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A method is presented for application of the perfectly matched layer !PML" absorbing boundary
condition !ABC" to the P-SV velocity–stress finite-difference method. The PML consists of a
nonphysical material, containing both passive loss and dependent sources, that provides ‘‘active’’
absorption of fields. It has been used in electromagnetic applications where it has provided excellent
results for a wide range of angles and frequencies. In this work, numerical simulations are used to
compare the PML and an ‘‘optimal’’ second-order elastic ABC #Peng and Toksöz, J. Acoust. Soc.
Am. 95, 733–745 !1994"$. Reflection factors are used to compare angular performance for
continuous wave illumination; snapshots of potentials are used to compare performance for
broadband illumination. These comparisons clearly demonstrate the superiority of the PML
formulation. Within the PML there is a 60% increase in the number of unknowns per grid cell
relative to the velocity–stress formulation. However, the high quality of the PML ABC allows the
use of a smaller grid, which can result in a lower overall computational cost. © 1996 Acoustical
Society of America.

PACS numbers: 43.30.Ma, 43.30.Ky, 43.20.Gp, 43.20.Jr #JHM$

INTRODUCTION

Absorbing boundary conditions !ABCs" are widely used
in numerical simulations of unbounded problems. They are
enforced at the edges of a computational domain to absorb
outgoing waves and thereby model an unbounded region. A
number of ABCs have been introduced for use in finite-
difference modeling of elastic wave propagation. The ABCs
of both Levander1 and Cerjan et al.2 introduce a lossy mate-
rial layer to attenuate fields near the computational boundary.
These have been used in a number of applications.3–7 An
approach based on a paraxial approximation of the elastic
wave equation was introduced by Clayton and Engquist.8
Several formulations generalizing this method are available
in the literature, including Higdon,9–11 Long and Liow,12 and
Reynolds.13 Higdon,9 Liao et al.,14 and Peng and Toksöz15
have constructed ABCs for which fields on the boundary of
the computational domain are extrapolated from interior
fields. Randall16 has presented an ABC which transforms
velocities to potentials. This permits the use of any scalar
ABC in the elastic problem. Randall used Lindman’s ABC
!Ref. 17" which is a scalar ABC based on the one-way wave
equation.

Since ABCs absorb waves imperfectly, artificial reflec-
tions occur at the edges of the computational domain. These
reflections can limit the dynamic range or degrade the accu-
racy of results; thus, it is desirable to obtain the best possible
ABC performance. Ideally, an ABC should perform well,
independent of frequency and incident angle, while remain-
ing computationally tractable. However, in practice, ABC
performance degrades beyond a specific range of angles and
frequencies. In this paper, an ABC is presented that performs

well over a broader range of angles and frequencies than
those previously presented. Specifically, Randall’s transfor-
mation is used in conjunction with the recently introduced
perfectly matched layer !PML" ABC developed by
Berenger.18 It is considered to be the best material ABC
currently available because of its excellent absorption over a
wide range of angles and its insensitivity to frequency.19 The
PML ABC has been used extensively in electromagnetic
modeling and has been further developed in other recent pa-
pers. Chew and Weedon20 present a derivation based on
stretched coordinates,21 which reproduces the equations
given in Ref. 18. Mittra and Pekel22 discuss several aspects
of the PML technique, provide an alternate form of the equa-
tions, and show that the PML is an anisotropic active me-
dium containing dependent sources. Reuter et al.23 show that
the PML can absorb energy over a broad frequency spec-
trum. In acoustics, a fluid medium PML formulation has re-
cently been presented by Maloney and Cummings.24

In this paper, we consider a 2-D elastic medium PML
formulation. We describe the transformation process, present
the equations used in the lossy layer, and give numerical
results using test simulations. The ‘‘optimal’’ ABC of Peng
and Toksöz15 is compared with the PML in two performance
tests. First, the ABCs are illuminated by a continuous wave
!cw" cylindrical wave, and reflection factors are computed
that measure the angular performance of each ABC. Second,
a test geometry is illuminated with a Ricker wavelet to ex-
amine broadband performance of each ABC. Both tests show
that the PML performs better than the ‘‘optimal’’ ABC for
absorption of both P- and S-wave energy.

I. IMPLEMENTATION

Figure 1 shows the geometry of a 2-D, finite-difference
grid with a PML. In the interior, the P-SV velocity–stressa"Electronic mail: fhasting@eecs.wsu.edu
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finite-difference formulation is applied,25 and in the PML the
waves are propagated separately as shear and compressional
potentials. The velocity-potential conversions take place in a
one grid-cell wide overlap region. Square grid cells of area
%2 are assumed. Figure 2 shows a section of the overlap
region for the left edge of the interior. Within the PML, two
offset grids are overlayed with the result that two field values
occur at each half-grid space !i.e., %/2". In the overlap re-
gion, both the PML potentials and the standard velocity–
stress components are computed. The values with boxed la-
bels are used to convert back and forth between velocities
and potentials. Some fields in this region are omitted to in-
dicate that they are unnecessary for the finite-difference com-
putations. The outer edge of the PML !not shown" can be
terminated by either a Dirichlet or a Neumann boundary con-
dition.

Velocity is related to potential by16
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where & is the compressional potential and 'y is the y com-
ponent of the shear potential. For the two-dimensional prob-
lem, the vector nature of 'y may be suppressed. However, to
maintain consistency with future work on the three-
dimensional problem, the subscript y is retained. Potentials
are computed using
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where cp ! !()"2*)/+ is the P-wave velocity, cs ! !*/+
is the S-wave velocity, ) and * are Lamé constants, and + is
the density. In Fig. 2, the potentials and velocities with
boxed labels are computed using !1"–!3". The reader is re-
ferred to Ref. 16 for the finite-difference forms of these
equations.

The potentials satisfy the following scalar wave equa-
tions:
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To simulate these wave equations on a grid of the same form
used for acoustic fields, they are each rewritten as a set of
three coupled equations:
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Equations !6"–!8" can be decoupled to obtain !4" and !9"–
!11" to obtain !5". The new fields Ā and B̄ are introduced as
part of a field-dividing process, and they are analogous to
velocity in the acoustic equations. Figure 3!a" and !b" shows
the spatial stencils for the equations governing potentials &
and 'y , respectively. Each stencil corresponds to a separate
grid: One carries energy from the compressional wave and
the other carries energy from the shear wave. These grids are

FIG. 1. Computational grid with PML absorbing boundary. Interior fields
are computed using the velocity–stress formulation, and PML fields are
computed using potentials. In the overlap region the waves are transformed
back and forth between velocities and potentials.

FIG. 2. Left edge field locations for PML, overlap region, and interior.
Boxed velocities and potentials are used to transfer fields between the inte-
rior and the PML.

3062 3062J. Acoust. Soc. Am., Vol. 100, No. 5, November 1996 Hastings et al.: Elastic waves



overlayed in Fig. 2 so they can be viewed simultaneously.
The ordered pair notation indicates that two field values exist
at the same location. For example, the pairing ‘‘Az ,Bx’’ in-
dicates that fields Az and Bx share the same location, but are
not related otherwise. & and 'y grid points are shifted with
respect to each other to satisfy the finite-difference forms of
!1"–!3". In Appendix A it is shown that energy is propagated
from the grid interior !including S-wave energy" via longitu-
dinal waves.

Equations !6"–!11" describe the propagation of energy
through the PML without loss. To eliminate reflections, the
fields must be attenuated. Following Berenger,18 we modify
the lossless equations by ‘‘splitting’’ the potentials and add-
ing loss terms to get
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The potentials are split such that &!&x"&z and
'y!'yx"'yz . Equations !12"–!19" describe longitudinal
waves that attenuate exponentially. For this work, exponen-
tial differencing was used as described in Ref. 18. However,
it is possible and may be advantageous to use standard cen-
tral differencing as discussed in Refs. 26 and 27.

The loss terms qi j !i!p , s and j!x , z" within the PML
are proportional to (r/-)n, where r is depth measured into

the PML, - is the total PML depth, and n!4 is empirically
chosen for best performance and stability. Hence,

qi j!qi j
max!r/-"n. !20"

The maximum loss values qi j
max are set such that the reflec-

tion coefficient is a small but nonzero value. The reflection
coefficients at normal incidence, computed in the same man-
ner as in Ref. 18 !see Appendix B", are

Rpp!exp! #
2qmax-!)"2*"

!n"1 "cp
" , !21"

Rss!exp! #
2qmax-*

!n"1 "cs
" , !22"

where Rpp and Rss are the reflection coefficients for P and S
waves, respectively. These equations are correct provided
that the starred loss terms are related to nonstarred terms
through the matching conditions

!)"2*"q!q*/+ , !23"

*q!q*/+ . !24"

Equations !21" and !22" can be solved for qmax once a maxi-
mum reflection coefficient has been chosen. Here we have
used Rpp!Rss!10#6. As shown in Fig. 1, some loss terms
are set to zero within the edge portions !as opposed to cor-
ners" of the PML. This preserves the phase-velocity tangen-
tial to the PML-interior interface and results in an impedance
match between the PML and interior that is independent of
the incident angle. Terms qix are zero for the top and bottom
PML, while terms qiz are zero for the left and right PML.
This dictates that exponential decay occurs only in the direc-
tion perpendicular to the edge of the PML. In the corners,
losses are nonzero in both directions, and the variation of
loss with depth corresponds to that in the appropriate neigh-
boring PML edge region. For potentials occurring in the
overlap zone, either at or inside the edge of the PML, the
standard finite-difference formulation !6"–!11" is used.

In a typical problem, there are three computational
regions—the interior stress–velocity grid, the overlap region,
and the PML. The following list explicitly outlines the se-
quence in which computations are performed !refer to Fig.
2":

!1" Stress values .xx , .zz , and .xz are computed throughout
the interior and overlap regions using the stress–velocity
equations.

!2" Potentials & and 'y are computed in the overlap region
using !2" and !3" for values with boxed labels and !6"
and !9" for the remaining values.

!3" Potentials &x , &z , 'yx , and 'yz are computed in the
PML using !12", !13", !16", and !17" with appropriate
loss terms set to zero.

!4" The fields Ax , Az , Bx , and Bz are computed in the PML
using !14", !15", !18", and !19" with appropriate loss
terms set to zero and in the overlap region using !7", !8",
!10", and !11".

FIG. 3. Stencils for overlapping grids in the PML: !a" Stencil for the com-
pressional potential. !b" Stencil for the shear potential.
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!5" Velocities vx and vz are computed in the overlap region
using !1" for values with boxed labels and using the
stress–velocity equations in the interior.

II. NUMERICAL RESULTS

In this section reflection factors computed using numeri-
cal simulations are presented. Within the limits of the simu-
lations, these factors are good indicators of the angular per-
formance of an ABC. Figure 4 shows the test geometry,
consisting of two distinct computational domains, /1 and
/2 , which are used to evaluate the ABC. Grid /1 is termi-
nated by a PML on the top and by soft boundaries on the
other edges; grid /2 is terminated with soft boundaries on all
sides. As shown, /2 models a larger area than /1 . A source
is placed three wavelengths below the PML region in /1 and
at the corresponding location in /2 . Waves radiating away
from the source in /1 will intersect the lower edge of the
overlap region at an incident angle 0i . For waves radiating in
/2 , no boundary is present at this location and the waves
propagate without reflection. For all cw examples shown, we
use 16 grid spaces per S-wave wavelength and, for stability,
we use cp-t/%!0.707 where -t is one time step and % is one
spatial step. The material parameters correspond to basalt
!cp!5710 m/s and cs!2930 m/s".

The reflection factors are defined as follows:

Rpp!
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#&/2

&/2

, !25"

Rps!
'y/1
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, !26"

Rss!
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#'y/2
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, !27"

Rsp!
&/1

'y/2
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so that Rpp and Rps measure the reflected P and S waves due
to an incident P wave, and Rss and Rsp measure the reflected
S and P waves due to an incident S wave. The potentials are
computed using !2" and !3" for both grids, and the data are
averaged so that both potentials are collected at the same
points, corresponding to the lower edge of the overlap region
in /1 . The source excitation is harmonic; hence, the magni-
tude and phase of the potential may be computed as in Ref.
28.

Equations !25"–!28" impose two requirements on the
test simulation. First, the grids must be large enough so that
only reflections caused by the presence of the PML in /1 are
recorded, i.e., no reflections are recorded from the soft
boundaries. Second, the incident field should be either a pure
P wave to obtain Rpp and Rps or a pure S wave to obtain Rss
and Rsp . Despite the first requirement, the grid size must be
limited to one which is numerically tractable. In our ex-
amples, the grids are large enough to compute reflection fac-
tors for incident angles in the range 0°10i180°. To satisfy
the second requirement, four potentials are used in conjunc-
tion with the source potential &source . Figure 5 shows the
geometry of the P-wave source. The forcing function added
to the source potential is given by

Fcw! l "!&0!1#exp!#2l2""sin! !0.707"23lcs
Nscp

" , !29"

where l indicates the current time step and Ns is the number
of grid points per S-wave wavelength. The value 0.707 is
chosen to insure stability.29 The value of &0 is chosen to give
an upper bound of unity for the stress components, and the

FIG. 4. Geometry for computing reflection factors. Domain /1 is terminated
on the upper edge with a PML. The dimensions are such that reflections are
caused only by the ABC for the duration of the simulation. Domain /2 is
large enough so that no reflections occur.

FIG. 5. Grid points used to implement P-wave source. Five potentials are
computed from their neighboring velocities. The source function is added to
&source . The velocities are computed from neighboring potentials to couple
the source field into the stress–velocity grid.
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factor 2 is chosen so the source field reaches half its maxi-
mum amplitude at the end of one cycle. The surrounding
potentials &1#&4 are computed using !2". The velocities vx
and vz are computed from the five potentials using !1" with
'y set to zero. The 'y values that occur when the source is
implemented in this way are smaller than the & values by a
factor of 10#12. The approach for computing the S-wave
source is similar except that its location is shifted by a half-
grid space and & is set to zero in !1". Note that to implement
these sources, potentials are computed only around the
source point rather than over the entire interior.

To examine the performance of the PML, comparisons
with the second-order ABC of Peng and Toksöz are pre-
sented. The latter ABC has been shown to absorb better than
the ABCs of Higdon11 and Reynolds.13 It is referred to as an
‘‘optimal’’ ABC because the poles and zeros of its numeri-
cally derived reflection coefficients have been forced into
positions on the unit circle in the complex z-plane. Such a
placement produces a stable ABC with optimal performance.
The coefficients used to implement the ‘‘optimal’’ ABC can
be optimized for either S- or P-wave absorption, but not
both. For our comparisons, the optimal coefficients were
chosen to have maximum absorption for P waves. The ‘‘op-
timal’’ ABC is applied to .zz and vx nodes lying along the
upper edge of the /1 grid. An alternative approach is to
apply the ABC to the vx and vz nodes, which is similar to the
procedure presented in Ref. 15. However, for the material
parameters used here, this scheme produces excessively large
cross coupling terms, Rps and Rsp . Although application of
the ABC to .zz and vx nodes does not produce the ‘‘physi-
cal’’ zero in Rpp and Rss , the ABC so applied produces no
cross coupling and, hence, is the preferred formulation.

Figures 6 and 7 show Rpp and Rss , respectively, as func-
tions of 0i . In each case, the PML is compared to the ‘‘op-
timal’’ ABC. Results are shown for PML depths, -, of 8 and
16 grid spaces. The ‘‘optimal’’ ABC is configured to give
best absorption at angles 0i!20° and 40° and, in both cases,
the ABC is optimized for P-wave absorption. Figure 6 shows
that the ‘‘optimal’’ ABC performs well for P-wave illumi-
nation with nulls occurring approximately at the expected
angles. For -!16%, the PML has substantially lower reflec-
tion levels over the angles shown. For -!8, the performance

has degraded, but Rpp remains below 1% for all angles. Fig-
ure 7 shows that the ‘‘optimal’’ ABC performance degrades
for S-wave illumination, while the PML performance re-
mains unaffected. The coupling of energy between S and P
waves is measured by the reflection factors Rps and Rsp .
These factors were below #200 dB over all incident angles
for both the PML and the ‘‘optimal’’ ABC.

Figure 8 shows the test geometry for comparing the
‘‘optimal’’ and PML ABCs for transient illumination. The
source is positioned at the center of a 400%$150% subregion
of the grid indicated by the dash-dot box. The grid is termi-
nated by soft boundaries on the left and right edges and by
the PML !-!16%" and ‘‘optimal’’ ABCs on the top and
bottom edges, respectively. Figure 9 shows a series of snap-
shots of the boxed region. Figure 9!a" and !b" shows the
compressional potential at two successive times for a pure
P-wave source. The forcing function added to the source
potential is a delayed Ricker wavelet

Fpulse! l "!„1#232p! l "2…e#32p! l "2, !30"

with

p! l "!! cs!0.707"cpNs
" ! l# cpNs

cs!0.707"
" , !31"

where, as before, l is an integer indicating the current time
step. In this context, Ns is the number of points per shear
wavelength at the frequency with maximum spectral energy.
A logarithmic scaling of the amplitudes has been used to
enhance small reflections. A visible reflection occurs at the
lower edge for the ‘‘optimal’’ ABC, while the PML shows
no reflection. For a pure S-wave source, the shear potential is

FIG. 6. Comparison of Rpp for the ‘‘optimal’’ and PML ABCs. The PML
has depths -!8% and 16%. Rps is negligible for both ABCs.

FIG. 7. Comparison of Rss for the ‘‘optimal’’ and PML ABCs. The PML
has depths -!8% and 16%. Rsp is negligible for both ABCs.

FIG. 8. Geometry for comparing ‘‘optimal’’ and PML ABCs under transient
illumination. The dash-dot box indicates the area shown in the snapshots. It
has dimensions 400%$150%.
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shown in Fig. 9!c" and !d". Since the ‘‘optimal’’ ABC was
not optimized for S-wave absorption, the reflections are
much larger. However, once again, no reflections are evident
at the PML boundary.

In both the interior and PML portions of the computa-
tional domain, the number of computations per time step is
proportional to the number of unknowns. Within the two-
dimensional PML an additional three unknowns per grid cell
are required. For large-scale problems, the PML represents
only a small portion of the total grid area and, hence, the
increase in the number of computations is modest. However,
the overall computational cost for many problems can be
lower because the superior quality of the PML allows the
ABC to more tightly bound the region of interest. In addi-
tion, the thickness of the PML can be reduced depending on
the dynamic range requirements of the problem.

To verify stability experimentally, an interior region was
completely enclosed by a PML, as shown in Fig. 1. For each
type of source, a simulation was run for 3000 cycles of the

incident field, and the corresponding potentials were exam-
ined. No artificial reflections were evident.

The use of potentials in the implementation of the PML
prohibits its use in regions where shear and compressional
waves are coupled !such as at media interfaces". Hence, it
cannot be applied where a media interface will intersect the
PML. It can be applied directly to problems with discrete
scatterers present in an otherwise homogeneous medium. To
model multilayer scattering, a second ABC !such as the ‘‘op-
timal’’ ABC" can be used in conjunction with the PML. The
PML would be applied on computational boundaries parallel
to the media interfaces, while the second ABC would be
used on the remaining boundaries.

III. SUMMARY

We have adapted the PML ABC for use with elastic
materials. Our technique allows successful transfer of wave
energy from a velocity–stress grid to a set of two grids, one
for shear waves and one for compressional waves, in which
the energy exponentially decays. The resulting formulation
was tested numerically through the computation of reflection
factors and snapshots of the potentials. These tests indicate
that the PML is superior to the ‘‘optimal’’ ABC for both
broadband and wide angle performance. The PML is best
suited for modeling discrete scatterers but, in conjunction
with another ABC, it can also be applied to multilayer prob-
lems. Stability was confirmed experimentally. The extension
of this method to three dimensions is straightforward and is
the subject of future work.
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APPENDIX A: CONVERSION BETWEEN VELOCITY
AND POTENTIAL

Potentials & and 'y are related to fields Ā and B̄
through !6"–!11" in a similar manner as pressure is related to
velocity in the acoustic equations. These equations were cho-
sen because they satisfy the scalar wave equation, and their
structure can be modified to obtain the form of the PML
equations given in Ref. 18. Other formulations may be pos-
sible, but an exhaustive survey is beyond the scope of this
paper.

Equations !6"–!11" support the propagation of two lon-
gitudinal waves which have both Ā and B̄ oriented in the
direction of propagation. To show that the shear and com-
pressional components of the velocity are transformed to the
appropriate potential waves with the correct orientation, con-
sider the field

v̄! v̄s" v̄p , !A1"

where v̄s and v̄p are velocities due to the shear and compres-
sional waves !see Fig. A1",

v̄p! ṽ0p!cos 4 x̂"sin 4 ẑ ", !A2"

v̄s! ṽ0s!#sin 5 x̂"cos 5 ẑ ", !A3"

FIG. 9. Comparison of the PML ABC with the ‘‘optimal’’ ABC. Snapshots
of potentials are shown at two separate times after the incident wave has
reached both ABCs. Compressional potentials are shown for an incident P
wave in !a" and !b", and shear potentials are shown for an incident S wave
in !c" and !d".
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with

ṽ0p!v0pe j!6t#kxpx#kzpz " !A4"

ṽ0s!v0s e j!6t#kxsx#kzsz ", !A5"

where kxs!ks cos 5, kzs!ks sin 5, kxp!kp cos 4,
kzp!kp sin 4, and kp and ks are the wave numbers for the
compressional and shear waves, respectively. Angles 4 and 5
are measured from the positive x axis, and 6 is the radian
frequency. The components of the total velocity are

vx!vxp"vxs! ṽ0p cos 4# ṽ0s sin 5 , !A6"

vz!vzp"vzs! ṽ0p sin 4" ṽ0s cos 5 . !A7"

To verify that the orientation of the potential fields is as
expected, this superposition of waves will be transformed
into the fields Ā and B̄ . Using !A6" and !A7" in !2" and !3"
yields, after some simplification,

&! j
kpcp

2ṽ0p
62 , !A8"

'y!# j
kscs

2ṽ0s
62 , !A9"

which can be used in !7", !8", !10", and !11" to obtain ex-
pressions for Ā and B̄

Ā!# j
kp
2cp
2ṽ0p

+63 !cos 4 x̂"sin 4 ẑ ", !A10"

B̄! j
ks
2cs
2ṽ0s

+63 !cos 5 x̂"sin 5 ẑ ". !A11"

Equations !A10" and !A11" show that Ā and B̄ are longitu-
dinal waves with Ā oriented in the direction of propagation
of the compressional wave and B̄ oriented in the direction of
propagation of the shear wave. Furthermore, Ā is related to
the compressional wave ṽ0p and B̄ is related to the shear
wave ṽ0s. It can be shown that this relationship also holds for
the transformation of Ā and B̄ to velocity. This is done by
substituting !A10" and !A11" into !6" and !9", respectively,
and then using the resulting potentials in !1".

APPENDIX B: MATCHING CONDITIONS

The PML equations, !12"–!19", are designed to support
propagation of a plane wave that decays exponentially in the
direction normal to the interface. Unlike the lossless equa-
tions, !6"–!11", they cannot be decoupled to produce the
wave equations, !4" and !5". However, the phase velocity
tangential to the PML is equivalent to that supported by the
lossless equations and is independent of incident angle. This
insures that reflections will not occur at the interface between
the interior region and the PML.

To derive the reflection coefficient !21" and the match-
ing condition !23", consider a longitudinal wave of the form

Ax!A0 cos 4e j!6t#kxx#kzz ", !B1"

Az!A0 sin 4e j!6t#kxx#kzz ", !B2"

&x!&0xe j!6t#kxx#kzz ", !B3"

&z!&0ze j!6t#kxx#kzz ", !B4"

where Ā!(Ax ,Az) is oriented in the same direction as v̄p in
Fig. A1, and &!&x"&z is a scalar field. In this Appendix,
k !without subscript" is used to represent the compressional
wave number. Assuming A0 is specified, the unknowns are
kx , kz , &0x, and &0z. Substituting !B1"–!B4" into !12"–!15"
yields

&0x! 1# j
!)"2*"qpx

6 "!#
!)"2*"kxA0 cos 4

6
,

!B5"

&0z! 1# j
!)"2*"qpz

6 "!#
!)"2*"kzA0 sin 4

6
, !B6"

A0 cos 4! 1# j
qpx*
+6 " !#

kx!&0x"&0z"

+6
, !B7"

A0 sin 4! 1# j
qpz*
+6 " !#

kz!&0x"&0z"

+6
. !B8"

&0x and &0z are found from !B5" and !B6" and substituted
into !B7" and !B8" to obtain

62

cp
2 cos 4! 1# j

qpx*
+6 " !kx! kx cos 4

1# j
!)"2*"qpx

6

"
kz sin 4

1# j
!)"2*"qpz

6
" , !B9"

62

cp
2 sin 4! 1# j

qpz*
+6 " !kz! kx cos 4

1# j
!)"2*"qpx

6

"
kz sin 4

1# j
!)"2*"qpz

6
" . !B10"

Taking the ratio of !B10" and !B9" yields

FIG. A1. Geometry of wave propagating in the grid interior.
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kz
kx

!
sin 4

cos 4

1# j!qpz* /+6"

1# j!qpx* /+6"
. !B11"

To obtain kz2, !B11" is solved for kx which is substituted into
!B10". To obtain kx2, !B11" is solved for kz which is substi-
tuted into !B9". Taking the positive square roots for the for-
ward traveling wave yields

kx!
6 cos 4#1# j!qpx* /+6"$

cpG
, !B12"

kz!
6 sin 4#1# j!qpz* /+6"$

cpG
, !B13"

where

G!!Wx cos2 4"Wz sin2 4 , !B14"

Wx!
1# j!qpx* /+6"

1# j#!)"2*"qpx /6$
, !B15"

Wz!
1# j!qpz* /+6"

1# j#!)"2*"qpz /6$
. !B16"

A special case occurs when matching condition !23" holds,
namely the quantities Wx , Wz , and G become unity. For this
condition, !B12" and !B13" are substituted into !B1"–!B4" to
obtain waves of the general form

7!70e j!6t#kxrx#kzrz "ekxixekziz, !B17"

where 7 may be replaced by Ax , Az , &x , or &z . The real and
imaginary parts of kx and kz are

kxr!
6 cos 4

cp
, !B18"

kxi!#
qpx* cos 4

+cp
, !B19"

kzr!
6 sin 4

cp
, !B20"

kzi!#
qpz* sin 4

+cp
. !B21"

Equations !B17"–!B21" show that exponential attenuation
occurs in the direction perpendicular to the edge of the PML
when the appropriate loss term is set to zero !see Fig. 1".

A wave traveling in the PML will be attenuated until it
is reflected at a boundary. The reflected wave will undergo
further attenuation until it reaches the overlap region. For a
PML of thickness -, this process results in the reflection
coefficient

Rpp!exp# #
2!)"2*"-

cp
$
0

-
q!r " dr% , !B22"

where matching condition !23" has been used to eliminate
the starred loss term and q(r) represents either qpx or qpz .
The loss term is a function of position within the PML as
given by !20". Hence, when the integral is evaluated in
!B22", the result is !21". Repeating the steps above for the

'y and B̄ fields using !17"–!19" results in the matching con-
dition !24" and the reflecton coefficient !22".
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