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Presentation Outline

• What is it?

• Why do we want to build it, AKA 
“Motivation!”

• Design Goals

• Implementation

• Forward Plans



What is it: Outline

• Goal of the device

• 30 second tour of Spread Spectrum

• Modulator block diagram
– Input data handler/memory interface

– Spreading code generator: PRBS

– Baseband FIR Filter



Goal of Device

• A spread spectrum modulator for arbitrary 
spreading sequence 
– Input is Encoded Data Stream;  protocol issues have 

been handled “upstream”

– Outputs are in-phase (I) and quadrature-phase (Q) 
words at output sample rate, 

– Outputs go to Digital to Analog conversion, on the way 
to RF chain

• Design entire modulator into an FPGA



30 second tour of Multiple Access 
Communications, 
Spread Spectrum



Orthogonality
• Given a funtion, f(t), we often want to specify the 

function by a set of numbers not dependent on the 
variable t.  Express as

f(t) = Σ fnφn(t)

where the chosen φn(t) is known as a basis function 
for f(t); fn is a set of numbers independent of time.

• This is analgous to expressing a vector as the sum 
of a set of numbers in a Cartesian coordinate 
system:  (1,1,1) = 1 • x + 1 • y + 1 • z

x

z

y

(1,1,1)



Orthogonality

• As with a Cartesian coordinate system , the axes 
are chosen such that the projection of the vector 
on each coordinate axis is independent of the 
projection of the vector on other axes.

• When the vector φ1(t) has no component along 
vector φ2(t), the two vectors are perpendicular and 
are defined to be orthogonal.

φ1

φ2

All projection of one axis
goes to the null magnitude

on the orthogonal axis

0



Orthogonality
• In general terms, there are many sets of orthogonal 

functions. Examples of orthogonal vector sets are 
Cartesian coordinates, polar coordinates, time 
allocated events, trigonometric functions, 
exponential functions.

• Often it is advantageous to normalize the axes of a 
set of basis functions to unity.  When an orthogonal 
set of basis functions are normalized, they are
orthonormal.

• Orthogonal systems play a vital role in 
communications.  By requiring different 
communication channels to be orthogonal, multiple 
users may access a common communications 
domain.



Multiple Access Communications
• Frequency Division MA (FDMA)

– Orthogonal in Frequency
• Different users use different frequencies

• Time Division MA (TDMA)
– Orthogonal in Time and Frequency

• Different users use different frequencies, but only 
transmit/receive on time-limited intervals.
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Multiple Access Communications
• Code Division MA (CDMA)

– Orthogonal in Coding, all user’s share a frequency band

– Transmit signal in a bandwidth much greater than the 
required information bandwidth:  “spread the signal”
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Spread Spectrum

• Incoming data is modulated (multiplied) with a 
spreading sequence
– Spreading signal typically much higher rate than 

information signal

– The modulating operation is a bitwise Exclusive-OR.
– The spreading signal is clocked at nn times the incoming 

information signal data rate, where n is an integer, n>1n>1. 
Common values for nn = 128, 512

X
 Information

Signal

Spreading
Signal

Output Signal
     = Information x Spreading code



Spread Spectrum
• Spreading a data signal example

– Spreading Factor of 4 shown here

Spectrum of Original Signal Spectrum of Spread Signal



Spread Spectrum
• Spreading Codes generated by pseudo-

random binary sequence (PRBS) generator

• PRBS is a stream of “random” 1’s and 0’s 
that repeats at known intervals
– Generated in hardware by shift registers with XOR 

feedback

– PRBS Length dictated by length of shift register chain 
and feedback taps

– A maximal length sequence has length = 2n -1 states 
before repeating, where “n” is the length of the shift 
register



Spread Spectrum
• Example PRBS: f(x) = x3 + x + 1 , 

length=3,  
number of states= 7
111 ⇒ 110 ⇒ 101⇒ 010 ⇒ 100 ⇒ 001⇒ 011⇒

111...

D Q D Q D Q

+

Clock



Spread Spectrum
• Commercial SS uses a pre-specified PRBS
• Orthogonality is achieved by having all users 

codes’ appear unique
– Achieved by using offset versions of the same 

spreading code
• user 1 will use seed value “A”, user 2 will use seed value 

“B”

• user 1’s version of PRBS always looks different from user 
2’s version of PRBS, orthogonality is maintained.

• In commercial systems, there are a finite number of offset 
positions per common channel.  Ex. IS-95 has 512 different 
offset positions per cell.

– COTS hardware available for specific spreading codes



Spread Spectrum
• COTS hardware available for 

specific spreading codes
• Arbitrary spreading code 

transmitter not generally 
available
–Want to look even more different 

than the other channel, yields more 
secure channel.



Spread Spectrum (SS): Transmitter 
Block Diagram
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Modulator Block Diagram
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PRBS2
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Interface
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Data Input/Output
• Accept 8-bit parallel data stream

• Output two modulated data streams
– 18-bit Parallel Output

PRBS1

PRBS2

Input Data
Interface

X

X

Baseband
FIR Filter

Baseband
FIR Filter
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Q-Channel

Data from
Memory or CPU

FPGA

Output
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Spreading Code Generators

• PRBS Example: f(x) = x3 + x + 1 , length=3

PRBS1

PRBS2

Input Data
Interface

X

X

Baseband
FIR Filter

Baseband
FIR Filter

I-Channel

Q-Channel

Data from
Memory or CPU

FPGA

Output
Data

Interface

PRBS
Control

PRBS
Control

D Q D Q D Q

+

Clock

111 ⇒ 110 ⇒ 101⇒ 010 ⇒ 100 ⇒ 001⇒ 011⇒ 111...

• IS-95 uses PRBS with length 32; 232-1 ⇒length of 4,294,967,295

• Different PRBS may be generated in Programmable Logic



Baseband FIR Filter

• Must use a digital filter to bandlimit the 
output signal.

• Recall the Fourier transform of square pulse train:  
– Spectral content to infinity
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Baseband Filter
• After filtering, the signal to be transmitted 

has finite bandwidth.
– Filter is represented by green shaded region

– All spectral content outside the filter bandwidth 
is highly attenuated, based on the filter 
characteristics.

– Prevents our transmitted signal from becoming 
an unwanted interferor.

freq

Power f=1/T

f 3f 5f



Motivation

• Why put into an FPGA?

• Why not a programmable DSP?



Why not a general purpose 
processor or DSP?

second
167.4

second
2001

148
outputscycle

cycle
MAC

MAC
tap

taps
output

≡×××

• As data rates increase, DSP’s and CPU’s 
can’t keep up

• Example: IS-95 baseband filter
– 1.288MHz input data, 5.152MHz output data

– High Performance DSP can perform 1Multiply-
Accumulate (MAC) per cycle.

– 200MHz DSP, Filter is 48-taps in length

4.167MHz output < 5.152MHz ⇒ DSP can’t keep up!



Why an FPGA?

• Can offload specialized operations, e.g. 
filtering, PRBS generation and modulation.

• Can change portions of the design quickly
– Filter length and tap weights are easily adjusted

– Alter PRBS on the fly

– Add or remove functionality in system, and 
without a PCB change.



Design Goals

• Arbitrary spreading sequence

• At speed operation (filters must keep up!)

• Fit the entire design into one FPGA



Spread Spectrum Transmitter

• Clock Modification block 

• Microprocessor/DSP interface block

• FIFO data input block

• 8-bit parallel to serial conversion block

• Programmable I and Q channel Pseudo Random 
Binary Sequence Generator. 

• Programmable Finite Impulse Response Filter



Spread Spectrum Transmitter Block Diagram



Spread Spectrum Transmitter Block Diagram (cont.)



Subsection Outline

• Clock Modification

• DSP/Microprocessor interface

• Data interface:  FIFO & Serial conversion

• PRBS Design Plan

• Filter Design Plan



Clock Modification

• Utilizes same input clock on all clock dividers to minimize 
clock skew.

• 51.52 MHz input (FIR Clock)

• 1.288 MHz output (PRBS clock)

• 20.125 KHz output (Serial Clock)

• 2.515625 Khz pulse (Load Strobe & FIFO Pop Clk)

• Associated Verilog Files: clk_mod.v

Divide
by
40

Divide
by

64*40

Divide
by

8*64*40

50.52 MHz

1.288 MHz - prbs_clk

20.125 KHz - slow_clk

2.515625 KHz - load_clk



DSP/Microprocessor Interface

• 8 - bit Bi-Directional Data Bus

• 4 - bit Address Bus

• 14 uniquely addressable Data Registers

• Read/Write capability

• Chip Select

• Associated Verilog Files: control.v



DSP/Microprocessor Interface 
Register Map

PRBS I Tap Config. Reg. [31:24]

PRBS I Tap Config. Reg. [23:16]

PRBS I Tap Config. Reg. [15:8]

PRBS I Tap Config. Reg. [7:0]

Last Tap I Config. Reg. [4:0]

Last Tap Q Config. Reg. [4:0]

FIFO Data Reg. [7:0]

FIR Coeff. Data Reg. [11:8]

FIR Coeff. Data Reg. [7:0]

FIR RAM Address Reg. [7:0]

‘h0
‘h1
‘h2
‘h3

‘h4
‘h5
‘h6
‘h7

‘h8

‘h9

‘hA

‘hB
‘hC

‘hD

PRBS Q Tap Config. Reg. [31:24]

PRBS Q Tap Config. Reg. [23:16]

PRBS Q Tap Config. Reg. [15:8]

PRBS Q Tap Config. Reg. [7:0]

data[7:0]

addr[7:0]

rd_strobe

wr_strobe

cs



Data Interface : FIFO

• Async. Interface (separate push/pop clocks)

• 8 - bits wide  x  32 deep

• Full, half_full, and empty status flags 

• Push and Pop binary address counters

• Up/Down counter 

– Keeps track of number of datum in FIFO

• Dual Port RAM

• Associated Verilog files: fifo.v, fifo_ram.v, udcount.v



FIFO Block Diagram



Parallel to Serial Converter

• 8-bit data in.

• Synchronous Load

• Asynchronous Reset

• Serial Clock
• Associated Verilog Files: p2s.v



I & Q channel “Spreader”

• Serial Data Input

• Independent I & Q channel PRBS.

• 12-bit serial to parallel converters 
• Associated Verilog Files: prbs.v, dff.v, shift_reg.v



PRBS Design

• Design such that the virtual register length may be varied by 

selecting any one of 32 register outputs as the PRBS data output

– Max length = 32 registers deep

• Programmable Feedback paths

– Design such that any register output may be included in feedback path

• Design options

– PRBS configured in hardware by updating a register

• Most flexible method;  User can change PRBS on-the-fly

• Inefficient hardware utilization



PRBS Design: Register Configured

D1 Q1 D2 Q2 D3 Q3 D4 Q4

Clk

Out

Tap_config[31:0]

Out_sel[4:0] 0  1    2    3     . . .               32          

D32 Q32

Last

Tap

Config.

Register

Tap

Config.

Register



PRBS Design: Example

D1 Q1 D2 Q2 D3 Q3 D4 Q4

Clk

Out

Tap_config[31:0]

Last_Tap[4:0] 0  1    2    3     . . .               32          

D32 Q32

Last

Tap

Config.

Register

Tap

Config.

Register

Tap_config[31:0] = 32’h80000003 (only feedbacks 32, 2, and 1 active)

Last_Tap[4:0] = 5’h10 
(output = 32)



PRBS (cont.)

• By creating a large X-NOR feedback path, logic delay is 
minimized.  Allows for faster PRBS operation.

• Utilizes X-NOR feedback.  On start-up, PRBS is in valid all-
zeros state. 

• Properly configured for a length of 32 registers, the resulting 
Pseudo Random Binary Sequence is:
– (2n - 1) = (232 - 1) =  4,294,967,295 chips long.

• Operating at 1.288MHz, sequence repeats after:
– 4,294,967,295 chips * 1/1288000 secs/chip * 1 min/60 secs = 55.6 minutes



FIR Transverse Filter Structure
• Incoming data is convolved with desired 

filter response

• Output is a band-limited version of the 
original data

Unit
Delay

Unit
Delay

Unit
Delay

Unit
Delay

Unit
Delay

Input Bitstream
x[n]

X XX X X

Σ
Output Words

y[n]

FIR Filter

h[4]h[0] h[1] h[2] h[3]



Interpolating FIR Filter
• An interpolator increases the sample rate to 

provide additional time resolution
– Two operations: zero filling, then filter

x[0] x[1]

Input Signal

x[2]

x[3]

Lowpass
Filter4

Input
Signal

Zero-Filled
Input Signal Smoothed, Upsampled

Signal

x[0] x[1]

Zero Filled
Input Signal

x[2]

x[3]

x[0]

x[3]

Upsampled/Interpolated Output Signal

x[1] x[2]

• Magenta ⇒ Original samples

• Black ⇒ Interpolated samples



Interpolation Filter

• Allows the system to “shape” the binary 
data into bandlimited signals

Interpolation
Filter

Binary Data
Stream In

Smoothed n-bit
data Out



Filter Hardware Design

• Need many multipliers: 
– 1 multiplier for each filter tap

– Multipliers can require substantial area

– Example: IS-95 FIR Filter (48 tap), a direct 
implementation would require 48 multiplies 
and accumulation of all products, per output.

• Multiplier Implementation
– Constant Coefficient Multiplier, well suited to 

FPGA implementation



Binary Multiply

                1101
           x   0111
                1101

            1101
        1101

    0000
       -------------
        01011011

2's Complement
HA

FA

FA

FAHA

FA

HA HA

FAFAHA

a0b1a0b3 a0b0a0b2

a1b0a1b1

a2b0a2b1a2b2

a3b0

a1b2

a3b1

a1b3

a3b2

a2b3a3b3

Product Terms
c0c1c2c3c4c5c6c7

HA

FA= Full Adder
HA=Half Adder
anbn = an & bn



Constant Coefficient Multiplier

• Uses ROM or RAM to generate partial product

• Sum all partial product ROM outputs

ROM
Look - Up Table

0
1k
2k
3k
.
.

15k

ROM
Look - Up Table

0
1k
2k
3k
.
.

15k

A
D
D

16

12

12

0000

0000
16

16

Y[15:0]

4

4

8

x[7:0]

Constant Coefficient Multiplier (KCM)



Interpolation Filter Optimization
• Recall from the Interpolation filter block diagram, that for 

every one input sample, four output samples are generated 
by zero-filling the input to the lowpass filter

Lowpass
Filter4

Input
Signal

Zero-Filled
Input Signal Smoothed, Upsampled

Signal

• Because there is only one non-zero sample for every four 
input samples to the lowpass filter, only 1 multiply actually 
needs be done per four adjacent taps.

– Can exploit this property and reduce the number of 
multipliers by a factor of four!

Unit
Delay

Unit
Delay

Unit
Delay

Unit
Delay

Unit
Delay

Zero-filled
Data Stream

y[n]

X XX X X

Σ
Output Sample

y[n]= h[0] y[0] + 0+0+0+h[4]Y[4]

FIR Filter

h[4]h[0] h[1] h[2] h[3]

y[0] 0 0 0 x[4]

0 0 0
(h[0]  y[0])Π (h[4]  y[4])Π



FIR: Output Sample Generation

• A given output sample is given by one of 
the following sums, due to the zero-filling 
property of the interpolating FIR filter

47733

46622

45511

44400

]47[...]4[]3[][

]46[...]6[]2[][

]45[...]5[]1[][

]44[...]4[][][

hnxhnxhnxny

hnxhnxhnxny

hnxhnxhnxny

hnxhnxhnxny

×−++×−+×−=

×−++×−+×−=

×−++×−+×−=

×−++×−+×=



FIR: Output Sample Generation

• The output of the PRBS is a serial binary 
stream, where logic zero is mapped to -1.  
Also, when input sample data is not valid, 
the output of a filter tap (at time of invalid 
data) must be zero.

• Thus, x[n] ∈{1,0,-1}
• For any filter tap, there are three possible 

values: h[n]•x[n] ∈{hn,0,-hn}



FIR: Output Sample Generation
• From the columns of:

47733

46622

45511

44400

]47[...]4[]3[][

]46[...]6[]2[][

]45[...]5[]1[][

]44[...]4[][][

hnxhnxhnxny

hnxhnxhnxny

hnxhnxhnxny

hnxhnxhnxny

×−++×−+×−=

×−++×−+×−=

×−++×−+×−=

×−++×−+×=

we note that only one of the four rows will have non-
zero x[n] data.  Thus each column contains: 4×3=12 -
3 = 9 unique values

(only one of the four “0” cases need be represented)

• Example: ycol[0]={h0,-h0, h1, -h1, h2, -h2, h3, -h3,0}

• Each of the 12 columns (or taps) may be represented 
by a 9-word deep RAM.
– RAM address[3:0] = {DataValid, Interpolation_Step[1:0],x[i]}



I&Q channel FIR Filters

• The design requires the I and Q output 
channels to provide filtered output, as 
shown in the block diagram.

PRBS1

PRBS2

Input Data
Interface

X

X

Baseband
FIR Filter

Baseband
FIR Filter

I-Channel

Q-Channel

Data from
Memory or CPU

FPGA

Output
Data

Interface

PRBS
Control

PRBS
Control

• The output data rate is not very high in 
current FPGA terms, only about 5MHz.



I&Q channel FIR Filters
• Multiplex the two channels through a 

common filter at 2 times the output rate.

50% less area ⇒ Smaller, Cheaper FPGA
and ⇒ 50% Less Power

• More efficient use of resources
– Less area at the cost of double the rate
– Save power: half the routing, half the device

utilage, double the frequency (CV2f)
• (0.5 ×0.5 × C) ×V2 ×(2 ×f) = 0.5 × CV2f

0

1
D Q

Qdata

Idata
DataIn

Interpolating FIR Filter
48-tap

12-bit Coefficient

DataOut D Q

D Q

IData_Out

QData_Out



FIR: Top Level Block

1. Clocks are implied (All the same signal)
2. CNT2b: 2-bit binary counter
3. JCTR: 5-bit Ring ctr;  Init shown
4. FO: Paramertizable output data width

Notes

D Q

CE

CNT2b

CNT[1:0]
EN

(Glue)

ASel[1:0]

ADCE

Fsinc

CNT2b

CNT[1:0]
EN

JCTR

Q

J_LD
RST=10000

JCTR

Q

J_ADCE
RST=00001

JCTR

Q

J_ACEN
RST=00001

T Q

(Glue+Reg)

H[0]

iqsel

FState[1:0]

HEN[11:0]

iqsel

ADCE

HEN[11:0]

LD
ASEL[1:0]

FState[1:0]

ACEN

IDATA[11:0]

WE
RST

COEFF[11:0]

PROG
PADDR[3:0]

Filt_Out[FO-1:0]

ACEN

ASEL[1:0]

LD

FState[1:0]

HEN[11:0]

sel

0

1 D Q

CE

D Q

CE

(Glue)

LD
iqsel

I_EN
Q_EN

ireg_en

Iout_Reg[FO-1:0]

Qout_Reg[FO-1:0]

qreg_en

WE
RST

COEFF[11:0]

PROG
PADDR[3:0]

IDIN[11:0]

QDIN[11:0]

DVAL

BBFilt



FIR: Top Level Block

Processes

• All FIR control functions 

• I and Q channel input and output multiplexing

• Output clock generation

• Data output widths parameterizable at compile 
time

• Verilog filename: fir12.v



FIR:  Filter Block
D Q

CE

D Q

CE

H0
H1
H2
H3
H4
H5

H6
H7
H8
H9
H10
H11

FltAddr[11:0][2:0]

Coeff[11:0]

WE[11:0]

{HEN[11:0],FState[1:0],IData[11:0]}

Prog

PAddr[3:0]
sel

0

1 12x4

12

Σ Filt_Out[FO-1:0]

abot

atop

12-bit Data

0
1
2
3
4
5

Accumulator

SUM

SEL
LD

0
1
2
3
4
5

Accumulator

SUM

SEL
LD

Coeff[11:0]

WE[11:0]

Clk

LD
ASel[1:0]

ACEN

W

W

FOTap RAM

12

W: 17 bits nominal
FO: 18bits nominal

Paramertizable data widths: (Chosen to avoid overflow)

•Coefficient RAM is implemented as 12-bit wide by 16-deep
•Use RAM instead of ROM to allow in-system filter adjustment

•Top six and Bottom six 12-bit tap outputs are fed into independent 
accumulators operating at 5X the output rate, producing one new 
sample at the required data rate. 

•One pipeline stage prior to summing the accumulator outputs

•Accumulator width: 18-bits nominal, avoids internal overflow

Filt.v



FIR: Accumulator

• When LD=1, SUM = T1 + T2
• When LD=0, SUM = SUM + T2_5 (4:1 mux output)
• Multiplexer controls handled outside this block for 

modular instantiation.
• Accumulator  width: 17-bits, avoids internal overflow.
• New data is expected every 6th clock to guarantee 

overflow avoidance. 
• Verilog file: accum.v

Σ

sel

1

0

sel

0

1

sel

1
0

2
3

D Q

T2

T0

T1

T3
T4
T5

asel[1:0]
LD
Clk

SUM[W-1:0]

t2_5

a

b



FIR: Synthesizing Adders

• Synplicity did a much better job 
synthesizing the design to the target 
architecture with the behavioral code:
assign sum = a + b;

– Maps the logic to dedicated carry chains and 
arithmetic circuitry

• Designing a modular ripple carry adder and 
synthesizing produced far inferior results!  
– Used nearly twice the area, and did not utilize 

dedicated arithmetic logic.



FIR: Tap RAM

• (One of 12 RAM Taps shown)

• Synchronous 12-bit by 16-deep RAM.

• RAM content is loaded through a dedicated 
programming mode from the microprocessor 
interface

• Verilog file: ram_fir.v

WE[0]

A[1]
A[2]
A[3]

A[0]

WE

DataIn[11:0]

DataOut[11:0]

16x12 RAM

Coeff[11:0]

H[0][11:0]

Clk

One tap (tap zero) of the
Filter coefficient RAM

FltAddr[0][0]InData[0]

FltAddr[0][3] (HEN[0])
FltAddr[0][2] (FState[1])
FltAddr[0][1] (FState[0])



What we accomplished:

• Implemented entire design in Verilog HDL

• Block-Level Simulation performed using Cadence Verilog-

XL 2.8

• Synthesized Verilog HDL using Synplicity Synplify 5.2.2a 

• Targeted Virtex 50 and processed design through Xilinx 

Alliance 2.1i.



Place and Route Results
Design Information
Target Device  : xv50
Target Package : bg256
Target Speed   : -4

Device utilization summary:    
Number of External GCLKIOBs         3 out of 4      75%   
Number of External IOBs            54 out of 180    30%    
Number of CLBs 190 out of 384  49%
Number of GCLKs                     4 out of 4     100%   
Number of TBUFs                    16 out of 832     1%

Total equivalent gate count for design: 17557

Design statistics:   
Minimum period:  15.469ns (Maximum frequency:  64.645MHz)



Conclusion

• Designed and Built a Spread Spectrum Modulator in an FPGA

• Programmable PRBS Structure

• Programmable FIR Interpolation Filter

• Synthesized, Place and Routed for Xilinx FPGA, XV50-4  

• Design uses 190 CLB’s, or 49% of capacity of Virtex 50.

• Maximum Accumulator Frequency = 64.645MHz. 

• Max Data output frequency =  6.4645MHz. 

– (Required only 5.152MHz)



What now?.

• Re-Design for smaller Xilinx chip. Virtex device is expensive and 

twice as large as the logic required.  Logic will fit inside of 

cheaper Spartan XCX30XL, however without re-designing, the 

maximum clock speed achieved was only 40 MHz (11.52 MHz too 

slow)

• Increase PRBS size.  N = 32 is too small, and the additional logic 

required is minimal

• Allow different PRBS seeds.

• Enhance Microprocessor interface.

• Alter FIFO design to better utilize Spartan architecture.

• Increase FIR filter resolution.
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