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Finite Element Method Mesh

Truncation

NANSYS

* Truncation of infinite free space
Into a finite computational domain

— Boundary conditions can be used
to emulate the free space
environment

* Absorbing Boundary Condition
» Perfectly Matched Layer
» Finite Element-Boundary Integral

— These boundary conditions are
used to minimize reflections off of
outer surfaces

» Make solution appear as though it
IS In infinite free space

« Similar concept as an anechoic
chamber
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FEM Mesh Truncation Methods:

Absorbing Boundary Condition

Perfectly Matched Layer
Finite Element-Boundary Integral
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Absorbing Boundary Condition

* Mimics continued propagation
beyond boundary plane with a
mathematical boundary
condition

— Boundary needs to maintain at

least A/4 distance from strongly
radiating structures

— Absorbs best when incident
energy flow is normal to surface

— Must be concave to all incident
fields from within modeled space

© 2011 ANSYS, Inc. All rights reserved.

U.uU —

-10.00 -

-20.00

Return Loss (dB)
& A )
o o o
o o o
o o [w]
1| | | | | |

@

o

[=)

S
|

-70.00 -

-80.00 !

0.00

10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00
Angle of Incidence [deg]

Reflection (dB) vs angle of incidence

6 ANSYS, Inc. Proprietary



Perfectly Matched Layer

* Fictitious lossy anisotropic
material which fully absorbs
electromagnetic fields

 Reflection coefficient of less than
-20dB for incident angles up to 70
degrees

— Improved by increasing thickness of

absorbing layers o ic

PML Return Loss Over Incidence Angle

« Highly accurate even when PML
boundaries are placed at a
distance of A/8 or closer

 PML is required to be placed on
planar surfaces

(dB)

Return Loss

— Thickness of PML increases volume -50.00—

of FEM domain

-70.00
0.

-10.00
-20.00
-30.00

-40.00 |

-60.00

© 2011 ANSYS, Inc. All rights reserved. 7

00

" 10.00

2000

30,00

4000 5000
Angle of Incidence [deg]

60.00

'7000 8000 9000

ANSYS, Inc. Proprietary



Incident Angle Reflections 90° NANSYS

“absorbing” boundary

PML (Perfectly Matched Layer)
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Incident Angle Reflections 50° NANSYS

“absorbing” boundary

PML (Perfectly Matched Layer)
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Incident Angle Reflections 20° NANSYS

“absorbing” boundary

PML (Perfectly Matched Layer)
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Hybrid Finite Element-integral ANSYS

Equation Method

mite Element Based Method\ megral Equation Based Methm

— HFSS — HFSS-IE

— Efficient handle complex — Efficient solution techniqgue for
material and geometries open radiation and scattering

— Volume based mesh and field — Surface only mesh and current

solutions solution
D Airbox required

< to model free
- space radiation

Airbox not needed
to model free
space radiation

\ Finite Elements vs. Integral Equations

© 2011 ANSYS, Inc. All rights reserved. 11 ANSYS, Inc. Proprietary



Hybrid Finite Element-Integral ANSYS

Equation Method

Conformal radiation
volume with Integral

Equations

\3./” \‘ <
\HFSS-lE ) .’.‘b, Xy
k / HFSS with FE-BI

This Finite Element-Boundary Integral hybrid method leverages the
advantages of both methods to achieve the most accurate and robust
solution for radiating and scattering problems

© 2011 ANSYS, Inc. All rights reserved. 12 ANSYS, Inc. Proprietary



Finite Element-Boundary Integral

(FE-BI) NANSYS

No theoretical minimum distance from radiator

fjﬁ Integral

— Advantage over ABC ¥ EJ‘ Equation
Easy setup for broadband frequency sweeps /] %a\ gﬁlr\]fzge

» Reflectionless boundary condition 1

— Ability to absorb incident fields is not dependent on
the incident angle

Highly advantageous over ABC boundary condition
« Arbitrary shaped boundary

Outward facing normals can intersect
Can contain separated domains

Conformal boundary can eliminate air volume
required when using PMLs or ABCs

 FE-Bl comes with a computational cost

— Ability to create Airbox with smaller volume than
ABC or PML can significantly offset this cost

© 2011 ANSYS, Inc. All rights reserved. 13
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Finite Element-Boundary Integral: ANSYS

Solution Process

 The FEM solution is applied to
volume enclosed by an Airbox

— ABC boundary applied to outer

surface s a\

» Fields on outer surface are passed to FEM Solution
the Integral Equation solver to in Volume
calculate a correction factor \ )

» Correction factor passed back to the Fields at
FEM solver where the fields are Iterate outer
recalculated surface

— lterations of this process continue e ™\
until a converged solution is found IE Solution
on Outer Surface

Example Profile

Adaptive Pass 1 k )
FEM Domain === [tatriz Azzembly/Salver MCS4 000253 000723 276G
IE Domain == [ tatrix &zsemblysSolver DCS4, [E 00:01:25 000347 477G
Iteration L aticn: 00218 a0:04:18 477G

Process

© 2011 ANSYS, Inc. All rights reserved. 14 ANSYS, Inc. Proprietary



Finite Element-Boundary Integral

Boundary Condition Setup

 Boundary condition is enabled with
HFSS-IE

« Setup is similar to ABC boundary
condition

— Enabled by selecting “Model exterior
as HFSS-IE domain”

— 1 infinite ground plane allowed
 Direct vs. lterative Matrix Solver

M arne: |H adl

* R adiating Oy

(" Incident Field

— Direct Matrix Solver  Enforced Fied
. Preferred method with FE-BI |V Hodel e o HFSS-E doni |
« Quickest solution g
_

— |terative solver
» Uses the least amount of RAM

Cancel

© 2011 ANSYS, Inc. All rights reserved. 15 ANSYS, Inc. Proprietary



FE-BI Available with Domain ANSYS

Decomposition

* Distributes mesh sub-
domains to network of
processors

« FEM volume can be sub-
divided into multiple
domains

* |E Domain is distributed
to last computer in
distributed list of
computers

- Significantly increases
simulation capacity

» Multi-processor nodes
can be utilized

FEM FEM FEM FEM

Domain 1 Domain 2 Domain 3 Domain 4
© 2011 ANSYS, Inc. All rights reserved. 16 ANSYS, Inc. Proprietary
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Radiating Boundary Conditions Summary: ARNIQVYQ
ABC, PML, FE-BI NANSYS

Boundary Computation Minimum Distance Shape Setup
Condition Resources from Radiator Complexity

Lowest Concave only Easy
PML Middle N8 Planar and concave Moderate
only (rectangular box)
FE-BI* Highest No Limit Arbitrary Easy

* FE-BI’s higher computational resources can be offset by eliminating
free space volume from FEM solution

*Requires HFSS-IE License Feature
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FE-BI: In Detall

Distance From Radiator

Incident Angle
Arbitrary Shaped Boundary
Separated Volumes
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Distance from Radiator:

Comparison of ABC and FE-BI

- FE-Bl has no theoretical limitation on how close it can be placed 4#
from a radiator B |
— ABCs should not be placed any closer than A/4 | Distance Erom
— Simulation can benefit from simplified setup for broadband Antenna
frequency sweeps and reduced computation volume vs. PML T\'
and ABC
« Comparison between ABC and FE-BI placement
— Return loss is unaffected by distance from antenna for FE-BI C7
Return Loss HFSSDesignt & ReturnLoss HFSSDesignt &

Curve Info

% 8.00 — Airbox_dist="1cm’ @ 7.50 —
- — Airbox_dist="3cm’ g ] - Airbﬁt='1cm'
“_10.50 — Airbox_dist=5cm' “ _10.00- — Airbox_dist="3cm'’
— Airbox_dst="7cm ] — Airbox_dist="5¢cm’
: i!r:ox_:!s:j?;:m . ] )\/30 tO )\/2 — Airbox:dist='70m'
13.00 Iroox_dist= 11cm -12.50 — Airbox_dist="9cm’
— Airbox_dist="13cm'’ ] \ — Airbox_dist="11cm’
] — Airbox_dist="15cm’ g Airb _d' —13cm’
15.50 ] g — Airbox_dist="13cm
1 ABC 1500~ FE-B] — Airbox_dist="15cm’
] N4 to N2 '
18.00
S S S St S S s s e s s e s e T, Y8 N N S R N S S N S S s e
0.50 0.75 1.00 1.25 1.50 050 075 1.00 1.25 1.50
Freq [GHZz] Freq [GHZz]
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Distance from Radiator

« Peak gain vs. Airbox sizing
— ABC needs at least A4 180-]

spacing from antenna ] /—\

i e —
1.60 —

element to yield accurate ]
far field results 40 43

— PML and FE-BI accurately 1z

Total Gain Vs. Distance from Radiator HFSSDesign1 &

. ] 7 | Distance From
predicts gain, even as close 5, , - TNAgterna
as N30 5
O'SOi
0.60; ““““““““

\—\_

] — ABC
0.40 — PML
i —— T T T T R E S T
0.00 2.50 5.00 7.50 10.00 12.50 15.00

ﬁ Airbox Distance [cm] ﬁ

© 2011 ANSYS, Inc. All rights reserved. 20 ANSYS, Inc. Proprietary



FE-BI Distance From Radiator: ANSYS

Effect on Simulation Time

 The accuracy of FE-BIl is not dependent on its spacing from the radiator
— Simulation time is dependent on spacing
— The number of iterations required between the FEM and IE domain will increase
as the spacing between the radiator and boundary conditions decreases
« A spacing of A/10 or larger will yield the least number of iterations and
minimum simulation time

FEBI Distance From Antenna &

60.00 516.50

] I 475.00
°5.00 . — lterations -
] — Time - 425.00
50.00 —| 4o
@ ] — 375.00.
£45.00 - S
= C »
2 ] I 325.00
= ) = 40.00 - B E
Distance "% c -
] ] - S
£ 4 I 275.00%
E35.00 r )
= ] C =
1 — 22500
30.00 —| -
] — 175.00
25.00 —| :
] — 125.00
20.00 I Y Y Y O B -
0.00 0.05 0.10 0

0.15 020 02 03
Fraction of Wavelenth
N10 ﬂ N4
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FE-BI for Broadband Antennas NANSYS

* Conflicting requirements for broadband

antennas (this is a very general issue and not
specific to FEM):

* Lowest frequency
determines the total
volume.

* Highest frequency sets a
minimum value for the
largest tetrahedron edge
length.

=N mind 3
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Broadband Antenna

* Airbox at any distance gives
the same result

— Broadband antenna setup is
simple with FE-BI

* Airbox at a distance of 2mm
— ~N100 @ 2 GHz

Sroadband Aienna vith FE:81 o s ~N10 @ 18 GHz

N\ /| I+ Airbox at a distance of 7.5mm
— ~NM20 @ 2 GHz

w5l | - ~N2 @ 18 GHz

2.00 400 sbo  8bo T 1ooo | 1200 14,00 16.00 18.00
Freq [GHZ]
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FE-BI: In Detall

Distance From Radiator
Incident Angle

Arbitrary Shaped Boundary
Separated Volumes
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Incident Angle Reflections

* The Finite Element-Boundary Integral has a significant advantage
of the Absorbing Boundary Condition for fields incident on the
boundary at obligue incident angles

« This difference can clearly be seen in the radiated fields from a
horn antenna incident on an ABC and FE-BI

© 2011 ANSYS, Inc. All rights reserved. 25 ANSYS, Inc. Proprietary



Incident Angle Reflections 50°

“absorbing” boundary

IE-ABC
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Incident Angle Reflections 20° AW NSRS

“absorbing” boundary

IE-ABC

© 2011 ANSYS, Inc. All rights reserved. 27 ANSYS, Inc. Proprietary



FE-BI: In Detall

Distance From Radiator
Incident Angle

Arbitrary Shaped Boundary
Separated Volumes
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FE-BIl: Arbitrary Shaped Boundary NANSYS

 FE-BIl can be created on any arbitrary shape
 This can result in smallest possible FEM computational domain for
certain geometries
— Internal angles of ABCs must be concave
— PMLs must be placed on planar surfaces
« Arectangular box is usually required

Volume — 11,166 m3

Volume — 15,072 m3

i) / :
N N
~ I AN FE-BI )l
N PML N \ it
r‘ “‘ I! “\
\ | ; \’
\\\ N4 > % \\ Ehj /
: l‘ | ( V : S i v g ]
aV Ny || = = &
my 5
ABC PML FE-BI v

Volume — 1,982 m3

* Required air volume to model free space around an aircraft using
ABC, PML and FE-BI

 FE-Blresults in an FEM computational domain that is ~7.5x smaller
than the PML solution space

© 2011 ANSYS, Inc. All rights reserved.
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ABC

* An ABC or PML must be concave
to all incident fields

e Qutward facing normals must
never intersect

« Waveguide example demonstrates
how an ABC incorrectly models
the fields when the boundary is
not concave to all incident fields

© 2011 ANSYS, Inc. All rights reserved. 31

A FE-Bl can be any arbitrary shape

» Field propagation through the cut-
out in surrounding air volume is
correctly modeled
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Internal Boundary

* Internal air volume can be handled
analytically.

muiEiy ) |
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RF Wave Propagation in

Passenger Aircraft

 Personal electronic devices
operating in cabin of commercial
aircraft

— Possible interference with flight
computer and communication
systems

— Complex propagation
environment

« Seats, Windows, Cylindrical Cavity of
Cabin

© 2011 ANSYS, Inc. All rights reserved. 33 ANSYS, Inc. Proprietary



RF Wave Propagation in

Passenger Aircraft

» Leakage through windows could
results in increased coupling to
external antennas

— Model includes interior cabin and
exterior portion of aircraft

- 300 MHz source excited towards
tail, inside passenger cabin

Boundary Airbox Total RAM | Elapsed
Type Volume (GB) Time
(hours)
4

FE-BI 2k A3

V;‘wﬁ l‘“uuﬂgg% Sie e
T W; e S
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Array on Spacecraft

« 7 Element Helix Antenna
Array integrated on
satellite platform

— Dielectric solar panels

and antenna supports do

not make this problem
ideal for HFSS-IE

* Inclusion of solar panels
creates an electrically
large model

— 64\ wide at 3.5 GHz

* Using ABC or PML
boundary would require an
Airbox equal to 21k A3

 FE-BI can reduce the
required Airbox to 1.2k A3

© 2011 ANSYS, Inc. All rights reserved.

FE-BI Applied to conformal Airbox

it
. ™
«(((%‘(((((‘

35

ABC or PML would be
applied to much larger Airbox
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« Array platform integration
simulated with conformal FE-BI

— RAM requirements reduced
by 10x

— RAM reduction as a result of
removing the surrounding free
space

* Only possible using FE-BI

Boundary Airbox Number of

Type Volume Domains

ABC 21k A3 34
FE-BI 1.2k A3 12

© 2011 ANSYS, Inc. All rights reserved. 36

Total RAM
(GB)

210
21

Elapsed
Time
(hours)

12
12
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Reflector With Struts

= - [= x|

» Reflector with supporting struts o
— FE-BI can be created so that it is conformal T
to entire geometry

— Very small FEM volume needed with
conformal FE-BI compared to ABC boundary

ABC 45 . | :
FE-BI 13 : | e o

XY Plot 3

FE-BI

© 2011 ANSYS, Inc. All rights reserved. 37 ANSYS, Inc. Proprietary



Composite Body UAV

: ~Antenna 1
* Most UAV Airframes are composed )

of composite materials

— Light weight materials can increase
endurance

« Electrically large platform

— HFSS FEM solution is the most
robust solution for this type of
problem

 Solution volume required when v
using PML or ABC may be
computationally demanding

— FE-BI can be used to create
conformal boundary condition to
minimize the FEM solution domain

19.5m

Payload

Cross-sectional view

© 2011 ANSYS, Inc. All rights reserved. 38 ANSYS, Inc. Proprietary



Composite Body UAV

Antenna near
composite wing skin

FE-BI Boundary
ondition Surface

900 MHz
Boundary Airbox Volume Number of | Total RAM (GB) AS
Type Domains
PML 15600 A3 8 >128 1.16 (2 passes)
FE-BI 4400A3 8 68 0.017 (6 passes)

© 2011 ANSYS, Inc. All rights reserved. 39 ANSYS, Inc. Proprietary



Wind Turbine RCS

« Wind farm effect on radar systems

— Shadow regions due to wind turbine
placement can be a safety hazard to air
traffic control

— Ineffective long range surveillance radar
can be a national security threat

— Minimizing and determining the RCS of a
wind turbine is an important topic with the
increasing number of wind farms

* Wind turbine blades are typically
constructed from fiberglass and other
composite materials

— Not ideally simulated in HFSS-IE due to a
significant amount of dielectric materials

— Resulting Airbox required for PML or ABC
boundary would be significantly larger
than required with FE-BI

© 2011 ANSYS, Inc. All rights reserved. 40
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Wind Turbine RCS: 500 MHz

Total Fields
\Incident Fields at

Boundary Airbox Total RAM §=90°, 48R0
Type Volume (GB) AN g :’!
) N {7 "‘

FE-BI 1000 A3 28 N>

An ABC boundary condition would contain a @ 2
volume of greater that 75000 A3 ; 7

/_/ Monostatic RCS (86)
A 0 Incident Wave (8) 90

40.00 —

Y

2., 8261e+001

2. 5938e+081 1 InC'dent Fle|dS a.t
2?2;;::221 2,50—: l 9:900’ (p:_goo

| c 2750
NS —
p o= 0]
~ 8. £
[a) 4. 0PP0E 421 2
o 3. 765684001 g

3.55135+801 £ 1500 .

S || Scattered Fields
~ =] 3.B625e+B81 ]
] :
— a
m o

1. 8986e+E01
1. 6563e+001
1. 4219e+881

VAN 500 MHz
" 5000 7000 8000 9000

9. 531 3¢ +000
7. 16756 +200 A0

" - T T
4, G436 +00E 0.00 10.00 20.00 30.00 40.00 50.00
= |WaveTheta [deg]

2, 5080 & +Baa /
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FE-BI: In Detall

Distance From Radiator

Incident Angle
Arbitrary Shaped Boundary
Separated Volumes

© 2011 ANSYS, Inc. All rights reserved. 42
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- FE-Bl does not require a
single volume enclosure

« Separation into more than
1 domain can often reduce
the total air volume

— Separate volumes will be
fully coupled with FE-BI

Free space

© 2011 ANSYS, Inc. All rights reserved. 43 ANSYS, Inc. Proprietary



Friis Transmission Equation and ANSYS

FE-Bl Comparison

) : FE Bl
Open Ended waveguides FE-BI

_ surface
— Each waveguide @ / surface
surrounded by a separate A
FE-BI surface % W

— Free space modeled with
IE methOd Transmission Vs. Distance ~ HFSSDesignt A

« Comparison between Friis 1 _ Fris Transmission Equaton
Transmission Equation and 000

HFSS with FE-BI ]
-40.00 — P = (1_ 8121)2 . GZ

« Excellent agreement to 50 g r — ;
meter separation at 10 GHz ~ {=~- P 16-(zd/A)

-70.00 —

. T T . T . : T T T T T : . T . T T . T . : T :
0.00 10.00 20.00 30.00 40.00 50.00
Distance (meter)
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Predator UAV Antennas

Motivation: “Let’s see if we can do on of the
harder antennas on a UAV. The 14GHz SatCom * Antennas
reflector AND radome?!” 1. Synthetic aperture radar

(10-20GHz)
3. SatCom (10.95GHz Rx,
14GHz Tx)
GPS
1.575 GHz 5. GPS antennas [two]
(1.575GHz)

8. C-band omnidirectional

SatCom
10.95GHz Rx antenna bracket
14GHz Tx (4.8GHz)

* Note: Frequencies are

C-band best guesses
omnidirectional
BLOS link
4.8GHz
\ Synthetic
2 | aperture radar
10-20GHz http://www.|-3com.com/csw/Product/docs/08-Predator.pdf

http://science.howstuffworks.com/predator2.htm
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Modeling the Feed, Dish, AND

Radome?

* The electrical size of
the whole nose is very
large

* If the whole nose was
modeled as filled air
space it would be
about 58,000A3

 Can this be modeled In
FEM?

<€ 62A
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Yes, solving in FEM by Breaking ANSYS

the Problem into Domains!

 Three FEM domains are linked
through the new FEBI radiation
boundary which includes:

— Full coupling between domains

— Perfectly matched free space
condition regardless of incidence
angle or radiation boundary

shape |
- Each domain is surrounded by a &/ 7 ¥~ BT
small gap of air space between N

geometry and the boundary
integral radiation boundary

« Air space between domains does
not need to be solved

« Accuracy of FEM, efficiency of IE!

© 2011 ANSYS, Inc. All rights reserved. 48 ANSYS, Inc. Proprietary



All Three Domains
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Pattern With/Without Radome NANSYS

Dish and feed only Dish and feed with dielectric radome

© 2011 ANSYS, Inc. All rights reserved. 54 ANSYS, Inc. Proprietary



Pattern With/Without Radome ANSYS

(cont.)

Realized Gain [dB]

Radome pattern
effects:

- A ~4dB reduction
in realized gain

1 5 . DD Curve Info [tk

—— dBi(RealizedGainTotal)
,ID DD Setup3_14GHzMixedDir © LastAdaptive | 335913
. Freg="14GHz' Phi="90deg'

- ~0.5° shift in
direction

—— dB(RealizedGainTatal)_1

5 DD lmparted a7 5353
. Freq="14GHz' Phi="30deg’

Dish With/7
radome

- Major sidelobes
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« HFSS
— Excellent solution to RF/microwave and S| simulations

 ABC and PML used for computational domain truncation
« HFSS-IE
— l|deal solution for electrically large, primarily conducting structures
 HFSS with FE-BI
— Perfect free space truncation for FEM simulations

— Best solution for problems in which a large volume of free space can
be removed by the application of FE-BI

— Typically used for open radiating and scattering problems
« Antenna platform integration, Co-site Analysis, EMI, RCS, ...etc.

« HFSS with FE-BI is a perfect complement to HFSS and HFSS-IE,
making efficient simulation of electrically large antenna and
scattering models possible

© 2011 ANSYS, Inc. All rights reserved. 60 ANSYS, Inc. Proprietary



Integration with WorkBench NANSYS

B Analysis Systems « Ansys R13 has integration of Electronics tools for

r——— coupled electromagnetic-thermal-mechanical
] analysis as appropriate.

5 Designer Circuit Netlist

Random Vibration

Response Spectrum coax

B
1 a Static Structural

&7 Geometry

@ Designer EM

E fearc  |ICEPAK and Slwave also have direct linkage for

'd Explicit Dynamics 0 0 .

(4 _Harmonic Response exchange of power dissipation and temperature

&8 HFsS .

48 HFss-IE mapping

B Linear Buckling =

Itd] Magnetostatic W U steady-State Thermal

' Maxwell 2D 2 & Enagineering Data 4

Gl Maxwell 3D 3 @) Geometry Z 3

HH Modal 4 @ Model d

M Modal (Samcef) il -4

a5 @i Setup Vs a
|l: Q3D 2D Extractor e 6 | @ solution x
T Q3D Extractor " o
v

M esults

i

E=1 Rigid Dynamics 2 L 4 2 r@ Engineering Data v~ 4

& RMxprt = .

3 178 setu Cy 3 Geometr 4

Shape Optimization @ : = 2 Q,‘ : = 4

kel Static Structural 4 ¥ solution g A_\ 4 @ Model 4
E! Static Structural (Samcef) priuss motor @5 @ Setup B
Y steady-state Thermal 6 |§3 Solution &
Y Thermal-Electric — - 4
Bz Transient Structural 7 | @ Results 5 4

¥ Transient Thermal prius mator

T eUAa MUy UL YO TuUs Ve U 61 MINO 1T O, 1L, T IUplicaly



Workbench Integration

- A - B C
2 & Geometry 2 @ Engineering Data P I @ Engineering Data +"
3 Setup v 3 M Geometry v g3 i) Geometry v
4 & soluton v 4 @ Model v ,———W4 §@ Model v
Filter demo \"5 @. Setup v ‘—/—15 @ Setup v
B @ Solution v 4 b ﬁﬁ Solution v 4
7 @ Results v o 4 7 @ Results v o4

Steady-State Thermal Static Structural

HFSS v13 integrated into
Workbench 13.

Results from HFSS as source
for the thermal simulation...
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Thermal Simulation Example
ANSTS

B: Steady-State Thermal

Steady-State Thermal )
Tirne: L. s 8 130
05/10/2010 09:41 : [

1 -

Temperature 3: 35, °C
Convection 2: 22, °C, Le-005 W/mm?3°C

m Cavity

E Internal Parts

i

=0 Coupling

] Temperature

jSuurceFrEquencv(GHz] Analysis Time (s) | Scale | Offset (W/mm?) Eiﬂ Convection
1196 -1 1 0

el ] Radiation
1.95
- . Heat Flow

. Perfectly Insulated

-I|Scope
Scoping Method | Geometry Selection ﬁtﬂ Heat Flux
Apply .
=  Definition -hﬂ Internal Heat Generation
Type Imported Heat Flux I
Suppressed No
|| Transfer Definition & CDmmandS

Ansoft Solution | Setupl: points
Ansoft Surface(s) | AllSurfaces
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Thermal Simulation Example

B: Steady-State Thermal M%
Temperature N
Type: Temperature ¢ ﬂg}jo
Unit: °C

Tirme: 1

Custom
05/10/2010 10:00

72.201 Max
69.543
66.885
64,226
61.568
58.91
56,252
53.594
50,935
48.277
45.619
42,961
40,303
37.644
34.986 Min

BT T TTTT77 77 .

0.00 35.00 70,00 {mm)
I 2 ..

17.50 52.50

e Use results as source in Mechanical simulation...
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Mechanical Simulation Example
C: Static Structural el Z\M\‘\_I:E_\gj?ﬁ

Static Structural 7 a0
Tirme: 1. s 13.0
051042010 10:18

fri

[ Fixed Support @] Acceleration
B0} Standard Earth Gravity

I3, Rotational Velocity

e

UE, Pressure

o, Hydrostatic Pressure
5, Force

Ef]‘n Remuote Force

%, Bearing Load

w Bolt Pretension

Ef]., Line Pressure
8 Thermal Condition
} Joint Load

Fluid Solid Interface

Fixed Support
Displacement

Remote Displacement
Frictionless Support
Compression Only Support

0.00 35,00 70,00 (mm) Cylindrical Support

Elastic Support

G E GG RS EE R

Constraint Equation
ﬂ Motion Loads...

B Commands
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Mechanical Simulation Example

C: Static Structural
Total Deformation
Type: Total Defarmation
Unit: mm

Time: 1

05/10/2010 10:26

0.042989 Max
E 0.038212
0.033436
— 0.028659
— 0.023883
— 0.019106
— 0.01433

— 0.009553
i 0.0047765
0 Min

© 2011 ANSYS, Inc. All rights reserved.

0.00

40.00

b 4

80.00 {mm)

I .00

20,00
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60.00
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Questions?
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