a list of many of the important

papers in CT∆ΣM and finished with a table showing the performance achieved by published

high-speed CT∆ΣMs, neither of which had been done before. Most published modulators are

second-order, and most only succeed in shaping noise to an OSR of about 15—the rest of the band
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is usually filled with unshaped white noise.

One possible explanation for why this might be is excess loopdelay: high speed designs might

have a delay between the quantizer clock and feedback outputthat is a significant fraction of a

sampling clock period. This excess delay increases in-bandquantization noise and lowers the

maximum input amplitude for which a modulator remains stable. Its effects can be mitigated in

many ways: a noise transfer function with a low out-of-band gain, a multibit quantizer, feedback

coefficient tuning, return-to-zero-style feedback DACs, and additional feedbacks for extra control-

lability. Our study of loop delay summarized past work and advanced a number of new ideas, one

of the more important ones being that the modifiedZ-transform is not suitable for the study of

excess delay in CT∆ΣMs.

A second explanation for white in-band noise is quantizer clock jitter, which causes random

modulations in the width of the feedback pulses and hence thefolding of out-of-band noise into

the signal band. We confirmed previous estimates of achievable SNR using an NRZ DAC, and

showed that RZ modulators with the same amount of jitter haveperformance worse by about one

bit. For the first time, we showed how to treat nonwhite jitterand estimated how much perfor-

mance a GHz-speed modulator would lose with a typical integrated VCO. It turned out that we

could describe maximum jitter-limited resolution with a single equation which depends only on

the Nyquist bandwidth; we thus concluded that it is unlikelya typical VCO would be the limiting

factor in the performance of an integrated∆ΣM.

A third explanation for white in-band noise is to be found in quantizer metastability. Quantizers

built as latched comparators have finite regeneration gain so that small quantizer inputs take longer

to resolve than large ones; because the quantizer input in a∆ΣM is a stochastic variable, at random

times the input will be near zero and hence cause additional excess delay. The effect is the same

as that of clock jitter: random modulations in the DAC pulse widths occur, which modulates out-

of-band noise into the signal band. Our study was the first comprehensive one of its kind: we

stumbled upon the importance of metastability with a new technique ofz-domain extraction which

we explained, and we also presented and validated a behavioral modeling technique which allows

us to simulate a modulator with a metastable quantizer rapidly. We showed that many of the
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usual things such as signal scaling, preamplification, and fast regeneration time are worth paying

attention to in the design of a latched comparator for CT∆ΣM, but the most striking advantage

arose from using a third half-latch in the feedback path for extra regeneration despite the extra

half-delay it causes. Even using a third half-latch has its limits; as we illustrated, our new simple

formula says clocking faster than 5% of the maximum transistor switching speed is likely to limit

performance severely.

Finally, we presented test results on a fourth-order band pass CT∆ΣM with integrated LC

resonators that clocks at 4GHz in a 40GHz process. We gave a concise procedure for how one

would go about choosing the parameters in such a design, thenwe see how the actual design would

perform had it been designed with that approach in mind. The circuit blocks were studied, with

particular emphasis on the linearity and noise of the input transconductor (which is a very important

component in the design), and detailed measurements of the modulator behavior were presented

and explained. The major problems with the design were lack of matching to input and clock signal

generators, the output bit taken from the wrong point in the feedback, emitter followers designed

incorrectly for optimum speed, and signal scaling which resulted in poor quantizer response. The

modulator achieved 6.3 bits of dynamic range in a 20MHz bandwidth centered at 1GHz while

dissipating 450mW; in a redesign, part of which we do, we estimate this could be improved to 10

bits.

8.2 Practical∆ΣM Applications

In an ideal world, fast CT∆ΣMs appear to be the solution to high-speed, high-resolutionADC

needs. If we clock fast enough, the reasoning goes, we can oversample as much as we want

and thus get whatever performance we want. This thesis has demonstrated that wide bandwidths

and high-resolutions together are difficult to realize jointly with practical high-speed CT∆ΣMs.

Indeed, the advantage realized by oversampling has not beenshown in practical modulators to

extend past approximately OSR= 15 whenfs is any appreciable fraction offT , say over 1%.

20-bit resolutions have been achieved only withfs ≪ fT , and hence only over narrow bands. The
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design of the input stage for such extreme resolutions is a challenge for even low bandwidths—

high bandwidths and high clock rates make it very difficult toachieve more than 10 to 12 bits of

dynamic range in the first stage.

There are three areas in which this author feels optimistic about the future of CT∆ΣM. They

are as follows:

1. Narrowband applications requiring high SFDR but with no constraints on power consump-

tion. The authors of [Rag97] have a second-order modulator clocking at 4GHz with a tunable

noise notch from 0 to 70MHz, and they achieve 92dB SFDR in a 370kHz band. Using such a

fast∆ΣM with so much oversampling might seem like overkill to get 15bits SFDR in a nar-

row band, but itis one option. We achieve high resolution through oversampling combined

with the advantage of tunability, which could work to our favor in certain radio applications.

2. Hybrid mixer/modulator applications for radios. [Mor98] was mentioned in Chapter 3 as

combining an analog mixer with the front end of two LP modulators for I and Q channel re-

covery, quite an elegant concept. This is a little differentfrom the BP application envisioned

for the modulator in Chapter 7, where the mixing is done digitally after the modulator. Al-

though the performance that author achieved wasn’t stellar(5.5 bits in 50MHz, 11.5 bits in

10kHz), it could well be attributed to the design of the latch, which apparently was only a

two rather than three half-latch design. In his paper he sayshe feels he can improve the

performance by at least three bits.

3. Hybrid wideband converters with∆ΣM front ends and Nyquist back ends. [Bro97] has a

multibit ∆ΣM front-end oversampled only eight times and clocked at 20MHz, whose out-

put is fed to a pipeline stage. When the outputs of the stages are appropriately combined

and decimated, the result is 16-bit performance with a 2.5MHz output rate (1.25MHz band-

width). Again, the concept is elegant: use the∆ΣM where it is strong (high DR but limited

bandwidth) and the pipeline where it is strong (high bandwidth but limited DR) to get the

best of both worlds.

Thus, while it sometimes behooves us to think just of CT∆ΣM by itself as in the first example,
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the latter two examples are excellent illustrations of how we can combine CT∆ΣM with other

techniques to exploit the respective strengths of each. Standalone CT∆ΣM might not succeed at

wideband ADC for BP applications, but it can do narrowband ADC or be combined with other

things in novel ways.

As clock speeds increase significantly (20GHz and beyond, perhaps), surely other nonidealities

will start to degrade performance: substrate noise coupling, transmission line effects, etc. Design-

ing even simple circuits like multiplexers at these speeds poses a number challenges; CT∆ΣMs

are complicated circuits, which is a further argument in favor of pushing cleverness rather than

clock speed.

8.3 Future Work

There are, of course, a number of areas in which the state-of-the-art for CT∆ΣMs could well

be advanced, thus improving their usefulness in a wider range of applications. The following

problems remain to be studied and solved; they are listed in order of this author’s opinion of most-

to least-important.

Multibit DAC A working high-speed multibit design could be a significant breakthrough: as we

said in§4.5, not only are multibit modulators higher resolution andmore stable, but they

improve clock jitter sensitivity too. Can fast DEM be made towork?

Calibration and tuning How does one tune a high-speed CT∆ΣM for maximum DR over pro-

cess and temperature variations, either dynamically or off-line? For production parts, this is

essential. Yet high-speed circuits are best when kept simple, and tuning will add complexity.

This seems a tough problem to tackle.

System identification We attempted to give a method for rapid identification of nonidealities in a

∆ΣM in §6.1. Can this be improved upon? That is, can we come up with a way to pinpoint

modulator problem areasrapidly andaccurately? Moreover, can we find a way to apply it to

a real modulator in the lab, rather than just in simulation?
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Power consumption Can power be reduced through non-bipolar circuits and/or lower supply volt-

ages while maintaining speed?

Higher modulator order Is it worth going to a higher-order design for high-speed∆ΣM for the

resolution gained? High-order audio converters often include reset circuitry that activates

when modulator overload is sensed [dS90]; can such circuitsbe included in a GHz-speed

design? Are they necessary?

There is still plenty of exciting work left to do in the field ofhigh-speed CT∆ΣM.
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Appendix A

DR Derivations

A.1 VCO Clock Jitter

We derive the maximum-achievable DR for a CT∆ΣM clocked by a VCO with a phase noise

given by (5.21). First, we start with (5.13) which is the in-band white noise level for a modulator

with independent jitter andN bins:

10 log10

(

2σ2
δy · 2σ2

β

NT 2
s

)

. (A.1)

We have omitted the−7.27dB because that is needed only for the Hann-windowed periodogram.

If the in-band noise was white over the entire band, whose width expressed in bins is

N/(2 · OSR), (A.2)

then the total in-band noise would be the argument oflog10 in (A.1) times (A.2),

10 log10

(

σ2
δy · 2σ2

β

OSR· T 2
s

)

. (A.3)

The quantityσδy in (A.3) is found in simulation to have a value between 1 and 2,so assume

σδy ≈ 1.5 (A.4)
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on average. From (5.22), and also from the second column of Table 5.2, we can find that

2σ2
β

T 2
s

= 10−12fs, fs in MHz. (A.5)

Substituting (A.4) and (A.5) in (A.3), and recalling from Figure 5.9 in§5.3.2 that accumulated

jitter tends to give white noise levels 1–5dB (say 3dB on average) lower than independent jitter,

yields

10 log10

(

1.52

OSR
× fs × 10−12

)

− 3 ≈ −120 + 10 log10 fs/OSR (A.6)

as the total in-band noise. The DR is then the maximum allowable signal amplitude minus (A.6);

the former is given by the MSA, which for typical modulators lies between−1dB and−5dB or so.

Again, assume

MSA ≈ −3dB (A.7)

on average, and note that

fN ≡ fs

OSR
. (A.8)

Using (A.7) and (A.8) with (A.6) gives

DR ≈ −3 − (−120 + 10 log10 fN)

= 117 − 10 log10 fN dB, fN in MHz, (A.9)

≈ 19 − 0.5 log2 fN bits,fN in MHz (A.10)

where we have made use of (2.10) in writing (A.10).

A.2 Three Half-Latch Quantizer

Here we find the maximum-achievable DR for a CT∆ΣM with a three half-latch single-bit quan-

tizer as a function offs/fT . Looking at Figure 6.23(b), there appear to be two distinct regions in the

curve, one forfs/fT < 5% or so and one forfs/fT > 5%. In the first case, the in-band noise per

bin is−115dB or less in an 8192-point simulation; a single bin thus corresponds to OSR= 4096.
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If the noise were completely white, then each doubling of theOSR would raise the total noise by

3dB. Extrapolating this in the opposite direction allows usto find the total in-band noise of

−79 − 3 log2 OSR (A.11)

whenfs/fT < 5%. For the opposite case, the noise starts at−97dB/bin whenfs/fT = 6% and

increases roughly at 6dB/oct withfs/fT . Assuming white in-band noise leads to a total noise of

−61 − 3 log2 OSR+ 6 log2

fs/fT

5
. (A.12)

DR is given by MSA minus total noise. We can see in Figure 6.21 that a modulator with half a

sample of feedback delay typically has an MSA between−10dB and−6dB; assume

MSA ≈ −8dB (A.13)

on average.

Combining (A.13) with (A.11) tells us that

DR ≥ −8 − (−79 − 3 log2 OSR) (A.14)

= 71 + 3 log2 OSR dB, fs/fT ≤ 5% (A.15)

= 11.5 + 0.5 log2 OSR bits (A.16)

where (A.16) makes use of (2.10). The≥ sign in (A.14) is because the noise in (A.11) is worst-

case, forfs/fT = 5%; at slower clock speeds, the in-band noise will be lower and DR higher.

Using (A.13) and (A.12) gives

DR ≈ −8 − (−61 − 3 log2 OSR+ 6 log2

fs/fT

5
)

= 53 + 3 log2 OSR− 6 log2

fs/fT

5
dB, fs/fT ≥ 6% (A.17)

= 8.5 + 0.5 log2 OSR+ log2

fs/fT

5
bits. (A.18)

Once again, (2.10) was used in writing (A.18).
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Appendix B

BP ∆ΣM Measurement Aids

In this appendix we plot graphs from SPICE that allow us to estimate important parameters from

the fabricatedfs/4 BP modulator in Chapter 7.

General transistor dc characteristics are plotted in Figure B.1. We show collector current

againstVBE andVCE for two commonly-used transistor sizes in this design,5µm × 0.5µm and

20µm× 0.5µm.

Figure B.2 shows how varying the multi-tanh control voltagesVG andVQ affects the transcon-

ductanceGg andGq actually delivered.

Figure B.3(a) contains the bias circuit forVEN which sets the current in the latching stages,

and Figure B.3(b) plots the current in the emitter resistorsof that circuit.

Figure B.4 illustrates the current through one of theRDAC resistors in Figure 7.26 as a function

of the base voltage at the current-source transistor; the total amount of current switched is found

by finding Ik+ andIk− for each ofVk+ andVk− separately from the graph, then subtracting the

values.
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Figure B.1: BJT characteristics: collector current vs. (a)VBE , (b) VCE .
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Figure B.3: (a)VEN bias circuit, (b) current through bias transistor emitter resistors.
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