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3.3.3.1.   BASICS   OF   S-PARAMETERS,  part 1

C O N T E N T S  of part 1:

The Definition of the S-Parameters
Understanding the Smith Chart Transformation
Understanding Polar Plots of S12 and S21
Calculating S-Parameters from Complex Voltages
Small Signal and Large Signal S-Parameters
Transforming 2-port S-Parameters to 3-Port and Back
Transforming S-parameters from  2-PORT  -> 1-PORT,
             and its application for the Q factor of RF-passive components
Converting S-parameters to differential/common mode parameters
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   THE   DEFINITION   OF   THE   S-PARAMETERS

R
incident reference

A
reflected

B
transmitted

Scatter Parameters, also called S-parameters, belong to the group to twoport parameters used
in twoport theory. Like the Y or Z parameter, they describe the performance of a twoport
completely. Different to Y and Z, however, they relate to the traveling waves that are
scattered or reflected when a network is inserted into a transmission line of a certain
characteristic impedance ZL. Therefore, S-parameters can be compared to reflection and
throughpass of a pair of spectacles.

S-parameters are important in microwave design because they are easier to measure and to
work with at high frequencies than other kinds of twoport parameters. They are conceptually
simple, analytically convenient and capable of providing detailed insight into a measurement
and modeling problem. However, it must kept in mind that -like all other twoport parameters,
S-parameters are linear by default. I.e. they represent the linear behavior of the twoport.

Staying with the pair of spectacles examples for a moment, i.e. power-wise, the S-parameters
are defined as:
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with
| a

i
 |2 power wave traveling towards the twoport gate

| b
i
 |2 power wave reflected back from the twoport gate

and
| S

11
 |2 power reflected from port1

| S
12
 |2 power transmitted from port1 to port2

| S
21
 |2 power transmitted from port2 to port1

| S
22
 |2 power reflected from port2

Note: a
i
, b

i
 and S

ij
 are effective values and not peak values of the corresponding sine functions.

This means that S-parameters do relate traveling waves (power) to a twoport's reflection and
transmission behavior. Since the twoport is imbedded in a characteristic impedance of Z0,
these 'waves' can be interpreted in terms of normalized voltage or current amplitudes. This is
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explained below.
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In other words, we can convert the power towards the twoport
into a normalized voltage amplitude of

0
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and the power away from the twoport can be interpreted in terms of voltages like
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The following signal flow graph gives the situation for the S-parameter interpretation in
voltages:
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Looking at the S-parameter coefficients individually, we have:
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S11 and S21 are determined by measuring the magnitude and phase of the incident, reflected
and transmitted signals when the output is terminated in a perfect Zo load. This condition
guarantees that a2 is zero. S11 is equivalent to the input complex reflection coefficient or
impedance of the DUT, and S21 is the forward complex transmission coefficient.

Likewise, by placing the source at port 2 and terminating port 1 in a perfect load (making a1
zero), S22 and S12 measurements can be made. S22 is equivalent to the output complex
reflection coefficient or output impedance of the DUT, and S12 is the reverse complex
transmission coefficient.
The accuracy of S-parameter measurements depends greatly on how good a termination we
apply to the port not being stimulated.  Anything other than a perfect load will result in a1 or
a2 not being zero (which violates the definition for S-parameters). When the DUT is
connected to the test ports of a network analyzer and we don't account for imperfect test port
match, we have not done a very good job satisfying the condition of a perfect termination.
For this reason, two-port error correction, which corrects for source and load match, is very
important for accurate S-parameter measurements.

Let's now discuss some characteristic S-parameter values.
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S11 and S22
value interpretation

   -1 all voltage amplitudes towards the twoport are inverted and reflected   (0 Ω)
    0 impedance matching, no reflections at all   (50 Ω)
   +1 voltage amplitudes are reflected   (infinite Ω)

The magnitude of S11 and S22 is always less than 1. Otherwise, it would represent a negative
ohmic value. On the other hand, the magnitude of S21 (transfer characteristics) respectively
S12 (reverse) can exceed the value of 1 in the case of active amplification. Also, S21 and S12
can be positive an negative. If they are negative, there is a phase shift. Example: S21 of a
transistor starts usually at about S21 = -2    -10. This means signal amplification within the Z0
environment and phase shift.

S21 and S12
        magnitude interpretation

    0 no signal transmission at all
0 ... +1 input signal is damped in the Z0 environment
   +1 unity gain signal transmission  in the Z0 environment
 > +1 input signal is amplified in the Z0 environment

The numbering convention for S-parameters is that the first number following the S is the port
at which energy emerges, and the second number is the port at which energy enters. So S21 is
a measure of power emerging from Port 2 as a result of applying an RF stimulus to Port 1.



3.3.3.1:   Basics of S-Parameters (part 1)  -6-

characterization handbook  1SBASIC1.doc | 18.03.02     Franz Sischka

In order to better understand the Sxx parameters, let's consider an ideal transmission line,
connected to a port of the VNA, and terminated with either a LOAD, an OPEN or a SHORT,
or an ideal RESISTOR.   (This chapter is from HP App.Note 1287-1).

Fig.1: a transmission line connected to a VNA

At very low frequencies, with wavelengths much larger than the line, the transmission line
can be thought of a simple wire. This is adequate for conducting DC or very low frequency
power. The resistance of the wire is relatively low and has little effect on low-frequency
signals. The voltage and current are the same no matter where a measurement is made on the
wire. At higher frequencies, wavelengths are comparable to or smaller than the length of the
transmission line (or a conductor in a high-frequency circuit), and power transmission can be
thought of in terms of traveling waves. When the transmission line is terminated in its
characteristic impedance, maximum power is transferred to the load. When the termination is
not equal to the characteristic impedance, that part of the signal that is not absorbed by the
load is reflected back to the source.

If a transmission line is terminated in its characteristic impedance Z0 (LOAD condition), no
reflected signal occurs since all of the transmitted power is absorbed by the load. Looking at
the envelope of the RF signal versus distance along the transmission line shows no standing
waves because without reflections, energy flows in only one direction.

When the transmission line is terminated in a SHORT circuit (which can sustain no voltage
and therefore dissipates zero power), a reflected wave is launched back along the line toward
the source. The reflected voltage wave must be equal in magnitude to the incident voltage
wave and be 180 degrees out of phase with it at the plane of the load. The reflected and
incident waves are equal in magnitude but traveling in the opposite directions.

If the transmission line is terminated in an OPEN-circuit condition (which can sustain no
current), the reflected current wave will be 180 degrees out of phase with the incident current
wave, while the reflected voltage wave will be in phase with the incident voltage wave at the
plane of the load. This guarantees that the current at the open will be zero. The reflected and
incident current waves are equal in magnitude, but traveling in the opposite directions. For
both the short and open cases, a standing wave pattern is set up on the transmission line. The
voltage valleys will be zero and the voltage peaks will be twice the incident voltage level.

If the transmission line is terminated with say an ideal 25 Ω RESISTOR, resulting in a
condition between full absorption and full reflection, part of the incident power is absorbed
and part is reflected. The amplitude of the reflected voltage wave will be one-third that of the
incident wave, and the two waves will be 180 degrees out of phase at the plane of the load.
The valleys of the standing-wave pattern will no longer be zero, and the peaks will be less
than those of the short and open cases. The ratio of the peaks to valleys will be 2:1.

Fig.2: the voltage standing wave ratio
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The traditional way of determining RF impedance was to measure VSWR using an RF
probe/detector, a length of slotted transmission line, and a VSWR meter. As the probe was
moved along the transmission line, the relative position and values of the peaks and valleys
were noted on the meter. From these measurements, impedance could be derived. The
procedure was repeated at different frequencies. Modern network analyzers measure the
incident and reflected waves directly during a frequency sweep, and impedance results can be
displayed in any number of formats (including VSWR).

The most general term for ratioed reflection is the complex reflection coefficient, Γ (gamma).
The magnitude portion of Γ is called ρ (rho). The reflection coefficient is the ratio of the
reflected signal voltage level to the incident signal voltage level. For example, a transmission
line terminated in its characteristic impedance Z0, will have all energy transferred to the load
so Vrefl = 0 and ρ = 0. When the impedance of the load, ZL is not equal to the characteristic
impedance, energy is reflected and ρ is greater than zero. When the load impedance is equal
to a short or open circuit, all energy is reflected and ρ = 1. As a result, the range of possible
values for ρ is 0 to 1.

Fig.3: Reflection Parameters

Return loss is a way to express the reflection coefficient in logarithmic terms (dB). Return
loss is the number of decibels that the reflected signal is below the incident signal. Return loss
is always expressed as a positive number and varies between infinity for a load at the
characteristic impedance and 0 dB for an open or short circuit. Another common term used to
express reflection is voltage standing wave ratio (VSWR), which is defined as the maximum
value of the RF envelope over the minimum value of the RF envelope. It is related to ρ as
(1 + ρ)/(1 – ρ).
VSWR ranges from 1 (no reflection) to infinity (full reflection).

After these thoughts on the Sxx parameters, lets finish by considering the properties of the
Sxy parameters. The transmission coefficient is defined as the transmitted voltage divided by
the incident voltage. If the absolute value of the transmitted voltage is greater than the
absolute value of the incident voltage, a DUT or system is said to have gain. If the absolute
value of the transmitted voltage is less than the absolute value of the incident voltage, the
DUT or system is said to have attenuation or insertion loss. The phase portion of the
transmission coefficient is called insertion phase.
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Fig,4: Transmission parameters

Direct examination of insertion phase usually does not provide useful information. This is
because the insertion phase has a large (negative) slope with respect to frequency due to the
electrical length of the DUT. The slope is proportional to the length of the DUT. Since it is
only deviation from linear phase that causes distortion in communications systems, it is
desirable to remove the linear portion of the phase response to analyze the remaining
nonlinear portion. This can be done by using the electrical delay feature of a network analyzer
to mathematically cancel the average electrical length of the DUT. The result is a high-
resolution display of phase distortion or deviation from linear phase.

Fig.5: Applying electrical delay

Note: adding electrical delay should not be used for modeling!

Another useful measure of phase distortion is group delay. This parameter is a measure of the
transit time of a signal through a DUT versus frequency. Group delay can be calculated by
differentiating the DUT’s phase response versus frequency. It reduces the linear portion of the
phase response to a constant value, and transforms the deviations from linear phase into
deviations from constant group delay, (which causes phase distortion in communications
systems). The average delay represents the average signal transit time through a DUT.

Fig.6: Understanding group delay



3.3.3.1:   Basics of S-Parameters (part 1)  -9-

characterization handbook  1SBASIC1.doc | 18.03.02     Franz Sischka

  UNDERSTANDING   THE   SMITH   CHART   TRANSFORMATION

What makes S
xx

-parameters especially interesting for modeling, is that  S11 and S22 can be

interpreted as complex input or output resistances of the twoport (including the termination at
the opposite side of the twoport with Z0 !!).
That's why they are usually plotted in a Smith chart. This chapter is intended to explain the
basics of such Smith charts.

The Smith chart is a transformation of the complex impedance plane   R   into the complex
reflection coefficient   Γ  (rho)   following:

0ZR
0ZR

+
−=Γ

(1)
            with the system's reference impedance  Z0 = 50 Ω.

This means that the right half of the complex impedance plane   R   is transformed into a
circle in the  Γ-domain. The circle radius is  '1'  (see fig.1).
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Fig.1:  the relationship between  Sxx  and the complex impedance of a twoport.

On the other hand, using an network analyzer with a system impedance of  Z0, the parameter
S11 is equal to

1
01v
1v2S11 −⋅=

(2)

where  v1   is the complex voltage at port 1  and  v01  the stimulating AC source voltage
(typically normalized to '1'). See fig.2, and the following chapter on 'calculating S-parameters
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from complex voltages' for details.

Z0

Z0
V01

twoport

R

~~ V1

fig.2: about the definition of S11                  (S22  is just analogous).

Under the assumption that   R   is the complex input resistance at port 1  and   Z0  is the
system impedance,  we get using eq.(2) and the resistive divider formula:

0ZR
0ZR1

0ZR
R2S11 +

−=−
+

⋅=

And this is  the reflection coefficient   Γ   from (1) !!

After all, if the reflection coefficient Γ  resp. S
11

 or S
22

  is known, we get for the complex

resistor  R:

11

11

S1

S1
0Z

1
10ZR

−

+
⋅=

Γ−
Γ+

⋅= , with usually Z0 = 50Ω

This explains how we can get the complex input/output resistance of a twoport directly from
S11 or S22, if we plot these S-parameters in a Smith chart.

Let's go back to fig.1 and consolidate this context a little further:
it shows a square with the corners  (0/0)Ω, (50/0)Ω, (50/j50)Ω and (0/j50)Ω in the complex
impedance plane and its equivalent in the Smith chart with Z0=50Ω. Please watch the angel-
preserving property of this transform (rectangles stay rectangles close to their origins). Also
watch how the positive and negative imaginary axis of the  R  plane is transformed into the
Smith chart domain  ( Γ ),  and where  (50/j50) Ω  is located in the Smith chart. Also verify
that the center of the Smith chart represents Z0, i.e. for Z0=50Ω, the center of the Smith chart
is (50/j0) Ω.
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Fig.3 explains once again the transformation of the complex ohmic plane to the Smith chart.
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Fig. 3: how the complex resistance plane is transformed into the Smith chart

This allows us to make the following statements:
>  Sxx on the real axis represent ohmic resistors
>  Sxx above the real axis represent inductors
>  Sxx below the real axis represent capacitors
>  S

xx
 curves in the Smith chart turn clock-wise with increasing frequency.

jωL

1/jωC

R

inductive

capacitive

Z0

Z

As an example for interpreting Smith charts, fig.4a shows the S11 plot of a bipolar transistor.
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In this case, the locus curve stars with S11 ≈ 1 = ∞*Z0   at low frequencies
(RBB' + Rdiode + beta*RE). For higher frequencies, the curves then tend towards |S11| ∈  {-
1 .. 0}  for high frequencies  ( the CBE shorts Rdiode, and beta = 1. Therefore, the end point
of S11 is RBB' + RE ). Since RBB' is bias dependent, and decreasing with increasing iB, the
end points of the curves represent this bias-dependency. For incrementing frequency, the S11
locus curve turns clockwise-

Fig.4b shows the S11 curve of a capacitor located between the NWA ports. The capacitor
represents an OPEN for DC, thus S11 ~ 1 = ∞*Z0. For  highest frequencies, it behaves like a
SHORT, and we see the 50 Ω of the opposite port2 (!). The transition between the DC point
and infinite frequency follows a circle, and the increasing frequency turns the curve again
clockwise.

f
iB

S11

Fig.4a: S
11

 of a transistor with          Fig4b: S
11

 of a capacitor
           increasing Base current iB.                   between port 1 and port 2
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UNDERSTANDING   POLAR   PLOTS   OF   S12   AND   S21

1-1

j

-j

Fig.1: The polar plot for S12 and S21

The S21 parameter represents the power transmission from port 1 to port 2, if the twoport is
inserted into a matching network with characteristic impedance Z0 of e.g. 50Ω. This means, if
no voltage is transmitted, then S21=0 (in the center of the polar plot). If voltage is transmitted,
we are on the positive X-axis. The curve will be below S21=1 for damping between the port 1
and port 2, and above S21=1 for amplification. If the phase is inverted, we are basically in the
left half-plane of the polar plot (REAL[S21]<0). And, for voltage amplification, but also
phase shift of e.g.-180 degrees (a transistor), below S21=-1.

Like with the Smith chart, all S21 and S12 curves turn clock-wise with increasing frequency.

As an example, fig.2 shows the S21 plot of a bipolar transistor, and fig.3 of a capacitor
between port 1 and port 2. While the transistor starts with S21 <-1 at low frequencies (voltage
amplification in a 50Ω system), its curves tend towards S21=0 for high frequencies (no
voltage transmission, the transistor capacitances short all voltage transmission). For the
capacitor it's just the opposite:   no power transmission for lowest frequencies, but an ideal
short (S21=1) for highest frequencies. For more details, see the chapter on understanding S-
parameters plots.

f

iB

f

Fig.2: S21 of a transistor with          Fig3: S21 of a capacitor
           varying Base current iB.                   between port 1 and port 2
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CALCULATING  S-PARAMETERS  FROM  COMPLEX  VOLTAGES
IC_CAP file:  calc_spar.mdl

As it was mentioned before, S-parameters can be interpreted in terms of voltage at the DUT in
a Z0 environment.

The following sketch gives an explanation about how to calculate them for a given twoport
(DUT), imbedded in an external circuit, which itself represents the characteristic impedance.

Z1 = Z2 = Z0

e.g.Z0 = 50 Ω

Z1

Z2V01 V1
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~ V2
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.

1
v
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1
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v
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e.g.Z0 = 50 Ohm

Z1 V1
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V02~V2
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.
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1
12 v

v
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(3)
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v
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*2S
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2
22 −=

(4)
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  SMALL  SIGNAL  AND  LARGE  SIGNAL  S-PARAMETERS

So far, we introduced the S-parameters and compared them to the other twoport parameters
like Y or Z. This means, S-parameters are small signal parameters by definition. For a
transistor as an example, the S-parameters do  not  reflect non-linear amplification phenomena
like compression etc.

In general, twoport parameters of non-linear components like transistors or diodes vary as a
function of input power. Referring to S-parameters, the parameters  |S

1l
|2  and  |S

21
|2  are defined

as a function of power incident at port 1 with no power incident at port 2; whereas  |S
12

|2  and
|S

22
|2  are defined as a function of power incident at port 2. Therefore, in RF simulators, all S-

parameters of nonlinear electrical elements are represented by a 2x2 S-parameter matrix
versus input power at port 1 for forward and port 2 for reverse operation.

This data set has been accepted as a convenient means of characterizing nonlinear devices by
their large-signal S-parameters and have been successfully used for designing power
amplifiers, oscillators, etc.

However, keep in mind that when the S-parameters become RF-power dependent, harmonics
occur. In order to characterize these harmonic frequencies, a spectrum analyzer or a non-
linear network analyzer should be applied!

large signal, non-linear RF:
voltage/current vectors
for each harmonic frequency

freq

DC bias

si
gn

al
 p

ow
er

small signal:
S-parameters

freq

DC bias

si
gn

al
 p

ow
er

Fig.1: small signal S-parameters are a function of frequency and, for transistors, also of bias,
          while large signal S-parameters also cover the signal power.

Note:  even for the three-dimensional character of large signal S-parameters, they are by
definition linear. This means, a  single frequency power  |a

l
|2  injected into port1 will lead to

reflected and transmitted power with exactly the same frequency. No harmonic frequencies!
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  Transforming 3-port parameters to 2-port and back

In order to transform e.g. Common-Emitter S-Parameters to Common-Base, we will now
consider 3-Port S-Parameters. Provided a certain port is connected to ground, we are then able
to evaluate the conversion formulas.

Note: for details, see the publication /Stassen/ mentioned at the end of this chapter.

3-PORT  -> 2-PORT

Provided that the device under test is connected with 50 Ω to all its 3 ports, the 3-pole
network S-parameters are defined as below:

3332321313

3232221212

3132121111

a*Sa*Sa*Sb
a*Sa*Sa*Sb
a*Sa*Sa*Sb

++=
++=
++=

(1)

If port 3 is connected to ground, we get for the corresponding reflection coefficient Γ
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Thus we get the 2-port network parameters from the 3-port ones as:
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Transforming from  2-PORT  -> 3-PORT

Using the matrix in (3), we can also calculate the 3-port S-parameters out of 2-port
parameters.

As described in publication /Stassen/, see below, the sum of each column and row in a 3-port
S-parameter matrix equals '1', i.e.

3,2,1ifor
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ij 1S =

=
=�

and
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ij 1S =

=
=�
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Referring to the above equations (1) and (29, we can calculate the 3-port S-parameters out of
the 2-port ones (with Index T (Twoport Measurement):
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Once these 3-port S-parameters are known, they can be used to calculate the common-base or
common-collector 2-port S-parameters of a bipolar transistor  etc.

Publications:
Rudolf Stassen, 'Einsatz eines Mikrowellen-SPitzenmeßplatzes zur Charakterisierung von
Transistore direkt auf dem Wafer im Frequenzbereich von 0,045 bis 26,5GHz', Diplomarbeit
am Institut für Schicht- und Ionentechnik am Forschungszentrum Jülich GmbH, available
from Technische Informationsbibliothek, Hannover.
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Transforming from  2-PORT  -> 1-PORT:
                         and its application for the Q factor of RF-passive components

This is required if a component has been measured in 2-Port mode, and some of its
components characteristics might be affected by the characteristic impedance of the opposite
VNA port. An example is the calculation of the quality factor of a spiral inductor, which is
represented by

)Z(REAL
)Z(IMAGQ

inductor

inductor=

and which cannot be calculated correctly out of the 2-Port S-Parameters because of the Z0=50
Ω of Port 2.

In this case, we refer to equation. (3) from above and obtain:

22

2112
11port1_11 S1

S*SSS
+

−=

From that, we apply the basic   S
11

 <> R  conversion, mentioned in the above chapter on
Smith charts,

11

11
S1
S1

0ZR
−
+

⋅=

and obtain for the input impedance at Port 1

port1_11

port1_11
0port1_11 S1

S1
*ZZ

−
+

=

From this, we can obtain the requested 1-Port characteristic like the Q factor of a spiral
inductor

)Z(REAL
)Z(IMAG

Q
port1_11

port1_11=

Note: the same result is obtained when converting the S-parameters to Y-parameters, and then
calculating

)Y(REAL
)Y(IMAGQ

11

11−=
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  Converting S-parameters to differential/common mode parameters

When measuring S-parameters using a VNA, the DUT is characterized by reflection and thru
measurements at both ports, referring to signal ground.

In some applications, however, the device may be used in differential mode, e.g. in
differential amplifier stages etc. In such a case, the characteristics of the device may be
different from those measured in the conventional S-parameter measurement environment.
This is especially important for passive RF components and their Q factor, i.e. the 'quality
factor' of their RF performance. Therefore, it is desirable to also model both, the performance
and the Q factor, in the appropriate stimulus condition.

Since the S-parameter are linear twoport parameters, they can be converted into Z-parameters,
and the Z-parameters can be converted in special Z-parameters for common mode excitation
and differential mode excitation.

Let's begin with the conventional Z matrix definition:

Z   Matrix

Zport1 port2

i1

v1

i2

v2

For differential mode condition, we can define:

2v1vvdiff_v d −== and 2
2i1iidiff_i d

−==

And for common mode,

2
2v1vvcommon_v c

+==
and 2i1iicommon_i c +==

Referring to the Z matrix

�
�

�
�
�

�
⋅�

�

�
�
�

�
=�

�

�
�
�

�

2
1

2221
1211

2
1

i
i

ZZ
ZZ

v
v

,

we can substitute by the common and differential voltages and currents and obtain

�
�

�
�
�

�
⋅�

�

�
�
�

�
=�

�

�
�
�

�

d
c

dd
cdcc

d
c

i
i

ZZdc
ZZ

v
v

with

4
ZZZZZ 22211211

cc
+++=

2
ZZZZZ 22211211

cd
−+−=
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2
ZZZZZ 22211211

dc
−−+=

22211211dd ZZZZZ +−−=

This conversion scheme can be applied to get differential mode and common mode S-
parameters:

- convert S-parameters to Z
- apply common/differential conversion
- convert Z-parameters back to S

Related to the Q-Factor:
Usually, the Q factor is calculated from the Z-parameters, converted to 1-port Z-parameters as

)Z(REAL
)Z(IMAG

Q
port1_11

port1_11=
,   see above.

This refers to a measurement condition where the 1st port is tested, and the 2nd is grounded.

Under differential mode operating conditions, this is not the case. Referring to the sections
above, we now have:

freqPI2
)Z(IMAGL dd

dd ⋅⋅
=

and    )Z(REALR dddd =

what gives

( ) dd
dd

dd
dd

dd R
freqPI2L

ZREAL
)Z(IMAGQ ⋅⋅⋅

==
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