
FPGA Spread Spectrum
Modulator

EE572 Project, Fall 1999

Steven Harwood

Andrew Iverson

Presentation Outline

• What is it?

• Why do we want to build it, AKA
“Motivation!”

• Design Goals

• Implementation

• Forward Plans

What is it: Outline

• Goal of the device

• 30 second tour of Spread Spectrum

• Modulator block diagram
– Input data handler/memory interface

– Spreading code generator: PRBS

– Baseband FIR Filter

Goal of Device

• A spread spectrum modulator for arbitrary
spreading sequence
– Input is Encoded Data Stream; protocol issues have

been handled “upstream”

– Outputs are in-phase (I) and quadrature-phase (Q)
words at output sample rate,

– Outputs go to Digital to Analog conversion, on the way
to RF chain

• Design entire modulator into an FPGA

30 second tour of Multiple Access
Communications,
Spread Spectrum

Orthogonality
• Given a funtion, f(t), we often want to specify the

function by a set of numbers not dependent on the
variable t. Express as

f(t) = Σ fnφn(t)

where the chosen φn(t) is known as a basis function
for f(t); fn is a set of numbers independent of time.

• This is analgous to expressing a vector as the sum
of a set of numbers in a Cartesian coordinate
system: (1,1,1) = 1 • x + 1 • y + 1 • z

x

z

y

(1,1,1)

Orthogonality

• As with a Cartesian coordinate system , the axes
are chosen such that the projection of the vector
on each coordinate axis is independent of the
projection of the vector on other axes.

• When the vector φ1(t) has no component along
vector φ2(t), the two vectors are perpendicular and
are defined to be orthogonal.

φ1

φ2

All projection of one axis
goes to the null magnitude

on the orthogonal axis

0

Orthogonality
• In general terms, there are many sets of orthogonal

functions. Examples of orthogonal vector sets are
Cartesian coordinates, polar coordinates, time
allocated events, trigonometric functions,
exponential functions.

• Often it is advantageous to normalize the axes of a
set of basis functions to unity. When an orthogonal
set of basis functions are normalized, they are
orthonormal.

• Orthogonal systems play a vital role in
communications. By requiring different
communication channels to be orthogonal, multiple
users may access a common communications
domain.

Multiple Access Communications
• Frequency Division MA (FDMA)

– Orthogonal in Frequency
• Different users use different frequencies

• Time Division MA (TDMA)
– Orthogonal in Time and Frequency

• Different users use different frequencies, but only
transmit/receive on time-limited intervals.

Power

freq.

time

f1 f2 f3

C1 C2 C3

freq.

time

f1 f2

C6

C4

C5

C1

C2

C3

PowerPower

Multiple Access Communications
• Code Division MA (CDMA)

– Orthogonal in Coding, all user’s share a frequency band

– Transmit signal in a bandwidth much greater than the
required information bandwidth: “spread the signal”

Power

freq.

time

f1 f2

C1
C2

C3
C4

freq

Power

B1

A1

=>

freq

Power

A2

B2

A1B1 = Κ * A2B2

K is proportionality constant

Information Signal Transmitted SS signal

Spread Spectrum

• Incoming data is modulated (multiplied) with a
spreading sequence
– Spreading signal typically much higher rate than

information signal

– The modulating operation is a bitwise Exclusive-OR.
– The spreading signal is clocked at nn times the incoming

information signal data rate, where n is an integer, n>1n>1.
Common values for nn = 128, 512

X
 Information

Signal

Spreading
Signal

Output Signal
 = Information x Spreading code

Spread Spectrum
• Spreading a data signal example

– Spreading Factor of 4 shown here

Spectrum of Original Signal Spectrum of Spread Signal

Spread Spectrum
• Spreading Codes generated by pseudo-

random binary sequence (PRBS) generator

• PRBS is a stream of “random” 1’s and 0’s
that repeats at known intervals
– Generated in hardware by shift registers with XOR

feedback

– PRBS Length dictated by length of shift register chain
and feedback taps

– A maximal length sequence has length = 2n -1 states
before repeating, where “n” is the length of the shift
register

Spread Spectrum
• Example PRBS: f(x) = x3 + x + 1 ,

length=3,
number of states= 7
111 ⇒ 110 ⇒ 101⇒ 010 ⇒ 100 ⇒ 001⇒ 011⇒

111...

D Q D Q D Q

+

Clock

Spread Spectrum
• Commercial SS uses a pre-specified PRBS
• Orthogonality is achieved by having all users

codes’ appear unique
– Achieved by using offset versions of the same

spreading code
• user 1 will use seed value “A”, user 2 will use seed value

“B”

• user 1’s version of PRBS always looks different from user
2’s version of PRBS, orthogonality is maintained.

• In commercial systems, there are a finite number of offset
positions per common channel. Ex. IS-95 has 512 different
offset positions per cell.

– COTS hardware available for specific spreading codes

Spread Spectrum
• COTS hardware available for

specific spreading codes
• Arbitrary spreading code

transmitter not generally
available
–Want to look even more different

than the other channel, yields more
secure channel.

Spread Spectrum (SS): Transmitter
Block Diagram

Data
Encoding,

Error
Correction

SS
Modulator

D/A
conversion

RF
Upconversion

Input
Data

RF
Output

DSP
Modulator

ASIC
DAC

Analog
Transmitter

EE572 Project

Modulator Block Diagram

PRBS1

PRBS2

Input Data
Interface

X

X

Baseband
FIR Filter

Baseband
FIR Filter

I-Channel

Q-Channel

Data from
Memory or CPU

FPGA

Output
Data

Interface

PRBS
Control

PRBS
Control

Data Input/Output
• Accept 8-bit parallel data stream

• Output two modulated data streams
– 18-bit Parallel Output

PRBS1

PRBS2

Input Data
Interface

X

X

Baseband
FIR Filter

Baseband
FIR Filter

I-Channel

Q-Channel

Data from
Memory or CPU

FPGA

Output
Data

Interface

PRBS
Control

PRBS
Control

Spreading Code Generators

• PRBS Example: f(x) = x3 + x + 1 , length=3

PRBS1

PRBS2

Input Data
Interface

X

X

Baseband
FIR Filter

Baseband
FIR Filter

I-Channel

Q-Channel

Data from
Memory or CPU

FPGA

Output
Data

Interface

PRBS
Control

PRBS
Control

D Q D Q D Q

+

Clock

111 ⇒ 110 ⇒ 101⇒ 010 ⇒ 100 ⇒ 001⇒ 011⇒ 111...

• IS-95 uses PRBS with length 32; 232-1 ⇒length of 4,294,967,295

• Different PRBS may be generated in Programmable Logic

Baseband FIR Filter

• Must use a digital filter to bandlimit the
output signal.

• Recall the Fourier transform of square pulse train:
– Spectral content to infinity

PRBS1

PRBS2

Input Data
Interface

X

X

Baseband
FIR Filter

Baseband
FIR Filter

I-Channel

Q-Channel

Data from
Memory or CPU

FPGA

Output
Data

Interface

T

time

amplitude

freq

Power f=1/T

f 3f 5f

Baseband Filter
• After filtering, the signal to be transmitted

has finite bandwidth.
– Filter is represented by green shaded region

– All spectral content outside the filter bandwidth
is highly attenuated, based on the filter
characteristics.

– Prevents our transmitted signal from becoming
an unwanted interferor.

freq

Power f=1/T

f 3f 5f

Motivation

• Why put into an FPGA?

• Why not a programmable DSP?

Why not a general purpose
processor or DSP?

second
167.4

second
2001

148
outputscycle

cycle
MAC

MAC
tap

taps
output

≡×××

• As data rates increase, DSP’s and CPU’s
can’t keep up

• Example: IS-95 baseband filter
– 1.288MHz input data, 5.152MHz output data

– High Performance DSP can perform 1Multiply-
Accumulate (MAC) per cycle.

– 200MHz DSP, Filter is 48-taps in length

4.167MHz output < 5.152MHz ⇒ DSP can’t keep up!

Why an FPGA?

• Can offload specialized operations, e.g.
filtering, PRBS generation and modulation.

• Can change portions of the design quickly
– Filter length and tap weights are easily adjusted

– Alter PRBS on the fly

– Add or remove functionality in system, and
without a PCB change.

Design Goals

• Arbitrary spreading sequence

• At speed operation (filters must keep up!)

• Fit the entire design into one FPGA

Spread Spectrum Transmitter

• Clock Modification block

• Microprocessor/DSP interface block

• FIFO data input block

• 8-bit parallel to serial conversion block

• Programmable I and Q channel Pseudo Random
Binary Sequence Generator.

• Programmable Finite Impulse Response Filter

Spread Spectrum Transmitter Block Diagram

Spread Spectrum Transmitter Block Diagram (cont.)

Subsection Outline

• Clock Modification

• DSP/Microprocessor interface

• Data interface: FIFO & Serial conversion

• PRBS Design Plan

• Filter Design Plan

Clock Modification

• Utilizes same input clock on all clock dividers to minimize
clock skew.

• 51.52 MHz input (FIR Clock)

• 1.288 MHz output (PRBS clock)

• 20.125 KHz output (Serial Clock)

• 2.515625 Khz pulse (Load Strobe & FIFO Pop Clk)

• Associated Verilog Files: clk_mod.v

Divide
by
40

Divide
by

64*40

Divide
by

8*64*40

50.52 MHz

1.288 MHz - prbs_clk

20.125 KHz - slow_clk

2.515625 KHz - load_clk

DSP/Microprocessor Interface

• 8 - bit Bi-Directional Data Bus

• 4 - bit Address Bus

• 14 uniquely addressable Data Registers

• Read/Write capability

• Chip Select

• Associated Verilog Files: control.v

DSP/Microprocessor Interface
Register Map

PRBS I Tap Config. Reg. [31:24]

PRBS I Tap Config. Reg. [23:16]

PRBS I Tap Config. Reg. [15:8]

PRBS I Tap Config. Reg. [7:0]

Last Tap I Config. Reg. [4:0]

Last Tap Q Config. Reg. [4:0]

FIFO Data Reg. [7:0]

FIR Coeff. Data Reg. [11:8]

FIR Coeff. Data Reg. [7:0]

FIR RAM Address Reg. [7:0]

‘h0
‘h1
‘h2
‘h3

‘h4
‘h5
‘h6
‘h7

‘h8

‘h9

‘hA

‘hB
‘hC

‘hD

PRBS Q Tap Config. Reg. [31:24]

PRBS Q Tap Config. Reg. [23:16]

PRBS Q Tap Config. Reg. [15:8]

PRBS Q Tap Config. Reg. [7:0]

data[7:0]

addr[7:0]

rd_strobe

wr_strobe

cs

Data Interface : FIFO

• Async. Interface (separate push/pop clocks)

• 8 - bits wide x 32 deep

• Full, half_full, and empty status flags

• Push and Pop binary address counters

• Up/Down counter

– Keeps track of number of datum in FIFO

• Dual Port RAM

• Associated Verilog files: fifo.v, fifo_ram.v, udcount.v

FIFO Block Diagram

Parallel to Serial Converter

• 8-bit data in.

• Synchronous Load

• Asynchronous Reset

• Serial Clock
• Associated Verilog Files: p2s.v

I & Q channel “Spreader”

• Serial Data Input

• Independent I & Q channel PRBS.

• 12-bit serial to parallel converters
• Associated Verilog Files: prbs.v, dff.v, shift_reg.v

PRBS Design

• Design such that the virtual register length may be varied by

selecting any one of 32 register outputs as the PRBS data output

– Max length = 32 registers deep

• Programmable Feedback paths

– Design such that any register output may be included in feedback path

• Design options

– PRBS configured in hardware by updating a register

• Most flexible method; User can change PRBS on-the-fly

• Inefficient hardware utilization

PRBS Design: Register Configured

D1 Q1 D2 Q2 D3 Q3 D4 Q4

Clk

Out

Tap_config[31:0]

Out_sel[4:0] 0 1 2 3 . . . 32

D32 Q32

Last

Tap

Config.

Register

Tap

Config.

Register

PRBS Design: Example

D1 Q1 D2 Q2 D3 Q3 D4 Q4

Clk

Out

Tap_config[31:0]

Last_Tap[4:0] 0 1 2 3 . . . 32

D32 Q32

Last

Tap

Config.

Register

Tap

Config.

Register

Tap_config[31:0] = 32’h80000003 (only feedbacks 32, 2, and 1 active)

Last_Tap[4:0] = 5’h10
(output = 32)

PRBS (cont.)

• By creating a large X-NOR feedback path, logic delay is
minimized. Allows for faster PRBS operation.

• Utilizes X-NOR feedback. On start-up, PRBS is in valid all-
zeros state.

• Properly configured for a length of 32 registers, the resulting
Pseudo Random Binary Sequence is:
– (2n - 1) = (232 - 1) = 4,294,967,295 chips long.

• Operating at 1.288MHz, sequence repeats after:
– 4,294,967,295 chips * 1/1288000 secs/chip * 1 min/60 secs = 55.6 minutes

FIR Transverse Filter Structure
• Incoming data is convolved with desired

filter response

• Output is a band-limited version of the
original data

Unit
Delay

Unit
Delay

Unit
Delay

Unit
Delay

Unit
Delay

Input Bitstream
x[n]

X XX X X

Σ
Output Words

y[n]

FIR Filter

h[4]h[0] h[1] h[2] h[3]

Interpolating FIR Filter
• An interpolator increases the sample rate to

provide additional time resolution
– Two operations: zero filling, then filter

x[0] x[1]

Input Signal

x[2]

x[3]

Lowpass
Filter4

Input
Signal

Zero-Filled
Input Signal Smoothed, Upsampled

Signal

x[0] x[1]

Zero Filled
Input Signal

x[2]

x[3]

x[0]

x[3]

Upsampled/Interpolated Output Signal

x[1] x[2]

• Magenta ⇒ Original samples

• Black ⇒ Interpolated samples

Interpolation Filter

• Allows the system to “shape” the binary
data into bandlimited signals

Interpolation
Filter

Binary Data
Stream In

Smoothed n-bit
data Out

Filter Hardware Design

• Need many multipliers:
– 1 multiplier for each filter tap

– Multipliers can require substantial area

– Example: IS-95 FIR Filter (48 tap), a direct
implementation would require 48 multiplies
and accumulation of all products, per output.

• Multiplier Implementation
– Constant Coefficient Multiplier, well suited to

FPGA implementation

Binary Multiply

 1101
 x 0111
 1101

 1101
 1101

 0000

 01011011

2's Complement
HA

FA

FA

FAHA

FA

HA HA

FAFAHA

a0b1a0b3 a0b0a0b2

a1b0a1b1

a2b0a2b1a2b2

a3b0

a1b2

a3b1

a1b3

a3b2

a2b3a3b3

Product Terms
c0c1c2c3c4c5c6c7

HA

FA= Full Adder
HA=Half Adder
anbn = an & bn

Constant Coefficient Multiplier

• Uses ROM or RAM to generate partial product

• Sum all partial product ROM outputs

ROM
Look - Up Table

0
1k
2k
3k
.
.

15k

ROM
Look - Up Table

0
1k
2k
3k
.
.

15k

A
D
D

16

12

12

0000

0000
16

16

Y[15:0]

4

4

8

x[7:0]

Constant Coefficient Multiplier (KCM)

Interpolation Filter Optimization
• Recall from the Interpolation filter block diagram, that for

every one input sample, four output samples are generated
by zero-filling the input to the lowpass filter

Lowpass
Filter4

Input
Signal

Zero-Filled
Input Signal Smoothed, Upsampled

Signal

• Because there is only one non-zero sample for every four
input samples to the lowpass filter, only 1 multiply actually
needs be done per four adjacent taps.

– Can exploit this property and reduce the number of
multipliers by a factor of four!

Unit
Delay

Unit
Delay

Unit
Delay

Unit
Delay

Unit
Delay

Zero-filled
Data Stream

y[n]

X XX X X

Σ
Output Sample

y[n]= h[0] y[0] + 0+0+0+h[4]Y[4]

FIR Filter

h[4]h[0] h[1] h[2] h[3]

y[0] 0 0 0 x[4]

0 0 0
(h[0] y[0])Π (h[4] y[4])Π

FIR: Output Sample Generation

• A given output sample is given by one of
the following sums, due to the zero-filling
property of the interpolating FIR filter

47733

46622

45511

44400

]47[...]4[]3[][

]46[...]6[]2[][

]45[...]5[]1[][

]44[...]4[][][

hnxhnxhnxny

hnxhnxhnxny

hnxhnxhnxny

hnxhnxhnxny

×−++×−+×−=

×−++×−+×−=

×−++×−+×−=

×−++×−+×=

FIR: Output Sample Generation

• The output of the PRBS is a serial binary
stream, where logic zero is mapped to -1.
Also, when input sample data is not valid,
the output of a filter tap (at time of invalid
data) must be zero.

• Thus, x[n] ∈{1,0,-1}
• For any filter tap, there are three possible

values: h[n]•x[n] ∈{hn,0,-hn}

FIR: Output Sample Generation
• From the columns of:

47733

46622

45511

44400

]47[...]4[]3[][

]46[...]6[]2[][

]45[...]5[]1[][

]44[...]4[][][

hnxhnxhnxny

hnxhnxhnxny

hnxhnxhnxny

hnxhnxhnxny

×−++×−+×−=

×−++×−+×−=

×−++×−+×−=

×−++×−+×=

we note that only one of the four rows will have non-
zero x[n] data. Thus each column contains: 4×3=12 -
3 = 9 unique values

(only one of the four “0” cases need be represented)

• Example: ycol[0]={h0,-h0, h1, -h1, h2, -h2, h3, -h3,0}

• Each of the 12 columns (or taps) may be represented
by a 9-word deep RAM.
– RAM address[3:0] = {DataValid, Interpolation_Step[1:0],x[i]}

I&Q channel FIR Filters

• The design requires the I and Q output
channels to provide filtered output, as
shown in the block diagram.

PRBS1

PRBS2

Input Data
Interface

X

X

Baseband
FIR Filter

Baseband
FIR Filter

I-Channel

Q-Channel

Data from
Memory or CPU

FPGA

Output
Data

Interface

PRBS
Control

PRBS
Control

• The output data rate is not very high in
current FPGA terms, only about 5MHz.

I&Q channel FIR Filters
• Multiplex the two channels through a

common filter at 2 times the output rate.

50% less area ⇒ Smaller, Cheaper FPGA
and ⇒ 50% Less Power

• More efficient use of resources
– Less area at the cost of double the rate
– Save power: half the routing, half the device

utilage, double the frequency (CV2f)
• (0.5 ×0.5 × C) ×V2 ×(2 ×f) = 0.5 × CV2f

0

1
D Q

Qdata

Idata
DataIn

Interpolating FIR Filter
48-tap

12-bit Coefficient

DataOut D Q

D Q

IData_Out

QData_Out

FIR: Top Level Block

1. Clocks are implied (All the same signal)
2. CNT2b: 2-bit binary counter
3. JCTR: 5-bit Ring ctr; Init shown
4. FO: Paramertizable output data width

Notes

D Q

CE

CNT2b

CNT[1:0]
EN

(Glue)

ASel[1:0]

ADCE

Fsinc

CNT2b

CNT[1:0]
EN

JCTR

Q

J_LD
RST=10000

JCTR

Q

J_ADCE
RST=00001

JCTR

Q

J_ACEN
RST=00001

T Q

(Glue+Reg)

H[0]

iqsel

FState[1:0]

HEN[11:0]

iqsel

ADCE

HEN[11:0]

LD
ASEL[1:0]

FState[1:0]

ACEN

IDATA[11:0]

WE
RST

COEFF[11:0]

PROG
PADDR[3:0]

Filt_Out[FO-1:0]

ACEN

ASEL[1:0]

LD

FState[1:0]

HEN[11:0]

sel

0

1 D Q

CE

D Q

CE

(Glue)

LD
iqsel

I_EN
Q_EN

ireg_en

Iout_Reg[FO-1:0]

Qout_Reg[FO-1:0]

qreg_en

WE
RST

COEFF[11:0]

PROG
PADDR[3:0]

IDIN[11:0]

QDIN[11:0]

DVAL

BBFilt

FIR: Top Level Block

Processes

• All FIR control functions

• I and Q channel input and output multiplexing

• Output clock generation

• Data output widths parameterizable at compile
time

• Verilog filename: fir12.v

FIR: Filter Block
D Q

CE

D Q

CE

H0
H1
H2
H3
H4
H5

H6
H7
H8
H9
H10
H11

FltAddr[11:0][2:0]

Coeff[11:0]

WE[11:0]

{HEN[11:0],FState[1:0],IData[11:0]}

Prog

PAddr[3:0]
sel

0

1 12x4

12

Σ Filt_Out[FO-1:0]

abot

atop

12-bit Data

0
1
2
3
4
5

Accumulator

SUM

SEL
LD

0
1
2
3
4
5

Accumulator

SUM

SEL
LD

Coeff[11:0]

WE[11:0]

Clk

LD
ASel[1:0]

ACEN

W

W

FOTap RAM

12

W: 17 bits nominal
FO: 18bits nominal

Paramertizable data widths: (Chosen to avoid overflow)

•Coefficient RAM is implemented as 12-bit wide by 16-deep
•Use RAM instead of ROM to allow in-system filter adjustment

•Top six and Bottom six 12-bit tap outputs are fed into independent
accumulators operating at 5X the output rate, producing one new
sample at the required data rate.

•One pipeline stage prior to summing the accumulator outputs

•Accumulator width: 18-bits nominal, avoids internal overflow

Filt.v

FIR: Accumulator

• When LD=1, SUM = T1 + T2
• When LD=0, SUM = SUM + T2_5 (4:1 mux output)
• Multiplexer controls handled outside this block for

modular instantiation.
• Accumulator width: 17-bits, avoids internal overflow.
• New data is expected every 6th clock to guarantee

overflow avoidance.
• Verilog file: accum.v

Σ

sel

1

0

sel

0

1

sel

1
0

2
3

D Q

T2

T0

T1

T3
T4
T5

asel[1:0]
LD
Clk

SUM[W-1:0]

t2_5

a

b

FIR: Synthesizing Adders

• Synplicity did a much better job
synthesizing the design to the target
architecture with the behavioral code:
assign sum = a + b;

– Maps the logic to dedicated carry chains and
arithmetic circuitry

• Designing a modular ripple carry adder and
synthesizing produced far inferior results!
– Used nearly twice the area, and did not utilize

dedicated arithmetic logic.

FIR: Tap RAM

• (One of 12 RAM Taps shown)

• Synchronous 12-bit by 16-deep RAM.

• RAM content is loaded through a dedicated
programming mode from the microprocessor
interface

• Verilog file: ram_fir.v

WE[0]

A[1]
A[2]
A[3]

A[0]

WE

DataIn[11:0]

DataOut[11:0]

16x12 RAM

Coeff[11:0]

H[0][11:0]

Clk

One tap (tap zero) of the
Filter coefficient RAM

FltAddr[0][0]InData[0]

FltAddr[0][3] (HEN[0])
FltAddr[0][2] (FState[1])
FltAddr[0][1] (FState[0])

What we accomplished:

• Implemented entire design in Verilog HDL

• Block-Level Simulation performed using Cadence Verilog-

XL 2.8

• Synthesized Verilog HDL using Synplicity Synplify 5.2.2a

• Targeted Virtex 50 and processed design through Xilinx

Alliance 2.1i.

Place and Route Results
Design Information
Target Device : xv50
Target Package : bg256
Target Speed : -4

Device utilization summary:
Number of External GCLKIOBs 3 out of 4 75%
Number of External IOBs 54 out of 180 30%
Number of CLBs 190 out of 384 49%
Number of GCLKs 4 out of 4 100%
Number of TBUFs 16 out of 832 1%

Total equivalent gate count for design: 17557

Design statistics:
Minimum period: 15.469ns (Maximum frequency: 64.645MHz)

Conclusion

• Designed and Built a Spread Spectrum Modulator in an FPGA

• Programmable PRBS Structure

• Programmable FIR Interpolation Filter

• Synthesized, Place and Routed for Xilinx FPGA, XV50-4

• Design uses 190 CLB’s, or 49% of capacity of Virtex 50.

• Maximum Accumulator Frequency = 64.645MHz.

• Max Data output frequency = 6.4645MHz.

– (Required only 5.152MHz)

What now?.

• Re-Design for smaller Xilinx chip. Virtex device is expensive and

twice as large as the logic required. Logic will fit inside of

cheaper Spartan XCX30XL, however without re-designing, the

maximum clock speed achieved was only 40 MHz (11.52 MHz too

slow)

• Increase PRBS size. N = 32 is too small, and the additional logic

required is minimal

• Allow different PRBS seeds.

• Enhance Microprocessor interface.

• Alter FIFO design to better utilize Spartan architecture.

• Increase FIR filter resolution.

References
[1] Viterbi, A.J. CDMA: Principles of Spread Spectrum Communications,

Addison-Wesley, 1995.

[2] Hwang, K., Computer Arithmetic, Wiley, 1979.
[3] Rappaport, T.S., Wireless Communications: Principles and Practice,

Prentice-Hall, 1996.

[4] Lee, J.L., Miller, L.E., CDMA Systems Engineering Handbook,
Artech House, 1998.

[5] Xilinx, 1999 Programmable Logic Data Book

[6] Palnitkar, S., Verilog HDL, A Guide to Digital Design and Synthesis,
Prentice-Hall, 1996.

[7] Lim, Y.C., Parker, S., “FIR Filter Design Over a Discrete Powers-of-
Two Coefficient Space,” IEEE Trans. On ASSP, June 1983, pp. 583-
591.

[8] Goslin, G., Newgard, B., “16-tap, 8-Bit FIR Filter Application Guide,”
Xilinx application note, November 21,1994.

References (cont.)
[9] Alfke, Peter “Efficient Shift Registers, LFSR counters, and Long

Pseudo-Random Sequence Generators,” Xilinx application note, July
7, 1996.

[10] Chapman, Ken, “Constant Coefficient Multipliers for XC4000E,”
Xilinx application note, December 11, 1996.

[11] Camilleri, Nick, “170 MHz FIFOs Using the Virtex Block
SelectRAM+,” Xilinx application note, December 10, 1998.

